Science.gov

Sample records for systems biology quest

  1. The quest for a new modelling framework in mathematical biology. Comment on "On the interplay between mathematics and biology: Hallmarks towards a new systems biology" by N. Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Eftimie, Raluca

    2015-03-01

    One of the main unsolved problems of modern physics is finding a "theory of everything" - a theory that can explain, with the help of mathematics, all physical aspects of the universe. While the laws of physics could explain some aspects of the biology of living systems (e.g., the phenomenological interpretation of movement of cells and animals), there are other aspects specific to biology that cannot be captured by physics models. For example, it is generally accepted that the evolution of a cell-based system is influenced by the activation state of cells (e.g., only activated and functional immune cells can fight diseases); on the other hand, the evolution of an animal-based system can be influenced by the psychological state (e.g., distress) of animals. Therefore, the last 10-20 years have seen also a quest for a "theory of everything"-approach extended to biology, with researchers trying to propose mathematical modelling frameworks that can explain various biological phenomena ranging from ecology to developmental biology and medicine [1,2,6]. The basic idea behind this approach can be found in a few reviews on ecology and cell biology [6,7,9-11], where researchers suggested that due to the parallel between the micro-scale dynamics and the emerging macro-scale phenomena in both cell biology and in ecology, many mathematical methods used for ecological processes could be adapted to cancer modelling [7,9] or to modelling in immunology [11]. However, this approach generally involved the use of different models to describe different biological aspects (e.g., models for cell and animal movement, models for competition between cells or animals, etc.).

  2. Quest: The Interactive Test Analysis System.

    ERIC Educational Resources Information Center

    Adams, Raymond J.; Khoo, Siek-Toon

    The Quest program offers a comprehensive test and questionnaire analysis environment by providing a data analyst (a computer program) with access to the most recent developments in Rasch measurement theory, as well as a range of traditional analysis procedures. This manual helps the user use Quest to construct and validate variables based on…

  3. Systems Biology

    SciTech Connect

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  4. Searching for a system: The quest for ovarian cancer biomarkers

    SciTech Connect

    Rodland, Karin D.; Maihle, Nita J.

    2011-11-01

    The stark difference in clinical outcome for patients with ovarian cancer diagnosed at early stages (95% at 5 years) versus late stages (27.6% at 5 years) has driven a decades-long quest for effective biomarkers that will enable earlier detection of ovarian cancer. Yet despite intense efforts, including the application of modern high throughput technologies such as transcriptomics and proteomics, there has been little improvement in performance compared to the gold standard of quantifying serum CA125 immunoreactivity paired with transvaginal ultrasound. This review describes the strategies that have been used for identification of ovarian cancer biomarkers, including the recent introduction of novel bioinformatic approaches. Results obtained using high throughput-based vs. biologically rational approaches for the discovery of diagnostic early detection biomarkers are compared and analyzed for functional enrichment.

  5. SeaQuest/E906 Shift Alarm System

    NASA Astrophysics Data System (ADS)

    Kitts, Noah

    2014-09-01

    SeaQuest, Fermilab E906, is a fixed target experiment that measures the Drell-Yan cross-section ratio of proton-proton to proton-deuterium collisions in order to extract the sea anti-quark structure of the proton. SeaQuest will extend the measurements made by E866/NuSea with greater precision at higher Bjorken-x. The continuously running experiment is always being monitored. Those on shift must keep track of all of the detector readouts in order to make sure the experiment is running correctly. As an experiment that is still in its early stages of running, an alarm system for people on shift is being created to provide warnings, such as a plot showing a detector's performance is sufficiently different to need attention. This plan involves python scripts that track live data. When the data shows a problem within the experiment, a corresponding alarm ID is sent to the MySQL database which then sets off an alarm. These alarms, which will alert the person on shift through both an audible and visual response, are important for ensuring that issues do not go unnoticed, and to help make sure the experiment is recording good data.

  6. Implementing a Self-Regulated "WebQuest" Learning System for Chinese Elementary Schools

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Tsai, Chung-Chieh; Lin, Chien-Yu; Lin, Chih-Cheng

    2012-01-01

    The rapid growth of Internet has resulted in the rise of WebQuest learning recently. Teachers encourage students to participate in the searching for knowledge on different topics. When using WebQuest, students' self-regulation is often the key to successful learning. Therefore, this study establishes a self-regulated learning system to assist…

  7. Systems Chemical Biology

    PubMed Central

    Oprea, Tudor I.; Tropsha, Alexander; Faulon, Jean-Loup; Rintoul, Mark D.

    2009-01-01

    The increasing availability of data related to genes, proteins and their modulation by small molecules, paralleled by the emergence of simulation tools in systems biology, has provided a vast amount of biological information. However, there is a critical need to develop cheminformatics tools that can integrate chemical knowledge with these biological databases, with the goal of creating systems chemical biology. PMID:17637771

  8. Biological conversion system

    DOEpatents

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  9. Computational Systems Chemical Biology

    PubMed Central

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2013-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007). The overarching goal of computational SCB is to develop tools for integrated chemical-biological data acquisition, filtering and processing, by taking into account relevant information related to interactions between proteins and small molecules, possible metabolic transformations of small molecules, as well as associated information related to genes, networks, small molecules and, where applicable, mutants and variants of those proteins. There is yet an unmet need to develop an integrated in silico pharmacology / systems biology continuum that embeds drug-target-clinical outcome (DTCO) triplets, a capability that is vital to the future of chemical biology, pharmacology and systems biology. Through the development of the SCB approach, scientists will be able to start addressing, in an integrated simulation environment, questions that make the best use of our ever-growing chemical and biological data repositories at the system-wide level. This chapter reviews some of the major research concepts and describes key components that constitute the emerging area of computational systems chemical biology. PMID:20838980

  10. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  11. The quest for the Holy Grail of systems.

    PubMed

    Gilmore, L

    1996-06-01

    Software agents like Edify can be used to retrieve (and store) information from most online systems, without having to access each system's database. These techniques allow information integration (display) into Windows applications or in new reference and information retrieval applications or Web pages. These techniques can be used to bridge the gap until the Holy Grail of systems is built (and works). PMID:10157909

  12. Quest for the basic plan of nervous system circuitry

    PubMed Central

    Swanson, Larry W.

    2007-01-01

    The basic plan of nervous system organization has been investigated since classical antiquity. The first model centered on pneumas pumped from sensory nerves through the ventricular system and out motor nerves to muscles. It was popular well into the seventeenth century and diverted attention from the organization of brain parenchyma itself. Willis focused on gray matter production and white matter conduction of pneumas in 1664, and by the late nineteenth century a clear cellular model of nervous system organization based on sensory, motor, and association neuron classes transmitting nerve impulses was elaborated by Cajal and his contemporaries. Today, revolutionary advances in experimental pathway tracing methods, molecular genetics, and computer science inspire systems neuroscience. Seven minimal requirements are outlined for knowledge management systems capable of describing, analyzing, and modeling the basic plan of nervous system circuitry in general, and the plan evolved for vertebrates, for mammals, and ultimately for humans in particular. The goal remains a relatively simple, easy to understand model analogous to the one Harvey elaborated in 1628 for circulation in the cardiovascular system. As Cajal wrote in 1909, “To extend our understanding of neural function to the most complex human physiological and psychological activities, it is essential that we first generate a clear and accurate view of the structure of the relevant centers, and of the human brain itself, so that the basic plan—the overview—can be grasped in the blink of an eye.” PMID:17267046

  13. Different roles in the quest for system resilience.

    PubMed

    Borges, Fábio Morais; Menegon, Nilton Luiz

    2012-01-01

    Into dangerous and complex systems with high degree of interactivity between its components, the variability is present at all time, demanding a high degree of control of its operation. Maintaining or recovering the normality, when the system is under some stress (instability) is a function of Resilience. To cope with prevention, forecast, recovery and with memory of experiences from learned lessons requires some features from the companies. This paper purposes a structure that enables the Total Resilience of a system production that defines the assignments for Workers, Designers and Management Team, according to its features and possibilities. During one year and a half developing studies on ergonomics area of a Brazilian Oil Refinery, several situations were observed and studied using Work Ergonomic Analysis. These situations show actions and strategies that workers use to maintain the system stability. Furthermore, they revealed the importance that these actions are stored in a database of learned lessons from the Company. The research resulted in a broad scheme. It places each of these groups in the process of Total Resilience. It also shows the human like a center of actions that ensure the continuity of the system, main element at Resilience (Anthropocentric View). PMID:22317211

  14. Instrument Pointing Control System for the Stellar Interferometry Mission - Planet Quest

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul B.; Kang, Bryan

    2006-01-01

    This paper describes the high precision Instrument Pointing Control System (PCS) for the Stellar Interferometry Mission (SIM) - Planet Quest. The PCS system provides front-end pointing, compensation for spacecraft motion, and feedforward stabilization, which are needed for proper interference. Optical interferometric measurements require very precise pointing (0.03 as, 1-(sigma) radial) for maximizing the interference pattern visibility. This requirement is achieved by fine pointing control of articulating pointing mirrors with feedback from angle tracking cameras. The overall pointing system design concept is presentcd. Functional requirements and an acquisition concept are given. Guide and Science pointing control loops are discussed. Simulation analyses demonstrate the feasibility of the design.

  15. Systems cell biology

    PubMed Central

    Mast, Fred D.; Ratushny, Alexander V.

    2014-01-01

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology. PMID:25225336

  16. Computational Systems Biology

    SciTech Connect

    McDermott, Jason E.; Samudrala, Ram; Bumgarner, Roger E.; Montogomery, Kristina; Ireton, Renee

    2009-05-01

    Computational systems biology is the term that we use to describe computational methods to identify, infer, model, and store relationships between the molecules, pathways, and cells (“systems”) involved in a living organism. Based on this definition, the field of computational systems biology has been in existence for some time. However, the recent confluence of high throughput methodology for biological data gathering, genome-scale sequencing and computational processing power has driven a reinvention and expansion of this field. The expansions include not only modeling of small metabolic{Ishii, 2004 #1129; Ekins, 2006 #1601; Lafaye, 2005 #1744} and signaling systems{Stevenson-Paulik, 2006 #1742; Lafaye, 2005 #1744} but also modeling of the relationships between biological components in very large systems, incluyding whole cells and organisms {Ideker, 2001 #1124; Pe'er, 2001 #1172; Pilpel, 2001 #393; Ideker, 2002 #327; Kelley, 2003 #1117; Shannon, 2003 #1116; Ideker, 2004 #1111}{Schadt, 2003 #475; Schadt, 2006 #1661}{McDermott, 2002 #878; McDermott, 2005 #1271}. Generally these models provide a general overview of one or more aspects of these systems and leave the determination of details to experimentalists focused on smaller subsystems. The promise of such approaches is that they will elucidate patterns, relationships and general features that are not evident from examining specific components or subsystems. These predictions are either interesting in and of themselves (for example, the identification of an evolutionary pattern), or are interesting and valuable to researchers working on a particular problem (for example highlight a previously unknown functional pathway). Two events have occurred to bring about the field computational systems biology to the forefront. One is the advent of high throughput methods that have generated large amounts of information about particular systems in the form of genetic studies, gene expression analyses (both protein and

  17. Plant Systems Biology (editorial)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  18. Biological system interactions.

    PubMed Central

    Adomian, G; Adomian, G E; Bellman, R E

    1984-01-01

    Mathematical modeling of cellular population growth, interconnected subsystems of the body, blood flow, and numerous other complex biological systems problems involves nonlinearities and generally randomness as well. Such problems have been dealt with by mathematical methods often changing the actual model to make it tractable. The method presented in this paper (and referenced works) allows much more physically realistic solutions. PMID:6585837

  19. Biophysics and systems biology.

    PubMed

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  20. Biophysics and systems biology

    PubMed Central

    Noble, Denis

    2010-01-01

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  1. FPGA-based trigger system for the Fermilab SeaQuest experimentz

    NASA Astrophysics Data System (ADS)

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-12-01

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ- produced in 120 GeV/c proton-nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  2. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    SciTech Connect

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-09-10

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ-produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

  3. FPGA-based Trigger System for the Fermilab SeaQuest Experimentz

    DOE PAGESBeta

    Shiu, Shiuan-Hal; Wu, Jinyuan; McClellan, Randall Evan; Chang, Ting-Hua; Chang, Wen-Chen; Chen, Yen-Chu; Gilman, Ron; Nakano, Kenichi; Peng, Jen-Chieh; Wang, Su-Yin

    2015-09-10

    The SeaQuest experiment (Fermilab E906) detects pairs of energetic μ+ and μ-produced in 120 GeV/c proton–nucleon interactions in a high rate environment. The trigger system we used consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns step and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined againstmore » pre-determined trigger matrices to identify candidate muon tracks. Finally, information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.« less

  4. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    SciTech Connect

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  5. Systems biology, emergence and antireductionism.

    PubMed

    Kesić, Srdjan

    2016-09-01

    This study explores the conceptual history of systems biology and its impact on philosophical and scientific conceptions of reductionism, antireductionism and emergence. Development of systems biology at the beginning of 21st century transformed biological science. Systems biology is a new holistic approach or strategy how to research biological organisms, developed through three phases. The first phase was completed when molecular biology transformed into systems molecular biology. Prior to the second phase, convergence between applied general systems theory and nonlinear dynamics took place, hence allowing the formation of systems mathematical biology. The second phase happened when systems molecular biology and systems mathematical biology, together, were applied for analysis of biological data. Finally, after successful application in science, medicine and biotechnology, the process of the formation of modern systems biology was completed. Systems and molecular reductionist views on organisms were completely opposed to each other. Implications of systems and molecular biology on reductionist-antireductionist debate were quite different. The analysis of reductionism, antireductionism and emergence issues, in the era of systems biology, revealed the hierarchy between methodological, epistemological and ontological antireductionism. Primarily, methodological antireductionism followed from the systems biology. Only after, epistemological and ontological antireductionism could be supported. PMID:27579007

  6. Integrative radiation systems biology.

    PubMed

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer" of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology. PMID:24411063

  7. Biological life-support systems

    NASA Technical Reports Server (NTRS)

    Shepelev, Y. Y.

    1975-01-01

    The establishment of human living environments by biologic methods, utilizing the appropriate functions of autotrophic and heterotrophic organisms is examined. Natural biologic systems discussed in terms of modeling biologic life support systems (BLSS), the structure of biologic life support systems, and the development of individual functional links in biologic life support systems are among the factors considered. Experimental modeling of BLSS in order to determine functional characteristics, mechanisms by which stability is maintained, and principles underlying control and regulation is also discussed.

  8. Industrial systems biology.

    PubMed

    Otero, José Manuel; Nielsen, Jens

    2010-02-15

    The chemical industry is currently undergoing a dramatic change driven by demand for developing more sustainable processes for the production of fuels, chemicals, and materials. In biotechnological processes different microorganisms can be exploited, and the large diversity of metabolic reactions represents a rich repository for the design of chemical conversion processes that lead to efficient production of desirable products. However, often microorganisms that produce a desirable product, either naturally or because they have been engineered through insertion of heterologous pathways, have low yields and productivities, and in order to establish an economically viable process it is necessary to improve the performance of the microorganism. Here metabolic engineering is the enabling technology. Through metabolic engineering the metabolic landscape of the microorganism is engineered such that there is an efficient conversion of the raw material, typically glucose, to the product of interest. This process may involve both insertion of new enzymes activities, deletion of existing enzyme activities, but often also deregulation of existing regulatory structures operating in the cell. In order to rapidly identify the optimal metabolic engineering strategy the industry is to an increasing extent looking into the use of tools from systems biology. This involves both x-ome technologies such as transcriptome, proteome, metabolome, and fluxome analysis, and advanced mathematical modeling tools such as genome-scale metabolic modeling. Here we look into the history of these different techniques and review how they find application in industrial biotechnology, which will lead to what we here define as industrial systems biology. PMID:19891008

  9. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis.

    PubMed

    Brochet, Xavier; Lefranc, Marie-Paule; Giudicelli, Véronique

    2008-07-01

    IMGT/V-QUEST is the highly customized and integrated system for the standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) rearranged nucleotide sequences. IMGT/V-QUEST identifies the variable (V), diversity (D) and joining (J) genes and alleles by alignment with the germline IG and TR gene and allele sequences of the IMGT reference directory. New functionalities were added through a complete rewrite in Java. IMGT/V-QUEST analyses batches of sequences (up to 50) in a single run. IMGT/V-QUEST describes the V-REGION mutations and identifies the hot spot positions in the closest germline V gene. IMGT/V-QUEST can detect insertions and deletions in the submitted sequences by reference to the IMGT unique numbering. IMGT/V-QUEST integrates IMGT/JunctionAnalysis for a detailed analysis of the V-J and V-D-J junctions, and IMGT/Automat for a full V-J- and V-D-J-REGION annotation. IMGT/V-QUEST displays, in 'Detailed view', the results and alignments for each submitted sequence individually and, in 'Synthesis view', the alignments of the sequences that, in a given run, express the same V gene and allele. The 'Advanced parameters' allow to modify default parameters used by IMGT/V-QUEST and IMGT/JunctionAnalysis according to the users' interest. IMGT/V-QUEST is freely available for academic research at http://imgt.cines.fr. PMID:18503082

  10. HPV-QUEST: A highly customized system for automated HPV sequence analysis capable of processing Next Generation sequencing data set.

    PubMed

    Yin, Li; Yao, Jiqiang; Gardner, Brent P; Chang, Kaifen; Yu, Fahong; Goodenow, Maureen M

    2012-01-01

    Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system. The web-based HPV-QUEST subtyping algorithm was developed using HTML, PHP, Perl scripting language, and MYSQL as the database backend. HPV-QUEST includes a database of annotated HPV reference sequences with updated nomenclature covering 5 genuses, 14 species and 150 mucosal and cutaneous types to genotype blasted query sequences. HPV-QUEST processes up to 10 megabases of sequences within 1 to 2 minutes. Results are reported in html, text and excel formats and display e-value, blast score, and local and coverage identities; provide genus, species, type, infection site and risk for the best matched reference HPV sequence; and produce results ready for additional analyses. PMID:22570520

  11. Systems biology: a biologist's viewpoint.

    PubMed

    Bose, Biplab

    2013-12-01

    The debate over reductionism and antireductionism in biology is very old. Even the systems approach in biology is more than five decades old. However, mainstream biology, particularly experimental biology, has broadly sidestepped those debates and ideas. Post-genome data explosion and development of high-throughput techniques led to resurfacing of those ideas and debates as a new incarnation called Systems Biology. Though experimental biologists have co-opted systems biology and hailed it as a paradigm shift, it is practiced in different shades and understood with divergent meanings. Biology has certain questions linked with organization of multiple components and processes. Often such questions involve multilevel systems. Here in this essay we argue that systems theory provides required framework and abstractions to explore those questions. We argue that systems biology should follow the logical and mathematical approach of systems theory and transmogrification of systems biology to mere collection of higher dimensional data must be avoided. Therefore, the questions that we ask and the priority of those questions should also change. Systems biology should focus on system-level properties and investigate complexity without shying away from it. PMID:23872085

  12. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  13. Quest Guidebooks

    ERIC Educational Resources Information Center

    Munn, Natalie

    2007-01-01

    A Quest is a treasure hunt-style poem in which the writers lead the visitor to special places on the property. The poems have movement clues to take the visitor from place to place and educational clues that teach about aspects of each property. The writing experience allows students to research unique features of a local property, demonstrate…

  14. STE-QUEST mission and system design. Overview after completion of Phase-A

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Hess, Marc-Peter; Vitelli, Marianna; Beck, Jan

    2014-11-01

    STE-QUEST is a fundamental science mission which is considered for launch within the Cosmic Vision programme of the European Space Agency (ESA). Its main scientific objectives relate to probing various aspects of Einstein's theory of general relativity by measuring the gravitational red-shift of the earth, the moon and the sun as well as testing the weak equivalence principle to unprecedented accuracy. In order to perform the measurements, the system features a spacecraft equipped with two complex instruments, an atomic clock and an atom interferometer, a ground-segment encompassing several ground-terminals collocated with the best available ground atomic clocks, and clock comparison between space and ground via microwave and optical links. The baseline orbit is highly eccentric and exhibits strong variations of incident solar flux, which poses challenges for thermal and power subsystems in addition to the difficulties encountered by precise-orbit-determination at high altitudes. The mission assessment and definition phase (Phase-A) has recently been completed and this paper gives a concise overview over some system level results.

  15. Systems biology at the Institute for Systems Biology.

    PubMed

    Hood, Leroy; Rowen, Lee; Galas, David J; Aitchison, John D

    2008-07-01

    Systems biology represents an experimental approach to biology that attempts to study biological systems in a holistic rather than an atomistic manner. Ideally this involves gathering dynamic and global data sets as well as phenotypic data from different levels of the biological information hierarchy, integrating them and modeling them graphically and/or mathematically to generate mechanistic explanations for the emergent systems properties. This requires that the biological frontiers drive the development of new measurement and visualization technologies and the pioneering of new computational and mathematical tools-all of which requires a cross-disciplinary environment composed of biologists, chemists, computer scientists, engineers, mathematicians, physicists, and physicians speaking common discipline languages. The Institute for Systems Biology has aspired to pioneer and seamlessly integrate each of these concepts. PMID:18579616

  16. Biological Resource Centers and Systems Biology

    PubMed Central

    Wang, Yufeng

    2009-01-01

    There are hundreds of Biological Resource Centers (BRCs) around the world, holding many little-studied microorganism. The proportion of bacterial strains that is well represented in the sequence and literature databases may be as low as 1%. This body of unexplored diversity represents an untapped source of useful strains and derived products. However, a modicum of phenotypic data is available for almost all the bacterial strains held by BRCs around the world. It is at the phenotypic level that our knowledge of the well-studied strains of bacteria and the many yet-to-be studied strains intersects. This suggests we might leverage the phenotypic data from the data-poor bacteria with the omics data from the data-rich bacteria, using our knowledge of their evolutionary relationships, to map the metabolic networks of the little-known bacteria. This systems biology-based approach is a new way to explore the diversity harbored in BRCs. PMID:20157346

  17. Tracing organizing principles: learning from the history of systems biology.

    PubMed

    Green, Sara; Wolkenhauer, Olaf

    2013-01-01

    With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to "reverse engineer" the functional organization of biological systems using methodologies from mathematics, engineering and computer science while taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational and system-level properties, ii) the inherent critique of reductionism and fragmentation of knowledge resulting from overspecialization, and iii) the insight that the ideal of formulating abstract organizing principles is complementary to, rather than conflicting with, the aim of formulating detailed explanations of biological mechanisms. We argue that looking back not only helps us understand the current practice but also points to possible future directions for systems biology. PMID:24783672

  18. Computational representation of biological systems

    SciTech Connect

    Frazier, Zach; McDermott, Jason E.; Guerquin, Michal; Samudrala, Ram

    2009-04-20

    Integration of large and diverse biological data sets is a daunting problem facing systems biology researchers. Exploring the complex issues of data validation, integration, and representation, we present a systematic approach for the management and analysis of large biological data sets based on data warehouses. Our system has been implemented in the Bioverse, a framework combining diverse protein information from a variety of knowledge areas such as molecular interactions, pathway localization, protein structure, and protein function.

  19. Hierarchical structure of biological systems

    PubMed Central

    Alcocer-Cuarón, Carlos; Rivera, Ana L; Castaño, Victor M

    2014-01-01

    A general theory of biological systems, based on few fundamental propositions, allows a generalization of both Wierner and Berthalanffy approaches to theoretical biology. Here, a biological system is defined as a set of self-organized, differentiated elements that interact pair-wise through various networks and media, isolated from other sets by boundaries. Their relation to other systems can be described as a closed loop in a steady-state, which leads to a hierarchical structure and functioning of the biological system. Our thermodynamical approach of hierarchical character can be applied to biological systems of varying sizes through some general principles, based on the exchange of energy information and/or mass from and within the systems. PMID:24145961

  20. Systems biology of aging.

    PubMed

    Bolt, Kendra; Bergman, Aviv

    2015-01-01

    Human aging occurs at rates that vary widely between organisms and cell types. We hypothesize that in both cases, variation is due to differences in heat production, heat management and molecular susceptibility to heat-induced change. Metabolic rates have long been implored for their contributions to the aging process, with a negative correlation observed between basal metabolic rate and lifespan (Savage et al., Proc Natl Acad Sci U S A 104:4718–4723, 2007, Economos, Exp Gerontol 17:145–152, 1982, Keys et al., Metabolism 22:579–587, 1973, O’Connor et al., Comp Biochem Physiol Part A, Molr & Integr Physiol 133:835–842, 2002, Speakman, J Exp Biol 208:1717–1730, 2005, Poehlman, J Am Geriatrics Soc 41:552–559, 1993). Small amounts of heat are the well-known byproduct of metabolism and other biological processes, and despite their magnitude, are sufficient to elicit alterations in biomolecular characteristics (Somero, Ann Rev Physiol 57:43–68, 1995). Existing theories of aging suggest that damage occurs to the conformations or sequences of molecules, which only shifts focus onto the implied failure of repair mechanisms. Contrarily, heat-induced changes affect the behavioral characteristics of molecules and are thus able to persist “under the radar” of heat shock proteins and other canalizing mechanisms, which recognize only physical aberrancies (Rutherford and Lindquist, Nature 396:336–342, 1998, Siegal and Bergman, Proc Natl Acad Sci U S A 99:10528–10532, 2002, Waddington, Nature 150:563–565, 1942). According to our hypothesis, behavioral changes to the binding affinities, kinetics, motilities, and functionalities are dependent on minute energetic fields within and between molecules. Exposure to the thermal byproducts of metabolism cause heritable shifts in molecular interaction schemes and diminish the integrity of genetic and epigenetic networks. Restructured topologies alter the emergent properties of networks and are observed as the

  1. QUEST2: Project plan for preliminary analysis/system architecture phase (PA/SA)

    SciTech Connect

    Braaten, F.D.

    1995-03-08

    This Project Management Plan combines the project management deliverables from the P+ methodology that are applicable to this part of the QUEST2 work. This consolidation reflects discussions with WHC QA regarding an appropriate method for ensuring that P+ deliverables fulfill the intent of WHC-CM-3-10 and QR-19.

  2. SYSTEMS BIOLOGY MODEL DEVELOPMENT AND APPLICATION

    EPA Science Inventory

    System biology models holistically describe, in a quantitative fashion, the relationships between different levels of a biologic system. Relationships between individual components of a system are delineated. System biology models describe how the components of the system inter...

  3. Pervasive robustness in biological systems.

    PubMed

    Félix, Marie-Anne; Barkoulas, Michalis

    2015-08-01

    Robustness is characterized by the invariant expression of a phenotype in the face of a genetic and/or environmental perturbation. Although phenotypic variance is a central measure in the mapping of the genotype and environment to the phenotype in quantitative evolutionary genetics, robustness is also a key feature in systems biology, resulting from nonlinearities in quantitative relationships between upstream and downstream components. In this Review, we provide a synthesis of these two lines of investigation, converging on understanding how variation propagates across biological systems. We critically assess the recent proliferation of studies identifying robustness-conferring genes in the context of the nonlinearity in biological systems. PMID:26184598

  4. Machine Learning in Systems Biology

    PubMed Central

    d'Alché-Buc, Florence; Wehenkel, Louis

    2008-01-01

    This supplement contains extended versions of a selected subset of papers presented at the workshop MLSB 2007, Machine Learning in Systems Biology, Evry, France, from September 24 to 25, 2007. PMID:19091048

  5. Machine learning in systems biology.

    PubMed

    d'Alché-Buc, Florence; Wehenkel, Louis

    2008-01-01

    This supplement contains extended versions of a selected subset of papers presented at the workshop MLSB 2007, Machine Learning in Systems Biology, Evry, France, from September 24 to 25, 2007. PMID:19091048

  6. Imaging methodologies for systems biology.

    PubMed

    Smith, Sarah E; Slaughter, Brian D; Unruh, Jay R

    2014-01-01

    Systems biology has recently achieved significant success in the understanding of complex interconnected phenomena such as cell polarity and migration. In this context, the definition of systems biology has come to encompass the integration of quantitative measurements with sophisticated modeling approaches. This article will review recent progress in live cell imaging technologies that have expanded the possibilities of quantitative in vivo measurements, particularly in regards to molecule counting and quantitative measurements of protein concentration and dynamics. These methods have gained and continue to gain popularity with the biological community. In general, we will discuss three broad categories: protein interactions, protein quantitation, and protein dynamics. PMID:25482526

  7. Enabling Systems Biology Approaches Through Microfabricated Systems

    PubMed Central

    Zhan, Mei; Chingozha, Loice; Lu, Hang

    2014-01-01

    With the experimental tools and knowledge that have accrued from a long history of reductionist biology, we can now start to put the pieces together and begin to understand how biological systems function as an integrated whole. Here, we describe how microfabricated tools have demonstrated promise in addressing experimental challenges in throughput, resolution and sensitivity to support systems-based approaches to biological understanding. PMID:23984862

  8. Teaching Biological Systems.

    ERIC Educational Resources Information Center

    Walters, Julia

    1988-01-01

    Described is an activity which allows the investigation of human body systems using textbooks to enhance research skills and providing an opportunity for collaboration between pupils. Discussed are the purpose, materials, method, and results of this teaching method. Reported are some of the advantages of using this activity in teaching systems.…

  9. Biological Life Support Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP2 includes short reports on: (1) Crew Regenerative Life Support in Long Duration Space Missions; (2) Bioconversion Systems for Food and Water on Long Term Space Missions; (3) Novel Laboratory Approaches to Multi-purpose Aquatic Biogenerative Closed-Loop Food Production Systems; and (4) Artificial Neural Network Derived Plant Growth Models.

  10. Proteomics technology in systems biology.

    PubMed

    Smith, Jeffrey C; Figeys, Daniel

    2006-08-01

    It has now become apparent that a full understanding of a biological process (e.g. a disease state) is only possible if all biomolecular interactions are taken into account. Systems biology works towards understanding the intricacies of cellular life through the collaborative efforts of biologists, chemists, mathematicians and computer scientists and recently, a number of laboratories around the world have embarked upon such research agendas. The fields of genomics and proteomics are foundational in systems biology studies and a great deal of research is currently being conducted in each worldwide. Moreover, many technological advances (particularly in mass spectrometry) have led to a dramatic rise in the number of proteomic studies over the past two decades. This short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies. PMID:16880956

  11. Kinetic Modeling of Biological Systems

    PubMed Central

    Petzold, Linda; Pettigrew, Michel F.

    2010-01-01

    The dynamics of how the constituent components of a natural system interact defines the spatio-temporal response of the system to stimuli. Modeling the kinetics of the processes that represent a biophysical system has long been pursued with the aim of improving our understanding of the studied system. Due to the unique properties of biological systems, in addition to the usual difficulties faced in modeling the dynamics of physical or chemical systems, biological simulations encounter difficulties that result from intrinsic multiscale and stochastic nature of the biological processes. This chapter discusses the implications for simulation of models involving interacting species with very low copy numbers, which often occur in biological systems and give rise to significant relative fluctuations. The conditions necessitating the use of stochastic kinetic simulation methods and the mathematical foundations of the stochastic simulation algorithms are presented. How the well-organized structural hierarchies often seen in biological systems can lead to multiscale problems, and possible ways to address the encountered computational difficulties are discussed. We present the details of the existing kinetic simulation methods, and discuss their strengths and shortcomings. A list of the publicly available kinetic simulation tools and our reflections for future prospects are also provided. PMID:19381542

  12. Quest Learning and Assessment, UT Austin

    NASA Astrophysics Data System (ADS)

    Lewis, Gerald; McDonald, Patsy; Hostetler, Rhonda

    2010-03-01

    Quest Learning & Assessment is an innovative web-based tool for instructors and students of math and science. Quest was created at The University of Texas at Austin to address educational challenges at one of the biggest universities in the country. It now serves a primary role in classes taught within UT's College of Natural Sciences. Quest covers subjects ranging from mathematics, chemistry, biology, physics, computer science and statistics. For instructors, Quest offers an easy way to create homework assignments, quizzes and exams with its extensive knowledge base. Since most questions have built-in variations Quest can create custom assignments for each student, which are automatically graded. Once solutions are available, students can read detailed explanations to questions and understand why their answer was correct or incorrect. Quest has graded over 30 million student responses and is now available to all education institutions.

  13. A Decade of Systems Biology

    PubMed Central

    Chuang, Han-Yu; Hofree, Matan; Ideker, Trey

    2012-01-01

    Systems biology provides a framework for assembling models of biological systems from systematic measurements. Since the field was first introduced a decade ago, considerable progress has been made in technologies for global cell measurement and in computational analyses of these data to map and model cell function. It has also greatly expanded into the translational sciences, with approaches pioneered in yeast now being applied to elucidate human development and disease. Here, we review the state of the field with a focus on four emerging applications of systems biology that are likely to be of particular importance during the decade to follow: (a) pathway-based biomarkers, (b) global genetic interaction maps, (c) systems approaches to identify disease genes, and (d) stem cell systems biology. We also cover recent advances in software tools that allow biologists to explore system-wide models and to formulate new hypotheses. The applications and methods covered in this review provide a set of prime exemplars useful to cell and developmental biologists wishing to apply systems approaches to areas of interest. PMID:20604711

  14. Workshop Introduction: Systems Biology and Biological Models

    EPA Science Inventory

    As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...

  15. Systems biology approach to bioremediation

    SciTech Connect

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  16. Systems biology: the reincarnation of systems theory applied in biology?

    PubMed

    Wolkenhauer, O

    2001-09-01

    With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics. PMID:11589586

  17. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  18. Stochastic simulation in systems biology

    PubMed Central

    Székely, Tamás; Burrage, Kevin

    2014-01-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503

  19. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-01

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems. PMID:25583299

  20. Dupuytren's: a systems biology disease

    PubMed Central

    2011-01-01

    Dupuytren's disease (DD) is an ill-defined fibroproliferative disorder of the palm of the hands leading to digital contracture. DD commonly occurs in individuals of northern European extraction. Cellular components and processes associated with DD pathogenesis include altered gene and protein expression of cytokines, growth factors, adhesion molecules, and extracellular matrix components. Histology has shown increased but varying levels of particular types of collagen, myofibroblasts and myoglobin proteins in DD tissue. Free radicals and localised ischaemia have been suggested to trigger the proliferation of DD tissue. Although the existing available biological information on DD may contain potentially valuable (though largely uninterpreted) information, the precise aetiology of DD remains unknown. Systems biology combines mechanistic modelling with quantitative experimentation in studies of networks and better understanding of the interaction of multiple components in disease processes. Adopting systems biology may be the ideal approach for future research in order to improve understanding of complex diseases of multifactorial origin. In this review, we propose that DD is a disease of several networks rather than of a single gene, and show that this accounts for the experimental observations obtained to date from a variety of sources. We outline how DD may be investigated more effectively by employing a systems biology approach that considers the disease network as a whole rather than focusing on any specific single molecule. PMID:21943049

  1. Gravitational effects on biological systems.

    PubMed

    Boncinelli, P; Vanni, P

    1998-10-01

    The possible effects of the earth's gravitational field on biological systems have been studied from a quantitative point of view, focusing the attention to a very simple system, a solution containing proteins, which biochemists might use in experiments. Gravity has been compared with other forces which are known to influence protein activity, including thermic agitation, weak electrostatic interactions, Van der Waals forces and viscous dissipation. Comparisons have been described in terms of the energy of the interaction per mole, referring to some physically simple cases and substances of biological interest. From this study it is evident that the earth's gravitational energy should be taken into account when considering the chemical behaviour of solutions containing substances that have high molecular weight, such as a typical protein, since its value is comparable to other weak interactions. Moreover, since solutions represent the basis of much more complex biological processes taking place inside cells, the influence of gravity should extend also to cellular biochemical behaviour, especially in presence of altered gravity, both in microgravity (such as on satellites orbiting around the earth), and in macrogravity (such as in a centrifugating biological system). PMID:11541902

  2. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  3. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  4. Development of a plasma control system for steady-state operation on QUEST

    NASA Astrophysics Data System (ADS)

    Hasegwa, Makoto; Nakamura, Kazuo; Zushi, Hideki; Hanada, Kazuaki; Fujisawa, Akihide; Matsuoka, Keisuke; Idei, Hiroshi; Nagashima, Yoshihiko; Tokunaga, Kazutoshi; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki

    2014-10-01

    A drift error correction technique with machine vision and a real-time equilibrium calculation code have been developed on the QUEST (Q-shu university experiment with the steady-state spherical tokamak) for steady-state operation. The drift error caused by the long time-integration of magnetic raw signals has to be removed. With a captured image of the plasma's cross section, the plasma's position is identified by use of image filters. The measured magnetic flux values are corrected to the calculated flux values estimated by using this plasma position. The correction with the captured image work as expected in the preliminary result using a flashlight instead of a plasma.

  5. Bridging the gap between systems biology and synthetic biology

    PubMed Central

    Liu, Di; Hoynes-O’Connor, Allison; Zhang, Fuzhong

    2013-01-01

    Systems biology is an inter-disciplinary science that studies the complex interactions and the collective behavior of a cell or an organism. Synthetic biology, as a technological subject, combines biological science and engineering, allowing the design and manipulation of a system for certain applications. Both systems and synthetic biology have played important roles in the recent development of microbial platforms for energy, materials, and environmental applications. More importantly, systems biology provides the knowledge necessary for the development of synthetic biology tools, which in turn facilitates the manipulation and understanding of complex biological systems. Thus, the combination of systems and synthetic biology has huge potential for studying and engineering microbes, especially to perform advanced tasks, such as producing biofuels. Although there have been very few studies in integrating systems and synthetic biology, existing examples have demonstrated great power in extending microbiological capabilities. This review focuses on recent efforts in microbiological genomics, transcriptomics, proteomics, and metabolomics, aiming to fill the gap between systems and synthetic biology. PMID:23898328

  6. System biology of gene regulation.

    PubMed

    Baitaluk, Michael

    2009-01-01

    ) questions of biological relevance. Thus systems biology could be treated as such a socioscientific phenomenon and a new approach to both experiments and theory that is defined by the strategy of pursuing integration of complex data about the interactions in biological systems from diverse experimental sources using interdisciplinary tools and personnel. PMID:19623486

  7. Systems biology of diuretic resistance

    PubMed Central

    Knepper, Mark A.

    2015-01-01

    Diuretics are commonly used to treat hypertension and extracellular fluid volume expansion. However, the development of compensatory responses in the kidney limits the benefit of this class of drugs. In this issue of the JCI, Grimm and colleagues use a systems biology approach in mice lacking the kinase SPAK and unravel a complex mechanism that explains thiazide diuretic resistance. The overall process involves interactions among six different cell types in the kidney. PMID:25893597

  8. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  9. Systems Biology of the Microvasculature

    PubMed Central

    Clegg, Lindsay E.; Mac Gabhann, Feilim

    2015-01-01

    The vascular network carries blood throughout the body, delivering oxygen to tissues and providing a pathway for communication between distant organs. The network is hierarchical and structured, but also dynamic, especially at the smaller scales. Remodeling of the microvasculature occurs in response to local changes in oxygen, gene expression, cell-cell communication, and chemical and mechanical stimuli from the microenvironment. These local changes occur as a result of physiological processes such as growth and exercise, as well as acute and chronic diseases including stroke, cancer, and diabetes, and pharmacological intervention. While the vasculature is an important therapeutic target in many diseases, drugs designed to inhibit vascular growth have achieved only limited success, and no drug has yet been approved to promote therapeutic vascular remodeling. This highlights the challenges involved in identifying appropriate therapeutic targets in a system as complex as the vasculature. Systems biology approaches provide a means to bridge current understanding of the vascular system, from detailed signaling dynamics measured in vitro and pre-clinical animal models of vascular disease, to a more complete picture of vascular regulation in vivo. This will translate to an improved ability to identify multi-component biomarkers for diagnosis, prognosis, and monitoring of therapy that are easy to measure in vivo, as well as better drug targets for specific disease states. In this review, we summarize systems biology approaches that have advanced our understanding of vascular function and dysfunction in vivo, with a focus on computational modeling. PMID:25839068

  10. Ten questions about systems biology

    PubMed Central

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise ‘ten questions’ broadly related to ‘omics’, the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist perspective about the contribution of genes and genetic variants to disease is a key reason ‘omics’ has failed to deliver the anticipated breakthroughs. We then point out the critical utility of key concepts from physiology like homeostasis, regulated systems and redundancy as major intellectual tools to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as ‘systems biology’ by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many common diseases. Finally, we attempt to integrate our critique of reductionism into a broader social framework about so-called translational research in specific and the root causes of common diseases in general. Throughout we offer ideas and suggestions that might be incorporated into the current biomedical environment to advance the understanding of disease through the perspective of physiology in conjunction with epidemiology as opposed to bottom-up reductionism alone. PMID:21224238

  11. Systems biology of Microbial Communities

    SciTech Connect

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  12. The quest for four-dimensional imaging in plant cell biology: it's just a matter of time

    PubMed Central

    Domozych, David S.

    2012-01-01

    Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381

  13. Systems biology and biomarker discovery

    SciTech Connect

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  14. New quests for better attitudes

    NASA Technical Reports Server (NTRS)

    Shuster, Malcolm D.

    1991-01-01

    During the past few years considerable insight was gained into the QUEST algorithm both as a maximum likelihood estimator and as a Kalman filter/smoother for systems devoid of dynamical noise. The new algorithms and software are described and analytical comparisons are made with the more conventional attitude Kalman filter. It is also described how they may be accommodated to noisy dynamical systems.

  15. Systems biology in vaccine design

    PubMed Central

    Six, Adrien; Bellier, Bertrand; Thomas‐Vaslin, Véronique; Klatzmann, David

    2012-01-01

    Summary Vaccines are the most effective tools to prevent infectious diseases and to minimize their impact on humans or animals. Despite the successful development of vaccines that are able to elicit potent and protective immune responses, the majority of vaccines have been so far developed empirically and mechanistic events leading to protective immune responses are often poorly understood. This hampers the development of new prophylactic as well as therapeutic vaccines for infectious diseases and cancer. Biological correlates of immune‐mediated protection are currently based on standard readout such as antibody titres and ELISPOT assays. The development of successful vaccines for difficult settings, such as infectious agents leading to chronic infection (HIV, HCV. . .) or cancer, calls for novel ‘readout systems’ or ‘correlates’ of immune‐mediated protection that would reliably predict immune responses to novel vaccines in vivo. Systems biology offers a new approach to vaccine design that is based upon understanding the molecular network mobilized by vaccination. Systems vaccinology approaches investigate more global correlates of successful vaccination, beyond the specific immune response to the antigens administered, providing new methods for measuring early vaccine efficacy and ultimately generating hypotheses for understanding the mechanisms that underlie successful immunogenicity. Using functional genomics, specific molecular signatures of individual vaccine can be identified and used as predictors of vaccination efficiency. The immune response to vaccination involves the coordinated induction of master transcription factors that leads to the development of a broad, polyfunctional and persistent immune response integrating all effector cells of the immune systems. PMID:22189033

  16. Quantum Effects in Biological Systems

    NASA Astrophysics Data System (ADS)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  17. Fostering synergy between cell biology and systems biology.

