Sample records for t-box regulated genes

  1. T box riboswitches in Actinobacteria: Translational regulation via novel tRNA interactions

    PubMed Central

    Sherwood, Anna V.; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5′ untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine–Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNAIle and tRNAIle-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch. PMID:25583497

  2. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.

  3. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly

    PubMed Central

    Chetnani, Bhaskar

    2017-01-01

    Abstract A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. PMID:28531275

  4. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly.

    PubMed

    Chetnani, Bhaskar; Mondragón, Alfonso

    2017-07-27

    A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. T-Box Genes in the Kidney and Urinary Tract.

    PubMed

    Kispert, A

    2017-01-01

    T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates. © 2017 Elsevier Inc. All rights reserved.

  6. Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.

    PubMed

    Boogerd, Kees-Jan; Wong, L Y Elaine; Christoffels, Vincent M; Klarenbeek, Meinke; Ruijter, Jan M; Moorman, Antoon F M; Barnett, Phil

    2008-06-01

    T-box factors Tbx2 and Tbx3 play key roles in the development of the cardiac conduction system, atrioventricular canal, and outflow tract of the heart. They regulate the gap-junction-encoding gene Connexin43 (Cx43) and other genes critical for heart development and function. Discovering protein partners of Tbx2 and Tbx3 will shed light on the mechanisms by which these factors regulate these gene programs. Employing an yeast 2-hybrid screen and subsequent in vitro pull-down experiments we demonstrate that muscle segment homeobox genes Msx1 and Msx2 are able to bind the cardiac T-box proteins Tbx2, Tbx3, and Tbx5. This interaction, as that of the related Nkx2.5 protein, is supported by the T-box and homeodomain alone. Overlapping spatiotemporal expression patterns of Msx1 and Msx2 together with the T-box genes during cardiac development in mouse and chicken underscore the biological significance of this interaction. We demonstrate that Msx proteins together with Tbx2 and Tbx3 suppress Cx43 promoter activity and down regulate Cx43 gene activity in a rat heart-derived cell line. Using chromatin immunoprecipitation analysis we demonstrate that Msx1 can bind the Cx43 promoter at a conserved binding site located in close proximity to a previously defined T-box binding site, and that the activity of Msx proteins on this promoter appears dependent in the presence of Tbx3. Msx1 and Msx2 can function in concert with the T-box proteins to suppress Cx43 and other working myocardial genes.

  7. T-Box Genes in Drosophila Limb Development.

    PubMed

    Pflugfelder, G O; Eichinger, F; Shen, J

    2017-01-01

    T-box genes are essential for limb development in vertebrates and arthropods. The Drosophila genome encodes eight T-box genes, six of which are expressed in limb ontogenesis. The Tbx20-related gene pair midline and H15 is essential for dorso-ventral patterning of the Drosophila legs. The three Tbx6-related Dorsocross genes are required for epithelial remodeling during wing development. The Drosophila gene optomotor-blind (omb) is the only member of the Tbx2 subfamily in the fly and is predominantly involved in wing development. Omb is essential for wing development and is sufficient to promote the development of a second wing pair. Targeted manipulations of omb expression have shown that the bulk omb requirement for wing development can be deconstructed into a number of individual functions. Even though omb expression in the wing disc is symmetrical with regard to the anterior/posterior (A/P) compartment boundary, anterior and posterior knockdowns have distinct consequences: Anterior Omb is required for the maintenance of a straight A/P lineage restriction boundary. Posterior Omb suppresses formation of an apical epithelial fold along the A/P boundary. Drosophila T-box gene expression is not confined to the ectoderm-derived epithelia of the imaginal discs. Both Doc and Omb are prominently expressed in leg disc muscle precursor cells. Omb is also strongly expressed in a tracheal branch that invades the extracellular matrix of the wing disc. The function of Doc and Omb in the latter tissues is not known, indicative of the many questions still open in the field. © 2017 Elsevier Inc. All rights reserved.

  8. New tRNA contacts facilitate ligand binding in a Mycobacterium smegmatis T box riboswitch.

    PubMed

    Sherwood, Anna V; Frandsen, Jane K; Grundy, Frank J; Henkin, Tina M

    2018-04-10

    T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNA Ile ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNA Ile and the other between the Stem IIA/B pseudoknot and the D loop of tRNA Ile These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.

  9. Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization.

    PubMed

    Koshimizu, Shizuka; Kofuji, Rumiko; Sasaki-Sekimoto, Yuko; Kikkawa, Masahide; Shimojima, Mie; Ohta, Hiroyuki; Shigenobu, Shuji; Kabeya, Yukiko; Hiwatashi, Yuji; Tamada, Yosuke; Murata, Takashi; Hasebe, Mitsuyasu

    2018-01-01

    MIKC classic (MIKC C )-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC C -type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC C -type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC C -type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.

  10. MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    PubMed Central

    Han, Yingyan; Chen, Zijing; Lv, Shanshan; Ning, Kang; Ji, Xueliang; Liu, Xueying; Wang, Qian; Liu, Renyi; Fan, Shuangxi; Zhang, Xiaolan

    2016-01-01

    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs. S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines. PMID:28018414

  11. Structure and mechanism of the T-box riboswitches

    PubMed Central

    Zhang, Jinwei

    2015-01-01

    In most Gram-positive bacteria, including many clinically devastating pathogens from genera such as Bacillus, Clostridium, Listeria and Staphylococcus, T-box riboswitches sense and regulate intracellular availability of amino acids through a multipartite mRNA-tRNA interaction. The T-box mRNA leaders respond to nutrient starvation by specifically binding cognate tRNAs and sensing whether the bound tRNA is aminoacylated, as a proxy for amino acid availability. Based on this readout, T-boxes direct a transcriptional or translational switch to control the expression of downstream genes involved in various aspects of amino acid metabolism: biosynthesis, transport, aminoacylation, transamidation, etc. Two decades after its discovery, the structural and mechanistic underpinnings of the T-box riboswitch were recently elucidated, producing a wealth of insights into how two structured RNAs can recognize each other with robust affinity and exquisite selectivity. The T-box paradigm exemplifies how natural non-coding RNAs can interact not just through sequence complementarity, but can add molecular specificity by precisely juxtaposing RNA structural motifs, exploiting inherently flexible elements and the biophysical properties of post-transcriptional modifications, ultimately achieving a high degree of shape complementarity through mutually induced fit. The T-box also provides a proof-of-principle that compact RNA domains can recognize minute chemical changes (such as tRNA aminoacylation) on another RNA. The unveiling of the structure and mechanism of the T-box system thus expands our appreciation of the range of capabilities and modes of action of structured non-coding RNAs, and hints at the existence of networks of non-coding RNAs that communicate through both, structural and sequence specificity. PMID:25959893

  12. The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis ElementsW⃞

    PubMed Central

    Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.

    2003-01-01

    The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974

  13. The study of two barley Type I-like MADS-box genes as potential targets of epigenetic regulation during seed development

    PubMed Central

    2012-01-01

    Background MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Results Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Conclusions Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental

  14. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch

    PubMed Central

    Caserta, Enrico; Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. PMID:26229106

  15. T-box and homeobox genes from the ctenophore Pleurobrachia pileus: comparison of Brachyury, Tbx2/3 and Tlx in basal metazoans and bilaterians.

    PubMed

    Martinelli, Cosimo; Spring, Jürg

    2005-09-12

    Most animals are classified as Bilateria and only four phyla are still extant as outgroups, namely Porifera, Placozoa, Cnidaria and Ctenophora. These non-bilaterians were not considered to have a mesoderm and hence mesoderm-specific genes. However, the T-box gene Brachyury could be isolated from sponges, placozoans and cnidarians. Here, we describe the first Brachyury and a Tbx2/3 homologue from a ctenophore. In addition, analysing T-box and homeobox genes under comparable conditions in all four basal phyla lead to the discovery of novel T-box genes in sponges and cnidarians and a Tlx homeobox gene in the ctenophore Pleurobrachia pileus. The conservation of the T-box and the homeobox genes suggest that distinct subfamilies with different roles in bilaterians were already split in non-bilaterians.

  16. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. MicroRNA regulation of F-box proteins and its role in cancer.

    PubMed

    Wu, Zhao-Hui; Pfeffer, Lawrence M

    2016-02-01

    MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

    PubMed Central

    Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert

    2013-01-01

    High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex

  19. MADS-box genes and floral development: the dark side.

    PubMed

    Heijmans, Klaas; Morel, Patrice; Vandenbussche, Michiel

    2012-09-01

    The origin of the flower during evolution has been a crucial step in further facilitating plants to colonize a wide range of different niches on our planet. The >250 000 species of flowering plants existing today display an astonishing diversity in floral architecture. For this reason, the flower is a very attractive subject for evolutionary developmental (evo-devo) genetics studies. Research during the last two decades has provided compelling evidence that the origin and functional diversification of MIKC(c) MADS-box transcription factors has played a critical role during evolution of flowering plants. As master regulators of floral organ identity, MADS-box proteins are at the heart of the classic ABC model for floral development. Despite the enormous progress made in the field of floral development, there still remain aspects that are less well understood. Here we highlight some of the dark corners within our current knowledge on MADS-box genes and flower development, which would be worthwhile investigating in more detail in future research. These include the general question of to what extent MADS-box gene functions are conserved between species, the function of TM8-clade MADS-box genes which so far have remained uncharacterized, the divergence within the A-function, and post-transcriptional regulation of the ABC-genes.

  20. Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns

    PubMed Central

    Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng

    2014-01-01

    F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786

  1. SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato.

    PubMed

    Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli

    2015-01-01

    The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants.

  2. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors

    PubMed Central

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios

    2017-01-01

    Abstract Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. PMID:28973457

  3. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)

    PubMed Central

    Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes. PMID:28742823

  4. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.).

    PubMed

    Ma, Jian; Yang, Yujie; Luo, Wei; Yang, Congcong; Ding, Puyang; Liu, Yaxi; Qiao, Linyi; Chang, Zhijian; Geng, Hongwei; Wang, Penghao; Jiang, Qiantao; Wang, Jirui; Chen, Guoyue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin

    2017-01-01

    The MADS-box genes encode transcription factors with key roles in plant growth and development. A comprehensive analysis of the MADS-box gene family in bread wheat (Triticum aestivum) has not yet been conducted, and our understanding of their roles in stress is rather limited. Here, we report the identification and characterization of the MADS-box gene family in wheat. A total of 180 MADS-box genes classified as 32 Mα, 5 Mγ, 5 Mδ, and 138 MIKC types were identified. Evolutionary analysis of the orthologs among T. urartu, Aegilops tauschii and wheat as well as homeologous sequences analysis among the three sub-genomes in wheat revealed that gene loss and chromosomal rearrangements occurred during and/or after the origin of bread wheat. Forty wheat MADS-box genes that were expressed throughout the investigated tissues and development stages were identified. The genes that were regulated in response to both abiotic stresses (i.e., phosphorus deficiency, drought, heat, and combined drought and heat) and biotic stresses (i.e., Fusarium graminearum, Septoria tritici, stripe rust and powdery mildew) were detected as well. A few notable MADS-box genes were specifically expressed in a single tissue and those showed relatively higher expression differences between the stress and control treatment. The expression patterns of considerable MADS-box genes differed from those of their orthologs in Brachypodium, rice, and Arabidopsis. Collectively, the present study provides new insights into the possible roles of MADS-box genes in response to stresses and will be valuable for further functional studies of important candidate MADS-box genes.

  5. MADS-box genes in maize: Frequent targets of selection during domestication

    USDA-ARS?s Scientific Manuscript database

    MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 random loci from the maize genome and investigated their involvement in maize domestication and improvement. Using n...

  6. The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration

    PubMed Central

    Dugas, Jason C.; Ibrahim, Adiljan; Barres, Ben A.

    2015-01-01

    Hypothyroidism is a well-described cause of hypomyelination. In addition, thyroid hormone (T3) has recently been shown to enhance remyelination in various animal models of CNS demyelination. What are the ways in which T3 promotes the development and regeneration of healthy myelin? To begin to understand the mechanisms by which T3 drives myelination, we have identified genes regulated specifically by T3 in purified oligodendrocyte precursor cells (OPCs). Among the genes identified by genomic expression analyses were four transcription factors, Kruppel-like factor 9 (KLF9), basic helix-loop-helix family member e22 (BHLHe22), Hairless (Hr), and Albumin D box-binding protein (DBP), all of which were induced in OPCs by both brief and long term exposure to T3. To begin to investigate the role of these genes in myelination, we focused on the most rapidly and robustly induced of these, KLF9, and found it is both necessary and sufficient to promote oligodendrocyte differentiation in vitro. Surprisingly, we found that loss of KLF9 in vivo negligibly affects the formation of CNS myelin during development, but does significantly delay remyelination in cuprizone-induced demyelinated lesions. These experiments indicate that KLF9 is likely a novel integral component of the T3-driven signaling cascade that promotes the regeneration of lost myelin. Future analyses of the roles of KLF9 and other identified T3-induced genes in myelination may lead to novel insights into how to enhance the regeneration of myelin in demyelinating diseases such as multiple sclerosis. PMID:22472204

  7. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.

    PubMed

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos

    2017-09-29

    Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  9. Genome-wide survey and expression analysis of F-box genes in chickpea.

    PubMed

    Gupta, Shefali; Garg, Vanika; Kant, Chandra; Bhatia, Sabhyata

    2015-02-13

    The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.

  10. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression.

    PubMed

    Gonzalez, Lauren E; Keller, Kristen; Chan, Karen X; Gessel, Megan M; Thines, Bryan C

    2017-07-17

    The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant

  11. Cloning, Characterization, Regulation, and Function of Dormancy-Associated MADS-Box Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are SHORT VEGETATIVE PHASE–Like MADS box transcription factors linked to endodormancy induction. We have cloned and characterized several cDNA and genomic clones of DAM genes from the model perennial weed leafy spurge (Euphorbia esula). We present evidence fo...

  12. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica)

    PubMed Central

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-01-01

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple. PMID:26856238

  13. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica).

    PubMed

    Kumar, Gulshan; Arya, Preeti; Gupta, Khushboo; Randhawa, Vinay; Acharya, Vishal; Singh, Anil Kumar

    2016-02-09

    The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.

  14. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri).

    PubMed

    Wang, Guo-Ming; Yin, Hao; Qiao, Xin; Tan, Xu; Gu, Chao; Wang, Bao-Hua; Cheng, Rui; Wang, Ying-Zhen; Zhang, Shao-Ling

    2016-12-01

    F-box gene family, as one of the largest gene families in plants, plays crucial roles in regulating plant development, reproduction, cellular protein degradation and responses to biotic and abiotic stresses. However, comprehensive analysis of the F-box gene family in pear (Pyrus bretschneideri Rehd.) and other Rosaceae species has not been reported yet. Herein, we identified a total of 226 full-length F-box genes in pear for the first time. And these genes were further divided into various subgroups based on specific domains and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication and dispersed duplication have a major contribution to F-box family expansion. Furthermore, the dynamic evolution for different modes of gene duplication was dissected. Interestingly, we found that dispersed and tandem duplicate have been evolving at a high rate. In addition, we found that F-box genes exhibited functional specificity based on GO analysis, and most of the F-box genes were significantly enriched in the protein binding (GO: 0005515) term, supporting that F-box genes might play a critical role for gene regulation in pear. Transcriptome and digital expression profiles revealed that F-box genes are involved in the development of multiple pear tissues. Overall, these results will set stage for elaborating the biological role of F-box genes in pear and other plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Nucleoplasmic Nup98 controls gene expression by regulating a DExH/D-box protein.

    PubMed

    Capitanio, Juliana S; Montpetit, Ben; Wozniak, Richard W

    2018-01-01

    The nucleoporin Nup98 has been linked to the regulation of transcription and RNA metabolism, 1-3 but the mechanisms by which Nup98 contributes to these processes remains largely undefined. Recently, we uncovered interactions between Nup98 and several DExH/D-box proteins (DBPs), a protein family well-known for modulating gene expression and RNA metabolism. 4-6 Analysis of Nup98 and one of these DBPs, DHX9, showed that they directly interact, their association is facilitated by RNA, and Nup98 binding stimulates DHX9 ATPase activity. 7 Furthermore, these proteins were dependent on one another for their proper association with a subset of gene loci to control transcription and modulate mRNA splicing. 7 On the basis of these observations, we proposed that Nup98 functions to regulate DHX9 activity within the nucleoplasm. 7 Since Nup98 is associated with several DBPs, regulation of DHX9 by Nup98 may represent a paradigm for understanding how Nup98, and possibly other FG-Nup proteins, could direct the diverse cellular activities of multiple DBPs.

  16. Fluorescence probing of T box antiterminator RNA: Insights into riboswitch discernment of the tRNA discriminator base

    PubMed Central

    Means, John A.; Simson, Crystal M.; Zhou, Shu; Rachford, Aaron A.; Rack, Jeffrey J.; Hines, Jennifer V.

    2009-01-01

    The T box transcription antitermination riboswitch is one of the main regulatory mechanisms utilized by Gram-positive bacteria to regulate genes that are involved in amino acid metabolism. The details of the antitermination event, including the role that Mg2+ plays, in this riboswitch have not been completely elucidated. In these studies, details of the antitermination event were investigated utilizing 2-aminopurine to monitor structural changes of a model antiterminator RNA when it was bound to model tRNA. Based on the results of these fluorescence studies, the model tRNA binds the model antiterminator RNA via an induced fit. This binding is enhanced by the presence of Mg2+, facilitating the complete base pairing of the model tRNA acceptor end with the complementary bases in the model antiterminator bulge. PMID:19755116

  17. Analysis of CFB, a cytokinin-responsive gene of Arabidopsis thaliana encoding a novel F-box protein regulating sterol biosynthesis.

    PubMed

    Brenner, Wolfram G; Leuendorf, Jan Erik; Cortleven, Anne; Martin, Laetitia B B; Schaller, Hubert; Schmülling, Thomas

    2017-05-17

    Protein degradation by the ubiquitin-26S proteasome pathway is important for the regulation of cellular processes, but the function of most F-box proteins relevant to substrate recognition is unknown. We describe the analysis of the gene Cytokinin-induced F-box encoding (CFB, AT3G44326), identified in a meta-analysis of cytokinin-related transcriptome studies as one of the most robust cytokinin response genes. F-box domain-dependent interaction with the E3 ubiquitin ligase complex component ASK1 classifies CFB as a functional F-box protein. Apart from F-box and transmembrane domains, CFB contains no known functional domains. CFB is expressed in all plant tissues, predominantly in root tissue. A ProCFB:GFP-GUS fusion gene showed strongest expression in the lateral root cap and during lateral root formation. CFB-GFP fusion proteins were mainly localized in the nucleus and the cytosol but also at the plasma membrane. cfb mutants had no discernible phenotype, but CFB overexpressing plants showed several defects, such as a white upper inflorescence stem, similar to the hypomorphic cycloartenol synthase mutant cas1-1. Both CFB overexpressing plants and cas1-1 mutants accumulated the CAS1 substrate 2,3-oxidosqualene in the white stem tissue, the latter even more after cytokinin treatment, indicating impairment of CAS1 function. This suggests that CFB may link cytokinin and the sterol biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes

    PubMed Central

    Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded

    2016-01-01

    Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950

  19. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress

    PubMed Central

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-01-01

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance. PMID:28417911

  20. Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress.

    PubMed

    Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming

    2017-04-12

    The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.

  1. Transcription factor ThWRKY4 binds to a novel WLS motif and a RAV1A element in addition to the W-box to regulate gene expression.

    PubMed

    Xu, Hongyun; Shi, Xinxin; Wang, Zhibo; Gao, Caiqiu; Wang, Chao; Wang, Yucheng

    2017-08-01

    WRKY transcription factors play important roles in many biological processes, and mainly bind to the W-box element to regulate gene expression. Previously, we characterized a WRKY gene from Tamarix hispida, ThWRKY4, in response to abiotic stress, and showed that it bound to the W-box motif. However, whether ThWRKY4 could bind to other motifs remains unknown. In this study, we employed a Transcription Factor-Centered Yeast one Hybrid (TF-Centered Y1H) screen to study the motifs recognized by ThWRKY4. In addition to the W-box core cis-element (termed W-box), we identified that ThWRKY4 could bind to two other motifs: the RAV1A element (CAACA) and a novel motif with sequence of GTCTA (W-box like sequence, WLS). The distributions of these motifs were screened in the promoter regions of genes regulated by some WRKYs. The results showed that the W-box, RAV1A, and WLS motifs were all present in high numbers, suggesting that they play key roles in gene expression mediated by WRKYs. Furthermore, five WRKY proteins from different WRKY subfamilies in Arabidopsis thaliana were selected and confirmed to bind to the RAV1A and WLS motifs, indicating that they are recognized commonly by WRKYs. These findings will help to further reveal the functions of WRKY proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Genomic identification, characterization and differential expression analysis of SBP-box gene family in Brassica napus.

    PubMed

    Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong

    2016-09-08

    SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for

  3. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  4. A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes

    PubMed Central

    Nakahata, Yasukazu; Yoshida, Mayumi; Takano, Atsuko; Soma, Haruhiko; Yamamoto, Takuro; Yasuda, Akio; Nakatsu, Toru; Takumi, Toru

    2008-01-01

    Background The circadian expression of the mammalian clock genes is based on transcriptional feedback loops. Two basic helix-loop-helix (bHLH) PAS (for Period-Arnt-Sim) domain-containing transcriptional activators, CLOCK and BMAL1, are known to regulate gene expression by interacting with a promoter element termed the E-box (CACGTG). The non-canonical E-boxes or E-box-like sequences have also been reported to be necessary for circadian oscillation. Results We report a new cis-element required for cell-autonomous circadian transcription of clock genes. This new element consists of a canonical E-box or a non-canonical E-box and an E-box-like sequence in tandem with the latter with a short interval, 6 base pairs, between them. We demonstrate that both E-box or E-box-like sequences are needed to generate cell-autonomous oscillation. We also verify that the spacing nucleotides with constant length between these 2 E-elements are crucial for robust oscillation. Furthermore, by in silico analysis we conclude that several clock and clock-controlled genes possess a direct repeat of the E-box-like elements in their promoter region. Conclusion We propose a novel possible mechanism regulated by double E-box-like elements, not to a single E-box, for circadian transcriptional oscillation. The direct repeat of the E-box-like elements identified in this study is the minimal required element for the generation of cell-autonomous transcriptional oscillation of clock and clock-controlled genes. PMID:18177499

  5. DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.).

    PubMed

    Rothkegel, Karin; Sánchez, Evelyn; Montes, Christian; Greve, Macarena; Tapia, Sebastián; Bravo, Soraya; Prieto, Humberto; Almeida, Andréa Miyasaka

    2017-12-01

    Epigenetic modifications can yield information about connections between genotype, phenotype variation and environmental conditions. Bud dormancy release in temperate perennial fruit trees depends on internal and environmental signals such as cold accumulation and photoperiod. Previous investigations have noted the participation of epigenetic mechanisms in the control of this physiological process. We examined whether epigenetic modifications were modulated in MADS-box genes, potential candidates for the regulation of bud dormancy and flowering in sweet cherry (Prunus avium L.). We identified and cloned two MADS-box genes homologous to the already-characterized dormancy regulators DORMANCY-ASSOCIATED MADS-box (DAM3 and DAM5) from Prunus persica (L.) Batsch. Bisulfite sequencing of the identified genes (PavMADS1 and PavMADS2), Methylated DNA Immunoprecipitation and small RNA deep sequencing were performed to analyze the presence of DNA methylations that could be guided by non-coding RNAs in the floral buds exposed to differential chilling hours. The results obtained reveal an increase in the level of DNA methylation and abundance of matching small interference RNAs (siRNAs) in the promoter of PavMADS1 when the chilling requirement is complete. For the first intron and 5' UTR of PavMADS1, de novo DNA methylation could be associated with the increase in the abundance of 24-nt siRNA matching the promoter area. Also, in the second large intron of PavMADS1, maintenance DNA methylation in all cytosine contexts is associated with the presence of homologous siRNAs in that zone. For PavMADS2, only maintenance methylation was present in the CG context, and no matching siRNAs were detected. Silencing of PavMADS1 and PavMADS2 coincided with an increase in Flowering Locus T expression during dormancy. In conclusion, DNA methylations and siRNAs appear to be involved in the silencing of PavMADS1 during cold accumulation and dormancy release in sweet cherry. © The Author 2017

  6. Cloning, characterization, regulation, and function of dormancy-associated MADS-BOX genes from leafy spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  7. Cloning, Characterization, Regulation, and Function of DORMANCY-ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  8. Characterization, Expression and Function of DORMANCY ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endo...

  9. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    PubMed Central

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  10. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    PubMed

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  11. The B-Box Domain Protein BBX21 Promotes Photomorphogenesis.

    PubMed

    Xu, Dongqing; Jiang, Yan; Li, Jian; Holm, Magnus; Deng, Xing Wang

    2018-03-01

    B-box-containing (BBX) proteins play critical roles in a variety of cellular and developmental processes in plants. BBX21 (also known as SALT TOLERANCE HOMOLOG2), which contains two B-box domains in tandem at the N terminus, has been previously demonstrated as a key component involved in the COP1-HY5 signaling hub. However, the exact molecular and physiological roles of B-box domains in BBX21 are largely unclear. Here, we found that structurally disruption of the second B-box domain, but not the first one, in BBX21 completely abolishes its biological and physiological activity in conferring hyperphotomorphogenetic phenotype in Arabidopsis ( Arabidopsis thaliana ). Intact B-box domains in BBX21 are not required for interaction with COP1 and its degradation by COP1 via the 26S proteasome system. However, disruption of the second B-box of BBX21 nearly impairs its ability for binding of T/G-box within the HY5 promoter both in vitro and in vivo, as well as controlling HY5 and HY5-regulated gene expression in Arabidopsis seedlings. Taken together, this study provides a mechanistic framework in which BBX21 directly binds to the T/G-box present in the HY5 promoter possibly through its second B-box domain, which in turn controls HY5 and HY5-regulated gene expression to promote photomorphogenesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis.

    PubMed

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu

    2015-01-01

    An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.

  13. Tbx16 regulates hox gene activation in mesodermal progenitor cells

    PubMed Central

    Payumo, Alexander Y.; McQuade, Lindsey E.; Walker, Whitney J.; Yamazoe, Sayumi; Chen, James K.

    2016-01-01

    The transcription factor T-box 16 (Tbx16/Spadetail) is an essential regulator of paraxial mesoderm development in zebrafish (Danio rerio). Mesodermal progenitor cells (MPCs) fail to differentiate into trunk somites in tbx16 mutants and instead accumulate within the tailbud in an immature state. The mechanisms by which Tbx16 controls mesoderm patterning have remained enigmatic, and we describe here the application of photoactivatable morpholino oligonucleotides to determine the Tbx16 transcriptome in MPCs. We identify 124 Tbx16-regulated genes that are expressed in zebrafish gastrulae, including several developmental signaling proteins and regulators of gastrulation, myogenesis, and somitogenesis. Unexpectedly, we observe that loss of Tbx16 function precociously activates posterior hox genes in MPCs, and overexpression of a single posterior hox gene is sufficient to disrupt MPC migration. Our studies support a model in which Tbx16 regulates the timing of collinear hox gene activation to coordinate the anterior-posterior fates and positions of paraxial MPCs. PMID:27376691

  14. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome.

    PubMed

    Cui, Hao-Ran; Zhang, Zheng-Rong; Lv, Wei; Xu, Jia-Ning; Wang, Xiao-Yun

    2015-08-01

    The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.

  15. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  16. Transcriptional Regulation of Fruit Ripening by Tomato FRUITFULL Homologs and Associated MADS Box Proteins[W

    PubMed Central

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening. PMID:24415769

  17. A Role for the GCC-Box in Jasmonate-Mediated Activation of the PDF1.2 Gene of Arabidopsis1

    PubMed Central

    Brown, Rebecca L.; Kazan, Kemal; McGrath, Ken C.; Maclean, Don J.; Manners, John M.

    2003-01-01

    The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the β-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box. PMID:12805630

  18. HbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP.

    PubMed

    Li, Hui-Liang; Wei, Li-Ran; Guo, Dong; Wang, Ying; Zhu, Jia-Hong; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4 , was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene encoding H. brasiliensis small rubber particle protein (HbSRPP) as bait. HbMADS4 was 984-bp containing 633-bp open reading frame encoding a deduced protein of 230 amino acid residues with a typical conserved MADS-box motif at the N terminus. HbMADS4 was preferentially expressed in the latex, but little expression was detected in the leaves, flowers, and roots. Its expression was inducible by methyl jasmonate and ethylene. Furthermore, transient over-expression and over-expression of HbMADS4 in transgenic tobacco plants significantly suppressed the activity of the HbSRP promoter. Altogether, it is proposed that HbMADS4 is a negative regulator of HbSRPP which participates in the biosynthesis of natural rubber.

  19. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    PubMed

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  20. The CCAAT box in the proximal SERCA2 gene promoter regulates basal and stress-induced transcription in cardiomyocytes.

    PubMed

    Fragoso-Medina, Jorge; Rodriguez, Gabriela; Zarain-Herzberg, Angel

    2018-05-01

    The cardiac sarco/endoplasmic reticulum Ca 2+ -ATPase-2a (SERCA2a) is vital for the correct handling of calcium concentration in cardiomyocytes. Recent studies showed that the induction of endoplasmic reticulum (ER) stress (ERS) with the SERCA2 inhibitor Thapsigargin (Tg) increases the mRNA and protein levels of SERCA2a. The SERCA2 gene promoter contains an ERS response element (ERSE) at position -78 bp that is conserved among species and might transcriptionally regulate SERCA2 gene expression. However, its involvement in SERCA2 basal and calcium-mediated transcriptional activation has not been elucidated. In this work, we show that in cellular cultures of neonatal rat ventricular myocytes, the treatment with Tg or the calcium ionophore A23187 increases the SERCA2a mRNA and protein abundance, as well as the transcriptional activity of two chimeric human SERCA2 gene constructs, containing -254 and -2579 bp of 5'-regulatory region cloned in the pGL3-basic vector and transiently transfected in cultured cardiomyocytes. We found that the ERSE present in the SERCA2 proximal promoter contains a CCAAT box that is involved in basal and ERS-mediated hSERCA2 transcriptional activation. The EMSA results showed that the CCAAT box present in the ERSE recruits the NF-Y transcription factor. Additionally, by ChIP assays, we confirmed in vivo binding of NF-Y and C/EBPβ transcription factors to the SERCA2 gene proximal promoter.

  1. In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways

    PubMed Central

    Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel

    2013-01-01

    It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101

  2. A New Set of ESTs from Chickpea (Cicer arietinum L.) Embryo Reveals Two Novel F-Box Genes, CarF-box_PP2 and CarF-box_LysM, with Potential Roles in Seed Development

    PubMed Central

    Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata

    2015-01-01

    Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development. PMID:25803812

  3. E-box-independent regulation of transcription and differentiation by MYC.

    PubMed

    Uribesalgo, Iris; Buschbeck, Marcus; Gutiérrez, Arantxa; Teichmann, Sophia; Demajo, Santiago; Kuebler, Bernd; Nomdedéu, Josep F; Martín-Caballero, Juan; Roma, Guglielmo; Benitah, Salvador Aznar; Di Croce, Luciano

    2011-10-23

    MYC proto-oncogene is a key player in cell homeostasis that is commonly deregulated in human carcinogenesis(1). MYC can either activate or repress target genes by forming a complex with MAX (ref. 2). MYC also exerts MAX-independent functions that are not yet fully characterized(3). Cells possess an intrinsic pathway that can abrogate MYC-MAX dimerization and E-box interaction, by inducing phosphorylation of MYC in a PAK2-dependent manner at three residues located in its helix-loop-helix domain(4). Here we show that these carboxy-terminal phosphorylation events switch MYC from an oncogenic to a tumour-suppressive function. In undifferentiated cells, MYC-MAX is targeted to the promoters of retinoic-acid-responsive genes by its direct interaction with the retinoic acid receptor-α (RARα). MYC-MAX cooperates with RARα to repress genes required for differentiation, in an E-box-independent manner. Conversely, on C-terminal phosphorylation of MYC during differentiation, the complex switches from a repressive to an activating function, by releasing MAX and recruiting transcriptional co-activators. Phospho-MYC synergizes with retinoic acid to eliminate circulating leukaemic cells and to decrease the level of tumour invasion. Our results identify an E-box-independent mechanism for transcriptional regulation by MYC that unveils previously unknown functions for MYC in differentiation. These may be exploited to develop alternative targeted therapies.

  4. Transcriptional regulation of cellular ageing by the CCAAT box-binding factor CBF/NF-Y.

    PubMed

    Matuoka, Koozi; Chen, Kuang Yu

    2002-09-01

    Cellular ageing is a systematic process affecting the entirety of cell structure and function. Since changes in gene expression are extensive and global during ageing, involvement of general transcription regulators in the phenomenon is likely. Here, we focus on NF-Y, the major CCAAT box-binding factor, which exerts differential regulation on a wide variety of genes through its interaction with the CCAAT box present in as many as 25% of the eukaryotic genes. When a cell ages, senescing signals arise, typically through DNA damage due to oxidative stress or telomere shortening, and are transduced to proteins such as p53, retinoblastoma protein, and phosphatidylinositol 3-kinase. Among them, activated p53 family proteins suppress the function of NF-Y and thereby downregulate a set of cell cycle-related genes, including E2F1, which further leads to downregulation of E2F-regulated genes and cell cycle arrest. The p53 family also induces other ageing phenotypes such as morphological alterations and senescence-associated beta-galactosidase (SA-gal) presumably by upregulation of some genes through NF-Y suppression. In fact, the activities of NF-Y and E2F decrease during ageing and a dominant negative NF-YA induces SA-gal. Based on these observations, NF-Y appears to play an important role in the process of cellular ageing.

  5. Cell-penetrable mouse forkhead box protein 3 alleviates experimental arthritis in mice by up-regulating regulatory T cells.

    PubMed

    Liu, Xia; Ji, Baoju; Sun, Mengyi; Wu, Weijiang; Huang, Lili; Sun, Aihua; Zong, Yangyong; Xia, Sheng; Shi, Liyun; Qian, Hui; Xu, Wenrong; Shao, Qixiang

    2015-07-01

    Regulatory T cells (T(regs)) have potential applications in clinical disease therapy, such as autoimmune diseases and transplant rejection. However, their numbers are limited. Forkhead box protein 3 (FoxP3) is a key transcription factor that controls T(reg) development and function. Here, we generated a cell-permeable fusion protein, protein transduction domain (PTD)-conjugated mouse FoxP3 protein (PTD-mFoxP3), and evaluated whether PTD-mFoxp3 can alleviate rheumatoid arthritis (RA) in the collagen-induced arthritis (CIA) mouse model. As expected, PTD-mFoxP3 was transduced into cells effectively, and inhibited T cell activation and attenuated the cell proliferation. It decreased interleukin (IL) 2 and interferon (IFN)-γ expression, and increased IL-10 expression in activated CD4(+)CD25(-) T cells. PTD-mFoxP3-transduced CD4(+)CD25(-) T cells attenuated proliferation of activated CD4(+)CD25(-) T cells. In addition, PTD-mFoxP3 blocked the Th17 differentiation programme in vitro and down-regulated IL-17 production from T cells by modulating induction and levels of retinoid-related orphan receptor gamma t (RORγt). Intra-articular delivery of PTD-mFoxP3 delayed disease incidence remarkably and alleviated autoimmune symptoms of CIA mice. Moreover, protective effects of PTD-mFoxP3 were associated with regulating the balance of T helper type 17 (Th17) and T(regs). These results suggest that PTD-mFoxP3 may be a candidate for RA therapy. © 2015 British Society for Immunology.

  6. Phylogenomics of MADS-Box Genes in Plants - Two Opposing Life Styles in One Gene Family.

    PubMed

    Gramzow, Lydia; Theißen, Günter

    2013-09-12

    The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes.

  7. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells*

    PubMed Central

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602

  8. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells.

    PubMed

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M; Evans, Ronald M; Gage, Fred H

    2012-02-17

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.

  9. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene.

  10. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses.

    PubMed

    Song, Jianbo; Mo, Xiaowei; Yang, Haiqi; Yue, Luming; Song, Jun; Mo, Beixin

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.

  11. The U-box family genes in Medicago truncatula: Key elements in response to salt, cold, and drought stresses

    PubMed Central

    Yang, Haiqi; Yue, Luming; Song, Jun

    2017-01-01

    The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula. PMID:28771553

  12. Genome-wide identification and analysis of the MADS-box gene family in apple.

    PubMed

    Tian, Yi; Dong, Qinglong; Ji, Zhirui; Chi, Fumei; Cong, Peihua; Zhou, Zongshan

    2015-01-25

    The MADS-box gene family is one of the most widely studied families in plants and has diverse developmental roles in flower pattern formation, gametophyte cell division and fruit differentiation. Although the genome-wide analysis of this family has been performed in some species, little is known regarding MADS-box genes in apple (Malus domestica). In this study, 146 MADS-box genes were identified in the apple genome and were phylogenetically clustered into six subgroups (MIKC(c), MIKC*, Mα, Mβ, Mγ and Mδ) with the MADS-box genes from Arabidopsis and rice. The predicted apple MADS-box genes were distributed across all 17 chromosomes at different densities. Additionally, the MADS-box domain, exon length, gene structure and motif compositions of the apple MADS-box genes were analysed. Moreover, the expression of all of the apple MADS-box genes was analysed in the root, stem, leaf, flower tissues and five stages of fruit development. All of the apple MADS-box genes, with the exception of some genes in each group, were expressed in at least one of the tissues tested, which indicates that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the apple. To the best of our knowledge, this report describes the first genome-wide analysis of the apple MADS-box gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Characterization of TM8, a MADS-box gene expressed in tomato flowers.

    PubMed

    Daminato, Margherita; Masiero, Simona; Resentini, Francesca; Lovisetto, Alessandro; Casadoro, Giorgio

    2014-11-30

    The identity of flower organs is specified by various MIKC MADS-box transcription factors which act in a combinatorial manner. TM8 is a MADS-box gene that was isolated from the floral meristem of a tomato mutant more than twenty years ago, but is still poorly known from a functional point of view in spite of being present in both Angiosperms and Gymnosperms, with some species harbouring more than one copy of the gene. This study reports a characterization of TM8 that was carried out in transgenic tomato plants with altered expression of the gene. Tomato plants over-expressing either TM8 or a chimeric repressor form of the gene (TM8:SRDX) were prepared. In the TM8 up-regulated plants it was possible to observe anomalous stamens with poorly viable pollen and altered expression of several floral identity genes, among them B-, C- and E-function ones, while no apparent morphological modifications were visible in the other whorls. Oblong ovaries and fruits, that were also parthenocarpic, were obtained in the plants expressing the TM8:SRDX repressor gene. Such ovaries showed modified expression of various carpel-related genes. No apparent modifications could be seen in the other flower whorls. The latter plants had also epinastic leaves and malformed flower abscission zones. By using yeast two hybrid assays it was possible to show that TM8 was able to interact in yeast with MACROCALIX. The impact of the ectopically altered TM8 expression on the reproductive structures suggests that this gene plays some role in the development of the tomato flower. MACROCALYX, a putative A-function MADS-box gene, was expressed in all the four whorls of fully developed flowers, and showed quantitative variations that were opposite to those of TM8 in the anomalous stamens and ovaries. Since the TM8 protein interacted in vitro only with the A-function MADS-box protein MACROCALYX, it seems that for the correct differentiation of the tomato reproductive structures possible interactions between

  14. MADS-Box gene diversity in seed plants 300 million years ago.

    PubMed

    Becker, A; Winter, K U; Meyer, B; Saedler, H; Theissen, G

    2000-10-01

    MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root development to flower and fruit development. Through phylogeny reconstructions, most of these genes can be subdivided into defined monophyletic gene clades whose members share similar expression patterns and functions. Therefore, the establishment of the diversity of gene clades was probably an important event in land plant evolution. In order to determine when these clades originated, we isolated cDNAs of 19 different MADS-box genes from Gnetum gnemon, a gymnosperm model species and thus a representative of the sister group of the angiosperms. Phylogeny reconstructions involving all published MADS-box genes were then used to identify gene clades containing putative orthologs from both angiosperm and gymnosperm lineages. Thus, the minimal number of MADS-box genes that were already present in the last common ancestor of extant gymnosperms and angiosperms was determined. Comparative expression studies involving pairs of putatively orthologous genes revealed a diversity of patterns that has been largely conserved since the time when the angiosperm and gymnosperm lineages separated. Taken together, our data suggest that there were already at least seven different MADS-box genes present at the base of extant seed plants about 300 MYA. These genes were probably already quite diverse in terms of both sequence and function. In addition, our data demonstrate that the MADS-box gene families of extant gymnosperms and angiosperms are of similar complexities.