    PubMed

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. PMID:26013981

  18. Principles of Systems Biology, No. 8.

    PubMed

    2016-08-01

    Advances in biological engineering headline this month's Cell Systems call (Cell Systems 1, 307), alongside intriguing applications of modeling from the Elf, Goentoro, and Wolf groups. Check out our recent blogpost: http://crosstalk.cell.com/blog/a-call-for-papers-on-biological-engineering-and-synthetic-biology. PMID:27559920

  19. Proving Stabilization of Biological Systems

    NASA Astrophysics Data System (ADS)

    Cook, Byron; Fisher, Jasmin; Krepska, Elzbieta; Piterman, Nir

    We describe an efficient procedure for proving stabilization of biological systems modeled as qualitative networks or genetic regulatory networks. For scalability, our procedure uses modular proof techniques, where state-space exploration is applied only locally to small pieces of the system rather than the entire system as a whole. Our procedure exploits the observation that, in practice, the form of modular proofs can be restricted to a very limited set. For completeness, our technique falls back on a non-compositional counterexample search. Using our new procedure, we have solved a number of challenging published examples, including: a 3-D model of the mammalian epidermis; a model of metabolic networks operating in type-2 diabetes; a model of fate determination of vulval precursor cells in the C. elegans worm; and a model of pair-rule regulation during segmentation in the Drosophila embryo. Our results show many orders of magnitude speedup in cases where previous stabilization proving techniques were known to succeed, and new results in cases where tools had previously failed.

  20. A SYSTEMS BIOLOGY APPROACH TO DEVELOPMENTAL TOXICOLOGY

    EPA Science Inventory

    Abstract
    Recent advances in developmental biology have yielded detailed models of gene regulatory networks (GRNs) involved in cell specification and other processes in embryonic differentiation. Such networks form the bedrock on which a systems biology approach to developme...

  1. Interacting Science through Web Quests

    ERIC Educational Resources Information Center

    Unal, Ahmet; Karakus, Melek Altiparmak

    2016-01-01

    The purpose of this paper is to examine the effects of WebQuests on elementary students' science achievement, attitude towards science and attitude towards web supported education in teaching 7th grade subjects (Ecosystems, Solar System). With regard to this research, "Science Achievement Test," "Attitude towards Science Scale"…

  2. GRAIL and GenQuest Sequence Annotation Tools

    SciTech Connect

    Xu, Ying; Shah, Manesh B.; Einstein, J. Ralph; Parang, Morey; Snoddy, Jay; Petrov, Sergey; Olman, Victor; Zhang, Ge; Mural, Richard J.; Uberbacher, Edward C.

    1997-12-31

    Our goal is to develop and implement an integrated intelligent system which can recognize biologically significant features in DNA sequence and provide insight into the organization and function of regions of genomic DNA. GRAIL is a modular expert system which facilitates the recognition of gene features and provides an environment for the construction of sequence annotation. The last several years have seen a rapid evolution of the technology for analyzing genomic DNA sequences. The current GRAIL systems (including the e-mail, XGRAIL, JAVA-GRAIL and genQuest systems) are perhaps the most widely used, comprehensive, and user friendly systems available for computational characterization of genomic DNA sequence.

  3. Spatial Aspects in Biological System Simulations

    SciTech Connect

    Resat, Haluk; Costa, Michelle N.; Shankaran, Harish

    2011-01-30

    Mathematical models of the dynamical properties of biological systems aim to improve our understanding of the studied system with the ultimate goal of being able to predict system responses in the absence of experimentation. Despite the enormous advances that have been made in biological modeling and simulation, the inherently multiscale character of biological systems and the stochasticity of biological processes continue to present significant computational and conceptual challenges. Biological systems often consist of well-organized structural hierarchies, which inevitably lead to multiscale problems. This chapter introduces and discusses the advantages and shortcomings of several simulation methods that are being used by the scientific community to investigate the spatio-temporal properties of model biological systems. We first describe the foundations of the methods and then describe their relevance and possible application areas with illustrative examples from our own research. Possible ways to address the encountered computational difficulties are also discussed.

  4. Introducing systems biology for nursing science.

    PubMed

    Founds, Sandra A

    2009-07-01

    Systems biology expands on general systems theory as the "omics'' era rapidly progresses. Although systems biology has been institutionalized as an interdisciplinary framework in the biosciences, it is not yet apparent in nursing. This article introduces systems biology for nursing science by presenting an overview of the theory. This framework for the study of organisms from molecular to environmental levels includes iterations of computational modeling, experimentation, and theory building. Synthesis of complex biological processes as whole systems rather than isolated parts is emphasized. Pros and cons of systems biology are discussed, and relevance of systems biology to nursing is described. Nursing research involving molecular, physiological, or biobehavioral questions may be guided by and contribute to the developing science of systems biology. Nurse scientists can proactively incorporate systems biology into their investigations as a framework for advancing the interdisciplinary science of human health care. Systems biology has the potential to advance the research and practice goals of the National Institute for Nursing Research in the National Institutes of Health Roadmap initiative. PMID:19221104

  5. Systems biology approaches in aging research.

    PubMed

    Chauhan, Anuradha; Liebal, Ulf W; Vera, Julio; Baltrusch, Simone; Junghanß, Christian; Tiedge, Markus; Fuellen, Georg; Wolkenhauer, Olaf; Köhling, Rüdiger

    2015-01-01

    Aging is a systemic process which progressively manifests itself at multiple levels of structural and functional organization from molecular reactions and cell-cell interactions in tissues to the physiology of an entire organ. There is ever increasing data on biomedical relevant network interactions for the aging process at different scales of time and space. To connect the aging process at different structural, temporal and spatial scales, extensive systems biological approaches need to be deployed. Systems biological approaches can not only systematically handle the large-scale datasets (like high-throughput data) and the complexity of interactions (feedback loops, cross talk), but also can delve into nonlinear behaviors exhibited by several biological processes which are beyond intuitive reasoning. Several public-funded agencies have identified the synergistic role of systems biology in aging research. Using one of the notable public-funded programs (GERONTOSYS), we discuss how systems biological approaches are helping the scientists to find new frontiers in aging research. We elaborate on some systems biological approaches deployed in one of the projects of the consortium (ROSage). The systems biology field in aging research is at its infancy. It is open to adapt existing systems biological methodologies from other research fields and devise new aging-specific systems biological methodologies. PMID:25341520

  6. A QUEST FOR SYSTEM FRIENDLINESS WITH THE SNS ION BEAM BUNCH SHAPE MONITOR

    SciTech Connect

    Dickson, Richard W; Aleksandrov, Alexander V

    2012-01-01

    A new system for measuring the SNS ion beam longitudinal profile was recently upgraded to operational status. The hardware for this device was developed and delivered by Institute of Nuclear Research to the SNS as a part of its initial construction. The supplied LabVIEW user interface software was intended for proof-of-operation and initial setup of the instrument. While satisfactory for this, it was tedious to use in a practical context and lacked any form of interface to the SNS EPICS based control system. This paper will describe the software features added to make this instrument both easily tunable to the prevalent beam conditions by system engineers and easily usable by accelerator physicists only interested in its output data.

  7. Method of measurement in biological systems

    DOEpatents

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.: Davis, J.C.; Stanker, L.H.

    1993-05-11

    A method is disclosed of quantifying molecules in biological substances, comprising: selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere; preparing a long-lived radioisotope labeled reactive chemical specie; administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system; allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host; isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources; converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation; and measuring the radioisotope concentration in the material by means of direct isotopic counting.

  8. Systems biology and mechanics of growth.

    PubMed

    Eskandari, Mona; Kuhl, Ellen

    2015-01-01

    In contrast to inert systems, living biological systems have the advantage to adapt to their environment through growth and evolution. This transfiguration is evident during embryonic development, when the predisposed need to grow allows form to follow function. Alterations in the equilibrium state of biological systems breed disease and mutation in response to environmental triggers. The need to characterize the growth of biological systems to better understand these phenomena has motivated the continuum theory of growth and stimulated the development of computational tools in systems biology. Biological growth in development and disease is increasingly studied using the framework of morphoelasticity. Here, we demonstrate the potential for morphoelastic simulations through examples of volume, area, and length growth, inspired by tumor expansion, chronic bronchitis, brain development, intestine formation, plant shape, and myopia. We review the systems biology of living systems in light of biochemical and optical stimuli and classify different types of growth to facilitate the design of growth models for various biological systems within this generic framework. Exploring the systems biology of growth introduces a new venue to control and manipulate embryonic development, disease progression, and clinical intervention. PMID:26352286

  9. The Paris System for Reporting Urinary Cytology: The Quest to Develop a Standardized Terminology.

    PubMed

    Barkan, Güliz A; Wojcik, Eva M; Nayar, Ritu; Savic-Prince, Spasenija; Quek, Marcus L; Kurtycz, Daniel F I; Rosenthal, Dorothy L

    2016-07-01

    The main purpose of urine cytology is to detect high-grade urothelial carcinoma. With this principle in mind, The Paris System (TPS) Working Group, composed of cytopathologists, surgical pathologists, and urologists, has proposed and published a standardized reporting system that includes specific diagnostic categories and cytomorphologic criteria for the reliable diagnosis of high-grade urothelial carcinoma. This paper outlines the essential elements of TPS and the process that led to the formation and rationale of the reporting system. TPS Working Group, organized at the 2013 International Congress of Cytology, conceived a standardized platform on which to base cytologic interpretation of urine samples. The widespread dissemination of this approach to cytologic examination and reporting of urologic samples and the scheme's universal acceptance by pathologists and urologists is critical for its success. For urologists, understanding the diagnostic criteria, their clinical implications, and limitations of TPS is essential if they are to utilize urine cytology and noninvasive ancillary tests in a thoughtful and practical manner. This is the first international/inclusive attempt at standardizing urinary cytology. The success of TPS will depend on the pathology and urology communities working collectively to improve this seminal paradigm shift, and optimize the impact on patient care. PMID:27233050

  10. Disks, Young Stars, and Radio Waves: The Quest for Forming Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chandler, C. J.; Shepherd, D. S.

    2008-08-01

    Kant and Laplace suggested the Solar System formed from a rotating gaseous disk in the 18th century, but convincing evidence that young stars are indeed surrounded by such disks was not presented for another 200 years. As we move into the 21st century the emphasis is now on disk formation, the role of disks in star formation, and on how planets form in those disks. Radio wavelengths play a key role in these studies, currently providing some of the highest-spatial-resolution images of disks, along with evidence of the growth of dust grains into planetesimals. The future capabilities of EVLA and ALMA provide extremely exciting prospects for resolving disk structure and kinematics, studying disk chemistry, directly detecting protoplanets, and imaging disks in formation.

  11. The Quest for Pionic and Kaonic Nuclear Bound Systems Following Yukawa and Tomonaga

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.

    After sketching some historical events related to Yukawa and Tomonagaconcerning the birth of mesons, the author describes recent developments in the spectroscopy of pion-nucleus bound states via ``pion-transfer" reactions. The role of pions as Nambu-Goldstone bosons in nuclear media is emphasized by recently obtained experimental evidence for the partial restoration of chiral symmetry breaking. New light is shed on bar{K} mesons, which play a unique role in forming dense nuclear systems. The basic unit, K^-pp, is predicted to possess a molecular structure with quasi-Λ(1405) as an ``atomic constituent". We find here super strong nuclear force produced by a migrating real bar{K} meson in the Heitler-London-Heisenberg scheme in place of the normal nuclear force mediated by Yukawa's virtual mesons.

  12. Genomes, Phylogeny, and Evolutionary Systems Biology

    SciTech Connect

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  13. The emergence of modularity in biological systems

    NASA Astrophysics Data System (ADS)

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2011-06-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks.

  14. Biological control in greenhouse systems.

    PubMed

    Paulitz, T C; Bélanger, R R

    2001-01-01

    The controlled environment of greenhouses, the high value of the crops, and the limited number of registered fungicides offer a unique niche for the biological control of plant diseases. During the past ten years, over 80 biocontrol products have been marketed worldwide. A large percentage of these have been developed for greenhouse crops. Products to control soilborne pathogens such as Sclerotinia, Pythium, Rhizoctonia and Fusarium include Coniothyrium minitans, species of Gliocladium, Trichoderma, Streptomyces, and Bacillus, and nonpathogenic Fusarium. Products containing Trichoderma, Ampelomyces quisqualis, Bacillus, and Ulocladium are being developed to control the primary foliar diseases, Botrytis and powdery mildew. The development of Pseudomonas for the control of Pythium diseases in hydroponics and Pseudozyma flocculosa for the control of powdery mildew by two Canadian research programs is presented. In the future, biological control of diseases in greenhouses could predominate over chemical pesticides, in the same way that biological control of greenhouse insects predominates in the United Kingdom. The limitations in formulation, registration, and commercialization are discussed, along with suggested future research priorities. PMID:11701861

  15. Developmental systems biology flourishing on new technologies.

    PubMed

    Han, Jing-Dong J; Liu, Yi; Xue, Huiling; Xia, Kai; Yu, Hong; Zhu, Shanshan; Chen, Zhang; Zhang, Wei; Huang, Zheng; Jin, Chunyu; Xian, Bo; Li, Jing; Hou, Lei; Han, Yixing; Niu, Chaoqun; Alcon, Timothy C

    2008-10-01

    Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches. PMID:18937914

  16. Night Spectra Quest.

    ERIC Educational Resources Information Center

    Jacobs, Stephen

    1995-01-01

    Presents the Night Spectra Quest, a pocket-sized chart that identifies in color the spectra of all the common night lights and has an integrally mounted, holographic diffraction grating to look through. (JRH)

  17. COBE experience with filter QUEST

    NASA Astrophysics Data System (ADS)

    Filla, O.; Keat, J.; Chu, D.

    1991-10-01

    A gyro based filter variation on the standard QUEST attitude determination algorithm is applied to the Cosmic Background Explorer (COBE). Filter QUEST is found to be three times as fast as the batch estimator and slightly more accurate than regular QUEST. Perhaps more important than its speed or accuracy is the fact that Filter QUEST can provide real time attitude solutions when regular QUEST cannot, due to lack of observability. Filter QUEST is also easy to use and adjust for the proper memory length. Suitable applications for Filter QUEST include coarse and real time attitude determination.

  18. COBE experience with filter QUEST

    NASA Technical Reports Server (NTRS)

    Filla, O.; Keat, J.; Chu, D.

    1991-01-01

    A gyro based filter variation on the standard QUEST attitude determination algorithm is applied to the Cosmic Background Explorer (COBE). Filter QUEST is found to be three times as fast as the batch estimator and slightly more accurate than regular QUEST. Perhaps more important than its speed or accuracy is the fact that Filter QUEST can provide real time attitude solutions when regular QUEST cannot, due to lack of observability. Filter QUEST is also easy to use and adjust for the proper memory length. Suitable applications for Filter QUEST include coarse and real time attitude determination.

  19. Systems Biology Analysis of Heterocellular Signaling.

    PubMed

    Tape, Christopher J

    2016-08-01

    Tissues comprise multiple heterotypic cell types (e.g., epithelial, mesenchymal, and immune cells). Communication between heterotypic cell types is essential for biological cohesion and is frequently dysregulated in disease. Despite the importance of heterocellular communication, most systems biology techniques do not report cell-specific signaling data from mixtures of cells. As a result, our existing perspective of cellular behavior under-represents the influence of heterocellular signaling. Recent technical advances now permit the resolution of systems-level cell-specific signaling data. This review discusses how new physical, spatial, and isotopic resolving methods are facilitating unique systems biology studies of heterocellular communication. PMID:27087613

  20. Biological Systems, Energy Sources, and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Tribe, Michael; Pritchard, Alan J.

    This five-chapter document (part of a series on biology and human welfare) focuses on biological systems as energy sources and on the teaching of this subject area. Chapter 1 discusses various topics related to energy and ecology, including biomass, photosynthesis and world energy balances, energy flow through ecosystems, and others. Chapter 2…

  1. The need for a biological registration system.

    PubMed

    Pihl, Todd D; Ribaudo, Randall K

    2010-06-01

    A biological registration system is capable of determining whether two complex biological molecules are the same or different, and can assign identifiers based on this determination. Although such systems are frequently employed by chemists, they are rarely used by biological scientists in the pharmaceutical industry. However, a biological registration system would have several enterprise-wide benefits, from R&D to IP to laboratory safety. Beyond these evident benefits, a biological registration system that integrates appropriately with other systems such as electronic laboratory notebooks and inventory databases could provide critical links to allow the integration of otherwise-siloed data and knowledge generated across global pharmaceutical companies and other large research institutions. Data and knowledge integration are widely recognized as critical yet elusive components of effective translational science and systems biology programs that would create greater efficiencies for drug discovery. However, determining the optimal construction of such systems remains a challenge. This feature review describes how a special interest group comprising several pharmaceutical companies and a software company was used to create a commercially viable and supportable system. PMID:20506061

  2. ImmuneQuest: Assessment of a Video Game as a Supplement to an Undergraduate Immunology Course.

    PubMed

    Raimondi, Stacey L

    2016-05-01

    The study of immunology, particularly in this day and age, is an integral aspect of the training of future biologists, especially health professionals. Unfortunately, many students lose interest in or lack true comprehension of immunology due to the jargon of the field, preventing them from gaining a true conceptual understanding that is essential to all biological learning. To that end, a new video game, ImmuneQuest, has been developed that allows undergraduate students to "be" cells in the immune system, finding and attacking pathogens, while answering questions to earn additional abilities. The ultimate goal of ImmuneQuest is to allow students to understand how the major cells in the immune system work together to fight disease, rather than focusing on them as separate entities as is more commonly done in lecture material. This work provides the first assessment of ImmuneQuest in an upper-level immunology course. Students had significant gains in learning of information presented in ImmuneQuest compared with information discussed in lecture only. Furthermore, while students found the game "frustrating" at times, they agreed that the game aided their learning and recommended it for future courses. Taken together, these results suggest that ImmuneQuest appears to be a useful tool to supplement lecture material and increase student learning and comprehension. PMID:27158304

  3. ImmuneQuest: Assessment of a Video Game as a Supplement to an Undergraduate Immunology Course

    PubMed Central

    Raimondi, Stacey L.

    2016-01-01

    The study of immunology, particularly in this day and age, is an integral aspect of the training of future biologists, especially health professionals. Unfortunately, many students lose interest in or lack true comprehension of immunology due to the jargon of the field, preventing them from gaining a true conceptual understanding that is essential to all biological learning. To that end, a new video game, ImmuneQuest, has been developed that allows undergraduate students to “be” cells in the immune system, finding and attacking pathogens, while answering questions to earn additional abilities. The ultimate goal of ImmuneQuest is to allow students to understand how the major cells in the immune system work together to fight disease, rather than focusing on them as separate entities as is more commonly done in lecture material. This work provides the first assessment of ImmuneQuest in an upper-level immunology course. Students had significant gains in learning of information presented in ImmuneQuest compared with information discussed in lecture only. Furthermore, while students found the game “frustrating” at times, they agreed that the game aided their learning and recommended it for future courses. Taken together, these results suggest that ImmuneQuest appears to be a useful tool to supplement lecture material and increase student learning and comprehension. PMID:27158304

  4. Astrometeric Science with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Unwin, Stephen

    2006-01-01

    This viewgraph presentation reviews Astrometry with the Space Interferometry Mission (SIM) PlanetQuest. The topics include: 1) SIM PlanetQuest - the World's First Long- Baseline Optical Interferometer in Space; 2) National Academy of Sciences / NRC endorses SIM PlanetQuest; 3) SIM Planet Search; 4) Planetary System Architectures & Diversity; 5) SIM Search for 110 M(sub Earth) Planets Around Nearby Stars; 6) Deep Search of 120 nearby stars; 7) Planets around Young Stars; 8) SIM PlanetQuest Science Team; 9) Dark Halo of our Galaxy; 10) Dynamics of Galaxy Groups within 5 Mpc; 11) Probing Active Galactic Nuclei with Astrometry; 12) Snapshot Observing Mode: Astrometry for the masses; 13) SIM Technology Development is Complete; and 14) SIM Hardware, Tested for Flight.

  5. Functional Translational Readthrough: A Systems Biology Perspective.

    PubMed

    Schueren, Fabian; Thoms, Sven

    2016-08-01

    Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries. PMID:27490485

  6. Functional Translational Readthrough: A Systems Biology Perspective

    PubMed Central

    Schueren, Fabian

    2016-01-01

    Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries. PMID:27490485

  7. Understanding the fate and biological effects of Ag- and TiO₂-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts.

    PubMed

    Schaumann, Gabriele E; Philippe, Allan; Bundschuh, Mirco; Metreveli, George; Klitzke, Sondra; Rakcheev, Denis; Grün, Alexandra; Kumahor, Samuel K; Kühn, Melanie; Baumann, Thomas; Lang, Friederike; Manz, Werner; Schulz, Ralf; Vogel, Hans-Jörg

    2015-12-01

    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in

  8. Bioferroelectricity and optical properties of biological systems

    NASA Astrophysics Data System (ADS)

    Bystrov, Vladimir; Bystrova, Natalia

    2003-08-01

    A bioferroelectric approach to analysis of ferroelectric behavior of biological systems is presented. The optical properties of nerve fibers, biomembrane ion channels, and purple membrane films containing bacteriorhodopsin are analyzed. The features, influence of the proton subsystem and proton transfer on the hydrogen-bonded biomolecular structures are analyzed within the ferroelectric liquid-crystal model and possible biomedical applications discussed. The ferroelectric behavior of biological systems and the set of various bioferroelectric effects are considered within the limits of phenomenological theory of ferroelectrics. The nonlinear response to weak actions under conditions critical to human organism is one of specific features characterizing biological objects on molecular, cell and organism levels.

  9. A Philosophical Perspective on Evolutionary Systems Biology

    PubMed Central

    Soyer, Orkun S.; Siegal, Mark L.

    2015-01-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB’s progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology. PMID:26085823

  10. Introduction to Network Analysis in Systems Biology

    PubMed Central

    Ma’ayan, Avi

    2011-01-01

    This Teaching Resource provides lecture notes, slides, and a problem set for a set of three lectures from a course entitled “Systems Biology: Biomedical Modeling.” The materials are from three separate lectures introducing applications of graph theory and network analysis in systems biology. The first lecture describes different types of intracellular networks, methods for constructing biological networks, and different types of graphs used to represent regulatory intracellular networks. The second lecture surveys milestones and key concepts in network analysis by introducing topological measures, random networks, growing network models, and topological observations from molecular biological systems abstracted to networks. The third lecture discusses methods for analyzing lists of genes and experimental data in the context of prior knowledge networks to make predictions. PMID:21917719

  11. Multiscale Computational Models of Complex Biological Systems

    PubMed Central

    Walpole, Joseph; Papin, Jason A.; Peirce, Shayn M.

    2014-01-01

    Integration of data across spatial, temporal, and functional scales is a primary focus of biomedical engineering efforts. The advent of powerful computing platforms, coupled with quantitative data from high-throughput experimental platforms, has allowed multiscale modeling to expand as a means to more comprehensively investigate biological phenomena in experimentally relevant ways. This review aims to highlight recently published multiscale models of biological systems while using their successes to propose the best practices for future model development. We demonstrate that coupling continuous and discrete systems best captures biological information across spatial scales by selecting modeling techniques that are suited to the task. Further, we suggest how to best leverage these multiscale models to gain insight into biological systems using quantitative, biomedical engineering methods to analyze data in non-intuitive ways. These topics are discussed with a focus on the future of the field, the current challenges encountered, and opportunities yet to be realized. PMID:23642247

  12. Omics/systems biology and cancer cachexia.

    PubMed

    Gallagher, Iain J; Jacobi, Carsten; Tardif, Nicolas; Rooyackers, Olav; Fearon, Kenneth

    2016-06-01

    Cancer cachexia is a complex syndrome generated by interaction between the host and tumour cells with a background of treatment effects and toxicity. The complexity of the physiological pathways likely involved in cancer cachexia necessitates a holistic view of the relevant biology. Emergent properties are characteristic of complex systems with the result that the end result is more than the sum of its parts. Recognition of the importance of emergent properties in biology led to the concept of systems biology wherein a holistic approach is taken to the biology at hand. Systems biology approaches will therefore play an important role in work to uncover key mechanisms with therapeutic potential in cancer cachexia. The 'omics' technologies provide a global view of biological systems. Genomics, transcriptomics, proteomics, lipidomics and metabolomics approaches all have application in the study of cancer cachexia to generate systems level models of the behaviour of this syndrome. The current work reviews recent applications of these technologies to muscle atrophy in general and cancer cachexia in particular with a view to progress towards integration of these approaches to better understand the pathology and potential treatment pathways in cancer cachexia. PMID:26783720

  13. Nonequilibrium Thermodynamics in Biological Systems

    NASA Astrophysics Data System (ADS)

    Aoki, I.

    2005-12-01

    1. Respiration Oxygen-uptake by respiration in organisms decomposes macromolecules such as carbohydrate, protein and lipid and liberates chemical energy of high quality, which is then used to chemical reactions and motions of matter in organisms to support lively order in structure and function in organisms. Finally, this chemical energy becomes heat energy of low quality and is discarded to the outside (dissipation function). Accompanying this heat energy, entropy production which inevitably occurs by irreversibility also is discarded to the outside. Dissipation function and entropy production are estimated from data of respiration. 2. Human body From the observed data of respiration (oxygen absorption), the entropy production in human body can be estimated. Entropy production from 0 to 75 years old human has been obtained, and extrapolated to fertilized egg (beginning of human life) and to 120 years old (maximum period of human life). Entropy production show characteristic behavior in human life span : early rapid increase in short growing phase and later slow decrease in long aging phase. It is proposed that this tendency is ubiquitous and constitutes a Principle of Organization in complex biotic systems. 3. Ecological communities From the data of respiration of eighteen aquatic communities, specific (i.e. per biomass) entropy productions are obtained. They show two phase character with respect to trophic diversity : early increase and later decrease with the increase of trophic diversity. The trophic diversity in these aquatic ecosystems is shown to be positively correlated with the degree of eutrophication, and the degree of eutrophication is an "arrow of time" in the hierarchy of aquatic ecosystems. Hence specific entropy production has the two phase: early increase and later decrease with time. 4. Entropy principle for living systems The Second Law of Thermodynamics has been expressed as follows. 1) In isolated systems, entropy increases with time and

  14. Method of measurement in biological systems

    DOEpatents

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.

    1994-12-27

    Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figures.

  15. Method of measurement in biological systems

    DOEpatents

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.

    1994-01-01

    Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  16. Method of measurement in biological systems

    DOEpatents

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.; Stanker, Larry H.

    1993-05-11

    Disclosed is a method of quantifying molecules in biological substances, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  17. A Systems Biology Approach to Iron Metabolism

    PubMed Central

    Chifman, J.; Laubenbacher, R.; Torti, S.V.

    2015-01-01

    Iron is critical to the survival of almost all living organisms. However, inappropriately low or high levels of iron are detrimental and contribute to a wide range of diseases. Recent advances in the study of iron metabolism have revealed multiple intricate pathways that are essential to the maintenance of iron homeostasis. Further, iron regulation involves processes at several scales, ranging from the subcellular to the organismal. This complexity makes a systems biology approach crucial, with its enabling technology of computational models based on a mathematical description of regulatory systems. Systems biology may represent a new strategy for understanding imbalances in iron metabolism and their underlying causes. PMID:25480643

  18. Aquaporin Biology and Nervous System

    PubMed Central

    Barbara, Buffoli

    2010-01-01

    Our understanding of the movement of water through cell membranes has been greatly advanced by the discovery of a family of water-specific, membrane-channel proteins: the Aquaporins (AQPs). These proteins are present in organisms at all levels of life, and their unique permeability characteristics and distribution in numerous tissues indicate diverse roles in the regulation of water homeostasis. Phenotype analysis of AQP knock-out mice has confirmed the predicted role of AQPs in osmotically driven transepithelial fluid transport, as occurs in the urinary concentrating mechanism and glandular fluid secretion. Regarding their expression in nervous system, there are evidences suggesting that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in cerebrospinal fluid formation, neuronal signal transduction and information processing. Moreover, a number of recent studies have revealed the importance of mammalian AQPs in both physiological and pathophysiological mechanisms and have suggested that pharmacological modulation of AQP expression and activity may provide new tools for the treatment of variety of human disorders in which water and small solute transport may be involved. For all the AQPs, new contributions to physiological functions are likely to be discovered with ongoing work in this rapidly expanding field of research. PMID:21119880

  19. Networks’ Characteristics Matter for Systems Biology

    PubMed Central

    Rider, Andrew K.; Milenković, Tijana; Siwo, Geoffrey H.; Pinapati, Richard S.; Emrich, Scott J.; Ferdig, Michael T.; Chawla, Nitesh V.

    2015-01-01

    A fundamental goal of systems biology is to create models that describe relationships between biological components. Networks are an increasingly popular approach to this problem. However, a scientist interested in modeling biological (e.g., gene expression) data as a network is quickly confounded by the fundamental problem: how to construct the network? It is fairly easy to construct a network, but is it the network for the problem being considered? This is an important problem with three fundamental issues: How to weight edges in the network in order to capture actual biological interactions? What is the effect of the type of biological experiment used to collect the data from which the network is constructed? How to prune the weighted edges (or what cut-off to apply)? Differences in the construction of networks could lead to different biological interpretations. Indeed, we find that there are statistically significant dissimilarities in the functional content and topology between gene co-expression networks constructed using different edge weighting methods, data types, and edge cut-offs. We show that different types of known interactions, such as those found through Affinity Capture-Luminescence or Synthetic Lethality experiments, appear in significantly varying amounts in networks constructed in different ways. Hence, we demonstrate that different biological questions may be answered by the different networks. Consequently, we posit that the approach taken to build a network can be matched to biological questions to get targeted answers. More study is required to understand the implications of different network inference approaches and to draw reliable conclusions from networks used in the field of systems biology. PMID:26500772

  20. Current advances in systems and integrative biology

    PubMed Central

    Robinson, Scott W.; Fernandes, Marco; Husi, Holger

    2014-01-01

    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal. PMID:25379142

  1. SeqQuest

    Energy Science and Technology Software Center (ESTSC)

    2007-10-25

    SeqQuest is a general purpose code to compute first principles electron structure of molecules and solids, within the density functional theory approximation, using pseudopotentials and a gaussian-based local orbital basis set expansion for the wave functions. Primary usage is for basic research into fundamental chemical and physical properties of molecules and materials.

  2. Systems Biology Approach to Developing “Systems Therapeutics”

    PubMed Central

    2014-01-01

    The standard drug development model uses reductionist approaches to discover small molecules targeting one pathway. Although systems biology analyzes multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. Similar to that in physics where a departure from the old reductionist “Copenhagen View” of quantum physics to a new and predictive systems based, collective model has emerged yielding new breakthroughs such as the LASER, a new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics.” PMID:24900858

  3. Designing a WebQuest

    ERIC Educational Resources Information Center

    Salsovic, Annette R.

    2009-01-01

    A WebQuest is an inquiry-based lesson plan that uses the Internet. This article explains what a WebQuest is, shows how to create one, and provides an example. When engaged in a WebQuest, students use technology to experience cooperative learning and discovery learning while honing their research, writing, and presentation skills. It has been found…

  4. Learning from WebQuests

    ERIC Educational Resources Information Center

    Gaskill, Martonia; McNulty, Anastasia; Brooks, David W.

    2006-01-01

    WebQuests are activities in which students use Web resources to learn about school topics. WebQuests are advocated as constructivist activities and ones generally well regarded by students. Two experiments were conducted in school settings to compare learning using WebQuests versus conventional instruction. Students and teachers both enjoyed…

  5. Semantic Annotation for Biological Information Retrieval System

    PubMed Central

    Oshaiba, Mohamed Marouf Z.; El Houby, Enas M. F.; Salah, Akram

    2015-01-01

    Online literatures are increasing in a tremendous rate. Biological domain is one of the fast growing domains. Biological researchers face a problem finding what they are searching for effectively and efficiently. The aim of this research is to find documents that contain any combination of biological process and/or molecular function and/or cellular component. This research proposes a framework that helps researchers to retrieve meaningful documents related to their asserted terms based on gene ontology (GO). The system utilizes GO by semantically decomposing it into three subontologies (cellular component, biological process, and molecular function). Researcher has the flexibility to choose searching terms from any combination of the three subontologies. Document annotation is taking a place in this research to create an index of biological terms in documents to speed the searching process. Query expansion is used to infer semantically related terms to asserted terms. It increases the search meaningful results using the term synonyms and term relationships. The system uses a ranking method to order the retrieved documents based on the ranking weights. The proposed system achieves researchers' needs to find documents that fit the asserted terms semantically. PMID:25737720

  6. Discovery of Chemical Toxicity via Biological Networks and Systems Biology

    SciTech Connect

    Perkins, Edward; Habib, Tanwir; Guan, Xin; Escalon, Barbara; Falciani, Francesco; Chipman, J.K.; Antczak, Philipp; Edwards, Stephen; Taylor, Ronald C.; Vulpe, Chris; Loguinov, Alexandre; Van Aggelen, Graham; Villeneuve, Daniel L.; Garcia-Reyero, Natalia

    2010-09-30

    Both soldiers and animals are exposed to many chemicals as the result of military activities. Tools are needed to understand the hazards and risks that chemicals and new materials pose to soldiers and the environment. We have investigated the potential of global gene regulatory networks in understanding the impact of chemicals on reproduction. We characterized effects of chemicals on ovaries of the model animal system, the Fathead minnow (Pimopheles promelas) connecting chemical impacts on gene expression to circulating blood levels of the hormones testosterone and estradiol in addition to the egg yolk protein vitellogenin. We describe the application of reverse engineering complex interaction networks from high dimensional gene expression data to characterize chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis that governs reproduction in fathead minnows. The construction of global gene regulatory networks provides deep insights into how drugs and chemicals effect key organs and biological pathways.

  7. Systems Medicine: Evolution of Systems Biology From Bench To Bedside

    PubMed Central

    Wang, Rui-Sheng; Maron, Bradley A.; Loscalzo, Joseph

    2015-01-01

    High-throughput experimental techniques for generating genomes, transcriptomes, proteomes, metabolomes, and interactomes have provided unprecedented opportunities to interrogate biological systems and human diseases on a global level. Systems biology integrates the mass of heterogeneous high-throughput data and predictive computational modeling to understand biological functions as system-level properties. Most human diseases are biological states caused by multiple components of perturbed pathways and regulatory networks rather than individual failing components. Systems biology not only facilitates basic biological research, but also provides new avenues through which to understand human diseases, identify diagnostic biomarkers, and develop disease treatments. At the same time, systems biology seeks to assist in drug discovery, drug optimization, drug combinations, and drug repositioning by investigating the molecular mechanisms of action of drugs at a system’s level. Indeed, systems biology is evolving to systems medicine as a new discipline that aims to offer new approaches for addressing the diagnosis and treatment of major human diseases uniquely, effectively, and with personalized precision. PMID:25891169

  8. Meeting report: Signal transduction meets systems biology

    PubMed Central

    2012-01-01

    In the 21st century, systems-wide analyses of biological processes are getting more and more realistic. Especially for the in depth analysis of signal transduction pathways and networks, various approaches of systems biology are now successfully used. The EU FP7 large integrated project SYBILLA (Systems Biology of T-cell Activation in Health and Disease) coordinates such an endeavor. By using a combination of experimental data sets and computational modelling, the consortium strives for gaining a detailed and mechanistic understanding of signal transduction processes that govern T-cell activation. In order to foster the interaction between systems biologists and experimentally working groups, SYBILLA co-organized the 15th meeting “Signal Transduction: Receptors, Mediators and Genes” together with the Signal Transduction Society (STS). Thus, the annual STS conference, held from November 7 to 9, 2011 in Weimar, Germany, provided an interdisciplinary forum for research on signal transduction with a major focus on systems biology addressing signalling events in T-cells. Here we report on a selection of ongoing projects of SYBILLA and how they were discussed at this interdisciplinary conference. PMID:22546078

  9. Self Organizing Systems and the Research Implications for Biological Systems

    NASA Astrophysics Data System (ADS)

    Denkins-Taffe, Lauren R.; Alfred, Marcus; Lindesay, James

    2008-03-01

    The knowledge gained from the human genome project, has provided an added opportunity to study the dynamical relationships within biological systems and can lead to an increased knowledge of diseases and subsequent drug discovery. Through computation, methods in which to rebuild these systems are being studied. These methods, which have first been applied to simpler systems: predator-prey, and self sustaining ecosystems can be applied to the study of microscopic biological systems.

  10. Studies on Semantic Systems Chemical Biology

    ERIC Educational Resources Information Center

    Chen, Bin

    2012-01-01

    Current "one disease, one target and one drug" drug development paradigm is under question as relatively few drugs have reached the market in the last two decades. Increasingly research focus is being placed on the study of drug action against biological systems as a whole rather than against a single component (called "Systems…

  11. Modular microfluidic system for biological sample preparation

    SciTech Connect

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  12. Promoting Systems Thinking through Biology Lessons

    ERIC Educational Resources Information Center

    Riess, Werner; Mischo, Christoph

    2010-01-01

    This study's goal was to analyze various teaching approaches within the context of natural science lessons, especially in biology. The main focus of the paper lies on the effectiveness of different teaching methods in promoting systems thinking in the field of Education for Sustainable Development. The following methods were incorporated into the…

  13. Radiological/biological/aerosol removal system

    DOEpatents

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  14. Glucose Disappearance in Biological Treatment Systems

    PubMed Central

    Jeris, John S.; Cardenas, Raul R.

    1966-01-01

    Laboratory scale anaerobic and aerobic treatment units were conditioned with a daily slug-feed of glucose. After a period of acclimation and stabilization, glucose disappearance was monitored continuously after the slug feed. A continuous sampling apparatus is described. Mathematical analysis of the data indicate zero-order reactions for both biological treatment systems. PMID:16349685

  15. Microbial Stress Tolerance for Biofuels: Systems Biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book provides comprehensive up-to-date understanding and frontier research addressing mechanisms of microbial stress tolerance involved in biofuels using a systems biology approach. It ties closely with the cutting edge technology with a focus on the challenging subject of biofuels. The develo...

  16. Learning from WebQuests

    NASA Astrophysics Data System (ADS)

    Gaskill, Martonia; McNulty, Anastasia; Brooks, David W.

    2006-04-01

    WebQuests are activities in which students use Web resources to learn about school topics. WebQuests are advocated as constructivist activities and ones generally well regarded by students. Two experiments were conducted in school settings to compare learning using WebQuests versus conventional instruction. Students and teachers both enjoyed WebQuest instruction and spoke highly of it. In one experiment, however, conventional instruction led to significantly greater student learning. In the other, there were no significant differences in the learning outcomes between conventional versus WebQuest-based instruction.

  17. Systems Biology, Bioinformatics, and Biomarkers in Neuropsychiatry

    PubMed Central

    Alawieh, Ali; Zaraket, Fadi A.; Li, Jian-Liang; Mondello, Stefania; Nokkari, Amaly; Razafsha, Mahdi; Fadlallah, Bilal; Boustany, Rose-Mary; Kobeissy, Firas H.

    2012-01-01

    Although neuropsychiatric (NP) disorders are among the top causes of disability worldwide with enormous financial costs, they can still be viewed as part of the most complex disorders that are of unknown etiology and incomprehensible pathophysiology. The complexity of NP disorders arises from their etiologic heterogeneity and the concurrent influence of environmental and genetic factors. In addition, the absence of rigid boundaries between the normal and diseased state, the remarkable overlap of symptoms among conditions, the high inter-individual and inter-population variations, and the absence of discriminative molecular and/or imaging biomarkers for these diseases makes difficult an accurate diagnosis. Along with the complexity of NP disorders, the practice of psychiatry suffers from a “top-down” method that relied on symptom checklists. Although checklist diagnoses cost less in terms of time and money, they are less accurate than a comprehensive assessment. Thus, reliable and objective diagnostic tools such as biomarkers are needed that can detect and discriminate among NP disorders. The real promise in understanding the pathophysiology of NP disorders lies in bringing back psychiatry to its biological basis in a systemic approach which is needed given the NP disorders’ complexity to understand their normal functioning and response to perturbation. This approach is implemented in the systems biology discipline that enables the discovery of disease-specific NP biomarkers for diagnosis and therapeutics. Systems biology involves the use of sophisticated computer software “omics”-based discovery tools and advanced performance computational techniques in order to understand the behavior of biological systems and identify diagnostic and prognostic biomarkers specific for NP disorders together with new targets of therapeutics. In this review, we try to shed light on the need of systems biology, bioinformatics, and biomarkers in neuropsychiatry, and

  18. Engineering biological systems with synthetic RNA molecules

    PubMed Central

    Liang, Joe C.; Bloom, Ryan J.; Smolke, Christina D.

    2011-01-01

    RNA molecules play diverse functional roles in natural biological systems. There has been growing interest in designing synthetic RNA counterparts for programming biological function. The design of synthetic RNA molecules that exhibit diverse activities, including sensing, regulatory, information processing, and scaffolding activities, has highlighted the advantages of RNA as a programmable design substrate. Recent advances in implementing these engineered RNA molecules as key control elements in synthetic genetic networks are highlighting the functional relevance of this class of synthetic elements in programming cellular behaviors. PMID:21925380

  19. Modeling autism: a systems biology approach

    PubMed Central

    2012-01-01

    Autism is the fastest growing developmental disorder in the world today. The prevalence of autism in the US has risen from 1 in 2500 in 1970 to 1 in 88 children today. People with autism present with repetitive movements and with social and communication impairments. These impairments can range from mild to profound. The estimated total lifetime societal cost of caring for one individual with autism is $3.2 million US dollars. With the rapid growth in this disorder and the great expense of caring for those with autism, it is imperative for both individuals and society that techniques be developed to model and understand autism. There is increasing evidence that those individuals diagnosed with autism present with highly diverse set of abnormalities affecting multiple systems of the body. To this date, little to no work has been done using a whole body systems biology approach to model the characteristics of this disorder. Identification and modelling of these systems might lead to new and improved treatment protocols, better diagnosis and treatment of the affected systems, which might lead to improved quality of life by themselves, and, in addition, might also help the core symptoms of autism due to the potential interconnections between the brain and nervous system with all these other systems being modeled. This paper first reviews research which shows that autism impacts many systems in the body, including the metabolic, mitochondrial, immunological, gastrointestinal and the neurological. These systems interact in complex and highly interdependent ways. Many of these disturbances have effects in most of the systems of the body. In particular, clinical evidence exists for increased oxidative stress, inflammation, and immune and mitochondrial dysfunction which can affect almost every cell in the body. Three promising research areas are discussed, hierarchical, subgroup analysis and modeling over time. This paper reviews some of the systems disturbed in autism and

  20. Light manipulation principles in biological photonic systems

    NASA Astrophysics Data System (ADS)

    Starkey, Tim; Vukusic, Pete

    2013-10-01

    The science of light and colour manipulation continues to generate interest across a range of disciplines, from mainstream biology, across multiple physics-based fields, to optical engineering. Furthermore, the study of light production and manipulation is of significant value to a variety of industrial processes and commercial products. Among the several key methods by which colour is produced in the biological world, this review sets out to describe, in some detail, the specifics of the method involving photonics in animal and plant systems; namely, the mechanism commonly referred to as structural colour generation. Not only has this theme been a very rapidly growing area of physics-based interest, but also it is increasingly clear that the biological world is filled with highly evolved structural designs by which light and colour strongly influence behaviours and ecological functions.