  15. Chromatin looping defines expression of TAL1, its flanking genes, and regulation in T-ALL.

    PubMed

    Zhou, Yan; Kurukuti, Sreenivasulu; Saffrey, Peter; Vukovic, Milica; Michie, Alison M; Strogantsev, Ruslan; West, Adam G; Vetrie, David

    2013-12-19

    TAL1 is an important regulator of hematopoiesis and its expression is tightly controlled despite complexities in its genomic organization. It is frequently misregulated in T-cell acute lymphoblastic leukemia (T-ALL), often due to deletions between TAL1 and the neighboring STIL gene. To better understand the events that lead to TAL1 expression in hematopoiesis and in T-ALL, we studied looping interactions at the TAL1 locus. In TAL1-expressing erythroid cells, the locus adopts a looping "hub" which brings into close physical proximity all known TAL1 cis-regulatory elements including CTCF-bound insulators. Loss of GATA1 results in disassembly of the hub and loss of CTCF/RAD21 from one of its insulators. Genes flanking TAL1 are partly dependent on hub integrity for their transcriptional regulation. We identified looping patterns unique to TAL1-expressing T-ALL cells, and, intriguingly, loops occurring between the TAL1 and STIL genes at the common TAL1/STIL breakpoints found in T-ALL. These findings redefine how TAL1 and neighboring genes communicate within the nucleus, and indicate that looping facilitates both normal and aberrant TAL1 expression and may predispose to structural rearrangements in T-ALL. We also propose that GATA1-dependent looping mechanisms may facilitate the conservation of TAL1 regulation despite cis-regulatory remodeling during vertebrate evolution.

  16. T-box Transcription Regulator Tbr2 Is Essential for the Formation and Maintenance of Opn4/Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Li, Hongyan; Zhang, Zhijing; Kiyama, Takae; Panda, Satchidananda; Hattar, Samer; Ribelayga, Christophe P.; Mills, Stephen L.

    2014-01-01

    Opsin 4 (Opn4)/melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) play a major role in non-image-forming visual system. Although advances have been made in understanding their morphological features and functions, the molecular mechanisms that regulate their formation and survival remain unknown. Previously, we found that mouse T-box brain 2 (Tbr2) (also known as Eomes), a T-box-containing transcription factor, was expressed in a subset of newborn RGCs, suggesting that it is involved in the formation of specific RGC subtypes. In this in vivo study, we used complex mouse genetics, single-cell dye tracing, and behavioral analyses to determine whether Tbr2 regulates ipRGC formation and survival. Our results show the following: (1) Opn4 is expressed exclusively in Tbr2-positive RGCs; (2) no ipRGCs are detected when Tbr2 is genetically ablated before RGC specification; and (3) most ipRGCs are eliminated when Tbr2 is deleted in established ipRGCs. The few remaining ipRGCs display abnormal dendritic morphological features and functions. In addition, some Tbr2-expressing RGCs can activate Opn4 expression on the loss of native ipRGCs, suggesting that Tbr2-expressing RGCs may serve as a reservoir of ipRGCs to regulate the number of ipRGCs and the expression levels of Opn4. PMID:25253855

  17. Paired box 7 inhibits differentiation in 3T3-L1 preadipocytes.

    PubMed

    Izumi, Wakana; Takuma, Yuko; Ebihara, Ryo; Mizunoya, Wataru; Tatsumi, Ryuichi; Nakamura, Mako

    2018-06-13

    Myogenesis is precisely proceeded by myogenic regulatory factors. Myogenic stem cells are activated, proliferated and fused into a multinuclear myofiber. Pax7, paired box 7, one of the earliest markers during myogenesis. It has been reported that Pax7 regulates the muscle marker genes, Myf5 and MyoD toward differentiation. The possible roles of Pax7 in myogenic cells have been well researched. However, it has not yet been clarified if Pax7 itself is able to induce myogenic fate in nonmyogenic lineage cells. In this study, we performed experiments using stably expressed Pax7 in 3T3-L1 preadipocytes to elucidate if Pax7 inhibits adipogenesis. We found that Pax7 represses adipogenic markers and prevents differentiation. These cells showed decreased expression of PDGFRα, PPARγ and Fabp4 and inhibited forming lipid droplets. © 2018 Japanese Society of Animal Science.

  18. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development.

    PubMed

    Zhang, Bin; Liu, Xia; Zhao, Guangyao; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2014-06-01

    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat. © 2014 The Authors. Journal of Integrative Plant Biology Published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  19. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.

    PubMed

    Ikeda, Kyoko; Ito, Momoyo; Nagasawa, Nobuhiro; Kyozuka, Junko; Nagato, Yasuo

    2007-09-01

    Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution.

  20. The regulation of MADS-box gene expression during ripening of banana and their regulatory interation with ethylene

    USDA-ARS?s Scientific Manuscript database

    MADS-box genes (MaMADS1-6), potential components of the developmental control of ripening have been cloned from Grand Nain banana cultivar. Similarity of these genes to tomato LeRIN is very low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns...

  1. SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple

    PubMed Central

    Wu, Rongmei; Tomes, Sumathi; Karunairetnam, Sakuntala; Tustin, Stuart D.; Hellens, Roger P.; Allan, Andrew C.; Macknight, Richard C.; Varkonyi-Gasic, Erika

    2017-01-01

    The annual growth cycle of trees is the result of seasonal cues. The onset of winter triggers an endodormant state preventing bud growth and, once a chilling requirement is satisfied, these buds enter an ecodormant state and resume growing. MADS-box genes with similarity to Arabidopsis SHORT VEGETATIVE PHASE (SVP) [the SVP-like and DORMANCY ASSOCIATED MADS-BOX (DAM) genes] have been implicated in regulating flowering and growth-dormancy cycles in perennials. Here, we identified and characterized three DAM-like (MdDAMs) and two SHORT VEGETATIVE PHASE-like (MdSVPs) genes from apple (Malus × domestica ‘Royal Gala’). The expression of MdDAMa and MdDAMc indicated they may play a role in triggering autumn growth cessation. In contrast, the expression of MdDAMb, MdSVPa and MdSVPb suggested a role in maintaining bud dormancy. Consistent with this, ectopic expression of MdDAMb and MdSVPa in ‘Royal Gala’ apple plants resulted in delayed budbreak and architecture change due to constrained lateral shoot outgrowth, but normal flower and fruit development. The association of MdSVPa and MdSVPb expression with floral bud development in the low fruiting ‘Off’ trees of a biennial bearing cultivar ‘Sciros’ suggested the SVP genes might also play a role in floral meristem identity. PMID:28421103

  2. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  3. Coordinating expression of FLOWERING LOCUS T by DORMANCY ASSOCIATED MADS-BOX-like genes in leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been proposed to play a direc...

  4. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    PubMed Central

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-01-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins. PMID:24621662

  5. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    PubMed

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is

  6. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants

    PubMed Central

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-01-01

    Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box

  7. Gene transfer of high-mobility group box 1 box-A domain in a rat acute liver failure model.

    PubMed

    Tanaka, Masayuki; Shinoda, Masahiro; Takayanagi, Atsushi; Oshima, Go; Nishiyama, Ryo; Fukuda, Kazumasa; Yagi, Hiroshi; Hayashida, Tetsu; Masugi, Yohei; Suda, Koichi; Yamada, Shingo; Miyasho, Taku; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Obara, Hideaki; Itano, Osamu; Takeuchi, Hiroya; Sakamoto, Michiie; Tanabe, Minoru; Maruyama, Ikuro; Kitagawa, Yuko

    2015-04-01

    High-mobility group box 1 (HMGB1) has recently been identified as an important mediator of various kinds of acute and chronic inflammation. The protein encoded by the box-A domain of the HMGB1 gene is known to act as a competitive inhibitor of HMGB1. In this study, we investigated whether box-A gene transfer results in box-A protein production in rats and assessed therapeutic efficacy in vivo using an acute liver failure (ALF) model. Three types of adenovirus vectors were constructed-a wild type and two mutants-and a mutant vector was then selected based on the secretion from HeLa cells. The secreted protein was subjected to a tumor necrosis factor (TNF) production inhibition test in vitro. The vector was injected via the portal vein in healthy Wistar rats to confirm box-A protein production in the liver. The vector was then injected via the portal vein in rats with ALF. Western blot analysis showed enhanced expression of box-A protein in HeLa cells transfected with one of the mutant vectors. The culture supernatant from HeLa cells transfected with the vector inhibited TNF-α production from macrophages. Expression of box-A protein was confirmed in the transfected liver at 72 h after transfection. Transfected rats showed decreased hepatic enzymes, plasma HMGB1, and hepatic TNF-α messenger RNA levels, and histologic findings and survival were significantly improved. HMGB1 box-A gene transfer results in box-A protein production in the liver and appears to have a beneficial effect on ALF in rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A possible regulatory link between Twist 1 and PPARγ gene regulation in 3T3-L1 adipocytes.

    PubMed

    Ren, Rui; Chen, Zhufeng; Zhao, Xia; Sun, Tao; Zhang, Yuchao; Chen, Jie; Lu, Sumei; Ma, Wanshan

    2016-11-08

    Peroxisome proliferator-activated receptor γ (PPARγ) is a critical gene that regulates the function of adipocytes. Therefore, studies on the molecular regulation mechanism of PPARγ are important to understand the function of adipose tissue. Twist 1 is another important functional gene in adipose tissue, and hundreds of genes are regulated by Twist 1. The aim of this study was to investigate the regulation of Twist 1 and PPARγ expression in 3T3-L1 mature adipocytes. We induced differentiation in 3T3-L1 preadipocytes and examined alterations in Twist 1 and PPARγ expression. We used the PPARγ agonist pioglitazone and the PPARγ antagonist T0070907 to investigate the effect of PPARγ on Twist 1 expression. In addition, we utilized retroviral interference and overexpression of Twist 1 to determine the effects of Twist 1 on PPARγ expression. The expression levels of Twist 1 and PPARγ were induced during differentiation in 3T3-L1 adipocytes. Application of either a PPARγ agonist (pioglitazone) or antagonist (T0070907) influenced Twist 1 expression, with up-regulation of Twist 1 under pioglitazone (1 μM, 24 h) and down-regulation of Twist 1 under T0070907 (100 μM, 24 h) exposure. Furthermore, the retroviral interference of Twist 1 decreased the protein and mRNA expression of PPARγ, while Twist 1 overexpression had the opposite effect. There was a possible regulatory link between Twist 1 and PPARγ in 3T3-L1 mature adipocytes. This regulatory link enhanced the regulation of PPARγ and may be a functional mechanism of Twist 1 regulation of adipocyte physiology and pathology.

  9. The context of transcription start site regions is crucial for transcription of a plant tRNA(Lys)(UUU) gene group both in vitro and in vivo.

    PubMed

    Yukawa, Yasushi; Akama, Kazuhito; Noguchi, Kanta; Komiya, Masaaki; Sugiura, Masahiro

    2013-01-10

    Nuclear tRNA genes are transcribed by RNA polymerase III. The A- and B-boxes located within the transcribed regions are essential promoter elements for nuclear tRNA gene transcription. The Arabidopsis genome contains ten annotated genes encoding identical tRNA(Lys)(UUU) molecules, which are scattered on the five chromosomes. In this study, we prepared ten tDNA constructs including each of the tRNA(Lys)(UUU) coding sequences with their individual 5' and 3' flanking sequences, and assayed tRNA expression using an in vitro RNA polymerase III-dependent transcription system. Transcription levels differed significantly among the ten genes and two of the tRNA genes were transcribed at a very low level, despite possessing A- and B-boxes identical to those of the other tRNA genes. To examine whether the in vitro results were reproducible in vivo, the 5' flanking sequence of an amber suppressor tRNA gene was then replaced with those of the ten tRNA(Lys) genes. An in vivo experiment based on an amber suppressor tRNA that mediates suppression of a premature amber codon in a β-glucuronidase (GUS) reporter gene in plant tissues generated nearly identical results to those obtained in vitro. Analysis of mutated versions of the amber suppressor tRNA gene, which contained base substitutions around the transcription start site (TSS), showed that the context around the transcription start sites is a crucial determinant for transcription of plant tRNA(Lys)(UUU) both in vitro and in vivo. The above transcription regulation by context around TSS differed between tRNA genes and other Pol III-dependent genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.

    PubMed

    Kakeda, Katsuyuki

    2009-09-01

    Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.

  11. The SBP-Box Gene VpSBP11 from Chinese Wild Vitis Is Involved in Floral Transition and Affects Leaf Development.

    PubMed

    Hou, Hongmin; Yan, Xiaoxiao; Sha, Ting; Yan, Qin; Wang, Xiping

    2017-07-13

    Flowering occurs in angiosperms during a major developmental transition from vegetative growth to the reproductive phase. Squamosa promoter binding protein (SBP)-box genes have been found to play critical roles in regulating flower and fruit development, but their roles in grapevine have remained unclear. To better understand the functions of the grape SBP-box genes in both vegetative and reproductive growth phases, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP11 , was obtained from Chinese wild grapevine Vitis pseudoreticulata Wen Tsai Wang (W. T. Wang) clone 'Baihe-35-1'. VpSBP11 encoded a putative polypeptide of 170 amino acids with a highly conserved SBP-domain with two zinc-binding sites of the Cx2C-x3-H-x11-C-x6-H (C2HCH) type and a nuclear localization signal. We confirmed that the VpSBP11 protein was targeted to the nucleus and possessed transcriptional activation activity by subcellular localization and trans -activation assay. Over-expression of VpSBP11 in Arabidopsis thaliana was shown to activate the FUL gene, and subsequently the AP1 and LFY genes, all of which were floral meristem identity genes, and to cause earlier flowering than in wild type (WT) plants. The pattern of vegetative growth was also different between the transgenic and WT plants. For example, in the VpSBP11 over-expressing transgenic plants, the number of rosette leaves was less than that of WT; the petiole was significantly elongated; and the rosette and cauline leaves curled upwards or downwards. These results were consistent with VpSBP11 acting as a transcription factor during the transition from the vegetative stage to the reproductive stage.

  12. Functional redundancy and/or ongoing pseudogenization among F-box protein genes expressed in Arabidopsis male gametophyte.

    PubMed

    Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine

    2014-06-01

    F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.

  13. T box transcription antitermination riboswitch: Influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element

    PubMed Central

    Fauzi, Hamid; Agyeman, Akwasi; Hines, Jennifer V.

    2008-01-01

    Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5′-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation. PMID:19152843

  14. A Novel Heterozygous Mutation in the T-box Protein 4 Gene in an Adult Case of Small Patella Syndrome.

    PubMed

    Oda, Tomoyuki; Matsushita, Masaki; Ono, Yohei; Kitoh, Hiroshi; Sakai, Tadahiro

    2018-01-01

    Small patella syndrome (SPS) is a rare skeletal dysplasia relating to the T-box protein 4 (TBX4) gene, which regulates the development of lower extremities. Patients typically present with recurrent patellar dislocation (RPD) in childhood or adolescence, leading to a diagnosis of SPS and subsequent treatment to improve activity levels. However, those with mild symptoms may not be diagnosed when young and present later after skeletal maturation, which might compromise treatment options. Further understanding of genetic mutations of SPS could possibly help early diagnosis and following adequate surgical treatment. In this case report, we present a surgically treated adult female case of RPD associated with SPS, carrying a novel heterozygous mutation in the TBX4 gene. A 19-year-old female presented with persistent right knee pain after an atraumatic episode ofpatellar dislocation during walking. The patient had a history of recurrent patella instability of the right knee with an onset at the age of 8 years due to a minor trauma. Patellar apprehension sign was positive bilaterally. There was radiological evidence of bilateral small patellae, hypoplastic femoral trochlea, and tibial tuberosity. A direct sequencing of the coding regions in the TBX4 gene had confirmed the diagnosis of SPS. A novel heterozygous mutation (p.L39PfsX35) was found in the patient and her father. Surgical treatment was indicated and the patient underwent an isolated medial patellofemoral ligament (MPFL) reconstruction while no distal realignment osteotomy was performed due to hypoplastic tibial tuberosity. Excellent subjective and objective outcomes were obtained at 1 year postoperatively. To the best of our knowledge, this is the first reported SPS case with a novel mutation in the TBX4 gene in an Asian population. While a satisfying short-term outcome was obtained by an isolated MPFL reconstruction, early genetic diagnosis in childhood with adequate surgical treatment (e.g., Roux

  15. Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development

    PubMed Central

    Sehra, Bhupinder; Franks, Robert G.

    2017-01-01

    In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve. PMID:29085379

  16. Identification and expression analysis of the SQUAMOSA promoter-binding protein (SBP)-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2015-10-01

    SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.

  17. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    PubMed

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  18. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes

    PubMed Central

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene. PMID:26529408

  19. The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans

    PubMed Central

    Kostas, Stephen A.; Fire, Andrew

    2002-01-01

    We have isolated mutations in a gene mls-1 that is required for proper specification of nonstriated muscle fates in Caenorhabditis elegans. Loss of MLS-1 activity causes uterine muscle precursors to forego their normal fates, instead differentiating as vulval muscles. We have cloned mls-1 and shown that the product is a member of the T-box family of transcriptional regulators. MLS-1 acts as a cell fate determinant in that ectopic expression can transform other cell types to uterine muscle precursors. Uterine muscle patterning is executed by regulation of MLS-1 at several different levels. The mls-1 promoter is activated by the C. elegans orthologs of Twist and Daughterless, but is only active in a subset of the lineage where these two transcription factors are present. mls-1 activity also appears to be regulated by posttranscriptional processes, as expression occurs in both uterine and vulval muscle precursors. PMID:11799068

  20. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family.

    PubMed

    Shen, W C; Stanford, D R; Hopper, A K

    1996-06-01

    To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Ga14p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that las1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases. As the similarities are restricted to areas separate from the catalytic domain, these G6PDs may have more than one function. The SOL family appears to be unessential since cells with a triple disruption of all three SOL genes are viable. SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/ function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing.

  1. Los1p, involved in yeast pre-tRNA splicing, positively regulates members of the SOL gene family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, W.C.; Stanford, D.R.; Hopper, A.K.

    1996-06-01

    To understand the role of Los1p in pre-tRNA splicing, we sought los1 multicopy suppressors. We found SOL1 that suppresses both point and null LOS1 mutations. Since, when fused to the Gal4p DNA-binding domain, Los1p activates transcription, we tested whether Los1p regulates SOL1. We found that los1 mutants have depleted levels of SOL1 mRNA and Sol1p. Thus, LOS1 appears to positively regulate SOL1. SOL1 belongs to a multigene family with at least two additional members, SOL2 and SOL3. Sol proteins have extensive similarity to an unusual group of glucose-6-phosphate dehydrogenases (G6PDs). As the similarities are restricted to areas separate from themore » catalytic domain, these G6PDs may have more than one function. The SOL gene disruptions negatively affect tRNA-mediated nonsense suppression and the severity increases with the number of mutant SOL genes. However, tRNA levels do not vary with either multicopy SOL genes or with SOL disruptions. Therefore, the Sol proteins affect tRNA expression/function at steps other than transcription or splicing. We propose that LOS1 regulates gene products involved in tRNA expression/function as well as pre-tRNA splicing. 64 refs., 6 figs., 6 tabs.« less

  2. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    PubMed

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  3. CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation

    PubMed Central

    Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru

    2016-01-01

    Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588

  4. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    PubMed

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  5. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    PubMed Central

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  6. New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function.

    PubMed

    Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang

    2017-07-21

    B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.

  7. Expression analysis of genes encoding double B-box zinc finger proteins in maize.

    PubMed

    Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong

    2017-11-01

    The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.

  8. Forkhead box transcription factors in embryonic heart development and congenital heart disease.

    PubMed

    Zhu, Hong

    2016-01-01

    Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.

    PubMed

    Chae, Eunyoung; Tan, Queenie K-G; Hill, Theresa A; Irish, Vivian F

    2008-04-01

    Plants flower in response to both environmental and endogenous signals. The Arabidopsis LEAFY (LFY) transcription factor is crucial in integrating these signals, and acts in part by activating the expression of multiple floral homeotic genes. LFY-dependent activation of the homeotic APETALA3 (AP3) gene requires the activity of UNUSUAL FLORAL ORGANS (UFO), an F-box component of an SCF ubiquitin ligase, yet how this regulation is effected has remained unclear. Here, we show that UFO physically interacts with LFY both in vitro and in vivo, and this interaction is necessary to recruit UFO to the AP3 promoter. Furthermore, a transcriptional repressor domain fused to UFO reduces endogenous LFY activity in plants, supporting the idea that UFO acts as part of a transcriptional complex at the AP3 promoter. Moreover, chemical or genetic disruption of proteasome activity compromises LFY-dependent AP3 activation, indicating that protein degradation is required to promote LFY activity. These results define an unexpected role for an F-box protein in functioning as a DNA-associated transcriptional co-factor in regulating floral homeotic gene expression. These results suggest a novel mechanism for promoting flower development via protein degradation and concomitant activation of the LFY transcription factor. This mechanism may be widely conserved, as homologs of UFO and LFY have been identified in a wide array of plant species.

  10. Genome-wide identification and characterization of the SBP-box gene family in Petunia.

    PubMed

    Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng

    2018-03-12

    -to-reproductive phase transition. Petunia genome contains at least 21 SPL genes, and most of the genes are expressed in different tissues. The PhSPL genes may play conserved and diverse roles in plant growth and development, including flowering regulation, leaf initiation, axillary bud and inflorescence development. This work provides a comprehensive understanding of the SBP-box gene family in Petunia and lays a significant foundation for future studies on the function and evolution of SPL genes in petunia.

  11. Genomic Organization, Phylogenetic Comparison and Differential Expression of the SBP-Box Family Genes in Grape

    PubMed Central

    Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping

    2013-01-01

    Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172

  12. Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume.

    PubMed

    Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia

    2014-10-01

    MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.

  13. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos

    PubMed Central

    Yeung, Fan; Chung, Eunhee; Guess, Martin G.; Bell, Matthew L.; Leinwand, Leslie A.

    2012-01-01

    The sarcomeric myosin gene, Myh7b, encodes an intronic microRNA, miR-499, which regulates cardiac and skeletal muscle biology, yet little is known about its transcriptional regulation. To identify the transcription factors involved in regulating Myh7b/miR-499 gene expression, we have mapped the transcriptional start sites and identified an upstream 6.2 kb region of the mouse Myh7b gene whose activity mimics the expression pattern of the endogenous Myh7b gene both in vitro and in vivo. Through promoter deletion analysis, we have mapped a distal E-box element and a proximal Ikaros site that are essential for Myh7b promoter activity in muscle cells. We show that the myogenic regulatory factors, MyoD, Myf5 and Myogenin, bind to the E-box, while a lymphoid transcription factor, Ikaros 4 (Eos), binds to the Ikaros motif. Further, we show that through physical interaction, MyoD and Eos form an active transcriptional complex on the chromatin to regulate the expression of the endogenous Myh7b/miR-499 gene in muscle cells. We also provide the first evidence that Eos can regulate expression of additional myosin genes (Myosin 1 and β-Myosin) via the miR-499/Sox6 pathway. Therefore, our results indicate a novel role for Eos in the regulation of the myofiber gene program. PMID:22638570

  14. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.

    PubMed

    Samach, A; Klenz, J E; Kohalmi, S E; Risseeuw, E; Haughn, G W; Crosby, W L

    1999-11-01

    Genetic and molecular studies have suggested that the UNUSUAL FLORAL ORGANS (UFO) gene, from Arabidopsis thaliana, is expressed in all shoot apical meristems, and is involved in the regulation of a complex set of developmental events during floral development, including floral meristem and floral organ identity. Results from in situ hybridization using genes expressed early in floral development as probes indicate that UFO controls growth of young floral primordia. Transgenic constructs were used to provide evidence that UFO regulates floral organ identity by activating or maintaining transcription of the class B organ-identity gene APETALA 3, but not PISTILLATA. In an attempt to understand the biochemical mode of action of the UFO gene product, we show here that UFO is an F-box protein that interacts with Arabidopsis SKP1-like proteins, both in the yeast two-hybrid system and in vitro. In yeast and other organisms both F-box proteins and SKP1 homologues are subunits of specific ubiquitin E3 enzyme complexes that target specific proteins for degradation. The protein selected for degradation by the complex is specified by the F-box proteins. It is therefore possible that the role of UFO is to target for degradation specific proteins controlling normal growth patterns in the floral primordia, as well as proteins that negatively regulate APETALA 3 transcription.

  15. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).

    PubMed

    Johnston, Jonathan D; Ebling, Francis J P; Hazlerigg, David G

    2005-06-01

    Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.

  16. Differential transcriptional control of the two tRNA(fMet) genes of Escherichia coli K-12.

    PubMed

    Nagase, T; Ishii, S; Imamoto, F

    1988-07-15

    The metZ gene of Escherichia coli, which encodes the tRNA(f1Met), was cloned. Using the nucleotide sequence, in vitro transcription, and S1 nuclease mapping analyses, we identified the promoter region, transcriptional start point, the two tandem tRNA(f1Met) structural genes separated by an intergenic space of 33 bp, and the two Rho-independent transcriptional termination sites, in that order. We compared the promoter region of the metZ gene with that of the metY gene, which encodes the tRNA(f2Met) and is located in the promoter-proximal portion of the nusA operon. A G + C-rich sequence (5'-GCGCATCCAC-3'), similar to the corresponding sequence of the rrn promoters that are under stringent control, was found between the Pribnow box and the transcriptional start point of the metZ promoter, but not in the metY promoter region. We therefore examined the effect of guanosine 3'-diphosphate, 5'-diphosphate (ppGpp), the chemical mediator of stringent control, and found that ppGpp inhibited the transcription of the metZ gene, but not that of the metY gene. These data suggested that the promoters for metZ and metY have different physiological functions and are regulated by different mechanisms.

  17. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants.

    PubMed

    Guo, Xuhu; Chen, Guoping; Naeem, Muhammad; Yu, Xiaohu; Tang, Boyan; Li, Anzhou; Hu, Zongli

    2017-05-01

    MADS-domain proteins are important transcription factors that are involved in many biological processes of plants. In the present study, SlMBP11, a member of the AGL15 subfamily, was cloned in tomato plants (Solanum lycopersicon M.). SlMBP11 is ubiquitously expressed in all of the tissues we examined, whereas the SlMBP11 transcription levels were significantly higher in reproductive tissues than in vegetative tissues. Plants exhibiting increased SlMBP11 levels displayed reduced plant height, leaf size, and internode length as well as a loss of dominance in young seedlings, highly branched growth from each leaf axil, and increased number of nodes and leaves. Moreover, overexpression lines also exhibited reproductive phenotypes, such as those having a shorter style and split ovary, leading to polycarpous fruits, while the wild type showed normal floral organization. In addition, delayed perianth senescence was observed in transgenic tomatoes. These phenotypes were further confirmed by analyzing the morphological, anatomical and molecular features of lines exhibiting overexpression. These results suggest that SlMBP11 plays an important role in regulating plant architecture and reproductive development in tomato plants. These findings add a new class of transcription factors to the group of genes controlling axillary bud growth and illuminate a previously uncharacterized function of MADS-box genes in tomato plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Aspergillus fumigatus conidial melanin production is regulated by the bifunctional bHLH DevR and MADS-box RlmA transcription factors.

    PubMed

    Valiante, Vito; Baldin, Clara; Hortschansky, Peter; Jain, Radhika; Thywißen, Andreas; Straßburger, Maria; Shelest, Ekaterina; Heinekamp, Thorsten; Brakhage, Axel A

    2016-10-01

    Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region. © 2016 John Wiley & Sons Ltd.

  19. Functional Conservation of MIKC*-Type MADS Box Genes in Arabidopsis and Rice Pollen Maturation[C][W

    PubMed Central

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-01-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKCC type and MIKC* type. In seed plants, the MIKCC type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago. PMID:23613199

  20. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening.

  1. Genomic Organization, Phylogenetic and Expression Analysis of the B-BOX Gene Family in Tomato

    PubMed Central

    Chu, Zhuannan; Wang, Xin; Li, Ying; Yu, Huiyang; Li, Jinhua; Lu, Yongen; Li, Hanxia; Ouyang, Bo

    2016-01-01

    The B-BOX (BBX) proteins encode a class of zinc-finger transcription factors possessing one or two B-BOX domains and in some cases an additional CCT (CO, CO-like and TOC1) motif, which play important roles in regulating plant growth, development and stress response. Nevertheless, no systematic study of BBX genes has undertaken in tomato (Solanum lycopersicum). Here we present the results of a genome-wide analysis of the 29 BBX genes in this important vegetable species. Their structures, conserved domains, phylogenetic relationships, subcellular localizations, and promoter cis-regulatory elements were analyzed; their tissue expression profiles and expression patterns under various hormones and stress treatments were also investigated in detail. Tomato BBX genes can be divided into five subfamilies, and twelve of them were found to be segmentally duplicated. Real-time quantitative PCR analysis showed that most BBX genes exhibited different temporal and spatial expression patterns. The expression of most BBX genes can be induced by drought, polyethylene glycol-6000 or heat stress. Some BBX genes were induced strongly by phytohormones such as abscisic acid, gibberellic acid, or ethephon. The majority of tomato BBX proteins was predicted to be located in nuclei, and the transient expression assay using Arabidopsis mesophyll protoplasts demonstrated that all the seven BBX members tested (SlBBX5, 7, 15, 17, 20, 22, and 24) were localized in nucleus. Our analysis of tomato BBX genes on the genome scale would provide valuable information for future functional characterization of specific genes in this family. PMID:27807440

  2. The Drosophila T-box transcription factor Midline functions within the Notch–Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc

    PubMed Central

    Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.

    2014-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751

  3. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation.

    PubMed

    Fujisawa, Masaki; Nakano, Toshitsugu; Ito, Yasuhiro

    2011-01-30

    During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Using immunoprecipitated (IPed) DNA fragments recovered by chromatin immunoprecipitation (ChIP) with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites) in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes during ripening. Moreover, the binding of RIN to its own

  4. Regulated expression of Brachyury(T), Nkx1.1 and Pax genes in embryoid bodies.

    PubMed

    Yamada, G; Kioussi, C; Schubert, F R; Eto, Y; Chowdhury, K; Pituello, F; Gruss, P

    1994-03-15

    Embryonic stem cells (ES) can be exploited to analyze in vitro mechanisms of cellular differentiation. We have utilized ES-derived embryoid body formation in an attempt to study cell types resulting from in vitro differentiation. To this end, a variety of molecular markers, preferably those which have been associated with regulatory events during mouse embryogenesis, was employed. Specifically, Brachyury (T), Pax-3 and Pax-6 genes as well as Nkx-1.1 were used. We could demonstrate that the expression of these genes in vitro was regulated by growth factors such as activin A or bFGF. Implications of these findings and the possible applications for identifying new genes are discussed.

  5. Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation.

    PubMed

    Inman, Kimberly E; Downs, Karen M

    2006-10-01

    T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.

  6. Regulation of the human ascorbate transporter SVCT2 exon 1b gene by zinc-finger transcription factors

    PubMed Central

    Qiao, Huan; May, James M.

    2011-01-01

    The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086

  7. The lupus susceptibility gene Pbx1 regulates the balance between follicular helper T cell and regulatory T cell differentiation

    PubMed Central

    Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence

    2016-01-01

    Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664

  8. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    PubMed

    Kaur, Simranjeet; Pociot, Flemming

    2015-07-13

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value < 10e-16), which highlights their importance in T1D. Functional annotation of T1D genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value < 10e-6). We also identified eight T1D genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.

  9. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter

    PubMed Central

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-01-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  10. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.

  11. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.

    PubMed

    Hernández-Hernández, Tania; Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R

    2007-02-01

    B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus

  12. Epigenetic Control of Cytokine Gene Expression: Regulation of the TNF/LT Locus and T Helper Cell Differentiation

    PubMed Central

    Falvo, James V.; Jasenosky, Luke D.; Kruidenier, Laurens; Goldfeld, Anne E.

    2014-01-01

    Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal “tails” of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The “histone code” defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages. PMID:23683942

  13. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    PubMed

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  14. Molecular analysis of the differential hepatic expression of rat kininogen family genes.

    PubMed Central

    Chen, H M; Liao, W S

    1993-01-01

    Serum concentration of rat T1 kininogen increases 20- to 30-fold in response to acute inflammation, an induced hepatic synthesis regulated primarily at the transcriptional level. We have demonstrated by transient transfection analyses that rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs are highly responsive to interleukin-6 and dexamethasone. In these studies we examined the regulation of a highly homologous K kininogen gene promoter and showed that it is minimally induced under identical conditions. The basal expression of the KK/CAT construct was, however, five- to sevenfold higher than that of the analogous T1K/CAT construct. Promoter-swapping experiments to examine the molecular basis of this differentially regulated basal expression showed that at least two K kininogen promoter regions are important for conferring its high basal expression: a distal 19-bp region (C box) constituted a binding site for C/EBP family proteins, and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor 3 (HNF-3). While the C box in the K kininogen promoter was able to interact with C/EBP transcription factors, the T1 kininogen promoter C box could not. In addition, HNF-3 binding sites of the K kininogen promoter demonstrated stronger affinities than those of the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and are known to enhance transcription of liver-specific genes, these differences in their binding activities thus accounted for the K kininogen gene's higher basal expression. Our studies demonstrated that evolutionary divergence of a few critical nucleotides may lead to subtle changes in the binding affinities of a transcription factor to its recognition site, profoundly altering expression of the downstream gene. Images PMID:8413271

  15. The human oxytocin gene promoter is regulated by estrogens.

    PubMed

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  16. The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones.

    PubMed

    Carlsbecker, Annelie; Sundström, Jens; Tandre, Karolina; Englund, Marie; Kvarnheden, Anders; Johanson, Urban; Engström, Peter

    2003-01-01

    Transcription factors encoded by different members of the MADS-box gene family have evolved central roles in the regulation of reproductive organ development in the flowering plants, the angiosperms. Development of the stamens and carpels, the pollen- and seed-bearing organs, involves the B- and C-organ-identity MADS-box genes. B- and C-type gene orthologs with activities specifically in developing pollen- and seed-bearing organs are also present in the distantly related gymnosperms: the conifers and the gnetophytes. We now report on the characterization of DAL10, a novel MADS-box gene from the conifer Norway spruce, which unlike the B- and C-type conifer genes shows no distinct orthology relationship to any angiosperm gene or clade in phylogenetic analyses. Like the B- and C-type genes, it is active specifically in developing pollen cones and seed cones. In situ RNA localization experiments show DAL10 to be expressed in the cone axis, which carry the microsporophylls of the young pollen cone. In contrast, in the seed cone it is expressed both in the cone axis and in the bracts, which subtend the ovuliferous scales. Expression data and the phenotype of transgenic Arabidopsis plants expressing DAL10 suggest that the gene may act upstream to or in concert with the B- and C-type genes in the establishment of reproductive identity of developing cones.

  17. Light directs zebrafish period2 expression via conserved D and E boxes.

    PubMed

    Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S

    2009-10-01

    For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light

  18. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc.

    PubMed

    Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M

    2013-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. A Novel F-Box Protein CaF-Box Is Involved in Responses to Plant Hormones and Abiotic Stress in Pepper (Capsicum annuum L.)

    PubMed Central

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-01-01

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants. PMID:24518684

  20. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells.

    PubMed

    Gabryšová, Leona; Alvarez-Martinez, Marisol; Luisier, Raphaëlle; Cox, Luke S; Sodenkamp, Jan; Hosking, Caroline; Pérez-Mazliah, Damián; Whicher, Charlotte; Kannan, Yashaswini; Potempa, Krzysztof; Wu, Xuemei; Bhaw, Leena; Wende, Hagen; Sieweke, Michael H; Elgar, Greg; Wilson, Mark; Briscoe, James; Metzis, Vicki; Langhorne, Jean; Luscombe, Nicholas M; O'Garra, Anne

    2018-05-01

    The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4 + T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4 + T cells in disease models involving the T H 1 subset of helper T cells (malaria), T H 2 cells (allergy) and T H 17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in T H 1 and T H 2 responses, T H 17 cell-mediated pathology was reduced in this context, with an accompanying decrease in T H 17 cells and increase in Foxp3 + regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.

  1. Curcumin up regulates T helper 1 cells in patients with colon cancer.

    PubMed

    Xu, Bin; Yu, Lin; Zhao, Li-Zhong

    2017-01-01

    The therapy for the advanced colon cancer (Cca) is unsatisfactory currently. To regulate the immune effector cell function has shown a positive effect on the treatment of advanced cancers. This study tests a hypothesis that administration with curcumin converts the Cca patient-derived regulatory T cells (Treg) to T helper (Th) 1 cells. In this study, a group of patients with advanced Cca was recruited into this study. The patients were treated with curcumin. The peripheral Tregs and Th1 cells were assessed by flow cytometry. The results showed that, after the curcumin therapy, the forkhead box protein (Foxp) 3 positive Treg frequency was markedly reduced, the frequency of Th1 cells was significantly increased in Cca patients. Treating with curcumin repressed the Foxp3 gene transcription in Tregs; the Tregs were then converted into Th1 cells. The results also revealed that Foxp3 bound T-bet to prevent IFN-γ expression in CD4 + T cells, which was abolished by treating with curcumin. In conclusion, the administration of curcumin can convert Tregs to Th1 cells via repressing Foxp3 expression and enhancing IFN-γ production.

  2. The Rice B-Box Zinc Finger Gene Family: Genomic Identification, Characterization, Expression Profiling and Diurnal Analysis

    PubMed Central

    Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo

    2012-01-01

    Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960

  3. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes.

    PubMed

    Dreni, Ludovico; Zhang, Dabing

    2016-03-01

    AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development

    PubMed Central

    José-Edwards, Diana S.; Oda-Ishii, Izumi; Nibu, Yutaka; Di Gregorio, Anna

    2013-01-01

    T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure. PMID:23674602

  5. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development.

    PubMed

    José-Edwards, Diana S; Oda-Ishii, Izumi; Nibu, Yutaka; Di Gregorio, Anna

    2013-06-01

    T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure.

  6. Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L.