  1. The REF52 protein database. Methods of database construction and analysis using the QUEST system and characterizations of protein patterns from proliferating and quiescent REF52 cells.

    PubMed

    Garrels, J I; Franza, B R

    1989-03-25

    The construction and analysis of protein databases using the QUEST system is described, and the REF52 protein database is presented. A protein database provides the means to store and compare quantitative and descriptive data for up to 2000 proteins from many experiments that employ computer-analyzed two-dimensional gel electrophoresis. The QUEST system provides the tools to manage, analyze, and communicate these data. The REF52 database contains experiments with normal and transformed rat cell lines. In this report, many of the proteins on the REF52 map are identified by name, by subcellular localization, and by mode of post-translational modification. The quantitative experiments analyzed and compared here include 1) a study of the quantitative reproducibility of the analysis system, 2) a study of the clonal reproducibility of REF52 cells, 3) a study of growth-related changes in REF52 cells, and 4) a study of the effects of labeling cells for varying lengths of time. Of the proteins analyzed from REF52 cells, 10% are nuclear, 6% are phosphoproteins, and 4% are mannose-labeled glycoproteins. The mannose-labeled proteins are more prominent in patterns from quiescent cells, while the synthesis of cytoskeletal proteins is generally repressed at quiescence. A small set of proteins, selected for elevated rates of synthesis is generally repressed at quiescence. A small set of proteins, selected for elevated rates of synthesis in quiescent versus proliferating cells includes one of the tropomyosin isoforms, a myosin light chain isoform, and several prominent glycoproteins. These proteins are thought to be characteristic of the differentiated state of untransformed REF52 cells. Proteins induced early versus late after refeeding quiescent cells show very different patterns of growth regulation. These studies lay the foundations of the REF52 database and provide information needed to interpret the experiments with transformed REF52 cells, which are reported in the

  2. Complexity and Stability in Biological Systems

    NASA Astrophysics Data System (ADS)

    Demongeot, Jacques; Demetrius, Lloyd A.

    2015-06-01

    The hypothesis that a positive correlation exists between the complexity of a biological system, as described by its connectance, and its stability, as measured by its ability to recover from disturbance, derives from the investigations of the physiologists, Bernard and Cannon, and the ecologist Elton. Studies based on the ergodic theory of dynamical systems and the theory of large deviations have furnished an analytic support for this hypothesis. Complexity in this context is described by the mathematical object evolutionary entropy, stability is characterized by the rate at which the system returns to its stable conditions (steady state or periodic attractor) after a random perturbation of its robustness. This article reviews the analytical basis of the entropy — robustness theorem — and invokes studies of genetic regulatory networks to provide empirical support for the correlation between complexity and stability. Earlier investigations based on numerical studies of random matrix models and the notion of local stability have led to the claim that complex ecosystems tend to be more dynamically fragile. This article elucidates the basis for this claim which is largely inconsistent with the empirical observations of Bernard, Cannon and Elton. Our analysis thus resolves a long standing controversy regarding the relation between complex biological systems and their capacity to recover from perturbations. The entropy-robustness principle is a mathematical proposition with implications for understanding the basis for the large variations in stability observed in biological systems having evolved under different environmental conditions.

  3. Institutionalizing Environmental Scanning in the ED QUEST Process.

    ERIC Educational Resources Information Center

    Morrison, James L.

    An environmental scanning system is structured to identify and evaluate trends, events, and emerging issues. QUEST represents the quick environmental scanning technique, and an ED QUEST process enables an educational organization to clarify its future and define its options. This paper describes how an educational organization can establish an…

  4. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.

    PubMed

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J

    2016-06-17

    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function. PMID:26696234

  5. TOPICAL REVIEW: Carbon nanomaterials in biological systems

    NASA Astrophysics Data System (ADS)

    Ke, Pu Chun; Qiao, Rui

    2007-09-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment.

  6. Origin of homochirality in biological systems

    NASA Astrophysics Data System (ADS)

    Toxvaerd, S.

    2005-01-01

    Models for segregation of racemic mixtures of chiral amphiphiles and lipophiles in aqueous solutions show that the amphiphiles with active isomerization kinetics can perform a spontaneous symmetry break during the segregation and self-assemble to homochiral matter. Based on physico-chemical facts, it is argued that D-glyceraldehyde, which was synthesized from the volatiles at the hydrothermal reactors at the origin of life, could be the origin of homochirality in biological systems.

  7. Leveraging systems biology approaches in clinical pharmacology

    PubMed Central

    Melas, Ioannis N; Kretsos, Kosmas; Alexopoulos, Leonidas G

    2013-01-01

    Computational modeling has been adopted in all aspects of drug research and development, from the early phases of target identification and drug discovery to the late-stage clinical trials. The different questions addressed during each stage of drug R&D has led to the emergence of different modeling methodologies. In the research phase, systems biology couples experimental data with elaborate computational modeling techniques to capture lifecycle and effector cellular functions (e.g. metabolism, signaling, transcription regulation, protein synthesis and interaction) and integrates them in quantitative models. These models are subsequently used in various ways, i.e. to identify new targets, generate testable hypotheses, gain insights on the drug's mode of action (MOA), translate preclinical findings, and assess the potential of clinical drug efficacy and toxicity. In the development phase, pharmacokinetic/pharmacodynamic (PK/PD) modeling is the established way to determine safe and efficacious doses for testing at increasingly larger, and more pertinent to the target indication, cohorts of subjects. First, the relationship between drug input and its concentration in plasma is established. Second, the relationship between this concentration and desired or undesired PD responses is ascertained. Recognizing that the interface of systems biology with PK/PD will facilitate drug development, systems pharmacology came into existence, combining methods from PK/PD modeling and systems engineering explicitly to account for the implicated mechanisms of the target system in the study of drug–target interactions. Herein, a number of popular system biology methodologies are discussed, which could be leveraged within a systems pharmacology framework to address major issues in drug development. PMID:23983165

  8. The Emergence of Modularity in Biological Systems

    PubMed Central

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2015-01-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks. There once were two watchmakers, named Hora and Tempus, who manufactured very fine watches. Both of them were highly regarded, and the phones in their workshops rang frequently — new customers were constantly calling them. However, Hora prospered, while Tempus became poorer and poorer and finally lost his shop. What was the reason? The watches the men made consisted of about 1,000 parts each. Tempus had so constructed his that if he had one partly assembled and had to put it down — to answer the phone say— it immediately fell to pieces and had to be reassembled from the elements. The better the customers liked his watches, the more they phoned him, the more difficult it became for him to find enough uninterrupted time to finish a watch. The watches that Hora made were no less complex than those of Tempus. But he had designed them so that he could put together subassemblies of about ten elements each. Ten of these subassemblies, again, could be put together into a larger subassembly; and a system of ten of the latter sub

  9. Canadarm2 Maneuvers Quest Airlock

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the control of Expedition Two Flight Engineer Susan B. Helms, the newly-installed Canadian-built Canadarm2, Space Station Remote Manipulator System (SSRMS) maneuvers the Quest Airlock into the proper position to be mated onto the starboard side of the Unity Node I during the first of three extravehicular activities (EVA) of the STS-104 mission. The Quest Airlock makes it easier to perform space walks, and allows both Russian and American spacesuits to be worn when the Shuttle is not docked with the International Space Station (ISS). American suits will not fit through Russion airlocks at the Station. The Boeing Company, the space station prime contractor, built the 6.5-ton (5.8 metric ton) airlock and several other key components at the Marshall Space Flight Center (MSFC), in the same building where the Saturn V rocket was built. Installation activities were supported by the development team from the Payload Operations Control Center (POCC) located at the MSFC and the Mission Control Center at NASA's Johnson Space Flight Center in Houston, Texas.

  10. QUEST: QUantum Electron Simulation Toolbox

    SciTech Connect

    Lee, Roger Che-Rung; Chiesa, Simone; Varney, Christopher N; Khatami, Ehsan; Bai, Zhaojun; D'Azevedo, Ed F; Jarrell, Mark; Maier, Thomas A; Savrasov, Sergey; Scalettar, Richard; Tomko, Karen

    2010-01-01

    QUEST is a part of the SciDAC project on next generation multi-scale quantum simulation software for strongly correlated materials. It is a Fortran 90/95 package that implements the determinant quantum Monte Carlo (DQMC) method for simulation of magnetic, superconducting, and metal-insulator transitions in model Hamiltonians. In this paper, we show how QUEST is capable of treating lattices of unprecedentedly large sizes and how this can be fruitful in the study of the physics of trapped fermionic system, in the development of more efficient solvers for Dynamical Mean Field Theory (DMFT) and as a tool to test and, in the future, improve diagrammatic approaches such as the Parquet approximation. We will also present a range of synergistic activities on the development of stable and robust numerical algorithms and hybrid granularity parallelization scheme that combines algorithmic and implementation techniques to high-performance DQMC simulation. The work reported here is a key step forward in achieving the goals of our SciDAC project.

  11. Method for photo-altering a biological system to improve biological effect

    DOEpatents

    Hill, Richard A.; Doiron, Daniel R.; Crean, David H.

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  12. Complex biological and bio-inspired systems

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to accurately

  13. Systems Biology of the Vervet Monkey

    PubMed Central

    Jasinska, Anna J.; Schmitt, Christopher A.; Service, Susan K.; Cantor, Rita M.; Dewar, Ken; Jentsch, James D.; Kaplan, Jay R.; Turner, Trudy R.; Warren, Wesley C.; Weinstock, George M.; Woods, Roger P.; Freimer, Nelson B.

    2013-01-01

    Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations. PMID:24174437

  14. Engineering biological systems toward a sustainable bioeconomy.

    PubMed

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy. PMID:25845304

  15. Systems Biology of HBOC-Induced Vasoconstriction

    PubMed Central

    Hai, Chi-Ming

    2011-01-01

    Vasoconstriction is a major adverse effect of HBOCs. The use of a single drug for attenuating HBOC-induced vasoconstriction has been tried with limited success. Since HBOC causes disruptions at multiple levels of organization in the vascular system, a systems approach is helpful to explore avenues to counteract the effects of HBOC at multiple levels by targeting multiple sites in the system. A multi-target approach is especially appropriate for HBOC-induced vasoconstriction, because HBOC disrupts the cascade of amplification by NO-cGMP signaling and protein phosphorylation, ultimately resulting in vasoconstriction. Targeting multiple steps in the cascade may alter the overall gain of amplification, thereby limiting the propagation of disruptive effects through the cascade. As a result, targeting multiple sites may accomplish a relatively high overall efficacy at submaximal drug doses. Identifying targets and doses for developing a multi-target combination HBOC regimen for oxygen therapeutics requires a detailed understanding of the systems biology and phenotypic heterogeneity of the vascular system at multiple layers of organization, which can be accomplished by successive iterations between experimental studies and mathematical modeling at multiple levels of vascular systems and organ systems. Towards this goal, this article addresses the following topics: a) NO-scavenging by HBOC, b) HBOC autoxidation-induced reactive oxygen species generation and endothelial barrier dysfunction, c) NO- cGMP signaling in vascular smooth muscle cells, d) NO and cGMP-dependent regulation of contractile filaments in vascular smooth muscle cells, e) phenotypic heterogeneity of vascular systems, f) systems biology as an approach to developing a multi-target HBOC regimen. PMID:21726185

  16. Recognition of metal cations by biological systems.

    PubMed

    Truter, M R

    1975-11-01

    Recognition of metal cations by biological systems can be compared with the geochemical criteria for isomorphous replacement. Biological systems are more highly selective and much more rapid. Methods of maintaining an optimum concentration, including storage and transfer for the essential trace elements, copper and iron, used in some organisms are in part reproducible by coordination chemists while other features have not been reporduced in models. Poisoning can result from a foreign metal taking part in a reaction irreversibly so that the recognition site or molecule is not released. For major nutrients, sodium, potassium, magnesium and calcium, there are similarities to the trace metals in selective uptake but differences qualitatively and quantitatively in biological activity. Compounds selective for potassium replace all the solvation sphere with a symmetrical arrangement of oxygen atoms; those selective for sodium give an asymmetrical environment with retention of a solvent molecule. Experiments with naturally occurring antibiotics and synthetic model compounds have shown that flexibility is an important feature of selectivity and that for transfer or carrier properties there is an optimum (as opposed to a maximum) metal-ligand stability constant. Thallium is taken up instead of potassium and will activate some enzymes; it is suggested that the poisonous characteristics arise because the thallium ion may bind more strongly than potassium to part of a site and then fail to bind additional atoms as required for the biological activity. Criteria for the design of selective complexing agents are given with indications of those which might transfer more than one metal at once. PMID:1815

  17. The systems biology simulation core algorithm

    PubMed Central

    2013-01-01

    Background With the increasing availability of high dimensional time course data for metabolites, genes, and fluxes, the mathematical description of dynamical systems has become an essential aspect of research in systems biology. Models are often encoded in formats such as SBML, whose structure is very complex and difficult to evaluate due to many special cases. Results This article describes an efficient algorithm to solve SBML models that are interpreted in terms of ordinary differential equations. We begin our consideration with a formal representation of the mathematical form of the models and explain all parts of the algorithm in detail, including several preprocessing steps. We provide a flexible reference implementation as part of the Systems Biology Simulation Core Library, a community-driven project providing a large collection of numerical solvers and a sophisticated interface hierarchy for the definition of custom differential equation systems. To demonstrate the capabilities of the new algorithm, it has been tested with the entire SBML Test Suite and all models of BioModels Database. Conclusions The formal description of the mathematics behind the SBML format facilitates the implementation of the algorithm within specifically tailored programs. The reference implementation can be used as a simulation backend for Java™-based programs. Source code, binaries, and documentation can be freely obtained under the terms of the LGPL version 3 from http://simulation-core.sourceforge.net. Feature requests, bug reports, contributions, or any further discussion can be directed to the mailing list simulation-core-development@lists.sourceforge.net. PMID:23826941

  18. A Free Energy Principle for Biological Systems

    PubMed Central

    Karl, Friston

    2012-01-01

    This paper describes a free energy principle that tries to explain the ability of biological systems to resist a natural tendency to disorder. It appeals to circular causality of the sort found in synergetic formulations of self-organization (e.g., the slaving principle) and models of coupled dynamical systems, using nonlinear Fokker Planck equations. Here, circular causality is induced by separating the states of a random dynamical system into external and internal states, where external states are subject to random fluctuations and internal states are not. This reduces the problem to finding some (deterministic) dynamics of the internal states that ensure the system visits a limited number of external states; in other words, the measure of its (random) attracting set, or the Shannon entropy of the external states is small. We motivate a solution using a principle of least action based on variational free energy (from statistical physics) and establish the conditions under which it is formally equivalent to the information bottleneck method. This approach has proved useful in understanding the functional architecture of the brain. The generality of variational free energy minimisation and corresponding information theoretic formulations may speak to interesting applications beyond the neurosciences; e.g., in molecular or evolutionary biology. PMID:23204829

  19. The Feasibility of Systems Thinking in Biology Education

    ERIC Educational Resources Information Center

    Boersma, Kerst; Waarlo, Arend Jan; Klaassen, Kees

    2011-01-01

    Systems thinking in biology education is an up and coming research topic, as yet with contrasting feasibility claims. In biology education systems thinking can be understood as thinking backward and forward between concrete biological objects and processes and systems models representing systems theoretical characteristics. Some studies claim that…

  20. 6th Annual Systems Biology Symposium: Systems Biology and the Environment

    SciTech Connect

    Galitski, Timothy, P.

    2007-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology is an annual two-day event gathering the most influential researchers transforming biology into an integrative discipline investigating complex systems. In recognition of the fundamental similarity between the scientific problems addressed in environmental science and systems biology studies at the molecular, cellular, and organismal levels, the 2007 Symposium featured global leaders in “Systems Biology and the Environment.” The objective of the 2007 “Systems Biology and the Environment” International Symposium was to stimulate interdisciplinary thinking and research that spans systems biology and environmental science. This Symposium was well aligned with the DOE’s Genomics:GTL program efforts to achieve scientific objectives for each of the three DOE missions: • Develop biofuels as a major secure energy source for this century, • Develop biological solutions for intractable environmental problems, and • Understand biosystems’ climate impacts and assess sequestration strategies Our scientific program highlighted world-class research exemplifying these priorities. The Symposium featured 45 minute lectures from 12 researchers including: Penny/Sallie Chisholm of MIT gave the keynote address “Tiny Cells, Global Impact: What Prochlorococcus Can Teach Us About Systems Biology”, plus Jim Fredrickson of PNNL, Nitin Baliga of ISB, Steve Briggs of UCSD, David Cox of Perlegen Sciences, Antoine Danchin of Institut Pasteur, John Delaney of the U of Washington, John Groopman of Johns Hopkins, Ben Kerr of the U of Washington, Steve Koonin of BP, Elliott Meyerowitz of Caltech, and Ed Rubin of LBNL. The 2007 Symposium promoted DOE’s three mission areas among scientists from multiple disciplines representing academia, non-profit research institutions, and the private sector. As in all previous

  1. Biological Diversity in the Patent System

    PubMed Central

    Oldham, Paul; Hall, Stephen; Forero, Oscar

    2013-01-01

    Biological diversity in the patent system is an enduring focus of controversy but empirical analysis of the presence of biodiversity in the patent system has been limited. To address this problem we text mined 11 million patent documents for 6 million Latin species names from the Global Names Index (GNI) established by the Global Biodiversity Information Facility (GBIF) and Encyclopedia of Life (EOL). We identified 76,274 full Latin species names from 23,882 genera in 767,955 patent documents. 25,595 species appeared in the claims section of 136,880 patent documents. This reveals that human innovative activity involving biodiversity in the patent system focuses on approximately 4% of taxonomically described species and between 0.8–1% of predicted global species. In this article we identify the major features of the patent landscape for biological diversity by focusing on key areas including pharmaceuticals, neglected diseases, traditional medicines, genetic engineering, foods, biocides, marine genetic resources and Antarctica. We conclude that the narrow focus of human innovative activity and ownership of genetic resources is unlikely to be in the long term interest of humanity. We argue that a broader spectrum of biodiversity needs to be opened up to research and development based on the principles of equitable benefit-sharing, respect for the objectives of the Convention on Biological Diversity, human rights and ethics. Finally, we argue that alternative models of innovation, such as open source and commons models, are required to open up biodiversity for research that addresses actual and neglected areas of human need. The research aims to inform the implementation of the 2010 Nagoya Protocol on Access to Genetic Resources and the Equitable Sharing of Benefits Arising from their Utilization and international debates directed to the governance of genetic resources. Our research also aims to inform debates under the Intergovernmental Committee on Intellectual

  2. The melanocortin system in leukocyte biology.

    PubMed

    Catania, Anna

    2007-02-01

    The melanocortin system is composed of the melanocortin peptides, adrenocorticotropic hormone and alpha-, beta-, and gamma-melanocyte-stimulating hormone, the melanocortin receptors (MCRs), and the endogenous antagonists agouti- and agouti-related protein. Melanocortin peptides exert multiple effects upon the host, including anti-inflammatory and immunomodulatory effects. Leukocytes are a source of melanocortins and a major target for these peptides. Because of reduced translocation of the nuclear factor NF-kappaB to the nucleus, MCR activation by their ligands causes a collective reduction of the most important molecules involved in the inflammatory process. This review examines how melanocortin peptides and their receptors participate in leukocyte biology. PMID:17041004

  3. QUEST2: Sysdtem architecture deliverable set

    SciTech Connect

    Braaten, F.D.

    1995-02-27

    This document contains the system architecture and related documents which were developed during the Preliminary Analysis/System Architecture phase of the Quality, Environmental, Safety T-racking System redesign (QUEST2) project. Each discreet document in this deliverable set applies to a analytic effort supporting the architectural model of QUEST2. The P+ methodology cites a list of P+ documents normally included in a ``typical`` system architecture. Some of these were deferred to the release development phase of the project. The documents included in this deliverable set represent the system architecture itself. Related to that architecture are some decision support documents which provided needed information for management reviews that occurred during April. Consequently, the deliverables in this set were logically grouped and provided to support customer requirements. The remaining System Architecture Phase deliverables will be provided as a ``Supporting Documents`` deliverable set for the first release.

  4. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  5. Working with WebQuests

    ERIC Educational Resources Information Center

    Raulston, Cassie; Moellinger, Donna

    2007-01-01

    With the evolution of technology, students can now take online classes that may not be offered in their home schools. While online courses are commonly found in many high schools, WebQuests are used more commonly in elementary schools. Through the exploration of WebQuests, students are able to integrate the Internet into classroom activities. The…

  6. A Systems Biology View of Cancer

    PubMed Central

    Laubenbacher, Reinhard; Hower, Valerie; Jarrah, Abdul; Torti, Suzy V.; Shulaev, Vladimir; Mendes, Pedro; Torti, Frank M.; Akman, Steven

    2009-01-01

    SUMMARY In order to understand how a cancer cell is functionally different from a normal cell it is necessary to assess the complex network of pathways involving gene regulation, signaling, and cell metabolism, and the alterations in its dynamics caused by the several different types of mutations leading to malignancy. Since the network is typically complex, with multiple connections between pathways and important feedback loops, it is crucial to represent it in the form of a computational model that can be used for a rigorous analysis. This is the approach of systems biology, made possible by new –omics data generation technologies. The goal of this review is to illustrate this approach and its utility for our understanding of cancer. After a discussion of recent progress using a network-centric approach, three case studies related to diagnostics, therapy, and drug development are presented in detail. They focus on breast cancer, B cell lymphomas, and colorectal cancer. The discussion is centered on key mathematical and computational tools common to a systems biology approach. PMID:19505535

  7. Are Biological Systems Poised at Criticality?

    NASA Astrophysics Data System (ADS)

    Mora, Thierry; Bialek, William

    2011-07-01

    Many of life's most fascinating phenomena emerge from interactions among many elements—many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics. In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data. We review the surprising successes of this "inverse" approach, using examples from families of proteins, networks of neurons, and flocks of birds. Remarkably, in all these cases the models that emerge from the data are poised near a very special point in their parameter space—a critical point. This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.

  8. Biological Systems for Hydrogen Photoproduction (Presentation)

    SciTech Connect

    Ghirardi, M. L.

    2012-05-01

    This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

  9. Molecular profiles to biology and pathways: a systems biology approach.

    PubMed

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-01-01

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters. PMID:27311441

  10. Noise effects in two different biological systems

    NASA Astrophysics Data System (ADS)

    Spagnolo, B.; Spezia, S.; Curcio, L.; Pizzolato, N.; Fiasconaro, A.; Valenti, D.; Lo Bue, P.; Peri, E.; Colazza, S.

    2009-05-01

    We investigate the role of the colored noise in two biological systems: (i) adults of Nezara viridula (L.) (Heteroptera: Pentatomidae), and (ii) polymer translocation. In the first system we analyze, by directionality tests, the response of N. viridula individuals to subthreshold signals plus noise in their mating behaviour. The percentage of insects that react to the subthreshold signal shows a nonmonotonic behaviour, characterized by the presence of a maximum, as a function of the noise intensity. This is the signature of the non-dynamical stochastic resonance phenomenon. By using a “soft” threshold model we find that the maximum of the input-output cross correlation occurs in the same range of noise intensity values for which the behavioural activation of the insects has a maximum. Moreover this maximum value is lowered and shifted towards higher noise intensities, compared to the case of white noise. In the second biological system the noise driven translocation of short polymers in crowded solutions is analyzed. An improved version of the Rouse model for a flexible polymer is adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and the effects of a Lennard-Jones potential between all beads. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion in the presence of thermal fluctuations and a colored noise source. At low temperatures or for strong colored noise intensities the translocation process of the polymer chain is delayed. At low noise intensity, as the polymer length increases, we find a nonmonotonic behaviour for the mean first translocation time of the polymer centre of inertia. We show how colored noise influences the motion of short polymers, by inducing two different regimes of translocation in the dynamics of molecule transport.

  11. Liquid crystal assemblies in biologically inspired systems

    PubMed Central

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications. PMID:24558293

  12. Dielectrophoretic Force Imaging of Biological Systems

    NASA Astrophysics Data System (ADS)

    Simpson, Garth J.

    2004-03-01

    A new scanning probe microscopic technique is demonstrated, exploiting AC electrokinetic forces for real-time functional imaging of biological interfaces with nanometer-scale spatial resolution. Dielectrophoresis (DEP) describes the mobility of particles in radio-frequency AC electric fields and is related to the frequency-dependent polarizability. Similar to the forces in optical trapping, DEP interactions are greatest for large field gradients, such as those adjacent to highly curved electrodes. Moderate AC potentials (5 Vpp) are more than sufficient to induce surface forces strong enough for reliable feedback during imaging. Simply changing the AC frequency can change the nature of the DEP force from repulsive to attractive. By scanning the AC frequency, dielectrophoretic spectroscopy using light with a wavelength of ˜ 1/2 km can be performed with spatial resolution of a few nanometers (about 11 to 12 orders of magnitude below the diffraction-limit), representing a new level of achievement in near-field microscopy. Among other things, the facile applicability of DEP imaging in aqueous media is ideally suited for ultrahigh resolution microscopy of biological systems, including supported lipid bilayer membranes, immobilized organelles, and living cells.

  13. Systems biology of circadian-immune interactions

    PubMed Central

    Mavroudis, P.D.; Scheff, J.D.; Calvano, S.E.; Androulakis, I.P.

    2013-01-01

    There is increasing evidence that immune system is regulated by circadian rhythms. A wide range of immune parameters, such as the number of red blood cells and peripheral blood mononuclear cells as well as the level of critical immune mediators such as cytokines, undergo daily fluctuations. Current experimental data indicates that circadian information reaches immune tissues mainly through diurnal patterns of autonomic and endocrine rhythms. In addition, immune factors such as cytokines can also influence the phase of the circadian clock, providing bidirectional flow of circadian information between the neuroendocrine and immune system. This network of neuroendocrine-immune interactions consists of complexly integrated molecular feedback and feedforward loops that function in synchrony in order to optimize immune response. Chronic stress can disrupt this intrinsic orchestration, as several endocrine signals of chronically stressed patients present blunted rhythmic characteristics. Reprogramming of biological rhythms has recently gained much attention as a potent method to leverage homeostatic circadian controls to ultimately improve clinical outcomes. Elucidation of the intrinsic properties of such complex systems and optimization of intervention strategies requires not only an accurate identification of the signaling pathways that mediate host’s response, but also a systems-level description and evaluation. PMID:23006670

  14. Systems biology of circadian-immune interactions.

    PubMed

    Mavroudis, P D; Scheff, J D; Calvano, S E; Androulakis, I P

    2013-01-01

    There is increasing evidence that the immune system is regulated by circadian rhythms. A wide range of immune parameters, such as the number of red blood cells and peripheral blood mononuclear cells as well as the level of critical immune mediators, such as cytokines, undergo daily fluctuations. Current experimental data indicate that circadian information reaches immune tissues mainly through diurnal patterns of autonomic and endocrine rhythms. In addition, immune factors such as cytokines can also influence the phase of the circadian clock, providing bidirectional flow of circadian information between the neuroendocrine and immune systems. This network of neuroendocrine-immune interactions consists of complexly integrated molecular feedback and feedforward loops that function in synchrony in order to optimize immune response. Chronic stress can disrupt this intrinsic orchestration, as several endocrine signals of chronically stressed patients present blunted rhythmic characteristics. Reprogramming of biological rhythms has recently gained much attention as a potent method to leverage homeostatic circadian controls to ultimately improve clinical outcomes. Elucidation of the intrinsic properties of such complex systems and optimization of intervention strategies require not only an accurate identification of the signaling pathways that mediate host responses, but also a system-level description and evaluation. PMID:23006670

  15. Systems biology of human benzene exposure

    PubMed Central

    Zhang, Luoping; McHale, Cliona M.; Rothman, Nathaniel; Li, Guilan; Ji, Zhiying; Vermeulen, Roel; Hubbard, Alan E.; Ren, Xuefeng; Shen, Min; Rappaport, Stephen M.; North, Matthew; Skibola, Christine F.; Yin, Songnian; Vulpe, Christopher; Chanock, Stephen J.; Smith, Martyn T.; Lan, Qing

    2010-01-01

    Toxicogenomic studies, including genome-wide analyses of susceptibility genes (genomics), gene expression (transcriptomics), protein expression (proteomics), and epigenetic modifications (epigenomics), of human populations exposed to benzene are crucial to understanding gene-environment interactions, providing the ability to develop biomarkers of exposure, early effect and susceptibility. Comprehensive analysis of these toxicogenomic and epigenomic profiles by bioinformatics in the context of phenotypic endpoints, comprises systems biology, which has the potential to comprehensively define the mechanisms by which benzene causes leukemia. We have applied this approach to a molecular epidemiology study of workers exposed to benzene. Hematotoxicity, a significant decrease in almost all blood cell counts, was identified as a phenotypic effect of benzene that occurred even below 1ppm benzene exposure. We found a significant decrease in the formation of progenitor colonies arising from bone marrow stem cells with increasing benzene exposure, showing that progenitor cells are more sensitive to the effects of benzene than mature blood cells, likely leading to the observed hematotoxicity. Analysis of transcriptomics by microarray in the peripheral blood mononuclear cells of exposed workers, identified genes and pathways (apoptosis, immune response, and inflammatory response) altered at high (>10ppm) and low (<1ppm) benzene levels. Serum proteomics by SELDI-TOF-MS revealed proteins consistently down-regulated in exposed workers. Preliminary epigenomics data showed effects of benzene on the DNA methylation of specific genes. Genomic screens for candidate genes involved in susceptibility to benzene toxicity are being undertaken in yeast, with subsequent confirmation by RNAi in human cells, to expand upon the findings from candidate gene analyses. Data on these and future biomarkers will be used to populate a large toxicogenomics database, to which we will apply bioinformatic

  16. Systems Biology and Ecology of Streamlined Bacterioplankton

    NASA Astrophysics Data System (ADS)

    Giovannoni, S. J.

    2014-12-01

    complex questions hinge on translating gene frequencies into trait based ecological models that reflect the systems biology of cells.

  17. Biomarkers of Nanoparticles Impact on Biological Systems

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V.; Ieleiko, L.; Glavin, A.; Sorochinska, J.

    Studies of nanoscale mineral fibers have demonstrated that the toxic and carcinogenic effects are related to the surface area and surface activity of inhaled particles. Particle surface characteristics are considered to be key factors in the generation of free radicals and reactive oxygen species and are related to the development of apoptosis or cancer. Existing physico-chemical methods do not always allow estimation of the nanoparticles impact on organismal and cellular levels. The aim of this study was to develop marker system for evaluation the toxic and carcinogenic effects of nanoparticles on cells. The markers are designed with respect to important nanoparticles characteristics for specific and sensitive assessment of their impact on biological system. We have studied DNA damage, the activity of xanthine oxidoreductase influencing the level of free radicals, bioenergetic status, phospholipids profile and formation of 1H-NMR-visible mobile lipid domains in Ehrlich carcinoma cells. The efficiency of the proposed marker system was tested in vivo and in vitro with the use of C60 fullerene nanoparticles and multiwalled carbon nanotubes. Our data suggest that multiwalled carbon nanotubes and fullerene C60 may pose genotoxic effect, change energy metabolism and membrane structure, alter free radical level via xanthine oxidase activation and cause mobile lipid domains formation as determined in vivo and in vitro studies on Ehrlich carcinoma cells.

  18. Biological robustness: paradigms, mechanisms, and systems principles.

    PubMed

    Whitacre, James Michael

    2012-01-01

    Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762

  19. Biological Robustness: Paradigms, Mechanisms, and Systems Principles

    PubMed Central

    Whitacre, James Michael

    2012-01-01

    Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior. PMID:22593762

  20. Expert systems guide biological phosphorus removal

    SciTech Connect

    Krichten, D.J.; Wilson, K.D.; Tracy, K.D. )

    1991-10-01

    There is a large body of knowledge regarding optimum control strategies for new secondary wastewater treatment technology using an anaerobic selector to provide biological phosphorus removal. However, because the selector technology is new and the concepts differ somewhat from those used in conventional activated sludge wastewater treatment, a method of communicating this knowledge to plant operators is needed. Traditional methods such as classroom training and operating manuals are of limited effectiveness. The commonplace availability and low cost of the personal computer (PC) makes it practical to use a computer program to communicate the type of information required to control a wastewater treatment plant. Knowledge-based systems technology, commonly referred to as expert systems (ES) technology, is easy to use, provides useful information regarding a consistent control strategy, relieves the anxiety associated with learning a new process,' and provides instruction for inexperienced personnel. ES technology does not require special formatted input and is therefore easily accessible. All information required by the program is readily available through routine laboratory analysis, common plant instrumentation, or direct user observation. The program was designed for all levels of computer users and will run on all IBM-compatible or Apple MacIntosh systems.

  1. A WebQuest for Spatial Skills

    ERIC Educational Resources Information Center

    Wood, Pamela L.; Quitadamo, Ian J.; DePaepe, James L.; Loverro, Ian

    2007-01-01

    The WebQuest is a four-step process integrated at appropriate points in the Animal Studies unit. Through the WebQuest, students create a series of habitat maps that build on the knowledge gained from conducting the various activities of the unit. The quest concludes with an evaluation using the WebQuest rubric and an oral presentation of a final…

  2. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  3. Systems Biology in the Context of Big Data and Networks

    PubMed Central

    Altaf-Ul-Amin, Md.; Afendi, Farit Mochamad; Kiboi, Samuel Kuria; Kanaya, Shigehiko

    2014-01-01

    Science is going through two rapidly changing phenomena: one is the increasing capabilities of the computers and software tools from terabytes to petabytes and beyond, and the other is the advancement in high-throughput molecular biology producing piles of data related to genomes, transcriptomes, proteomes, metabolomes, interactomes, and so on. Biology has become a data intensive science and as a consequence biology and computer science have become complementary to each other bridged by other branches of science such as statistics, mathematics, physics, and chemistry. The combination of versatile knowledge has caused the advent of big-data biology, network biology, and other new branches of biology. Network biology for instance facilitates the system-level understanding of the cell or cellular components and subprocesses. It is often also referred to as systems biology. The purpose of this field is to understand organisms or cells as a whole at various levels of functions and mechanisms. Systems biology is now facing the challenges of analyzing big molecular biological data and huge biological networks. This review gives an overview of the progress in big-data biology, and data handling and also introduces some applications of networks and multivariate analysis in systems biology. PMID:24982882

  4. Consistent design schematics for biological systems: standardization of representation in biological engineering

    PubMed Central

    Matsuoka, Yukiko; Ghosh, Samik; Kitano, Hiroaki

    2009-01-01

    The discovery by design paradigm driving research in synthetic biology entails the engineering of de novo biological constructs with well-characterized input–output behaviours and interfaces. The construction of biological circuits requires iterative phases of design, simulation and assembly, leading to the fabrication of a biological device. In order to represent engineered models in a consistent visual format and further simulating them in silico, standardization of representation and model formalism is imperative. In this article, we review different efforts for standardization, particularly standards for graphical visualization and simulation/annotation schemata adopted in systems biology. We identify the importance of integrating the different standardization efforts and provide insights into potential avenues for developing a common framework for model visualization, simulation and sharing across various tools. We envision that such a synergistic approach would lead to the development of global, standardized schemata in biology, empowering deeper understanding of molecular mechanisms as well as engineering of novel biological systems. PMID:19493898

  5. Apparatus and Methods for Manipulation and Optimization of Biological Systems

    NASA Technical Reports Server (NTRS)

    Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Sun, Ren (Inventor); Yu, Fuqu (Inventor)

    2014-01-01

    The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.

  6. Systems Biology of Microbial Exopolysaccharides Production

    PubMed Central

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  7. Systems Biology of Microbial Exopolysaccharides Production.

    PubMed

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  8. Exploring Synthetic and Systems Biology at the University of Edinburgh.

    PubMed

    Fletcher, Liz; Rosser, Susan; Elfick, Alistair

    2016-06-15

    The Centre for Synthetic and Systems Biology ('SynthSys') was originally established in 2007 as the Centre for Integrative Systems Biology, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC). Today, SynthSys embraces an extensive multidisciplinary community of more than 200 researchers from across the University with a common interest in synthetic and systems biology. Our research is broad and deep, addressing a diversity of scientific questions, with wide ranging impact. We bring together the power of synthetic biology and systems approaches to focus on three core thematic areas: industrial biotechnology, agriculture and the environment, and medicine and healthcare. In October 2015, we opened a newly refurbished building as a physical hub for our new U.K. Centre for Mammalian Synthetic Biology funded by the BBSRC/EPSRC/MRC as part of the U.K. Research Councils' Synthetic Biology for Growth programme. PMID:27284029

  9. Modeling and Simulation Tools: From Systems Biology to Systems Medicine.

    PubMed

    Olivier, Brett G; Swat, Maciej J; Moné, Martijn J

    2016-01-01

    Modeling is an integral component of modern biology. In this chapter we look into the role of the model, as it pertains to Systems Medicine, and the software that is required to instantiate and run it. We do this by comparing the development, implementation, and characteristics of tools that have been developed to work with two divergent methodologies: Systems Biology and Pharmacometrics. From the Systems Biology perspective we consider the concept of "Software as a Medical Device" and what this may imply for the migration of research-oriented, simulation software into the domain of human health.In our second perspective, we see how in practice hundreds of computational tools already accompany drug discovery and development at every stage of the process. Standardized exchange formats are required to streamline the model exchange between tools, which would minimize translation errors and reduce the required time. With the emergence, almost 15 years ago, of the SBML standard, a large part of the domain of interest is already covered and models can be shared and passed from software to software without recoding them. Until recently the last stage of the process, the pharmacometric analysis used in clinical studies carried out on subject populations, lacked such an exchange medium. We describe a new emerging exchange format in Pharmacometrics which covers the non-linear mixed effects models, the standard statistical model type used in this area. By interfacing these two formats the entire domain can be covered by complementary standards and subsequently the according tools. PMID:26677194

  10. Learning from systems biology: An ``Omics'' approach to materials design

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2008-03-01

    An understanding of systems biology provides an excellent paradigm for the materials scientist. Ultimately one would like to take an “atoms-applications” approach to materials design. This paper describes how the concepts of genomics, proteomics, and other biological behavior which form the foundations of modern biology can be applied to materials design through materials informatics.

  11. Teaching Systems Biology: An Active-Learning Approach

    ERIC Educational Resources Information Center

    Kumar, Anuj

    2005-01-01

    With genomics well established in modern molecular biology, recent studies have sought to further the discipline by integrating complementary methodologies into a holistic depiction of the molecular mechanisms underpinning cell function. This genomic subdiscipline, loosely termed "systems biology," presents the biology educator with both…

  12. Systems biology of natural SIV infections

    PubMed Central

    Bosinger, Steven E.; Jacquelin, Béatrice; Benecke, Arndt; Silvestri, Guido; Müller-Trutwin, Michaela

    2012-01-01

    Purpose of review A key factor driving AIDS-associated immunopathogenesis is chronic immune activation. SIV infection of African natural host species leads to high viremia, but low immune activation and absence of disease. Considerable progress in our understanding of pathological immune activation have come from comparative studies of SIV infection in pathogenic Asian macaque species and natural hosts. The focus of this review is to highlight recent work on the natural host model using high throughput genomics. Recent findings Several groups have independently conducted microarray gene expression profiling comparing in vivo SIV infection in natural and non-natural hosts. A consistent finding between these studies is that both pathogenic SIV infection of macaques and nonpathogenic infections of natural hosts have strong induction of interferon-stimulated genes (ISGs) early on, but a key difference was that natural hosts downmodulated the interferon response rapidly after acute infection. The development of new genome-based resources for further study of the natural host model is discussed. Summary Initial efforts using high throughput biology to study SIV infection of natural hosts have effectively identified the ability of natural hosts to resolve interferon responses and immune activation. Further application of ‘omic’-based technologies coupled with integrative systems-based analysis should continue to yield progress. PMID:22134342

  13. Interactomes, manufacturomes and relational biology: analogies between systems biology and manufacturing systems

    PubMed Central

    2011-01-01

    Background We review and extend the work of Rosen and Casti who discuss category theory with regards to systems biology and manufacturing systems, respectively. Results We describe anticipatory systems, or long-range feed-forward chemical reaction chains, and compare them to open-loop manufacturing processes. We then close the loop by discussing metabolism-repair systems and describe the rationality of the self-referential equation f = f (f). This relationship is derived from some boundary conditions that, in molecular systems biology, can be stated as the cardinality of the following molecular sets must be about equal: metabolome, genome, proteome. We show that this conjecture is not likely correct so the problem of self-referential mappings for describing the boundary between living and nonliving systems remains an open question. We calculate a lower and upper bound for the number of edges in the molecular interaction network (the interactome) for two cellular organisms and for two manufacturomes for CMOS integrated circuit manufacturing. Conclusions We show that the relevant mapping relations may not be Abelian, and that these problems cannot yet be resolved because the interactomes and manufacturomes are incomplete. PMID:21689427

  14. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  15. RDFScape: Semantic Web meets Systems Biology

    PubMed Central

    Splendiani, Andrea

    2008-01-01

    Background The recent availability of high-throughput data in molecular biology has increased the need for a formal representation of this knowledge domain. New ontologies are being developed to formalize knowledge, e.g. about the functions of proteins. As the Semantic Web is being introduced into the Life Sciences, the basis for a distributed knowledge-base that can foster biological data analysis is laid. However, there still is a dichotomy, in tools and methodologies, between the use of ontologies in biological investigation, that is, in relation to experimental observations, and their use as a knowledge-base. Results RDFScape is a plugin that has been developed to extend a software oriented to biological analysis with support for reasoning on ontologies in the semantic web framework. We show with this plugin how the use of ontological knowledge in biological analysis can be extended through the use of inference. In particular, we present two examples relative to ontologies representing biological pathways: we demonstrate how these can be abstracted and visualized as interaction networks, and how reasoning on causal dependencies within elements of pathways can be implemented. Conclusions The use of ontologies for the interpretation of high-throughput biological data can be improved through the use of inference. This allows the use of ontologies not only as annotations, but as a knowledge-base from which new information relevant for specific analysis can be derived. PMID:18460179

  16. Systems Biology Applied to Heart Failure With Normal Ejection Fraction

    PubMed Central

    Mesquita, Evandro Tinoco; Jorge, Antonio Jose Lagoeiro; de Souza, Celso Vale; Cassino, João Paulo Pedroza

    2014-01-01

    Heart failure with normal ejection fraction (HFNEF) is currently the most prevalent clinical phenotype of heart failure. However, the treatments available have shown no reduction in mortality so far. Advances in the omics sciences and techniques of high data processing used in molecular biology have enabled the development of an integrating approach to HFNEF based on systems biology. This study aimed at presenting a systems-biology-based HFNEF model using the bottom-up and top-down approaches. A literature search was conducted for studies published between 1991 and 2013 regarding HFNEF pathophysiology, its biomarkers and systems biology. A conceptual model was developed using bottom-up and top-down approaches of systems biology. The use of systems-biology approaches for HFNEF, a complex clinical syndrome, can be useful to better understand its pathophysiology and to discover new therapeutic targets. PMID:24918915

  17. Controlled ecological life support system - biological problems

    NASA Technical Reports Server (NTRS)

    Moore, B., III (Editor); Macelroy, R. D. (Editor)

    1982-01-01

    The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate.