    PubMed

    Hoenicka, Hans; Nowitzki, Olaf; Hanelt, Dieter; Fladung, Matthias

    2008-04-01

    MADS-box genes have been shown to be important to flower and vegetative tissue development, senescence and winter dormancy in many plant species. Heterologous overexpression of known MADS-box genes has also been used for unravelling gene regulation mechanisms in forest tree species. The constitutive expression of the BpMADS4 gene from birch in poplar, known to induce early flowering in birch and apple, induced broad changes in senescence and winter dormancy but no early flowering. Other analyses revealed that 35S::BpMADS4 poplars maintained photosynthetic activity, chlorophyll and proteins in leaves under winter conditions. BpMADS4 may be influencing transcription factors regulating the senescence and dormancy process due to homology with poplar proteins related to both traits. Little is known of the regulatory genes that co-ordinate senescence, dormancy, chlorophyll/protein degradation, and photosynthesis at the molecular level. Dissecting the molecular characteristics of senescence regulation will probably involve the understanding of multiple and novel regulatory pathways. The results presented here open new horizons for the identification of regulatory mechanisms related to dormancy and senescence in poplar and other temperate tree species. They confirm recent reports of common signalling intermediates between flowering time and growth cessation in trees (Böhlenius et al. in Science 312:1040-1043, 2006) and additionally indicate similar connections between flowering time signals and senescence.

  7. The Post-transcriptional Regulator rsmA/csrA Activates T3SS by Stabilizing the 5′ UTR of hrpG, the Master Regulator of hrp/hrc Genes, in Xanthomonas

    PubMed Central

    Andrade, Maxuel O.; Farah, Chuck S.; Wang, Nian

    2014-01-01

    The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC) but also contributes to triggering the hypersensitive response (HR) in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS) at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5′ untranslated region (UTR) of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host plants. RsmA also stabilizes the transcripts of another T3SS-associated hrpD operon by directly binding to the 5′ UTR region. Taken together, these data revealed that RsmA primarily activates T3SS by acting as a positive regulator of hrpG and that this regulation is critical to the pathogenicity of XCC. PMID:24586158

  8. Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos.

    PubMed

    Takahashi, Hiroki; Hotta, Kohji; Takagi, Chiyo; Ueno, Naoto; Satoh, Nori; Shoguchi, Eiichi

    2010-02-01

    Brachyury, a T-box transcription factor, is expressed in ascidian embryos exclusively in primordial notochord cells and plays a pivotal role in differentiation of notochord cells. Previously, we identified approximately 450 genes downstream of Ciona intestinalis Brachyury (Ci-Bra), and characterized the expression profiles of 45 of these in differentiating notochord cells. In this study, we looked for cisregulatory sequences in minimal enhancers of 20 Ci-Bra downstream genes by electroporating region within approximately 3 kb upstream of each gene fused with lacZ. Eight of the 20 reporters were expressed in notochord cells. The minimal enchancer for each of these eight genes was narrowed to a region approximately 0.5-1.0-kb long. We also explored the genome-wide and coordinate regulation of 43 Ci-Bra-downstream genes. When we determined their chromosomal localization, it became evident that they are not clustered in a given region of the genome, but rather distributed evenly over 13 of the 14 pairs of chromosomes, suggesting that gene clustering does not contribute to coordinate control of the Ci-Bra downstream gene expression. Our results might provide Insights Into the molecular mechanisms underlying notochord formation in chordates.

  9. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth. © The Author 2014. Published by Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  10. Conversion of Chemical Reaction Energy into Useful Work in the Van't Hoff Equilibrium Box

    ERIC Educational Resources Information Center

    Bazhin, N. M.; Parmon, V. N.

    2007-01-01

    The ideal van't Hoff equilibrium box is described in detail. It shows that van't Hoff equilibrium box divided in two parts can simultaneously produce heat and useful work without violation of the first law of thermodynamics.

  11. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter.more » We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.« less

  12. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells.

    PubMed

    Wang, Jun; Lee, Seungsoo; Teh, Charis En-Yi; Bunting, Karen; Ma, Lina; Shannon, M Frances

    2009-03-01

    Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.

  13. Ancestral and more recently acquired syntenic relationships of MADS-box genes uncovered by the Physcomitrella patens pseudochromosomal genome assembly.

    PubMed

    Barker, Elizabeth I; Ashton, Neil W

    2016-03-01

    The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant's MADS-box gene family. Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC (C) gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC (C) gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.

  14. Multiple circadian transcriptional elements cooperatively regulate cell-autonomous transcriptional oscillation of Period3, a mammalian clock gene.

    PubMed

    Matsumura, Ritsuko; Akashi, Makoto

    2017-09-29

    Cell-autonomous oscillation in clock gene expression drives circadian rhythms. The development of comprehensive analytical techniques, such as bioinformatics and ChIP-sequencing, has enabled the genome-wide identification of potential circadian transcriptional elements that regulate the transcriptional oscillation of clock genes. However, detailed analyses using traditional biochemical and molecular-biological approaches, such as binding and reporter assays, are still necessary to determine whether these potential circadian transcriptional elements are actually functional and how significantly they contribute to driving transcriptional oscillation. Here, we focused on the molecular mechanism of transcriptional oscillations in the mammalian clock gene Period3 ( Per3 ). The PER3 protein is essential for robust peripheral clocks and is a key component in circadian output processes. We found three E box-like elements located upstream of human Per3 transcription start sites that additively contributed to cell-autonomous transcriptional oscillation. However, we also found that Per3 is still expressed in a circadian manner when all three E box-like elements are functionally impaired. We noted that Per3 transcription was activated by the synergistic actions of two D box-like elements and the three E box-like elements, leading to a drastic increase in circadian amplitude. Interestingly, circadian expression of Per3 was completely disrupted only when all five transcriptional elements were functionally impaired. These results indicate that three E box-like and two D box-like elements cooperatively and redundantly regulate cell-autonomous transcriptional oscillation of Per3 . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula.

    PubMed

    Song, Jian Bo; Wang, Yan Xiang; Li, Hai Bo; Li, Bo Wen; Zhou, Zhao Sheng; Gao, Shuai; Yang, Zhi Min

    2015-07-01

    F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.

  16. Organization of tcp, acf, and toxT genes within a ToxT-dependent operon.

    PubMed

    Brown, R C; Taylor, R K

    1995-05-01

    The toxin coregulated pilus (TCP) is required for Vibrio cholerae to colonize the human intestine. The expression of the pilin gene, tcpA, is dependent upon ToxR and upon ToxT. The toxT gene was recently mapped within the TCP biogenesis gene cluster and shown to be capable of activating a tcpA::TnphoA fusion when cloned in Escherichia coli. In this study, we determined that ToxR/ToxT activation occurs at the level of tcpA transcription. ToxT expressed in E. coli could activate a tcp operon fusion, while ToxR, ToxR with ToxS, or a ToxR-PhoA fusion failed to activate the tcp operon fusion and we could not demonstrate binding of a ToxR extract to the tcpA promoter region in DNA mobility-shift assays. The start site for the regulated promoter was shown by primer extension to lie 75 bp upstream of the first codon of tcpA. An 800-base tcpA message was identified, by Northern analysis, that correlates by size to the distance between the transcriptional start and a hairpin-loop sequence between tcpA and tcpB. The more-sensitive assay of RNase protection analysis demonstrated that a regulated transcript probably extends through the rest of the downstream tcp genes, including toxT and the adjacent accessory colonization factor (acf) genes. An in-frame tcpA deletion, but not a polar tcpA::TnphoA fusion, could be complemented for pilus surface expression by providing tcpA in trans. This evidence suggests that the tcp genes, including toxT, are organized in an operon directly activated by ToxT in a ToxR-dependent manner. Most of the toxT expression under induced conditions requires transcription of the tcpA promoter. Further investigation of how tcp::TnphoA insertions that are polar on toxT expression retain regulation showed that a low basal level of toxT expression is present in toxR and tcp::TnphoA strains. Overall, these observations support the ToxR/ToxT cascade of regulation for tcp. Once induced, toxT expression becomes autoregulatory via the tcp promoter, linking tcp

  17. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    PubMed

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  19. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    PubMed

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  20. A Thyroid Hormone Challenge in Hypothyroid Rats Identifies T3 Regulated Genes in the Hypothalamus and in Models with Altered Energy Balance and Glucose Homeostasis

    PubMed Central

    Herwig, Annika; Campbell, Gill; Mayer, Claus-Dieter; Boelen, Anita; Anderson, Richard A.; Ross, Alexander W.; Mercer, Julian G.

    2014-01-01

    Background: The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. Methods: Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. Results: Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (±1.3-fold change, p<0.05). Three genes chosen from the differentially expressed genes were verified by in situ hybridization to be activated by T3 in cells located at or close to the hypothalamic

  1. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Hildebrandt, Britton; Leasia, Michael

    2013-11-01

    The K-domain of a blueberry-derived SOC1 -like gene promotes flowering in tobacco without negatively impacting yield, demonstrating potential for manipulation of flowering time in horticultural crops. The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SOC1-likes, belonging to the MIKC(c) (type II) MADS-box gene subfamily, are major floral activators and integrators of plant flowering. Both MADS-domains and K (Keratin)-domains are highly conserved in MIKC(c)-type MADS proteins. While there are many reports on overexpression of intact MIKC(c)-type MADS-box genes, few studies have been conducted to investigate the effects of the K-domains. In this report, a 474-bp K-domain of Vaccinium SOC1-like (VcSOC1-K) was cloned from the cDNA library of the northern highbush blueberry (Vaccinium corymbosum L.). Functional analysis of the VcSOC1-K was conducted by ectopically expressing of 35S:VcSOC1-K in tobacco. Reverse transcription PCR confirmed expression of the VcSOC1-K in T0 plants. Phenotypically, T1 transgenic plants (10 T1 plants/event) flowered sooner after seeding, and were shorter with fewer leaves at the time of flowering, than nontransgenic plants; but seed pod production of transgenic plants was not significantly affected. These results demonstrate that overexpression of the K-domain of a MIKC(c)-type MADS-box gene alone is sufficient to promote early flowering and more importantly without affecting seed production.

  2. G-boxes, bigfoot genes, and environmental response: characterization of intragenomic conserved noncoding sequences in Arabidopsis.

    PubMed

    Freeling, Michael; Rapaka, Lakshmi; Lyons, Eric; Pedersen, Brent; Thomas, Brian C

    2007-05-01

    A tetraploidy left Arabidopsis thaliana with 6358 pairs of homoeologs that, when aligned, generated 14,944 intragenomic conserved noncoding sequences (CNSs). Our previous work assembled these phylogenetic footprints into a database. We show that known transcription factor (TF) binding motifs, including the G-box, are overrepresented in these CNSs. A total of 254 genes spanning long lengths of CNS-rich chromosomes (Bigfoot) dominate this database. Therefore, we made subdatabases: one containing Bigfoot genes and the other containing genes with three to five CNSs (Smallfoot). Bigfoot genes are generally TFs that respond to signals, with their modal CNS positioned 3.1 kb 5' from the ATG. Smallfoot genes encode components of signal transduction machinery, the cytoskeleton, or involve transcription. We queried each subdatabase with each possible 7-nucleotide sequence. Among hundreds of hits, most were purified from CNSs, and almost all of those significantly enriched in CNSs had no experimental history. The 7-mers in CNSs are not 5'- to 3'-oriented in Bigfoot genes but are often oriented in Smallfoot genes. CNSs with one G-box tend to have two G-boxes. CNSs were shared with the homoeolog only and with no other gene, suggesting that binding site turnover impedes detection. Bigfoot genes may function in adaptation to environmental change.

  3. Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream.

    PubMed

    Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y

    2007-01-01

    Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.

  4. Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*

    PubMed Central

    Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar

    2014-01-01

    Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215

  5. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain andmore » examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.« less

  6. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding thatmore » cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.« less

  7. DORMANCY ASSOCIATED MADS-BOX genes: a review

    USDA-ARS?s Scientific Manuscript database

    DAM genes encode transcription factors suspected of regulating bud dormancy in numerous perennials. This chapter discusses the functional genetics and regulation of these genes and summarizes the evidence that these transcription factors play a central role in seasonal bud dormancy induction and mai...

  8. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor.

    PubMed

    Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle

    2016-01-01

    Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Isolation and characterization of multiple F-box genes linked to the S9- and S10-RNase in apple (Malus × domestica Borkh.).

    PubMed

    Okada, Kazuma; Moriya, Shigeki; Haji, Takashi; Abe, Kazuyuki

    2013-06-01

    Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.

  10. Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms

    PubMed Central

    Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng

    2017-01-01

    MIKCc-type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKCc originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKCc-type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP, AP1, GMADS, SOC1, AGL32, AP3/PI, SVP, AGL15, ANR1, and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP, SOC1, and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKCc gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKCc genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKCc genes in the ancestor of angiosperms triggered the first flower. PMID:28611810

  11. Evolutionary Analysis of MIKCc-Type MADS-Box Genes in Gymnosperms and Angiosperms.

    PubMed

    Chen, Fei; Zhang, Xingtan; Liu, Xing; Zhang, Liangsheng

    2017-01-01

    MIKC c -type MADS-box genes encode transcription factors that control floral organ morphogenesis and flowering time in flowering plants. Here, in order to determine when the subfamilies of MIKC c originated and their early evolutionary trajectory, we sampled and analyzed the genomes and large-scale transcriptomes representing all the orders of gymnosperms and basal angiosperms. Through phylogenetic inference, the MIKC c -type MADS-box genes were subdivided into 14 monophyletic clades. Among them, the gymnosperm orthologs of AGL6, SEP , AP1 , GMADS , SOC1 , AGL32 , AP3 / PI , SVP , AGL15 , ANR1 , and AG were identified. We identified and characterized the origin of a novel subfamily GMADS within gymnosperms but lost orthologs in monocots and Brassicaceae. ABCE model prototype genes were relatively conserved in terms of gene number in gymnosperms, but expanded in angiosperms, whereas SVP , SOC1 , and GMADS had dramatic expansions in gymnosperms but conserved in angiosperms. Our results provided the most detailed evolutionary history of all MIKC c gene clades in gymnosperms and angiosperms. We proposed that although the near complete set of MIKC c genes had evolved in gymnosperms, the duplication and expressional transition of ABCE model MIKC c genes in the ancestor of angiosperms triggered the first flower.

  12. The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum.

    PubMed

    Yang, Cui; Liu, Huiquan; Li, Guotian; Liu, Meigang; Yun, Yingzi; Wang, Chenfang; Ma, Zhonghua; Xu, Jin-Rong

    2015-08-01

    In eukaryotic cells, MADS-box genes are known to play major regulatory roles in various biological processes by combinatorial interactions with other transcription factors. In this study, we functionally characterized the FgMCM1 MADS-box gene in Fusarium graminearum, the causal agent of wheat and barley head blight. Deletion of FgMCM1 resulted in the loss of perithecium production and phialide formation. The Fgmcm1 mutant was significantly reduced in virulence, deoxynivalenol biosynthesis and conidiation. In yeast two-hybrid assays, FgMcm1 interacted with Mat1-1-1 and Fst12, two transcription factors important for sexual reproduction. Whereas Fgmcm1 mutants were unstable and produced stunted subcultures, Fgmcm1 mat1-1-1 but not Fgmcm1 fst12 double mutants were stable. Furthermore, spontaneous suppressor mutations occurred frequently in stunted subcultures to recover growth rate. Ribonucleic acid sequencing analysis indicated that a number of sexual reproduction-related genes were upregulated in stunted subcultures compared with the Fgmcm1 mutant, which was downregulated in the expression of genes involved in pathogenesis, secondary metabolism and conidiation. We also showed that culture instability was not observed in the Fvmcm1 mutants of the heterothallic Fusarium verticillioides. Overall, our data indicate that FgMcm1 plays a critical role in the regulation of cell identity, sexual and asexual reproduction, secondary metabolism and pathogenesis in F. graminearum. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    PubMed

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  14. Methods and compositions for regulating gene expression in plant cells

    NASA Technical Reports Server (NTRS)

    Dai, Shunhong (Inventor); Beachy, Roger N. (Inventor); Luis, Maria Isabel Ordiz (Inventor)

    2010-01-01

    Novel chimeric plant promoter sequences are provided, together with plant gene expression cassettes comprising such sequences. In certain preferred embodiments, the chimeric plant promoters comprise the BoxII cis element and/or derivatives thereof. In addition, novel transcription factors are provided, together with nucleic acid sequences encoding such transcription factors and plant gene expression cassettes comprising such nucleic acid sequences. In certain preferred embodiments, the novel transcription factors comprise the acidic domain, or fragments thereof, of the RF2a transcription factor. Methods for using the chimeric plant promoter sequences and novel transcription factors in regulating the expression of at least one gene of interest are provided, together with transgenic plants comprising such chimeric plant promoter sequences and novel transcription factors.

  15. G-Boxes, Bigfoot Genes, and Environmental Response: Characterization of Intragenomic Conserved Noncoding Sequences in Arabidopsis[W

    PubMed Central

    Freeling, Michael; Rapaka, Lakshmi; Lyons, Eric; Pedersen, Brent; Thomas, Brian C.

    2007-01-01

    A tetraploidy left Arabidopsis thaliana with 6358 pairs of homoeologs that, when aligned, generated 14,944 intragenomic conserved noncoding sequences (CNSs). Our previous work assembled these phylogenetic footprints into a database. We show that known transcription factor (TF) binding motifs, including the G-box, are overrepresented in these CNSs. A total of 254 genes spanning long lengths of CNS-rich chromosomes (Bigfoot) dominate this database. Therefore, we made subdatabases: one containing Bigfoot genes and the other containing genes with three to five CNSs (Smallfoot). Bigfoot genes are generally TFs that respond to signals, with their modal CNS positioned 3.1 kb 5′ from the ATG. Smallfoot genes encode components of signal transduction machinery, the cytoskeleton, or involve transcription. We queried each subdatabase with each possible 7-nucleotide sequence. Among hundreds of hits, most were purified from CNSs, and almost all of those significantly enriched in CNSs had no experimental history. The 7-mers in CNSs are not 5′- to 3′-oriented in Bigfoot genes but are often oriented in Smallfoot genes. CNSs with one G-box tend to have two G-boxes. CNSs were shared with the homoeolog only and with no other gene, suggesting that binding site turnover impedes detection. Bigfoot genes may function in adaptation to environmental change. PMID:17496117

  16. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    PubMed Central

    Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-01-01

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of

  17. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    PubMed

    Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-12-11

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of

  18. Molecular cloning and function analysis of two SQUAMOSA-Like MADS-box genes from Gossypium hirsutum L.

    PubMed

    Zhang, Wenxiang; Fan, Shuli; Pang, Chaoyou; Wei, Hengling; Ma, Jianhui; Song, Meizhen; Yu, Shuxun

    2013-07-01

    The MADS-box genes encode a large family of transcription factors having diverse roles in plant development. The SQUAMOSA (SQUA)/APETALA1 (AP1)/FRUITFULL (FUL) subfamily genes are essential regulators of floral transition and floral organ identity. Here we cloned two MADS-box genes, GhMADS22 and GhMADS23, belonging to the SQUA/AP1/FUL subgroup from Gossypium hirsutum L. Phylogenetic analysis and sequence alignment showed that GhMADS22 and GhMADS23 belonged to the euFUL and euAP1 subclades, respectively. The two genes both had eight exons and seven introns from the start codon to the stop codon according to the alignment between the obtained cDNA sequence and the Gossypium raimondii L. genome sequence. Expression profile analysis showed that GhMADS22 and GhMADS23 were highly expressed in developing shoot apices, bracts, and sepals. Gibberellic acid promoted GhMADS22 and GhMADS23 expression in the shoot apex. Transgenic Arabidopsis lines overexpressing 35S::GhMADS22 had abnormal flowers and bolted earlier than wild type under long-day conditions (16 h light/8 h dark). Moreover, GhMADS22 overexpression delayed floral organ senescence and abscission and it could also respond to abscisic acid. In summary, GhMADS22 may have functions in promoting flowering, improving resistance and delaying senescence for cotton and thus it may be a candidate target for promoting early-maturation in cotton breeding. © 2013 Institute of Botany, Chinese Academy of Sciences.

  19. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of Phytochrome B

    PubMed Central

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A.; Ouwerkerk, Pieter B.F.; Quail, Peter H.; Oliveira, M. Margarida; Saibo, Nelson J. M.

    2016-01-01

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a Phytochrome Interacting Factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses. PMID:26732823

  20. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    DOE PAGES

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; ...

    2015-12-28

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less

  1. Suppressed Expression of T-Box Transcription Factors is Involved in Senescence in Chronic Obstructive Pulmonary Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acquaah-Mensah, George; Malhotra, Deepti; Vulimiri, Madhulika

    2012-06-19

    Chronic obstructive pulmonary disease (COPD) is a major global health problem. The etiology of COPD has been associated with apoptosis, oxidative stress, and inflammation. However, understanding of the molecular interactions that modulate COPD pathogenesis remains only partly resolved. We conducted an exploratory study on COPD etiology to identify the key molecular participants. We used information-theoretic algorithms including Context Likelihood of Relatedness (CLR), Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Inferelator. We captured direct functional associations among genes, given a compendium of gene expression profiles of human lung epithelial cells. A set of genes differentially expressed in COPD,more » as reported in a previous study were superposed with the resulting transcriptional regulatory networks. After factoring in the properties of the networks, an established COPD susceptibility locus and domain-domain interactions involving protein products of genes in the generated networks, several molecular candidates were predicted to be involved in the etiology of COPD. These include COL4A3, CFLAR, GULP1, PDCD1, CASP10, PAX3, BOK, HSPD1, PITX2, and PML. Furthermore, T-box (TBX) genes and cyclin-dependent kinase inhibitor 2A (CDKN2A), which are in a direct transcriptional regulatory relationship, emerged as preeminent participants in the etiology of COPD by means of senescence. Contrary to observations in neoplasms, our study reveals that the expression of genes and proteins in the lung samples from patients with COPD indicate an increased tendency towards cellular senescence. The expression of the anti-senescence mediators TBX transcription factors, chromatin modifiers histone deacetylases, and sirtuins was suppressed; while the expression of TBX-regulated cellular senescence markers such as CDKN2A, CDKN1A, and CAV1 was elevated in the peripheral lung tissue samples from patients with COPD. The critical balance between

  2. Analysis of a cis-Acting Element Involved in Regulation by Estrogen of Human Angiotensinogen Gene Expression.

    PubMed

    Zhao, Yan-Yan; Sun, Kai-Lai; Ashok, Kumar

    1998-01-01

    The work was aimed to identify the estrogen responsive element in the human angiotensinogen gene. The nucleotide sequence between the transcription initiation site and TATA box in angiotensinogen gene promoter was found to be strongly homologous with the consensus estrogen responsive element. This sequence was confirmed as the estrogen responsive element (HAG ERE) by electrophoretic mobility shift assay. The recombinant expression vectors were constructed in which chloramphenicol acetyltransferase (CAT) reporter gene was driven by angiotensinogen core promoter with HAG ERE of by TK core promoter with multiplied HAG ERE, and were used in cotransfection with the human estrogen receptor expression vector into HepG(2) cells; CAT assays showed an increase of the CAT activity on 17beta-estradiol treatment in those transfectants. These results suggest that the human angiotensinogen gene is transcriptionally up-regulated by estrogen through the estrogen responsive element near TATA box of the promoter.

  3. Characterization of two rice MADS box genes that control flowering time.

    PubMed

    Kang, H G; Jang, S; Chung, J E; Cho, Y G; An, G

    1997-08-31

    Plants contain a variety of the MADS box genes that encode regulatory proteins and play important roles in both the formation of flower meristem and the determination of floral organ identity. We have characterized two flower-specific cDNAs from rice, designated OsMADS7 and OsMADS8. The cDNAs displayed the structure of a typical plant MADS box gene, which consists of the MADS domain, I region, K domain, and C-terminal region. These genes were classified as members of the AGL2 gene family based on sequence homology. The OsMADS7 and 8 proteins were most homologous to OM1 and FBP2, respectively. The OsMADS7 and 8 transcripts were detectable primarily in carpels and also weakly in anthers. During flower development, the OsMADS genes started to express at the young flower stage and the expression continued to the late stage of flower development. The OsMADS7 and 8 genes were mapped on the long arms of the chromosome 8 and 9, respectively. To study the functions of the genes, the cDNA clones were expressed ectopically using the CaMV 35S promoter in a heterologous tobacco plant system. Transgenic plants expressing the OsMADS genes exhibited the phenotype of early flowering and dwarfism. The strength of the phenotypes was proportional to the levels of transgene expression and the phenotypes were co-inherited with the kanamycin resistant gene to the next generation. These results indicate that OsMADS7 and 8 are structurally related to the AGL2 family and are involved in controlling flowering time.

  4. Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation.

    PubMed

    Wawrzyńska, Anna; Lewandowska, Małgorzata; Sirko, Agnieszka

    2010-03-01

    Sulphur deficiency severely affects plant growth and their agricultural productivity leading to diverse changes in development and metabolisms. Molecular mechanisms regulating gene expression under low sulphur conditions remain largely unknown. AtSLIM1, a member of the EIN3-like (EIL) family was reported to be a central transcriptional regulator of the plant sulphur response, however, no direct interaction of this protein with any sulphur-responsive promoters was demonstrated. The focus of this study was on the analysis of a promoter region of UP9C, a tobacco gene strongly induced by sulphur limitation. Cloning and subsequent examination of this promoter resulted in the identification of a 20-nt sequence (UPE-box), also present in the promoters of several Arabidopsis genes, including three out of four homologues of UP9C. The UPE-box, consisting of two parallel tebs sequences (TEIL binding site), proved to be necessary to bind the transcription factors belonging to the EIL family and of a 5-nt conserved sequence at the 3'-end. The yeast one-hybrid analysis resulted in the identification of one transcription factor (NtEIL2) capable of binding to the UPE-box. The interactions of NtEIL2, and its homologue from Arabidopsis, AtSLIM1, with DNA were affected by mutations within the UPE-box. Transient expression assays in Nicotiana benthamiana have further shown that both factors, NtEIL2 and AtSLIM1, activate the UP9C promoter. Interestingly, activation by NtEIL2, but not by AtSLIM1, was dependent on the sulphur-deficiency of the plants.

  5. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expressionmore » have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements

  6. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene

    PubMed Central

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J.; Goldschmidt, Eliezer E.; Friedman, Haya

    2010-01-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO2 peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  7. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    PubMed

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  8. The regulation of the Z- and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis.

    PubMed

    Gangappa, Sreeramaiah N; Maurya, Jay P; Yadav, Vandana; Chattopadhyay, Sudip

    2013-01-01

    Although many transcription factors and regulatory proteins have been identified and functionally characterized in light signaling pathways, photoperception to transcription remains largely fragmented. The Z-box is one of the LREs (Light responsive elements) that plays important role in the regulation of transcription during light-controlled Arabidopsis seedling development. The involvement of photoreceptors in the modulation of the activity of the Z-box containing promoters has been demonstrated. However, the role of downstream signaling components such as SPA1 and MYC2/ZBF1, which are functionally interrelated, remains unknown. In this study, we have investigated the regulation of the Z-box containing synthetic and native promoters by SPA1 and MYC2 by using stable transgenic lines. Our studies suggest that SPA1 negatively regulates the expression of CAB1 native promoter. MYC2 negatively regulates the activity of Z- and/or G-box containing synthetic as well as native promoters irrespective of light quality. Moreover, MYC2 negatively regulates the expression of Z/G-NOS101-GUS even in the darkness. Furthermore, analyses of tissue specific expression in adult plants suggest that MYC2 strongly regulates the activity of Z- and G-box containing promoters specifically in leaves and stems. In roots, whereas MYC2 positively regulates the activity of the Z-box containing synthetic promoter, it does not seem to control the activity of the G-box containing promoters. Taken together, these results provide insights into SPA1- and MYC2-mediated transcriptional regulation of the Z- and G-box containing promoters in light signaling pathways.

  9. [Isolation and function of genes regulating aphB expression in Vibrio cholerae].

    PubMed

    Chen, Haili; Zhu, Zhaoqin; Zhong, Zengtao; Zhu, Jun; Kan, Biao

    2012-02-04

    We identified genes that regulate the expression of aphB, the gene encoding a key virulence regulator in Vibrio cholerae O1 E1 Tor C6706(-). We constructed a transposon library in V. cholerae C6706 strain containing a P(aphB)-luxCDABE and P(aphB)-lacZ transcriptional reporter plasmids. Using a chemiluminescence imager system, we rapidly detected aphB promoter expression level at a large scale. We then sequenced the transposon insertion sites by arbitrary PCR and sequencing analysis. We obtained two candidate mutants T1 and T2 which displayed reduced aphB expression from approximately 40,000 transposon insertion mutants. Sequencing analysis shows that Tn inserted in vc1585 reading frame in the T1 mutant and Tn inserted in the end of coding sequence of vc1602 in the T2 mutant. By using a genetic screen, we identified two potential genes that may involve in regulation of the expression of the key virulence regulator AphB. This study sheds light on our further investigation to fully understand V. cholerae virulence gene regulatory cascades.

  10. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism.

    PubMed

    Tuan, Pham Anh; Bai, Songling; Saito, Takanori; Ito, Akiko; Moriguchi, Takaya

    2017-08-01

    In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Forkhead Transcription Factor Fd3F Cooperates with Rfx to Regulate a Gene Expression Program for Mechanosensory Cilia Specialization

    PubMed Central

    Newton, Fay G.; zur Lage, Petra I.; Karak, Somdatta; Moore, Daniel J.; Göpfert, Martin C.; Jarman, Andrew P.

    2012-01-01

    Summary Cilia have evolved hugely diverse structures and functions to participate in a wide variety of developmental and physiological processes. Ciliary specialization requires differences in gene expression, but few transcription factors are known to regulate this, and their molecular function is unclear. Here, we show that the Drosophila Forkhead box (Fox) gene, fd3F, is required for specialization of the mechanosensory cilium of chordotonal (Ch) neurons. fd3F regulates genes for Ch-specific axonemal dyneins and TRPV ion channels, which are required for sensory transduction, and retrograde transport genes, which are required to differentiate their distinct motile and sensory ciliary zones. fd3F is reminiscent of vertebrate Foxj1, a motile cilia regulator, but fd3F regulates motility genes as part of a broader sensory regulation program. Fd3F cooperates with the pan-ciliary transcription factor, Rfx, to regulate its targets directly. This illuminates pathways involved in ciliary specialization and the molecular mechanism of transcription factors that regulate them. PMID:22698283

  12. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns

    PubMed Central

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, “What is their role in non-seed plants?” From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution. PMID:29720991

  13. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns.

    PubMed

    Thangavel, Gokilavani; Nayar, Saraswati

    2018-01-01

    MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKC C genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC * genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.

  14. Developing tTA Transgenic Rats for Inducible and Reversible Gene Expression

    PubMed Central

    Zhou, Hongxia; Huang, Cao; Yang, Min; Landel, Carlisle P; Xia, Pedro Yuxing; Liu, Yong-Jian; Xia, Xu Gang

    2009-01-01

    To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases. PMID:19214245

  15. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL

    PubMed Central

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-01-01

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML. PMID:27329306

  16. The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL.

    PubMed

    Ru, Yi; Wang, Qinhao; Liu, Xiping; Zhang, Mei; Zhong, Daixing; Ye, Mingxiang; Li, Yuanchun; Han, Hua; Yao, Libo; Li, Xia

    2016-06-22

    Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost all currently available inhibitors. Here we took use of a previously generated chimeric ubiquitin ligase, SH2-U-box, in which SH2 from the adaptor protein Grb2 acts as a binding domain for activated BCR-ABL, while U-box from CHIP functions as an E3 ubiquitin ligase domain, so as to target the ubiquitination and degradation of both native and T315I-mutant BCR-ABL. As such, SH2-U-box significantly inhibited proliferation and induced apoptosis in CML cells harboring either the wild-type or T315I-mutant BCR-ABL (K562 or K562R), with BCR-ABL-dependent signaling pathways being repressed. Moreover, SH2-U-box worked in concert with imatinib in K562 cells. Importantly, SH2-U-box-carrying lentivirus could markedly suppress the growth of K562-xenografts in nude mice or K562R-xenografts in SCID mice, as well as that of primary CML cells. Collectively, by degrading the native and T315I-mutant BCR-ABL, the chimeric ubiquitin ligase SH2-U-box may serve as a potential therapy for both imatinib-sensitive and resistant CML.

  17. NF-Y and the immune response: Dissecting the complex regulation of MHC genes.

    PubMed

    Sachini, Nikoleta; Papamatheakis, Joseph

    2017-05-01

    Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Role of the Regulator Fur in Gene Regulation and Virulence of Riemerella anatipestifer Assessed Using an Unmarked Gene Deletion System

    PubMed Central

    Guo, Yunqing; Hu, Di; Guo, Jie; Li, Xiaowen; Guo, Jinyue; Wang, Xiliang; Xiao, Yuncai; Jin, Hui; Liu, Mei; Li, Zili; Bi, Dingren; Zhou, Zutao

    2017-01-01

    Riemerella anatipestifer, an avian pathogen, has resulted in enormous economic losses to the duck industry globally. Notwithstanding, little is known regarding the physiological, pathogenic and virulence mechanisms of Riemerella anatipestifer (RA) infection. However, the role of Ferric uptake regulator (Fur) in the virulence of R. anatipestifer has not, to date, been demonstrated. Using a genetic approach, unmarked gene deletion system, we evaluated the function of fur gene in the virulence of R. anatipestifer. For this purpose, we constructed a suicide vector containing pheS as a counter selectable marker for unmarked deletion of fur gene to investigate its role in the virulence. After successful transformation of the newly constructed vector, a mutant strain was characterized for genes regulated by iron and Fur using RNA-sequencing and a comparison was made between wild type and mutant strains in both iron restricted and enriched conditions. RNA-seq analysis of the mutant strain in a restricted iron environment showed the downregulation and upregulation of genes which were involved in either important metabolic pathways, transport processes, growth or cell membrane synthesis. Electrophoretic mobility shift assay was performed to identify the putative sequences recognized by Fur. The putative Fur-box sequence was 5′-GATAATGATAATCATTATC-3′. Lastly, the median lethal dose and histopathological investigations of animal tissues also illustrated mild pathological lesions produced by the mutant strain as compared to the wild type RA strain, hence showing declined virulence. Conclusively, an unmarked gene deletion system was successfully developed for RA and the role of the fur gene in virulence was explored comprehensively. PMID:28971067

  19. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation

    PubMed Central

    Immink, Richard GH; Tonaco, Isabella AN; de Folter, Stefan; Shchennikova, Anna; van Dijk, Aalt DJ; Busscher-Lange, Jacqueline; Borst, Jan W; Angenent, Gerco C

    2009-01-01

    Background Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation capacity of the Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation and, therefore, special attention is paid to this factor in this study. Results In total, 106 multimeric complexes were identified; in more than half of these at least one SEP protein was present. Besides the known complexes involved in determining floral organ identity, various complexes consisting of combinations of proteins known to play a role in floral organ identity specification, and flowering time determination were discovered. The capacity to form this latter type of complex suggests that homeotic factors play essential roles in down-regulation of the MADS box genes involved in floral timing in the flower via negative auto-regulatory loops. Furthermore, various novel complexes were identified that may be important for the direct regulation of the floral transition process. A subsequent detailed analysis of the APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a multimeric complex in vivo. Conclusions Overall, these results provide strong indications that higher-order complex formation is a general and essential molecular mechanism for plant MADS box protein functioning and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization. PMID:19243611

  20. INHIBITION OF ERN1 SIGNALING ENZYME AFFECTS HYPOXIC REGULATION OF THE EXPRESSION OF E2F8, EPAS1, HOXC6, ATF3, TBX3 AND FOXF1 GENES IN U87 GLIOMA CELLS.

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Kovalevska, O V; Karbovskyi, L L; Bikfalvi, A

    2015-01-01

    Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERNI function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes. removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function.

  1. Reciprocal Loss of CArG-Boxes and Auxin Response Elements Drives Expression Divergence of MPF2-Like MADS-Box Genes Controlling Calyx Inflation

    PubMed Central

    Khan, Muhammad Ramzan; Hu, Jinyong; Ali, Ghulam Muhammad

    2012-01-01

    Expression divergence is thought to be a hallmark of functional diversification between homologs post duplication. Modification in regulatory elements has been invoked to explain expression divergence after duplication for several MADS-box genes, however, verification of reciprocal loss of cis-regulatory elements is lacking in plants. Here, we report that the evolution of MPF2-like genes has entailed degenerative mutations in a core promoter CArG-box and an auxin response factor (ARF) binding element in the large 1st intron in the coding region. Previously, MPF2-like genes were duplicated into MPF2-like-A and -B through genome duplication in Withania and Tubocapsicum (Withaninae). The calyx of Withania grows exorbitantly after pollination unlike Tubocapsicum, where it degenerates. Besides inflated calyx syndrome formation, MPF2-like transcription factors are implicated in functions both during the vegetative and reproductive development as well as in phase transition. MPF2-like-A of Withania (WSA206) is strongly expressed in sepals, while MPF2-like-B (WSB206) is not. Interestingly, their combined expression patterns seem to replicate the pattern of their closely related hypothetical progenitors from Vassobia and Physalis. Using phylogenetic shadowing, site-directed mutagenesis and motif swapping, we could show that the loss of a conserved CArG-box in MPF2-like-B of Withania is responsible for impeding its expression in sepals. Conversely, loss of an ARE in MPF2-like-A relaxed the constraint on expression in sepals. Thus, the ARE is an active suppressor of MPF2-like gene expression in sepals, which in contrast is activated via the CArG-box. The observed expression divergence in MPF2-like genes due to reciprocal loss of cis-regulatory elements has added to genetic and phenotypic variations in the Withaninae and enhanced the potential of natural selection for the adaptive evolution of ICS. Moreover, these results provide insight into the interplay of floral

  2. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution

    PubMed Central

    Lo, Kenneth

    2011-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375

  3. Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution.

    PubMed

    Lo, Kenneth; Gottardo, Raphael

    2012-01-01

    Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.

  4. The drosophila T-box transcription factor midline functions within Insulin/Akt and c-Jun-N terminal kinase stress-reactive signaling pathways to regulate interommatial bristle formation and cell survival

    PubMed Central

    Chen, Q. Brent; Das, Sudeshna; Visic, Petra; Buford, Kendrick D.; Zong, Yan; Buti, Wisam; Odom, Kelly R.; Lee, Hannah; Leal, Sandra M.

    2015-01-01

    We recently reported that the T-box transcription factor midline (mid) functions within the Notch-Delta signaling pathway to specify sensory organ precursor (SOP) cell fates in early-staged pupal eye imaginal discs and to suppress apoptosis (Das et al.). From genetic and allelic modifier screens, we now report that mid interacts with genes downstream of the insulin receptor(InR)/Akt, c-Jun-N-terminal kinase (JNK) and Notch signaling pathways to regulate interommatidial bristle (IOB) formation and cell survival. One of the most significant mid-interacting genes identified from the modifier screen is dFOXO, a transcription factor exhibiting a nucleocytoplasmic subcellular distribution pattern. In common with dFOXO, we show that Mid exhibits a nucleocytoplasmic distribution pattern within WT third-instar larval (3°L) tissue homogenates. Because dFOXO is a stress-responsive factor, we assayed the effects of either oxidative or metabolic stress responses on modifying the mid mutant phenotype which is characterized by a 50% loss of IOBs within the adult compound eye. While metabolic starvation stress does not affect the mid mutant phenotype, either 1 mM paraquat or 20% coconut oil, oxidative stress inducers, partially suppresses the mid mutant phenotype resulting in a significant recovery of IOBs. Another significant mid-interacting gene we identified is groucho (gro). Mid and Gro are predicted to act as corepressors of the enhancer-of-split gene complex downstream of Notch. Immunolabeling WT and dFOXO null 3°L eye-antennal imaginal discs with anti-Mid and anti-Engrailed (En) antibodies indicate that dFOXO is required to activate Mid and En expression within photoreceptor neurons of the eye disc. Taken together, these studies show that Mid and dFOXO serve as critical effectors of cell fate specification and survival within integrated Notch, InR/dAkt, and JNK signaling pathways during 3°L and pupal eye imaginal disc development. PMID:25748605

  5. Anaphase-Promoting Complex/Cyclosome-Cdh1-Mediated Proteolysis of the Forkhead Box M1 Transcription Factor Is Critical for Regulated Entry into S Phase▿

    PubMed Central

    Park, Hyun Jung; Costa, Robert H.; Lau, Lester F.; Tyner, Angela L.; Raychaudhuri, Pradip

    2008-01-01

    The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G1 phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G1 phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G1 phase and that its proteolysis is important for regulated entry into S phase. PMID:18573889

  6. Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase.

    PubMed

    Park, Hyun Jung; Costa, Robert H; Lau, Lester F; Tyner, Angela L; Raychaudhuri, Pradip

    2008-09-01

    The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G(1) phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G(1) phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G(1) phase and that its proteolysis is important for regulated entry into S phase.

  7. Characterization and Functional Analysis of Five MADS-Box B Class Genes Related to Floral Organ Identification in Tagetes erecta.

    PubMed

    Ai, Ye; Zhang, Chunling; Sun, Yalin; Wang, Weining; He, Yanhong; Bao, Manzhu

    2017-01-01

    According to the floral organ development ABC model, B class genes specify petal and stamen identification. In order to study the function of B class genes in flower development of Tagetes erecta, five MADS-box B class genes were identified and their expression and putative functions were studied. Sequence comparisons and phylogenetic analyses indicated that there were one PI-like gene-TePI, two euAP3-like genes-TeAP3-1 and TeAP3-2, and two TM6-like genes-TeTM6-1 and TeTM6-2 in T. erecta. Strong expression levels of these genes were detected in stamens of the disk florets, but little or no expression was detected in bracts, receptacles or vegetative organs. Yeast hybrid experiments of the B class proteins showed that TePI protein could form a homodimer and heterodimers with all the other four B class proteins TeAP3-1, TeAP3-2, TeTM6-1 and TeTM6-2. No homodimer or interaction was observed between the euAP3 and TM6 clade members. Over-expression of five B class genes of T. erecta in Nicotiana rotundifolia showed that only the transgenic plants of 35S::TePI showed altered floral morphology compared with the non-transgenic line. This study could contribute to the understanding of the function of B class genes in flower development of T. erecta, and provide a theoretical basis for further research to change floral organ structures and create new materials for plant breeding.

  8. Genomic Landscape of Intrahost Variation in Group A Streptococcus: Repeated and Abundant Mutational Inactivation of the fabT Gene Encoding a Regulator of Fatty Acid Synthesis

    PubMed Central

    Eraso, Jesus M.; Olsen, Randall J.; Beres, Stephen B.; Kachroo, Priyanka; Porter, Adeline R.; Nasser, Waleed; Bernard, Paul E.; DeLeo, Frank R.

    2016-01-01

    To obtain new information about Streptococcus pyogenes intrahost genetic variation during invasive infection, we sequenced the genomes of 2,954 serotype M1 strains recovered from a nonhuman primate experimental model of necrotizing fasciitis. A total of 644 strains (21.8%) acquired polymorphisms relative to the input parental strain. The fabT gene, encoding a transcriptional regulator of fatty acid biosynthesis genes, contained 54.5% of these changes. The great majority of polymorphisms were predicted to deleteriously alter FabT function. Transcriptome-sequencing (RNA-seq) analysis of a wild-type strain and an isogenic fabT deletion mutant strain found that between 3.7 and 28.5% of the S. pyogenes transcripts were differentially expressed, depending on the growth temperature (35°C or 40°C) and growth phase (mid-exponential or stationary phase). Genes implicated in fatty acid synthesis and lipid metabolism were significantly upregulated in the fabT deletion mutant strain. FabT also directly or indirectly regulated central carbon metabolism genes, including pyruvate hub enzymes and fermentation pathways and virulence genes. Deletion of fabT decreased virulence in a nonhuman primate model of necrotizing fasciitis. In addition, the fabT deletion strain had significantly decreased survival in human whole blood and during phagocytic interaction with polymorphonuclear leukocytes ex vivo. We conclude that FabT mutant progeny arise during infection, constitute a metabolically distinct subpopulation, and are less virulent in the experimental models used here. PMID:27600505

  9. TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription.

    PubMed

    Cavadini, Gionata; Petrzilka, Saskia; Kohler, Philipp; Jud, Corinne; Tobler, Irene; Birchler, Thomas; Fontana, Adriano

    2007-07-31

    Production of TNF-alpha and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-alpha and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-alpha on the circadian timing system. TNF-alpha is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-alpha on clock genes is shared by IL-1beta, but not by IFN-alpha, and IL-6. Furthermore, TNF-alpha interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-alpha is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-alpha and IL-1beta, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.

  10. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4+CD25high T cells in multiple sclerosis

    PubMed Central

    Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S

    2012-01-01

    Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885

  11. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  12. B-BOX genes: genome-wide identification, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri Rehd.).

    PubMed

    Cao, Yunpeng; Han, Yahui; Meng, Dandan; Li, Dahui; Jiao, Chunyan; Jin, Qing; Lin, Yi; Cai, Yongping

    2017-09-19

    The B-BOX (BBX) proteins have important functions in regulating plant growth and development. In plants, the BBX gene family has been identified in several plants, such as rice, Arabidopsis and tomato. However, there still lack a genome-wide survey of BBX genes in pear. In the present study, a total of 25 BBX genes were identified in pear (Pyrus bretschneideri Rehd.). Subsequently, phylogenetic relationship, gene structure, gene duplication, transcriptome data and qRT-PCR were conducted on these BBX gene members. The transcript analysis revealed that twelve PbBBX genes (48%) were specifically expressed in pear pollen tubes. Furthermore, qRT-PCR analysis indicated that both PbBBX4 and PbBBX13 have potential role in pear fruit development, while PbBBX5 should be involved in the senescence of pear pollen tube. This study provided a genome-wide survey of BBX gene family in pear, and highlighted its roles in both pear fruits and pollen tubes. The results will be useful in improving our understanding of the complexity of BBX gene family and functional characteristics of its members in future study.

  13. Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9

    PubMed Central

    Capitanio, Juliana S; Montpetit, Ben; Wozniak, Richard W

    2017-01-01

    Beyond their role at nuclear pore complexes, some nucleoporins function in the nucleoplasm. One such nucleoporin, Nup98, binds chromatin and regulates gene expression. To gain insight into how Nup98 contributes to this process, we focused on identifying novel binding partners and understanding the significance of these interactions. Here we report on the identification of the DExH/D-box helicase DHX9 as an intranuclear Nup98 binding partner. Various results, including in vitro assays, show that the FG/GLFG region of Nup98 binds to N- and C-terminal regions of DHX9 in an RNA facilitated manner. Importantly, binding of Nup98 stimulates the ATPase activity of DHX9, and a transcriptional reporter assay suggests Nup98 supports DHX9-stimulated transcription. Consistent with these observations, our analysis revealed that Nup98 and DHX9 bind interdependently to similar gene loci and their transcripts. Based on our results, we propose that Nup98 functions as a co-factor that regulates DHX9 and, potentially, other RNA helicases. DOI: http://dx.doi.org/10.7554/eLife.18825.001 PMID:28221134

  14. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions.

    PubMed

    Albihlal, Waleed S; Obomighie, Irabonosi; Blein, Thomas; Persad, Ramona; Chernukhin, Igor; Crespi, Martin; Bechtold, Ulrike; Mullineaux, Philip M

    2018-05-19

    In Arabidopsis thaliana, HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) controls resistance to environmental stress and is a determinant of reproductive fitness by influencing seed yield. To understand how HSFA1b achieves this, we surveyed its genome-wide targets (ChIP-seq) and its impact on the transcriptome (RNA-seq) under non-stress (NS), heat stress (HS) in the wild type, and in HSFA1b-overexpressing plants under NS. A total of 952 differentially expressed HSFA1b-targeted genes were identified, of which at least 85 are development associated and were bound predominantly under NS. A further 1780 genes were differentially expressed but not bound by HSFA1b, of which 281 were classified as having development-associated functions. These genes are indirectly regulated through a hierarchical network of 27 transcription factors (TFs). Furthermore, we identified 480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b, defining a further mode of indirect regulation. Finally, HSFA1b-targeted genomic features not only harboured heat shock elements, but also MADS box, LEAFY, and G-Box promoter motifs. This revealed that HSFA1b is one of eight TFs that target a common group of stress defence and developmental genes. We propose that HSFA1b transduces environmental cues to many stress tolerance and developmental genes to allow plants to adjust their growth and development continually in a varying environment.

  15. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes

    PubMed Central

    Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram

    2012-01-01

    The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502

  16. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.).

    PubMed

    Li, Jun; Hou, Hongmin; Li, Xiaoqin; Xiang, Jiang; Yin, Xiangjing; Gao, Hua; Zheng, Yi; Bassett, Carole L; Wang, Xiping

    2013-09-01

    SQUAMOSA promoter binding protein (SBP)-box genes encode a family of plant-specific transcription factors and play many crucial roles in plant development. In this study, 27 SBP-box gene family members were identified in the apple (Malus × domestica Borkh.) genome, 15 of which were suggested to be putative targets of MdmiR156. Plant SBPs were classified into eight groups according to the phylogenetic analysis of SBP-domain proteins. Gene structure, gene chromosomal location and synteny analyses of MdSBP genes within the apple genome demonstrated that tandem and segmental duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of the SBP-box gene family in apple. Additionally, synteny analysis between apple and Arabidopsis indicated that several paired homologs of MdSBP and AtSPL genes were located in syntenic genomic regions. Tissue-specific expression analysis of MdSBP genes in apple demonstrated their diversified spatiotemporal expression patterns. Most MdmiR156-targeted MdSBP genes, which had relatively high transcript levels in stems, leaves, apical buds and some floral organs, exhibited a more differential expression pattern than most MdmiR156-nontargeted MdSBP genes. Finally, expression analysis of MdSBP genes in leaves upon various plant hormone treatments showed that many MdSBP genes were responsive to different plant hormones, indicating that MdSBP genes may be involved in responses to hormone signaling during stress or in apple development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. ODDSOC2 Is a MADS Box Floral Repressor That Is Down-Regulated by Vernalization in Temperate Cereals1[W][OA

    PubMed Central

    Greenup, Aaron G.; Sasani, Shahryar; Oliver, Sandra N.; Talbot, Mark J.; Dennis, Elizabeth S.; Hemming, Megan N.; Trevaskis, Ben

    2010-01-01

    In temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare), the transition to reproductive development can be accelerated by prolonged exposure to cold (vernalization). We examined the role of the grass-specific MADS box gene ODDSOC2 (OS2) in the vernalization response in cereals. The barley OS2 gene (HvOS2) is expressed in leaves and shoot apices but is repressed by vernalization. Vernalization represses OS2 independently of VERNALIZATION1 (VRN1) in a VRN1 deletion mutant of einkorn wheat (Triticum monococcum), but VRN1 is required to maintain down-regulation of OS2 in vernalized plants. Furthermore, barleys that carry active alleles of the VRN1 gene (HvVRN1) have reduced expression of HvOS2, suggesting that HvVRN1 down-regulates HvOS2 during development. Overexpression of HvOS2 delayed flowering and reduced spike, stem, and leaf length in transgenic barley plants. Plants overexpressing HvOS2 showed reduced expression of barley homologs of the Arabidopsis (Arabidopsis thaliana) gene FLOWERING PROMOTING FACTOR1 (FPF1) and increased expression of RNase-S-like genes. FPF1 promotes floral development and enhances cell elongation, so down-regulation of FPF1-like genes might explain the phenotypes of HvOS2 overexpression lines. We present an extended model of the genetic pathways controlling vernalization-induced flowering in cereals, which describes the regulatory relationships between VRN1, OS2, and FPF1-like genes. Overall, these findings highlight differences and similarities between the vernalization responses of temperate cereals and the model plant Arabidopsis. PMID:20431086

  18. Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burles, Kristin, E-mail: burles@ualberta.ca; Buuren, Nicholas van; Barry, Michele

    2014-11-15

    A notable feature of poxviruses is their ability to inhibit the antiviral response, including the nuclear factor kappa B (NFκB) pathway. NFκB is a transcription factor that is sequestered in the cytoplasm until cell stimulation, and relies on the SCF (Skp1, culllin-1, F-box) ubiquitin ligase to target its inhibitor, IκBα, for degradation. IκBα is recruited to the SCF by the F-box domain-containing protein βTrCP. Here, we show that ectromelia virus, the causative agent of mousepox, encodes four F-box-containing proteins, EVM002, EVM005, EVM154, and EVM165, all of which contain Ankyrin (Ank) domains. The Ank/F-box proteins inhibit NFκB nuclear translocation, and thismore » inhibition is dependent on the F-box domain. We also demonstrate that EVM002, EVM005, EVM154, and EVM165 prevent IκBα degradation, suggesting that they target the SCF. This study identifies a new mechanism by which ectromelia virus inhibits NFκB. - Highlights: • Ectromelia virus encodes four Ank/F-box proteins, EVM002, EVM005, EVM154 and EVM165. • The Ank/F-box proteins inhibit NFκB nuclear translocation, dependent on the F-box. • The Ank/F-box proteins prevent IκBα degradation, suggesting they target the SCF. • Deletion of a single Ank/F-box gene from ECTV does not prevent viral NFκB inhibition. • This study identifies a new mechanism by which ectromelia virus inhibits NFκB.« less

  19. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  20. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  1. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA.

    PubMed

    Orac, Crina M; Zhou, Shu; Means, John A; Boehm, David; Bergmeier, Stephen C; Hines, Jennifer V

    2011-10-13

    The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.

  2. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA

    PubMed Central

    Orac, Crina M.; Zhou, Shu; Means, John A.; Boehm, David; Bergmeier, Stephen C.; Hines, Jennifer V.

    2012-01-01

    The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized and their binding to the T-box riboswitch antiterminator model RNA investigated in detail. Characterization of ligand affinities and binding site localization indicate that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets. PMID:21812425

  3. Dynamics of TBP binding to the TATA box

    NASA Astrophysics Data System (ADS)

    Schluesche, Peter; Heiss, Gregor; Meisterernst, Michael; Lamb, Don C.

    2008-02-01

    Gene expression is highly controlled and regulated in living cells. One of the first steps in gene transcription is recognition of the promoter site by the TATA box Binding Protein (TBP). TBP recruits other transcriptions factors and eventually the RNA polymerase II to transcribe the DNA in mRNA. We developed a single pair Förster Resonance Energy Transfer (spFRET) assay to investigate the mechanism of gene regulation. Here, we apply this assay to investigate the initial binding process of TBP to the adenovirus major late (AdML) promoter site. From the spFRET measurements, we were able to identify two conformations of the TBP-DNA complex that correspond to TBP bound in the correct and the opposite orientation. Increased incubation times or the presence of the transcription factor TFIIA improved the alignment of TBP on the promoter site. Binding of TBP to the TATA box shows a rich dynamics with abrupt transitions between multiple FRET states. A frame-wise histogram analysis revealed the presence of at least six discrete states, showing that TBP binding is more complicated than previously thought. Hence, the spFRET assay is very sensitive to the conformation of the TBP-DNA complex and is very promising tool for investigating the pathway of TBP binding in detail.

  4. Computational Analysis of Cysteine and Methionine Metabolism and Its Regulation in Dairy Starter and Related Bacteria

    PubMed Central

    Liu, Mengjin; Prakash, Celine; Nauta, Arjen; Siezen, Roland J.

    2012-01-01

    Sulfuric volatile compounds derived from cysteine and methionine provide many dairy products with a characteristic odor and taste. To better understand and control the environmental dependencies of sulfuric volatile compound formation by the dairy starter bacteria, we have used the available genome sequence and experimental information to systematically evaluate the presence of the key enzymes and to reconstruct the general modes of transcription regulation for the corresponding genes. The genomic organization of the key genes is suggestive of a subdivision of the reaction network into five modules, where we observed distinct differences in the modular composition between the families Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, on the one hand, and the family Streptococcaceae, on the other. These differences are mirrored by the way in which transcription regulation of the genes is structured in these families. In the Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, the main shared mode of transcription regulation is methionine (Met) T-box-mediated regulation. In addition, the gene metK, encoding S-adenosylmethionine (SAM) synthetase, is controlled via the SMK box (SAM). The SMK box is also found upstream of metK in species of the family Streptococcaceae. However, the transcription control of the other modules is mediated via three different LysR-family regulators, MetR/MtaR (methionine), CmbR (O-acetyl[homo]serine), and HomR (O-acetylhomoserine). Redefinition of the associated DNA-binding motifs helped to identify/disentangle the related regulons, which appeared to perfectly match the proposed subdivision of the reaction network. PMID:22522891

  5. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.

    PubMed

    Baumschlager, Armin; Aoki, Stephanie K; Khammash, Mustafa

    2017-11-17

    Light has emerged as a control input for biological systems due to its precise spatiotemporal resolution. The limited toolset for light control in bacteria motivated us to develop a light-inducible transcription system that is independent from cellular regulation through the use of an orthogonal RNA polymerase. Here, we present our engineered blue light-responsive T7 RNA polymerases (Opto-T7RNAPs) that show properties such as low leakiness of gene expression in the dark state, high expression strength when induced with blue light, and an inducible range of more than 300-fold. Following optimization of the system to reduce expression variability, we created a variant that returns to the inactive dark state within minutes once the blue light is turned off. This allows for precise dynamic control of gene expression, which is a key aspect for most applications using optogenetic regulation. The regulators, which only require blue light from ordinary light-emitting diodes for induction, were developed and tested in the bacterium Escherichia coli, which is a crucial cell factory for biotechnology due to its fast and inexpensive cultivation and well understood physiology and genetics. Opto-T7RNAP, with minor alterations, should be extendable to other bacterial species as well as eukaryotes such as mammalian cells and yeast in which the T7 RNA polymerase and the light-inducible Vivid regulator have been shown to be functional. We anticipate that our approach will expand the applicability of using light as an inducer for gene expression independent from cellular regulation and allow for a more reliable dynamic control of synthetic and natural gene networks.

  6. Cloning, expression, and functional analysis of molecular motor pilT and pilU genes of type IV pili in Acidithiobacillus ferrooxidans.

    PubMed

    Li, Yongquan; Huang, Shuangsheng; Zhang, Xiaosu; Huang, Tao; Li, Hongyu

    2013-02-01

    PilT is a hexameric ATPase required for type IV pili (Tfp) retraction in gram-negative bacterium. Retraction of Tfp mediates intimate attachment and motility on inorganic solid surfaces. We investigated the cloning and expression of pilT and pilU genes of Acidithiobacillus ferrooxidans strains ATCC 23270, and the results indicate that PilT and PilU contain the canonical conserved AIRNLIRE and GMQTXXXXLXXL motifs that are the characteristic motifs of the PilT protein family; PilT and PilU also contain the canonical nucleotide-binding motifs, named with Walker A box (GxxGxGKT/S) and Walker B box (hhhhDE), respectively. The pilT and pilU genes were expressed to produce 37.1- and 42.0-kDa proteins, respectively, and co-transcribed induced by 10 % mineral powder. However, ATPase activity of PilT was distinctly higher than those of PilU. These results indicated that the PilT protein was the real molecular motor of Tfp, while PilU could play a key role in the assembly, modification, and twitching motility of Tfp in A. ferrooxidans. However, PilT and PilU were nonetheless interrelated in the forming and function of the molecular motor of Tfp.

  7. Chloroplast- or Mitochondria-Targeted DEAD-Box RNA Helicases Play Essential Roles in Organellar RNA Metabolism and Abiotic Stress Responses

    PubMed Central

    Nawaz, Ghazala; Kang, Hunseung

    2017-01-01

    The yields and productivity of crops are greatly diminished by various abiotic stresses, including drought, cold, heat, and high salinity. Chloroplasts and mitochondria are cellular organelles that can sense diverse environmental stimuli and alter gene expression to cope with adverse environmental stresses. Organellar gene expression is mainly regulated at posttranscriptional levels, including RNA processing, intron splicing, RNA editing, RNA turnover, and translational control, during which a variety of nucleus-encoded RNA-binding proteins (RBPs) are targeted to chloroplasts or mitochondria where they play essential roles in organellar RNA metabolism. DEAD-box RNA helicases (RHs) are enzymes that can alter RNA structures and affect RNA metabolism in all living organisms. Although a number of DEAD-box RHs have been found to play important roles in RNA metabolism in the nucleus and cytoplasm, our understanding on the roles of DEAD-box RHs in the regulation of RNA metabolism in chloroplasts and mitochondria is only at the beginning. Considering that organellar RNA metabolism and gene expression are tightly regulated by anterograde signaling from the nucleus, it is imperative to determine the functions of nucleus-encoded organellar RBPs. In this review, we summarize the emerging roles of nucleus-encoded chloroplast- or mitochondria-targeted DEAD-box RHs in organellar RNA metabolism and plant response to diverse abiotic stresses. PMID:28596782

  8. Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.

    PubMed

    Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D

    2014-06-01

    Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation.

    PubMed

    Stennard, Fiona A; Costa, Mauro W; Lai, Donna; Biben, Christine; Furtado, Milena B; Solloway, Mark J; McCulley, David J; Leimena, Christiana; Preis, Jost I; Dunwoodie, Sally L; Elliott, David E; Prall, Owen W J; Black, Brian L; Fatkin, Diane; Harvey, Richard P

    2005-05-01

    The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.

  10. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    PubMed

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes.

  11. Single-nucleotide polymorphisms g.151435C>T and g.173057T>C in PRLR gene regulated by bta-miR-302a are associated with litter size in goats.

    PubMed

    An, Xiaopeng; Hou, Jinxing; Gao, Teyang; Lei, Yingnan; Li, Guang; Song, Yuxuan; Wang, Jiangang; Cao, Binyun

    2015-06-01

    Single-nucleotide polymorphisms (SNPs) located at microRNA-binding sites (miR-SNPs) can affect the expression of genes. This study aimed to identify the miR-SNPs associated with litter size. Guanzhong (n = 321) and Boer (n = 191) goat breeds were used to detect SNPs in the caprine prolactin receptor (PRLR) gene by DNA sequencing, primer-introduced restriction analysis-polymerase chain reaction, and polymerase chain reaction-restriction fragment length polymorphism. Three novel SNPs (g.151435C>T, g.151454A>G, and g.173057T>C) were identified in the caprine PRLR gene. Statistical results indicated that the g.151435C>T and g.173057T>C SNPs were significantly associated with litter size in Guanzhong and Boer goat breeds. Further analysis revealed that combinative genotype C6 (TTAACC) was better than the others for litter size in both goat breeds. Furthermore, the PRLR g.173057T>C polymorphism was predicted to regulate the binding activity of bta-miR-302a. Luciferase reporter gene assay confirmed that 173057C to T substitution disrupted the binding site for bta-miR-302a, resulting in the reduced levels of luciferase. Taken together, these findings suggested that bta-miR-302a can influence the expression of PRLR protein by binding with 3'untranslated region, resulting in that the g.173057T>C SNP had significant effects on litter size. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Molecular regulation of effector and memory T cell differentiation

    PubMed Central

    Chang, John T; Wherry, E John; Goldrath, Ananda W

    2015-01-01

    Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352

  13. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.

    PubMed

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.

  14. The Involvement of Wheat F-Box Protein Gene TaFBA1 in the Oxidative Stress Tolerance of Plants

    PubMed Central

    Zhou, Shu-Mei; Kong, Xiang-Zhu; Kang, Han-Han; Sun, Xiu-Dong; Wang, Wei

    2015-01-01

    As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions. PMID:25906259

  15. The evolutionarily conserved leprecan gene: its regulation by Brachyury and its role in the developing Ciona notochord.

    PubMed

    Dunn, Matthew P; Di Gregorio, Anna

    2009-04-15

    In Ciona intestinalis, leprecan was identified as a target of the notochord-specific transcription factor Ciona Brachyury (Ci-Bra) (Takahashi, H., Hotta, K., Erives, A., Di Gregorio, A., Zeller, R.W., Levine, M., Satoh, N., 1999. Brachyury downstream notochord differentiation in the ascidian embryo. Genes Dev. 13, 1519-1523). By screening approximately 14 kb of the Ci-leprecan locus for cis-regulatory activity, we have identified a 581-bp minimal notochord-specific cis-regulatory module (CRM) whose activity depends upon T-box binding sites located at the 3'-end of its sequence. These sites are specifically bound in vitro by a GST-Ci-Bra fusion protein, and mutations that abolish binding in vitro result in loss or decrease of regulatory activity in vivo. Serial deletions of the 581-bp notochord CRM revealed that this sequence is also able to direct expression in muscle cells through the same T-box sites that are utilized by Ci-Bra in the notochord, which are also bound in vitro by the muscle-specific T-box activators Ci-Tbx6b and Ci-Tbx6c. Additionally, we created plasmids aimed to interfere with the function of Ci-leprecan and categorized the resulting phenotypes, which consist of variable dislocations of notochord cells along the anterior-posterior axis. Together, these observations provide mechanistic insights generally applicable to T-box transcription factors and their target sequences, as well as a first set of clues on the function of Leprecan in early chordate development.

  16. Box C/D small nucleolar RNA (snoRNA) U60 regulates intracellular cholesterol trafficking.

    PubMed

    Brandis, Katrina A; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E; Ory, Daniel S

    2013-12-13

    Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.

  17. Dynamic gene expression response to altered gravity in human T cells.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-07-12

    We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.

  18. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway

    PubMed Central

    Reizis, Boris; Leder, Philip

    2002-01-01

    The Notch signaling pathway regulates the commitment and early development of T lymphocytes. We studied Notch-mediated induction of the pre-T cell receptor α (pTa) gene, a T-cell-specific transcriptional target of Notch. The pTa enhancer was activated by Notch signaling and contained binding sites for its nuclear effector, CSL. Mutation of the CSL-binding sites abolished enhancer induction by Notch and delayed the up-regulation of pTa transgene expression during T cell lineage commitment. These results show a direct mechanism of stage- and tissue-specific gene induction by the mammalian Notch/CSL signaling pathway. PMID:11825871

  19. Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links.

    PubMed

    Wolter, R; Siede, W; Brendel, M

    1996-02-05

    The interstrand cross-link repair gene SNM1 of Saccharomyces cerevisiae was examined for regulation in response to DNA-damaging agents. Induction of SNM1-lacZ fusions was detected in response to nitrogen mustard, cis-platinum (II) diamine dichloride, UV light, and 8-methoxypsoralen + UVA, but not after heat-shock treatment or incubation with 2-dimethylaminoethylchloride, methylmethane sulfonate or 4-nitroquinoline-N-oxide. The promoter of SNM1 contains a 15 bp motif, which shows homology to the DRE2 box of the RAD2 promoter. Similar motifs have been found in promoter regions of other damage-inducible DNA repair genes. Deletion of this motif results in loss of inducibility of SNM1. Also, a putative negative upstream regulation sequence was found to be responsible for repression of constitutive transcription of SNM1. Surprisingly, no inducibility of SNM1 was found after treatment with DNA-damaging agents in strains without an intact DUN1 gene, while regulation seems unchanged in sad1 mutants.

  20. Regulation of the spoVM gene of Bacillus subtilis.

    PubMed

    Le, Ai Thi Thuy; Schumann, Wolfgang

    2008-11-01

    The spoVM gene of Bacillus subtilis codes for a 26 amino-acid peptide that is essential for sporulation. Analysis of the expression of the spoVM gene revealed that wild-type cells started to synthesize a spoVM-specific transcript at t2, whereas the SpoVM peptide accumulated at t4. Both the transcript and the peptide were absent from an spoVM knockout strain. The 5' untranslated region of the spoVM transcript increased expression of SpoVM. Possible regulation mechanisms are discussed.

  1. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance.

    PubMed

    Zhou, Shumei; Sun, Xiudong; Yin, Suhong; Kong, Xiangzhu; Zhou, Shan; Xu, Ying; Luo, Yin; Wang, Wei

    2014-11-01

    Drought is one of the most important factors limiting plant growth and development. We identified a gene in wheat (Triticum aestivum L.) under drought stress named TaFBA1. TaFBA1 encodes a putative 325-amino-acid F-box protein with a conserved N-terminal F-box domain and a C-terminal AMN1 domain. Real-time RT-PCR analysis revealed that TaFBA1 transcript accumulation was upregulated by high-salinity, water stress, and abscisic acid (ABA) treatment. To evaluate the functions of TaFBA1 in the regulation of drought stress responses, we produced transgenic tobacco lines overexpressing TaFBA1. Under water stress conditions, the transgenic tobacco plants had a higher germination rate, higher relative water content, net photosynthesis rate (Pn), less chlorophyll loss, and less growth inhibition than WT. These results demonstrate the high tolerance of the transgenic plants to drought stress compared to the WT. The enhanced oxidative stress tolerance of these plants, which may be involved in their drought tolerance, was indicated by their lower levels of reactive oxygen species (ROS) accumulation, MDA content, and cell membrane damage under drought stress compared to WT. The antioxidant enzyme activities were higher in the transgenic plants than in WT, which may be related to the upregulated expression of some antioxidant genes via overexpression of TaFBA1. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Control of Floral Meristem Determinacy in Petunia by MADS-Box Transcription Factors1[W

    PubMed Central

    Ferrario, Silvia; Shchennikova, Anna V.; Franken, John; Immink, Richard G.H.; Angenent, Gerco C.

    2006-01-01

    The shoot apical meristem (SAM), a small group of undifferentiated dividing cells, is responsible for the continuous growth of plants. Several genes have been identified that control the development and maintenance of the SAM. Among these, WUSCHEL (WUS) from Arabidopsis (Arabidopsis thaliana) is thought to be required for maintenance of a stem cell pool in the SAM. The MADS-box gene AGAMOUS, in combination with an unknown factor, has been proposed as a possible negative regulator of WUS, leading to the termination of meristematic activity within the floral meristem. Transgenic petunia (Petunia hybrida) plants were produced in which the E-type and D-type MADS-box genes FLORAL BINDING PROTEIN2 (FBP2) and FBP11, respectively, are simultaneously overexpressed. These plants show an early arrest in development at the cotyledon stage. Molecular analysis of these transgenic plants revealed a possible combined action of FBP2 and FBP11 in repressing the petunia WUS homolog, TERMINATOR. Furthermore, the ectopic up-regulation of the C-type and D-type homeotic genes FBP6 and FBP7, respectively, suggests that they may also participate in a complex, which causes the determinacy in transgenic plants. These data support the model that a transcription factor complex consisting of C-, D-, and E-type MADS-box proteins controls the stem cell population in the floral meristem. PMID:16428599

  3. PKC-Theta is a Novel SC35 Splicing Factor Regulator in Response to T Cell Activation.

    PubMed

    McCuaig, Robert Duncan; Dunn, Jennifer; Li, Jasmine; Masch, Antonia; Knaute, Tobias; Schutkowski, Mike; Zerweck, Johannes; Rao, Sudha

    2015-01-01

    Alternative splicing of nuclear pre-mRNA is essential for generating protein diversity and regulating gene expression. While many immunologically relevant genes undergo alternative splicing, the role of regulated splicing in T cell immune responses is largely unexplored, and the signaling pathways and splicing factors that regulate alternative splicing in T cells are poorly defined. Here, we show using a combination of Jurkat T cells, human primary T cells, and ex vivo naïve and effector virus-specific T cells isolated after influenza A virus infection that SC35 phosphorylation is induced in response to stimulatory signals. We show that SC35 colocalizes with RNA polymerase II in activated T cells and spatially overlaps with H3K27ac and H3K4me3, which mark transcriptionally active genes. Interestingly, SC35 remains coupled to the active histone marks in the absence of continuing stimulatory signals. We show for the first time that nuclear PKC-θ co-exists with SC35 in the context of the chromatin template and is a key regulator of SC35 in T cells, directly phosphorylating SC35 peptide residues at RNA recognition motif and RS domains. Collectively, our findings suggest that nuclear PKC-θ is a novel regulator of the key splicing factor SC35 in T cells.

  4. Enhanced green fluorescent protein (egfp) gene expression in Tetraselmis subcordiformis chloroplast with endogenous regulators.

    PubMed

    Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song

    2016-05-01

    On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.

  5. The Mammalian Cervical Vertebrae Blueprint Depends on the T (brachyury) Gene

    PubMed Central

    Kromik, Andreas; Ulrich, Reiner; Kusenda, Marian; Tipold, Andrea; Stein, Veronika M.; Hellige, Maren; Dziallas, Peter; Hadlich, Frieder; Widmann, Philipp; Goldammer, Tom; Baumgärtner, Wolfgang; Rehage, Jürgen; Segelke, Dierck; Weikard, Rosemarie; Kühn, Christa

    2015-01-01

    A key common feature of all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development. PMID:25614605

  6. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues.

    PubMed

    Luciano, Amelia K; Zhou, Wenping; Santana, Jeans M; Kyriakides, Cleo; Velazquez, Heino; Sessa, William C

    2018-06-08

    C ircadian l ocomotor o utput c ycles k aput (CLOCK) is a transcription factor that activates transcription of clock-controlled genes by heterodimerizing with BMAL1 and binding to E-box elements on DNA. Although several phosphorylation sites on CLOCK have already been identified, this study characterizes a novel phosphorylation site at serine 845 (Ser-836 in humans). Here, we show that CLOCK is a novel AKT substrate in vitro and in cells, and this phosphorylation site is a negative regulator of CLOCK nuclear localization by acting as a binding site for 14-3-3 proteins. To examine the role of CLOCK phosphorylation in vivo , Clock S845A knockin mice were generated using CRISPR/Cas9 technology. Clock S845A mice are essentially normal with normal central circadian rhythms and hemodynamics. However, examination of core circadian gene expression from peripheral tissues demonstrated that Clock S845A mice have diminished expression of Per2, Reverba, Dbp, and Npas2 in skeletal muscle and Per2, Reverba, Dbp, Per1 , Rora, and Npas2 in the liver during the circadian cycle. The reduction in Dbp levels is associated with reduced H3K9ac at E-boxes where CLOCK binds despite no change in total CLOCK levels. Thus, CLOCK phosphorylation by AKT on Ser-845 regulates its nuclear translocation and the expression levels of certain core circadian genes in insulin-sensitive tissues.

  7. Mutations in the F-box gene SNEEZY result in decreased arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    We previously reported that the SLEEPY1 (SLY1) homolog, F-box gene SNEEZY/SLEEPY2 (SNE/SLY2), can partly replace SLY1 in gibberellin (GA) hormone signaling through interaction with DELLAs RGA and GAI. To determine whether SNE normally functions in GA signaling, we characterized the phenotypes of tw...

  8. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells.

    PubMed

    Takeshige, Keiko; Sekido, Takashi; Kitahara, Jun-ichirou; Ohkubo, Yousuke; Hiwatashi, Dai; Ishii, Hiroaki; Nishio, Shin-ichi; Takeda, Teiji; Komatsu, Mitsuhisa; Suzuki, Satoru

    2014-01-01

    μ-Crystallin (CRYM) is also known as NADPH-dependent cytosolic T3-binding protein. A study using CRYM-null mice suggested that CRYM stores triiodothyronine (T3) in tissues. We previously established CRYM-expressing cells derived from parental GH3 cells. To examine the precise regulation of T3-responsive genes in the presence of CRYM, we evaluated serial alterations of T3-responsive gene expression by changing pericellular T3 concentrations in the media. We estimated the constitutive expression of three T3-responsive genes, growth hormone (GH), deiodinase 1 (Dio1), and deiodinase 2 (Dio2), in two cell lines. Subsequently, we measured the responsiveness of these three genes at 4, 8, 16, and 24 h after adding various concentrations of T3. We also estimated the levels of these mRNAs 24 and 48 h after removing T3. The levels of constitutive expression of GH and Dio1 were low and high in C8 cells, respectively, while Dio2 expression was not significantly different between GH3 and C8 cells. When treated with T3, Dio2 expression was significantly enhanced in C8 cells, while there were no differences in GH or Dio1 expression between GH3 and C8 cell lines. In contrast, removal of T3 retained the mRNA expression of GH and Dio2 in C8 cells. These results suggest that CRYM expression increases and sustains the T3 responsiveness of genes in cells, especially with alteration of the pericellular T3 concentration. The heterogeneity of T3-related gene expression is dependent on cellular CRYM expression in cases of dynamic changes in pericellular T3 concentration.

  9. Genome-wide identification and characterisation of F-box family in maize.

    PubMed

    Jia, Fengjuan; Wu, Bingjiang; Li, Hui; Huang, Jinguang; Zheng, Chengchao

    2013-11-01

    F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.

  10. Activation of protein kinase C induces nuclear translocation of RFX1 and down-regulates c-myc via an intron 1 X box in undifferentiated leukemia HL-60 cells.

    PubMed

    Chen, L; Smith, L; Johnson, M R; Wang, K; Diasio, R B; Smith, J B

    2000-10-13

    Treatment of human promyelocytic leukemia cells (HL-60) with phorbol 12-myristate 13-acetate (PMA) is known to decrease c-myc mRNA by blocking transcription elongation at sites near the first exon/intron border. Treatment of HL-60 cells with either PMA or bryostatin 1, which acutely activates protein kinase C (PKC), decreased the levels of myc mRNA and Myc protein. The inhibition of Myc synthesis accounted for the drop in Myc protein, because PMA treatment had no effect on Myc turnover. Treatment with PMA or bryostatin 1 increased nuclear protein binding to MIE1, a c-myc intron 1 element that defines an RFX1-binding X box. RFX1 antiserum supershifted MIE1-protein complexes. Increased MIE1 binding was independent of protein synthesis and abolished by a selective PKC inhibitor, which also prevented the effect of PMA on myc mRNA and protein levels and Myc synthesis. PMA treatment increased RFX1 in the nuclear fraction and decreased it in the cytosol without affecting total RFX1. Transfection of HL-60 cells with myc reporter gene constructs showed that the RFX1-binding X box was required for the down-regulation of reporter gene expression by PMA. These findings suggest that nuclear translocation and binding of RFX1 to the X box cause the down-regulation of myc expression, which follows acute PKC activation in undifferentiated HL-60 cells.

  11. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements.

    PubMed

    Lippok, Bernadette; Birkenbihl, Rainer P; Rivory, Gaelle; Brümmer, Janna; Schmelzer, Elmon; Logemann, Elke; Somssich, Imre E

    2007-04-01

    WRKY transcription factors regulate distinct parts of the plant defense transcriptome. Expression of many WRKY genes themselves is induced by pathogens or pathogen-mimicking molecules. Here, we demonstrate that Arabidopsis WRKY33 responds to various stimuli associated with plant defense as well as to different kinds of phytopathogens. Although rapid pathogen-induced AtWRKY33 expression does not require salicylic acid (SA) signaling, it is dependent on PAD4, a key regulator upstream of SA. Activation of AtWRKY33 is independent of de novo protein synthesis, suggesting that it is at least partly under negative regulatory control. We show that a set of three WRKY-specific cis-acting DNA elements (W boxes) within the AtWRKY33 promoter is required for efficient pathogen- or PAMP-triggered gene activation. This strongly indicates that WRKY transcription factors are major components of the regulatory machinery modulating immediate to early expression of this gene in response to pathogen attack.

  12. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.