  18. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    PubMed

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. PMID:26524089

  19. A unified biological modeling and simulation system for analyzing biological reaction networks

    NASA Astrophysics Data System (ADS)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2013-12-01

    In order to understand the biological response in a cell, a researcher has to create a biological network and design an experiment to prove it. Although biological knowledge has been accumulated, we still don't have enough biological models to explain complex biological phenomena. If a new biological network is to be created, integrated modeling software supporting various biological models is required. In this research, we design and implement a unified biological modeling and simulation system, called ezBioNet, for analyzing biological reaction networks. ezBioNet designs kinetic and Boolean network models and simulates the biological networks using a server-side simulation system with Object Oriented Parallel Accelerator Library framework. The main advantage of ezBioNet is that a user can create a biological network by using unified modeling canvas of kinetic and Boolean models and perform massive simulations, including Ordinary Differential Equation analyses, sensitivity analyses, parameter estimates and Boolean network analysis. ezBioNet integrates useful biological databases, including the BioModels database, by connecting European Bioinformatics Institute servers through Web services Application Programming Interfaces. In addition, we employ Eclipse Rich Client Platform, which is a powerful modularity framework to allow various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool and a simulation system for understanding the control mechanism by monitoring the change of each component in a biological network. The simulation result can be managed and visualized on ezBioNet, which is available free of charge at http://ezbionet.sourceforge.net or http://ezbionet.cbnu.ac.kr.

  20. Systems vaccinology: Enabling rational vaccine design with systems biological approaches.

    PubMed

    Hagan, Thomas; Nakaya, Helder I; Subramaniam, Shankar; Pulendran, Bali

    2015-09-29

    Vaccines have drastically reduced the mortality and morbidity of many diseases. However, vaccines have historically been developed empirically, and recent development of vaccines against current pandemics such as HIV and malaria has been met with difficulty. The advent of high-throughput technologies, coupled with systems biological methods of data analysis, has enabled researchers to interrogate the entire complement of a variety of molecular components within cells, and characterize the myriad interactions among them in order to model and understand the behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of the molecular mechanisms by which vaccines induce protective immune responses. Here we review the recent advances, challenges, and potential of systems biological approaches in vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology promises to empower the identification of early predictive signatures of vaccine response, as well as novel and robust correlates of protection from infection. Such discoveries, along with the improved understanding of immune responses to vaccination they impart, will play an instrumental role in development of the next generation of rationally designed vaccines. PMID:25858860

  1. The Simbios National Center: Systems Biology in Motion

    PubMed Central

    Schmidt, Jeanette P.; Delp, Scott L.; Sherman, Michael A.; Taylor, Charles A.; Pande, Vijay S.; Altman, Russ B.

    2010-01-01

    Physics-based simulation is needed to understand the function of biological structures and can be applied across a wide range of scales, from molecules to organisms. Simbios (the National Center for Physics-Based Simulation of Biological Structures, http://www.simbios.stanford.edu/) is one of seven NIH-supported National Centers for Biomedical Computation. This article provides an overview of the mission and achievements of Simbios, and describes its place within systems biology. Understanding the interactions between various parts of a biological system and integrating this information to understand how biological systems function is the goal of systems biology. Many important biological systems comprise complex structural systems whose components interact through the exchange of physical forces, and whose movement and function is dictated by those forces. In particular, systems that are made of multiple identifiable components that move relative to one another in a constrained manner are multibody systems. Simbios’ focus is creating methods for their simulation. Simbios is also investigating the biomechanical forces that govern fluid flow through deformable vessels, a central problem in cardiovascular dynamics. In this application, the system is governed by the interplay of classical forces, but the motion is distributed smoothly through the materials and fluids, requiring the use of continuum methods. In addition to the research aims, Simbios is working to disseminate information, software and other resources relevant to biological systems in motion. PMID:20107615

  2. New Tools and New Biology: Recent Miniaturized Systems for Molecular and Cellular Biology

    PubMed Central

    Hamon, Morgan; Hong, Jong Wook

    2013-01-01

    Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology. PMID:24305843

  3. Dynamics and kinetics of model biological systems

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen

    In this work we study three systems of biological interest: the translocation of a heterogeneously charged polymer through an infinitely thin pore, the wrapped of a rigid particle by a soft vesicle and the modification of the dynamical properties of a gel due to the presence of rigid inclusions. We study the kinetics of translocation for a heterogeneously charged polyelectrolyte through an infinitely narrow pore using the Fokker-Planck formalism to compute mean first passage times, the probability of successful translocation, and the mean successful translocation time for a diblock copolymer. We find, in contrast to the homopolymer result, that details of the boundary conditions lead to qualitatively different behavior. Under experimentally relevant conditions for a diblock copolymer we find that there is a threshold length of the charged block, beyond which the probability of successful translocation is independent of charge fraction. Additionally, we find that mean successful translocation time exhibits non-monotonic behavior with increasing length of the charged fraction; there is an optimum length of the charged block where the mean successful translocation time is slowest and there can be a substantial range of charge fraction where it is slower than a minimally charged chain. For a fixed total charge on the chain, we find that finer distributions of the charge along the chain leads to a significant reduction in mean translocation time compared to the diblock distribution. Endocytosis is modeled using a simple geometrical model from the literature. We map the process of wrapping a rigid spherical bead onto a one-dimensional stochastic process described by the Fokker-Planck equation to compute uptake rates as a function of membrane properties and system geometry. We find that simple geometrical considerations pick an optimal particle size for uptake and a corresponding maximal uptake rate, which can be controlled by altering the material properties of the

  4. Systems Biology in Aging: Linking the Old and the Young

    PubMed Central

    Hou, Lei; Huang, Jialiang; Green, Christopher D; Boyd-Kirkup, Jerome; Zhang, Wei; Yu, Xiaoming; Gong, Wenxuan; Zhou, Bing; Han, Jing-Dong J

    2012-01-01

    Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging. PMID:23633915

  5. Systems biology in aging: linking the old and the young.

    PubMed

    Hou, Lei; Huang, Jialiang; Green, Christopher D; Boyd-Kirkup, Jerome; Zhang, Wei; Yu, Xiaoming; Gong, Wenxuan; Zhou, Bing; Han, Jing-Dong J

    2012-11-01

    Aging can be defined as a process of progressive decline in the physiological capacity of an organism, manifested by accumulated alteration and destabilization at the whole system level. Systems biology approaches offer a promising new perspective to examine the old problem of aging. We begin this review by introducing the concepts of systems biology, and then illustrate the application of systems biology approaches to aging research, from gene expression profiling to network analysis. We then introduce the network that can be constructed using known lifespan and aging regulators, and conclude with a look forward to the future of systems biology in aging research. In summary, systems biology is not only a young field that may help us understand aging at a higher level, but also an important platform that can link different levels of knowledge on aging, moving us closer to a more comprehensive control of systematic decline during aging. PMID:23633915

  6. Modelling the crop: from system dynamics to systems biology.

    PubMed

    Yin, Xinyou; Struik, Paul C

    2010-05-01

    There is strong interplant competition in a crop stand for various limiting resources, resulting in complex compensation and regulation mechanisms along the developmental cascade of the whole crop. Despite decades-long use of principles in system dynamics (e.g. feedback control), current crop models often contain many empirical elements, and model parameters may have little biological meaning. Building on the experience in designing the relatively new model GECROS, we believe models can be made less empirical by employing existing physiological understanding and mathematical tools. In view of the potential added value of robust crop modelling to classical quantitative genetics, model input parameters are increasingly considered to represent 'genetic coefficients'. The advent of functional genomics and systems biology enables the elucidation of the molecular genetic basis of these coefficients. A number of case studies, in which the effects of quantitative trait loci or genes have been incorporated into existing ecophysiological models, have shown the promise of using models in analysing genotype-phenotype relationships of some crop traits. For further progress, crop models must be upgraded based on understanding at lower organizational levels for complicated phenomena such as sink formation in response to environmental cues, sink feedback on source activity, and photosynthetic acclimation to the prevailing environment. Within this context, the recently proposed 'crop systems biology', which combines modern genomics, traditional physiology and biochemistry, and advanced modelling, is believed ultimately to realize the expected roles of in silico modelling in narrowing genotype-phenotype gaps. This review summarizes recent findings and our opinions on perspectives for modelling genotype x environment interactions at crop level. PMID:20051352

  7. Graphic Representation of Carbon Dioxide Equilibria in Biological Systems.

    ERIC Educational Resources Information Center

    Kindig, Neal B.; Filley, Giles F.

    1983-01-01

    The log C-pH diagram is a useful means of displaying quantitatively the many variables (including temperature) that determine acid-base equilibria in biological systems. Presents the diagram as extended to open/closed biological systems and derives a new water-ion balance method for determining equilibrium pH. (JN)

  8. Physics and Size in Biological Systems.

    ERIC Educational Resources Information Center

    Barnes, George

    1989-01-01

    Described is the subject of biological scaling for physics teachers including examples and in-depth reading. Topics are elements of scaling, terminal velocities, Lilliputian and Brobdingnagian, brain evolution, dolphin echolocation, surface tension, gravity change, food and oxygen, and seeing. Ten references on physics and size, and ten questions…

  9. A Systems Approach to Biology (SAB).

    ERIC Educational Resources Information Center

    Bush, Kenneth H.; And Others

    This pupil's study guide is intended to be used with audio-taped biology modules. Each of the units (on laboratory techniques, plant and animal diversity, chemistry, cells, energy, microbiology, genetics, and development) contains an abstract providing an overview of the unit, the rationale and performance objectives for each module, questions to…

  10. Biological Therapy-Induced Systemic Vasculitis.

    PubMed

    Gutiérrez-González, Luis Arturo

    2016-07-01

    The use of biologics has been associated with the paradoxical development of biologics-induced autoimmune diseases. The purpose of this review was to describe the key immunopathogenic mechanisms involved in the development of these conditions, and to discuss the clinical and laboratory characteristics usually described in the medical literature, reviewing case reports as well as records on national biologic therapies (BIOGEAS, RABBIT, BSRBR-RA, BIOBADAVEN). More than 200 cases have so far been reported, all of them diagnosed on the basis of the histopathology or meeting the ACR/Chapel Hill criteria. Over 75 % of the cases were females with a mean age of 48 ± 5 years. More than 50 % had rheumatoid arthritis. Most of the biologics-associated vasculitis developed in 90 ± 31 days. Complete resolution in almost 75 % of the cases was observed upon treatment discontinuation; however, steroid therapy was indicated for all patients and one death was recorded. The use of cyclophosphamide, rituximab or plasma exchange was reserved for the most severe cases. PMID:27165496

  11. Advancing Systems Biology in the International Conference on Intelligent Biology and Medicine (ICIBM) 2015.

    PubMed

    Zhao, Zhongming; Liu, Yunlong; Huang, Yufei; Huang, Kun; Ruan, Jianhua

    2016-01-01

    The 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) was held on November 13-15, 2015 in Indianapolis, Indiana, USA. ICIBM 2015 included eight scientific sessions, three tutorial sessions, one poster session, and four keynote presentations that covered the frontier research in broad areas related to bioinformatics, systems biology, big data science, biomedical informatics, pharmacogenomics, and intelligent computing. Here, we present a summary of the 10 research articles that were selected from ICIBM 2015 and included in the supplement to BMC Systems Biology. PMID:27587087

  12. QUEST: A Model Transfer Program and Evaluation of QUEST Program.

    ERIC Educational Resources Information Center

    Holohan, Ronald J.

    These reports describe and evaluate Illinois Central College's Quality Undergraduate Education for Student Transfers (QUEST) program. The core of the program is to develop in students 15 competencies identified as essential to an educated person: communication skills, mathematics skills, appreciation of physical well-being, understanding of the…

  13. Methods of information geometry in computational system biology (consistency between chemical and biological evolution).

    PubMed

    Astakhov, Vadim

    2009-01-01

    Interest in simulation of large-scale metabolic networks, species development, and genesis of various diseases requires new simulation techniques to accommodate the high complexity of realistic biological networks. Information geometry and topological formalisms are proposed to analyze information processes. We analyze the complexity of large-scale biological networks as well as transition of the system functionality due to modification in the system architecture, system environment, and system components. The dynamic core model is developed. The term dynamic core is used to define a set of causally related network functions. Delocalization of dynamic core model provides a mathematical formalism to analyze migration of specific functions in biosystems which undergo structure transition induced by the environment. The term delocalization is used to describe these processes of migration. We constructed a holographic model with self-poetic dynamic cores which preserves functional properties under those transitions. Topological constraints such as Ricci flow and Pfaff dimension were found for statistical manifolds which represent biological networks. These constraints can provide insight on processes of degeneration and recovery which take place in large-scale networks. We would like to suggest that therapies which are able to effectively implement estimated constraints, will successfully adjust biological systems and recover altered functionality. Also, we mathematically formulate the hypothesis that there is a direct consistency between biological and chemical evolution. Any set of causal relations within a biological network has its dual reimplementation in the chemistry of the system environment. PMID:19623488

  14. Integrative Systems Biology for Data Driven Knowledge Discovery

    PubMed Central

    Greene, Casey S.; Troyanskaya, Olga G.

    2015-01-01

    Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756

  15. Molecular recognition in chemical and biological systems.

    PubMed

    Persch, Elke; Dumele, Oliver; Diederich, François

    2015-03-01

    Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water. PMID:25630692

  16. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  17. Corner Office: ProQuest's Marty Kahn

    ERIC Educational Resources Information Center

    Fialkoff, Francine; Oder, Norman

    2009-01-01

    In a scant three years at ProQuest, Marty Kahn, CEO, has moved a company coming out of a financial morass back onto solid ground. He came on board after the purchase of ProQuest Information and Learning by the (mostly) privately owned Cambridge Information Group in late 2006 and the merger of ProQuest and CSA to form ProQuest CSA. (It's now just…

  18. "WebQuests 101": Tips on Choosing and Assessing WebQuests.

    ERIC Educational Resources Information Center

    March, Tom

    2000-01-01

    Defines WebQuests as a specific kind of Web-based learning activity and discusses how to choose and assess WebQuests. Explains a rubric to assess the strengths and weaknesses of WebQuests and includes Web sites to view examples of WebQuests. (LRW)

  19. Systems approaches to biology and disease enable translational systems medicine.

    PubMed

    Hood, Leroy; Tian, Qiang

    2012-08-01

    The development and application of systems strategies to biology and disease are transforming medical research and clinical practice in an unprecedented rate. In the foreseeable future, clinicians, medical researchers, and ultimately the consumers and patients will be increasingly equipped with a deluge of personal health information, e.g., whole genome sequences, molecular profiling of diseased tissues, and periodic multi-analyte blood testing of biomarker panels for disease and wellness. The convergence of these practices will enable accurate prediction of disease susceptibility and early diagnosis for actionable preventive schema and personalized treatment regimes tailored to each individual. It will also entail proactive participation from all major stakeholders in the health care system. We are at the dawn of predictive, preventive, personalized, and participatory (P4) medicine, the fully implementation of which requires marrying basic and clinical researches through advanced systems thinking and the employment of high-throughput technologies in genomics, proteomics, nanofluidics, single-cell analysis, and computation strategies in a highly-orchestrated discipline we termed translational systems medicine. PMID:23084773

  20. Systems approaches for synthetic biology: a pathway toward mammalian design

    PubMed Central

    Rekhi, Rahul; Qutub, Amina A.

    2013-01-01

    We review methods of understanding cellular interactions through computation in order to guide the synthetic design of mammalian cells for translational applications, such as regenerative medicine and cancer therapies. In doing so, we argue that the challenges of engineering mammalian cells provide a prime opportunity to leverage advances in computational systems biology. We support this claim systematically, by addressing each of the principal challenges to existing synthetic bioengineering approaches—stochasticity, complexity, and scale—with specific methods and paradigms in systems biology. Moreover, we characterize a key set of diverse computational techniques, including agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations, with specific utility toward synthetic biology. Lastly, we examine the mammalian applications of synthetic biology for medicine and health, and how computational systems biology can aid in the continued development of these applications. PMID:24130532

  1. Systems approaches for synthetic biology: a pathway toward mammalian design.

    PubMed

    Rekhi, Rahul; Qutub, Amina A

    2013-01-01

    We review methods of understanding cellular interactions through computation in order to guide the synthetic design of mammalian cells for translational applications, such as regenerative medicine and cancer therapies. In doing so, we argue that the challenges of engineering mammalian cells provide a prime opportunity to leverage advances in computational systems biology. We support this claim systematically, by addressing each of the principal challenges to existing synthetic bioengineering approaches-stochasticity, complexity, and scale-with specific methods and paradigms in systems biology. Moreover, we characterize a key set of diverse computational techniques, including agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations, with specific utility toward synthetic biology. Lastly, we examine the mammalian applications of synthetic biology for medicine and health, and how computational systems biology can aid in the continued development of these applications. PMID:24130532

  2. FoodQuest for Health.

    ERIC Educational Resources Information Center

    Joseph, Linda C.

    2000-01-01

    Explains the WebQuest framework developed to help students investigate the topic of nutrition. Highlights include food labels; the Food Guide Pyramid; three levels of inquiry related to nutrition and ingredients in foods; how food choices affect health; historical background of food and food companies; and online grocery shopping. (LRW)

  3. The Joyless Quest for Tenure

    ERIC Educational Resources Information Center

    Perlmutter, David D.

    2007-01-01

    In this article, the author talks about the tenure process of being a professor which can be gloomy for assistant professors as they share a common culture of the joyless quest for promotion and tenure. Life as an assistant professor has its bleak moments; however, the downbeat cosmology is, in the end, dysfunctional and hurts more than it…

  4. Astronaut Curbeam in Quest Airlock

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, smiles for the camera in the Quest Airlock of the International Space Station (ISS). Curbeam had just completed the mission's first space walk in which the P6 truss installation was conducted.

  5. A Good Teaching Technique: WebQuests

    ERIC Educational Resources Information Center

    Halat, Erdogan

    2008-01-01

    In this article, the author first introduces and describes a new teaching tool called WebQuests to practicing teachers. He then provides detailed information about the structure of a good WebQuest. Third, the author shows the strengths and weaknesses of using Web-Quests in teaching and learning. Last, he points out the challenges for practicing…

  6. Virtual Tissues and Developmental Systems Biology (book chapter)

    EPA Science Inventory

    Virtual tissue (VT) models provide an in silico environment to simulate cross-scale properties in specific tissues or organs based on knowledge of the underlying biological networks. These integrative models capture the fundamental interactions in a biological system and enable ...

  7. In Vitro Electrochemistry of Biological Systems

    NASA Astrophysics Data System (ADS)

    Adams, Kelly L.; Puchades, Maja; Ewing, Andrew G.

    2008-07-01

    This article reviews recent work involving electrochemical methods for in vitro analysis of biomolecules, with an emphasis on detection and manipulation at and of single cells and cultures of cells. The techniques discussed include constant potential amperometry, chronoamperometry, cellular electroporation, scanning electrochemical microscopy, and microfluidic platforms integrated with electrochemical detection. The principles of these methods are briefly described, followed in most cases with a short description of an analytical or biological application and its significance. The use of electrochemical methods to examine specific mechanistic issues in exocytosis is highlighted, as a great deal of recent work has been devoted to this application.

  8. Directed evolution and synthetic biology applications to microbial systems.

    PubMed

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. PMID:27054950

  9. Teaching Systems Biology: An Active-learning Approach

    PubMed Central

    2005-01-01

    With genomics well established in modern molecular biology, recent studies have sought to further the discipline by integrating complementary methodologies into a holistic depiction of the molecular mechanisms underpinning cell function. This genomic subdiscipline, loosely termed “systems biology,” presents the biology educator with both opportunities and obstacles: The benefit of exposing students to this cutting-edge scientific methodology is manifest, yet how does one convey the breadth and advantage of systems biology while still engaging the student? Here, I describe an active-learning approach to the presentation of systems biology. In graduate classes at the University of Michigan, Ann Arbor, I divided students into small groups and asked each group to interpret a sample data set (e.g., microarray data, two-hybrid data, homology-search results) describing a hypothetical signaling pathway. Mimicking realistic experimental results, each data set revealed a portion of this pathway; however, students were only able to reconstruct the full pathway by integrating all data sets, thereby exemplifying the utility in a systems biology approach. Student response to this cooperative exercise was extremely positive. In total, this approach provides an effective introduction to systems biology appropriate for students at both the undergraduate and graduate levels. PMID:16341259

  10. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    PubMed Central

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  11. Learning Delayed Influences of Biological Systems

    PubMed Central

    Ribeiro, Tony; Magnin, Morgan; Inoue, Katsumi; Sakama, Chiaki

    2015-01-01

    Boolean networks are widely used model to represent gene interactions and global dynamical behavior of gene regulatory networks. To understand the memory effect involved in some interactions between biological components, it is necessary to include delayed influences in the model. In this paper, we present a logical method to learn such models from sequences of gene expression data. This method analyzes each sequence one by one to iteratively construct a Boolean network that captures the dynamics of these observations. To illustrate the merits of this approach, we apply it to learning real data from bioinformatic literature. Using data from the yeast cell cycle, we give experimental results and show the scalability of the method. We show empirically that using this method we can handle millions of observations and successfully capture delayed influences of Boolean networks. PMID:25642421

  12. Microfluidic systems for electrochemical and biological studies

    SciTech Connect

    Ackler, H., LLNL

    1998-05-01

    Microfluidic devices with microelectrodes have the potential to enable studies of phenomena at size scales where behavior may be dominated by different mechanisms than at macroscales. Through our work developing microfluidic devices for dielectrophoretic separation and sensing of cells and particles, we have fabricated devices from which general or more specialized research devices may be derived. Fluid channels from 80 {micro}m wide X 20 {micro}m deep to 1 mm wide to 200 {micro}m deep have been fabricated in glass, with lithographically patterned electrodes from 10 to 80 {micro}m wide on one or both sides on the channels and over topographies tens of microns in heights. the devices are designed to easily interface to electronic and fluidic interconnect packages that permit reuse of devices, rather than one-time use, crude glue-based methods. Such devices may be useful for many applications of interest to the electrochemical and biological community.

  13. Advancing metabolic engineering through systems biology of industrial microorganisms.

    PubMed

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. PMID:26318074

  14. Light microscopy applications in systems biology: opportunities and challenges

    PubMed Central

    2013-01-01

    Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light microscopy is one of the least invasive techniques used to access information from various biological scales in living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In this review, we highlight the recent developments on microscopy-based systems analyses and discuss the complementary opportunities and different challenges with high-content screening and high-throughput imaging. Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis, which enable community-driven efforts in the development of image-based systems biology. PMID:23578051

  15. Quest for excellence 5

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The highlights of the 1992 Malcolm Baldrige National Quality Award winners - AT and T Network Systems Group, Transmission Systems Business Unit; Texas Instrument Defense Systems and Electronics Group; AT and T Universal Card Services; The Ritz Hotel CO; and The Granite Rock Company are presented, along with brief information about the company and their beliefs and business and production strategies for quality manufacturing and products.

  16. Renal systems biology of patients with systemic inflammatory response syndrome

    PubMed Central

    Tsalik, Ephraim L.; Willig, Laurel K.; Rice, Brandon J.; van Velkinburgh, Jennifer C.; Mohney, Robert P.; McDunn, Jonathan; Dinwiddie, Darrell L.; Miller, Neil A.; Mayer, Eric; Glickman, Seth W.; Jaehne, Anja K.; Glew, Robert H.; Sopori, Mohan L.; Otero, Ronny M.; Harrod, Kevin S.; Cairns, Charles B.; Fowler, Vance G.; Rivers, Emanuel P.; Woods, Christopher W.; Kingsmore, Stephen F.; Langley, Raymond J.

    2015-01-01

    A systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular weight proteins and acute phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and n-acetylaspartate were inversely correlated with the majority of significantly down-regulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness. PMID:25993322

  17. Renal systems biology of patients with systemic inflammatory response syndrome.

    PubMed

    Tsalik, Ephraim L; Willig, Laurel K; Rice, Brandon J; van Velkinburgh, Jennifer C; Mohney, Robert P; McDunn, Jonathan E; Dinwiddie, Darrell L; Miller, Neil A; Mayer, Eric S; Glickman, Seth W; Jaehne, Anja K; Glew, Robert H; Sopori, Mohan L; Otero, Ronny M; Harrod, Kevin S; Cairns, Charles B; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen F; Langley, Raymond J

    2015-10-01

    A systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this, we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular-weight proteins and acute-phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and N-acetylaspartate were inversely correlated with the majority of significantly downregulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes were not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness. PMID:25993322

  18. Systems Biology of Asthma and Allergic Diseases: A Multiscale Approach

    PubMed Central

    Bunyavanich, Supinda; Schadt, Eric E.

    2014-01-01

    Systems biology is an approach to understanding living systems that focuses on modeling diverse types of high-dimensional interactions to develop a more comprehensive understanding of complex phenotypes manifested by the system. High throughput molecular, cellular, and physiologic profiling of populations is coupled with bioinformatic and computational techniques to identify new functional roles for genes, regulatory elements, and metabolites in the context of the molecular networks that define biological processes associated with system physiology. Given the complexity and heterogeneity of asthma and allergic diseases, a systems biology approach is attractive, as it has the potential to model the myriad connections and interdependencies between genetic predisposition, environmental perturbations, regulatory intermediaries, and molecular sequelae that ultimately lead to diverse disease phenotypes and treatment responses across individuals. The increasing availability of high-throughput technologies has enabled system-wide profiling of the genome, transcriptome, epigenome, microbiome, and metabolome, providing fodder for systems biology approaches to examine asthma and allergy at a more holistic level. In this article, we review the technologies and approaches for system-wide profiling as well as their more recent applications to asthma and allergy. We discuss approaches for integrating multiscale data through network analyses and provide perspective on how individually-captured health profiles will contribute to more accurate systems biology views of asthma and allergy. PMID:25468194

  19. Chemical Biological Emergency Management Information System

    Energy Science and Technology Software Center (ESTSC)

    2004-06-15

    CB-EMIS is designed to provide information and analysis to transit system operators and emergency responders in the event of a chemical attack on a subway system. The software inforporates detector data, video images, train data, meteorological data, and above- and below-ground plume dispersion models, hight of the liquid level.

  20. Apparatus and methods for manipulation and optimization of biological systems

    NASA Technical Reports Server (NTRS)

    Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Sun, Ren (Inventor); Yu, Fuqu (Inventor)

    2012-01-01

    The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.

  1. Biological and Physical Thresholds in Biogeomorphologically Self-organizing Systems.

    NASA Astrophysics Data System (ADS)

    Herman, P.; Bouma, T. J.; Van de Koppel, J.; Borsje, B.; van Belzen, J.; Balke, T.

    2012-12-01

    Many coastal and estuarine landscapes are formed as a consequence of biological-physical interactions. We review examples that we recently studied: coastal vegetations, microphytobenthos-stabilized mudflats, macrofauna-dominated sediments, sand wave formation influenced by animals. In these diverse ecosystems, self-organisation of the coupled landscape results from the existence of positive feedback loops between the physical and biological components. We focus on the question where, in space and/or in time, such feedback systems develop and what determines their persistence and their ability to shape the landscape. We hypothesize that an equilibrium of forces between physical and biological factors is necessary for a feedback loop to develop. This implies a scale match and a commensurate strength of the different factors. There are many examples of systems that are physically too dynamic for the development of biological populations that affect the landscape. We also show an example where biological influence, in the form of strong grazing pressure on microphytobenthos, disrupts a self-organized system on a mudflat. Thus, we define thresholds in parameter space which constrain the development of strongly interacting biogeomorphological systems. The hypothesis of commensurate physical and biological forces as a condition for the development of biogeomorphological systems has important consequences for the establishment and recruitment of such systems. Biological interactions and biological effects on the physical system develop in time with the recruitment and maturation of the biological system. Fully developed systems can therefore be in balance with stronger physical forces than immature, early recruiting phases. This represents a successional threshold that is difficult to overcome. We stress the importance of stochastic variability in physical conditions at a diversity of scales as a prerequisite for phase transitions from physically dominated to

  2. The Quest for Intimacy.

    ERIC Educational Resources Information Center

    Wynne, Lyman C.; Wynne, Adele R.

    1986-01-01

    Conceptualizes intimate experience within a developmental, or epigenetic, framework of relational systems, views it from an evolutionary and historical perspective, and considers it in the light of hypotheses about gender differences. (Author/ABB)

  3. InfoQUEST: An Online Catalog for Small Libraries.

    ERIC Educational Resources Information Center

    Campbell, Bonnie

    1984-01-01

    InfoQUEST is a microcomputer-based online public access catalog, designed for the small library handling file sizes up to 25,000 records. Based on the IBM-PC, or compatible machines, the system will accept downloading, in batch mode, of records from the library's file on the UTLAS Catalog Support System. (Author/EJS)

  4. Caged oligonucleotides for studying biological systems

    PubMed Central

    Ruble, Brittani K.; Yeldell, Sean B.; Dmochowski, Ivan J.

    2015-01-01

    Light-activated (“caged”) compounds have been widely employed for studying biological processes with high spatial and temporal control. In the past decade, several new approaches for caging the structure and function of DNA and RNA oligonucleotides have been developed. This review focuses on caged oligonucleotides that incorporate site-specifically one or two photocleavable linkers, whose photolysis yields oligonucleotides with dramatic structural and functional changes. This technique has been employed by our laboratory and others to photoregulate gene expression in cells and living organisms, typically using near UV-activated organic chromophores. To improve capabilities for in vivo studies, we harnessed the rich inorganic photochemistry of ruthenium bipyridyl complexes to synthesize Ru-caged morpholino antisense oligonucleotides that remain inactive in zebrafish embryos until uncaged with visible light. Expanding into new caged oligonucleotide applications, our lab has developed Transcriptome In Vivo Analysis (TIVA) technology, which provides the first noninvasive, unbiased method for isolating mRNA from single neurons in brain tissues. TIVA-isolated mRNA can be amplified and then analyzed using next-generation sequencing (RNA-seq). PMID:25865001

  5. The primary glomerulonephritides: a systems biology approach

    PubMed Central

    Jiang, Song; Chuang, Peter Y.; Liu, Zhi-Hong; He, John C.

    2014-01-01

    Our understanding of the pathogenesis of most primary glomerular diseases, including IgA nephropathy, membranous nephropathy and focal segmental glomerulosclerosis, is limited. Advances in molecular technology now permit genome-wide, high-throughput characterization of genes and gene products from biological samples. Comprehensive examinations of the genome, transcriptome, proteome and metabolome (collectively known as omics analyses), have been applied to the study of IgA nephropathy, membranous nephropathy and focal segmental glomerulosclerosis in both animal models and human patients. However, most omics studies of primary glomerular diseases, with the exception of large genomic studies, have been limited by inadequate sample sizes and the lack of kidney-specific data sets derived from kidney biopsy samples. Collaborative efforts to develop a standardized approach for prospective recruitment of patients, scheduled monitoring of clinical outcomes, and protocols for sampling of kidney tissues will be instrumental in uncovering the mechanisms that drive these diseases. Integration of molecular data sets with the results of clinical and histopathological studies will ultimately enable these diseases to be characterized in a comprehensive and systematic manner, and is expected to improve the diagnosis and treatment of these diseases. PMID:23856995

  6. Global optimization in systems biology: stochastic methods and their applications.

    PubMed

    Balsa-Canto, Eva; Banga, J R; Egea, J A; Fernandez-Villaverde, A; de Hijas-Liste, G M

    2012-01-01

    Mathematical optimization is at the core of many problems in systems biology: (1) as the underlying hypothesis for model development, (2) in model identification, or (3) in the computation of optimal stimulation procedures to synthetically achieve a desired biological behavior. These problems are usually formulated as nonlinear programing problems (NLPs) with dynamic and algebraic constraints. However the nonlinear and highly constrained nature of systems biology models, together with the usually large number of decision variables, can make their solution a daunting task, therefore calling for efficient and robust optimization techniques. Here, we present novel global optimization methods and software tools such as cooperative enhanced scatter search (eSS), AMIGO, or DOTcvpSB, and illustrate their possibilities in the context of modeling including model identification and stimulation design in systems biology. PMID:22161343

  7. Computational Modeling, Formal Analysis, and Tools for Systems Biology

    PubMed Central

    Bartocci, Ezio; Lió, Pietro

    2016-01-01

    As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science. PMID:26795950

  8. Method for separating biological cells. [suspended in aqueous polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E. (Inventor)

    1980-01-01

    A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.

  9. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  10. Virtual Tissues and Developmental Systems Biology

    EPA Science Inventory

    Computational modeling of embryonic systems to analyze how 'core development processes' are wired together. Has the potential to address environmental and human health factors with broad scientific and economic impacts.

  11. Environmental Control of Root System Biology.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R

    2016-04-29

    The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs. PMID:26905656

  12. Towards Engineering Biological Systems in a Broader Context.

    PubMed

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. PMID:26546279

  13. Complexity and the reductionism-holism debate in systems biology.

    PubMed

    Mazzocchi, Fulvio

    2012-01-01

    Reductionism has largely influenced the development of science, culminating in its application to molecular biology. An increasing number of novel research findings have, however, shattered this view, showing how the molecular-reductionist approach cannot entirely handle the complexity of biological systems. Within this framework, the advent of systems biology as a new and more integrative field of research is described, along with the form which has taken on the debate of reductionism versus holism. Such an issue occupies a central position in systems biology, and nonetheless it is not always clearly delineated. This partly occurs because different dimensions (ontological, epistemological, methodological) are involved, and yet the concerned ones often remain unspecified. Besides, within systems biology different streams can be distinguished depending on the degree of commitment to embrace genuine systemic principles. Some useful insights into the future development of this discipline might be gained from the tradition of complexity and self-organization. This is especially true with regards the idea of self-reference, which incorporated into the organizational scheme is able to generate autonomy as an emergent property of the biological whole. PMID:22761024

  14. Computational Proteomics: High-throughput Analysis for Systems Biology

    SciTech Connect

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2007-01-03

    High-throughput (HTP) proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. The HTP technological advances are fueling a revolution in biology, enabling analyses at the scales of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations are relying more and more on computational analyses, especially in the field of proteomics generating large-scale global data.

  15. Biological oceanography of the red oceanic system

    NASA Astrophysics Data System (ADS)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents

  16. Circadian systems biology: When time matters

    PubMed Central

    Fuhr, Luise; Abreu, Mónica; Pett, Patrick; Relógio, Angela

    2015-01-01

    The circadian clock is a powerful endogenous timing system, which allows organisms to fine-tune their physiology and behaviour to the geophysical time. The interplay of a distinct set of core-clock genes and proteins generates oscillations in expression of output target genes which temporally regulate numerous molecular and cellular processes. The study of the circadian timing at the organismal as well as at the cellular level outlines the field of chronobiology, which has been highly interdisciplinary ever since its origins. The development of high-throughput approaches enables the study of the clock at a systems level. In addition to experimental approaches, computational clock models exist which allow the analysis of rhythmic properties of the clock network. Such mathematical models aid mechanistic understanding and can be used to predict outcomes of distinct perturbations in clock components, thereby generating new hypotheses regarding the putative function of particular clock genes. Perturbations in the circadian timing system are linked to numerous molecular dysfunctions and may result in severe pathologies including cancer. A comprehensive knowledge regarding the mechanistic of the circadian system is crucial to develop new procedures to investigate pathologies associated with a deregulated clock. In this manuscript we review the combination of experimental methodologies, bioinformatics and theoretical models that have been essential to explore this remarkable timing-system. Such an integrative and interdisciplinary approach may provide new strategies with regard to chronotherapeutic treatment and new insights concerning the restoration of the circadian timing in clock-associated diseases. PMID:26288701

  17. The Quest for Quality

    ERIC Educational Resources Information Center

    Chappuis, Stephen; Chappuis, Jan; Stiggins, Rick

    2009-01-01

    Instructional decisions based on quality assessments and a balanced assessment system most effectively promote student learning. To inform sound decisions, assessments need to satisfy five key standards of quality: (1) clear purpose; (2) clear learning targets; (3) sound assessment design; (4) effective communication of results; and (5) student…

  18. Potential Role of Atomic Force Microscopy in Systems Biology

    PubMed Central

    Ramachandran, Srinivasan; Arce, Fernando Teran; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information datasets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on PCR for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  19. Potential role of atomic force microscopy in systems biology.

    PubMed

    Ramachandran, Srinivasan; Teran Arce, Fernando; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information data sets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on polymerase chain reaction (PCR) for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors, and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  20. Applications of targeted proteomics in systems biology and translational medicine

    PubMed Central

    Root, Alex; Sander, Chris; Aebersold, Ruedi

    2015-01-01

    Biological systems are composed of numerous components of which proteins are of particularly high functional significance. Network models are useful abstractions for studying these components in context. Network representations display molecules as nodes and their interactions as edges. Because they are difficult to directly measure, functional edges are frequently inferred from suitably structured datasets consisting of the accurate and consistent quantification of network nodes under a multitude of perturbed conditions. For the precise quantification of a finite list of proteins across a wide range of samples, targeted proteomics exemplified by selected/multiple reaction monitoring (SRM, MRM) mass spectrometry has proven useful and has been applied to a variety of questions in systems biology and clinical studies. Here, we survey the literature of studies using SRM‐MS in systems biology and clinical proteomics. Systems biology studies frequently examine fundamental questions in network biology, whereas clinical studies frequently focus on biomarker discovery and validation in a variety of diseases including cardiovascular disease and cancer. Targeted proteomics promises to advance our understanding of biological networks and the phenotypic significance of specific network states and to advance biomarkers into clinical use. PMID:26097198

  1. An online model composition tool for system biology models

    PubMed Central

    2013-01-01

    Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914

  2. BioFNet: biological functional network database for analysis and synthesis of biological systems.

    PubMed

    Kurata, Hiroyuki; Maeda, Kazuhiro; Onaka, Toshikazu; Takata, Takenori

    2014-09-01

    In synthetic biology and systems biology, a bottom-up approach can be used to construct a complex, modular, hierarchical structure of biological networks. To analyze or design such networks, it is critical to understand the relationship between network structure and function, the mechanism through which biological parts or biomolecules are assembled into building blocks or functional networks. A functional network is defined as a subnetwork of biomolecules that performs a particular function. Understanding the mechanism of building functional networks would help develop a methodology for analyzing the structure of large-scale networks and design a robust biological circuit to perform a target function. We propose a biological functional network database, named BioFNet, which can cover the whole cell at the level of molecular interactions. The BioFNet takes an advantage in implementing the simulation program for the mathematical models of the functional networks, visualizing the simulated results. It presents a sound basis for rational design of biochemical networks and for understanding how functional networks are assembled to create complex high-level functions, which would reveal design principles underlying molecular architectures. PMID:23894104

  3. Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification

    PubMed Central

    He, Xiaoming

    2011-01-01

    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems. PMID:21769301

  4. Modeling and simulation of biological systems from image data

    PubMed Central

    Sbalzarini, Ivo F

    2013-01-01

    This essay provides an introduction to the terminology, concepts, methods, and challenges of image-based modeling in biology. Image-based modeling and simulation aims at using systematic, quantitative image data to build predictive models of biological systems that can be simulated with a computer. This allows one to disentangle molecular mechanisms from effects of shape and geometry. Questions like “what is the functional role of shape” or “how are biological shapes generated and regulated” can be addressed in the framework of image-based systems biology. The combination of image quantification, model building, and computer simulation is illustrated here using the example of diffusion in the endoplasmic reticulum. PMID:23533152

  5. EVOLUTIONARY BIOSCIENCE AS REGULATORY SYSTEMS BIOLOGY

    PubMed Central

    Davidson, Eric H.

    2011-01-01

    At present several entirely different explanatory approaches compete to illuminate the mechanisms by which animal body plans have evolved. Their respective relevance is briefly considered here in the light of modern knowledge of genomes and the regulatory processes by which development is controlled. Just as development is a system property of the regulatory genome, so causal explanation of evolutionary change in developmental process must be considered at a system level. Here I enumerate some mechanistic consequences that follow from the conclusion that evolution of the body plan has occurred by alteration of the structure of developmental gene regulatory networks. The hierarchy and multiple additional design features of these networks act to produce Boolean regulatory state specification functions at upstream phases of development of the body plan. These are created by the logic outputs of network subcircuits, and in modern animals these outputs are impervious to continuous adaptive variation unlike genes operating more peripherally in the network. PMID:21320483

  6. Biological indicators for monitoring water quality of MTF canals system

    NASA Technical Reports Server (NTRS)

    Sethi, S. L.

    1975-01-01

    Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.

  7. PREFACE: Sudarshan: Seven Science Quests

    NASA Astrophysics Data System (ADS)

    Walser, R. M.; Valanju, A. P.; Valanju, P. M.

    2009-12-01

    This volume contains a unique collection of papers contributed by experts with a long association with George Sudarshan in seven different areas of physics. Each paper recognizes the seminal contributions to physics made by George Sudarshan, and acknowledges their impact on their own research. They were presented at the conference Sudarshan: Seven Science Quests held at the University of Texas at Austin in November 2006. Participants spanned George's 5 decades of research and represented three of the 4 inhabited continents. Our only regret is that due to the vast breadth of George's quests, some topics (e.g. Quantum Field Theory), had to be left out. The conference was truly a celebration of Physics itself, due to the participation and contributions of a galaxy of stellar physicists who are leaders in their chosen fields. The focal point of the conference was to showcase George Sudarshan's breakthrough initiation of these seven areas of physics, and to celebrate his 75th birthday. Many of his former and current students, colleagues, friends and family gathered in Austin, Texas for 2 days and presented their research that was based on his prior and current works, and beautiful personal memories. Papers presented traced the history of the origin of the seven physics fields in which George's role as the originator/initiator has often been overlooked or misrepresented, and the status of these fields in current times. Even many of his colleagues who have worked with him on one or two of the quests were unaware of the impressive breadth and depth of his contributions to the other quests. We feel that the conference achieved its objective of creating a unified showcase of some of his major contributions in a single volume. Of course, knowing George, his quests are ongoing. We wish him many more years of productive pursuit of science. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to the Office of the

  8. Enterobacter aerogenes Needle Stick Leads to Improved Biological Management System

    SciTech Connect

    Johanson, Richard E.

    2004-08-01

    A laboratory worker who received a needle stick from a contaminated needle while working with a culture containing Enterobactor aerogenes developed a laboratory acquired infection. Although this organism has been shown to cause community and nosocomial infections, there have been no documented cases of a laboratory acquired infections. Lessons learned from the event led to corrective actions which included modification of lab procedures, development of a biological inventory tracking and risk identification system and the establishment of an effective biological safety program.

  9. Probing the biology of dry biological systems to address the basis of seed longevity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying cells reduces molecular mobility and slows chemical and physical reactions. As a result, dry biological systems deteriorate slowly. The time course of deterioration in a population of living cells often follows a sigmoidal pattern in which aging is occurring but no changes to viability are ...

  10. Modeling of biological intelligence for SCM system optimization.

    PubMed

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  11. Modeling of Biological Intelligence for SCM System Optimization

    PubMed Central

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  12. Towards environmental systems biology of Shewanella

    SciTech Connect

    Beliaev, Alexander S; Nealson, Kenneth H.; Pinchuk, Grigoriy; Rodrigues, Jorge L.M.; Saffarini, Daad; Serres, Margrethe H.; Zhulin, Igor B; Tiedje, James M

    2008-01-01

    Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.