    PubMed

    Hernandez, Arturo; Morte, Beatriz; Belinchón, Mónica M; Ceballos, Ainhoa; Bernal, Juan

    2012-06-01

    Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T(3) to nuclear receptors. Brain T(3) concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T(4) and T(3). We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T(3) led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T(3) treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T(3) action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T(3) concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.

  13. [Boxing: traumatology and prevention].

    PubMed

    Cabanis, Emmanuel-Alain; Iba-Zizen, Marie-Thérèse; Perez, Georges; Senegas, Xavier; Furgoni, Julien; Pineau, Jean-Claude; Louquet, Jean-Louis; Henrion, Roger

    2010-10-01

    In 1986, a surgeon who, as an amateur boxer himself was concerned with boxers' health, approached a pioneering Parisian neuroimaging unit. Thus began a study in close cooperation with the French Boxing Federation, spanning 25 years. In a first series of 52 volunteer boxers (13 amateurs and 39 professionals), during which MRI gradually replaced computed tomography, ten risk factors were identified, which notably included boxing style: only one of 40 "stylists" with a good boxing technique had cortical atrophy (4.5 %), compared to 15 % of "sloggers". Changes to the French Boxing Federation rules placed the accent on medical prevention. The second series, of 247 boxers (81 amateurs and 266 professionals), showed a clear improvement, as lesions were suspected in 14 individuals, of which only 4 (1.35 %) were probably due to boxing. The third and fourth series were part of a protocol called "Brain-Boxing-Ageing", which included 76 boxers (11 having suffered KOs) and 120 MRI scans, with reproducible CT and MRI acquisitions (9 sequences with 1.5 T then 3 T, and CT). MRI anomalies secondary to boxing were found in 11 % of amateurs and 38 % of professionals (atrophy, high vascular T2 signal areas, 2 cases of post-KO subdural bleeding). CT revealed sinus damage in 13 % of the amateurs and 19 % of the professionals. The risk of acute and chronic facial and brain damage was underline, along with detailed precautionary measures (organization of bouts, role of the referee and ringside doctor, and application of French Boxing Federation rules).

  14. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Zhang, Xiaoni; Wang, Qijian; Yang, Shaozong; Lin, Shengnan; Bao, Manzhu; Wu, Quanshu; Wang, Caiyun; Fu, Xiaopeng

    2018-01-01

    Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation (DcaMADS) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKCc, two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE (SVP)), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 (AGL6), one SEEDSTICK (STK), one B sister, one SVP, and one Mα). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation. PMID:29617274

  15. Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.).

    PubMed

    Zhang, Xiaoni; Wang, Qijian; Yang, Shaozong; Lin, Shengnan; Bao, Manzhu; Bendahmane, Mohammed; Wu, Quanshu; Wang, Caiyun; Fu, Xiaopeng

    2018-04-04

    Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation ( DcaMADS ) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKC c , two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE ( SVP )), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 ( AGL6 ), one SEEDSTICK ( STK ), one B sister , one SVP , and one Mα ). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation.

  16. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types.

    PubMed

    Gil-Ibañez, Pilar; García-García, Francisco; Dopazo, Joaquín; Bernal, Juan; Morte, Beatriz

    2017-01-01

    Thyroid hormones, thyroxine, and triiodothyronine (T3) are crucial for cerebral cortex development acting through regulation of gene expression. To define the transcriptional program under T3 regulation, we have performed RNA-Seq of T3-treated and untreated primary mouse cerebrocortical cells. The expression of 1145 genes or 7.7% of expressed genes was changed upon T3 addition, of which 371 responded to T3 in the presence of cycloheximide indicating direct transcriptional regulation. The results were compared with available transcriptomic datasets of defined cellular types. In this way, we could identify targets of T3 within genes enriched in astrocytes and neurons, in specific layers including the subplate, and in specific neurons such as prepronociceptin, cholecystokinin, or cortistatin neurons. The subplate and the prepronociceptin neurons appear as potentially major targets of T3 action. T3 upregulates mostly genes related to cell membrane events, such as G-protein signaling, neurotransmission, and ion transport and downregulates genes involved in nuclear events associated with the M phase of cell cycle, such as chromosome organization and segregation. Remarkably, the transcriptomic changes induced by T3 sustain the transition from fetal to adult patterns of gene expression. The results allow defining in molecular terms the elusive role of thyroid hormones on neocortical development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. microRNA regulation of T-cell differentiation and function

    PubMed Central

    Jeker, Lukas T.; Bluestone, Jeffrey A.

    2013-01-01

    Summary microRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. Here we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small posttranscriptional regulators are indispensable for proper functioning of the immune system. PMID:23550639

  18. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    NASA Technical Reports Server (NTRS)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  19. Emerging roles and regulation of MiT/TFE transcriptional factors.

    PubMed

    Yang, Min; Liu, En; Tang, Li; Lei, Yuanyuan; Sun, Xuemei; Hu, Jiaxi; Dong, Hui; Yang, Shi-Ming; Gao, Mingfa; Tang, Bo

    2018-06-15

    The MiT/TFE transcription factors play a pivotal role in the regulation of autophagy and lysosomal biogenesis. The subcellular localization and activity of MiT/TFE proteins are primarily regulated through phosphorylation. And the phosphorylated protein is retained in the cytoplasm and subsequently translocates to the nucleus upon dephosphorylation, where it stimulates the expression of hundreds of genes, leading to lysosomal biogenesis and autophagy induction. The transcription factor-mediated lysosome-to-nucleus signaling can be directly controlled by several signaling molecules involved in the mTORC1, PKC, and AKT pathways. MiT/TFE family members have attracted much attention owing to their intracellular clearance of pathogenic factors in numerous diseases. Recently, multiple studies have also revealed the MiT/TFE proteins as master regulators of cellular metabolic reprogramming, converging on autophagic and lysosomal function and playing a critical role in cancer, suggesting that novel therapeutic strategies could be based on the modulation of MiT/TFE family member activity. Here, we present an overview of the latest research on MiT/TFE transcriptional factors and their potential mechanisms in cancer.

  20. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  1. Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins.

    PubMed

    Isshiki, Soichiro; Kudo, Takashi; Nishihara, Shoko; Ikehara, Yuzuru; Togayachi, Akira; Furuya, Akiko; Shitara, Kenya; Kubota, Tetsuro; Watanabe, Masahiko; Kitajima, Masaki; Narimatsu, Hisashi

    2003-09-19

    The type 1 carbohydrate chain, Galbeta1-3GlcNAc, is synthesized by UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T). Among six beta3Gal-Ts cloned to date, beta3Gal-T5 is an essential enzyme for the synthesis of type 1 chain in epithelium of digestive tracts or pancreatic tissue. It forms the type 1 structure on glycoproteins produced from such tissues. In the present study, we found that the transcriptional regulation of the beta3Gal-T5 gene is controlled by homeoproteins, i.e. members of caudal-related homeobox protein (Cdx) and hepatocyte nuclear factor (HNF) families. We found an important region (-151 to -121 from the transcription initiation site), named the beta3Gal-T5 control element (GCE), for the promoter activity. GCE contained the consensus sequences for members of the Cdx and HNF families. Mutations introduced into this sequence abolished the transcriptional activity. Four factors, Cdx1, Cdx2, HNF1alpha, and HNF1beta, could bind to GCE and transcriptionally activate the beta3Gal-T5 gene. Transcriptional regulation of the beta3Gal-T5 gene was consistent with that of members of the Cdx and HNF1 families in two in vivo systems. 1) During in vitro differentiation of Caco-2 cells, transcriptional up-regulation of beta3Gal-T5 was observed in correlation with the increase in transcripts for Cdx2 and HNF1alpha. 2) Both transcript and protein levels of beta3Gal-T5 were determined to be significantly reduced in colon cancer. This down-regulation was correlated with the decrease of Cdx1 and HNF1beta expression in cancer tissue. This is the first finding that a glycosyltransferase gene is transcriptionally regulated under the control of homeoproteins in a tissue-specific manner. beta3Gal-T5, controlled by the intestinal homeoproteins, may play an important role in the specific function of intestinal cells by modifying the carbohydrate structure of glycoproteins.

  2. F-BOX proteins in cancer cachexia and muscle wasting: emerging regulators and therapeutic opportunities

    PubMed Central

    Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M.; Philip, Philip A.; Azmi, Asfar S.

    2016-01-01

    Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. PMID:26804424

  3. Structure and regulation of an archaebacterial promoter: An in vivo study. Progress report, August 1, 1991--March 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, C.J.

    1993-06-01

    We have established that a 100 bp DNA fragment from the Haloferax volcanii tRNALys gene directs transcription in vivo. This element served as the starting point for a detailed analysis of the requirements for in vivo transcription. Among several gene tentatively identified as reporter elements, we selected a eukaryotic intron-containing tRNAPro gene for when it is driven by the H. volcanii tRNALys promoter fragment, produces a single small transcript. Transcript analysis, by Sl mapping and primer extension, showed that this RNA initiated at the expected tRNALys BoxB sequence and terminated in the tRNAPro RNA Pol III termination element present onmore » the DNA fragment. In initial studies we determined that the 3 inches proximal region of this tRNALys promoter element was sufficient for transcription initiation in vivo. This 40 bp region contains only the BoxA and BoxB regions and short purine rich regions 5 inches to the BoxA and BoxB sequence. Using the tRNAPro gene as the reporter and this minimal promoter, we performed a comprehensive analysis of the BoxA region. Each position of the BoxA region was converted to an four possible nucleotides and the transcription of 36 mutants was quantitated. Among the sites analyzed, only five of the positions showed high levels of discrimination; the preferred BoxA element was 5 inches-TT({sub T}/A)({sup A}/T) ANNNN-3 inches. Mutational analysis demonstrated that a transition from T-rich to A-rich sequences in the BoxA element is essential and that there is some flexibility in the location of the ``TA`` sequence. Additionally the TA sequence appears to determine the location of the transcription start site. The BoxA element defined in this study is similar to those observed for Sulfolobus and the methanogen promoters, and supports the hypothesis that a similar core promoter element is used by all archaeal RNA polymerases.« less

  4. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation

    PubMed Central

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-01-01

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types—MDM2, Pirh2, and COP1—and the HECT-domain type—ARF-BP1—have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G1 phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation. PMID:19509332

  5. JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation.

    PubMed

    Sun, Luyang; Shi, Lei; Li, Wenqian; Yu, Wenhua; Liang, Jing; Zhang, Hua; Yang, Xiaohan; Wang, Yan; Li, Ruifang; Yao, Xingrong; Yi, Xia; Shang, Yongfeng

    2009-06-23

    The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types--MDM2, Pirh2, and COP1--and the HECT-domain type--ARF-BP1--have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G(1) phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation.

  6. Moderately lower temperatures greatly extend the lifespan of Brachionus manjavacas (Rotifera): thermodynamics or gene regulation?

    PubMed Central

    Johnston, Rachel K.; Snell, Terry W.

    2016-01-01

    Environmental temperature greatly affects lifespan in a wide variety of animals, but the exact mechanisms underlying this effect are still largely unknown. A moderate temperature decrease from 22°C to 16°C extends the lifespan of the monogonont rotifer Brachionus manjavacas by up to 163%. Thermodynamic effects on metabolism contribute to this increase in longevity, but are not the only cause. When rotifers are exposed to 16°C for four days and then transfered to 22°C, they survive until day 13 at nearly identical rates as rotifers maintained at 16°C continuously. This persistence of the higher survival for nine days after transfer to 22°C suggests that low temperature exposure alters the expression of genes that affect the rate of aging. The relative persistence of the gene regulation effect suggests that it may play an even larger role in slowing aging than the thermodynamic effects. The life extending effects of these short-term low temperature treatments are largest when the exposure happens early in the life cycle, demonstrating the importance of early development. There is no advantage to lowering the temperature below 16°C to 11° or 5°C. Rotifers exposed to 16°C also displayed increased resistance to heat, starvation, oxidative and osmotic stress. Reproductive rates at 16°C were lower than those at 22°C, but because they reproduce longer, there is no significant change in the lifetime fecundity of females. To investigate which genes contribute to these effects, the expression of specific temperature sensing genes was knocked down using RNAi. Of 12 genes tested, RNAi knockdown of four eliminated the survival enhancing effects of the four-day cold treatment: TRP7, forkhead box C, Y-box factor, and ribosomal protein S6. This demonstrates that active gene regulation is an important factor in temperature mediated life extension, and that these particular genes play an integral role in these pathways. As a thermoresponsive sensor, TRP7 may be

  7. Gene expression analysis and microdialysis suggest hypothalamic triiodothyronine (T3) gates daily torpor in Djungarian hamsters (Phodopus sungorus).

    PubMed

    Bank, Jonathan H H; Cubuk, Ceyda; Wilson, Dana; Rijntjes, Eddy; Kemmling, Julia; Markovsky, Hanna; Barrett, Perry; Herwig, Annika

    2017-07-01

    Thyroid hormones play an important role in regulating seasonal adaptations of mammals. Several studies suggested that reduced availability of 3,3',5-triiodothyronine (T3) in the hypothalamus is required for the physiological adaptation to winter in Djungarian hamsters. We have previously shown that T3 is involved in the regulation of daily torpor, but it remains unclear, whether T3 affects torpor by central or peripheral mechanisms. To determine the effect of T3 concentrations within the hypothalamus in regulating daily torpor, we tested the hypothesis that low hypothalamic T3 metabolism would favour torpor and high T3 concentrations would not. In experiment 1 gene expression in torpid hamsters was assessed for transporters carrying thyroid hormones between cerebrospinal fluid and hypothalamic cells and for deiodinases enzymes, activating or inactivating T3 within hypothalamic cells. Gene expression analysis suggests reduced T3 in hypothalamic cells during torpor. In experiment 2, hypothalamic T3 concentrations were altered via microdialysis and torpor behaviour was continuously monitored by implanted body temperature transmitters. Increased T3 concentrations in the hypothalamus reduced expression of torpor as well as torpor bout duration and depth. Subsequent analysis of gene expression in the ependymal layer of the third ventricle showed clear up-regulation of T3 inactivating deiodinase 3 but no changes in several other genes related to photoperiodic adaptations in hamsters. Finally, serum analysis revealed that increased total T3 serum concentrations were not necessary to inhibit torpor expression. Taken together, our results are consistent with the hypothesis that T3 availability within the hypothalamus significantly contributes to the regulation of daily torpor via a central pathway.

  8. Cofactor-dependent specificity of a DEAD-box protein.

    PubMed

    Young, Crystal L; Khoshnevis, Sohail; Karbstein, Katrin

    2013-07-16

    DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.

  9. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development.

    PubMed

    Li, Li; Li, Yixing; Song, Shufeng; Deng, Huafeng; Li, Na; Fu, Xiqin; Chen, Guanghui; Yuan, Longping

    2015-01-01

    In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.

  10. Positive transcriptional regulation of the human micro opioid receptor gene by poly(ADP-ribose) polymerase-1 and increase of its DNA binding affinity based on polymorphism of G-172 -> T.

    PubMed

    Ono, Takeshi; Kaneda, Toshio; Muto, Akihiro; Yoshida, Tadashi

    2009-07-24

    Micro opioid receptor (MOR) agonists such as morphine are applied widely in clinical practice as pain therapy. The effects of morphine through MOR, such as analgesia and development of tolerance and dependence, are influenced by individual specificity. Recently, we analyzed single nucleotide polymorphisms on the human MOR gene to investigate the factors that contribute to individual specificity. In process of single nucleotide polymorphisms analysis, we found that specific nuclear proteins bound to G(-172) --> T region in exon 1 in MOR gene, and its affinity to DNA was increased by base substitution from G(-172) to T(-172). The isolated protein was identified by mass spectrometry and was confirmed by Western blotting to be poly(ADP-ribose) polymerase-1 (PARP-1). The overexpressed PARP-1 bound to G(-172) --> T and enhanced the transcription of reporter vectors containing G(-172) and T(-172). Furthermore, PARP-1 inhibitor (benzamide) decreased PARP-1 binding to G(-172) --> T without affecting mRNA or protein expression level of PARP-1 and down-regulated the subsequent MOR gene expression in SH-SY5Y cells. Moreover, we found that tumor necrosis factor-alpha enhanced MOR gene expression as well as increased PARP-1 binding to the G(-172) --> T region and G(-172) --> T-dependent transcription in SH-SY5Y cells. These effects were also inhibited by benzamide. In this study, our data suggest that PARP-1 positively regulates MOR gene transcription via G(-172) --> T, which might influence individual specificity in therapeutic opioid effects.

  11. Listeria arpJ gene modifies T helper type 2 subset differentiation.

    PubMed

    Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro

    2015-07-15

    Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana.

    PubMed

    Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel

    2017-01-01

    HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.

  13. Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1[W][OA

    PubMed Central

    Vrebalov, Julia; Pan, Irvin L.; Arroyo, Antonio Javier Matas; McQuinn, Ryan; Chung, MiYoung; Poole, Mervin; Rose, Jocelyn; Seymour, Graham; Grandillo, Silvana; Giovannoni, James; Irish, Vivian F.

    2009-01-01

    The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively. PMID:19880793

  14. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells.

    PubMed

    Hu, Xinli; Kim, Hyun; Raj, Towfique; Brennan, Patrick J; Trynka, Gosia; Teslovich, Nikola; Slowikowski, Kamil; Chen, Wei-Min; Onengut, Suna; Baecher-Allan, Clare; De Jager, Philip L; Rich, Stephen S; Stranger, Barbara E; Brenner, Michael B; Raychaudhuri, Soumya

    2014-06-01

    Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci identified over a hundred single-nucleotide polymorphism (SNP) variants associated with the risk of rheumatoid arthritis (RA), type 1 diabetes (T1D), and celiac disease (CeD). Immunological and genetic studies suggest a role for CD4-positive effector memory T (CD+ TEM) cells in the pathogenesis of these diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated molecular phenotypes in CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped healthy individuals, we isolated high purity CD4+ TEM cells from peripheral blood, then assayed relative abundance, proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci before and after stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait loci (eQTL), the majority of which we detected in stimulated cells. Eleven of the 46 genes with eQTLs were previously undetected in peripheral blood mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci, eleven overlapped cis-eQTLs, of which five alleles completely explained the respective signals. A non-coding variant, rs389862A, increased proliferative response (p=4.75 × 10-8). In addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative response after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ TEM abundance or proliferation. Our study underscores the power of examining molecular phenotypes in relevant cells and conditions for understanding pathogenic mechanisms of disease variants.

  15. Duplication and Whorl-Specific Down-Regulation of the Obligate AP3-PI Heterodimer Genes Explain the Origin of Paeonia lactiflora Plants with Spontaneous Corolla Mutation.

    PubMed

    Gong, Pichang; Ao, Xiang; Liu, Gaixiu; Cheng, Fangyun; He, Chaoying

    2017-03-01

    Herbaceous peony (Paeonia lactiflora) is a globally important ornamental plant. Spontaneous floral mutations occur frequently during cultivation, and are selected as a way to release new cultivars, but the underlying evolutionary developmental genetics remain largely elusive. Here, we investigated a collection of spontaneous corolla mutational plants (SCMPs) whose other floral organs were virtually unaffected. Unlike the corolla in normal plants (NPs) that withered soon after fertilization, the transformed corolla (petals) in SCMPs was greenish and persistent similar to the calyx (sepals). Epidermal cellular morphology of the SCMP corolla was also similar to that of calyx cells, further suggesting a sepaloid corolla in SCMPs. Ten floral MADS-box genes from these Paeonia plants were comparatively characterized with respect to sequence and expression. Codogenic sequence variation of these MADS-box genes was not linked to corolla changes in SCMPs. However, we found that both APETALA3 (AP3) and PISTILLATA (PI) lineages of B-class MADS-box genes were duplicated, and subsequent selective expression alterations of these genes were closely associated with the origin of SCMPs. AP3-PI obligate heterodimerization, essential for organ identity of corolla and stamens, was robustly detected. However, selective down-regulation of these duplicated genes might result in a reduction of this obligate heterodimer concentration in a corolla-specific manner, leading to the sepaloid corolla in SCMPs, thus representing a new sepaloid corolla model taking advantage of gene duplication. Our work suggests that modifying floral MADS-box genes could facilitate the breeding of novel cultivars with distinct floral morphology in ornamental plants, and also provides new insights into the functional evolution of the MADS-box genes in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  16. Regional and temporal differences in gene expression of LH(BETA)T(AG) retinoblastoma tumors.

    PubMed

    Houston, Samuel K; Pina, Yolanda; Clarke, Jennifer; Koru-Sengul, Tulay; Scott, William K; Nathanson, Lubov; Schefler, Amy C; Murray, Timothy G

    2011-07-23

    The purpose of this study was to evaluate by microarray the hypothesis that LH(BETA)T(AG) retinoblastoma tumors exhibit regional and temporal variations in gene expression. LH(BETA)T(AG) mice aged 12, 16, and 20 weeks were euthanatized (n = 9). Specimens were taken from five tumor areas (apex, anterior lateral, center, base, and posterior lateral). Samples were hybridized to gene microarrays. The data were preprocessed and analyzed, and genes with a P < 0.01, according to the ANOVA models, and a log(2)-fold change >2.5 were considered to be differentially expressed. Differentially expressed genes were analyzed for overlap with known networks by using pathway analysis tools. There were significant temporal (P < 10(-8)) and regional differences in gene expression for LH(BETA)T(AG) retinoblastoma tumors. At P < 0.01 and log(2)-fold change >2.5, there were significant changes in gene expression of 190 genes apically, 84 genes anterolaterally, 126 genes posteriorly, 56 genes centrally, and 134 genes at the base. Differentially expressed genes overlapped with known networks, with significant involvement in regulation of cellular proliferation and growth, response to oxygen levels and hypoxia, regulation of cellular processes, cellular signaling cascades, and angiogenesis. There are significant temporal and regional variations in the LH(BETA)T(AG) retinoblastoma model. Differentially expressed genes overlap with key pathways that may play pivotal roles in murine retinoblastoma development. These findings suggest the mechanisms involved in tumor growth and progression in murine retinoblastoma tumors and identify pathways for analysis at a functional level, to determine significance in human retinoblastoma. Microarray analysis of LH(BETA)T(AG) retinal tumors showed significant regional and temporal variations in gene expression, including dysregulation of genes involved in hypoxic responses and angiogenesis.

  17. Regulation of T Cell Differentiation and Function by EZH2

    PubMed Central

    Karantanos, Theodoros; Christofides, Anthos; Bardhan, Kankana; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  18. The G-Box Transcriptional Regulatory Code in Arabidopsis1[OPEN

    PubMed Central

    Shepherd, Samuel J.K.; Brestovitsky, Anna; Dickinson, Patrick; Biswas, Surojit

    2017-01-01

    Plants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we constructed a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a Web site that provides interactive visualizations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations. PMID:28864470

  19. Multiple interactions amongst floral homeotic MADS box proteins.

    PubMed Central

    Davies, B; Egea-Cortines, M; de Andrade Silva, E; Saedler, H; Sommer, H

    1996-01-01

    Most known floral homeotic genes belong to the MADS box family and their products act in combination to specify floral organ identity by an unknown mechanism. We have used a yeast two-hybrid system to investigate the network of interactions between the Antirrhinum organ identity gene products. Selective heterodimerization is observed between MADS box factors. Exclusive interactions are detected between two factors, DEFICIENS (DEF) and GLOBOSA (GLO), previously known to heterodimerize and control development of petals and stamens. In contrast, a third factor, PLENA (PLE), which is required for reproductive organ development, can interact with the products of MADS box genes expressed at early, intermediate and late stages. We also demonstrate that heterodimerization of DEF and GLO requires the K box, a domain not found in non-plant MADS box factors, indicating that the plant MADS box factors may have different criteria for interaction. The association of PLENA and the temporally intermediate MADS box factors suggests that part of their function in mediating between the meristem and organ identity genes is accomplished through direct interaction. These data reveal an unexpectedly complex network of interactions between the factors controlling flower development and have implications for the determination of organ identity. Images PMID:8861961

  20. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells.

    PubMed

    Lin, Jiajing; Zeng, Dingyuan; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2017-10-01

    Low tissue specificity and efficiency of exogenous gene expression are the two major obstacles in tumor‑targeted gene therapy. The Fas cell surface death receptor (Fas)/Fas ligand pathway is one of the primary pathways responsible for the regulation of cell apoptosis. The aim of the present study was to explore whether the regulation of tumor specific promoters and a two‑step transcriptional amplification system (TSTA) assured efficient, targeted expression of their downstream Fas gene in human ovarian cancer cells, and to assess the killing effect of γδT cells on these cells with high Fas expression. Three shuttle plasmids containing different control elements of the human telomerase reverse transcriptase (hTERT) promoter and/or TSTA were constructed and packaged into adenovirus 5 (Ad5) vectors for the expression of exogenous Fas gene. The human ovarian cancer cell line SKOV3 and a control human embryonic lung fibroblast cell line were transfected with Ad5‑hTERT‑Fas or Ad5‑hTERT‑TSTA‑Fas. Fas mRNA and protein expression were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. γδT lymphocytes were isolated, cultured and mixed at different ratios with SKOV3 cells with Fas expression in order to assess the killing effect of γδT cells. hTERT promoter induced the specific expression of FAS gene in SKOV3 cells, and the TSTA strategy increased FAS expression by 14.2‑fold. The killing effect of γδT cells increased with the expression level of Fas and the effector‑target cell ratio. The killing rate for SKOV3 cells with high FAS expression was 72.5% at an effector‑target cell ratio of 40:1. The regulators of hTERT promoter and TSTA assure the efficient and targeted expression of their downstream Fas gene in SKOV3 cells. The killing effect of γδT cells for ovarian cancer cells with relatively high Fas expression was improved.

  1. Mining microarrays for metabolic meaning: nutritional regulation of hypothalamic gene expression.

    PubMed

    Mobbs, Charles V; Yen, Kelvin; Mastaitis, Jason; Nguyen, Ha; Watson, Elizabeth; Wurmbach, Elisa; Sealfon, Stuart C; Brooks, Andrew; Salton, Stephen R J

    2004-06-01

    DNA microarray analysis has been used to investigate relative changes in the level of gene expression in the CNS, including changes that are associated with disease, injury, psychiatric disorders, drug exposure or withdrawal, and memory formation. We have used oligonucleotide microarrays to identify hypothalamic genes that respond to nutritional manipulation. In addition to commonly used microarray analysis based on criteria such as fold-regulation, we have also found that simply carrying out multiple t tests then sorting by P value constitutes a highly reliable method to detect true regulation, as assessed by real-time polymerase chain reaction (PCR), even for relatively low abundance genes or relatively low magnitude of regulation. Such analyses directly suggested novel mechanisms that mediate effects of nutritional state on neuroendocrine function and are being used to identify regulated gene products that may elucidate the metabolic pathology of obese ob/ob, lean Vgf-/Vgf-, and other models with profound metabolic impairments.

  2. IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages.

    PubMed

    Portier, Emilie; Zheng, Huaixin; Sahr, Tobias; Burnside, Denise M; Mallama, Celeste; Buchrieser, Carmen; Cianciotto, Nicholas P; Héchard, Yann

    2015-04-01

    Legionella pneumophila is a pathogenic bacterium commonly found in water. Eventually, it could be transmitted to humans via inhalation of contaminated aerosols. Iron is known as a key requirement for the growth of L. pneumophila in the environment and within its hosts. Many studies were performed to understand iron utilization by L. pneumophila but no global approaches were conducted. In this study, transcriptomic analyses were performed, comparing gene expression in L. pneumophila in standard versus iron restricted conditions. Among the regulated genes, a newly described one, lpp_2867, was highly induced in iron-restricted conditions. Mutants lacking this gene in L. pneumophila were not affected in siderophore synthesis or utilization. On the contrary, they were defective for growth on iron-depleted solid media and for ferrous iron uptake. A sequence analysis predicts that Lpp_2867 is a membrane protein, suggesting that it is involved in ferrous iron transport. We thus named it IroT, for iron transporter. Infection assays showed that the mutants are highly impaired in intracellular growth within their environmental host Acanthamoeba castellanii and human macrophages. Taken together, our results show that IroT is involved, directly or indirectly, in ferrous iron transport and is a key virulence factor for L. pneumophila. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Hypocotyl Transcriptome Reveals Auxin Regulation of Growth-Promoting Genes through GA-Dependent and -Independent Pathways

    PubMed Central

    Castillejo, Cristina; Sartor, Ryan; Bialy, Agniezska; Sun, Tai-ping; Estelle, Mark

    2012-01-01

    Many processes critical to plant growth and development are regulated by the hormone auxin. Auxin responses are initiated through activation of a transcriptional response mediated by the TIR1/AFB family of F-box protein auxin receptors as well as the AUX/IAA and ARF families of transcriptional regulators. However, there is little information on how auxin regulates a specific cellular response. To begin to address this question, we have focused on auxin regulation of cell expansion in the Arabidopsis hypocotyl. We show that auxin-mediated hypocotyl elongation is dependent upon the TIR1/AFB family of auxin receptors and degradation of AUX/IAA repressors. We also use microarray studies of elongating hypocotyls to show that a number of growth-associated processes are activated by auxin including gibberellin biosynthesis, cell wall reorganization and biogenesis, and others. Our studies indicate that GA biosynthesis is required for normal response to auxin in the hypocotyl but that the overall transcriptional auxin output consists of PIF-dependent and -independent genes. We propose that auxin acts independently from and interdependently with PIF and GA pathways to regulate expression of growth-associated genes in cell expansion. PMID:22590525

  4. FBXW10 is negatively regulated in transcription and expression level by protein O-GlcNAcylation.

    PubMed

    Feng, Zhou; Hui, Yan; Ling, Li; Xiaoyan, Liu; Yuqiu, Wang; Peng, Wang; Lianwen, Zhang

    2013-08-23

    Intricate cross-talks exist among multiple post-translational modifications that play critical roles in various cellular events, such as the control of gene expression and regulation of protein function. Here, the cross-talk between O-GlcNAcylation and ubiquitination was investigated in HEK293T cells. By PCR array, 84 ubiquitination-related genes were explored in transcription level in response to the elevation of total protein O-GlcNAcylation due to over-expression of OGT, inhibition of OGA or GlcN treatment. Varied genes were transcriptionally regulated by using different method. But FBXW10, an F-box protein targeting specific proteins for ubiquitination, could be negatively regulated in all ways, suggesting its regulation by protein O-GlcNAcylation. By RT-PCR and Western blot analysis, it was found that FBXW10 could be sharply down-regulated in mRNA and protein level in GlcN-treated cells in a time-dependent way, in line with the enhancement of protein O-GlcNAcylation. It was also found that endogenous FBXW10 was modified by O-GlcNAc in HEK293T cells, implying O-GlcNAcylation might regulate FBXW10 in multiple levels. These findings indicate that O-GlcNAcylation is involved in the regulation of ubiquitination-related genes, and help us understand the cross-talk between O-GlcNAcylation and ubiquitination. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Transcriptional modulation of some Staphylococcus aureus iron-regulated genes during growth in vitro and in a tissue cage model in vivo.

    PubMed

    Allard, Marianne; Moisan, Hélène; Brouillette, Eric; Gervais, Alain L; Jacques, Mario; Lacasse, Pierre; Diarra, Moussa S; Malouin, François

    2006-06-01

    Staphylococcus aureus can proliferate in iron-limited environments such as the mammalian host. The transcriptional profiles of 460 genes (iron-regulated, putative Fur-regulated, membrane transport, pathogenesis) obtained for S. aureus grown in iron-restricted environments in vitro and in vivo were compared in order to identify new iron-regulated genes and to evaluate their potential as possible therapeutic targets in vivo. Iron deprivation was created in vitro by 2,2-dipyridyl, and in vivo, S. aureus was grown in tissue cages implanted in mice. Bacterial RNA was obtained from each growth condition and cDNA probes were co-hybridized on DNA arrays. Thirty-six upregulated and 11 downregulated genes were commonly modulated in animals and in the low-iron medium. Real-time PCR confirmed the iron-dependent modulation of four novel genes (SACOL0161, 2170, 2369, 2431) with a Fur box motif. Some genes expressed in the dipyridyl medium were not expressed in vivo (e.g., copA, frpA, SACOL1045). Downregulated genes included an iron-storage protein gene and genes of the succinate dehydrogenase complex, reminiscent of a small RNA-dependent regulation thus far only demonstrated in Gram-negative bacteria. The expression of iron-regulated genes in distinct low-iron environments provided insight into their relative importance in vitro and in vivo and their usefulness for vaccine and drug development.

  6. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins.

    PubMed

    Hoffmann, H M; Catron, K M; van Wijnen, A J; McCabe, L R; Lian, J B; Stein, G S; Stein, J L

    1994-12-20

    The OC box of the rat osteocalcin promoter (nt -99 to -76) is the principal proximal regulatory element contributing to both tissue-specific and developmental control of osteocalcin gene expression. The central motif of the OC box includes a perfect consensus DNA binding site for certain homeodomain proteins. Homeodomain proteins are transcription factors that direct proper development by regulating specific temporal and spatial patterns of gene expression. We therefore addressed the role of the homeodomain binding motif in the activity of the OC promoter. In this study, by the combined application of mutagenesis and site-specific protein recognition analysis, we examined interactions of ROS 17/2.8 osteosarcoma cell nuclear proteins and purified Msx-1 homeodomain protein with the OC box. We detected a series of related specific protein-DNA interactions, a subset of which were inhibited by antibodies directed against the Msx-1 homeodomain but which also recognize the Msx-2 homeodomain. Our results show that the sequence requirements for binding the Msx-1 or Msx-2 homeodomain closely parallel those necessary for osteocalcin gene promoter activity in vivo. This functional relationship was demonstrated by transient expression in ROS 17/2.8 osteosarcoma cells of a series of osteocalcin promoter (nt -1097 to +24)-reporter gene constructs containing mutations within and flanking the homeodomain binding site of the OC box. Northern blot analysis of several bone-related cell types showed that all of the cells expressed msx-1, whereas msx-2 expression was restricted to cells transcribing osteocalcin. Taken together, our results suggest a role for Msx-1 and -2 or related homeodomain proteins in transcription of the osteocalcin gene.

  7. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities.

    PubMed

    Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M; Philip, Philip A; Azmi, Asfar S

    2016-02-01

    Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis

    PubMed Central

    Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael

    2007-01-01

    The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952

  9. A gene regulatory network armature for T-lymphocyte specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Elizabeth-sharon

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through whichmore » T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.« less

  10. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    PubMed Central

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  11. The gene for PAX7, a member of the paired-box-containing genes, is localized on human chromosome arm 1p36.

    PubMed

    Shapiro, D N; Sublett, J E; Li, B; Valentine, M B; Morris, S W; Noll, M

    1993-09-01

    The murine Pax-7 gene and the cognate human gene, formerly designated HuP1, are members of the multigene paired-box-containing class of developmental regulatory genes first identified in Drosophila. By analysis of somatic cell hybrids segregating human chromosomes, the gene encoding PAX7 was localized to human chromosome 1. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region of the short arm (1p36) of the chromosome. Additionally, these results confirm the extensive homology between human chromosome 1p and the distal segment of mouse chromosome 4, extending from bands C5 through E2.

  12. Regulatory T cells inhibit acute IFN-γ synthesis without blocking T-helper cell type 1 (Th1) differentiation via a compartmentalized requirement for IL-10

    PubMed Central

    Sojka, Dorothy K.; Fowell, Deborah J.

    2011-01-01

    CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707

  13. Alternative Polyadenylation Regulates CELF1/CUGBP1 Target Transcripts Following T Cell Activation

    PubMed Central

    Beisang, Daniel; Reilly, Cavan; Bohjanen, Paul R.

    2014-01-01

    Alternative polyadenylation (APA) is an evolutionarily conserved mechanism for regulating gene expression. Transcript 3′ end shortening through changes in polyadenylation site usage occurs following T cell activation, but the consequences of APA on gene expression are poorly understood. We previously showed that GU-rich elements (GREs) found in the 3′ untranslated regions of select transcripts mediate rapid mRNA decay by recruiting the protein CELF1/CUGBP1. Using a global RNA sequencing approach, we found that a network of CELF1 target transcripts involved in cell division underwent preferential 3′ end shortening via APA following T cell activation, resulting in decreased inclusion of CELF1 binding sites and increased transcript expression. We present a model whereby CELF1 regulates APA site selection following T cell activation through reversible binding to nearby GRE sequences. These findings provide insight into the role of APA in controlling cellular proliferation during biological processes such as development, oncogenesis and T cell activation PMID:25123787

  14. RNAi Screening with Self-Delivering, Synthetic siRNAs for Identification of Genes That Regulate Primary Human T Cell Migration.

    PubMed

    Freeley, Michael; Derrick, Emily; Dempsey, Eugene; Hoff, Antje; Davies, Anthony; Leake, Devin; Vermeulen, Annaleen; Kelleher, Dermot; Long, Aideen

    2015-09-01

    Screening of RNA interference (RNAi) libraries in primary T cells is labor-intensive and technically challenging because these cells are hard to transfect. Chemically modified, self-delivering small interfering RNAs (siRNAs) offer a solution to this problem, because they enter hard-to-transfect cell types without needing a delivery reagent and are available in library format for RNAi screening. In this study, we have screened a library of chemically modified, self-delivering siRNAs targeting the expression of 72 distinct genes in conjunction with an image-based high-content-analysis platform as a proof-of-principle strategy to identify genes involved in lymphocyte function-associated antigen-1 (LFA-1)-mediated migration in primary human T cells. Our library-screening strategy identified the small GTPase RhoA as being crucial for T cell polarization and migration in response to LFA-1 stimulation and other migratory ligands. We also demonstrate that multiple downstream assays can be performed within an individual RNAi screen and have used the remainder of the cells for additional assays, including cell viability and adhesion to ICAM-1 (the physiological ligand for LFA-1) in the absence or presence of the chemokine SDF-1α. This study therefore demonstrates the ease and benefits of conducting siRNA library screens in primary human T cells using self-delivering, chemically modified siRNAs, and it emphasizes the feasibility and potential of this approach for elucidating the signaling pathways that regulate T cell function. © 2015 Society for Laboratory Automation and Screening.

  15. Regulation of the intronic promoter of rat estrogen receptor alpha gene, responsible for truncated estrogen receptor product-1 expression.

    PubMed

    Schausi, Diane; Tiffoche, Christophe; Thieulant, Marie-Lise

    2003-07-01

    We have characterized the intronic promoter of the rat estrogen receptor (ER) alpha gene, responsible for the lactotrope-specific truncated ER product (TERP)-1 isoform expression. Transcriptional regulation was investigated by transient transfections using 5'-deletion constructs. TERP promoter constructs were highly active in MMQ cells, a pure lactotrope cell line, whereas a low basal activity was detected in alphaT3-1 gonadotrope cells or in COS-7 monkey kidney cells. Serial deletion analysis revealed that 1) a minimal -693-bp region encompassing the TATA box is sufficient to allow lactotrope-specific expression; 2) the promoter contains strong positive cis-acting elements both in the distal and proximal regions, and 3) the region spanning the -1698/-1194 region includes repressor elements. Transient transfection studies, EMSAs, and gel shifts demonstrated that estrogen activates the TERP promoter via an estrogen-responsive element (ERE1) located within the proximal region. Mutation of ERE1 site completely abolishes the estradiol-dependent transcription, indicating that ERE1 site is sufficient to confer estrogen responsiveness to TERP promoter. In addition, ERalpha action was synergized by transfection of the pituitary-specific factor Pit-1. EMSAs showed that a single Pit-1 DNA binding element in the vicinity of the TATA box is sufficient to confer response by the TERP promoter. In conclusion, we demonstrated, for the first time, that TERP promoter regulation involves ERE and Pit-1 cis-elements and corresponding trans-acting factors, which could play a role in the physiological changes that occur in TERP-1 transcription in lactotrope cells.

  16. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence.

    PubMed

    Wang, Runze; Ming, Meiling; Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling; Wu, Jun

    2017-01-01

    MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear ( Pyrus ), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.

  17. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening. © 2015 Scandinavian Plant Physiology Society.

  18. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  19. Adoptive T-cell therapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-02-01

    The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.

  20. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function

    PubMed Central

    Kin, Nicholas W.; Chen, Yao; Stefanov, Emily K.; Gallo, Richard L.; Kearney, John F.

    2011-01-01

    Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4+ and CD8+ T cells produce Camp mRNA and mCRAMP protein. Camp−/− B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp−/− CD4+ T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp−/− mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4+ T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses. PMID:21773974

  1. Life-cycle and growth-phase-dependent regulation of the ubiquitin genes of Trypanosoma cruzi.

    PubMed

    Manning-Cela, Rebeca; Jaishankar, Sobha; Swindle, John

    2006-07-01

    Trypanosoma cruzi, the causative agent of Chagas disease, exhibits a complex life cycle that is accompanied by the stage-specific gene expression. At the molecular level, very little is known about gene regulation in trypanosomes. Complex gene organizations coupled with polycistronic transcription units make the analysis of regulated gene expression difficult in trypanosomes. The ubiquitin genes of T. cruzi are a good example of this complexity. They are organized as a single cluster containing five ubiquitin fusion (FUS) and five polyubiquitin (PUB) genes that are polycistronically transcribed but expressed differently in response to developmental and environmental changes. Gene replacements were used to study FUS and PUB gene expression at different stages of growth and at different points in the life cycle of T. cruzi. Based on the levels of reporter gene expression, it was determined that FUS1 expression was downregulated as the parasites approached stationary phase, whereas PUB12.5 polyubiquitin gene expression increased. Conversely, FUS1 expression increases when epimastigotes and amastigotes differentiate into trypomastigotes, whereas the expression of PUB12.5 decreases when epimastigotes differentiate into amastigotes and trypomastigotes. Although the level of CAT activity in logarithmic growing epimastigotes is six- to seven-fold higher when the gene was expressed from the FUS1 locus than when expressed from the PUB12.5 locus, the rate of transcription from the two loci was the same implying that post-transcriptional mechanisms play a dominant role in the regulation of gene expression.

  2. Boxing-related head injuries.

    PubMed

    Jayarao, Mayur; Chin, Lawrence S; Cantu, Robert C

    2010-10-01

    Fatalities in boxing are most often due to traumatic brain injury that occurs in the ring. In the past 30 years, significant improvements in ringside and medical equipment, safety, and regulations have resulted in a dramatic reduction in the fatality rate. Nonetheless, the rate of boxing-related head injuries, particularly concussions, remains unknown, due in large part to its variability in clinical presentation. Furthermore, the significance of repeat concussions sustained when boxing is just now being understood. In this article, we identify the clinical manifestations, pathophysiology, and management of boxing-related head injuries, and discuss preventive strategies to reduce head injuries sustained by boxers.

  3. Developmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles

    PubMed Central

    Kyono, Yasuhiro; Sachs, Laurent M.; Bilesimo, Patrice; Wen, Luan

    2016-01-01

    Thyroid hormone is essential for normal development in vertebrates. In amphibians, T3 controls metamorphosis by inducing tissue-specific gene regulation programs. A hallmark of T3 action is the modification of chromatin structure, which underlies changes in gene transcription. We found that mRNA for the de novo DNA methyltransferase (DNMT) dnmt3a, but not dnmt1, increased in the brain of Xenopus tadpoles during metamorphosis in parallel with plasma [T3]. Addition of T3 to the rearing water caused a time-dependent increase in dnmt3a mRNA in tadpole brain, tail, and hind limb. By analyzing data from a genome-wide analysis of T3 receptor (TR) binding in tadpole tail, we identified several putative T3 response elements (TREs) within the dnmt3a locus. Using in vitro DNA binding, transient transfection-reporter, and chromatin immunoprecipitation assays for TRs, we identified two functional TREs at −7.1 kb and +5.1 kb relative to the dnmt3a transcription start site. Sequence alignment showed that these TREs are conserved between two related frog species, X. laevis and X. tropicalis, but not with amniotes. Our previous findings showed that this gene is directly regulated by liganded TRs in mouse brain, and whereas the two mouse TREs are conserved among Eutherian mammals, they are not conserved in Xenopus species. Thus, although T3 regulation of dnmt3a may be an ancient pathway in vertebrates, the genomic sites responsible for hormone regulation may have diverged or arisen by convergent evolution. We hypothesize that direct T3 regulation of dnmt3a may be an important mechanism for modulating global changes in DNA methylation. PMID:27779916

  4. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa).

    PubMed

    Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G

    2016-09-01

    In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.

  5. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  6. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    PubMed

    Burtnick, Mary N; Brett, Paul J

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  7. Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis.

    PubMed

    Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G

    2016-02-25

    Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Titration of DnaA protein by oriC DnaA-boxes increases dnaA gene expression in Escherichia coli.

    PubMed Central

    Hansen, F G; Koefoed, S; Sørensen, L; Atlung, T

    1987-01-01

    Binding of the DnaA protein to its binding sites, the DnaA-boxes (TTATCCACA), was measured by a simple physiological approach. The presence of extra DnaA-boxes in growing cells leads to a derepression of dnaA gene expression, measured as beta-galactosidase activity of a dnaA-lacZ fusion polypeptide. Different DnaA-boxes caused different degrees of derepression indicating that the DnaA protein requires sequences in addition to the DnaA-box for efficient binding. The DnaA-boxes in oriC might act cooperatively in binding of the DnaA protein. The derepressed levels of DnaA protein obtained in a strain carrying an oriC+-pBR322 chimera were very high and sufficient to activate oriC on the chimeric plasmid, which was maintained at a copy number more than three times that of pBR322. PMID:3034578

  9. microRNA regulation of T lymphocyte immunity: modulation of molecular networks responsible for T cell activation, differentiation and development

    PubMed Central

    Podshivalova, Katie; Salomon, Daniel R.

    2014-01-01

    MicroRNAs (miRNA) are a class of small non-coding RNAs that constitute an essential and evolutionarily conserved mechanism for post-transcriptional gene regulation. Multiple miRNAs have been described to play key roles in T lymphocyte development, differentiation and function. In this review we highlight the current literature regarding the differential expression of miRNAs in various models of mouse and human T cell biology and emphasize mechanistic understandings of miRNA regulation of thymocyte development, T cell activation, and differentiation into effector and memory subsets. We describe the participation of miRNAs in complex regulatory circuits shaping T cell proteomes in a context-dependent manner. It is striking that some miRNAs regulate multiple processes, while others only appear in limited functional contexts. It is also evident that the expression and function of specific miRNAs can differ between mouse and human systems. Ultimately, it is not always correct to simplify the complex events of T cell biology into a model driven by only one or two master regulator miRNAs. In reality, T cell activation and differentiation involves the expression of multiple miRNAs with many mRNA targets and thus, the true extent of miRNA regulation of T cell biology is likely far more vast than currently appreciated. PMID:24099302

  10. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    PubMed

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  11. Weeds Induce Permanent Changes in Expression of Photosynthetic Genes of Corn

    USDA-ARS?s Scientific Manuscript database

    Regulation of bud dormancy is important for perennial plant survival. DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have been implicated in regulating both dormancy induction and release in multiple plant systems. DAM genes are similar to SHORT VEGETATIVE PHASE (SVP) of arabidopsis. In arabidopsis, SVP i...

  12. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wentao; Du, Bojing; Liu, Di

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerancemore » in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd{sup 2+} uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance.« less

  13. ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets.

    PubMed

    Özgür Cingiz, M; Biricik, G; Diri, B

    2017-03-31

    miRNAs are key regulators that bind to target genes to suppress their gene expression level. The relations between miRNA-target genes enable users to derive co-expressed genes that may be involved in similar biological processes and functions in cells. We hypothesize that target genes of miRNAs are co-expressed, when they are regulated by multiple miRNAs. With the usage of these co-expressed genes, we can theoretically construct co-expression networks (GCNs) related to 152 diseases. In this study, we introduce ARNetMiT that utilize a hash based association rule algorithm in a novel way to infer the GCNs on miRNA-target genes data. We also present R package of ARNetMiT, which infers and visualizes GCNs of diseases that are selected by users. Our approach assumes miRNAs as transactions and target genes as their items. Support and confidence values are used to prune association rules on miRNA-target genes data to construct support based GCNs (sGCNs) along with support and confidence based GCNs (scGCNs). We use overlap analysis and the topological features for the performance analysis of GCNs. We also infer GCNs with popular GNI algorithms for comparison with the GCNs of ARNetMiT. Overlap analysis results show that ARNetMiT outperforms the compared GNI algorithms. We see that using high confidence values in scGCNs increase the ratio of the overlapped gene-gene interactions between the compared methods. According to the evaluation of the topological features of ARNetMiT based GCNs, the degrees of nodes have power-law distribution. The hub genes discovered by ARNetMiT based GCNs are consistent with the literature.

  14. Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii).

    PubMed

    Nardeli, Sarah Muniz; Artico, Sinara; Aoyagi, Gustavo Mitsunori; de Moura, Stéfanie Menezes; da Franca Silva, Tatiane; Grossi-de-Sa, Maria Fatima; Romanel, Elisson; Alves-Ferreira, Marcio

    2018-06-01

    The MADS-box gene family encodes transcription factors that share a highly conserved domain known to bind to DNA. Members of this family control various processes of development in plants, from root formation to fruit ripening. In this work, a survey of diploid (Gossypium raimondii and Gossypium arboreum) and tetraploid (Gossypium hirsutum) cotton genomes found a total of 147, 133 and 207 MADS-box genes, respectively, distributed in the MIKC, Mα, Mβ, Mγ, and Mδ subclades. A comparative phylogenetic analysis among cotton species, Arabidopsis, poplar and grapevine MADS-box homologous genes allowed us to evaluate the evolution of each MADS-box lineage in cotton plants and identify sequences within well-established subfamilies. Chromosomal localization and phylogenetic analysis revealed that G. raimondii and G. arboreum showed a conserved evolution of the MIKC subclade and a distinct pattern of duplication events in the Mα, Mγ and Mδ subclades. Additionally, G. hirsutum showed a combination of its parental subgenomes followed by a distinct evolutionary history including gene gain and loss in each subclade. qPCR analysis revealed the expression patterns of putative homologs in the AP1, AP3, AGL6, SEP4, AGL15, AG, AGL17, TM8, SVP, SOC and TT16 subfamilies of G. hirsutum. The identification of putative cotton orthologs is discussed in the light of evolution and gene expression data from other plants. This analysis of the MADS-box genes in Gossypium species opens an avenue to understanding the origin and evolution of each gene subfamily within diploid and polyploid species and paves the way for functional studies in cotton species. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale.

    PubMed

    He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun

    2017-08-23

    The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.

  16. The role of two F-box proteins, SLEEPY1 and SNEEZY, in arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    The F-box gene SLY1 is a positive regulator of gibberellin (GA) signaling and loss of SLY1 results in GA-insensitive phenotypes including dwarfism, reduced fertility, delayed flowering, and increased seed dormancy. These sly1 phenotypes can be partially rescued by overexpression of the SLY1 homolog...

  17. Intrinsic limits to gene regulation by global crosstalk

    NASA Astrophysics Data System (ADS)

    Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper

    Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).

  18. [Cytokine-mediated regulation of expression of Gfi1 and U2afll4 genes activated by T-cells with different differentiation status in vitro].

    PubMed

    Yurova, K A; Sokhonevich, N A; Khaziakhmatova, O G; Litvinova, L S

    2016-01-01

    The dose-dependent effects of cytokines (IL-2, IL-7, and IL-15), which have a common g-chain, on mRNA expression of U2afll4 and GFi1 genes involved in regulation of alternative splicing of the Ptprc gene, have been investigated in vitro using T-lymphocyte cultures with different degrees of differentiation. IL-2, IL-7, and IL-15 caused a similar unidirectional inhibitory effect of various severity on restimulated CD45RO+ T-cells exposed to an antigen-independent activation; they caused a dose-dependent decrease of the U2af1l4 gene expression, and an increase of Gfi1 gene expression. This may suggest formation of active forms of the CD45 receptor, and also limitation of the formation of low-molecular short splice variants of the CD45RO receptor. Under conditions of antigen-independent stimulation of naive CD45RA+-cells rIL-7 and IL-15 exhibited opposite effects on U2af1l4 and Gfi1 gene expression. The increase of IL-7 concentrations in the incubation medium of naive cells was accompanied by a decrease in expression of both genes. IL-15 IL-7 exhibited opposite effects. Cytokines possessing a common g-chain (IL-2, IL-7, and IL-15) prevented antigen-independent differentiation of naive T-cells, by preventing the formation of polyclonal "surrogate" cells. In general, the study of the molecular mechanisms of genetic control determining homeostatic processes of T-cells in response to exposure to antigenic or non-antigenic treatments may be important for construction of a general model of self-maintenance and differentiation of immune cells.

  19. RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

    PubMed Central

    Bish, Rebecca; Vogel, Christine

    2014-01-01

    Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma. PMID:24608801

  20. The SAM-responsive SMK box is a reversible riboswitch

    PubMed Central

    Smith, Angela M.; Fuchs, Ryan T.; Grundy, Frank J.; Henkin, Tina M.

    2010-01-01

    The SMK (SAM-III) box is an S-adenosylmethionine (SAM)-responsive riboswitch found in the 5′ untranslated region of metK genes, encoding SAM synthetase, in many members of the Lactobacillales. SAM binding causes a structural rearrangement in the RNA that sequesters the Shine-Dalgarno (SD) sequence by pairing with a complementary anti-SD (ASD) sequence; sequestration of the SD sequence inhibits binding of the 30S ribosomal subunit and prevents translation initiation. We observed a slight increase in the half-life of the metK transcript in vivo when Enterococcus faecalis cells were depleted for SAM, but no significant change in overall transcript abundance, consistent with the model that this riboswitch regulates at the level of translation initiation. The half-life of the SAM-SMK box RNA complex in vitro is shorter than that of the metK transcript in vivo, raising the possibility of reversible binding of SAM. We used a fluorescence assay to directly visualize reversible switching between the SAM-free and SAM-bound conformations. We propose that the SMK box riboswitch can make multiple SAM-dependent regulatory decisions during the lifetime of the transcript in vivo, acting as a reversible switch that allows the cell to respond rapidly to fluctuations in SAM pools by modulating expression of the SAM synthetase gene. PMID:21143313

  1. DP97, a DEAD box DNA/RNA helicase, is a target gene-selective co-regulator of the constitutive androstane receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Serikawa, Takafumi; Inajima, Jun

    Highlights: Black-Right-Pointing-Pointer DP97 interacts with nuclear receptor CAR. Black-Right-Pointing-Pointer DP97 enhances CAR-mediated transcriptional activation. Black-Right-Pointing-Pointer DP97 synergistically enhances transactivity of CAR by the co-expression of SRC-1 or PGC1{alpha}. Black-Right-Pointing-Pointer DP97 is a gene-selective co-activator for hCAR. -- Abstract: The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that DP97, a member of the DEAD box DNA/RNA helicase protein family, is a novel CAR-interacting protein. Using HepG2 cells expressing human CAR in the presence of tetracycline, we showed that knockdown of DP97 with smallmore » interfering RNAs suppressed tetracycline-inducible mRNA expression of CYP2B6 and UGT1A1 but not CYP3A4. Thus, DP97 was found to be a gene (or promoter)-selective co-activator for hCAR. DP97-mediated CAR transactivation was synergistically enhanced by the co-expression of SRC-1 or PGC1{alpha}, therefore it might act as mediator between hCAR and appropriate co-activators.« less

  2. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum

    PubMed Central

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder

    2011-01-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ54 and the σ54-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment. PMID:21948044

  3. The phosphotransferase VanU represses expression of four qrr genes antagonizing VanO-mediated quorum-sensing regulation in Vibrio anguillarum.

    PubMed

    Weber, Barbara; Lindell, Kristoffer; El Qaidi, Samir; Hjerde, Erik; Willassen, Nils-Peder; Milton, Debra L

    2011-12-01

    Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.

  4. Optomotor-blind negatively regulates Drosophila eye development by blocking Jak/STAT signaling.

    PubMed

    Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y Henry; Pflugfelder, Gert O

    2015-01-01

    Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.

  5. Optomotor-Blind Negatively Regulates Drosophila Eye Development by Blocking Jak/STAT Signaling

    PubMed Central

    Tsai, Yu-Chen; Grimm, Stefan; Chao, Ju-Lan; Wang, Shih-Chin; Hofmeyer, Kerstin; Shen, Jie; Eichinger, Fred; Michalopoulou, Theoni; Yao, Chi-Kuang; Chang, Chih-Hsuan; Lin, Shih-Han; Sun, Y. Henry; Pflugfelder, Gert O.

    2015-01-01

    Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired. PMID:25781970

  6. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence

    PubMed Central

    Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling

    2017-01-01

    MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear. PMID:28924499

  7. CRISPR-Cas-Mediated Gene Silencing Reveals RacR To Be a Negative Regulator of YdaS and YdaT Toxins in Escherichia coli K-12.

    PubMed

    Bindal, Gargi; Krishnamurthi, Revathy; Seshasayee, Aswin Sai Narain; Rath, Devashish

    2017-01-01

    Bacterial genomes are rich in horizontally acquired prophages. racR is an essential gene located in the rac prophage that is resident in many Escherichia coli genomes. Employing a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-based gene silencing approach, we show that RacR is a negative regulator of the divergently transcribed and adjacent ydaS-ydaT operon in Escherichia coli K-12. Overexpression of YdaS and YdaT due to RacR depletion leads to cell division defects and decrease in survival. We further show that both YdaS and YdaT can act independently as toxins and that RacR serves to counteract the toxicity by tightly downregulating the expression of these toxins. IMPORTANCE racR is an essential gene and one of the many poorly studied genes found on the rac prophage element that is present in many Escherichia coli genomes. Employing a CRISPR-based approach, we have silenced racR expression to various levels and elucidated its physiological consequences. We show that the downregulation of racR leads to upregulation of the adjacent ydaS-ydaT operon. Both YdaS and YdaT act as toxins by perturbing the cell division resulting in enhanced cell killing. This work establishes a physiological role for RacR, which is to keep the toxic effects of YdaS and YdaT in check and promote cell survival. We, thus, provide a rationale for the essentiality of racR in Escherichia coli K-12 strains.

  8. CRISPR-Cas-Mediated Gene Silencing Reveals RacR To Be a Negative Regulator of YdaS and YdaT Toxins in Escherichia coli K-12

    PubMed Central

    Bindal, Gargi; Krishnamurthi, Revathy; Seshasayee, Aswin Sai Narain

    2017-01-01

    ABSTRACT Bacterial genomes are rich in horizontally acquired prophages. racR is an essential gene located in the rac prophage that is resident in many Escherichia coli genomes. Employing a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-based gene silencing approach, we show that RacR is a negative regulator of the divergently transcribed and adjacent ydaS-ydaT operon in Escherichia coli K-12. Overexpression of YdaS and YdaT due to RacR depletion leads to cell division defects and decrease in survival. We further show that both YdaS and YdaT can act independently as toxins and that RacR serves to counteract the toxicity by tightly downregulating the expression of these toxins. IMPORTANCE racR is an essential gene and one of the many poorly studied genes found on the rac prophage element that is present in many Escherichia coli genomes. Employing a CRISPR-based approach, we have silenced racR expression to various levels and elucidated its physiological consequences. We show that the downregulation of racR leads to upregulation of the adjacent ydaS-ydaT operon. Both YdaS and YdaT act as toxins by perturbing the cell division resulting in enhanced cell killing. This work establishes a physiological role for RacR, which is to keep the toxic effects of YdaS and YdaT in check and promote cell survival. We, thus, provide a rationale for the essentiality of racR in Escherichia coli K-12 strains. PMID:29205229

  9. Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor

    NASA Technical Reports Server (NTRS)

    Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo

    2007-01-01

    Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.

  10. Rice ABI5-Like1 Regulates Abscisic Acid and Auxin Responses by Affecting the Expression of ABRE-Containing Genes1[W][OA

    PubMed Central

    Yang, Xi; Yang, Ya-Nan; Xue, Liang-Jiao; Zou, Mei-Juan; Liu, Jian-Ying; Chen, Fan; Xue, Hong-Wei

    2011-01-01

    Abscisic acid (ABA) regulates plant development and is crucial for plant responses to biotic and abiotic stresses. Studies have identified the key components of ABA signaling in Arabidopsis (Arabidopsis thaliana), some of which regulate ABA responses by the transcriptional regulation of downstream genes. Here, we report the functional identification of rice (Oryza sativa) ABI5-Like1 (ABL1), which is a basic region/leucine zipper motif transcription factor. ABL1 is expressed in various tissues and is induced by the hormones ABA and indole-3-acetic acid and stress conditions including salinity, drought, and osmotic pressure. The ABL1 deficiency mutant, abl1, shows suppressed ABA responses, and ABL1 expression in the Arabidopsis abi5 mutant rescued the ABA sensitivity. The ABL1 protein is localized to the nucleus and can directly bind ABA-responsive elements (ABREs; G-box) in vitro. A gene expression analysis by DNA chip hybridization confirms that a large proportion of down-regulated genes of abl1 are involved in stress responses, consistent with the transcriptional activating effects of ABL1. Further studies indicate that ABL1 regulates the plant stress responses by regulating a series of ABRE-containing WRKY family genes. In addition, the abl1 mutant is hypersensitive to exogenous indole-3-acetic acid, and some ABRE-containing genes related to auxin metabolism or signaling are altered under ABL1 deficiency, suggesting that ABL1 modulates ABA and auxin responses by directly regulating the ABRE-containing genes. PMID:21546455

  11. Genes Related to Antiviral Activity, Cell Migration, and Lysis Are Differentially Expressed in CD4+ T Cells in Human T Cell Leukemia Virus Type 1-Associated Myelopathy/Tropical Spastic Paraparesis Patients

    PubMed Central

    Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu

    2014-01-01

    Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428

  12. GeneNetFinder2: Improved Inference of Dynamic Gene Regulatory Relations with Multiple Regulators.

    PubMed

    Han, Kyungsook; Lee, Jeonghoon

    2016-01-01

    A gene involved in complex regulatory interactions may have multiple regulators since gene expression in such interactions is often controlled by more than one gene. Another thing that makes gene regulatory interactions complicated is that regulatory interactions are not static, but change over time during the cell cycle. Most research so far has focused on identifying gene regulatory relations between individual genes in a particular stage of the cell cycle. In this study we developed a method for identifying dynamic gene regulations of several types from the time-series gene expression data. The method can find gene regulations with multiple regulators that work in combination or individually as well as those with single regulators. The method has been implemented as the second version of GeneNetFinder (hereafter called GeneNetFinder2) and tested on several gene expression datasets. Experimental results with gene expression data revealed the existence of genes that are not regulated by individual genes but rather by a combination of several genes. Such gene regulatory relations cannot be found by conventional methods. Our method finds such regulatory relations as well as those with multiple, independent regulators or single regulators, and represents gene regulatory relations as a dynamic network in which different gene regulatory relations are shown in different stages of the cell cycle. GeneNetFinder2 is available at http://bclab.inha.ac.kr/GeneNetFinder and will be useful for modeling dynamic gene regulations with multiple regulators.

  13. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation

    PubMed Central

    Molloy, Ben; Dominguez Castro, Patricia; Cormican, Paul; Trimble, Valerie; Mahmud, Nasir; McManus, Ross

    2015-01-01

    Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD) loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; Padjusted = 2.40x10-11) in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (Padjusted = 0.002), and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10-16) and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; Padjusted = 3.6x10-3) as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10-16) indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis. PMID:26444573

  14. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  15. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    PubMed

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with

  16. Molecular cloning and characterization of the light-regulation and circadian-rhythm of the VDE gene promoter from Zingiber officinale.

    PubMed

    Zhao, Wenchao; Wang, Shaohui; Li, Xin; Huang, Hongyu; Sui, Xiaolei; Zhang, Zhenxian

    2012-08-01

    Ginger (Zingiber officinale Rosc.) is prone to photoinhibition under intense sunlight. Excessive light can be dissipated by the xanthophyll cycle, where violaxanthin de-epoxidase (VDE) plays a critical role in protecting the photosynthesis apparatus from the damage of excessive light. We isolated ~2.0 kb of ginger VDE (GVDE) gene promoter, which contained the circadian box, I-box, G-box and GT-1 motif. Histochemical staining of Arabidopsis indicated the GVDE promoter was active in almost all organs, especially green tissues. β-glucuronidase (GUS) activity driven by GVDE promoter was repressed rather than activated by high light. GUS activity was altered by hormones, growth regulators and abiotic stresses, which increased with 2,4-dichlorophenoxyacetic acid and decreased with abscisic acid, salicylic acid, zeatin, salt (sodium chloride) and polyethylene glycol. Interestingly, GUS activities with gibberellin or indole-3-acetic acid increased in the short-term (24 h) and decreased in the long-term (48 and 72 h). Analysis of 5' flank deletion found two crucial functional regions residing in -679 to -833 and -63 to -210. Northern blotting analysis found transcription to be regulated by the endogenous circadian clock. Finally, we found a region necessary for regulating the circadian rhythm and another for the basic promoter activity. Key message A novel promoter, named GVDE promoter, was first isolated and analyzed in this study. We have determined one region crucial for promoter activity and another responsible for keeping circadian rhythms.

  17. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    PubMed

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  18. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.

    PubMed

    Becker, A; Kaufmann, K; Freialdenhoven, A; Vincent, C; Li, M-A; Saedler, H; Theissen, G

    2002-02-01

    Class B floral homeotic genes specify the identity of petals and stamens during the development of angiosperm flowers. Recently, putative orthologs of these genes have been identified in different gymnosperms. Together, these genes constitute a clade, termed B genes. Here we report that diverse seed plants also contain members of a hitherto unknown sister clade of the B genes, termed B(sister) (B(s)) genes. We have isolated members of the B(s) clade from the gymnosperm Gnetum gnemon, the monocotyledonous angiosperm Zea mays and the eudicots Arabidopsis thaliana and Antirrhinum majus. In addition, MADS-box genes from the basal angiosperm Asarum europaeum and the eudicot Petunia hybrida were identified as B(s) genes. Comprehensive expression studies revealed that B(s) genes are mainly transcribed in female reproductive organs (ovules and carpel walls). This is in clear contrast to the B genes, which are predominantly expressed in male reproductive organs (and in angiosperm petals). Our data suggest that the B(s) genes played an important role during the evolution of the reproductive structures in seed plants. The establishment of distinct B and B(s) gene lineages after duplication of an ancestral gene may have accompanied the evolution of male microsporophylls and female megasporophylls 400-300 million years ago. During flower evolution, expression of B(s) genes diversified, but the focus of expression remained in female reproductive organs. Our findings imply that a clade of highly conserved close relatives of class B floral homeotic genes has been completely overlooked until recently and awaits further evaluation of its developmental and evolutionary importance. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00438-001-0615-8.

  19. Regulation of Aspergillus nidulans CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47.

    PubMed

    de Assis, Leandro José; Ulas, Mevlut; Ries, Laure Nicolas Annick; El Ramli, Nadia Ali Mohamed; Sarikaya-Bayram, Ozlem; Braus, Gerhard H; Bayram, Ozgur; Goldman, Gustavo Henrique

    2018-06-19

    The attachment of one or more ubiquitin molecules by SCF ( S kp- C ullin- F -box) complexes to protein substrates targets them for subsequent degradation by the 26S proteasome, allowing the control of numerous cellular processes. Glucose-mediated signaling and subsequent carbon catabolite repression (CCR) are processes relying on the functional regulation of target proteins, ultimately controlling the utilization of this carbon source. In the filamentous fungus Aspergillus nidulans , CCR is mediated by the transcription factor CreA, which modulates the expression of genes encoding biotechnologically relevant enzymes. Although CreA-mediated repression of target genes has been extensively studied, less is known about the regulatory pathways governing CCR and this work aimed at further unravelling these events. The Fbx23 F-box protein was identified as being involved in CCR and the Δ fbx23 mutant presented impaired xylanase production under repressing (glucose) and derepressing (xylan) conditions. Mass spectrometry showed that Fbx23 is part of an SCF ubiquitin ligase complex that is bridged via the GskA protein kinase to the CreA-SsnF-RcoA repressor complex, resulting in the degradation of the latter under derepressing conditions. Upon the addition of glucose, CreA dissociates from the ubiquitin ligase complex and is transported into the nucleus. Furthermore, casein kinase is important for CreA function during glucose signaling, although the exact role of phosphorylation in CCR remains to be determined. In summary, this study unraveled novel mechanistic details underlying CreA-mediated CCR and provided a solid basis for studying additional factors involved in carbon source utilization which could prove useful for biotechnological applications. IMPORTANCE The production of biofuels from plant biomass has gained interest in recent years as an environmentally friendly alternative to production from petroleum-based energy sources. Filamentous fungi, which naturally

  20. Distinct regions of the interleukin-7 receptor regulate different Bcl2 family members.

    PubMed

    Jiang, Qiong; Li, Wen Qing; Hofmeister, Robert R; Young, Howard A; Hodge, David R; Keller, Jonathan R; Khaled, Annette R; Durum, Scott K

    2004-07-01

    The antiapoptotic function of the interleukin-7 (IL-7) receptor is related to regulation of three members of the Bcl2 family: synthesis of Bcl2, phosphorylation of Bad, and cytosolic retention of Bax. Here we show that, in an IL-7-dependent murine T-cell line, different regions of the IL-7 receptor initiate the signal transduction pathways that regulate these proteins. Both Box1 and Y449 are required to signal Bcl2 synthesis and Bax cytosolic retention. This suggests a sequential model in which Jak1, which binds to Box1, is first activated and then phosphorylates Y449, leading to Bcl2 and Bax regulation, accounting for approximately 90% of the survival function. Phosphorylation of Bad required Box1 but not Y449, suggesting that Jak1 also initiates an additional signaling cascade that accounts for approximately 10% of the survival function. Stat5 was activated from the Y449 site but only partially accounted for the survival signal. Proliferation required both Y449 and Box1. Thymocyte development in vivo showed that deletion of Y449 eliminated 90% of alphabeta T-cell development and completely eliminated gammadelta T-cell development, whereas deleting Box 1 completely eliminated both alphabeta and gammadelta T-cell development. Thus the IL-7 receptor controls at least two distinct pathways, in addition to Stat5, that are required for cell survival.

  1. Identification and Characterization of Three Orchid MADS-Box Genes of the AP1/AGL9 Subfamily during Floral Transition1

    PubMed Central

    Yu, Hao; Goh, Chong Jin

    2000-01-01

    Gene expressions associated with in vitro floral transition in an orchid hybrid (Dendrobium grex Madame Thong-In) were investigated by differential display. One clone, orchid transitional growth related gene 7 (otg7), encoding a new MADS-box gene, was identified to be specifically expressed in the transitional shoot apical meristem (TSAM). Using this clone as a probe, three orchid MADS-box genes, DOMADS1, DOMADS2, and DOMADS3, were subsequently isolated from the TSAM cDNA library. Phylogenetic analyses show that DOMADS1 and DOMADS2 are new members of the AGL2 subfamily and SQUA subfamily, respectively. DOMADS3 contains the signature amino acids as with the members in the independent OSMADS1 subfamily separated from the AGL2 subfamily. All three of the DOMADS genes were expressed in the TSAM during floral transition and later in mature flowers. DOMADS1 RNA was uniformly expressed in both of the inflorescence meristem and the floral primordium and later localized in all of the floral organs. DOMADS2 showed a novel expression pattern that has not been previously characterized for any other MADS-box genes. DOMADS2 transcript was expressed early in the 6-week-old vegetative shoot apical meristem in which the obvious morphological change to floral development had yet to occur. It was expressed throughout the process of floral transition and later in the columns of mature flowers. The onset of DOMADS3 transcription was in the early TSAM at the stage before the differentiation of the first flower primordium. Later, DOMADS3 transcript was only detectable in the pedicel tissues. Our results suggest that the DOMADS genes play important roles in the process of floral transition. PMID:10938351

  2. The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

    PubMed

    Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji

    2009-11-01

    Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.

  3. In silico analysis of cis-acting regulatory elements in 5' regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana.

    PubMed

    Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme

    2010-12-01

    The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Epigenetic regulation of bud dormancy events in perennial plants

    PubMed Central

    Ríos, Gabino; Leida, Carmen; Conejero, Ana; Badenes, María Luisa

    2014-01-01

    Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. PMID:24917873

  5. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is Involved in Tuberous Root Initiation in Sweet Potato (Ipomoea batatas)

    PubMed Central

    Ku, Amy Tsu; Huang, Yi-Shiuan; Wang, Yu-Shu; Ma, Daifu; Yeh, Kai-Wun

    2008-01-01

    important integrator at the initiation of tuberization. As a result, the initiation and development of tuberous roots seems to be well regulated by a network involving a MADS-box gene in which such hormones as jasmonic acid and cytokinins may act as trigger factors. PMID:18463111

  6. Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2017-02-01

    Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.

  7. OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress

    PubMed Central

    Li, Dayong; Liu, Huizhi; Zhang, Huijuan; Wang, Xiaoe; Song, Fengming

    2008-01-01

    DEAD-box proteins comprise a large protein family with members from all kingdoms and play important roles in all types of processes in RNA metabolism. In this study, a rice gene OsBIRH1, which encodes a DEAD-box RNA helicase protein, was cloned and characterized. The predicted OsBIRH1 protein contains a DEAD domain and all conserved motifs that are common characteristics of DEAD-box RNA helicases. Recombinant OsBIRH1 protein purified from Escherichia coli was shown to have both RNA-dependent ATPase and ATP-dependent RNA helicase activities in vitro. Expression of OsBIRH1 was activated in rice seedling leaves after treatment with defence-related signal chemicals, for example benzothiadiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid, and jasmonic acid, and was also up-regulated in an incompatible interaction between a resistant rice genotype and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants that overexpress the OsBIRH1 gene were generated. Disease resistance phenotype assays revealed that the OsBIRH1-overexpressing transgenic plants showed an enhanced disease resistance against Alternaria brassicicola and Pseudomonas syringae pv. tomato DC3000. Meanwhile, defence-related genes, for example PR-1, PR-2, PR-5, and PDF1.2, showed an up-regulated expression in the transgenic plants. Moreover, the OsBIRH1 transgenic Arabidopsis plants also showed increased tolerance to oxidative stress and elevated expression levels of oxidative defence genes, AtApx1, AtApx2, and AtFSD1. The results suggest that OsBIRH1 encodes a functional DEAD-box RNA helicase and plays important roles in defence responses against biotic and abiotic stresses. PMID:18441339

  8. Allogeneic T cell responses are regulated by a specific miRNA-mRNA network

    PubMed Central

    Sun, Yaping; Tawara, Isao; Zhao, Meng; Qin, Zhaohui S.; Toubai, Tomomi; Mathewson, Nathan; Tamaki, Hiroya; Nieves, Evelyn; Chinnaiyan, Arul M.; Reddy, Pavan

    2013-01-01

    Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses. PMID:24216511

  9. Medical and Safety Reforms in Boxing

    PubMed Central

    Jordan, Barry D.

    1988-01-01

    The continued existence of boxing as an accepted sport in civilized society has been long debated. The position of the American Medical Association (AMA) has evolved from promoting increased safety and medical reform to recommending total abolition of both amateur and professional boxing. In response to the AMA opposition to boxing, the boxing community has attempted to increase the safeguards in amateur and professional boxing. The United States of America Amateur Boxing Federation, which is the national regulatory agency for all amateur boxing in the United States, has taken several actions to prevent the occurrence of acute brain injury and is currently conducting epidemiologic studies to assess the long-term neuropsychologic consequences of amateur boxing. In professional boxing, state regulatory agencies such as the New York State Athletic Commission have introduced several medical interventions to prevent and reduce neurologic injury. The lack of a national regulatory agency to govern professional boxing has stimulated the formation of the Association of Boxing Commissions and potential legislation for the federal regulation of professional boxing by a federally chartered organization called the United States Boxing Commission. The AMA's opposition to boxing and the medical and safety reforms implemented by the proponents of boxing are discussed. PMID:3385788

  10. PPARγ agonists regulate the expression of stemness and differentiation genes in brain tumour stem cells

    PubMed Central

    Pestereva, E; Kanakasabai, S; Bright, J J

    2012-01-01

    Background: Brain tumour stem cells (BTSCs) are a small population of cancer cells that exhibit self-renewal, multi-drug resistance, and recurrence properties. We have shown earlier that peroxisome proliferator-activated receptor gamma (PPARγ) agonists inhibit the expansion of BTSCs in T98G and U87MG glioma. In this study, we analysed the influence of PPARγ agonists on the expression of stemness and differentiation genes in BTSCs. Methods: The BTSCs were isolated from T98G and DB29 glioma cells, and cultured in neurobasal medium with epidermal growth factor+basic fibroblast growth factor. Proliferation was measured by WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2 H-5-tetrazolio]-1,3-benzene disulphonate) and 3H thymidine uptake assays, and gene expression was analysed by quantitative reverse--transcription PCR and Taqman array. The expression of CD133, SRY box 2, and nanog homeobox (Nanog) was also evaluated by western blotting, immunostaining, and flow cytometry. Results: We found that PPARγ agonists, ciglitazone and 15-deoxy-Δ12,14-ProstaglandinJ2, inhibited cell viability and proliferation of T98G- and DB29-BTSCs. The PPARγ agonists reduced the expansion of CD133+ BTSCs and altered the expression of stemness and differentiation genes. They also inhibited Sox2 while enhancing Nanog expression in BTSCs. Conclusion: These findings highlight that PPARγ agonists inhibit BTSC proliferation in association with altered expression of Sox2, Nanog, and other stemness genes. Therefore, targeting stemness genes in BTSCs could be a novel strategy in the treatment of glioblastoma. PMID:22531638

  11. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  12. Histone methylation mediates plasticity of human FOXP3+ regulatory T cells by modulating signature gene expressions

    PubMed Central

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-01-01

    CD4+ FOXP3+ regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4+ CD25high CD127low/− Treg cells convert to two subpopulations with distinctive FOXP3+ and FOXP3− phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. PMID:24152290

  13. Involvement of the major histocompatibility complex region in the genetic regulation of circulating CD8 T-cell numbers in humans.

    PubMed

    Cruz, E; Vieira, J; Gonçalves, R; Alves, H; Almeida, S; Rodrigues, P; Lacerda, R; Porto, G

    2004-07-01

    Variability in T-lymphocyte numbers is partially explained by a genetic regulation. From studies in animal models, it is known that the Major Histocompatibility Complex (MHC) is involved in this regulation. In humans, this has not been shown yet. The objective of the present study was to test the hypothesis that genes in the MHC region influence the regulation of T-lymphocyte numbers. Two approaches were used. Association studies between T-cell counts (CD4(+) and CD8(+)) or total lymphocyte counts and HLA class I alleles (A and B) or mutations in the HFE (C282Y and H63D), the hemochromatosis gene, in an unrelated population (n = 264). A second approach was a sibpair correlation analysis of the same T-cell counts in relation to HLA-HFE haplotypes in subjects belonging to 48 hemochromatosis families (n = 456 sibpairs). In the normal population, results showed a strong statistically significant association of the HLA-A*01 with high numbers of CD8(+) T cells and a less powerful association with the HLA-A*24 with low numbers of CD8(+) T cells. Sibpair correlations revealed the most significant correlation for CD8(+) T-cell numbers for sibpairs with HLA-HFE-identical haplotypes. This was not observed for CD4(+) T cells. These results show that the MHC region is involved in the genetic regulation of CD8(+) T-cell numbers in humans. Identification of genes responsible for this control may have important biological and clinical implications.