  13. Metabolic syndrome: from epidemiology to systems biology

    PubMed Central

    Lusis, Aldons J.; Attie, Alan D.; Reue, Karen

    2010-01-01

    Metabolic syndrome (MetSyn) is a group of metabolic conditions that occur together and promote the development of cardiovascular disease (CVD) and diabetes. Recent genome-wide association studies have identified several novel susceptibility genes for MetSyn traits, and studies in rodent models have provided important molecular insights. However, as yet, only a small fraction of the genetic component is known. Systems-based approaches that integrate genomic, molecular and physiological data are complementing traditional genetic and biochemical approaches to more fully address the complexity of MetSyn. PMID:18852695

  14. Phase transitions in fluids and biological systems

    NASA Astrophysics Data System (ADS)

    Sipos, Maksim

    In this thesis, I consider systems from two seemingly different fields: fluid dynamics and microbial ecology. In these systems, the unifying features are the existences of global non-equilibrium steady states. I consider generic and statistical models for transitions between these global states, and I relate the model results with experimental data. A theme of this thesis is that these rather simple, minimal models are able to capture a lot of functional detail about complex dynamical systems. In Part I, I consider the transition between laminar and turbulent flow. I find that quantitative and qualitative features of pipe flow experiments, the superexponential lifetime and the splitting of turbulent puffs, and the growth rate of turbulent slugs, can all be explained by a coarse-grained, phenomenological model in the directed percolation universality class. To relate this critical phenomena approach closer to the fluid dynamics, I consider the transition to turbulence in the Burgers equation, a simplified model for Navier-Stokes equations. Via a transformation to a model of directed polymers in a random medium, I find that the transition to Burgers turbulence may also be in the directed percolation universality class. This evidence implies that the turbulent-to-laminar transition is statistical in nature and does not depend on details of the Navier-Stokes equations describing the fluid flow. In Part II, I consider the disparate subject of microbial ecology where the complex interactions within microbial ecosystems produce observable patterns in microbe abundance, diversity and genotype. In order to be able to study these patterns, I develop a bioinformatics pipeline to multiply align and quickly cluster large microbial metagenomics datasets. I also develop a novel metric that quantifies the degree of interactions underlying the assembly of a microbial ecosystem, particularly the transition between neutral (random) and niche (deterministic) assembly. I apply this

  15. Reproducible quantitative proteotype data matrices for systems biology

    PubMed Central

    Röst, Hannes L.; Malmström, Lars; Aebersold, Ruedi

    2015-01-01

    Historically, many mass spectrometry–based proteomic studies have aimed at compiling an inventory of protein compounds present in a biological sample, with the long-term objective of creating a proteome map of a species. However, to answer fundamental questions about the behavior of biological systems at the protein level, accurate and unbiased quantitative data are required in addition to a list of all protein components. Fueled by advances in mass spectrometry, the proteomics field has thus recently shifted focus toward the reproducible quantification of proteins across a large number of biological samples. This provides the foundation to move away from pure enumeration of identified proteins toward quantitative matrices of many proteins measured across multiple samples. It is argued here that data matrices consisting of highly reproducible, quantitative, and unbiased proteomic measurements across a high number of conditions, referred to here as quantitative proteotype maps, will become the fundamental currency in the field and provide the starting point for downstream biological analysis. Such proteotype data matrices, for example, are generated by the measurement of large patient cohorts, time series, or multiple experimental perturbations. They are expected to have a large effect on systems biology and personalized medicine approaches that investigate the dynamic behavior of biological systems across multiple perturbations, time points, and individuals. PMID:26543201

  16. Gas biology: tiny molecules controlling metabolic systems.

    PubMed

    Kajimura, Mayumi; Nakanishi, Tsuyoshi; Takenouchi, Toshiki; Morikawa, Takayuki; Hishiki, Takako; Yukutake, Yoshinori; Suematsu, Makoto

    2012-11-15

    It has been recognized that gaseous molecules and their signaling cascades play a vital role in alterations of metabolic systems in physiologic and pathologic conditions. Contrary to this awareness, detailed mechanisms whereby gases exert their actions, in particular in vivo, have been unclear because of several reasons. Gaseous signaling involves diverse reactions with metal centers of metalloproteins and thiol modification of cysteine residues of proteins. Both the multiplicity of gas targets and the technical limitations in accessing local gas concentrations make dissection of exact actions of any gas mediator a challenge. However, a series of advanced technologies now offer ways to explore gas-responsive regulatory processes in vivo. Imaging mass spectrometry combined with quantitative metabolomics by capillary-electrophoresis/mass spectrometry reveals spatio-temporal profiles of many metabolites. Comparing the metabolic footprinting of murine samples with a targeted deletion of a specific gas-producing enzyme makes it possible to determine sites of actions of the gas. In this review, we intend to elaborate on the ideas how small gaseous molecules interact with metabolic systems to control organ functions such as cerebral vascular tone and energy metabolism in vivo. PMID:22516267

  17. Interactive analysis of systems biology molecular expression data

    PubMed Central

    Zhang, Mingwu; Ouyang, Qi; Stephenson, Alan; Kane, Michael D; Salt, David E; Prabhakar, Sunil; Burgner, John; Buck, Charles; Zhang, Xiang

    2008-01-01

    Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe) in growth media (an ionomics dataset). This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology. PMID:18312669

  18. Transport processes in biological systems: Tumoral cells and human brain

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  19. The Use of an Electronic Response System in Teaching Biology

    ERIC Educational Resources Information Center

    Bessler, William C.; Nisbet, Jerry J.

    1971-01-01

    An electronic student response system was used in teaching college biology to non-science students. Achievement of this treatment group was compared with that of the control group (not utilizing the response system). The only statistical significant difference found in an analysis of covariance was an interaction between treatment group and time…

  20. What's behind the Biological Classification System in Use Today?

    ERIC Educational Resources Information Center

    Robertson, William C.

    2010-01-01

    Whether students should memorize classification schemes (taxonomies) is a column in itself, but the author can address the role that this system plays in the study of biology. To that end, it will help to address how the system developed over time. And toward "that" end, you will do a simple activity to start. (Contains 3 figures.)

  1. Systems Biology and Mode of Action Based Risk Assessment

    EPA Science Inventory

    The application of systems biology has increased in the past decade largely as a consequence of the human genome project and technological advances in genomics and proteomics. Systems approaches have been used in the medical & pharmaceutical realm for diagnostic purposes and targ...

  2. Systems Biology and Mode of Action Based Risk Assessment.

    EPA Science Inventory

    The application of systems biology approaches has greatly increased in the past decade largely as a consequence of the human genome project and technological advances in genomics and proteomics. Systems approaches have been used in the medical & pharmaceutical realm for diagnost...

  3. Chemical imaging of biological systems with the scanning electrochemical microscope.

    PubMed

    Gyurcsányi, Róbert E; Jágerszki, Gyula; Kiss, Gergely; Tóth, Klára

    2004-06-01

    A brief overview on recent advances in the application of scanning electrochemical microscopy (SECM) to the investigation of biological systems is presented. Special emphasis is given to the mapping of local enzyme activity by SECM, which is exemplified by relevant original systems. PMID:15110274

  4. Nuclear magnetic resonance studies of biological systems

    SciTech Connect

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T{sub 1} relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by {sup 31}P NMR.

  5. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology

    PubMed Central

    Fong, Stephen S.

    2014-01-01

    Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design. PMID:25379141

  6. An open system network for the biological sciences.

    PubMed Central

    Springer, G. K.; Loch, J. L.; Patrick, T. B.

    1991-01-01

    A description of an open system, distributed computing environment for the Biological Sciences is presented. This system utilizes a transparent interface in a computer network using NCS to implement an application system for molecular biologists to perform various processing activities from their local workstation. This system accepts requests for the services of a remote database server, located across the network, to perform all of the database searches needed to support the activities of the user. This database access is totally transparent to the user of the system and it appears, to the user, that all activities are being carried out on the local workstation. This system is a prototype for a much more extensive system being built to support the research efforts in the Biological Sciences at UMC. PMID:1807659

  7. Salivary Gland Cancers: Biology and Systemic Therapy.

    PubMed

    Goyal, Gaurav; Mehdi, Syed A; Ganti, Apar Kishor

    2015-10-01

    Salivary gland tumors are a relatively rare and heterogeneous group of tumors with variable pathologic and phenotypic characteristics. The lack of clinical outcomes data and randomized controlled trials pertaining to them makes it difficult to formulate definitive treatment protocols that could help with making decisions regarding choice of therapy. Most studies involving systemic chemotherapy have not shown promising patient outcome results. With recent advances in molecular technology, however, it is now possible to identify specific genetic alterations and biomarkers as possible targets for therapeutic purposes. For example, in mucoepidermoid carcinomas, one of the most common types of malignant salivary gland tumors, a commonly seen genetic translocation [t(11;19)(q21;p13), which involves the CRTC1 and MAML2 genes] has been found to be associated with improved survival, making it a possible prognostic marker. Also, this translocation gives rise to a fusion protein that appears to render tumors highly sensitive to epidermal growth factor receptor (EGFR) inhibition. However, the results of phase II trials of EGFR inhibitors-as well as other targeted agents--in salivary gland tumors have been disappointing: there has been some disease stabilization but no objective responses. There remains a need for well-designed prospective clinical studies to improve management of these tumors. PMID:26470903

  8. REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1996-01-01

    In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.

  9. Systems Biology Approaches to a Rational Drug Discovery Paradigm.

    PubMed

    Prathipati, Philip; Mizuguchi, Kenji

    2016-01-01

    Ligand- and structure-based drug design approaches complement phenotypic and target screens, respectively, and are the two major frameworks for guiding early-stage drug discovery efforts. Since the beginning of this century, the advent of the genomic era has presented researchers with a myriad of high throughput biological data (parts lists and their interaction networks) to address efficacy and toxicity, augmenting the traditional ligand- and structure-based approaches. This data rich era has also presented us with challenges related to integrating and analyzing these multi-platform and multi-dimensional datasets and translating them into viable hypotheses. Hence in the present paper, we review these existing approaches to drug discovery research and argue the case for a new systems biology based approach. We present the basic principles and the foundational arguments/underlying assumptions of the systems biology based approaches to drug design. Also discussed are systems biology data types (key entities, their attributes and their relationships with each other, and data models/representations), software and tools used for both retrospective and prospective analysis, and the hypotheses that can be inferred. In addition, we summarize some of the existing resources for a systems biology based drug discovery paradigm (open TG-GATEs, DrugMatrix, CMap and LINCs) in terms of their strengths and limitations. PMID:26306988

  10. Systems biology approaches to understanding mycobacterial survival mechanisms

    PubMed Central

    Boshoff, Helena I.M.; Lun, Desmond S.

    2010-01-01

    The advent of high-throughput platforms for the interrogation of biological systems at the cellular and molecular level have allowed living cells to be observed and understood at a hitherto unprecedented level of detail and have enabled the construction of comprehensive, predictive in silico models. Here, we review the application of such high-throughput, systems-biological techniques to mycobacteria—specifically to the pernicious human pathogen Mycobacterium tuberculosis (MTb) and its ability to survive in human hosts. We discuss the development and application of transcriptomic, proteomic, regulomic, and metabolomic techniques for MTb as well as the development and application of genome-scale in silico models. Thus far, systems-biological approaches have largely focused on in vitro models of MTb growth; reliably extending these approaches to in vivo conditions relevant to infection is a significant challenge for the future that holds the ultimate promise of novel chemotherapeutic interventions. PMID:21072257

  11. Learning (from) the errors of a systems biology model

    NASA Astrophysics Data System (ADS)

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-02-01

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.

  12. Learning (from) the errors of a systems biology model.

    PubMed

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-01-01

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge. PMID:26865316

  13. Biologically erodable microspheres as potential oral drug delivery systems

    NASA Astrophysics Data System (ADS)

    Mathiowitz, Edith; Jacob, Jules S.; Jong, Yong S.; Carino, Gerardo P.; Chickering, Donald E.; Chaturvedi, Pravin; Santos, Camilla A.; Vijayaraghavan, Kavita; Montgomery, Sean; Bassett, Michael; Morrell, Craig

    1997-03-01

    Biologically adhesive delivery systems offer important advantages1-5 over conventional drug delivery systems6. Here we show that engineered polymer microspheres made of biologically erodable polymers, which display strong adhesive interactions with gastrointestinal mucus and cellular linings, can traverse both the mucosal absorptive epithelium and the follicle-associated epithelium covering the lymphoid tissue of Peyer's patches. The polymers maintain contact with intestinal epithelium for extended periods of time and actually penetrate it, through and between cells. Thus, once loaded with compounds of pharmacological interest, the microspheres could be developed as delivery systems to transfer biologically active molecules to the circulation. We show that these microspheres increase the absorption of three model substances of widely different molecular size: dicumarol, insulin and plasmid DNA.

  14. Learning (from) the errors of a systems biology model

    PubMed Central

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-01-01

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge. PMID:26865316

  15. Mapping the Surface Adsorption Forces of Nanomaterials in Biological Systems

    PubMed Central

    Xia, Xin R.; Monteiro-Riviere, Nancy A.; Mathur, Sanjay; Song, Xuefeng; Xiao, Lisong; Oldenberg, Steven J.; Fadeel, Bengt; Riviere, Jim E.

    2011-01-01

    The biological surface adsorption index (BSAI) is a novel approach to characterize surface adsorption energy of nanomaterials that is the primary force behind nanoparticle aggregation, protein corona formation, and other complex interactions of nanomaterials within biological systems. Five quantitative nanodescriptors were obtained to represent the surface adsorption forces (hydrophobicity, hydrogen bond, polarity/polarizability, and lone-pair electrons) of the nanomaterial interaction with biological components. We have mapped the surface adsorption forces over 16 different nanomaterials. When the five-dimensional information of the nanodescriptors was reduced to two dimensions, the 16 nanomaterials were classified into distinct clusters according their surface adsorption properties. BSAI nanodescriptors are intrinsic properties of nanomaterials useful for quantitative structure–activity relationship (QSAR) model development. This is the first success in quantitative characterization of the surface adsorption forces of nanomaterials in biological conditions, which could open a quantitative avenue in predictive nanomedicine development, risk assessment, and safety evaluation of nanomaterials. PMID:21999618

  16. Analysing hierarchy in the organization of biological and physical systems.

    PubMed

    Jagers op Akkerhuis, Gerard A J M

    2008-02-01

    A structured approach is discussed for analysing hierarchy in the organization of biological and physical systems. The need for a structured approach follows from the observation that many hierarchies in the literature apply conflicting hierarchy rules and include ill-defined systems. As an alternative, we suggest a framework that is based on the following analytical steps: determination of the succession stage of the universe, identification of a specific system as part of the universe, specification of external influences on a system's creation and analysis of a system's internal organization. At the end, the paper discusses practical implications of the proposed method for the analysis of system organization and hierarchy in biology, ecology and physics. PMID:18211280

  17. A test system for the biological safety cabinet

    PubMed Central

    Newsom, S. W. B.

    1974-01-01

    A simple, cheap and readily available test system for biological safety cabinets is described. It depends on the containment of an aerosol of Bacillus subtilis spores generated in a BIRD micronebulizer and the measurement of air flows with an anemometer. The system was set up to survey new equipment but equally valuable results have been obtained from tests during use. New units were often badly installed and used equipment was poorly maintained. It is suggested that any department which has a need for a biological safety cabinet must be in a position to test its function. Images PMID:4214380

  18. NETWORKS, BIOLOGY AND SYSTEMS ENGINEERING: A CASE STUDY IN INFLAMMATION

    PubMed Central

    Foteinou, P.T.; Yang, E.; Androulakis, I. P.

    2009-01-01

    Biological systems can be modeled as networks of interacting components across multiple scales. A central problem in computational systems biology is to identify those critical components and the rules that define their interactions and give rise to the emergent behavior of a host response. In this paper we will discuss two fundamental problems related to the construction of transcription factor networks and the identification of networks of functional modules describing disease progression. We focus on inflammation as a key physiological response of clinical and translational importance. PMID:20161495

  19. Toxicology of chemical mixtures: a challenging quest along empirical sciences.

    PubMed

    Groten, John P; Heijne, Wilbert H M; Stierum, Rob H; Freidig, Andreas P; Feron, Victor J

    2004-12-01

    This paper describes the "quest" of our institute trying to assess the toxicology of chemical mixtures. In this overview, we will discuss some critical developments in hazard identification and risk assessment of chemical mixtures during these past 15 years. We will stand still at empirical and mechanistic modeling. "Empirical" means that only information on doses or concentrations and effects is available in addition to an often empirically selected quantitative dose-response relationship. Empirical models have played a dominant role in the last decade to identify health and safety characteristics of chemical mixtures. Many of these models are based on the work of pioneers in mixture toxicology who defined three basic types of action for combinations of chemicals: simple similar action, simple dissimilar action and interaction. Nowadays, empirical models are mainly based on response-surface analysis and make use of advanced statistical designs. However, possible interactions between components in a mixture can also be given in terms of mechanistic models. In terms of "mechanistic" (or biological) understanding, interactions between compounds may occur in the kinetic phase (processes of uptake, distribution, metabolism and excretion) or in the dynamic phase (effects of chemicals on the receptor, cellular target or organ). A biological phenomenon such as competitive agonism as described for mixtures of drugs (biotransformation enzymes) or sensory irritants (nerve receptors) can accurately predict the effect of any of these mixtures. Thus, far mechanistic and empirical analyses of interactions are usually unrelated. It is one of the future challenges for mixtures research to combine information from both approaches. Also, our current biology-based models have their limitations, since they cannot integrate every relevant biological mechanism. In this respect, mechanistic modeling of mixtures may benefit from the developments coming from the arena of molecular biology

  20. Systems Biology of Meridians, Acupoints, and Chinese Herbs in Disease

    PubMed Central

    Lin, Li-Ling; Wang, Ya-Hui; Lai, Chi-Yu; Chau, Chan-Lao; Su, Guan-Chin; Yang, Chun-Yi; Lou, Shu-Ying; Chen, Szu-Kai; Hsu, Kuan-Hao; Lai, Yen-Ling; Wu, Wei-Ming; Huang, Jian-Long; Liao, Chih-Hsin; Juan, Hsueh-Fen

    2012-01-01

    Meridians, acupoints, and Chinese herbs are important components of traditional Chinese medicine (TCM). They have been used for disease treatment and prevention and as alternative and complementary therapies. Systems biology integrates omics data, such as transcriptional, proteomic, and metabolomics data, in order to obtain a more global and complete picture of biological activity. To further understand the existence and functions of the three components above, we reviewed relevant research in the systems biology literature and found many recent studies that indicate the value of acupuncture and Chinese herbs. Acupuncture is useful in pain moderation and relieves various symptoms arising from acute spinal cord injury and acute ischemic stroke. Moreover, Chinese herbal extracts have been linked to wound repair, the alleviation of postmenopausal osteoporosis severity, and anti-tumor effects, among others. Different acupoints, variations in treatment duration, and herbal extracts can be used to alleviate various symptoms and conditions and to regulate biological pathways by altering gene and protein expression. Our paper demonstrates how systems biology has helped to establish a platform for investigating the efficacy of TCM in treating different diseases and improving treatment strategies. PMID:23118787

  1. The QUEST Data Portal Visualisation Service

    NASA Astrophysics Data System (ADS)

    Norton, Peter; Pascoe, Stephen; Juckes, Martin

    2010-05-01

    The QUEST (Quantifying and Understanding the Earth System) Data Portal Visualisation Service provides access to a wide range of earth system science datasets, such as: observational climate composites, climate model projections and simulations, a biodiversity index and human population. The user interface allows the user to navigate and view the datasets through Open Geospatial Consortium compliant Web Map Servers. Presenting a wide range of datasets through a generic interface (which needs to work within a range of browsers, their versions and configurations) creates many conflicting demands. This poster describes the strategies adopted to create a portal which gives flexible access to a wide range of datasets, and maintains clear links back to detailed descriptions of the data.

  2. Controlled biological and biomimetic systems for landmine detection.

    PubMed

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions. PMID:17662594

  3. Systems Biology: The Role of Engineering in the Reverse Engineering of Biological Signaling

    PubMed Central

    Iglesias, Pablo A.

    2013-01-01

    One of the principle tasks of systems biology has been the reverse engineering of signaling networks. Because of the striking similarities to engineering systems, a number of analysis and design tools from engineering disciplines have been used in this process. This review looks at several examples including the analysis of homeostasis using control theory, the attenuation of noise using signal processing, statistical inference and the use of information theory to understand both binary decision systems and the response of eukaryotic chemotactic cells. PMID:24709707

  4. Agent-based models in translational systems biology

    PubMed Central

    An, Gary; Mi, Qi; Dutta-Moscato, Joyeeta; Vodovotz, Yoram

    2013-01-01

    Effective translational methodologies for knowledge representation are needed in order to make strides against the constellation of diseases that affect the world today. These diseases are defined by their mechanistic complexity, redundancy, and nonlinearity. Translational systems biology aims to harness the power of computational simulation to streamline drug/device design, simulate clinical trials, and eventually to predict the effects of drugs on individuals. The ability of agent-based modeling to encompass multiple scales of biological process as well as spatial considerations, coupled with an intuitive modeling paradigm, suggests that this modeling framework is well suited for translational systems biology. This review describes agent-based modeling and gives examples of its translational applications in the context of acute inflammation and wound healing. PMID:20835989

  5. From biological models to the evolution of robot control systems.

    PubMed

    Bullinaria, John A

    2003-10-15

    Attempts to formulate realistic models of the development of the human oculomotor control system have led to the conclusion that evolutionary factors play a crucial role. Moreover, even rather coarse simulations of the biological evolutionary processes result in adaptable control systems that are considerably more efficient than those designed by human researchers. In this paper I shall describe some of the aspects of these biological models that are likely to be useful for building robot control systems. In particular, I shall consider the evolution of appropriate innate starting points for learning/adaptation, patterns of learning rates that vary across different system components, learning rates that vary during the system's lifetime, and the relevance of individual differences across the evolved populations. PMID:14599313

  6. Role of Ubiquitin-Mediated Degradation System in Plant Biology.

    PubMed

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K; Gupta, Aditya K; Bhatt, Tarun K

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  7. Role of Ubiquitin-Mediated Degradation System in Plant Biology

    PubMed Central

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K.; Gupta, Aditya K.; Bhatt, Tarun K.

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  8. Evolutionary Biology Instruction: What Students Gain from Learning through Inquiry.

    ERIC Educational Resources Information Center

    Dremock, Fae, Ed.

    2002-01-01

    This bulletin features articles on real world evolutionary biology, revolutionary classroom science, a review of new curricula in evolutionary biology, and the use of case studies to illustrate points in evolutionary biology. The articles are: (1) "'Real World' Evolutionary Biology: A Pragmatic Quest. Interview with BioQUEST's John Jungck" (Harvey…

  9. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    PubMed Central

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals. PMID:23950698

  10. Request for Travel Funds for Systems Radiation Biology Workshop

    SciTech Connect

    Barcellos-Hoff, Mary Helen

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  11. INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY (ISMB)

    SciTech Connect

    Debra Goldberg; Matthew Hibbs; Lukas Kall; Ravikumar Komandurglayavilli; Shaun Mahony; Voichita Marinescu; Itay Mayrose; Vladimir Minin; Yossef Neeman; Guy Nimrod; Marian Novotny; Stephen Opiyo; Elon Portugaly; Tali Sadka; Noboru Sakabe; Indra Sarkar; Marc Schaub; Paul Shafer; Olena Shmygelska; Gregory Singer; Yun Song; Bhattacharya Soumyaroop; Michael Stadler; Pooja Strope; Rong Su; Yuval Tabach; Hongseok Tae; Todd Taylor; Michael Terribilini; Asha Thomas; Nam Tran; Tsai-Tien Tseng; Akshay Vashist; Parthiban Vijaya; Kai Wang; Ting Wang; Lai Wei; Yong Woo; Chunlei Wu; Yoshihiro Yamanishi; Changhui Yan; Jack Yang; Mary Yang; Ping Ye; Miao Zhang

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on “intelligent systems” and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  12. FIELD INVESTIGATION OF BIOLOGICAL TOILET SYSTEMS AND GREY WATER TREATMENT

    EPA Science Inventory

    The objective of the field program was to determine the operational characteristics and overall acceptability of popular models of biological toilets and a few select grey water systems. A field observation scheme was devised to take advantage of in-use sites throughout the State...

  13. System as metaphor in the psychology and biology of shame.

    PubMed

    Maunder, R

    1996-01-01

    Biological theories of brain and psychological theories of mind are two systems of explanation that seem related to one another. The nature of the relationship is problematic and constitutes the age-old mind-body problem. The most prominent solutions currently are variations of materialism. While psychological theories can be consistent with materialism, there remains a difficulty in comprehending nonphysical (social, psychological) causes of physical effects. This difficulty is an obstacle to integration in psychiatry, where we routinely assume that illnesses that include or depend on biological dysfunction are caused multifactorially by causal agents such as perceived parental warmth, parental loss, stressful life events, genetics, and personality (Hammen et al. 1992; Kendler et al. 1993). Unity theory adopts the stance that neurobiological theories and psychological theories are essentially disparate explanations of the same psychobiological events; thus the relationship of mind to brain is one of shared reference (Goodman 1991; Maunder 1995). In Goodman's model the gap between biological and psychological systems is not bridgeable. Different conceptual categories refer to the same referents but cannot interact with each other. Stepping into the breach, systems theory has been presented as offering a language that can bridge the gap between psychological and biological theories of causation (Schwartz 1981; Weiner 1989). Thus, there is a controversy about the applicability of systems theory for integration in psychiatry. PMID:8837180

  14. Systems Biology & Mode of Action Based Risk Assessment

    EPA Science Inventory

    The application of systems biology for risk assessment of environmental chemicals is a national extension of its use in pharmaceutical research. The basis for this is the concept of a key event network that builds on existing mode of action frameworks for risk assessment. The a...

  15. Integrating Biological Systems in the Process Dynamics and Control Curriculum

    ERIC Educational Resources Information Center

    Parker, Robert S.; Doyle, Francis J.; Henson, Michael A.

    2006-01-01

    The evolution of the chemical engineering discipline motivates a re-evaluation of the process dynamics and control curriculum. A key requirement of future courses will be the introduction of theoretical concepts and application examples relevant to emerging areas, notably complex biological systems. We outline the critical concepts required to…

  16. Structure of deviations from optimality in biological systems

    PubMed Central

    Pérez-Escudero, Alfonso; Rivera-Alba, Marta; de Polavieja, Gonzalo G.

    2009-01-01

    Optimization theory has been used to analyze evolutionary adaptation. This theory has explained many features of biological systems, from the genetic code to animal behavior. However, these systems show important deviations from optimality. Typically, these deviations are large in some particular components of the system, whereas others seem to be almost optimal. Deviations from optimality may be due to many factors in evolution, including stochastic effects and finite time, that may not allow the system to reach the ideal optimum. However, we still expect the system to have a higher probability of reaching a state with a higher value of the proposed indirect measure of fitness. In systems of many components, this implies that the largest deviations are expected in those components with less impact on the indirect measure of fitness. Here, we show that this simple probabilistic rule explains deviations from optimality in two very different biological systems. In Caenorhabditis elegans, this rule successfully explains the experimental deviations of the position of neurons from the configuration of minimal wiring cost. In Escherichia coli, the probabilistic rule correctly obtains the structure of the experimental deviations of metabolic fluxes from the configuration that maximizes biomass production. This approach is proposed to explain or predict more data than optimization theory while using no extra parameters. Thus, it can also be used to find and refine hypotheses about which constraints have shaped biological structures in evolution. PMID:19918070

  17. Systems biology and cancer prevention: all options on the table.

    PubMed

    Rosenfeld, Simon; Kapetanovic, Izet

    2008-01-01

    In this paper, we outline the status quo and approaches to further development of the systems biology concepts with focus on applications in cancer prevention science. We discuss the biological aspects of cancer research that are of primary importance in cancer prevention, motivations for their mathematical modeling and some recent advances in computational oncology. We also make an attempt to outline in big conceptual terms the contours of future work aimed at creation of large-scale computational and informational infrastructure for using as a routine tool in cancer prevention science and decision making. PMID:19787092

  18. Systems Biology and Cancer Prevention: All Options on the Table

    PubMed Central

    Rosenfeld, Simon; Kapetanovic, Izet

    2008-01-01

    In this paper, we outline the status quo and approaches to further development of the systems biology concepts with focus on applications in cancer prevention science. We discuss the biological aspects of cancer research that are of primary importance in cancer prevention, motivations for their mathematical modeling and some recent advances in computational oncology. We also make an attempt to outline in big conceptual terms the contours of future work aimed at creation of large-scale computational and informational infrastructure for using as a routine tool in cancer prevention science and decision making. PMID:19787092

  19. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders

    PubMed Central

    Parikshak, Neelroop N.; Gandal, Michael J.; Geschwind, Daniel H.

    2015-01-01

    Genetic and genomic approaches have implicated hundreds of genetic loci in neurodevelopmental disorders and neurodegeneration, but mechanistic understanding continues to lag behind the pace of gene discovery. Understanding the role of specific genetic variants in the brain involves dissecting a functional hierarchy that encompasses molecular pathways, diverse cell types, neural circuits and, ultimately, cognition and behaviour. With a focus on transcriptomics, this Review discusses how high-throughput molecular, integrative and network approaches inform disease biology by placing human genetics in a molecular systems and neurobiological context. We provide a framework for interpreting network biology studies and leveraging big genomics data sets in neurobiology. PMID:26149713

  20. Quest for Continual Growth Takes Root

    ERIC Educational Resources Information Center

    Surdey, Mary M.; Hashey, Jane M.

    2006-01-01

    In this article, the authors describe how the quest for continual growth has taken its root at Vestal Central School district. Located at the heart of upstate New York, educators at Vestal Central School district have created a spirit of "kaizen," a Japanese word meaning the relentless quest for continual improvement and higher-quality…

  1. WebQuests: Tools for Differentiation

    ERIC Educational Resources Information Center

    Schweizer, Heidi; Kossow, Ben

    2007-01-01

    This article features the WebQuest, an inquiry-oriented activity in which some or all of the information that learners interact with comes from resources on the Internet. WebQuests, when properly constructed, are activities, usually authentic in nature, that require the student to use Internet-based resources to deepen their understanding and…

  2. The Well-Constructed WebQuest

    ERIC Educational Resources Information Center

    Kennedy, Shelly

    2004-01-01

    In this article, the author offers criteria for evaluating WebQuests that are intended for use by students in the elementary grades. There are two general areas that teachers should consider: (1) Pedagogy--whether a WebQuest is developmentally appropriate and educationally useful for their students; and (2) Scholarship--whether the content is…

  3. Go on a ScienceQuest

    ERIC Educational Resources Information Center

    Long, Deborah; Drake, Kay; Halychyn, Danielle

    2004-01-01

    ScienceQuests organize the curriculum around an authentic problem or project for students to solve. They focus on developing students' content knowledge, collaborative skills, and dispositions (i.e., attitudes toward science). Each ScienceQuest is built around "big ideas," such as: (1) All living things have basic needs that must be satisfied in…

  4. WebQuests: Are They Developmentally Appropriate?

    ERIC Educational Resources Information Center

    Maddux, Cleborne D.; Cummings, Rhoda

    2007-01-01

    A topic that currently is receiving a great deal of attention by educators is the nature and use of WebQuests--computer-based activities that guide student learning through use of the World Wide Web (Sharp 2004). Despite their popularity, questions remain about the effectiveness with which WebQuests are being used with students. This article…

  5. Enhanced Sampling Techniques in Molecular Dynamics Simulations of Biological Systems

    PubMed Central

    Bernardi, Rafael C.; Melo, Marcelo C. R.; Schulten, Klaus

    2014-01-01

    Background Molecular Dynamics has emerged as an important research methodology covering systems to the level of millions of atoms. However, insufficient sampling often limits its application. The limitation is due to rough energy landscapes, with many local minima separated by high-energy barriers, which govern the biomolecular motion. Scope of review In the past few decades methods have been developed that address the sampling problem, such as replica-exchange molecular dynamics, metadynamics and simulated annealing. Here we present an overview over theses sampling methods in an attempt to shed light on which should be selected depending on the type of system property studied. Major Conclusions Enhanced sampling methods have been employed for a broad range of biological systems and the choice of a suitable method is connected to biological and physical characteristics of the system, in particular system size. While metadynamics and replica-exchange molecular dynamics are the most adopted sampling methods to study biomolecular dynamics, simulated annealing is well suited to characterize very flexible systems. The use of annealing methods for a long time was restricted to simulation of small proteins; however, a variant of the method, generalized simulated annealing, can be employed at a relatively low computational cost to large macromolecular complexes. General Significance Molecular dynamics trajectories frequently do not reach all relevant conformational substates, for example those connected with biological function, a problem that can be addressed by employing enhanced sampling algorithms. PMID:25450171

  6. Predictive modelling of complex agronomic and biological systems.

    PubMed

    Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J

    2013-09-01

    Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. PMID:23777295

  7. Neural fuzzy modeling of anaerobic biological wastewater treatment systems

    SciTech Connect

    Tay, J.H.; Zhang, X.

    1999-12-01

    Anaerobic biological wastewater treatment systems are difficult to model because their performance is complex and varies significantly with different reactor configurations, influent characteristics, and operational conditions. Instead of conventional kinetic modeling, advanced neural fuzzy technology was employed to develop a conceptual adaptive model for anaerobic treatment systems. The conceptual neural fuzzy model contains the robustness of fuzzy systems, the learning ability of neural networks, and can adapt to various situations. The conceptual model was used to simulate the daily performance of two high-rate anaerobic wastewater treatment systems with satisfactory results obtained.

  8. Systems biology approaches for identifying adverse drug reactions and elucidating their underlying biological mechanisms.

    PubMed

    Boland, Mary Regina; Jacunski, Alexandra; Lorberbaum, Tal; Romano, Joseph D; Moskovitch, Robert; Tatonetti, Nicholas P

    2016-01-01

    Small molecules are indispensable to modern medical therapy. However, their use may lead to unintended, negative medical outcomes commonly referred to as adverse drug reactions (ADRs). These effects vary widely in mechanism, severity, and populations affected, making ADR prediction and identification important public health concerns. Current methods rely on clinical trials and postmarket surveillance programs to find novel ADRs; however, clinical trials are limited by small sample size, whereas postmarket surveillance methods may be biased and inherently leave patients at risk until sufficient clinical evidence has been gathered. Systems pharmacology, an emerging interdisciplinary field combining network and chemical biology, provides important tools to uncover and understand ADRs and may mitigate the drawbacks of traditional methods. In particular, network analysis allows researchers to integrate heterogeneous data sources and quantify the interactions between biological and chemical entities. Recent work in this area has combined chemical, biological, and large-scale observational health data to predict ADRs in both individual patients and global populations. In this review, we explore the rapid expansion of systems pharmacology in the study of ADRs. We enumerate the existing methods and strategies and illustrate progress in the field with a model framework that incorporates crucial data elements, such as diet and comorbidities, known to modulate ADR risk. Using this framework, we highlight avenues of research that may currently be underexplored, representing opportunities for future work. PMID:26559926

  9. Is nursing ready for WebQuests?

    PubMed

    Lahaie, Ulysses David

    2008-12-01

    Based on an inquiry-oriented framework, WebQuests facilitate the construction of effective learning activities. Developed by Bernie Dodge and Tom March in 1995 at the San Diego State University, WebQuests have gained worldwide popularity among educators in the kindergarten through grade 12 educational sector. However, their application at the college and university levels is not well documented. WebQuests enhance and promote higher order-thinking skills, are consistent with Bloom's Taxonomy, and reflect a learner-centered instructional methodology (constructivism). They are based on solid theoretical foundations and promote critical thinking, inquiry, and problem solving. There is a role for WebQuests in nursing education. A WebQuest example is described in this article. PMID:19112748

  10. Specifications of Standards in Systems and Synthetic Biology.

    PubMed

    Schreiber, Falk; Bader, Gary D; Golebiewski, Martin; Hucka, Michael; Kormeier, Benjamin; Le Novère, Nicolas; Myers, Chris; Nickerson, David; Sommer, Björn; Waltemath, Dagmar; Weise, Stephan

    2015-01-01

    Standards shape our everyday life. From nuts and bolts to electronic devices and technological processes, standardised products and processes are all around us. Standards have technological and economic benefits, such as making information exchange, production, and services more efficient. However, novel, innovative areas often either lack proper standards, or documents about standards in these areas are not available from a centralised platform or formal body (such as the International Standardisation Organisation). Systems and synthetic biology is a relatively novel area, and it is only in the last decade that the standardisation of data, information, and models related to systems and synthetic biology has become a community-wide effort. Several open standards have been established and are under continuous development as a community initiative. COMBINE, the ‘COmputational Modeling in BIology’ NEtwork has been established as an umbrella initiative to coordinate and promote the development of the various community standards and formats for computational models. There are yearly two meeting, HARMONY (Hackathons on Resources for Modeling in Biology), Hackathon-type meetings with a focus on development of the support for standards, and COMBINE forums, workshop-style events with oral presentations, discussion, poster, and breakout sessions for further developing the standards. For more information see http://co.mbine.org/. So far the different standards were published and made accessible through the standards’ web- pages or preprint services. The aim of this special issue is to provide a single, easily accessible and citable platform for the publication of standards in systems and synthetic biology. This special issue is intended to serve as a central access point to standards and related initiatives in systems and synthetic biology, it will be published annually to provide an opportunity for standard development groups to communicate updated specifications. PMID

  11. Risk analysis systems for veterinary biologicals: a regulator's tool box.

    PubMed

    Osborne, C G; McElvaine, M D; Ahl, A S; Glosser, J W

    1995-12-01

    Recent advances in biology and technology have significantly improved our ability to produce veterinary biologicals of high purity, efficacy and safety, virtually anywhere in the world. At the same time, increasing trade and comprehensive trade agreements, such as the Uruguay Round of the General Agreement on Tariffs and Trade (GATT: now the World Trade Organisation [WTO]), have put pressure on governments to use scientific principles in the regulation of trade for a wide range of products, including veterinary biologicals. In many cases, however, nations have been reluctant to allow the movement of veterinary biologicals, due to the perceived threat of importing an exotic disease. This paper discusses the history of risk analysis as a decision support tool and provides examples of how this tool may be used in a science-based regulatory system for veterinary biologicals. A wide variety of tools are described, including qualitative, semi-quantitative and quantitative methods, most with a long history of use in engineering and the health and environmental sciences. PMID:8639961

  12. Using quantum mechanical approaches to study biological systems.

    PubMed

    Merz, Kenneth M

    2014-09-16

    Conspectus Quantum mechanics (QM) has revolutionized our understanding of the structure and reactivity of small molecular systems. Given the tremendous impact of QM in this research area, it is attractive to believe that this could also be brought into the biological realm where systems of a few thousand atoms and beyond are routine. Applying QM methods to biological problems brings an improved representation to these systems by the direct inclusion of inherently QM effects such as polarization and charge transfer. Because of the improved representation, novel insights can be gleaned from the application of QM tools to biomacromolecules in aqueous solution. To achieve this goal, the computational bottlenecks of QM methods had to be addressed. In semiempirical theory, matrix diagonalization is rate limiting, while in density functional theory or Hartree-Fock theory electron repulsion integral computation is rate-limiting. In this Account, we primarily focus on semiempirical models where the divide and conquer (D&C) approach linearizes the matrix diagonalization step with respect to the system size. Through the D&C approach, a number of applications to biological problems became tractable. Herein, we provide examples of QM studies on biological systems that focus on protein solvation as viewed by QM, QM enabled structure-based drug design, and NMR and X-ray biological structure refinement using QM derived restraints. Through the examples chosen, we show the power of QM to provide novel insights into biological systems, while also impacting practical applications such as structure refinement. While these methods can be more expensive than classical approaches, they make up for this deficiency by the more realistic modeling of the electronic nature of biological systems and in their ability to be broadly applied. Of the tools and applications discussed in this Account, X-ray structure refinement using QM models is now generally available to the community in the

  13. Sixth International Conference on Systems Biology (ICSB 2005)

    SciTech Connect

    Professor Andrew Murray

    2005-10-22

    This grant supported the Sixth International Conference on Systems Biology (ICSB 2005), held in Boston, Massachusetts from October 19th to 22nd, 2005. The ICSB is the only major, annual, international conference focused exclusively on the important emerging field of systems biology. It draws together scientists with expertise in theoretical, computational and experimental approaches to understanding biological systems at many levels. Previous ICSB meetings have been held in Tokyo (2000), at Caltech (2001), at the Karolinska Institute (2002), at Washington University in St. Louis (2003), and in Heidelberg (2004). These conferences have been increasingly successful at bringing together the growing community of established and junior researchers with interests in this area. Boston is home to several groups that have shown leadership in the field and was therefore an ideal place to hold this conference . The executive committee for the conference comprised Jim Collins (Biomedical Engineering, Boston University), Marc Kirschner (chair of the new Department of Systems Biology at Harvard Medical School), Eric Lander (director of the Broad Institute of MIT and Harvard), Andrew Murray (director of Harvard’s Bauer Center for Genomics Research) and Peter Sorger (director of MIT’s Computational and Systems Biology Initiative). There are almost as many definitions of systems biology as there are systems biologists. We take a broad view of the field, and we succeeded in one of our major aims in organizing a conference that bridges two types of divide. The first is that between traditional academic disciplines: each of our sessions includes speakers from biology and from one or more physical or quantitative sciences. The second type includes those that separate experimental biologists from their colleagues who work on theory or computation. Here again, each session included representatives from at least two of these three categories; indeed, many of the speakers combined at

  14. Mode coupling in living systems: implications for biology and medicine.

    PubMed

    Swain, John

    2008-05-01

    Complex systems, and in particular biological ones, are characterized by large numbers of oscillations of widely differing frequencies. Various prejudices tend to lead to the assumption that such oscillators should generically be very weakly interacting. This paper reviews the basic ideas of linearity and nonlinearity as seen by a physicist, but with a view to biological systems. In particular, it is argued that large couplings between different oscillators of disparate frequencies are common, being present even in rather simple systems which are well-known in physics, although this issue is often glossed over. This suggests new experiments and investigations, as well as new approaches to therapies and human-environment interactions which, without the concepts described here, may otherwise seem unlikely to be interesting. The style of the paper is conversational with a minimum of mathematics, and no attempt at a complete list of references. PMID:18697625

  15. Modeling Functional Motions of Biological Systems by Customized Natural Moves.

    PubMed

    Demharter, Samuel; Knapp, Bernhard; Deane, Charlotte M; Minary, Peter

    2016-08-23

    Simulating the functional motions of biomolecular systems requires large computational resources. We introduce a computationally inexpensive protocol for the systematic testing of hypotheses regarding the dynamic behavior of proteins and nucleic acids. The protocol is based on natural move Monte Carlo, a highly efficient conformational sampling method with built-in customization capabilities that allows researchers to design and perform a large number of simulations to investigate functional motions in biological systems. We demonstrate the use of this protocol on both a protein and a DNA case study. Firstly, we investigate the plasticity of a class II major histocompatibility complex in the absence of a bound peptide. Secondly, we study the effects of the epigenetic mark 5-hydroxymethyl on cytosine on the structure of the Dickerson-Drew dodecamer. We show how our customized natural moves protocol can be used to investigate causal relationships of functional motions in biological systems. PMID:27558715

  16. Systems biology: A tool for charting the antiviral landscape.

    PubMed

    Bowen, James R; Ferris, Martin T; Suthar, Mehul S

    2016-06-15

    The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape. PMID:26795869

  17. Physical methods for investigating structural colours in biological systems

    PubMed Central

    Vukusic, P.; Stavenga, D.G.