  14. Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia.

    PubMed

    Sundström, Jens; Engström, Peter

    2002-07-01

    The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.

  15. Tuning Riboswitch Regulation through Conformational Selection

    PubMed Central

    Wilson, Ross C.; Smith, Angela M.; Fuchs, Ryan T.; Kleckner, Ian R.; Henkin, Tina M.; Foster, Mark P.

    2010-01-01

    SUMMARY The SMK box riboswitch, which represents one of three known classes of S-adenosylmethionine (SAM)-responsive riboswitches, regulates gene expression in bacteria at the level of translation initiation. In contrast to most riboswitches, which contain separate domains responsible for ligand recognition and gene regulation, the ligand-binding and regulatory domains of the SMK box riboswitch are coincident. This property was exploited to allow the first atomic-level characterization of a functionally intact riboswitch in both the ligand-bound and ligand-free states. NMR spectroscopy revealed distinct mutually exclusive RNA conformations that are differentially populated in the presence or absence of the effector metabolite. Isothermal titration calorimetry and in vivo reporter assay results revealed the thermodynamic and functional consequences of this conformational equilibrium. We present a comprehensive model of the structural, thermodynamic, and functional properties of this compact RNA regulatory element. PMID:21075119

  16. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit1

    PubMed Central

    Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Angosto, Trinidad

    2015-01-01

    Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato. PMID:26019301

  17. Human tRNA-derived small RNAs in the global regulation of RNA silencing

    PubMed Central

    Haussecker, Dirk; Huang, Yong; Lau, Ashley; Parameswaran, Poornima; Fire, Andrew Z.; Kay, Mark A.

    2010-01-01

    Competition between mammalian RNAi-related gene silencing pathways is well documented. It is therefore important to identify all classes of small RNAs to determine their relationship with RNAi and how they affect each other functionally. Here, we identify two types of 5′-phosphate, 3′-hydroxylated human tRNA-derived small RNAs (tsRNAs). tsRNAs differ from microRNAs in being essentially restricted to the cytoplasm and in associating with Argonaute proteins, but not MOV10. The first type belongs to a previously predicted Dicer-dependent class of small RNAs that we find can modestly down-regulate target genes in trans. The 5′ end of type II tsRNA was generated by RNaseZ cleavage downstream from a tRNA gene, while the 3′ end resulted from transcription termination by RNA polymerase III. Consistent with their preferential association with the nonslicing Argonautes 3 and 4, canonical gene silencing activity was not observed for type II tsRNAs. The addition, however, of an oligonucleotide that was sense to the reporter gene, but antisense to an overexpressed version of the type II tsRNA, triggered robust, >80% gene silencing. This correlated with the redirection of the thus reconstituted fully duplexed double-stranded RNA into Argonaute 2, whereas Argonautes 3 and 4 were skewed toward less structured small RNAs, particularly single-strand RNAs. We observed that the modulation of tsRNA levels had minor effects on the abundance of microRNAs, but more pronounced changes in the silencing activities of both microRNAs and siRNAs. These findings support that tsRNAs are involved in the global control of small RNA silencing through differential Argonaute association, suggesting that small RNA-mediated gene regulation may be even more finely regulated than previously realized. PMID:20181738

  18. Adenovirus and mycoplasma infection in an ornate box turtle (Terrapene ornata ornata) in Hungary.

    PubMed

    Farkas, Szilvia L; Gál, János

    2009-07-02

    A female, adult ornate box turtle (Terrapene ornata ornata) with fatty liver was submitted for virologic examination in Hungary. Signs of an adenovirus infection including degeneration of the liver cells, enlarged nuclei and intranuclear inclusion bodies were detected by light microscopic examination. The presence of an adenovirus was later confirmed by obtaining partial sequence data from the adenoviral DNA-dependent DNA-polymerase. Phylogenetic analyses revealed that this novel chelonian adenovirus was distinct from previously described reptilian adenoviruses, not belonging to any of the recognized genera of the family Adenoviridae. As a part of the routine diagnostic procedure for chelonians the detection of herpes-, rana- and iridoviruses together with Mycoplasma spp. was attempted. Amplicons were generated by a general mycoplasma polymerase chain reaction (PCR) targeting the 16S/23S ribosomal RNA (rRNA) intergenic spacer region, as well as, a specific Mycoplasma agassizii PCR targeting the 16S rRNA gene. Based on the analyses of partial sequences of the 16S rRNA gene, the Mycoplasma sp. of the ornate box turtle seemed to be identical with the recently described eastern box turtle (Terrapene carolina carolina) Mycoplasma sp. This is the first report of a novel chelonian adenovirus and a mycoplasma infection in an ornate box turtle (T. ornata ornata) in Europe.

  19. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    PubMed Central

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  20. NFI Transcription Factors Interact with FOXA1 to Regulate Prostate-Specific Gene Expression

    PubMed Central

    Elliott, Amicia D.; DeGraff, David J.; Anderson, Philip D.; Anumanthan, Govindaraj; Yamashita, Hironobu; Sun, Qian; Friedman, David B.; Hachey, David L.; Yu, Xiuping; Sheehan, Jonathan H.; Ahn, Jung-Mo; Raj, Ganesh V.; Piston, David W.; Gronostajski, Richard M.; Matusik, Robert J.

    2014-01-01

    Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression. PMID:24801505

  1. Transcriptome analysis reveals the same 17 S-locus F-box genes in two haplotypes of the self-incompatibility locus of Petunia inflata.

    PubMed

    Williams, Justin S; Der, Joshua P; dePamphilis, Claude W; Kao, Teh-Hui

    2014-07-01

    Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen specificity. For a given S-haplotype, each SLF interacts with a subset of its non-self S-RNases, and an as yet unknown number of SLFs are thought to collectively mediate ubiquitination and degradation of all non-self S-RNases to allow cross-compatible pollination. To identify a complete suite of SLF genes of P. inflata, we used a de novo RNA-seq approach to analyze the pollen transcriptomes of S2-haplotype and S3-haplotype, as well as the leaf transcriptome of the S3S3 genotype. We searched for genes that fit several criteria established from the properties of the known SLF genes and identified the same seven new SLF genes in S2-haplotype and S3-haplotype, suggesting that a total of 17 SLF genes constitute pollen specificity in each S-haplotype. This finding lays the foundation for understanding how multiple SLF genes evolved and the biochemical basis for differential interactions between SLF proteins and S-RNases. © 2014 American Society of Plant Biologists. All rights reserved.

  2. Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin.

    PubMed

    Mor, Felix; Cohen, Irun R

    2013-02-19

    Recent work has suggested that beta-lactam antibiotics might directly affect eukaryotic cellular functions. Here, we studied the effects of commonly used beta-lactam antibiotics on rodent and human T cells in vitro and in vivo on T-cell-mediated experimental autoimmune diseases. We now report that experimental autoimmune encephalomyelitis and adjuvant arthritis were significantly more severe in rats treated with cefuroxime and other beta-lactams. T cells appeared to mediate the effect: an anti-myelin basic protein T-cell line treated with cefuroxime or penicillin was more encephalitogenic in adoptive transfer experiments. The beta-lactam ampicillin, in contrast to cefuroxime and penicillin, did not enhance encephalomyelitis, but did inhibit the autoimmune diabetes developing spontaneously in nonobese diabetic mice. Gene expression analysis of human peripheral blood T cells showed that numerous genes associated with T helper 2 (Th2) and T regulatory (Treg) differentiation were down-regulated in T cells stimulated in the presence of cefuroxime; these genes were up-regulated in the presence of ampicillin. The T-cell protein that covalently bound beta-lactam antibiotics was found to be albumin. Human and rodent T cells expressed albumin mRNA and protein, and penicillin-modified albumin was taken up by rat T cells, leading to enhanced encephalitogenicity. Thus, beta-lactam antibiotics in wide clinical use have marked effects on T-cell behavior; beta-lactam antibiotics can function as immunomodulators, apparently through covalent binding to albumin.

  3. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis.

    PubMed

    Li, S; Zhang, P; Zhang, M; Fu, C; Yu, L

    2013-01-01

    Although the regulation of taxol biosynthesis at the transcriptional level remains unclear, 10-deacetylbaccatin III-10 β-O-acetyl transferase (DBAT) is a critical enzyme in the biosynthesis of taxol. The 1740 bp fragment 5'-flanking sequence of the dbat gene was cloned from Taxus chinensis cells. Important regulatory elements needed for activity of the dbat promoter were located by deletion analyses in T. chinensis cells. A novel WRKY transcription factor, TcWRKY1, was isolated with the yeast one-hybrid system from a T. chinensis cell cDNA library using the important regulatory elements as bait. The gene expression of TcWRKY1 in T. chinensis suspension cells was specifically induced by methyl jasmonate (MeJA). Biochemical analysis indicated that TcWRKY1 protein specifically interacts with the two W-box (TGAC) cis-elements among the important regulatory elements. Overexpression of TcWRKY1 enhanced dbat expression in T. chinensis suspension cells, and RNA interference (RNAi) reduced the level of transcripts of dbat. These results suggest that TcWRKY1 participates in regulation of taxol biosynthesis in T. chinensis cells, and that dbat is a target gene of this transcription factor. This research also provides a potential candidate gene for engineering increased taxol accumulation in Taxus cell cultures. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    PubMed

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These

  5. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    PubMed

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  6. Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae

    PubMed Central

    Minato, Yusuke; Fassio, Sara R.; Wolfe, Alan J.

    2013-01-01

    ToxT is the central regulatory protein involved in activation of the main virulence genes in Vibrio cholerae. We have identified transposon insertions in central metabolism genes, whose disruption increases toxT transcription. These disrupted genes encode the primary respiration-linked sodium pump (NADH : ubiquinone oxidoreductase or NQR) and certain tricarboxylic acid (TCA) cycle enzymes. Observations made following stimulation of respiration in the nqr mutant or chemical inhibition of NQR activity in the TCA cycle mutants led to the hypothesis that NQR affects toxT transcription via the TCA cycle. That toxT transcription increased when the growth medium was supplemented with citrate, but decreased with oxaloacetate, focused our attention on the TCA cycle substrate acetyl-CoA and its non-TCA cycle metabolism. Indeed, both the nqr and the TCA cycle mutants increased acetate excretion. A similar correlation between acetate excretion and toxT transcription was observed in a tolC mutant and upon amino acid (NRES) supplementation. As acetate and its tendency to decrease pH exerted no strong effect on toxT transcription, and because disruption of the major acetate excretion pathway increased toxT transcription, we propose that toxT transcription is regulated by either acetyl-CoA or some close derivative. PMID:23429745

  7. Cellular miR-2909 RNomics governs the genes that ensure immune checkpoint regulation.

    PubMed

    Kaul, Deepak; Malik, Deepti; Wani, Sameena

    2018-06-20

    Cross-talk between coding RNAs and regulatory non-coding microRNAs, within human genome, has provided compelling evidence for the existence of flexible checkpoint control of T-Cell activation. The present study attempts to demonstrate that the interplay between miR-2909 and its effector KLF4 gene has the inherent capacity to regulate genes coding for CTLA4, CD28, CD40, CD134, PDL1, CD80, CD86, IL-6 and IL-10 within normal human peripheral blood mononuclear cells (PBMCs). Based upon these findings, we propose a pathway that links miR-2909 RNomics with the genes coding for immune checkpoint regulators required for the maintenance of immune homeostasis.

  8. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes.

    PubMed

    Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina

    2009-01-15

    BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we

  9. The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma

    PubMed Central

    Zhang, Wentao; Duan, Ning; Song, Tao; Li, Zhong; Zhang, Caiguo; Chen, Xun

    2017-01-01

    Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention. PMID:28775781

  10. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis

    PubMed Central

    Xie, Ting; Liang, Jiurong; Liu, Ningshan; Huan, Caijuan; Zhang, Yanli; Liu, Weijia; Kumar, Maya; Xiao, Rui; D’Armiento, Jeanine; Metzger, Daniel; Chambon, Pierre; Papaioannou, Virginia E.; Stripp, Barry R.; Jiang, Dianhua

    2016-01-01

    Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis. PMID:27400124

  11. Role of sequence encoded κB DNA geometry in gene regulation by Dorsal

    PubMed Central

    Mrinal, Nirotpal; Tomar, Archana; Nagaraju, Javaregowda

    2011-01-01

    Many proteins of the Rel family can act as both transcriptional activators and repressors. However, mechanism that discerns the ‘activator/repressor’ functions of Rel-proteins such as Dorsal (Drosophila homologue of mammalian NFκB) is not understood. Using genomic, biophysical and biochemical approaches, we demonstrate that the underlying principle of this functional specificity lies in the ‘sequence-encoded structure’ of the κB-DNA. We show that Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation that facilitates interaction with co-repressors. Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in A:T pair in the ‘A-tract’ core. The sixth nucleotide in the nonameric κB-motif, ‘A’ (A6) in the repressor motifs and ‘T’ (T6) in the activator motifs, is critical to confer this functional specificity as A6 → T6 mutation transformed flexible repressor conformation into a rigid activator conformation. These results highlight that ‘sequence encoded κB DNA-geometry’ regulates gene expression by exerting allosteric effect on binding of Rel proteins which in turn regulates interaction with co-regulators. Further, we identified and characterized putative repressor motifs in Dl-target genes, which can potentially aid in functional annotation of Dorsal gene regulatory network. PMID:21890896

  12. Cloning, characterization, and expression analysis of the DEAD-box family genes, Fc-vasa and Fc-PL10a, in Chinese shrimp ( Fenneropenaeus chinensis)

    NASA Astrophysics Data System (ADS)

    Zhou, Qianru; Shao, Mingyu; Qin, Zhenkui; Kyoung, Ho Kang; Zhang, Zhifeng

    2010-01-01

    RNA helicases of the DEAD-box and related families are involved in various cellular processes including DNA replication, DNA repair, and RNA processing. However, the function of DEAD-box proteins in aquaculture species is poorly understood at molecular level. We obtained the full-length cDNA sequences of two genes encoding helicase-related proteins, Fc-vasa and Fc-PL10a, from the testes of Chinese shrimp, Fenneropenaeus chinensis. The two predicted amino acid sequences contain all the conserved motifs characterized by the DEAD-box family and several RGG repeats in the N-terminal regions. Homology and phylogenetic analyses indicate that they belong to the vasa and PL10 subfamilies. The three-dimensional structures of the two proteins were predicted with a homology modeling approach. Both core proteins consist of two tandem RecA-like domains similar to those of the DEAD-box RNA helicase. Using reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR we found that Fc-vasa was expressed specifically in the adult gonads. Transcription decreased in the ovary but increased in the testis during gonadal development. Fc-PL10a expression was widely distributed in the tissues we examined. Using in situ hybridization, we demonstrated that the Fc-vasa transcript is localized to the cytoplasm of the spermatogonia and oocytes. Thus, our results suggest that Fc-vasa plays an important role in germ-line development, and has utility as a germ cell lineage marker which will help to generate new insight into the origin and differentiation of germ cells as well as the regulation of reproduction in F. chinensis.

  13. The Co-regulation Data Harvester: Automating gene annotation starting from a transcriptome database

    NASA Astrophysics Data System (ADS)

    Tsypin, Lev M.; Turkewitz, Aaron P.

    Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing per se. Tetrahymena thermophila, a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in T. thermophila, called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the Tetrahymena transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in Tetrahymena. Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained via the CDH should be relevant, and can be explored, in many other systems.

  14. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    PubMed

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  15. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.

    PubMed

    Soto-Feliciano, Yadira M; Bartlebaugh, Jordan M E; Liu, Yunpeng; Sánchez-Rivera, Francisco J; Bhutkar, Arjun; Weintraub, Abraham S; Buenrostro, Jason D; Cheng, Christine S; Regev, Aviv; Jacks, Tyler E; Young, Richard A; Hemann, Michael T

    2017-05-15

    Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6 KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. © 2017 Soto-Feliciano et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1.

    PubMed

    Hattori, T; Terada, T; Hamasuna, S

    1995-06-01

    Osem, a rice gene homologous to the wheat Em gene, which encodes one of the late-embryogenesis abundant proteins was isolated. The gene was characterized with respect to control of transcription by abscisic acid (ABA) and the transcriptional activator VP1, which is involved in the ABA-regulated gene expression during late embryo-genesis. A fusion gene (Osem-GUS) consisting of the Osem promoter and the bacterial beta-glucuronidase (GUS) gene was constructed and tested in a transient expression system, using protoplasts derived from a suspension-cultured line of rice cells, for activation by ABA and by co-transfection with an expression vector (35S-Osvp1) for the rice VP1 (OSVP1) cDNA. The expression of Osem-GUS was strongly (40- to 150-fold) activated by externally applied ABA and by over-expression of (OS)VP1. The Osem promoter has three ACGTG-containing sequences, motif A, motif B and motif A', which resemble the abscisic acid-responsive element (ABRE) that was previously identified in the wheat Em and the rice Rab16. There is also a CATGCATG sequence, which is known as the Sph box and is shown to be essential for the regulation by VP1 of the maize anthocyanin regulatory gene C1. Focusing on these sequence elements, various mutant derivatives of the Osem promoter in the transient expression system were assayed. The analysis revealed that motif A functions not only as an ABRE but also as a sequence element required for the regulation by (OS)VP1.

  17. A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo

    PubMed Central

    Machado, Danielle S.; Sabet, Amin; Santiago, Leticia A.; Sidhaye, Aniket R.; Chiamolera, Maria I.; Ortiga-Carvalho, Tania M.; Wondisford, Fredric E.

    2009-01-01

    Resistance to thyroid hormone (RTH) is most often due to point mutations in the β-isoform of the thyroid hormone (TH) receptor (TR-β). The majority of mutations involve the ligand-binding domain, where they block TH binding and receptor function on both stimulatory and inhibitory TH response elements. In contrast, a few mutations in the ligand-binding domain are reported to maintain TH binding and yet cause RTH in certain tissues. We introduced one such naturally occurring human RTH mutation (R429Q) into the germline of mice at the TR-β locus. R429Q knock-in (KI) mice demonstrated elevated serum TH and inappropriately normal thyroid-stimulating hormone (TSH) levels, consistent with hypothalamic–pituitary RTH. In contrast, 3 hepatic genes positively regulated by TH (Dio1, Gpd1, and Thrsp) were increased in R429Q KI animals. Mice were then rendered hypothyroid, followed by graded T3 replacement. Hypothyroid R429Q KI mice displayed elevated TSH subunit mRNA levels, and T3 treatment failed to normally suppress these levels. T3 treatment, however, stimulated pituitary Gh levels to a greater degree in R429Q KI than in control mice. Gsta, a hepatic gene negatively regulated by TH, was not suppressed in R429Q KI mice after T3 treatment, but hepatic Dio1 and Thrsp mRNA levels increased in response to TH. Cardiac myosin heavy chain isoform gene expression also showed a specific defect in TH inhibition. In summary, the R429Q mutation is associated with selective impairment of TH-mediated gene repression, suggesting that the affected domain, necessary for TR homodimerization and corepressor binding, has a critical role in negative gene regulation by TH. PMID:19439650

  18. Querying Co-regulated Genes on Diverse Gene Expression Datasets Via Biclustering.

    PubMed

    Deveci, Mehmet; Küçüktunç, Onur; Eren, Kemal; Bozdağ, Doruk; Kaya, Kamer; Çatalyürek, Ümit V

    2016-01-01

    Rapid development and increasing popularity of gene expression microarrays have resulted in a number of studies on the discovery of co-regulated genes. One important way of discovering such co-regulations is the query-based search since gene co-expressions may indicate a shared role in a biological process. Although there exist promising query-driven search methods adapting clustering, they fail to capture many genes that function in the same biological pathway because microarray datasets are fraught with spurious samples or samples of diverse origin, or the pathways might be regulated under only a subset of samples. On the other hand, a class of clustering algorithms known as biclustering algorithms which simultaneously cluster both the items and their features are useful while analyzing gene expression data, or any data in which items are related in only a subset of their samples. This means that genes need not be related in all samples to be clustered together. Because many genes only interact under specific circumstances, biclustering may recover the relationships that traditional clustering algorithms can easily miss. In this chapter, we briefly summarize the literature using biclustering for querying co-regulated genes. Then we present a novel biclustering approach and evaluate its performance by a thorough experimental analysis.

  19. 48 CFR 908.7118 - Rental of post office boxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rental of post office boxes. 908.7118 Section 908.7118 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7118 Rental of post office boxes. DOE offices and...

  20. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein.

  1. Mollusk genes encoding lysine tRNA (UUU) contain introns.

    PubMed

    Matsuo, M; Abe, Y; Saruta, Y; Okada, N

    1995-11-20

    New intron-containing genes encoding tRNAs were discovered when genomic DNA isolated from various animal species was amplified by the polymerase chain reaction (PCR) with primers based on sequences of rabbit tRNA(Lys). From sequencing analysis of the products of PCR, we found that introns are present in several genes encoding tRNA(Lys) in mollusks, such as Loligo bleekeri (squid) and Octopus vulgaris (octopus). These introns were specific to genes encoding tRNA(Lys)(CUU) and were not present in genes encoding tRNA(Lys)(CUU). In addition, the sequences of the introns were different from one another. To confirm the results of our initial experiments, we isolated and sequenced genes encoding tRNA(Lys)(CUU) and tRNA(Lys)(UUU). The gene for tRNA(Lys)(UUU) from squid contained an intron, whose sequence was the same as that identified by PCR, and the gene formed a cluster with a corresponding pseudogene. Several DNA regions of 2.1 kb containing this cluster appeared to be tandemly arrayed in the squid genome. By contrast, the gene encoding tRNA(Lys)(CUU) did not contain an intron, as shown also by PCR. The tRNA(Lys)(UUU) that corresponded to the analyzed gene was isolated and characterized. The present study provides the first example of an intron-containing gene encoding a tRNA in mollusks and suggests the universality of introns in such genes in higher eukaryotes.

  2. A MADS Box Protein Interacts with a Mating-Type Protein and Is Required for Fruiting Body Development in the Homothallic Ascomycete Sordaria macrospora

    PubMed Central

    Nolting, Nicole; Pöggeler, Stefanie

    2006-01-01

    MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Δmcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development. PMID:16835449

  3. A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Nolting, Nicole; Pöggeler, Stefanie

    2006-07-01

    MADS box transcription factors control diverse developmental processes in plants, metazoans, and fungi. To analyze the involvement of MADS box proteins in fruiting body development of filamentous ascomycetes, we isolated the mcm1 gene from the homothallic ascomycete Sordaria macrospora, which encodes a putative homologue of the Saccharomyces cerevisiae MADS box protein Mcm1p. Deletion of the S. macrospora mcm1 gene resulted in reduced biomass, increased hyphal branching, and reduced hyphal compartment length during vegetative growth. Furthermore, the S. macrospora Deltamcm1 strain was unable to produce fruiting bodies or ascospores during sexual development. A yeast two-hybrid analysis in conjugation with in vitro analyses demonstrated that the S. macrospora MCM1 protein can interact with the putative transcription factor SMTA-1, encoded by the S. macrospora mating-type locus. These results suggest that the S. macrospora MCM1 protein is involved in the transcriptional regulation of mating-type-specific genes as well as in fruiting body development.

  4. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers

    PubMed Central

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-01-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype “MS F” (in both markers) was highly diverse and genotypes “Q104 F” (SCoT) and “82–18 F” (CBDP) were least diverse among the female genotype populations. Among male genotypes, “32 M” (CBDP) and “MS M” (SCoT) revealed highest h and I values while “58-5 M” (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups

  5. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers.

    PubMed

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-09-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of

  6. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    PubMed

    Dumitriu, Alexandra; Latourelle, Jeanne C; Hadzi, Tiffany C; Pankratz, Nathan; Garza, Dan; Miller, John P; Vance, Jeffery M; Foroud, Tatiana; Beach, Thomas G; Myers, Richard H

    2012-06-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  7. Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation

    PubMed Central

    Dumitriu, Alexandra; Latourelle, Jeanne C.; Hadzi, Tiffany C.; Pankratz, Nathan; Garza, Dan; Miller, John P.; Vance, Jeffery M.; Foroud, Tatiana; Beach, Thomas G.; Myers, Richard H.

    2012-01-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms. PMID:22761592

  8. Cardboard Boxes: Learning Concepts Galore!

    ERIC Educational Resources Information Center

    Warner, Laverne; Wilmoth, Linda

    2007-01-01

    Mrs. Keenan, a preschool teacher, observed her 3-year-old granddaughter Riley pull, tug, and stack piles of holiday boxes on the floor. She remembered that her child care director had suggested using boxes as a curriculum theme, but she hadn't given much thought about the idea until now. She said to herself, "I wonder if my children would be as…

  9. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans.

    PubMed

    Hsieh, J; Liu, J; Kostas, S A; Chang, C; Sternberg, P W; Fire, A

    1999-11-15

    Context-dependent gene silencing is used by many organisms to stably modulate gene activity for large chromosomal regions. We have used tandem array transgenes as a model substrate in a screen for Caenorhabditis elegans mutants that affect context-dependent gene silencing in somatic tissues. This screen yielded multiple alleles of a previously uncharacterized gene, designated tam-1 (for tandem-array-modifier). Loss-of-function mutations in tam-1 led to a dramatic reduction in the activity of numerous highly repeated transgenes. These effects were apparently context dependent, as nonrepetitive transgenes retained activity in a tam-1 mutant background. In addition to the dramatic alterations in transgene activity, tam-1 mutants showed modest alterations in expression of a subset of endogenous cellular genes. These effects include genetic interactions that place tam-1 into a group called the class B synMuv genes (for a Synthetic Multivulva phenotype); this family plays a negative role in the regulation of RAS pathway activity in C. elegans. Loss-of-function mutants in other members of the class-B synMuv family, including lin-35, which encodes a protein similar to the tumor suppressor Rb, exhibit a hypersilencing in somatic transgenes similar to that of tam-1 mutants. Molecular analysis reveals that tam-1 encodes a broadly expressed nuclear protein with RING finger and B-box motifs.

  10. Human relevance of an in vitro gene signature in HaCaT for skin sensitization.

    PubMed

    van der Veen, Jochem W; Hodemaekers, Henny; Reus, Astrid A; Maas, Wilfred J M; van Loveren, Henk; Ezendam, Janine

    2015-02-01

    The skin sensitizing potential of chemicals is mainly assessed using animal methods, such as the murine local lymph node assay. Recently, an in vitro assay based on a gene expression signature in the HaCaT keratinocyte cell line was proposed as an alternative to these animal methods. Here, the human relevance of this gene signature is assessed through exposure of freshly isolated human skin to the chemical allergens dinitrochlorobenzene (DNCB) and diphenylcyclopropenone (DCP). In human skin, the gene signature shows similar direction of regulation as was previously observed in vitro, suggesting that the molecular processes that drive expression of these genes are similar between the HaCaT cell line and freshly isolated skin, providing evidence for the human relevance of the gene signature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis

    PubMed Central

    Yu, Juan; Zhang, Yixiang; Di, Chao; Zhang, Qunlian; Zhang, Kang; Wang, Chunchao; You, Qi; Yan, Hong; Dai, Susie Y.; Yuan, Joshua S; Xu, Wenying; Su, Zhen

    2016-01-01

    JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll degradation, and higher hydrogen peroxide accumulation compared with wild-type (WT) plants. The mutant phenotype of dark-induced leaf senescence could be rescued in the JAZ7-complemented and -overexpression lines. Moreover, the double mutants of jaz7 myc2 and jaz7 coi1 exhibited delayed leaf senescence. We further employed GeneChip analysis to study the molecular mechanism. Some key genes down-regulated in the triple mutant myc2 myc3 myc4 were up-regulated in the jaz7 mutant under darkness. The Gene Ontology terms ‘leaf senescence’ and ‘cell death’ were significantly enriched in the differentially expressed genes. Combining the genetic and transcriptomic analyses together, we proposed a model whereby darkness can induce JAZ7, which might further block MYC2 to suppress dark-induced leaf senescence. In darkness, the mutation of JAZ7 might partially liberate MYC2/MYC3/MYC4 from suppression, leading the MYC proteins to bind to the G-box/G-box-like motifs in the promoters, resulting in the up-regulation of the downstream genes related to indole-glucosinolate biosynthesis, sulphate metabolism, callose deposition, and JA-mediated signalling pathways. In summary, our genetic and transcriptomic studies established the JAZ7 protein as an important regulator in dark-induced leaf senescence. PMID:26547795

  12. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  14. Childhood tuberculosis is associated with decreased abundance of T cell gene transcripts and impaired T cell function.

    PubMed

    Hemingway, Cheryl; Berk, Maurice; Anderson, Suzanne T; Wright, Victoria J; Hamilton, Shea; Eleftherohorinou, Hariklia; Kaforou, Myrsini; Goldgof, Greg M; Hickman, Katy; Kampmann, Beate; Schoeman, Johan; Eley, Brian; Beatty, David; Pienaar, Sandra; Nicol, Mark P; Griffiths, Michael J; Waddell, Simon J; Newton, Sandra M; Coin, Lachlan J; Relman, David A; Montana, Giovanni; Levin, Michael

    2017-01-01

    The WHO estimates around a million children contract tuberculosis (TB) annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM). Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB), and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB) and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68%) of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16) and PTB patients (r2 = 0.71 p = 2x10-16) when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11) and T-cell receptor signalling (p = 6.56E-07). Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003). Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.

  15. Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits.

    PubMed

    Lovisetto, Alessandro; Guzzo, Flavia; Tadiello, Alice; Toffali, Ketti; Favretto, Alessandro; Casadoro, Giorgio

    2012-01-01

    Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.

  16. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations.

    PubMed

    Jiang, WenZhi; Yang, Bing; Weeks, Donald P

    2014-01-01

    The newly developed CRISPR/Cas9 system for targeted gene knockout or editing has recently been shown to function in plants in both transient expression systems as well as in primary T1 transgenic plants. However, stable transmission of genes modified by the Cas9/single guide RNA (sgRNA) system to the T2 generation and beyond has not been demonstrated. Here we provide extensive data demonstrating the efficiency of Cas9/sgRNA in causing modification of a chromosomally integrated target reporter gene during early development of transgenic Arabidopsis plants and inheritance of the modified gene in T2 and T3 progeny. Efficient conversion of a nonfunctional, out-of-frame GFP gene to a functional GFP gene was confirmed in T1 plants by the observation of green fluorescent signals in leaf tissues as well as the presence of mutagenized DNA sequences at the sgRNA target site within the GFP gene. All GFP-positive T1 transgenic plants and nearly all GFP-negative plants examined contained mutagenized GFP genes. Analyses of 42 individual T2 generation plants derived from 6 different T1 progenitor plants showed that 50% of T2 plants inherited a single T-DNA insert. The efficiency of the Cas9/sgRNA system and stable inheritance of edited genes point to the promise of this system for facile editing of plant genes.

  17. Introduced T cell receptor variable region gene segments recombine in pre-B cells: evidence that B and T cells use a common recombinase.

    PubMed

    Yancopoulos, G D; Blackwell, T K; Suh, H; Hood, L; Alt, F W

    1986-01-31

    We have recently proposed that a common recombinase performs all of the many variable region gene assembly events in B and T cells, and that the specificity of these joining events is mediated by regulating the "accessibility" of the involved gene segments. To test this possibility, we have introduced "accessible" T cell receptor (TCR) variable region gene segments into a pre-B cell line capable of recombining endogenous and transfected immunoglobulin (Ig) variable region gene segments. Although the corresponding "inaccessible" endogenous TCR gene segments do not rearrange in this line or in B cells in general, the introduced TCR gene segments join very frequently and, in fact, closely resemble introduced Ig gene segments in their recombination characteristics. These observations suggest a new role for conventional Ig transcriptional enhancers--recombinational enhancement. Our studies provide insight into additional aspects of the joining mechanism such as N region insertion, aberrant joining, and recombination-recognition sequence requirements for joining.

  18. Endothelin-1 gene regulation

    PubMed Central

    Stow, Lisa R.; Jacobs, Mollie E.; Wingo, Charles S.; Cain, Brian D.

    2011-01-01

    Over two decades of research have demonstrated that the peptide hormone endothelin-1 (ET-1) plays multiple, complex roles in cardiovascular, neural, pulmonary, reproductive, and renal physiology. Differential and tissue-specific production of ET-1 must be tightly regulated in order to preserve these biologically diverse actions. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (edn1). Studies conducted on a variety of cell types have identified key transcription factors that govern edn1 expression. With few exceptions, the cis-acting elements bound by these factors have been mapped in the edn1 regulatory region. Recent evidence has revealed new roles for some factors originally believed to regulate edn1 in a tissue or hormone-specific manner. In addition, other mechanisms involved in epigenetic regulation and mRNA stability have emerged as important processes for regulated edn1 expression. The goal of this review is to provide a comprehensive overview of the specific factors and signaling systems that govern edn1 activity at the molecular level.—Stow, L. R., Jacobs, M. E., Wingo, C. S., Cain, B. D. Endothelin-1 gene regulation. PMID:20837776

  19. Tissue-specific regulation of medium-chain acyl-CoA dehydrogenase gene by thyroid hormones in the developing rat.

    PubMed

    Djouadi, F; Riveau, B; Merlet-Benichou, C; Bastin, J

    1997-05-15

    During development, gene expression of medium-chain acyl-CoA dehydrogenase (MCAD), a nuclear-encoded mitochondrial enzyme that catalyses the first step of medium-chain fatty acid beta-oxidation, is highly regulated in tissues in accordance with fatty acid utilization, but the factors involved in this regulation are largely unknown. To investigate a possible role of thyroid hormones, rat pups were made hypothyroid by the administration of propylthiouracyl to the mother from day 12 of gestation, and their kidneys, heart and liver were removed on postnatal day 16 to determine MCAD mRNA abundance, protein level and enzyme activity. Similar experiments were run in 3,3',5-tri-iodothyronine (T3)-replaced hypothyroid (1 microg of T3/100 g body weight from postnatal day 5 to 15) and euthyroid pups. Hypothyroidism led to an increase in MCAD mRNA abundance in kidney and a decrease in abundance in heart, but had no effect in liver. The protein levels and enzyme activity were lowered in hypothyroid heart and kidney, suggesting that hypothyroidism affects post-transcriptional steps of gene expression in the kidney. All the effects of hypothyroidism were completely reversed in both heart and kidney by T3 replacement. Injection of a single T3 dose into 16-day-old euthyroid rats also led to tissue-specific changes in mRNA abundance. Nuclear run-on assays performed from hypothyroid and hypothyroid plus T3 rats showed that T3 stimulates MCAD gene transcription in heart and represses it in the kidney. These results indicate that the postnatal rise in circulating T3 is essential to the developmental regulation of the MCAD gene in vivo.

  20. Energetics demands and physiological responses to boxing match and subsequent recovery.

    PubMed

    Nassib, Sabri; Hammoudi-Nassib, Sarra; Chtara, Mokhtar; Mkaouer, Bessem; Maaouia, Ghazwa; Bezrati-Benayed, Ikram; Chamari, Karim

    2017-01-01

    Determining the physiological profile of athletes in boxing match is important for defining aspects of physical performance that are important to competitive performance. Therefore, examination of the energy pathway of high-level boxers' athletes can be very helpful for optimizing training and then improving boxing physical fitness and performance. The aim of the present study was to assess the physiological and cardiovascular responses during boxing matches and subsequent recovery. Fifteen male international level boxers (mean age 19.56±3.6 years; mean body mass 72.46±11.86 kg; mean height 176.50±7.22 cm) participated in this study. Blood samples were drawn from the antecubital vein before and after the boxing matches (T1: pre-match rest measure around 11:00 a.m., T2: measure at 3 minutes of post-match recovery; T3: measure at 60 minutes of recovery; T4: measure at 24 hours post-match - the match started around 11:30 a.m.). An analysis of glucose, triglycerides, lactate, cholesterol, creatinine, uric-acid, high density lipoprotein, and low density lipoprotein concentrations was performed for each sample. Participants did perform a maximal incremental test to measure maximal heart rate (HRmax). Heart rate responses to the matches were measured and expressed in percentage of HRmax. The average HR recorded during the match corresponded to 93±3.26% of HRmax. The levels of glucose, lactate, and cholesterol increased significantly from T1 to T2. Likewise, creatinine levels increased significantly from T1 to T2 and T3. However, the cholesterol level decreased significantly at T3 in comparison with T1. Moreover, 24-hour post-match creatinine levels were significantly lower and triglyceride levels were significantly higher compared with T1. The main results of this study revealed that the boxing matches stress the lipid metabolism system during boxing and post-match (for at least 24 hours) even if it is widely recognized boxing being mainly composed of repeated short

  1. Identification of 17 HrpX-Regulated Proteins Including Two Novel Type III Effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola

    PubMed Central

    Xue, Xiao-bo; Zou, Li-fang; Ma, Wen-xiu; Liu, Zhi-yang; Chen, Gong-you

    2014-01-01

    The function of some hypothetical proteins, possibly regulated by key hrp regulators, in the pathogenicity of phytopathogenic bacteria remains largely unknown. In the present study, in silicon microarray data demonstrated that the expression of 17 HrpX-regulated protein (Xrp) genes of X. oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak in rice, were either positively or negatively regulated by HrpX or/and HrpG. Bioinformatics analysis demonstrated that five Xrps possess a putative type III secretion (T3S) signal in the first 50 N-terminal amino acids, six xrp genes contain a PIP-box-like sequence (TTCGB-NX-TTCGB, 9≤X≤25) in the promoter regions, and two Xrps have both motifs. Twelve Xrps are widely conserved in Xanthomonas spp., whereas four are specific for X. oryzae (Xrp6) or Xoc (Xrp8, Xrp14 and Xrp17). In addition to the regulation by HrpG/HrpX, some of the 17 genes were also modulated by another hrp regulator HrpD6. Mutagenesis of these 17 genes indicated that five Xrps (Xrp1, Xrp2, Xrp5, Xrp8 and Xrp14) were required for full virulence and bacterial growth in planta. Immunoblotting assays and fusion with N-terminally truncated AvrXa10 indicated that Xrp3 and Xrp5 were secreted and translocated into rice cells through the type-III secretion system (T3S), suggesting they are novel T3S effectors. Our results suggest that Xoc exploits an orchestra of proteins that are regulated by HrpG, HrpX and HrpD6, and these proteins facilitate both infection and metabolism. PMID:24675748

  2. Identification of 17 HrpX-regulated proteins including two novel type III effectors, XOC_3956 and XOC_1550, in Xanthomonas oryzae pv. oryzicola.

    PubMed

    Xue, Xiao-bo; Zou, Li-fang; Ma, Wen-xiu; Liu, Zhi-yang; Chen, Gong-you

    2014-01-01

    The function of some hypothetical proteins, possibly regulated by key hrp regulators, in the pathogenicity of phytopathogenic bacteria remains largely unknown. In the present study, in silicon microarray data demonstrated that the expression of 17 HrpX-regulated protein (Xrp) genes of X. oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak in rice, were either positively or negatively regulated by HrpX or/and HrpG. Bioinformatics analysis demonstrated that five Xrps possess a putative type III secretion (T3S) signal in the first 50 N-terminal amino acids, six xrp genes contain a PIP-box-like sequence (TTCGB-NX-TTCGB, 9 ≤ X ≤ 25) in the promoter regions, and two Xrps have both motifs. Twelve Xrps are widely conserved in Xanthomonas spp., whereas four are specific for X. oryzae (Xrp6) or Xoc (Xrp8, Xrp14 and Xrp17). In addition to the regulation by HrpG/HrpX, some of the 17 genes were also modulated by another hrp regulator HrpD6. Mutagenesis of these 17 genes indicated that five Xrps (Xrp1, Xrp2, Xrp5, Xrp8 and Xrp14) were required for full virulence and bacterial growth in planta. Immunoblotting assays and fusion with N-terminally truncated AvrXa10 indicated that Xrp3 and Xrp5 were secreted and translocated into rice cells through the type-III secretion system (T3S), suggesting they are novel T3S effectors. Our results suggest that Xoc exploits an orchestra of proteins that are regulated by HrpG, HrpX and HrpD6, and these proteins facilitate both infection and metabolism.