    2009-01-01

    Many biological systems are known to use structural colour effects to generate aspects of their appearance and visibility. The study of these phenomena has informed an eclectic group of fields ranging, for example, from evolutionary processes in behavioural biology to micro-optical devices in technologically engineered systems. However, biological photonic systems are invariably structurally and often compositionally more elaborate than most synthetically fabricated photonic systems. For this reason, an appropriate gamut of physical methods and investigative techniques must be applied correctly so that the systems' photonic behaviour may be appropriately understood. Here, we survey a broad range of the most commonly implemented, successfully used and recently innovated physical methods. We discuss the costs and benefits of various spectrometric methods and instruments, namely scatterometers, microspectrophotometers, fibre-optic-connected photodiode array spectrometers and integrating spheres. We then discuss the role of the materials' refractive index and several of the more commonly used theoretical approaches. Finally, we describe the recent developments in the research field of photonic crystals and the implications for the further study of structural coloration in animals. PMID:19158009

  18. Numerical simulations and modeling for stochastic biological systems with jumps

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoling; Wang, Ke

    2014-05-01

    This paper gives a numerical method to simulate sample paths for stochastic differential equations (SDEs) driven by Poisson random measures. It provides us a new approach to simulate systems with jumps from a different angle. The driving Poisson random measures are assumed to be generated by stationary Poisson point processes instead of Lévy processes. Methods provided in this paper can be used to simulate SDEs with Lévy noise approximately. The simulation is divided into two parts: the part of jumping integration is based on definition without approximation while the continuous part is based on some classical approaches. Biological explanations for stochastic integrations with jumps are motivated by several numerical simulations. How to model biological systems with jumps is showed in this paper. Moreover, method of choosing integrands and stationary Poisson point processes in jumping integrations for biological models are obtained. In addition, results are illustrated through some examples and numerical simulations. For some examples, earthquake is chose as a jumping source which causes jumps on the size of biological population.

  19. Improving collaboration by standardization efforts in systems biology.

    PubMed

    Dräger, Andreas; Palsson, Bernhard Ø

    2014-01-01

    Collaborative genome-scale reconstruction endeavors of metabolic networks would not be possible without a common, standardized formal representation of these systems. The ability to precisely define biological building blocks together with their dynamic behavior has even been considered a prerequisite for upcoming synthetic biology approaches. Driven by the requirements of such ambitious research goals, standardization itself has become an active field of research on nearly all levels of granularity in biology. In addition to the originally envisaged exchange of computational models and tool interoperability, new standards have been suggested for an unambiguous graphical display of biological phenomena, to annotate, archive, as well as to rank models, and to describe execution and the outcomes of simulation experiments. The spectrum now even covers the interaction of entire neurons in the brain, three-dimensional motions, and the description of pharmacometric studies. Thereby, the mathematical description of systems and approaches for their (repeated) simulation are clearly separated from each other and also from their graphical representation. Minimum information definitions constitute guidelines and common operation protocols in order to ensure reproducibility of findings and a unified knowledge representation. Central database infrastructures have been established that provide the scientific community with persistent links from model annotations to online resources. A rich variety of open-source software tools thrives for all data formats, often supporting a multitude of programing languages. Regular meetings and workshops of developers and users lead to continuous improvement and ongoing development of these standardization efforts. This article gives a brief overview about the current state of the growing number of operation protocols, mark-up languages, graphical descriptions, and fundamental software support with relevance to systems biology. PMID:25538939

  20. Improving Collaboration by Standardization Efforts in Systems Biology

    PubMed Central

    Dräger, Andreas; Palsson, Bernhard Ø.

    2014-01-01

    Collaborative genome-scale reconstruction endeavors of metabolic networks would not be possible without a common, standardized formal representation of these systems. The ability to precisely define biological building blocks together with their dynamic behavior has even been considered a prerequisite for upcoming synthetic biology approaches. Driven by the requirements of such ambitious research goals, standardization itself has become an active field of research on nearly all levels of granularity in biology. In addition to the originally envisaged exchange of computational models and tool interoperability, new standards have been suggested for an unambiguous graphical display of biological phenomena, to annotate, archive, as well as to rank models, and to describe execution and the outcomes of simulation experiments. The spectrum now even covers the interaction of entire neurons in the brain, three-dimensional motions, and the description of pharmacometric studies. Thereby, the mathematical description of systems and approaches for their (repeated) simulation are clearly separated from each other and also from their graphical representation. Minimum information definitions constitute guidelines and common operation protocols in order to ensure reproducibility of findings and a unified knowledge representation. Central database infrastructures have been established that provide the scientific community with persistent links from model annotations to online resources. A rich variety of open-source software tools thrives for all data formats, often supporting a multitude of programing languages. Regular meetings and workshops of developers and users lead to continuous improvement and ongoing development of these standardization efforts. This article gives a brief overview about the current state of the growing number of operation protocols, mark-up languages, graphical descriptions, and fundamental software support with relevance to systems biology. PMID:25538939

  1. Hierarchical Dynamical Information Systems With a Focus on Biology

    NASA Astrophysics Data System (ADS)

    Collier, John

    2003-06-01

    A system of a number of relatively stable units that can combine more or less freely to form somewhat less stable structures has a capacity to carry information in a more or less arbitrary way. I call such a system a physical information system if its properties are dynamically specified. All physical information systems have certain general dynamical properties. DNA can form such a system, but so can, to a lesser degree, RNA, proteins, cells and cellular subsystems, various immune system elements, organisms in populations and in ecosystems, as well as other higher-level phenomena. These systems are hierarchical structures with respect to the expression of lower level information at higher levels. This allows a distinction between macro and microstates within the system, with resulting statistical (entropy driven) dynamics, including the possibility of self-organization, system bifurcation, and the formation of higher levels of information expression. Although lower-level information is expressed in an information hierarchy, this in itself is not sufficient for reference, function, or meaning. Nonetheless, the expression of information is central to the realization of all of these. 'Biological information' is thus ambiguous between syntactic information in a hierarchical modular system, and functional information. However, the dynamics of hierarchical physical information systems is of interest to the study of how functional information might be embodied physically. I will address 1) how to tighten the relative terms in the characterizations of 'information system' and 'informational hierarchy' above, 2) how to distinguish between components of an information system combining to form more complex informational modules and the expression of information, 3) some aspects of the dynamics of such systems that are of biological interest, 4) why information expression in such systems is not sufficient for functional information, and 5) what further might be required for

  2. Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    SciTech Connect

    Gregurick, S.; Fredrickson, J. K.; Stevens, R.

    2009-03-01

    Biology has entered a systems-science era with the goal to establish a predictive understanding of the mechanisms of cellular function and the interactions of biological systems with their environment and with each other. Vast amounts of data on the composition, physiology, and function of complex biological systems and their natural environments are emerging from new analytical technologies. Effectively exploiting these data requires developing a new generation of capabilities for analyzing and managing the information. By revealing the core principles and processes conserved in collective genomes across all biology and by enabling insights into the interplay between an organism's genotype and its environment, systems biology will allow scientific breakthroughs in our ability to project behaviors of natural systems and to manipulate and engineer managed systems. These breakthroughs will benefit Department of Energy (DOE) missions in energy security, climate protection, and environmental remediation.

  3. Two faces of entropy and information in biological systems.

    PubMed

    Mitrokhin, Yuriy

    2014-10-21

    The article attempts to overcome the well-known paradox of contradictions between the emerging biological organization and entropy production in biological systems. It is assumed that quality, speculative correlation between entropy and antientropy processes taking place both in the past and today in the metabolic and genetic cellular systems may be perfectly authorized for adequate description of the evolution of biological organization. So far as thermodynamic entropy itself cannot compensate for the high degree of organization which exists in the cell, we discuss the mode of conjunction of positive entropy events (mutations) in the genetic systems of the past generations and the formation of organized structures of current cells. We argue that only the information which is generated in the conditions of the information entropy production (mutations and other genome reorganization) in genetic systems of the past generations provides the physical conjunction of entropy and antientropy processes separated from each other in time generations. It is readily apparent from the requirements of the Second law of thermodynamics. PMID:24956330

  4. Newton, laplace, and the epistemology of systems biology.

    PubMed

    Bittner, Michael L; Dougherty, Edward R

    2012-01-01

    For science, theoretical or applied, to significantly advance, researchers must use the most appropriate mathematical methods. A century and a half elapsed between Newton's development of the calculus and Laplace's development of celestial mechanics. One cannot imagine the latter without the former. Today, more than three-quarters of a century has elapsed since the birth of stochastic systems theory. This article provides a perspective on the utilization of systems theory as the proper vehicle for the development of systems biology and its application to complex regulatory diseases such as cancer. PMID:23170064

  5. Newton, Laplace, and The Epistemology of Systems Biology

    PubMed Central

    Bittner, Michael L.; Dougherty, Edward R.

    2012-01-01

    For science, theoretical or applied, to significantly advance, researchers must use the most appropriate mathematical methods. A century and a half elapsed between Newton’s development of the calculus and Laplace’s development of celestial mechanics. One cannot imagine the latter without the former. Today, more than three-quarters of a century has elapsed since the birth of stochastic systems theory. This article provides a perspective on the utilization of systems theory as the proper vehicle for the development of systems biology and its application to complex regulatory diseases such as cancer. PMID:23170064

  6. From globally coupled maps to complex-systems biology

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    2015-09-01

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  7. From globally coupled maps to complex-systems biology

    SciTech Connect

    Kaneko, Kunihiko

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  8. Systems biology, adverse outcome pathways, and ecotoxicology in the 21st century

    EPA Science Inventory

    While many definitions of systems biology exist, the majority of these contain most (if not all) of the following elements: global measurements of biological molecules to the extent technically feasible, dynamic measurements of key biological molecules to establish quantitative r...

  9. Systems Biology in Immunology – A Computational Modeling Perspective

    PubMed Central

    Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra; Fraser, Iain D. C.

    2011-01-01

    Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and conduct simulations of immune function, We provide descriptions of the key data gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease. PMID:21219182

  10. Effects of abiotic stress on plants: a systems biology perspective

    PubMed Central

    2011-01-01

    The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models designed to describe and predict the dynamic activities of that organism in different environments. In this review, research progress in plant responses to abiotic stresses is summarized from the physiological level to the molecular level. New insights obtained from the integration of omics datasets are highlighted. Gaps in our knowledge are identified, providing additional focus areas for crop improvement research in the future. PMID:22094046

  11. Fluorescence dynamics of biological systems using synchrotron radiation

    SciTech Connect

    Gratton, E.; Mantulin, W.W.; Weber, G.; Royer, C.A.; Jameson, D.M.; Reininger, R.; Hansen, R.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes that can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}

  12. QUEST2: Release 1, SA/Release 1 supporting documents deliverable set

    SciTech Connect

    Braaten, F.D.

    1995-02-27

    This document contains deliverables which reflect the last of the System Architecture phase analysis for the Quality, Environmental, Safety Tracking System redesign (QUEST2) project. These deliverables are focused on the final insights required to start functional design of the first QUEST2 release. They include the data definitions, conversion rules, standards for design and user interface, performance criteria, and rules to be followed during the prototyping activity described in the Project Management Plan.

  13. On the mechanism of adhesion in biological systems

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2003-04-01

    I study adhesion relevant to biological systems, e.g., flies, crickets and lizards, where the adhesive microstructures consist of arrays of thin fibers. The effective elastic modulus of the fiber arrays can be very small which is of fundamental importance for adhesion on smooth and rough substrates. I study how the adhesion depend on the substrate roughness amplitude and apply the theoretical results to lizards.

  14. Systems Biology of Polycystic Kidney Disease: a Critical Review

    PubMed Central

    Menezes, Luis Fernando; Germino, Gregory G

    2015-01-01

    The proliferation and diminishing costs of ‘omics’ approaches have finally opened the doors for small and medium laboratories to enter the ‘systems biology era’. This is a welcome evolution that requires a new framework to design, interpret and validate studies. Here we highlight some of the challenges, contributions, and prospects of the“cyst-ems biology” of polycystic kidney disease. PMID:25641951

  15. Microbiological evaluation of the mobile biological isolator system

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.; Morelli, F.; Neiderheiser, W.; Tratz, W. M.

    1979-01-01

    Evaluations on critical components of the mobile biological isolation system were performed. High efficiency particulate air filter efficiency and suit integrity were found to withstand repeated ethylene oxide (ETO) sterilizations. The minimum ETO sterilization time required to inactivate all contaminant organisms was established at four hours. Two days of aerating at 120 F was found to dissipate all harmful ETO residuals from the suit. Donning and doffing procedures were clarified and written specifically for isolation rooms.

  16. Evaluation of the Biolog automated microbial identification system

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Stowe, R. P.; Obenhuber, D. C.; Groves, T. O.; Mishra, S. K.; Pierson, D. L.

    1992-01-01

    Biolog's identification system was used to identify 39 American Type Culture Collection reference taxa and 45 gram-negative isolates from water samples. Of the reference strains, 98% were identified to genus level and 76% to species level within 4 to 24 h. Identification of some authentic strains of Enterobacter, Klebsiella, and Serratia was unreliable. A total of 93% of the water isolates were identified.

  17. So, you want to be a systems biologist? Determinants for creating graduate curricula in systems biology.

    PubMed

    Voit, E O; Kemp, M L

    2011-01-01

    Systems biology is uniquely situated at the interface of computing, mathematics, engineering and the biological sciences. This positioning creates unique challenges and opportunities over other interdisciplinary studies when developing academic curricula. Integrative systems biology attempts to span the field from observation to innovation, and thus requires successful students to gain skills from mining to manipulation. The authors outline examples of graduate program structures, as well as curricular aspects and assessment metrics that can be customised around the environmental niche of the academic institution towards the formalisation of effective educational opportunities in systems biology. Some of this material was presented at the 2009 Foundations of Systems Biology in Engineering (FOSBE 2009) Conference in Denver, August 2009. PMID:21261404

  18. Smart interactive electronic system for monitoring the electromagnetic activities of biological systems

    NASA Astrophysics Data System (ADS)

    Popa, Sorin G.; Shahinpoor, Mohsen

    2001-08-01

    A novel electronic device capable of sensing and monitoring the myoelectric, polarization wave and electromagnetic activities of the biological systems and in particular the human body is presented. It is known that all the physical and chemical processes within biological systems are associated with polarization, depolarization waves from the brain, neural signals and myoelectric processes that manifest themselves in ionic and dipole motion. The technology developed in our laboratory is based on certain charge motion sensitive electronics. The electronic system developed is capable of sensing the electromagnetic activities of biological systems. The information obtained is then processed by specialized software in order to interpret it from physical and chemical point of view.

  19. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    PubMed Central

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  20. Systems biology: Potential to improve decision making in pharmaceutical development.

    PubMed

    Mujagic, Hamza

    2006-11-01

    On October 5, 2006, the New England Systems Biology Association held its first annual meeting at Bentley College, Waltham, Massachusetts. The meeting was organized under the title "Systems Biology in Drug Discovery" and was devoted to the presentation of current status and advances in this new and ever-expanding field in medical sciences. It brought together biologists, biochemists, physicians, physicists and engineers, as well as leaders in biopharmaceutical industry interested in this field of science and its possible impact on anticancer drug discovery. The meeting consisted of two sessions, one in the morning and one in the afternoon and a panel discussion at noon. Each session hosted four speakers and a panel discussion featuring five discussants. Each session also included keynote speakers. Systems biology can help to identify disease-specific molecules and drug-specific targets. This is especially useful as a new tool in diagnostic approaches and drug discovery. Using specific techniques like gene profiling, marker detection and kinase-specific substrate definition, and combining them with large databases and computational methods it is possible to look at the organism as a complex association of gene activation and control networks, and their products, and thus gain better and more realistic insights into disease processes and into drug mechanisms. PMID:17220963

  1. Designing the Cloud-based DOE Systems Biology Knowledgebase

    SciTech Connect

    Lansing, Carina S.; Liu, Yan; Yin, Jian; Corrigan, Abigail L.; Guillen, Zoe C.; Kleese van Dam, Kerstin; Gorton, Ian

    2011-09-01

    Systems Biology research, even more than many other scientific domains, is becoming increasingly data-intensive. Not only have advances in experimental and computational technologies lead to an exponential increase in scientific data volumes and their complexity, but increasingly such databases themselves are providing the basis for new scientific discoveries. To engage effectively with these community resources, integrated analyses, synthesis and simulation software is needed, regularly supported by scientific workflows. In order to provide a more collaborative, community driven research environment for this heterogeneous setting, the Department of Energy (DOE) has decided to develop a federated, cloud based cyber infrastructure - the Systems Biology Knowledgebase (Kbase). Pacific Northwest National Laboratory (PNNL) with its long tradition in data intensive science lead two of the five initial pilot projects, these two focusing on defining and testing the basic federated cloud-based system architecture and develop a prototype implementation. Hereby the community wide accessibility of biological data and the capability to integrate and analyze this data within its changing research context were seen as key technical functionalities the Kbase needed to enable. In this paper we describe the results of our investigations into the design of a cloud based federated infrastructure for: (1) Semantics driven data discovery, access and integration; (2) Data annotation, publication and sharing; (3) Workflow enabled data analysis; and (4) Project based collaborative working. We describe our approach, exemplary use cases and our prototype implementation that demonstrates the feasibility of this approach.

  2. From systems biology to analytic problems. Comment on the paper "On the interplay between mathematics and biology, hallmarks toward a new systems biology" by N. Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Bellouquid, Abdelghani

    2015-03-01

    The new systems approach in biological sciences proposed in [1] is a constructive reply to the hints of the scientific community [2] and opens new research paths toward developments of new mathematical methods to model the living matter. This comment focuses on some analytic and modeling issues which are somewhat related to my personal scientific knowhow. I look forward to the answer to them as a critical analysis on the topics presented in the following might contribute to research activity in the field and, specifically, to the complex interplay between mathematics and biology. Therefore, after some introductory comment, I pose, for each issue, a specific question.

  3. Macroscopic Quantum-Type Potentials in Theoretical Systems Biology

    PubMed Central

    Nottale, Laurent

    2014-01-01

    We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space—or of the underlying medium—can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations—geodesic, quantum-like, fluid mechanical, stochastic—of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided. PMID:24709901

  4. Synthetic fluorescent probes for studying copper in biological systems

    PubMed Central

    Cotruvo, Joseph A.; Aron, Allegra T.; Ramos-Torres, Karla M.; Chang, Christopher J.

    2015-01-01

    The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals. PMID:25692243

  5. Macroscopic quantum-type potentials in theoretical systems biology.

    PubMed

    Nottale, Laurent

    2013-01-01

    We review in this paper the use of the theory of scale relativity and fractal space-time as a tool particularly well adapted to the possible development of a future genuine systems theoretical biology. We emphasize in particular the concept of quantum-type potentials, since, in many situations, the effect of the fractality of space-or of the underlying medium-can be reduced to the addition of such a potential energy to the classical equations of motion. Various equivalent representations-geodesic, quantum-like, fluid mechanical, stochastic-of these equations are given, as well as several forms of generalized quantum potentials. Examples of their possible intervention in high critical temperature superconductivity and in turbulence are also described, since some biological processes may be similar in some aspects to these physical phenomena. These potential extra energy contributions could have emerged in biology from the very fractal nature of the medium, or from an evolutive advantage, since they involve spontaneous properties of self-organization, morphogenesis, structuration and multi-scale integration. Finally, some examples of applications of the theory to actual biological-like processes and functions are also provided. PMID:24709901

  6. Demonstration Bulletin: Aqueous Biological Treatment System (Fixed-Film Biodegradation), Biotrol, Inc

    EPA Science Inventory

    This patented biological treatment system, called the BioTrol Aqueous Treatment System (BATS)., uses an amended microbial population to achieve biological degradation. The system is considered amended when a specific microorganism is added to the indigenous microbial population ...

  7. On Mechanical Transitions in Biologically Motivated Soft Matter Systems

    NASA Astrophysics Data System (ADS)

    Fogle, Craig

    The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.

  8. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    PubMed Central

    He, Fei; Murabito, Ettore; Westerhoff, Hans V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  9. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    PubMed

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000

  10. Multiway modeling and analysis in stem cell systems biology

    PubMed Central

    2008-01-01

    Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate

  11. Wearable System for Acquisition and Monitoring of Biological Signals

    NASA Astrophysics Data System (ADS)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  12. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rumel, John D.

    1987-01-01

    Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here the biochemical stoichiometry is developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source.

  13. Algebraic Systems Biology: A Case Study for the Wnt Pathway.

    PubMed

    Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd

    2016-01-01

    Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics. PMID:26645985

  14. Recent Applications of Kirkwood-Buff Theory to Biological Systems

    PubMed Central

    Pierce, Veronica; Kang, Myungshim; Aburi, Mahalaxmi; Weerasinghe, Samantha; Smith, Paul E.

    2008-01-01

    The effect of cosolvents on biomolecular equilibria has traditionally been rationalized using simple binding models. More recently, a renewed interest in the use of Kirkwood-Buff (KB) theory to analyze solution mixtures has provided new information on the effects of osmolytes and denaturants and their interactions with biomolcules. Here we review the status of KB theory as applied to biological systems. In particular, the existing models of denaturation are analyzed in terms of KB theory, and the use of KB theory to interpret computer simulation data for these systems is discussed. PMID:18043873

  15. Drosophila melanogaster as a Model System to Study Mitochondrial Biology

    PubMed Central

    Fernández-Moreno, Miguel Angel; Farr, Carol L.; Kaguni, Laurie S.; Garesse, Rafael

    2016-01-01

    Summary Mitochondria play an essential role in cellular homeostasis. Although in the last few decades our knowledge of mitochondria has increased substantially, the mechanisms involved in the control of mitochondrial biogenesis remain largely unknown. The powerful genetics of Drosophila combined with a wealth of available cell and molecular biology techniques, make this organism an excellent system to study mitochondria. In this chapter we will review briefly the opportunities that Drosophila offers as a model system and describe in detail how to purify mitochondria from Drosophila and to perform the analysis of developmental gene expression using in situ hybridization. PMID:18314716

  16. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project.

    PubMed

    Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H

    2004-06-01

    Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today. PMID:17052114

  17. MarsQuest Online: Bringing exploration to the public

    NASA Astrophysics Data System (ADS)

    Harold, J.; Dusenbery, P.

    2004-12-01

    The last decade has seen an unprecedented number of missions to Mars. From orbiters to landers, we have been treated to an extraordinary series of views of the red planet. In 1997, the MarsQuest traveling exhibit was launched to help bring those views to the public. Three years later NSF funded MarsQuest Online (www.marsquestonline.org), a web project designed to extend the reach and scope of the MarsQuest exhibit. A partnership between TERC, the Space Science Institute, and JPL, MarsQuest Online provides visitors with a wide range of activities that incorporate imagery and data from Mars spacecraft. Activities challenge visitors to recognize which planet a picture is from, or identify features in high resolution imagery. Topographic and image data from Mars Global Surveyor are combined in 3D globes of Earth and Mars, allowing visitors to vertically stretch the planets while locating highest and lowest points, volcanoes, etc. While not designed specifically as a "citizen science" program, two parts of the site - the MER image archive, and the global 3D system -- could hold great potential for such activities. The MER image archive incorporates a real-time feed of raw images from the rover missions. Images are sortable by Mars day and camera, while a combination of panoramas and overhead views allow visitors to view the images in context and explore Mars along with the rovers. The global 3D system, still in development, is an expansion of the 3D activities currently on the site. This system will tap a global set of high resolution image and topographic tiles produced by JPL. This will allow visitors to fly seamlessly over Mars in 3D at the full resolution of these datasets. In addition, the system will include an annotation system to allow for the authoring of "tours" of the planet. We will discuss both of the site components, their capabilities, and potential for the future.

  18. Scaling Reversible Adhesion in Synthetic and Biological Systems

    NASA Astrophysics Data System (ADS)

    Bartlett, Michael; Irschick, Duncan; Crosby, Alfred

    2013-03-01

    High capacity, easy release polymer adhesives, as demonstrated by a gecko's toe, present unique opportunities for synthetic design. However, without a framework that connects biological and synthetic adhesives from basic nanoscopic features to macroscopic systems, synthetic mimics have failed to perform favorably at large length scales. Starting from an energy balance, we develop a scaling approach to understand unstable interfacial fracture over multiple length scales. The simple theory reveals that reversibly adhesive polymers do not rely upon fibrillar features but require contradicting attributes: maximum compliance normal to the substrate and minimum compliance in the loading direction. We use this counterintuitive criterion to create reversible, easy release adhesives at macroscopic sizes (100 cm2) with unprecedented force capacities on the order of 3000 N. Importantly, we achieve this without fibrillar features, supporting our predictions and emphasizing the importance of subsurface anatomy in biological adhesive systems. Our theory describes adhesive force capacity as a function of material properties and geometry and is supported by over 1000 experiments, spanning both synthetic and biological adhesives, with agreement over 14 orders of magnitude in adhesive force.

  19. Parameterizations for ice nucleation in biological and atmospheric systems.

    PubMed

    Koop, Thomas; Zobrist, Bernhard

    2009-12-14

    Ice nucleation is an important process in numerous environmental systems such as atmospheric aerosol droplets or biological tissues. Here we analyze two widely used approaches for describing homogeneous ice nucleation in aqueous solutions with respect to their applicability to heterogeneous ice nucleation processes: the lambda approach and the water-activity-based approach. We study experimentally the heterogeneous ice nucleation behaviour of mineral dust particles and biological ice nuclei (Snomax; Pseudomonas syringae) in aqueous solutions as a function of solute concentration for various solutes (sulfuric acid, ammonium sulfate, glucose, and poly(ethylene glycol) with two different molar masses of 400 and 6000 g mol(-1)). We show that the ice nucleation temperature and the corresponding lambda values depend on both the type of ice nucleus and the type of solute, while the water-activity-based approach depends only on the type of ice nucleus when the solution water activity is known. Finally, we employ both approaches to the study of ice nucleation in biological systems such as the supercooling point of living larvae and insects. We show that the behaviour of freeze tolerant and freeze avoiding species can be described using the two approaches and we discuss how the analysis can be used to interpret experimental results of the freezing behaviour of living species. PMID:19924318

  20. Design of fluidized-bed, biological denitrification systems

    SciTech Connect

    Patton, B.D.; Hancher, C.W.; Pitt, W.W.; Walker, J.F.

    1982-01-01

    Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO/sub 3//sup -/)/m/sup 3/) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO/sub 3//sup -/)/m/sup 3/ range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams.

  1. Systems analysis of biological networks in skeletal muscle function

    PubMed Central

    Smith, Lucas R.; Meyer, Gretchen; Lieber, Richard L.

    2014-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation–contraction coupling enabling Ca2+ release. Ca2+ then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  2. Systems analysis of biological networks in skeletal muscle function.

    PubMed

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  3. Local therapy, systemic benefit: challenging the paradigm of biological predeterminism.

    PubMed

    Kurtz, J M

    2006-04-01

    This paper briefly reviews the historical evolution of paradigms that have been purported to characterise the clinical behaviour of breast cancer, with the intention of guiding treatment approaches. Results from randomised clinical trials and the explosion of knowledge in the area of cancer biology have discredited the monolithic paradigms that had dominated thinking about breast cancer in the past. Contemporary notions of breast cancer biology recognise that, although some cancers disseminate well before becoming clinically detectable, acquisition of a metastatic phenotype can occur at any point (or not at all) in the local evolution of the tumour. As a consequence, both systemic and timely local--regional therapies can be expected to influence disease dissemination and patient survival. This is consistent with results observed in clinical trials, overviews of which indicate that prevention of four local recurrences will, on the average, prevent one death from breast cancer. Optimisation of local-regional treatment is an important goal in breast cancer management. PMID:16605046

  4. Biological tissue identification using a multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Delporte, Céline; Sautrot, Sylvie; Ben Chouikha, Mohamed; Viénot, Françoise; Alquié, Georges

    2013-02-01

    A multispectral imaging system enabling biological tissue identifying and differentiation is presented. The measurement of β(λ) spectral radiance factor cube for four tissue types (beef muscle, pork muscle, turkey muscle and beef liver) present in the same scene was carried out. Three methods for tissue identification are proposed and their relevance evaluated. The first method correlates the scene spectral radiance factor with tissue database characteristics. This method gives detection rates ranging from 63.5 % to 85 %. The second method correlates the scene spectral radiance factor derivatives with a database of tissue β(λ) derivatives. This method is more efficient than the first one because it gives detection rates ranging from 79 % to 89 % with over-detection rates smaller than 0.2 %. The third method uses the biological tissue spectral signature. It enhances contrast in order to afford tissue differentiation and identification.

  5. A systems biology approach reveals common metastatic pathways in osteosarcoma

    PubMed Central

    2012-01-01

    Background Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. The survival rate of patients with metastatic disease remains very dismal. Nevertheless, metastasis is a complex process and a single-level analysis is not likely to identify its key biological determinants. In this study, we used a systems biology approach to identify common metastatic pathways that are jointly supported by both mRNA and protein expression data in two distinct human metastatic OS models. Results mRNA expression microarray and N-linked glycoproteomic analyses were performed on two commonly used isogenic pairs of human metastatic OS cell lines, namely HOS/143B and SaOS-2/LM7. Pathway analysis of the differentially regulated genes and glycoproteins separately revealed pathways associated to metastasis including cell cycle regulation, immune response, and epithelial-to-mesenchymal-transition. However, no common significant pathway was found at both genomic and proteomic levels between the two metastatic models, suggesting a very different biological nature of the cell lines. To address this issue, we used a topological significance analysis based on a “shortest-path” algorithm to identify topological nodes, which uncovered additional biological information with respect to the genomic and glycoproteomic profiles but remained hidden from the direct analyses. Pathway analysis of the significant topological nodes revealed a striking concordance between the models and identified significant common pathways, including “Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton remodeling/Cytoskeleton remodeling”, and “Cell adhesion/Chemokines and adhesion”. Of these, the “Cytoskeleton remodeling/TGF/WNT” was the top ranked common pathway from the topological analysis of the genomic and proteomic profiles in the two metastatic models. The up-regulation of proteins in the “Cytoskeleton remodeling/TGF/WNT” pathway in the SaOS-2/LM7 and HOS/143B models

  6. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  7. Critical Assessment of Information Extraction Systems in Biology

    PubMed Central

    Hirschman, Lynette; Yeh, Alexander; Valencia, Alfonso

    2003-01-01

    An increasing number of groups are now working in the area of text mining, focusing on a wide range of problems and applying both statistical and linguistic approaches. However, it is not possible to compare the different approaches, because there are no common standards or evaluation criteria; in addition, the various groups are addressing different problems, often using private datasets. As a result, it is impossible to determine how well the existing systems perform, and particularly what performance level can be expected in real applications. This is similar to the situation in text processing in the late 1980s, prior to the Message Understanding Conferences (MUCs). With the introduction of a common evaluation and standardized evaluation metrics as part of these conferences, it became possible to compare approaches, to identify those techniques that did or did not work and to make progress. This progress has resulted in a common pipeline of processes and a set of shared tools available to the general research community. The field of biology is ripe for a similar experiment. Inspired by this example, the BioLINK group (Biological Literature, Information and Knowledge [1]) is organizing a CASP-like evaluation for the text data-mining community applied to biology. The two main tasks specifically address two major bottlenecks for text mining in biology: (1) the correct detection of gene and protein names in text; and (2) the extraction of functional information related to proteins based on the GO classification system. For further information and participation details, see http://www.pdg.cnb.uam.es/BioLink/BioCreative.eval.html PMID:18629031

  8. The WebQuest: constructing creative learning.

    PubMed

    Sanford, Julie; Townsend-Rocchiccioli, Judith; Trimm, Donna; Jacobs, Mike

    2010-10-01

    An exciting expansion of online educational opportunities is occurring in nursing. The use of a WebQuest as an inquiry-based learning activity can offer considerable opportunity for nurses to learn how to analyze and synthesize critical information. A WebQuest, as a constructivist, inquiry-oriented strategy, requires learners to use higher levels of thinking as a means to analyze and apply complex information, providing an exciting online teaching and learning strategy. A WebQuest is an inquiry-oriented lesson format in which most or all of the information learners work with comes from the web. This article provides an overview of the WebQuest as a teaching strategy and provides examples of its use. PMID:20506929

  9. Microbial diversity of biological filters in recirculating aquaculture systems.

    PubMed

    Schreier, Harold J; Mirzoyan, Natella; Saito, Keiko

    2010-06-01

    Development of environmentally sustainable farming of marine and freshwater species using recirculating aquaculture systems (RASs) requires a complete understanding of the biological component involved in wastewater treatment. This component integrates biofilters composed of microbial communities whose structure, dynamics, and activities are responsible for system success. Engineering highly efficient, environmentally sound, disease-free, and economically viable systems necessitates a thorough knowledge of microbial processes involved in all facets of RAS biofilters and has only recently been the focus of comprehensive studies. These studies have included the application of molecular tools to characterize community diversity and have identified key processes useful for improving system performance. In this paper we summarize the current understanding of the microbial diversity and physiology of RAS biofilters and discuss directions for future studies. PMID:20371171

  10. Witnessing Quantum Coherence: from solid-state to biological systems

    PubMed Central

    Li, Che-Ming; Lambert, Neill; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco

    2012-01-01

    Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent “quantumness” still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two “quantum witnesses” to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems. PMID:23185690

  11. Mass balances for a biological life support system simulation model

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  12. Epigenomics and the concept of degeneracy in biological systems

    PubMed Central

    Mason, Paul H.; Barron, Andrew B.

    2014-01-01

    Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy—referring to the multiple pathways that a system recruits to achieve functional plasticity—is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability. PMID:24335757

  13. Systems biology of the autophagy-lysosomal pathway

    PubMed Central

    Jegga, Anil G; Schneider, Lonnie; Ouyang, Xiaosen

    2011-01-01

    The mechanisms of the control and activity of the autophagy-lysosomal protein degradation machinery are emerging as an important theme for neurodevelopment and neurodegeneration. However, the underlying regulatory and functional networks of known genes controlling autophagy and lysosomal function and their role in disease are relatively unexplored. We performed a systems biology-based integrative computational analysis to study the interactions between molecular components and to develop models for regulation and function of genes involved in autophagy and lysosomal function. Specifically, we analyzed transcriptional and microRNA-based post-transcriptional regulation of these genes and performed functional enrichment analyses to understand their involvement in nervous system-related diseases and phenotypes. Transcriptional regulatory network analysis showed that binding sites for transcription factors, SREBP1, USF, AP-1 and NFE2, are common among autophagy and lysosomal genes. MicroRNA enrichment analysis revealed miR-130, 98, 124, 204 and 142 as the putative post-transcriptional regulators of the autophagy-lysosomal pathway genes. Pathway enrichment analyses revealed that the mTOR and insulin signaling pathways are important in the regulation of genes involved in autophagy. In addition, we found that glycosaminoglycan and glycosphingolipid pathways also make a major contribution to lysosomal gene regulation. The analysis confirmed the known contribution of the autophagy-lysosomal genes to Alzheimer and Parkinson diseases and also revealed potential involvement in tuberous sclerosis, neuronal ceroidlipofuscinoses, sepsis and lung, liver and prostatic neoplasms. To further probe the impact of autophagy-lysosomal gene deficits on neurologically-linked phenotypes, we also mined the mouse knockout phenotype data for the autophagy-lysosomal genes and found them to be highly predictive of nervous system dysfunction. Overall this study demonstrates the utility of systems

  14. Studies of neurotrophin biology in the developing trigeminal system

    PubMed Central

    DAVIES, ALUN M.

    1997-01-01

    The accessibility of the primary sensory neurons of the trigeminal system at stages throughout their development in avian and mammalian embryos and the ease with which these neurons can be studied in vivo has facilitated investigation of several fundamental aspects of neurotrophin biology. Studies of the timing and sequence of action of neurotrophins and the expression of neurotrophins and their receptors in this well characterised neuronal system have led to a detailed understanding of the functions of neurotrophins in neuronal development. The concepts of neurotrophin independent survival, neurotrophin switching and neurotrophin cooperativity have largely arisen from work on the trigeminal system. Moreover, in vitro studies of trigeminal neurons provided some of the first evidence that the neurotrophin requirements of sensory neurons are related to sensory modality. The developing trigeminal system has been studied most extensively in mice and chickens, each of which has particular advantages for understanding different aspects of neurotrophin biology. In this review, I will outline these advantages and describe some of the main findings that have arisen from this work. PMID:9449067

  15. Yeast Two-Hybrid, a Powerful Tool for Systems Biology

    PubMed Central

    Brückner, Anna; Polge, Cécile; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe

    2009-01-01

    A key property of complex biological systems is the presence of interaction networks formed by its different components, primarily proteins. These are crucial for all levels of cellular function, including architecture, metabolism and signalling, as well as the availability of cellular energy. Very stable, but also rather transient and dynamic protein-protein interactions generate new system properties at the level of multiprotein complexes, cellular compartments or the entire cell. Thus, interactomics is expected to largely contribute to emerging fields like systems biology or systems bioenergetics. The more recent technological development of high-throughput methods for interactomics research will dramatically increase our knowledge of protein interaction networks. The two most frequently used methods are yeast two-hybrid (Y2H) screening, a well established genetic in vivo approach, and affinity purification of complexes followed by mass spectrometry analysis, an emerging biochemical in vitro technique. So far, a majority of published interactions have been detected using an Y2H screen. However, with the massive application of this method, also some limitations have become apparent. This review provides an overview on available yeast two-hybrid methods, in particular focusing on more recent approaches. These allow detection of protein interactions in their native environment, as e.g. in the cytosol or bound to a membrane, by using cytosolic signalling cascades or split protein constructs. Strengths and weaknesses of these genetic methods are discussed and some guidelines for verification of detected protein-protein interactions are provided. PMID:19582228

  16. Computational Systems Biology in Cancer: Modeling Methods and Applications

    PubMed Central

    Materi, Wayne; Wishart, David S.

    2007-01-01

    In recent years it has become clear that carcinogenesis is a complex process, both at the molecular and cellular levels. Understanding the origins, growth and spread of cancer, therefore requires an integrated or system-wide approach. Computational systems biology is an emerging sub-discipline in systems biology that utilizes the wealth of data from genomic, proteomic and metabolomic studies to build computer simulations of intra and intercellular processes. Several useful descriptive and predictive models of the origin, growth and spread of cancers have been developed in an effort to better understand the disease and potential therapeutic approaches. In this review we describe and assess the practical and theoretical underpinnings of commonly-used modeling approaches, including ordinary and partial differential equations, petri nets, cellular automata, agent based models and hybrid systems. A number of computer-based formalisms have been implemented to improve the accessibility of the various approaches to researchers whose primary interest lies outside of model development. We discuss several of these and describe how they have led to novel insights into tumor genesis, growth, apoptosis, vascularization and therapy. PMID:19936081

  17. Laminated plastic microfluidic components for biological and chemical systems

    SciTech Connect

    Martin, P.M.; Matson, D.W.; Bennett, W.D.; Lin, Y.; Hammerstrom, D.J.

    1999-07-01

    Laminated plastic microfluidic components are being developed for biological testing systems and chemical sensors. Applications include a DNA thermal cycler, DNA analytical systems, electrophoretic flow systems, dialysis systems, and metal sensors for ground water. This article describes fabrication processes developed for these plastic microfluidic components, and the fabrication of a chromium metal sensor and a microdialysis device. Most of the components have a stacked architecture. Using this architecture, the fluid flows, or is pumped through, as many as nine laminated functional levels. Functions include pumping, mixing, reaction, detection, reservoirs, separations, and electronics. Polyimide, poly(methylmethacrylate) (PMMA), and polycarbonate materials with thicknesses between 25 and 125 {mu}m are used to construct the components. This makes the components low cost, inert to many biological fluids and chemicals, and disposable. The components are fabricated by excimer laser micromachining the microchannel patterns and microstructures in the various laminates. In some cases, micropumps are integrated into these components to move the fluids. Vias and interconnects are also cut by the laser and integrated with micropumps. The laminates are sealed and bonded by adhesive and thermal processes and are leak tight. The parts withstand pressures as high as 790 kPa. Typical channel widths are 50 to 100 {mu}m, with aspect ratios near 5. {copyright} {ital 1999 American Vacuum Society.}

  18. Computing the structural influence matrix for biological systems.

    PubMed

    Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco

    2016-06-01

    We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics. PMID:26395779

  19. The MarsQuest Education Project

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Lee, S. W.

    1998-09-01

    The upcoming decade of Mars exploration will provide numerous opportunities for a variety of educational efforts. One of these, MarsQuest, is a travelling exhibition being developed by the Space Science Institute with partial funding from NSF and NASA. MarsQuest's Education and Outreach Program will take advantage of the many Mars-related educational resources currently available, as well as those in the planning stages. Materials reflecting the exhibit content will be disseminated to teachers at sites where the exhibit is visiting and via presentations at annual and regional meetings of the National Science Teachers Association, and via a web site containing interactive educational resources. The goals of the MarsQuest Education Program are to: 1) Make use of the rich educational resources and coincident occurrence of ongoing Mars missions; 2) Captivate broad public interest in Mars exploration and use it to promote scientific literacy; 3) Provide opportunities for teachers, students, and families to connect in real-time to the Mars missions, the people involved, and the science experiments underway; 4) Enhance the overall education experience of the MarsQuest exhibition. The MarsQuest Education Program is focused on teacher training/enhancement and parental involvement. The main mechanism for teacher enhancement and encouragement of parental participation will be through two education workshops organized by MarsQuest personnel at each host site. The first will target museum staff and "master" K-12 teachers. The second will target local K-12 teachers. The MarsQuest Education Program will also provide museum staff, exhibit liaisons, and astronomy volunteers information on offering one-day workshops designed for family groups. The MarsQuest project will provide a wide ranging dissemination effort, ultimately reaching an estimated two to three million people during its three-year tour.

  20. Systems biology and p4 medicine: past, present, and future.

    PubMed

    Hood, Leroy

    2013-04-01

    Studying complex biological systems in a holistic rather than a "one gene or one protein" at a time approach requires the concerted effort of scientists from a wide variety of disciplines. The Institute for Systems Biology (ISB) has seamlessly integrated these disparate fields to create a cross-disciplinary platform and culture in which "biology drives technology drives computation." To achieve this platform/culture, it has been necessary for cross-disciplinary ISB scientists to learn one another's languages and work together effectively in teams. The focus of this "systems" approach on disease has led to a discipline denoted systems medicine. The advent of technological breakthroughs in the fields of genomics, proteomics, and, indeed, the other "omics" is catalyzing striking advances in systems medicine that have and are transforming diagnostic and therapeutic strategies. Systems medicine has united genomics and genetics through family genomics to more readily identify disease genes. It has made blood a window into health and disease. It is leading to the stratification of diseases (division into discrete subtypes) for proper impedance match against drugs and the stratification of patients into subgroups that respond to environmental challenges in a similar manner (e.g. response to drugs, response to toxins, etc.). The convergence of patient-activated social networks, big data and their analytics, and systems medicine has led to a P4 medicine that is predictive, preventive, personalized, and participatory. Medicine will focus on each individual. It will become proactive in nature. It will increasingly focus on wellness rather than disease. For example, in 10 years each patient will be surrounded by a virtual cloud of billions of data points, and we will have the tools to reduce this enormous data dimensionality into simple hypotheses about how to optimize wellness and avoid disease for each individual. P4 medicine will be able to detect and treat perturbations in

  1. Unmanned Aircraft Systems complement biologging in spatial ecology studies.

    PubMed

    Mulero-Pázmány, Margarita; Barasona, Jose Ángel; Acevedo, Pelayo; Vicente, Joaquín; Negro, Juan José

    2015-11-01

    The knowledge about the spatial ecology and distribution of organisms is important for both basic and applied science. Biologging is one of the most popular methods for obtaining information about spatial distribution of animals, but requires capturing the animals and is often limited by costs and data retrieval. Unmanned Aircraft Systems (UAS) have proven their efficacy for wildlife surveillance and habitat monitoring, but their potential contribution to the prediction of animal distribution patterns and abundance has not been thoroughly evaluated. In this study, we assess the usefulness of UAS overflights to (1) get data to model the distribution of free-ranging cattle for a comparison with results obtained from biologged (GPS-GSM collared) cattle and (2) predict species densities for a comparison with actual density in a protected area. UAS and biologging derived data models provided similar distribution patterns. Predictions from the UAS model overestimated cattle densities, which may be associated with higher aggregated distributions of this species. Overall, while the particular researcher interests and species characteristics will influence the method of choice for each study, we demonstrate here that UAS constitute a noninvasive methodology able to provide accurate spatial data useful for ecological research, wildlife management and rangeland planning. PMID:26640661

  2. Contextualizing context for synthetic biology--identifying causes of failure of synthetic biological systems.

    PubMed

    Cardinale, Stefano; Arkin, Adam Paul

    2012-07-01

    Despite the efforts that bioengineers have exerted in designing and constructing biological processes that function according to a predetermined set of rules, their operation remains fundamentally circumstantial. The contextual situation in which molecules and single-celled or multi-cellular organisms find themselves shapes the way they interact, respond to the environment and process external information. Since the birth of the field, synthetic biologists have had to grapple with contextual issues, particularly when the molecular and genetic devices inexplicably fail to function as designed when tested in vivo. In this review, we set out to identify and classify the sources of the unexpected divergences between design and actual function of synthetic systems and analyze possible methodologies aimed at controlling, if not preventing, unwanted contextual issues. PMID:22649052

  3. External noise control in inherently stochastic biological systems.

    PubMed

    Zheng, Likun; Chen, Meng; Nie, Qing

    2012-11-01

    Biological systems are often subject to external noise from signal stimuli and environmental perturbations, as well as noises in the intracellular signal transduction pathway. Can different stochastic fluctuations interact to give rise to new emerging behaviors? How can a system reduce noise effects while still being capable of detecting changes in the input signal? Here, we study analytically and computationally the role of nonlinear feedback systems in controlling external noise with the presence of large internal noise. In addition to noise attenuation, we analyze derivatives of Fano factor to study systems' capability of differentiating signal inputs. We find effects of internal noise and external noise may be separated in one slow positive feedback loop system; in particular, the slow loop can decrease external noise and increase robustness of signaling with respect to fluctuations in rate constants, while maintaining the signal output specific to the input. For two feedback loops, we demonstrate that the influence of external noise mainly depends on how the fast loop responds to fluctuations in the input and the slow loop plays a limited role in determining the signal precision. Furthermore, in a dual loop system of one positive feedback and one negative feedback, a slower positive feedback always leads to better noise attenuation; in contrast, a slower negative feedback may not be more beneficial. Our results reveal interesting stochastic effects for systems containing both extrinsic and intrinsic noises, suggesting novel noise filtering strategies in inherently stochastic systems. PMID:23213267

  4. Multimode lasers as analogs of complex biological systems (a survey)

    NASA Astrophysics Data System (ADS)

    Danilov, O. B.; Rosanov, N. N.; Solov'ev, N. A.; Soms, L. N.

    2016-04-01

    Simulating the activity of complex biological systems, in particular, the human brain, is a topical problem the solution of which is necessary both for understanding their functioning and for developing new classes of computational system based on operating principles of the brain. Some features and analogies that can be found in the operation of laser systems and brain and used for developing new generation computational systems are discussed. The appropriateness of such analogies is justified by the fact that both laser systems and the brain are open (interacting with the environment) dissipative spatially distributed nonlinear systems. Therefore, laser optical systems and, in particular, systems with dissipative optical solitons offer an opportunity to experimentally and theoretically model some important cognitive brain functions. One of particularities of the brain operation is the ability to manipulate images. Proceeding from this, in this work, problems related to generation and amplification with laser of spatial structures (images), as well as to amplification of signals coming to it from outside are discussed.

  5. The Quest for Molecular Regulation Underlying Unisexual Flower Development

    PubMed Central

    Sobral, Rómulo; Silva, Helena G.; Morais-Cecílio, Leonor; Costa, Maria M. R.

    2016-01-01

    The understanding of the molecular mechanisms responsible for the making of a unisexual flower has been a long-standing quest in plant biology. Plants with male and female flowers can be divided mainly into two categories: dioecious and monoecious, and both sexual systems co-exist in nature in ca of 10% of the angiosperms. The establishment of male and female traits has been extensively described in a hermaphroditic flower and requires the interplay of networks, directly and indirectly related to the floral organ identity genes including hormonal regulators, transcription factors, microRNAs, and chromatin-modifying proteins. Recent transcriptomic studies have been uncovering the molecular processes underlying the establishment of unisexual flowers and there are many parallelisms between monoecious, dioecious, and hermaphroditic individuals. Here, we review the paper entitled “Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber” published in 2014 in the Frontiers of Plant Science (volume 5 |Article 599) and discussed it in the context of recent studies with other dioecious and monoecious plants that utilized high-throughput platforms to obtain transcriptomic profiles of male and female unisexual flowers. In some unisexual flowers, the developmental programs that control organ initiation fail and male or female organs do not form, whereas in other species, organ initiation and development occur but they abort or arrest during different species-specific stages of differentiation. Therefore, a direct comparison of the pathways responsible for the establishment of unisexual flowers in different species are likely to reveal conserved modules of gene regulatory hubs involved in stamen or carpel development, as well as differences that reflect the different stages of development in which male and/or female organ arrest or loss-of-function occurs. PMID:26925078

  6. A large-scale cryoelectronic system for biological sample banking

    NASA Astrophysics Data System (ADS)

    Shirley, Stephen G.; Durst, Christopher H. P.; Fuchs, Christian C.; Zimmermann, Heiko; Ihmig, Frank R.

    2009-11-01

    We describe a polymorphic electronic infrastructure for managing biological samples stored over liquid nitrogen. As part of this system we have developed new cryocontainers and carrier plates attached to Flash memory chips to have a redundant and portable set of data at each sample. Our experimental investigations show that basic Flash operation and endurance is adequate for the application down to liquid nitrogen temperatures. This identification technology can provide the best sample identification, documentation and tracking that brings added value to each sample. The first application of the system is in a worldwide collaborative research towards the production of an AIDS vaccine. The functionality and versatility of the system can lead to an essential optimization of sample and data exchange for global clinical studies.

  7. Identification of dynamical biological systems based on random effects models.

    PubMed

    Batista, Levy; Bastogne, Thierry; Djermoune, El-Hadi

    2015-01-01

    System identification is a data-driven modeling approach more and more used in biology and biomedicine. In this application context, each assay is always repeated to estimate the response variability. The inference of the modeling conclusions to the whole population requires to account for the inter-individual variability within the modeling procedure. One solution consists in using random effects models but up to now no similar approach exists in the field of dynamical system identification. In this article, we propose a new solution based on an ARX (Auto Regressive model with eXternal inputs) structure using the EM (Expectation-Maximisation) algorithm for the estimation of the model parameters. Simulations show the relevance of this solution compared with a classical procedure of system identification repeated for each subject. PMID:26736981

  8. Systems biology driven software design for the research enterprise

    PubMed Central

    Boyle, John; Cavnor, Christopher; Killcoyne, Sarah; Shmulevich, Ilya

    2008-01-01

    Background In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools. Results We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model. Conclusion By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data. PMID:18578887

  9. Systems Biology: New Approaches to Old Environmental Health Problems

    PubMed Central

    Toscano, William A.; Oehlke, Kristen P.

    2005-01-01

    The environment plays a pivotal role as a human health determinant and presence of hazardous pollutants in the environment is often implicated in human disease. That pollutants cause human diseases however is often controversial because data connecting exposure to environmental hazards and human diseases are not well defined, except for some cancers and syndromes such as asthma. Understanding the complex nature of human-environment interactions and the role they play in determining the state of human health is one of the more compelling problems in public health. We are becoming more aware that the reductionist approach promulgated by current methods has not, and will not yield answers to the broad questions of population health risk analysis. If substantive applications of environment-gene interactions are to be made, it is important to move to a systems level approach, to take advantage of epidemiology and molecular genomic advances. Systems biology is the integration of genomics, transcriptomics, proteomics, and metabolomics together with computer technology approaches to elucidate environmentally caused disease in humans. We discuss the applications of environmental systems biology as a route to solution of environmental health problems. PMID:16705795

  10. Outline of a concept for organismic systems biology.

    PubMed

    Rosslenbroich, Bernd

    2011-06-01

    For several decades experimental biology and medicine have both been accompanied by a dichotomy between reductionistic and anti-reductionistic approaches. In the present paper it is proposed that this dichotomy can be overcome if it is accepted that research on different organizational levels of the organism is necessary. The relevance of such an approach becomes much clearer using an appropriate concept of the organism. The proposed concept is called "organismic systems biology" and is a compilation of three related theories, which are basically in line with considerations of many other organismic thinkers. However, it is argued, that this integrated concept is able to clarify basic assumptions of organismic. The theories are: the systems approach of Paul Weiss, the developmental systems theory and the theory of increasing autonomy in evolution. The hypothesis is that the different levels of organismic functions, which are described by these theories, are necessarily interrelated, thus generating the autonomy of the organism. This principle of interrelation needs to be regarded in scientific reasoning and can be crucial for solving many medical problems. PMID:21729754

  11. RNA Systems Biology for Cancer: From Diagnosis to Therapy.

    PubMed

    Amirkhah, Raheleh; Farazmand, Ali; Wolkenhauer, Olaf; Schmitz, Ulf

    2016-01-01

    It is due to the advances in high-throughput omics data generation that RNA species have re-entered the focus of biomedical research. International collaborate efforts, like the ENCODE and GENCODE projects, have spawned thousands of previously unknown functional non-coding RNAs (ncRNAs) with various but primarily regulatory roles. Many of these are linked to the emergence and progression of human diseases. In particular, interdisciplinary studies integrating bioinformatics, systems biology, and biotechnological approaches have successfully characterized the role of ncRNAs in different human cancers. These efforts led to the identification of a new tool-kit for cancer diagnosis, monitoring, and treatment, which is now starting to enter and impact on clinical practice. This chapter is to elaborate on the state of the art in RNA systems biology, including a review and perspective on clinical applications toward an integrative RNA systems medicine approach. The focus is on the role of ncRNAs in cancer. PMID:26677189

  12. Ion beam induced fluorescence imaging in biological systems

    NASA Astrophysics Data System (ADS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-04-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique.

  13. Gene Therapy from the perspective of Systems Biology

    PubMed Central

    Mac Gabhann, Feilim; Annex, Brian H.

    2010-01-01

    Gene therapy research has expanded from its original concept of replacing absent or defective DNA with functional DNA for transcription. Genetic material may be delivered via multiple vectors, including naked plasmid DNA, viruses and even cells with the goal of increasing gene expression; and the targeting of specific tissues or cell types is aimed at decreasing risks of systemic or side effects. As with the development of any drug, there is an amount of empiricism in the choice of gene target, route of administration, dosing and in particular the scaling-up from pre-clinical models to clinical trials. Systems Biology, whose arsenal includes high-throughput experimental and computational studies that account for the complexities of host-disease-therapy interactions, holds significant promise in aiding the development and optimization of gene therapies, including personalized therapies and the identification of biomarkers for success of these strategies. In this review we describe some of the obstacles and successes in gene therapy, using the specific example of growth factor gene delivery to promote angiogenesis and blood vessel remodeling in ischemic diseases; we also make references to anti-angiogenic gene therapy in cancer. The opportunities for Systems Biology and in silico modeling to improve on current outcomes are highlighted. PMID:20886389

  14. Casual Games and Casual Learning About Human Biological Systems

    NASA Astrophysics Data System (ADS)

    Price, C. Aaron; Gean, Katherine; Christensen, Claire G.; Beheshti, Elham; Pernot, Bryn; Segovia, Gloria; Person, Halcyon; Beasley, Steven; Ward, Patricia

    2016-02-01

    Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show modest improvement in scientific attitudes, ability to identify human biological systems and in the children's ability to describe how those systems work together in real-world scenarios. Interviews reveal that children drew upon their prior school learning as they played the game. Also, on the surface they perceived the game as mainly entertainment but were easily able to discern learning outcomes when prompted. Implications for the design of casual games and how they can be used to enhance transfer of knowledge from the classroom to everyday life are discussed.

  15. Caenorhabditis elegans - A model system for space biology studies

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas E.; Nelson, Gregory A.

    1991-01-01

    The utility of the nematode Caenorhabditis elegans in studies spanning aspects of development, aging, and radiobiology is reviewed. These topics are interrelated via cellular and DNA repair processes especially in the context of oxidative stress and free-radical metabolism. The relevance of these research topics to problems in space biology is discussed and properties of the space environment are outlined. Exposure to the space-flight environment can induce rapid changes in living systems that are similar to changes occurring during aging; manipulation of these environmental parameters may represent an experimental strategy for studies of development and senescence. The current and future opportunities for such space-flight experimentation are presented.

  16. The Search for Covalently Ligandable Proteins in Biological Systems.

    PubMed

    Badshah, Syed Lal; Mabkhot, Yahia Nasser

    2016-01-01

    This commentary highlights the recent article published in Nature, June 2016, titled: "Proteome-wide covalent ligand discovery in native biological systems". They screened the whole proteome of different human cell lines and cell lysates. Around 700 druggable cysteines in the whole proteome were found to bind the electrophilic fragments in both active and inactive states of the proteins. Their experiment and computational docking results agreed with one another. The usefulness of this study in terms of bringing a change in medicinal chemistry is highlighted here. PMID:27598117

  17. Biological systems drug infusion controller using FREN with sliding bounds.

    PubMed

    Chidentree, Treesatayapun; Sermsak, Uatrongjit

    2006-11-01

    In this paper, a direct adaptive control for drug infusion of biological systems is presented. The proposed controller is accomplished using our adaptive network called Fuzzy Rules Emulated Network (FREN). The structure of FREN resembles the human knowledge in the form of fuzzy IF-THEN rules. After selecting the initial value of network's parameters, an on-line adaptive process based on Lyapunov's criteria is performed to improve the controller performance. The control signal from FREN is designed to keep in the region which is calculated by the modified Sliding Mode Control (SMC). The simulation results indicate that the proposed algorithm can satisfy the setting point and the robust performance. PMID:17073348

  18. Insights into gliomagenesis: systems biology unravels key pathways

    PubMed Central

    2009-01-01

    Technological advances have enabled a better characterization of all the genetic alterations in tumors. A picture that emerges is that tumor cells are much more genetically heterogeneous than originally expected. Thus, a critical issue in cancer genomics is the identification of the genetic alterations that drive the genesis of a tumor. Recently, a systems biology approach has been used to characterize such alterations and find associations between them and the process of gliomagenesis. Here, we discuss some implications of this strategy for the development of new therapeutic and diagnostic protocols for cancer. PMID:19863775

  19. Yeast Systems Biology: Our Best Shot at Modeling a Cell

    PubMed Central

    Boone, Charles

    2014-01-01

    THE Genetics Society of America’s Edward Novitski Prize recognizes an extraordinary level of creativity and intellectual ingenuity in the solution of significant problems in genetics research. The 2014 recipient, Charles Boone, has risen to the top of the emergent discipline of postgenome systems biology by focusing on the global mapping of genetic interaction networks. Boone invented the synthetic genetic array (SGA) technology, which provides an automated method to cross thousands of strains carrying precise mutations and map large-scale yeast genetic interactions. These network maps offer researchers a functional wiring diagram of the cell, which clusters genes into specific pathways and reveals functional connections. PMID:25316779

  20. Rigid Biological Systems as Models for Synthetic Composites

    NASA Astrophysics Data System (ADS)

    Mayer, George

    2005-11-01

    Advances that have been made in understanding the mechanisms underlying the mechanical behavior of a number of biological materials (namely mollusk shells and sponge spicules) are discussed here. Attempts at biomimicry of the structure of a nacreous layer of a mollusk shell have shown reasonable success. However, they have revealed additional issues that must be addressed if new synthetic composite materials that are based on natural systems are to be constructed. Some of the important advantages and limitations of copying from nature are also described here.

  1. A complex systems approach to computational molecular biology

    SciTech Connect

    Lapedes, A. |

    1993-09-01

    We report on the containing research program at Santa Fe Institute that applies complex systems methodology to computational molecular biology. Two aspects are stressed here are the use of co-evolving adaptive neutral networks for determining predictable protein structure classifications, and the use of information theory to elucidate protein structure and function. A ``snapshot`` of the current state of research in these two topics is presented, representing the present state of two major research thrusts in the program of Genetic Data and Sequence Analysis at the Santa Fe Institute.

  2. Computational Neuroscience: Modeling the Systems Biology of Synaptic Plasticity

    PubMed Central

    Kotaleski, Jeanette Hellgren; Blackwell, Kim T.

    2016-01-01

    Preface Synaptic plasticity is a mechanism proposed to underlie learning and memory. The complexity of the interactions between ion channels, enzymes, and genes involved in synaptic plasticity impedes a deep understanding of this phenomenon. Computer modeling is an approach to investigate the information processing that is performed by signaling pathways underlying synaptic plasticity. In the past few years, new software developments that blend computational neuroscience techniques with systems biology techniques have allowed large-scale, quantitative modeling of synaptic plasticity in neurons. We highlight significant advancements produced by these modeling efforts and introduce promising approaches that utilize advancements in live cell imaging. PMID:20300102

  3. Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples.

    PubMed

    Levine, Keith E; Redmon, Jennifer Hoponick; Elledge, Myles F; Wanigasuriya, Kamani P; Smith, Kristin; Munoz, Breda; Waduge, Vajira A; Periris-John, Roshini J; Sathiakumar, Nalini; Harrington, James M; Womack, Donna S; Wickremasinghe, Rajitha

    2015-10-01

    The emergence of a new form of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka's North Central Province (NCP) has become a catastrophic health crisis. CKDu is characterized as slowly progressing, irreversible, and asymptomatic until late stages and, importantly, not attributed to diabetes, hypertension, or other known risk factors. It is postulated that the etiology of CKDu is multifactorial, involving genetic predisposition, nutritional and dehydration status, exposure to one or more environmental nephrotoxins, and lifestyle factors. The objective of this limited geochemical laboratory analysis was to determine the concentration of a suite of heavy metals and trace element nutrients in biological samples (human whole blood and hair) and environmental samples (drinking water, rice, soil, and freshwater fish) collected from two towns within the endemic NCP region in 2012 and 2013. This broad panel, metallomics/mineralomics approach was used to shed light on potential geochemical risk factors associated with CKDu. Based on prior literature documentation of potential nephrotoxins that may play a role in the genesis and progression of CKDu, heavy metals and fluoride were selected for analysis. The geochemical concentrations in biological and environmental media areas were quantified. Basic statistical measurements were subsequently used to compare media against applicable benchmark values, such as US soil screening levels. Cadmium, lead, and mercury were detected at concentrations exceeding US reference values in many of the biological samples, suggesting that study participants are subjected to chronic, low-level exposure to these elements. Within the limited number of environmental media samples, arsenic was determined to exceed initial risk screening and background concentration values in soil, while data collected from drinking water samples reflected the unique hydrogeochemistry of the region, including the prevalence of hard or very hard water, and

  4. Citizen Science Motivations as Discovered with CosmoQuest

    NASA Astrophysics Data System (ADS)

    Gugliucci, N.; Gay, P.; Bracey, G.

    2014-07-01

    CosmoQuest is a citizen science portal that has launched several projects that allow users to participate in mapping and discovery missions throughout the solar system. We are particularly interested in how citizen scientists move through the site and interact with the various tasks. We have piloted a survey asking citizen scientists for their motivations for using CosmoQuest and link that with their site behaviors. This is part of a larger project using online and real-life interactions to study citizen scientist behaviors, motivations, and learning with a goal of building a better community with researchers, volunteers, educators, and developers. Such research is important to understanding how to engage new and returning citizen scientists across a wide spectrum of projects.

  5. TissueCypher™: A systems biology approach to anatomic pathology

    PubMed Central

    Prichard, Jeffrey W.; Davison, Jon M.; Campbell, Bruce B.; Repa, Kathleen A.; Reese, Lia M.; Nguyen, Xuan M.; Li, Jinhong; Foxwell, Tyler; Taylor, D. Lansing; Critchley-Thorne, Rebecca J.

    2015-01-01

    Background: Current histologic methods for diagnosis are limited by intra- and inter-observer variability. Immunohistochemistry (IHC) methods are frequently used to assess biomarkers to aid diagnoses, however, IHC staining is variable and nonlinear and the manual interpretation is subjective. Furthermore, the biomarkers assessed clinically are typically biomarkers of epithelial cell processes. Tumors and premalignant tissues are not composed only of epithelial cells but are interacting systems of multiple cell types, including various stromal cell types that are involved in cancer development. The complex network of the tissue system highlights the need for a systems biology approach to anatomic pathology, in which quantification of system processes is combined with informatics tools to produce actionable scores to aid clinical decision-making. Aims: Here, we describe a quantitative, multiplexed biomarker imaging approach termed TissueCypher™ that applies systems biology to anatomic pathology. Applications of TissueCypher™ in understanding the tissue system of Barrett's esophagus (BE) and the potential use as an adjunctive tool in the diagnosis of BE are described. Patients and Methods: The TissueCypher™ Image Analysis Platform was used to assess 14 epithelial and stromal biomarkers with known diagnostic significance in BE in a set of BE biopsies with nondysplastic BE with reactive atypia (RA, n = 22) and Barrett's with high-grade dysplasia (HGD, n = 17). Biomarker and morphology features were extracted and evaluated in the confirmed BE HGD cases versus the nondysplastic BE cases with RA. Results: Multiple image analysis features derived from epithelial and stromal biomarkers, including immune biomarkers and morphology, showed significant differences between HGD and RA. Conclusions: The assessment of epithelial cell abnormalities combined with an assessment of cellular changes in the lamina propria may serve as an adjunct to conventional pathology in the

  6. Systems pharmacology: bridging systems biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and development.

    PubMed

    van der Graaf, Piet H; Benson, Neil

    2011-07-01

    Mechanistic PKPD models are now advocated not only by academic and industrial researchers, but also by regulators. A recent development in this area is based on the growing realisation that innovation could be dramatically catalysed by creating synergy at the interface between Systems Biology and PKPD, two disciplines which until now have largely existed in 'parallel universes' with a limited track record of impactful collaboration. This has led to the emergence of systems pharmacology. Broadly speaking, this is the quantitative analysis of the dynamic interactions between drug(s) and a biological system to understand the behaviour of the system as a whole, as opposed to the behaviour of its individual constituents; thus, it has become the interface between PKPD and systems biology. It applies the concepts of Systems Engineering, Systems Biology, and PKPD to the study of complex biological systems through iteration between computational and/or mathematical modelling and experimentation. Application of systems pharmacology can now impact across all stages of drug research and development, ranging from very early discovery programs to large-scale Phase 3/4 patient studies, and has the potential to become an integral component of a new 'enhanced quantitative drug discovery and development' (EQD3) R&D paradigm. PMID:21560018

  7. pH control in biological systems using calcium carbonate.

    PubMed

    Salek, S S; van Turnhout, A G; Kleerebezem, R; van Loosdrecht, M C M

    2015-05-01

    Due to its abundance, calcium carbonate (CaCO3) has high potentials as a source of alkalinity for biotechnological applications. The application of CaCO3 in biological systems as neutralizing agent is, however, limited due to potential difficulties in controlling the pH. The objective of the present study was to determine the dominant processes that control the pH in an acid-forming microbial process in the presence of CaCO3. To achieve that, a mathematical model was made with a minimum set of kinetically controlled and equilibrium reactions that was able to reproduce the experimental data of a batch fermentation experiment using finely powdered CaCO3. In the model, thermodynamic equilibrium was assumed for all speciation, complexation and precipitation reactions whereas, rate limited reactions were included for the biological fatty acid production, the mass transfer of CO2 from the liquid phase to the gas phase and the convective transport of CO2 out of the gas phase. The estimated pH-pattern strongly resembled the measured pH, suggesting that the chosen set of kinetically controlled and equilibrium reactions were establishing the experimental pH. A detailed analysis of the reaction system with the aid of the model revealed that the pH establishment was most sensitive to four factors: the mass transfer rate of CO2 to the gas phase, the biological acid production rate, the partial pressure of CO2 and the Ca(+2) concentration in the solution. Individual influences of these factors on the pH were investigated by extrapolating the model to a continuously stirred-tank reactor (CSTR) case. This case study indicates how the pH of a commonly used continuous biotechnological process could be manipulated and adjusted by altering these four factors. Achieving a better insight of the processes controlling the pH of a biological system using CaCO3 as its neutralizing agent can result in broader applications of CaCO3 in biotechnological industries. PMID:25425281

  8. First Steps in Computational Systems Biology: A Practical Session in Metabolic Modeling and Simulation

    ERIC Educational Resources Information Center

    Reyes-Palomares, Armando; Sanchez-Jimenez, Francisca; Medina, Miguel Angel

    2009-01-01

    A comprehensive understanding of biological functions requires new systemic perspectives, such as those provided by systems biology. Systems biology approaches are hypothesis-driven and involve iterative rounds of model building, prediction, experimentation, model refinement, and development. Developments in computer science are allowing for ever…

  9. Strategies for the reduction of Legionella in biological treatment systems.

    PubMed

    Nogueira, R; Utecht, K-U; Exner, M; Verstraete, W; Rosenwinkel, K-H

    2016-01-01

    A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical-chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6-3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30-35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection. PMID:27533856

  10. Computational procedures for optimal experimental design in biological systems.

    PubMed

    Balsa-Canto, E; Alonso, A A; Banga, J R

    2008-07-01

    Mathematical models of complex biological systems, such as metabolic or cell-signalling pathways, usually consist of sets of nonlinear ordinary differential equations which depend on several non-measurable parameters that can be hopefully estimated by fitting the model to experimental data. However, the success of this fitting is largely conditioned by the quantity and quality of data. Optimal experimental design (OED) aims to design the scheme of actuations and measurements which will result in data sets with the maximum amount and/or quality of information for the subsequent model calibration. New methods and computational procedures for OED in the context of biological systems are presented. The OED problem is formulated as a general dynamic optimisation problem where the time-dependent stimuli profiles, the location of sampling times, the duration of the experiments and the initial conditions are regarded as design variables. Its solution is approached using the control vector parameterisation method. Since the resultant nonlinear optimisation problem is in most of the cases non-convex, the use of a robust global nonlinear programming solver is proposed. For the sake of comparing among different experimental schemes, a Monte-Carlo-based identifiability analysis is then suggested. The applicability and advantages of the proposed techniques are illustrated by considering an example related to a cell-signalling pathway. PMID:18681746

  11. On Having No Head: Cognition throughout Biological Systems

    PubMed Central

    Baluška, František; Levin, Michael

    2016-01-01

    The central nervous system (CNS) underlies memory, perception, decision-making, and behavior in numerous organisms. However, neural networks have no monopoly on the signaling functions that implement these remarkable algorithms. It is often forgotten that neurons optimized cellular signaling modes that existed long before the CNS appeared during evolution, and were used by somatic cellular networks to orchestrate physiology, embryonic development, and behavior. Many of the key dynamics that enable information processing can, in fact, be implemented by different biological hardware. This is widely exploited by organisms throughout the tree of life. Here, we review data on memory, learning, and other aspects of cognition in a range of models, including single celled organisms, plants, and tissues in animal bodies. We discuss current knowledge of the molecular mechanisms at work in these systems, and suggest several hypotheses for future investigation. The study of cognitive processes implemented in aneural contexts is a fascinating, highly interdisciplinary topic that has many implications for evolution, cell biology, regenerative medicine, computer science, and synthetic bioengineering. PMID:27445884

  12. Tensegrity I. Cell structure and hierarchical systems biology

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  13. On Having No Head: Cognition throughout Biological Systems.

    PubMed

    Baluška, František; Levin, Michael

    2016-01-01

    The central nervous system (CNS) underlies memory, perception, decision-making, and behavior in numerous organisms. However, neural networks have no monopoly on the signaling functions that implement these remarkable algorithms. It is often forgotten that neurons optimized cellular signaling modes that existed long before the CNS appeared during evolution, and were used by somatic cellular networks to orchestrate physiology, embryonic development, and behavior. Many of the key dynamics that enable information processing can, in fact, be implemented by different biological hardware. This is widely exploited by organisms throughout the tree of life. Here, we review data on memory, learning, and other aspects of cognition in a range of models, including single celled organisms, plants, and tissues in animal bodies. We discuss current knowledge of the molecular mechanisms at work in these systems, and suggest several hypotheses for future investigation. The study of cognitive processes implemented in aneural contexts is a fascinating, highly interdisciplinary topic that has many implications for evolution, cell biology, regenerative medicine, computer science, and synthetic bioengineering. PMID:27445884

  14. Systems biology perspectives on the carcinogenic potential of radiation

    PubMed Central

    Barcellos-Hoff, Mary Helen; Adams, Cassandra; Balmain, Allan; Costes, Sylvain V.; Demaria, Sandra; Illa-Bochaca, Irineu; Mao, Jian Hua; Ouyang, Haoxu; Sebastiano, Christopher; Tang, Jonathan

    2014-01-01

    This review focuses on recent experimental and modeling studies that attempt to define the physiological context in which high linear energy transfer (LET) radiation increases epithelial cancer risk and the efficiency with which it does so. Radiation carcinogenesis is a two-compartment problem: ionizing radiation can alter genomic sequence as a result of damage due to targeted effects (TE) from the interaction of energy and DNA; it can also alter phenotype and multicellular interactions that contribute to cancer by poorly understood non-targeted effects (NTE). Rather than being secondary to DNA damage and mutations that can initiate cancer, radiation NTE create the critical context in which to promote cancer. Systems biology modeling using comprehensive experimental data that integrates different levels of biological organization and time-scales is a means of identifying the key processes underlying the carcinogenic potential of high-LET radiation. We hypothesize that inflammation is a key process, and thus cancer susceptibility will depend on specific genetic predisposition to the type and duration of this response. Systems genetics using novel mouse models can be used to identify such determinants of susceptibility to cancer in radiation sensitive tissues following high-LET radiation. Improved understanding of radiation carcinogenesis achieved by defining the relative contribution of NTE carcinogenic effects and identifying the genetic determinants of the high-LET cancer susceptibility will help reduce uncertainties in radiation risk assessment.

  15. [Investigation of the microstructure of biological systems by triplet label].

    PubMed

    Kotel'niko, A I; Kuznetsov, S N; Fogel', V R; Likhtenshteĭn, G I

    1979-01-01

    A method for investigating the microstruct and dynamics of biological systems by means of triplet-excited molecules is suggested. The method is based on the phenomenon of triplet excitation disactivation by exchange-resonance triplet-triplet energy transfer to the acceptor or by intercombination conversion induced by interaction of an excited molecule with a paramagnetic center. The disactivation efficiency was measured by registrating the phosphorescense decay kinetics. The interaction of the triplet label eosin isothiocyanate, covalently coupled with albumine, lysozyme, sarcoplasmic reticulum membrane and Ca-Mg-dependent sarcoplasmic reticulum ATPase, with O2, the stable nitroxide radicals and ions of Mn2+ was investigated to analyse the potentialities of this method. As a model system the eosin phosphorescence quenching by the same quenchers in glycerine-aguaous solutions was studied. The method permits to investigate the microviscosity and microstructure of biological objects in the label attached region on interaction of the label with a sound-quencher with constants being 10(4) divided by 10(9) M-1 sec-1 and to measure the lateral diffusion of molecules in highly viscosity media (10 divided by 10(5) santypuas). PMID:223037

  16. Mathematical and Statistical Modeling in Cancer Systems Biology

    PubMed Central

    Blair, Rachael Hageman; Trichler, David L.; Gaille, Daniel P.

    2012-01-01

    Cancer is a major health problem with high mortality rates. In the post-genome era, investigators have access to massive amounts of rapidly accumulating high-throughput data in publicly available databases, some of which are exclusively devoted to housing Cancer data. However, data interpretation efforts have not kept pace with data collection, and gained knowledge is not necessarily translating into better diagnoses and treatments. A fundamental problem is to integrate and interpret data to further our understanding in Cancer Systems Biology. Viewing cancer as a network provides insights into the complex mechanisms underlying the disease. Mathematical and statistical models provide an avenue for cancer network modeling. In this article, we review two widely used modeling paradigms: deterministic metabolic models and statistical graphical models. The strength of these approaches lies in their flexibility and predictive power. Once a model has been validated, it can be used to make predictions and generate hypotheses. We describe a number of diverse applications to Cancer Biology, including, the system-wide effects of drug-treatments, disease prognosis, tumor classification, forecasting treatment outcomes, and survival predictions. PMID:22754537

  17. The Structural Biology of CRISPR-Cas Systems

    PubMed Central

    Jiang, Fuguo; Doudna, Jennifer A.

    2015-01-01

    Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of ~30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of these targeting complexes, with a focus on structural studies of the multisubunit Type I CRISPR RNA-guided surveillance and the Cas9 DNA endonuclease found in Type II CRISPR-Cas systems. These complexes have distinct structures that are each capable of site-specific double-stranded DNA binding and local helix unwinding. PMID:25723899

  18. Biological elements carry out optical tasks in coherent imaging systems

    NASA Astrophysics Data System (ADS)

    Ferraro, P.; Bianco, V.; Paturzo, M.; Miccio, L.; Memmolo, P.; Merola, F.; Marchesano, V.

    2016-03-01

    We show how biological elements, like live bacteria species and Red Blood Cells (RBCs) can accomplish optical functionalities in DH systems. Turbid media allow coherent microscopy despite the strong light scattering these provoke, acting on light just as moving diffusers. Furthermore, a turbid medium can have positive effects on a coherent imaging system, providing resolution enhancement and mimicking the action of noise decorrelation devices, thus yielding an image quality significantly higher than the quality achievable through a transparent medium in similar recording conditions. Besides, suspended RBCs are demonstrated to behave as controllable liquid micro-lenses, opening new possibilities in biophotonics for endoscopy imaging purposes, as well as telemedicine for point-of-care diagnostics in developing countries and low-resource settings.

  19. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  20. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    PubMed Central

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  1. Dimuon Tracking and Triggering at SeaQuest

    NASA Astrophysics Data System (ADS)

    Daugherity, Michael; SeaQuest Collaboration

    2015-10-01

    The Fermilab E906/SeaQuest experiment measures 120 GeV protons from the Main Injector incident on fixed Hydrogen and Deuterium liquid targets and W, C, and Fe solid targets. Dimuons produced in these interactions from the Drell-Yan process and charmonia states are extremely sensitive probes of nuclear structure, particularly the light quark sea. Therefore the primary goal of SeaQuest is to measure muon pairs to study antiquarks in the nucleon. The spectrometer is optimized to select and analyze dimuons through a 25-m path with two dipole magnets, four detector stations, and multiple layers of hadron shielding. Each of the first three detector stations are instrumented with 6 planes of wire chambers and 2 planes of scintillators, while the fourth station uses scintillators and proportional tubes. SeaQuest has two primary methods for tracking reconstruction using sagitta ratios and Hough Transforms to identify muon tracks. The dimuon trigger is based on scintillator hodoscopes perpendicular to the bend plane at each of the four stations. This talk will report on performance of the tracking and trigger systems in the recent run and plans for future improvements. Supported in part by U.S. Department of Energy Grant DE-FG02-03ER41243.

  2. A complex biological system: the fly's visual module.

    PubMed

    Baptista, Murilo S; de Almeida, Lirio O B; Slaets, Jan F W; Köberle, Roland; Grebogi, Celso

    2008-02-13

    Is the characterization of biological systems as complex systems in the mathematical sense a fruitful assertion? In this paper we argue in the affirmative, although obviously we do not attempt to confront all the issues raised by this question. We use the fly's visual system as an example and analyse our experimental results of one particular neuron in the fly's visual system from this point of view. We find that the motion-sensitive 'H1' neuron, which converts incoming signals into a sequence of identical pulses or 'spikes', encodes the information contained in the stimulus into an alphabet composed of a few letters. This encoding occurs on multilayered sets, one of the features attributed to complex systems. The conversion of intervals between consecutive occurrences of spikes into an alphabet requires us to construct a generating partition. This entails a one-to-one correspondence between sequences of spike intervals and words written in the alphabet. The alphabet dynamics is multifractal both with and without stimulus, though the multifractality increases with the stimulus entropy. This is in sharp contrast to models generating independent spike intervals, such as models using Poisson statistics, whose dynamics is monofractal. We embed the support of the probability measure, which describes the distribution of words written in this alphabet, in a two-dimensional space, whose topology can be reproduced by an M-shaped map. This map has positive Lyapunov exponents, indicating a chaotic-like encoding. PMID:17673416

  3. The systems perspective at the crossroads between chemistry and biology.

    PubMed

    de la Escosura, Andrés; Briones, Carlos; Ruiz-Mirazo, Kepa

    2015-09-21

    During the last century a number of authors pointed to the inherently systemic and dynamic nature of the living, yet their message was largely ignored by the mainstream of the scientific community. Tibor Ganti was one of those early pioneers, proposing a theoretical framework to understand the living principles in terms of chemical transformation cycles and their coupling. The turn of the century then brought with it a novel 'systems' paradigm, which shined light on all that previous work and carried many implications for the way we conceive of chemical and biological complexity today. In this article tribute is paid to some of those seminal contributions, highlighting the importance of adopting a systems view in present chemistry, particularly if plausible mechanisms of chemical evolution toward the first living entities want to be unraveled. We examine and put in perspective recent discoveries in the emerging subfield of 'prebiotic systems chemistry', reaching the conclusion that the functional coupling of protocellular subsystems (i.e., protometabolism, protogenome and membrane compartment) is the most challenging target to make qualitative advances in the problem of the origins of life. For the long-awaited goal of assembling an autonomous protocell from its most basic molecular building blocks, we further suggest that a systems integrative strategy should be considered from the earliest synthetic steps, already at the level of monomer precursors, opening the way to biogenesis. PMID:25983045

  4. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems

    PubMed Central

    Transtrum, Mark K.; Qiu, Peng

    2016-01-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior. PMID:27187545

  5. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    PubMed

    Transtrum, Mark K; Qiu, Peng

    2016-05-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior. PMID:27187545

  6. Translational Systems Approaches to the Biology of Inflammation and Healing

    PubMed Central

    Vodovotz, Yoram; Constantine, Gregory; Faeder, James; Mi, Qi; Rubin, Jonathan; Bartels, John; Sarkar, Joydeep; Squires, Robert H.; Okonkwo, David O.; Gerlach, Jörg; Zamora, Ruben; Luckhart, Shirley; Ermentrout, Bard; An, Gary

    2011-01-01

    Inflammation is a complex, non-linear process central to many of the diseases that affect both developed and emerging nations. A systems-based understanding of inflammation, coupled to translational applications, is therefore necessary for efficient development of drugs and devices, for streamlining analyses at the level of populations, and for the implementation of personalized medicine. We have carried out an iterative and ongoing program of literature analysis, generation of prospective data, data analysis, and computational modeling in various experimental and clinical inflammatory disease settings. These simulations have been used to gain basic insights into the inflammatory response under baseline, gene-knockout, and drug-treated experimental animals for in silico studies associated with the clinical settings of sepsis, trauma, acute liver failure, and wound healing to create patient-specific simulations in polytrauma, traumatic brain injury, and vocal fold inflammation; and to gain insight into host-pathogen interactions in malaria, necrotizing enterocolitis, and sepsis. These simulations have converged with other systems biology approaches (e.g., functional genomics) to aid in the design of new drugs or devices geared towards modulating inflammation. Since they include both circulating and tissue-level inflammatory mediators, these simulations transcend typical cytokine networks by associating inflammatory processes with tissue/organ impacts via tissue damage/dysfunction. This framework has now allowed us to suggest how to modulate acute inflammation in a rational, individually optimized fashion. This plethora of computational and intertwined experimental/engineering approaches is the cornerstone of Translational Systems Biology approaches for inflammatory diseases. PMID:20170421

  7. A dedicated database system for handling multi-level data in systems biology

    PubMed Central

    2014-01-01

    Background Advances in high-throughput technologies have enabled extensive generation of multi-level omics data. These data are crucial for systems biology research, though they are complex, heterogeneous, highly dynamic, incomplete and distributed among public databases. This leads to difficulties in data accessibility and often results in errors when data are merged and integrated from varied resources. Therefore, integration and management of systems biological data remain very challenging. Methods To overcome this, we designed and developed a dedicated database system that can serve and solve the vital issues in data management and hereby facilitate data integration, modeling and analysis in systems biology within a sole database. In addition, a yeast data repository was implemented as an integrated database environment which is operated by the database system. Two applications were implemented to demonstrate extensibility and utilization of the system. Both illustrate how the user can access the database via the web query function and implemented scripts. These scripts are specific for two sample cases: 1) Detecting the pheromone pathway in protein interaction networks; and 2) Finding metabolic reactions regulated by Snf1 kinase. Results and conclusion In this study we present the design of database system which offers an extensible environment to efficiently capture the majority of biological entities and relations encountered in systems biology. Critical functions and control processes were designed and implemented to ensure consistent, efficient, secure and reliable transactions. The two sample cases on the yeast integrated data clearly demonstrate the value of a sole database environment for systems biology research. PMID:25053973

  8. Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems

    PubMed Central

    Lebedev, Artem Y.; Cheprakov, Andrei V.; Sakadžić, Sava; Boas, David A.; Wilson, David F.; Vinogradov, Sergei A.

    2009-01-01

    Oxygen levels in biological systems can be measured by the phosphorescence quenching method using probes with controllable quenching parameters and defined biodistributions. We describe a general approach to the construction of phosphorescent nanosensors with tunable spectral characteristics, variable degrees of quenching, and a high selectivity for oxygen. The probes are based on bright phosphorescent Pt and Pd complexes of porphyrins and symmetrically π-extended porphyrins (tetrabenzoporphyrins and tetranaphthoporphyrins). π-Extension of the core macrocycle allows tuning of the spectral parameters of the probes in order to meet the requirements of a particular imaging application (e.g., oxygen tomography versus planar microscopic imaging). Metalloporphyrins are encapsulated into poly(arylglycine) dendrimers, which fold in aqueous environments and create diffusion barriers for oxygen, making it possible to regulate the sensitivity and the dynamic range of the method. The periphery of the dendrimers is modified with poly(ethylene glycol) residues, which enhance the probe’s solubility, diminish toxicity, and help prevent interactions of the probes with the biological environment. The probe’s parameters were measured under physiological conditions and shown to be unaffected by the presence of biomacromolecules. The performance of the probes was demonstrated in applications, including in vivo microscopy of vascular pO2 in the rat brain. PMID:20072726

  9. Yeast Prions: Structure, Biology, and Prion-Handling Systems

    PubMed Central

    Shewmaker, Frank P.; Bateman, David A.; Edskes, Herman K.; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E.

    2015-01-01

    SUMMARY A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  10. Ultrasensitive Force Detection and Applications to Biological Systems

    NASA Astrophysics Data System (ADS)

    Kenny, Thomas

    2001-03-01

    For many years, researchers have developed a variety of micromechanical devices for a range of applications. The majority of these devices are based on micromechanical force transducers to convert external physical signals into electrical signals. The force sensing capabilities of these devices are remarkable - it is possible to design devices with force resolution ranging from milli-N to atto-N within this technology. In addition to the conventional applications for MEMS devices, it is possible to tailor these designs to allow interesting scientific measurements on biological systems. For example, there are active research communities investigating cellular adhesion, protein folding, and animal locomotion. In all of these cases, the basic questions are mechanical in nature, and direct force measurements can provide new insight. This talk will review some ongoing biological research that makes use of MEMS devices, and discuss opportunities for new directions. Collaborators on this research include : Yiching Liang, Robert Rudnitsky, Michael Bartsch, Robert Full, Kellar Autumn, James Nelson, Jim Spudich, and Mark Cutkosky This work is funded by NSF (XYZ on a Chip) and ONR MURI (Biomimetic Robots).

  11. Micrasterias as a Model System in Plant Cell Biology

    PubMed Central

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  12. A data integration methodology for systems biology: Experimental verification

    PubMed Central

    Hwang, Daehee; Smith, Jennifer J.; Leslie, Deena M.; Weston, Andrea D.; Rust, Alistair G.; Ramsey, Stephen; de Atauri, Pedro; Siegel, Andrew F.; Bolouri, Hamid; Aitchison, John D.; Hood, Leroy

    2005-01-01

    The integration of data from multiple global assays is essential to understanding dynamic spatiotemporal interactions within cells. In a companion paper, we reported a data integration methodology, designated Pointillist, that can handle multiple data types from technologies with different noise characteristics. Here we demonstrate its application to the integration of 18 data sets relating to galactose utilization in yeast. These data include global changes in mRNA and protein abundance, genome-wide protein–DNA interaction data, database information, and computational predictions of protein–DNA and protein–protein interactions. We divided the integration task to determine three network components: key system elements (genes and proteins), protein–protein interactions, and protein–DNA interactions. Results indicate that the reconstructed network efficiently focuses on and recapitulates the known biology of galactose utilization. It also provided new insights, some of which were verified experimentally. The methodology described here, addresses a critical need across all domains of molecular and cell biology, to effectively integrate large and disparate data sets. PMID:16301536

  13. Micrasterias as a Model System in Plant Cell Biology.

    PubMed

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  14. Biologically inspired collision avoidance system for unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  15. Systems biology approach for new target and biomarker identification.

    PubMed

    Wang, I-Ming; Stone, David J; Nickle, David; Loboda, Andrey; Puig, Oscar; Roberts, Christopher

    2013-01-01

    The pharmaceutical industry is spending increasingly large amounts of money on the discovery and development of novel medicines, but this investment is not adequately paying off in an increased rate of newly approved drugs by the FDA. The post-genomic era has provided a wealth of novel approaches for generating large, high-dimensional genetic and transcriptomic data sets from large cohorts of preclinical species as well as normal and diseased individuals. This systems biology approach to understanding disease-related biology is revolutionizing our understanding of the cellular pathways and gene networks underlying the onset of disease, and the mechanisms of pharmacological treatments that ameliorate disease phenotypes. In this article, we review a number of approaches being used by pharmaceutical and biotechnology companies, e.g., high-throughput DNA genotyping, sequencing, and genome-wide gene expression profiling, to enable drug discovery and development through the identification of new drug targets and biomarkers of disease progression, drug pharmacodynamics, and predictive markers for selecting the patients most likely to respond to therapy. PMID:22903568

  16. Gene gymnastics: Synthetic biology for baculovirus expression vector system engineering.

    PubMed

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  17. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    PubMed Central

    de Graaf, Albert A.; Freidig, Andreas P.; De Roos, Baukje; Jamshidi, Neema; Heinemann, Matthias; Rullmann, Johan A.C.; Hall, Kevin D.; Adiels, Martin; van Ommen, Ben

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales. PMID:19956660

  18. System integration and development for biological warfare agent surveillance

    NASA Astrophysics Data System (ADS)

    Mark, Jacob A.; Green, Lance D.; Deshpande, Alina; White, P. Scott

    2007-04-01

    A wide variety of technical needs exist for surveillance, monitoring, identifying, or detecting pathogens with potential use as biological terrorism or warfare agents. Because the needs vary greatly among diverse applications, tailored systems are needed that meet performance, information, and cost requirements. A systems perspective allows developers to identify chokepoints for each application, and focus R&D investments on the limiting factors. Surveillance and detection systems are comprised of three primary components: information (markers), chemistries (assays), and instrumentation for "readout". Careful consideration of these components within the context of each application will allow for increases in efficiency and performance not generally realized when researchers focus on a single component in isolation. In fact, many application requirements can be met with simple novel combinations of existing technologies, without the need for huge investments in basic research. Here we discuss some of the key parameters for surveillance, detection, and identification of biothreat agents, and provide examples of focused development that addresses key bottlenecks, and greatly improve system performance.

  19. Systems biology of recombinant protein production using Bacillus megaterium.

    PubMed

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  20. Electrical Measurement of Biological Oscillations in Unicellular Systems.

    NASA Astrophysics Data System (ADS)

    Giaever, Ivar; Linton, Michael; Halvorsrud, Ragnhild; Male, Tone

    1997-03-01

    Many different rhythms or oscillations exists in biological systems; the circadian rhythm is probably the best known, but other oscillations are also common. The slimemold Physarum is a classical example of ultradian oscillations occurring in a single multinucleated cell, and the period is a few minutes long. It is also reasonable well known that oscillations occur in yeast with a periods of a few minutes These oscillations result from the action of a single allosteric enzyme in the glycolytic pathway. We have recently discovered a new oscillating system in the Madin-Darby Canine Kidney (MDCK) epithelial cells that have a period of 2-3 hours, and at present the origin of these oscillations is unknown. All these systems have been studied for the first time using a biosensor that measures impedance changes caused by mammalian cells and is referred to as Electrical Cell-surface Impedance Sensing or ECIS for short. The characteristic behavior of these three systems will be contrasted and discussed in detail. In particular we will focus on how the oscillations can be induced, how long they persists, and finally the stability of the observed frequencies.

  1. Large-scale violation of detailed balance in biological systems

    NASA Astrophysics Data System (ADS)

    Broedersz, Chase; Battle, Christopher; Fakhri, Nikta; Mackintosh, Fred; Schmidt, Christopher

    2015-03-01

    Living systems are out of equilibrium. A fundamental manifestation of non-equilibrium dynamics in biological systems is the violation of detailed balance: at the microscopic level, enzymatic processes such as kinetic proofreading or molecular motor activity clearly violate detailed balance. We study how such non-equilibrium dynamics emerge at macroscopic scales in cellular assemblies. We measure the steady-state dynamics of two systems, beating flagella of Chlamydomonas reinhardtii and mechanosensitive primary cilia protruding from epithelial kidney cells. The flagellum exhibits clear non-equilibrium driving, whereas fluctuations in the primary cilium are difficult to differentiate from Brownian motion. We parameterize the shapes of the flagellum and primary cilium using a low-dimensional representation of their configuration phase space, and use the measured dynamics to infer the steady-state probability distributions and probability currents. For both the flagellum and the primary cilium we find significant, coherent circulating probability currents, demonstrating that these systems violate detailed balance at the mesoscopic scale.

  2. Fractal analysis in a Systems Biology approach to cancer

    PubMed Central

    Bizzarri, M.; Giuliani, A.; Cucina, A.; Anselmi, F. D; Soto, A. M.; Sonnenschein, C.

    2011-01-01

    Cancer is a highly complex disease due to the disruption of tissue architecture. Thus, tissues, and not individual cells, are the proper level of observation for the study of carcinogenesis. This paradigm shift from a reductionist approach to a systems biology approach is long overdue. Indeed, cell phenotypes are emergent modes arising through collective non-linear interactions among different cellular and microenvironmental components, generally described by “phase space diagrams”, where stable states (attractors) are embedded into a landscape model. Within this framework, cell states and cell transitions are generally conceived as mainly specified by gene-regulatory networks. However, the system s dynamics is not reducible to the integrated functioning of the genome-proteome network alone; the epithelia-stroma interacting system must be taken into consideration in order to give a more comprehensive picture. Given that cell shape represents the spatial geometric configuration acquired as a result of the integrated set of cellular and environmental cues, we posit that fractal-shape parameters represent “omics descriptors of the epithelium-stroma system. Within this framework, function appears to follow form, and not the other way around. PMID:21514387

  3. Gravitational biology and the mammalian circadian timing system.

    PubMed

    Fuller, C A; Murakami, D M; Sulzman, F M

    1989-01-01

    Mammals have evolved under the influence of many selective pressures. Two of these pressures have been the static force of gravity and the daily variations in the environment due to the rotation of the earth. It is now clear that each of these pressures has led to specific adaptations which influence how organisms respond to changes in either gravity or daily time cues. However, several unpredicted responses to altered gravitational environments occur within the homeostatic and circadian control systems. These results may be particularly relevant to biological and medical issues related to spaceflight. This paper demonstrates that the homeostatic regulation of rat body temperature, heart rate, and activity become depressed following exposure to a 2 G hyperdynamic field, and recovers within 5-6 days. In addition, the circadian rhythms of these same variables exhibit a depression of rhythm amplitude; however, recovery required a minimum of 7 days. PMID:11537343

  4. Metabolic phenotyping and systems biology approaches to understanding neurological disorders.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2013-01-01

    The development of high-throughput metabolic profiling and the study of the metabolome are particularly important in brain research where small molecules or metabolites play fundamental signalling roles: neurotransmitters, signalling lipids, osmolytes and even ions. Metabolic profiling has shown that metabolic perturbations in the brain go beyond alterations of neurotransmission and that variations in brain metabolic homeostasis are associated with neurological disorders. In this report, we will focus on recent developments in the field of metabolic phenotyping that have contributed to unravelling the pathophysiology of neurological diseases. Also, we will highlight the necessity of implementing systems biology approaches to integrate metabolic data and tackle the structural and functional complexity of the brain in normal and pathological conditions. PMID:23755365

  5. Linking Microbiota to Human Diseases: A Systems Biology Perspective.

    PubMed

    Wu, Hao; Tremaroli, Valentina; Bäckhed, Fredrik

    2015-12-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction. PMID:26555600

  6. Large-scale quantum effects in biological systems

    NASA Astrophysics Data System (ADS)

    Mesquita, Marcus V.; Vasconcellos, Áurea R.; Luzzi, Roberto; Mascarenhas, Sergio

    Particular aspects of large-scale quantum effects in biological systems, such as biopolymers and also microtubules in the cytoskeleton of neurons which can have relevance in brain functioning, are discussed. The microscopic (quantum mechanical) and macroscopic (quantum statistical mechanical) aspects, and the emergence of complex behavior, are described. This phenomena consists of the large-scale coherent process of Fröhlich-Bose-Einstein condensation in open and sufficiently far-from-equilibrium biopolymers. Associated with this phenomenon is the presence of Schrödinger-Davydov solitons, which propagate, undistorted and undamped, when embedded in the Fröhlich-Bose-Einstein condensate, thus allowing for the transmission of signals at long distances, involving a question relevant to bioenergetics.

  7. SBR-Blood: systems biology repository for hematopoietic cells

    PubMed Central

    Lichtenberg, Jens; Heuston, Elisabeth F.; Mishra, Tejaswini; Keller, Cheryl A.; Hardison, Ross C.; Bodine, David M.

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  8. Modeling Selection and Extinction Mechanisms of Biological Systems

    NASA Astrophysics Data System (ADS)

    Amirjanov, Adil

    In this paper, the behavior of a genetic algorithm is modeled to enhance its applicability as a modeling tool of biological systems. A new description model for selection mechanism is introduced which operates on a portion of individuals of population. The extinction and recolonization mechanism is modeled, and solving the dynamics analytically shows that the genetic drift in the population with extinction/recolonization is doubled. The mathematical analysis of the interaction between selection and extinction/recolonization processes is carried out to assess the dynamics of motion of the macroscopic statistical properties of population. Computer simulations confirm that the theoretical predictions of described models are in good approximations. A mathematical model of GA dynamics was also examined, which describes the anti-predator vigilance in an animal group with respect to a known analytical solution of the problem, and showed a good agreement between them to find the evolutionarily stable strategies.

  9. Quantum Dots — Characterization, Preparation and Usage in Biological Systems

    PubMed Central

    Drbohlavova, Jana; Adam, Vojtech; Kizek, Rene; Hubalek, Jaromir

    2009-01-01

    The use of fluorescent nanoparticles as probes for bioanalytical applications is a highly promising technique because fluorescence-based techniques are very sensitive. Quantum dots (QDs) seem to show the greatest promise as labels for tagging and imaging in biological systems owing to their impressive photostability, which allow long-term observations of biomolecules. The usage of QDs in practical applications has started only recently, therefore, the research on QDs is extremely important in order to provide safe and effective biosensing materials for medicine. This review reports on the recent methods for the preparation of quantum dots, their physical and chemical properties, surface modification as well as on some interesting examples of their experimental use. PMID:19333427

  10. Systems biological approaches towards understanding cellulase production by Trichoderma reesei.

    PubMed

    Kubicek, Christian P

    2013-01-20

    Recent progress and improvement in "-omics" technologies has made it possible to study the physiology of organisms by integrated and genome-wide approaches. This bears the advantage that the global response, rather than isolated pathways and circuits within an organism, can be investigated ("systems biology"). The sequencing of the genome of Trichoderma reesei (teleomorph Hypocrea jecorina), a fungus that serves as a major producer of biomass-degrading enzymes for the use of renewable lignocellulosic material towards production of biofuels and biorefineries, has offered the possibility to study this organism and its enzyme production on a genome wide scale. In this review, I will highlight the use of genomics, transcriptomics, proteomics and metabolomics towards an improved and novel understanding of the biochemical processes that involve in the massive overproduction of secreted proteins. PMID:22750088

  11. A systemic approach for modeling biological evolution using Parallel DEVS.

    PubMed

    Heredia, Daniel; Sanz, Victorino; Urquia, Alfonso; Sandín, Máximo

    2015-08-01

    A new model for studying the evolution of living organisms is proposed in this manuscript. The proposed model is based on a non-neodarwinian systemic approach. The model is focused on considering several controversies and open discussions about modern evolutionary biology. Additionally, a simplification of the proposed model, named EvoDEVS, has been mathematically described using the Parallel DEVS formalism and implemented as a computer program using the DEVSLib Modelica library. EvoDEVS serves as an experimental platform to study different conditions and scenarios by means of computer simulations. Two preliminary case studies are presented to illustrate the behavior of the model and validate its results. EvoDEVS is freely available at http://www.euclides.dia.uned.es. PMID:26116878

  12. Systemic Modeling of Biological Functions in Consideration of Physiome Project

    NASA Astrophysics Data System (ADS)

    Minamitani, Haruyuki

    Emerging of the physiome project provides various influences on the medical, biological and pharmaceutical development. In this paper, as an example of physiome research, neural network model analysis providing the conduction mechanisms of pain and tactile sensations was presented, and the functional relations between neural activities of the network cells and stimulus intensity applied on the peripheral receptive fields were described. The modeling presented here is based on the various assumptions made by the results of physiological and anatomical studies reported in the literature. The functional activities of spinothalamic and thalamocortical cells show a good agreement with the physiological and psychophysical functions of somatosensory system that are very instructive for covering the gap between physiologically and psychophysically aspects of pain and tactile sensation.

  13. Structured Biological Modelling: a method for the analysis and simulation of biological systems applied to oscillatory intracellular calcium waves.

    PubMed

    Kraus, M; Lais, P; Wolf, B

    1992-01-01

    In biology signal and information processing networks are widely known. Due to their inherent complexity and non-linear dynamics the time evolution of these systems can not be predicted by simple plausibility arguments. Fortunately, the power of modern computers allows the simulation of complex biological models. Therefore the problem becomes reduced to the question of how to develop a consistent mathematical model which comprises the essentials of the real biological system. As an interface between the phenomenological description and a computer simulation of the system the proposed method of Structured Biological Modelling (SBM) uses top-down levelled dataflow diagrams. They serve as a powerful tool for the analysis and the mathematical description of the system in terms of a stochastic formulation. The stochastic treatment, regarding the time evolution of the system as a stochastic process governed by a master equation, circumvents most difficulties arising from high dimensional and non-linear systems. As an application of SBM we develop a stochastic computer model of intracellular oscillatory Ca2+ waves in non-excitable cells. As demonstrated on this example, SBM can be used for the design of computer experiments which under certain conditions can be used as cheap and harmless counterparts to the usual time-consuming biological experiments. PMID:1334718

  14. Systems biology approach for evaluating the biological impact of environmental toxicants in vitro.

    PubMed

    Gonzalez-Suarez, Ignacio; Sewer, Alain; Walker, Paul; Mathis, Carole; Ellis, Samantha; Woodhouse, Heather; Guedj, Emmanuel; Dulize, Remi; Marescotti, Diego; Acali, Stefano; Martin, Florian; Ivanov, Nikolai V; Hoeng, Julia; Peitsch, Manuel C

    2014-03-17

    Exposure to cigarette smoke is a leading cause of lung diseases including chronic obstructive pulmonary disease and cancer. Cigarette smoke is a complex aerosol containing over 6000 chemicals and thus it is difficult to determine individual contributions to overall toxicity as well as the molecular mechanisms by which smoke constituents exert their effects. We selected three well-known harmful and potentially harmful constituents (HPHCs) in tobacco smoke, acrolein, formaldehyde and catechol, and established a high-content screening method using normal human bronchial epithelial cells, which are the first bronchial cells in contact with cigarette smoke. The impact of each HPHC was investigated using 13 indicators of cellular toxicity complemented with a microarray-based whole-transcriptome analysis followed by a computational approach leveraging mechanistic network models to identify and quantify perturbed molecular pathways. HPHCs were evaluated over a wide range of concentrations and at different exposure time points (4, 8, and 24 h). By high-content screening, the toxic effects of the three HPHCs could be observed only at the highest doses. Whole-genome transcriptomics unraveled toxicity mechanisms at lower doses and earlier time points. The most prevalent toxicity mechanisms observed were DNA damage/growth arrest, oxidative stress, mitochondrial stress, and apoptosis/necrosis. A combination of multiple toxicological end points with a systems-based impact assessment allows for a more robust scientific basis for the toxicological assessment of HPHCs, allowing insight into time- and dose-dependent molecular perturbations of specific biological pathways. This approach allowed us to establish an in vitro systems toxicology platform that can be applied to a broader selection of HPHCs and their mixtures and can serve more generally as the basis for testing the impact of other environmental toxicants on normal bronchial epithelial cells. PMID:24428674

  15. Systems biology of platelet-vessel wall interactions

    PubMed Central

    Diamond, Scott L.; Purvis, Jeremy; Chatterjee, Manash; Flamm, Matthew H.

    2013-01-01

    Blood systems biology seeks to quantify outside-in signaling as platelets respond to numerous external stimuli, typically under flow conditions. Platelets can activate via GPVI collagen receptor and numerous G-protein coupled receptors (GPCRs) responsive to ADP, thromboxane, thrombin, and prostacyclin. A bottom-up ODE approach allowed prediction of platelet calcium and phosphoinositides following P2Y1 activation with ADP, either for a population average or single cell stochastic behavior. The homeostasis assumption (i.e., a resting platelet stays resting until activated) was particularly useful in finding global steady states for these large metabolic networks. Alternatively, a top-down approach involving Pairwise Agonist Scanning (PAS) allowed large data sets of measured calcium mobilization to predict an individual's platelet responses. The data was used to train neural network (NN) models of signaling to predict patient-specific responses to combinatorial stimulation. A kinetic description of platelet signaling then allows prediction of inside-out activation of platelets as they experience the complex biochemical milieu at the site of thrombosis. Multiscale lattice kinetic Monte Carlo (LKMC) utilizes these detailed descriptions of platelet signaling under flow conditions where released soluble species are solved by finite element method and the flow field around the growing thrombus is updated using computational fluid dynamics or lattice Boltzmann method. Since hemodynamic effects are included in a multiscale approach, thrombosis can then be predicted under arterial and venous thrombotic conditions for various anatomical geometries. Such systems biology approaches accommodate the effect of anti-platelet pharmacological intervention where COX1 pathways or ADP signaling are modulated in a patient-specific manner. PMID:23986721

  16. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury

    PubMed Central

    Bigler, Erin D.

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  17. A systems biology approach to radiation therapy optimization.

    PubMed

    Brahme, Anders; Lind, Bengt K

    2010-05-01

    During the last 20 years, the field of cellular and not least molecular radiation biology has been developed substantially and can today describe the response of heterogeneous tumors and organized normal tissues to radiation therapy quite well. An increased understanding of the sub-cellular and molecular response is leading to a more general systems biological approach to radiation therapy and treatment optimization. It is interesting that most of the characteristics of the tissue infrastructure, such as the vascular system and the degree of hypoxia, have to be considered to get an accurate description of tumor and normal tissue responses to ionizing radiation. In the limited space available, only a brief description of some of the most important concepts and processes is possible, starting from the key functional genomics pathways of the cell that are not only responsible for tumor development but also responsible for the response of the cells to radiation therapy. The key mechanisms for cellular damage and damage repair are described. It is further more discussed how these processes can be brought to inactivate the tumor without severely damaging surrounding normal tissues using suitable radiation modalities like intensity-modulated radiation therapy (IMRT) or light ions. The use of such methods may lead to a truly scientific approach to radiation therapy optimization, particularly when invivo predictive assays of radiation responsiveness becomes clinically available at a larger scale. Brief examples of the efficiency of IMRT are also given showing how sensitive normal tissues can be spared at the same time as highly curative doses are delivered to a tumor that is often radiation resistant and located near organs at risk. This new approach maximizes the probability to eradicate the tumor, while at the same time, adverse reactions in sensitive normal tissues are as far as possible minimized using IMRT with photons and light ions. PMID:20191284

  18. Approach of Complex-Systems Biology to Reproduction and Evolution

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    Two basic issues in biology - the origin of life and evolution of phenotypes - are discussed on the basis of statistical physics and dynamical systems. In section "A Bridge Between Catalytic Reaction Networks and Reproducing Cells", we survey recent developments in the origin of reproducing cells from an ensemble of catalytic reactions. After surveying several models of catalytic reaction networks briefly, we provide possible answers to the following three questions: (1) How are nonequilibrium states sustained in catalytic reaction dynamics? (2) How is recursive production of a cell maintaining composition of a variety of chemicals possible? (3) How does a specific molecule species carry information for heredity? In section "Evolution", general relationships between plasticity, robustness, and evolvability are presented in terms of phenotypic fluctuations. First, proportionality between evolution speed, phenotypic plasticity, and isogenic phenotypic fluctuation is proposed by extending the fluctuation-response relationship in physics. We then derive a general proportionality relationship between the phenotypic fluctuations of epigenetic and genetic origin: the former is the variance of phenotype due to noise in the developmental process, and the latter due to genetic mutation. The relationship also suggests a link between robustness to noise and to mutation. These relationships are confirmed in models of gene expression dynamics, as well as in laboratory experiments, and then are explained by a theory based on an evolutionary stability hypothesis For both sections "A Bridge Between Catalytic Reaction Networks and Reproducing Cells" and "Evolution", consistency between two levels of hierarchy (i.e., molecular and cellular, or genetic and phenotypic levels) is stressed as a principle for complex-systems biology.

  19. Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.

    PubMed

    Bigler, Erin D

    2016-01-01

    The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology

  20. A systems biology approach toward understanding seed composition in soybean

    PubMed Central

    2015-01-01

    Background The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. Results With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. Conclusions This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR. PMID:25708381

  1. Exploring Architecture Options for a Federated, Cloud-based System Biology Knowledgebase

    SciTech Connect

    Gorton, Ian; Liu, Yan; Yin, Jian

    2010-12-02

    This paper evaluates various cloud computing technologies and resources for building a system biology knowledge base system. This system will host a huge amount of data and contain a flexible sets of workflows to operate on these data. It will enable system biologist to share their data and algorithms to allow research results to be reproduced, shared, and reused across the system biology community.

  2. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    NASA Astrophysics Data System (ADS)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  3. Predicting lymph node output efficiency using systems biology

    PubMed Central

    Gong, Chang; Mattila, Joshua T.; Miller, Mark; Flynn, JoAnne L.; Linderman, Jennifer J.; Kirschner, D.

    2013-01-01

    Dendritic cells (DCs) capture pathogens and foreign antigen (Ag) in peripheral tissues and migrate to secondary lymphoid tissues, such as lymph nodes (LNs), where they present processed Ag as MHC-bound peptide (pMHC) to naïve T cells. Interactions between DCs and T cells result, over periods of hours, in activation, clonal expansion and differentiation of antigen-specific T cells, leading to primed cells that can now participate in immune responses. Two-photon microscopy (2PM) has been widely adopted to analyze lymphocyte dynamics and can serve as a powerful in vivo assay for cell trafficking and activation over short length and time scales. Linking biological phenomena between vastly different spatiotemporal scales can be achieved using a systems biology approach. We developed a 3D agent-based cellular model of a LN that allows for the simultaneous in silico simulation of T cell trafficking, activation and production of effector cells under different antigen (Ag) conditions. The model anatomy is based on in situ analysis of LN sections (from primates and mice) and cell dynamics based on quantitative measurements from 2PM imaging of mice. Our simulations make three important predictions. First, T cell encounters by DCs and T cell receptor (TCR) repertoire scanning are more efficient in a 3D model compared with 2D, suggesting that a 3D model is needed to analyze LN function. Second, LNs are able to produce primed CD4+T cells at the same efficiency over broad ranges of cognate frequencies (from 10−5 to 10−2). Third, reducing the time that naïve T cells are required to bind DCs before becoming activated will increase the rate at which effector cells are produced. This 3D model provides a robust platform to study how T cell trafficking and activation dynamics relate to the efficiency of T cell priming and clonal expansion. We envision that this systems biology approach will provide novel insights for guiding vaccine development and understanding immune responses

  4. MarsQuest: A National Traveling Exhibition

    NASA Astrophysics Data System (ADS)

    Lee, S. W.; Dusenbery, P. B.

    1998-09-01

    With the successful landing of Mars Pathfinder and the arrival of Mars Global Surveyor, a new decade of Mars exploration has commenced. MarsQuest, a 5000 square foot traveling exhibition, is being developed to further bring the excitement and discoveries of this "Decade of Mars Exploration" to the public. MarsQuest is partially funded by the Informal Science Education Program of the National Science Foundation and NASA's Office of Space Science. The Space Science Institute (SSI) in Boulder, CO, is leading the project. Scientific and educational advisors from many different universities and government laboratories, most of whom are directly involved in the active and planned Mars missions, will ensure the scientific accuracy, timeliness, and relevance of the key concepts presented in the exhibition and accompanying programs. The traveling exhibit is the primary element of the MarsQuest project. The exhibition experience, carefully keyed to current events in Mars exploration, will transport visitors to the surface of the Red Planet via large murals, dioramas, and numerous interactive displays. There they will have the opportunity to share in the spirit and thrill of exploration, and come to appreciate the similarities and differences between Earth and Mars. A planetarium show, geared to the goals of the MarsQuest project, will be an important sensory addition to the traveling exhibit. The planetarium/star-theater venue presents a unique environment where audience members can literally be surrounded by Mars images. Education and outreach programs comprise the remainder of the MarsQuest project. The goal of these is to make scientific concepts and scientific and engineering processes understandable to students via Mars-inspired curricula. MarsQuest will open in late-1999, traveling to about nine sites throughout the United States and reaching an estimated two to three million children and adults during its planned three-year tour. Mars - coming soon to a museum near

  5. Ebola impact on African health systems entails a quest for more international and local resilience: the case of African Portuguese speaking countries

    PubMed Central

    Lapão, Luís Velez; Silva, Andreia; Pereira, Natália; Vasconcelos, Paula; Conceição, Cláudia

    2015-01-01

    Introduction Ebola epidemics have shown to have significant impacts on many aspects of healthcare systems. African countries have been facing many difficulties while addressing Ebola epidemics, moreover due to both lack of resources and fragmented involvement of national and international entities. The participation of multiple organizations has created serious problems of coordination of aid and the operation of that aid on the ground. This paper aims at addressing the impact of Ebola epidemics on African health systems, with a special focus on the definition of impact mitigation guidelines and the role of resilience. The example of Portuguese speaking countries is presented. Methods A combination of literature review and case study methods are used. A literature review on Ebola outbreak impact on health systems will provide information to define a set of guidelines for healthcare services response to Ebola. The role of cooperation in providing additional resilience is described. Finally a case study focusing on the Portuguese collaboration and intervention in African Portuguese Speaking Countries (PALOP) is presented, as an example how the international community can provide additional resilience. Results The existing knowledge is very helpful to guide both the preparation and the coordination of Ebola preparedness interventions. Additional resilience can be provided by international cooperation. Conclusion In addition to international concrete support in times of crisis, to have a regional strategy of creating (multi-national) teams to rapidly implement an intervention while establishing better regional capacity to have sufficient resources to support the “resilience” required of the health system. PMID:26740843

  6. Integrated facilities modeling using QUEST and IGRIP

    SciTech Connect

    Davis, K.R.; Haan, E.R.

    1995-08-01

    A QUEST model and associated detailed IGRIP models were developed and used to simulate several workcells in a proposed Plutonium Storage Facility (PSF). The models are being used by team members assigned to the program to improve communication and to assist in evaluating concepts and in performing trade-off studies which will result in recommendations and a final design. The model was designed so that it could be changed easily. The added flexibility techniques used to make changes easily are described in this paper in addition to techniques for integrating the QUEST and IGRIP products. Many of these techniques are generic in nature and can be applied to any modeling endeavor.

  7. Systems biology approaches to pancreatic cancer detection, prevention and treatment.

    PubMed

    Alian, Osama M; Philip, Philip A; Sarkar, Fazlul H; Azmi, Asfar S

    2014-01-01

    Pancreatic cancer [PC] is a complex disease harboring multiple genetic alterations. It is now well known that deregulation in the expression and function of oncogenes and tumor suppressor genes contributes to the development and progression of PC. The last 40 years have not seen any major improvements in the dismal overall cure rate for PC where drug resistance is an emerging and recurring obstacle for successful treatment of PC. Additionally, the lack of molecular biomarkers for patient selection limits drug availabilities for tailored therapy for patients diagnosed with PC. The very high failure rate of new drugs in Phase III clinical trials in PC calls for a more robust pre-clinical and clinical testing of new compounds. In order to rationally choose combinations of targeted agents that may improve therapeutic outcome by overcoming drug resistance, one needs to apply newer research tools such as systems and network biology. These newer tools are expected to assist in the design of effective drug combinations for the treatment of PC and are expected to become an important part in any future clinical trials. In this review we will provide background information on the current state of PC research, the reasons for drug failure and how to overcome these issues using systems sciences. We conclude this review with an example on how systems and network methodologies can help in the design efficacious drug combinations for this deadly and by far incurable disease. PMID:23530496

  8. Advanced monitoring systems for biological applications in marine environments

    NASA Astrophysics Data System (ADS)

    Cella, U.; Chiffings, T.; Gandelli, A.; Grimaccia, F.; Johnstone, R. W.; Zich, R. E.

    2007-12-01

    The increasing need to manage complex environmental problems demands a new approach and new technologies to provide the information required at a spatial and temporal resolution appropriate to the scales at which the biological processes occur. In particular sensor networks, now quite popular on land, still poses many difficult problems in underwater environments. In this context, it is necessary to develop an autonomous monitoring system that can be remotely interrogated and directed to address unforeseen or expected changes in such environmental conditions. This system, at the highest level, aims to provide a framework for combining observations from a wide range of different in-situ sensors and remote sensing instruments, with a long-term plan for how the network of sensing modalities will continue to evolve in terms of sensing modality, geographic location, and spatial and temporal density. The advances in sensor technology and digital electronics have made it possible to produce large amount of small tag-like sensors which integrate sensing, processing, and communication capabilities together and form an autonomous entity. To successfully use this kind of systems in under water environments, it becomes necessary to optimize the network lifetime and face the relative hindrances that such a field imposes, especially in terms of underwater information exchange.

  9. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  10. Biological systems for human life support: Review of the research in the USSR

    NASA Technical Reports Server (NTRS)

    Shepelev, Y. Y.

    1979-01-01

    Various models of biological human life support systems are surveyed. Biological structures, dimensions, and functional parameters of man-chlorella-microorganism models are described. Significant observations and the results obtained from these models are reported.

  11. Multiscale modeling in nanostructures: Physical and biological systems

    NASA Astrophysics Data System (ADS)

    Dearden, Albert Karcz

    With the advent of more powerful computer systems, theoretical modeling of nanoscale systems has quickly become a vital part of scientific research in a multitude of disciplines. From the understanding of semiconductor devices to describing the mechanistic details of protein interactions, theoretical studies on systems of various scales have provided great insight into how nature behaves in each scenario. While at a macroscopic level the differences between biological and non-biological systems are apparent, the underlying principles that dictate their behavior are quite similar. Indeed, modeling these two distinct classes of systems have similar challenges. In both cases, the system sizes typically correspond to nanometer length scales and due to the lack of periodicity in the system, one needs to study a relatively larger number of atoms in simulations in order to represent their behavior. Nonetheless, systems that are much smaller than what exists in experiment may be used to describe specific properties of interest, such as how system stability scales with varying size or describing a reaction process of a large biological structure through the modeling of only the reaction site and not the entire protein. Thus, it is important to be able to correctly and efficiently model various systems at multiple scales in order to provide proper insight and understanding so models and tools developed in one area could be applied to another discipline. Indeed, lessons learned during the process are quite valuable for the general scheme of multiscale modeling in materials. To facilitate this, we have investigated two separate cases involving the efficient use of multiscale modeling through ab initio density functional theory calculations. For the first half of this work, we investigate the effect of size on the net magnetization of zero dimensional graphene based structures with differing edge states. Currently, we have shown that for zigzag edged triangular graphene

  12. Wireless address event representation system for biological sensor networks

    NASA Astrophysics Data System (ADS)

    Folowosele, Fopefolu; Tapson, Jonathan; Etienne-Cummings, Ralph

    2007-05-01

    We describe wireless networking systems for close proximity biological sensors, as would be encountered in artificial skin. The sensors communicate to a "base station" that interprets the data and decodes its origin. Using a large bundle of ultra thin metal wires from the sensors to the "base station" introduces significant technological hurdles for both the construction and maintenance of the system. Fortunately, the Address Event Representation (AER) protocol provides an elegant and biomorphic method for transmitting many impulses (i.e. neural spikes) down a single wire/channel. However, AER does not communicate any sensory information within each spike, other that the address of the origination of the spike. Therefore, each sensor must provide a number of spikes to communicate its data, typically in the form of the inter-spike intervals or spike rate. Furthermore, complex circuitry is required to arbitrate access to the channel when multiple sensors communicate simultaneously, which results in spike delay. This error is exacerbated as the number of sensors per channel increases, mandating more channels and more wires. We contend that despite the effectiveness of the wire-based AER protocol, its natural evolution will be the wireless AER protocol. A wireless AER system: (1) does not require arbitration to handle multiple simultaneous access of the channel, (2) uses cross-correlation delay to encode sensor data in every spike (eliminating the error due to arbitration delay), and (3) can be reorganized and expanded with little consequence to the network. The system uses spread spectrum communications principles, implemented with a low-power integrate-and-fire neurons. This paper discusses the design, operation and capabilities of such a system. We show that integrate-and-fire neurons can be used to both decode the origination of each spike and extract the data contained within in. We also show that there are many technical obstacles to overcome before this version

  13. The quest for better validation: a critical comparison of the AAMI and BHS validation protocols for ambulatory blood pressure measurement systems.

    PubMed

    O'Brien, E; Mee, F; Atkins, N; O'Malley, K

    1992-01-01

    Two validation procedures are currently available for the evaluation of ambulatory blood pressure measurement systems--the standard of the Association for the Advancement of Medical Instrumentation (AAMI) and the protocol of the British Hypertension Society (BHS). Both are in the process of revision. Four systems for measuring 24-hour ambulatory blood pressure--SpaceLabs 90207, Novacor DIASYS 200, Del Mar Avionics Pressurometer IV, and Takeda TM-2420--were evaluated according to the BHS protocol, which incorporates many of the features of the AAMI standard, under similar conditions by the same personnel and in the same subjects, so as to examine the relative merits of the two evaluation procedures. Three recorders of each model were subjected to a before-use inter-device variability test, followed by an in-use phase and an after-use inter-device variability test. The main validation test was carried out in 86 subjects with a wide range of pressures, the results being analyzed according to the BHS grading system and the AAMI validation criteria. The SpaceLabs 90207 and the DIASYS 200 achieved B and C grades, respectively, according to the BHS protocol and also satisfied the AAMI criteria for accuracy. The Pressurometer IV achieved a Grade C rating for systolic pressure and a Grade D rating for diastolic pressure and the Takeda TM-2420 achieved Grade D ratings for both systolic pressure and diastolic pressure. Both these devices failed to fulfil the AAMI criteria for accuracy and both failed to function in the main validation test and had to be replaced.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1393208

  14. QUEST/Ada (Query Utility Environment for Software Testing) of Ada: The development of a program analysis environment for Ada

    NASA Technical Reports Server (NTRS)

    Brown, David B.

    1988-01-01

    A history of the Query Utility Environment for Software Testing (QUEST)/Ada is presented. A fairly comprehensive literature review which is targeted toward issues of Ada testing is given. The definition of the system structure and the high level interfaces are then presented. The design of the three major components is described. The QUEST/Ada IORL System Specifications to this point in time are included in the Appendix. A paper is also included in the appendix which gives statistical evidence of the validity of the test case generation approach which is being integrated into QUEST/Ada.

  15. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    PubMed

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website. PMID:27103502

  16. A Comprehensive Systems Biology Approach to Studying Zika Virus.

    PubMed

    May, Meghan; Relich, Ryan F

    2016-01-01

    Zika virus (ZIKV) is responsible for an ongoing and intensifying epidemic in the Western Hemisphere. We examined the complete predicted proteomes, glycomes, and selectomes of 33 ZIKV strains representing temporally diverse members of the African lineage, the Asian lineage, and the current outbreak in the Americas. Derivation of the complete selectome is an 'omics' approach to identify distinct evolutionary pressures acting on different features of an organism. Employment of the M8 model did not show evidence of global diversifying selection acting on the ZIKV polyprotein; however, a mixed effect model of evolution showed strong evidence (P<0.05) for episodic diversifying selection acting on specific sites. Single nucleotide polymorphisms (SNPs) were predictably frequent across strains relative to the derived consensus sequence. None of the 9 published detection procedures utilize targets that share 100% identity across the 33 strains examined, indicating that ZIKV escape from molecular detection is predictable. The predicted O-linked glycome showed marked diversity across strains; however, the N-linked glycome was highly stable. All Asian and American strains examined were predicted to include glycosylation of E protein ASN154, a modification proposed to mediate neurotropism, whereas the modification was not predicted for African strains. SNP diversity, episodic diversifying selection, and differential glycosylation, particularly of ASN154, may have major biological implications for ZIKV disease. Taken together, the systems biology perspective of ZIKV indicates: a.) The recently emergent Asian/American N-glycotype is mediating the new and emerging neuropathogenic potential of ZIKV; and b.) further divergence at specific sites is predictable as endemnicity is established in the Americas. PMID:27584813

  17. Lessons learned from quantitative dynamical modeling in systems biology.

    PubMed

    Raue, Andreas; Schilling, Marcel; Bachmann, Julie; Matteson, Andrew; Schelker, Max; Schelke, Max; Kaschek, Daniel; Hug, Sabine; Kreutz, Clemens; Harms, Brian D; Theis, Fabian J; Klingmüller, Ursula; Timmer, Jens

    2013-01-01

    Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here. PMID:24098642

  18. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    NASA Astrophysics Data System (ADS)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  19. Mimicking the biological neural system using electronic logic circuits

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Shinde, Vishal; Kang, Inpil; Schulz, Mark J.; Shanov, Vesselin; Datta, Saurabh; Hurd, Doug; Westheider, Bo; Sundaresan, Mannur; Ghoshal, Anindya

    2004-07-01

    Detecting and locating cracks in structural components and joints that have high feature densities is a challenging problem in the field of Structural Health Monitoring. There have been advances in piezoelectric sensors, actuators, wave propagation, MEMS, and optical fiber sensors. However, few sensor-signal processing techniques have been applied to the monitoring of joints and complex structural geometries. This is in part because maintaining and analyzing a large amount of data obtained from a large number of sensors that may be needed to monitor joints for cracks is difficult. Reliable low cost assessment of the health of structures is crucial to maintain operational availability and productivity, reduce maintenance cost, and prevent catastrophic failure of large structures such as wind turbines, aircraft, and civil infrastructure. Recently, there have also been advances in development of simple passive techniques for health monitoring including a technique based on mimicking the biological neural system using electronic logic circuits. This technique aids in reducing the required number of data acquisition channels by a factor of ten or more and is able to predict the location of a crack within a rectangular grid or within an arbitrarily arranged network of continuous sensors or neurons. The current paper shows results obtained by implementing this method on an aluminum plate and joint. The plates were tested using simulated acoustic emissions and also loading via an MTS machine. The testing indicates that the neural system can monitor complex joints and detect acoustic emissions due to propagating cracks. High sensitivity of the neural system is needed, and further sensor development and testing on different types of joints is required. Also indicated is that sensor geometry, sensor location, signal filtering, and logic parameters of the neural system will be specific to the particular type of joint (material, thickness, geometry) being monitored. Also, a

  20. Finding and Scaling Unstable Periodic Orbits in Biological Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank

    1998-03-01

    Unstable periodic orbits (UPOs) of low order can be detected in noisy physical(D. Pierson and F. Moss, Phys. Rev. Lett.) 75, 2124 (1995)and biological(X. Pei and F. Moss, Nature) 379, 618 (1996) systems. The statistically based detection method extracts the number of encounters with UPOs of period p, and compares that with findings from surrogate files. UPOs can be distinguished from stable orbits. The results are expressed as a time evolving statistical measure, useful for analyzing short files from non-stationary systems. We show bifurcations between stable and unstable behavior in peripheral cold receptors, neurosecretory hypothalamic cells (both in rat) and electroreceptors in catfish(H.A. Braun, et al., J. Comp. Neurosci.), in press. Since only orbits of the lowest orders (p < 4) can be detected, a scaling is necessary to connect the experimentally observable orbits to the infinite set of UPOs which characterize dissipative chaos. A scaling due to C.-Y. Lai is calculated for the Henon map. Data from crayfish photoreceptor cells for p = 1 to 3 are consistent with this scaling.