  3. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    PubMed Central

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased

  4. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    NASA Technical Reports Server (NTRS)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  5. Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage

    PubMed Central

    Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.

    2007-01-01

    The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513

  6. p38 Mitogen-Activated Protein Kinase/Signal Transducer and Activator of Transcription-3 Pathway Signaling Regulates Expression of Inhibitory Molecules in T Cells Activated by HIV-1–Exposed Dendritic Cells

    PubMed Central

    Che, Karlhans Fru; Shankar, Esaki Muthu; Muthu, Sundaram; Zandi, Sasan; Sigvardsson, Mikael; Hinkula, Jorma; Messmer, Davorka; Larsson, Marie

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection enhances the expression of inhibitory molecules on T cells, leading to T-cell impairment. The signaling pathways underlying the regulation of inhibitory molecules and subsequent onset of T-cell impairment remain elusive. We showed that both autologous and allogeneic T cells exposed to HIV-pulsed dendritic cells (DCs) upregulated cytotoxic T-lymphocyte antigen (CTLA-4), tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), lymphocyte-activation gene-3 (LAG3), T-cell immunoglobulin mucin-3 (TIM-3), CD160 and certain suppression-associated transcription factors, such as B-lymphocyte induced maturation protein-1 (BLIMP-1), deltex homolog 1 protein (DTX1) and forkhead box P3 (FOXP3), leading to T-cell suppression. This induction was regulated by p38 mitogen-activated protein kinase/signal transducer and activator of transcription-3 (P38MAPK/STAT3) pathways, because their blockade significantly abrogated expression of all the inhibitory molecules studied and a subsequent recovery in T-cell proliferation. Neither interleukin-6 (IL-6) nor IL-10 nor growth factors known to activate STAT3 signaling events were responsible for STAT3 activation. Involvement of the P38MAPK/STAT3 pathways was evident because these proteins had a higher level of phosphorylation in the HIV-1–primed cells. Furthermore, blockade of viral CD4 binding and fusion significantly reduced the negative effects DCs imposed on primed T cells. In conclusion, HIV-1 interaction with DCs modulated their functionality, causing them to trigger the activation of the P38MAPK/STAT3 pathway in T cells, which was responsible for the upregulation of inhibitory molecules. PMID:22777388

  7. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.

  8. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata.

    PubMed

    Sun, Linhan; Kao, Teh-Hui

    2018-06-01

    Function of Petunia PiSSK1. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S 2 -haplotype and S 3 -haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1-Cullin1-F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCF SLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1 and examined the SI behavior of a T 0 plant (S 2 S 3 ) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2 ) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise-compatible S-genotypes, but fully compatible with pistils of an S 3 S 3 transgenic plant in which production of S 3 -RNase was completely suppressed by an antisense S 3 -RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.

  9. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified.

    PubMed

    Ji, Meng-Meng; Huang, Yao-Hui; Huang, Jin-Yan; Wang, Zhao-Fu; Fu, Di; Liu, Han; Liu, Feng; Leboeuf, Christophe; Wang, Li; Ye, Jing; Lu, Yi-Ming; Janin, Anne; Cheng, Shu; Zhao, Wei-Li

    2018-04-01

    Due to heterogeneous morphological and immunophenotypic features, approximately 50% of peripheral T-cell lymphomas are unclassifiable and categorized as peripheral T-cell lymphomas, not otherwise specified. These conditions have an aggressive course and poor clinical outcome. Identification of actionable biomarkers is urgently needed to develop better therapeutic strategies. Epigenetic alterations play a crucial role in tumor progression. Histone modifications, particularly methylation and acetylation, are generally involved in chromatin state regulation. Here we screened the core set of genes related to histone methylation ( KMT2D , SETD2 , KMT2A , KDM6A ) and acetylation ( EP300 , CREBBP ) and identified 59 somatic mutations in 45 of 125 (36.0%) patients with peripheral T-cell lymphomas, not otherwise specified. Histone modifier gene mutations were associated with inferior progression-free survival time of the patients, irrespective of chemotherapy regimens, but an increased response to the histone deacetylase inhibitor chidamide. In vitro , chidamide significantly inhibited the growth of EP300-mutated T-lymphoma cells and KMT2D-mutated T-lymphoma cells when combined with the hypomethylating agent decitabine. Mechanistically, decitabine acted synergistically with chidamide to enhance the interaction of KMT2D with transcription factor PU.1, regulated H3K4me-associated signaling pathways, and sensitized T-lymphoma cells to chidamide. In a xenograft KMT2D-mutated T-lymphoma model, dual treatment with chidamide and decitabine significantly retarded tumor growth and induced cell apoptosis through modulation of the KMT2D/H3K4me axis. Our work thus contributes to the understanding of aberrant histone modification in peripheral T-cell lymphomas, not otherwise specified and the stratification of a biological subset that can benefit from epigenetic treatment. Copyright© 2018 Ferrata Storti Foundation.

  10. Tissue plasminogen activator (tPA) as a reporter gene in transient gene expression.

    PubMed

    Cheng, S M; Lee, S G; Kalyan, N K; McCloud, S; Levner, M; Hung, P P

    1987-01-01

    Using the gene coding for tissue plasminogen activator (tPA) as a reporter gene, a transient gene expression system has been established. Vectors containing the full-length cDNA of tPA with its signal sequences were introduced into mammalian recipient cells by a modified gene transfer procedure. Thirty hours after transfection, the secreted tPA was found in serum-free medium and measured by a fibrin-agarose plate assay (FAPA). In this assay, tPA converts plasminogen into plasmin which then degrades high-Mr fibrin to produce cleared zones. The sizes of these zones correspond to quantities of tPA. The combination of transient tPA expression system and the FAPA provides a quick, sensitive, quantitative and non-destructive method to examine the strength of eukaryotic regulatory elements in tissue-culture cells.

  11. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    PubMed

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA

  12. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells

    PubMed Central

    Aarreberg, Lauren D.; Gao, Nina J.; Head, Steven R.; Ordoukhanian, Phillip; Williamson, Jamie R.; Salomon, Daniel R.

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as “central” interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, “peripheral” interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly

  13. Gene regulation associated with sexual development and female fertility in different isolates of Trichoderma reesei.

    PubMed

    Dattenböck, Christoph; Tisch, Doris; Schuster, Andre; Monroy, Alberto Alonso; Hinterdobler, Wolfgang; Schmoll, Monika

    2018-01-01

    Trichoderma reesei is one of the most frequently used filamentous fungi in industry for production of homologous and heterologous proteins. The ability to use sexual crossing in this fungus was discovered several years ago and opens up new perspectives for industrial strain improvement and investigation of gene regulation. Here we investigated the female sterile strain QM6a in comparison to the fertile isolate CBS999.97 and backcrossed derivatives of QM6a, which have regained fertility (FF1 and FF2 strains) in both mating types under conditions of sexual development. We found considerable differences in gene regulation between strains with the CBS999.97 genetic background and the QM6a background. Regulation patterns of QM6a largely clustered with the backcrossed FF1 and FF2 strains. Differential regulation between QM6a and FF1/FF2 as well as clustering of QM6a patterns with those of CBS999.97 strains was also observed. Consistent mating type dependent regulation was limited to mating type genes and those involved in pheromone response, but included also nta1 encoding a putative N-terminal amidase previously not associated with development. Comparison of female sterile QM6a with female fertile strains showed differential expression in genes encoding several transcription factors, metabolic genes and genes involved in secondary metabolism. Evaluation of the functions of genes specifically regulated under conditions of sexual development and of genes with highest levels of transcripts under these conditions indicated a relevance of secondary metabolism for sexual development in T. reesei . Among others, the biosynthetic genes of the recently characterized SOR cluster are in this gene group. However, these genes are not essential for sexual development, but rather have a function in protection and defence against competitors during reproduction.

  14. Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis

    PubMed Central

    Hwang, Seong-Hye; Jung, Seung-Hyun; Lee, Saseong; Choi, Susanna; Yoo, Seung-Ah; Park, Ji-Hwan; Hwang, Daehee; Shim, Seung Cheol; Sabbagh, Laurent; Kim, Ki-Jo; Park, Sung Hwan; Cho, Chul-Soo; Kim, Bong-Sung; Leng, Lin; Montgomery, Ruth R.; Bucala, Richard; Chung, Yeun-Jun; Kim, Wan-Uk

    2015-01-01

    Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell–dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA. PMID:26554018

  15. The Arabidopsis COP9 SIGNALOSOME INTERACTING F-BOX KELCH 1 protein forms an SCF ubiquitin ligase and regulates hypocotyl elongation.

    PubMed

    Franciosini, Anna; Lombardi, Benedetta; Iafrate, Silvia; Pecce, Valeria; Mele, Giovanni; Lupacchini, Leonardo; Rinaldi, Gianmarco; Kondou, Youichi; Gusmaroli, Giuliana; Aki, Shiori; Tsuge, Tomohiko; Deng, Xing-Wang; Matsui, Minami; Vittorioso, Paola; Costantino, Paolo; Serino, Giovanna

    2013-09-01

    The regulation of protein turnover by the ubiquitin proteasome system (UPS) is a major posttranslational mechanism in eukaryotes. One of the key components of the UPS, the COP9 signalosome (CSN), regulates 'cullin-ring' E3 ubiquitin ligases. In plants, CSN participates in diverse cellular and developmental processes, ranging from light signaling to cell cycle control. In this work, we isolated a new plant-specific CSN-interacting F-box protein, which we denominated CFK1 (COP9 INTERACTING F-BOX KELCH 1). We show that, in Arabidopsis thaliana, CFK1 is a component of a functional ubiquitin ligase complex. We also show that CFK1 stability is regulated by CSN and by proteasome-dependent proteolysis, and that light induces accumulation of the CFK1 transcript in the hypocotyl. Analysis of CFK1 knockdown, mutant, and overexpressing seedlings indicates that CFK1 promotes hypocotyl elongation by increasing cell size. Reduction of CSN levels enhances the short hypocotyl phenotype of CFK1-depleted seedlings, while complete loss of CSN activity suppresses the long-hypocotyl phenotype of CFK1-overexpressing seedlings. We propose that CFK1 (and its regulation by CSN) is a novel component of the cellular mechanisms controlling hypocotyl elongation.

  16. Essential Role of TEA Domain Transcription Factors in the Negative Regulation of the MYH 7 Gene by Thyroid Hormone and Its Receptors

    PubMed Central

    Iwaki, Hiroyuki; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Matsunaga, Hideyuki; Misawa, Hiroko; Oki, Yutaka; Ishizuka, Keiko; Nakamura, Hirotoshi; Suda, Takafumi

    2014-01-01

    MYH7 (also referred to as cardiac myosin heavy chain β) gene expression is known to be repressed by thyroid hormone (T3). However, the molecular mechanism by which T3 inhibits the transcription of its target genes (negative regulation) remains to be clarified, whereas those of transcriptional activation by T3 (positive regulation) have been elucidated in detail. Two MCAT (muscle C, A, and T) sites and an A/T-rich region in the MYH7 gene have been shown to play a critical role in the expression of this gene and are known to be recognized by the TEAD/TEF family of transcription factors (TEADs). Using a reconstitution system with CV-1 cells, which has been utilized in the analysis of positive as well as negative regulation, we demonstrate that both T3 receptor (TR) β1 and α1 inhibit TEAD-dependent activation of the MYH7 promoter in a T3 dose-dependent manner. TRβ1 bound with GC-1, a TRβ-selective T3 analog, also repressed TEAD-induced activity. Although T3-dependent inhibition required the DNA-binding domain (DBD) of TRβ1, it remained after the putative negative T3-responsive elements were mutated. A co-immunoprecipitation study demonstrated the in vivo association of TRβ1 with TEAD-1, and the interaction surfaces were mapped to the DBD of the TRβ1 and TEA domains of TEAD-1, both of which are highly conserved among TRs and TEADs, respectively. The importance of TEADs in MYH7 expression was also validated with RNA interference using rat embryonic cardiomyocyte H9c2 cells. These results indicate that T3-bound TRs interfere with transactivation by TEADs via protein-protein interactions, resulting in the negative regulation of MYH7 promoter activity. PMID:24781449

  17. Human T-lymphotropic virus type I tax regulates the expression of the human lymphotoxin gene.

    PubMed

    Tschachler, E; Böhnlein, E; Felzmann, S; Reitz, M S

    1993-01-01

    Human T-lymphotropic virus type-I (HTLV-I)-infected T-cell lines constitutively produce high levels of lymphotoxin (LT). To analyze the mechanisms that lead to the expression of LT in HTLV-I-infected cell lines, we studied regulatory regions of the human LT promoter involved in the activation of the human LT gene. As determined by deletional analysis, sequences between +137 and -116 (relative to the transcription initiation site) are sufficient to direct expression of a reporter gene in the HTLV-I-infected cell line MT-2. Site-directed mutation of a of the single kappa B-like motif present in the LT promoter region (positions -99 to -89) completely abrogated LT promoter activity in MT-2 cells, suggesting that this site plays a critical role in the activation of the human LT gene. Transfection of LT constructs into HTLV-I-uninfected and -unstimulated Jurkat and U937 cell lines showed little to no activity of the LT promoter. Cotransfection of the same constructs with a tax expression plasmid into Jurkat cells led to detectable promoter activity, which could be significantly increased by stimulation of the cells with phorbol myristate acetate (PMA). Similarly, cotransfection of the LT promoter constructs and the tax expression plasmid into U937 cells led to significant promoter activity upon stimulation with PMA. These data suggest that HTLV-I tax is involved in the upregulation of LT gene expression in HTLV-I-infected cells.

  18. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: Cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria

    PubMed Central

    Watanabe, Yoh-ichi; Gray, Michael W.

    2000-01-01

    A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366

  19. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-12-15

    Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as "cellular drugs". As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  20. Protein-disulfide Isomerase Regulates the Thyroid Hormone Receptor-mediated Gene Expression via Redox Factor-1 through Thiol Reduction-Oxidation*

    PubMed Central

    Hashimoto, Shoko; Imaoka, Susumu

    2013-01-01

    Protein-disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase that regulates the redox state of proteins. We previously found that overexpression of PDI in rat pituitary tumor (GH3) cells suppresses 3,3′,5-triiodothyronine (T3)-stimulated growth hormone (GH) expression, suggesting the contribution of PDI to the T3-mediated gene expression via thyroid hormone receptor (TR). In the present study, we have clarified the mechanism of regulation by which TR function is regulated by PDI. Overexpression of wild-type but not redox-inactive mutant PDI suppressed the T3-induced GH expression, suggesting that the redox activity of PDI contributes to the suppression of GH. We considered that PDI regulates the redox state of the TR and focused on redox factor-1 (Ref-1) as a mediator of the redox regulation of TR by PDI. Interaction between Ref-1 and TRβ1 was detected. Overexpression of wild-type but not C64S Ref-1 facilitated the GH expression, suggesting that redox activity of Cys-64 in Ref-1 is involved in the TR-mediated gene expression. Moreover, PDI interacted with Ref-1 and changed the redox state of Ref-1, suggesting that PDI controls the redox state of Ref-1. Our studies suggested that Ref-1 contributes to TR-mediated gene expression and that the redox state of Ref-1 is regulated by PDI. Redox regulation of PDI via Ref-1 is a new aspect of PDI function. PMID:23148211

  1. Regulation of oxidative stress responses by ataxia-telangiectasia mutated is required for T cell proliferation.

    PubMed

    Bagley, Jessamyn; Singh, Gyanesh; Iacomini, John

    2007-04-15

    Mutations in the gene encoding ataxia-telangiectasia (A-T) mutated (Atm) cause the disease A-T, characterized by immunodeficiency, the molecular basis of which is not known. Following stimulation through the TCR, Atm-deficient T cells and normal T cells in which Atm is inhibited undergo apoptosis rather than proliferation. Apoptosis is prevented by scavenging reactive oxygen species (ROS) during activation. Atm therefore plays a critical role in T cell proliferation by regulating responses to ROS generated following T cell activation. The inability of Atm-deficient T cells to control responses to ROS is therefore the molecular basis of immunodeficiency associated with A-T.

  2. Osmotic regulation of gene action.

    PubMed

    Douzou, P

    1994-03-01

    Most reactions involved in gene translation systems are ionic-dependent and may be explained in electrostatic terms. However, a number of observations of equilibria and rate processes making up the overall reactions clearly indicate that there is still an enormous gap between the rough picture of the mechanism of ionic regulation and the detailed behavior of reactions at the molecular level that hold the key to specific mechanisms. The present paper deals with possible osmotic contributions arising from the gel state of gene systems that are complementary to, and interdependent of, electrostatic contributions. This treatment, although still oversimplified, explains many previous observations by relating them to a general osmotic mechanism and suggests experimental approaches to studying the mechanisms of gene regulation in organelle-free and intact systems.

  3. Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins

    PubMed Central

    Bernasconi, Michele; Remppis, Andrew; Fredericks, William J.; Rauscher, Frank J.; Schäfer, Beat W.

    1996-01-01

    The expression of a number of human paired box-containing (PAX) genes has been correlated with various types of tumors. Novel fusion genes encoding chimeric fusion proteins have been found in the pediatric malignant tumor alveolar rhabdomyosarcoma (RMS). They are generated by two chromosomal translocations t(2;13) and t(1;13) juxtaposing PAX3 or PAX7, respectively, with a forkhead domain gene FKHR. Here we describe that specific down-regulation of the t(2;13) translocation product in alveolar RMS cells by antisense oligonucleotides results in reduced cellular viability. Cells of embryonal RMS, the other major histiotype of this tumor, were found to express either wild type PAX3 or PAX7 at elevated levels when compared with primary human myoblasts. Treatment of corresponding embryonal RMS cells with antisense olignucleotides directed against the mRNA translational start site of either one of these two transcription factors similarly triggers cell death, which is most likely due to induction of apoptosis. Retroviral mediated ectopic expression of mouse Pax3 in a PAX7 expressing embryonal RMS cell line could partially rescue antisense induced apoptosis. These data suggest that the PAX3/FKHR fusion gene and wild-type PAX genes play a causative role in the formation of RMS and presumably other tumor types, possibly by suppressing the apoptotic program that would normally eliminate these cells. PMID:8917562

  4. Down-regulation of kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation

    DOE PAGES

    Zhang, Xuebin; Liu, Chang -Jun; Gou, Mingyue; ...

    2014-12-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis Kelch-domain containing F-box proteins, AtKFB01, -20, and -50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PALs' stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting thatmore » KFB39 is an additional post-translational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to UV-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and post-translational regulation mechanisms to maximize its responses to UV stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress.« less

  5. Identification of High-Temperature-Responsive Genes in Cereals1[C][W

    PubMed Central

    Hemming, Megan N.; Walford, Sally A.; Fieg, Sarah; Dennis, Elizabeth S.; Trevaskis, Ben

    2012-01-01

    High temperature influences plant development and can reduce crop yields. We examined how ambient temperature influences reproductive development in the temperate cereals wheat (Triticum aestivum) and barley (Hordeum vulgare). High temperature resulted in rapid progression through reproductive development in long days, but inhibited early stages of reproductive development in short days. Activation of the long-day flowering response pathway through day-length-insensitive alleles of the PHOTOPERIOD1 gene, which result in high FLOWERING LOCUS T-like1 transcript levels, did not allow rapid early reproductive development at high temperature in short days. Furthermore, high temperature did not increase transcript levels of FLOWERING LOCUS T-like genes. These data suggest that genes or pathways other than the long-day response pathway mediate developmental responses to high temperature in cereals. Transcriptome analyses suggested a possible role for vernalization-responsive genes in the developmental response to high temperature. The MADS-box floral repressor HvODDSOC2 is expressed at elevated levels at high temperature in short days, and might contribute to the inhibition of early reproductive development under these conditions. FLOWERING PROMOTING FACTOR1-like, RNase-S-like genes, and VER2-like genes were also identified as candidates for high-temperature-responsive developmental regulators. Overall, these data suggest that rising temperatures might elicit different developmental responses in cereal crops at different latitudes or times of year, due to the interaction between temperature and day length. Additionally, we suggest that different developmental regulators might mediate the response to high temperature in cereals compared to Arabidopsis (Arabidopsis thaliana). PMID:22279145

  6. A novel polymorphism in the PAI-1 gene promoter enhances gene expression. A novel pro-thrombotic risk factor?

    PubMed

    Liguori, Renato; Quaranta, Sandro; Di Fiore, Rosanna; Elce, Ausilia; Castaldo, Giuseppe; Amato, Felice

    2014-12-01

    Plasminogen activator inhibitor-1 (PAI-1) is the major physiological inhibitor of tissue-type plasminogen activator in plasma and the most important regulator of the fibrinolytic pathway. The 4G/5G polymorphism (rs1799889) in the PAI-1 promoter is associated with altered PAI-1 transcription. We have identified a new 4G/5G allele, in which a T is inserted near the 4G tract or replaces a G in the 5G tract, forming a T plus 4G (T4G) region. This new variant was first identified in two women, one had experienced juvenile myocardial infarction, the other repeated miscarriage; both had increased PAI-1 plasma activity. In view of the important influence of this promoter region on PAI-1 protein plasma level, we performed in vitro evaluation of the effects of the T4G variant on the transcription activity of the PAI-1 gene promoter. In silico prediction analysis showed that presence of the T4G allele disrupts the E-Box region upstream of the T4G variant, altering the affinity of the target sequence for E-Box binding factors like upstream stimulatory factor-1 (USF-1). Basal T4G promoter activity was 50% higher compared to 4G and 5G variants, but it was less stimulated by USF-1 overexpression. We also analyzed the effects of IL-1β and IL-6 on the PAI-1 promoter activity of our three constructs and showed that the T4G variant was less affected by IL-1β than the other variants. These findings indicate that the T4G variant may be a novel risk factor for thrombotic events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds.

    PubMed

    T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly

    2017-12-20

    Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.

  8. La participation des enfants et des adolescents à la boxe

    PubMed Central

    Purcell, Laura K; LeBlanc, Claire MA

    2012-01-01

    RÉSUMÉ Des milliers de garçons et de filles de moins de 19 ans font de la boxe en Amérique du Nord. Même si la boxe comporte des avantages pour ceux qui y participent, y compris l’exercice, l’autodiscipline et la confiance en soi, le sport lui-même favorise et récompense des coups délibérés à la tête et au visage. Les personnes qui font de la boxe risquent de subir des blessures à la tête, au visage et au cou, y compris des traumatismes neurologiques chroniques et même fatals. Les commotions cérébrales sont l’une des principales blessures causées par la boxe. En raison du risque de blessures crâniennes et faciales, la Société canadienne de pédiatrie et l’American Academy of Pediatrics s’opposent vigoureusement à la boxe comme activité sportive pour les enfants et les adolescents. Ces organismes recommandent que les médecins s’élèvent contre la boxe auprès des jeunes et les encouragent à participer à d’autres activités dans lesquelles les coups intentionnels à la tête ne constituent pas un élément essentiel du sport.

  9. Effects of MicroRNA-23a on Differentiation and Gene Expression Profiles in 3T3-L1 Adipocytes

    PubMed Central

    Huang, Yong; Huang, Jinxiu; Qi, Renli; Wang, Qi; Wu, Yongjiang; Wang, Jing

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate growth, development, and programmed death of cells. A newly-published study has shown that miRNA-23a could regulate 3T3-L1 adipocyte differentiation. Here, we identified miRNA-23a as a negative regulator of 3T3-L1 adipocyte differentiation again. Over-expression of miRNA-23a inhibited differentiation and decreased lipogenesis as well as down-regulated mRNA and protein expression of both peroxisome proliferator-activated receptor (PPAR) γ and fatty acid binding protein (FABP) 4, whereas knock down of miRNA-23a showed the opposite effects on differentiation as well as increasing the number of apoptotic cells. Additionally, digital gene expression profiling sequencing (DGE-Seq) was used to assay changes in gene expression profiles following alterations in the level of miR-23a. In total, over-expression or knock down of miRNA-23a significantly changed the expression of 313 and 425 genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these genes were mainly involved in the stress response, immune system, metabolism, cell cycle, among other pathways. Additionally, the signal transducer and activator of transcription 1 (Stat1) was shown to be a target of miRNA-23a by computational and dual-luciferase reporter assays that indicated Janus Kinase (Jak)-Stat signal pathway was implicated in regulating adipogenesis mediated by miRNA-23a in adipocytes. PMID:27783036

  10. Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP)

    PubMed Central

    Kobayashi, Akiko; Miyake, Tsuyoshi; Kawaichi, Masashi; Kokubo, Tetsuro

    2003-01-01

    The general transcription factor TFIID, composed of the TATA box-binding protein (TBP) and 14 TBP-associated factors (TAFs), is important for both basal and regulated transcription by RNA polymerase II. Although it is well known that the TAF N-terminal domain (TAND) at the amino-terminus of the TAF1 protein binds to TBP and thereby inhibits TBP function in vitro, the physiological role of this domain remains obscure. In our previous study, we screened for mutations that cause lethality when co-expressed with the TAF1 gene lacking TAND (taf1-ΔTAND) and identified two ΔTAND synthetic lethal (nsl) mutations as those in the SPT15 gene encoding TBP. In this study we isolated another nsl mutation in the same screen and identified it to be a mutation in the histone fold domain (HFD) of the TAF12 gene. Several other HFD mutations of this gene also exhibit nsl phenotypes, and all of them are more or less impaired in transcriptional activation in vivo. Interestingly, a set of genes affected in the taf1-ΔTAND mutant is similarly affected in the taf12 HFD mutants but not in the nsl mutants of TBP. Therefore, we discovered that the nsl mutations of these two genes cause lethality in the taf1-ΔTAND mutant by different mechanisms. PMID:12582246

  11. Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor1[W][OA

    PubMed Central

    Uddenberg, Daniel; Reimegård, Johan; Clapham, David; Almqvist, Curt; von Arnold, Sara; Emanuelsson, Olof; Sundström, Jens F.

    2013-01-01

    Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce. PMID:23221834

  12. EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes

    PubMed Central

    Brenner, Eric D; Katari, Manpreet S; Stevenson, Dennis W; Rudd, Stephen A; Douglas, Andrew W; Moss, Walter N; Twigg, Richard W; Runko, Suzan J; Stellari, Giulia M; McCombie, WR; Coruzzi, Gloria M

    2005-01-01

    Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate), female (megasporangiate), and vegetative organs (leaves) of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and pollen evolution, and to

  13. A monoallelic-to-biallelic T-cell transcriptional switch regulates GATA3 abundance

    PubMed Central

    Ku, Chia-Jui; Lim, Kim-Chew; Kalantry, Sundeep; Maillard, Ivan; Engel, James Douglas; Hosoya, Tomonori

    2015-01-01

    Protein abundance must be precisely regulated throughout life, and nowhere is the stringency of this requirement more evident than during T-cell development: A twofold increase in the abundance of transcription factor GATA3 results in thymic lymphoma, while reduced GATA3 leads to diminished T-cell production. GATA3 haploinsufficiency also causes human HDR (hypoparathyroidism, deafness, and renal dysplasia) syndrome, often accompanied by immunodeficiency. Here we show that loss of one Gata3 allele leads to diminished expansion (and compromised development) of immature T cells as well as aberrant induction of myeloid transcription factor PU.1. This effect is at least in part mediated transcriptionally: We discovered that Gata3 is monoallelically expressed in a parent of origin-independent manner in hematopoietic stem cells and early T-cell progenitors. Curiously, half of the developing cells switch to biallelic Gata3 transcription abruptly at midthymopoiesis. We show that the monoallelic-to-biallelic transcriptional switch is stably maintained and therefore is not a stochastic phenomenon. This unique mechanism, if adopted by other regulatory genes, may provide new biological insights into the rather prevalent phenomenon of monoallelic expression of autosomal genes as well as into the variably penetrant pathophysiological spectrum of phenotypes observed in many human syndromes that are due to haploinsufficiency of the affected gene. PMID:26385963

  14. tRNA gene copy number variation in humans

    PubMed Central

    Iben, James R.; Maraia, Richard J.

    2014-01-01

    The human tRNAome consists of more than 500 interspersed tRNA genes comprising 51 anticodon families of largely unequal copy number. We examined tRNA gene copy number variation (tgCNV) in six individuals; two kindreds of two parents and a child, using high coverage whole genome sequence data. Such differences may be important because translation of some mRNAs is sensitive to the relative amounts of tRNAs and because tRNA competition determines translational efficiency vs. fidelity and production of native vs. misfolded proteins. We identified several tRNA gene clusters with CNV, which in some cases were part of larger iterations. In addition there was an isolated tRNALysCUU gene that was absent as a homozygous deletion in one of the parents. When assessed by semiquantitative PCR in 98 DNA samples representing a wide variety of ethnicities, this allele was found deleted in hetero- or homozygosity in all groups at ~50% frequency. This is the first report of copy number variation of human tRNA genes. We conclude that tgCNV exists at significant levels among individual humans and discuss the results in terms of genetic diversity and prior genome wide association studies (GWAS) that suggest the importance of the ratio of tRNALys isoacceptors in Type-2 diabetes. PMID:24342656

  15. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis

    PubMed Central

    Pereira, Leonn Mendes Soares; Gomes, Samara Tatielle Monteiro; Ishak, Ricardo; Vallinoto, Antonio Carlos Rosário

    2017-01-01

    The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance. PMID:28603524

  16. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    PubMed

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  17. Gene expression profiling--Opening the black box of plant ecosystem responses to global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in modelmore » and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.« less

  18. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  19. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.

  20. Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.

    PubMed

    Ventre, Erwan; Brinza, Lilia; Schicklin, Stephane; Mafille, Julien; Coupet, Charles-Antoine; Marçais, Antoine; Djebali, Sophia; Jubin, Virginie; Walzer, Thierry; Marvel, Jacqueline

    2012-10-01

    IL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses.

  1. The LOTUS domain is a conserved DEAD-box RNA helicase regulator essential for the recruitment of Vasa to the germ plasm and nuage

    PubMed Central

    Jeske, Mandy; Müller, Christoph W.; Ephrussi, Anne

    2017-01-01

    DEAD-box RNA helicases play important roles in a wide range of metabolic processes. Regulatory proteins can stimulate or block the activity of DEAD-box helicases. Here, we show that LOTUS (Limkain, Oskar, and Tudor containing proteins 5 and 7) domains present in the germline proteins Oskar, TDRD5 (Tudor domain-containing 5), and TDRD7 bind and stimulate the germline-specific DEAD-box RNA helicase Vasa. Our crystal structure of the LOTUS domain of Oskar in complex with the C-terminal RecA-like domain of Vasa reveals that the LOTUS domain occupies a surface on a DEAD-box helicase not implicated previously in the regulation of the enzyme's activity. We show that, in vivo, the localization of Drosophila Vasa to the nuage and germ plasm depends on its interaction with LOTUS domain proteins. The binding and stimulation of Vasa DEAD-box helicases by LOTUS domains are widely conserved. PMID:28536148

  2. Regulation of Thyroid Hormone-, Oestrogen- and Androgen-Related Genes by Triiodothyronine in the Brain of Silurana tropicalis

    PubMed Central

    Duarte-Guterman, Paula; Trudeau, Vance L

    2010-01-01

    Amphibian metamorphosis is an excellent example of hormone-dependent control of development. Thyroid hormones (THs) regulate almost all aspects of metamorphosis, including brain development and larval neuroendocrine function. Sex steroids are also important for early brain function, although little is known about interactions between the two hormonal systems. In the present study, we established brain developmental profiles for thyroid hormone receptors (tralpha and trbeta), deiodinases (dio1, dio2 and dio3), aromatase (cyp19) mRNA and activity, oestrogen receptors (eralpha and erbeta), androgen receptor (ar) and 5α-reductases (srd5alpha1 and srd5alpha2) mRNA during Silurana (Xenopus) tropicalis metamorphosis. Real-time reverse transcriptase-polymerase chain reaction analyses revealed that all of the genes were expressed in the brain and for most of the genes expression increased during development, with the exception of dio2, srd5alpha1 and srd5alpha2. The ability of premetamorphic tadpoles to respond to exogenous THs was used to investigate the regulation of TH- and sex steroid-related genes in the brain during development. Exposure of premetamorphic tadpoles to triiodothyronine (T3; 0, 0.5, 5 and 50 nm) for 48 h resulted in concentration-dependent increases in trbeta, dio2, dio3, eralpha and erbeta. Expression of srd5alpha2 showed large increases (six- to 7.5-fold) for all three concentrations of T3. No changes were detected in dio1, ar and cyp19 transcript levels; however, cyp19 activity increased significantly at 50 nm T3. The results obtained suggest that expression of TH-related genes and er during development could be regulated by rising levels of THs, as previously documented in Lithobates (Rana) pipiens. The positive regulation of srd5alpha by T3 in the brain suggests that endogenous TH levels help maintain or control the rate at which srd5alpha mRNA levels decrease as metamorphosis progresses. Finally, we have identified sex steroid-related genes that

  3. Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?

    PubMed

    Paiola, Matthieu; Knigge, Thomas; Duflot, Aurélie; Pinto, Patricia I S; Farcy, Emilie; Monsinjon, Tiphaine

    2018-07-01

    In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. T-cell lymphomas associated gene expression signature: Bioinformatics analysis based on gene expression Omnibus.

    PubMed

    Zhou, Lei-Lei; Xu, Xiao-Yue; Ni, Jie; Zhao, Xia; Zhou, Jian-Wei; Feng, Ji-Feng

    2018-06-01

    Due to the low incidence and the heterogeneity of subtypes, the biological process of T-cell lymphomas is largely unknown. Although many genes have been detected in T-cell lymphomas, the role of these genes in biological process of T-cell lymphomas was not further analyzed. Two qualified datasets were downloaded from Gene Expression Omnibus database. The biological functions of differentially expressed genes were evaluated by gene ontology enrichment and KEGG pathway analysis. The network for intersection genes was constructed by the cytoscape v3.0 software. Kaplan-Meier survival curves and log-rank test were employed to assess the association between differentially expressed genes and clinical characters. The intersection mRNAs were proved to be associated with fundamental processes of T-cell lymphoma cells. These intersection mRNAs were involved in the activation of some cancer-related pathways, including PI3K/AKT, Ras, JAK-STAT, and NF-kappa B signaling pathway. PDGFRA, CXCL12, and CCL19 were the most significant central genes in the signal-net analysis. The results of survival analysis are not entirely credible. Our findings uncovered aberrantly expressed genes and a complex RNA signal network in T-cell lymphomas and indicated cancer-related pathways involved in disease initiation and progression, providing a new insight for biotargeted therapy in T-cell lymphomas. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Lifespan-regulating genes in C. elegans

    PubMed Central

    Uno, Masaharu; Nishida, Eisuke

    2016-01-01

    The molecular mechanisms underlying the aging process have garnered much attention in recent decades because aging is the most significant risk factor for many chronic diseases such as type 2 diabetes and cancer. Until recently, the aging process was not considered to be an actively regulated process; therefore, discovering that the insulin/insulin-like growth factor-1 signaling pathway is a lifespan-regulating genetic pathway in Caenorhabditis elegans was a major breakthrough that changed our understanding of the aging process. Currently, it is thought that animal lifespans are influenced by genetic and environmental factors. The genes involved in lifespan regulation are often associated with major signaling pathways that link the rate of aging to environmental factors. Although many of the major mechanisms governing the aging process have been identified from studies in short-lived model organisms such as yeasts, worms and flies, the same mechanisms are frequently observed in mammals, indicating that the genes and signaling pathways that regulate lifespan are highly conserved among different species. This review summarizes the lifespan-regulating genes, with a specific focus on studies in C. elegans. PMID:28721266

  6. RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells.

    PubMed

    Priatel, John J; Chen, Xiaoxi; Huang, Yu-Hsuan; Chow, Michael T; Zenewicz, Lauren A; Coughlin, Jason J; Shen, Hao; Stone, James C; Tan, Rusung; Teh, Hung Sia

    2010-01-15

    Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1(-/-) 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.

  7. The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup

    PubMed Central

    Behesti, Hourinaz; Holt, James KL; Sowden, Jane C

    2006-01-01

    Background Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse. Results Our data show that the level of BMP4 signaling is critical for the regulation of distinct Tbx2, Tbx3, Tbx5 and Vax2 gene expression domains along the dorso-ventral axis of the mouse optic cup. BMP4 signaling gradients were manipulated in whole mouse embryo cultures during optic cup development, by implantation of beads soaked in BMP4, or the BMP antagonist Noggin, to provide a local signaling source. Tbx2, Tbx3 and Tbx5, showed a differential response to alterations in the level of BMP4 along the entire dorso-ventral axis of the optic cup, suggesting that BMP4 acts across a distance. Increased levels of BMP4 caused expansion of Tbx2 and Tbx3, but not Tbx5, into the ventral retina and repression of the ventral marker Vax2. Conversely, Noggin abolished Tbx5 expression but only shifted Tbx2 expression dorsally. Increased levels of BMP4 signaling caused decreased proliferation, reduced retinal volume and altered the shape of the optic cup. Conclusion Our findings suggest the existence of a dorsal

  8. The role of human chorionic gonadotropin in regulation of naïve and memory T cells activity in vitro.

    PubMed

    Zamorina, S A; Litvinova, L S; Yurova, K A; Khaziakhmatova, O G; Timganova, V P; Bochkova, M S; Khramtsov, P V; Rayev, M B

    2018-01-01

    The role of human chorionic gonadotropin (hCG) in the regulation of molecular genetics factors determining the functional activity of human naïve and memory T cells in vitro was studied. It was found that hCG (10 and 100IU/ml) inhibited CD28 and CD25 expression on the naïve T cells (CD45RA+) and CD25 expression on the memory T cells (CD45R0+). hCG didn't affect the CD71 proliferation marker expression in total. Nevertheless, hCG reduced the percentage of proliferating memory T cells with simultaneous suppression of CD71 expression on proliferating CD45R0+cells. In parallel, expression of U2af1l4, Gfi1, and hnRNPLL genes, which are Ptprc gene alternative splicing regulators was evaluated. It was established that hCG stimulated the expression of U2af1l4 and hnRNPLL genes, responsible for the assembly of CD45R0 in memory T cells, but reduced the expression of Gfi1 in these cells. In general, hCG promotes the differentiation of memory T cells by increasing of CD45R0 expression, but inhibits proliferation and CD25 expression which reflects their functional activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular characterization and expression analysis of the critical floral genes in hickory (Carya cathayensis Sarg.).

    PubMed

    Shen, Chen; Xu, Yingwu; Huang, Jianqin; Wang, Zhengjia; Qiu, Jiani; Huang, Youjun

    2014-10-01

    The full ORFs of three floral genes in hickory (Carya cathayensis Sarg.), CcAGL24 (the AGAMOUS-LIKE24 homolog), CcSOC1 (the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 homolog) and CcAP1 (the APETALA1 homolog) are derived using a 5' RACE PCR protocol. Through sequence alignment and phylogenetic analysis, it is demonstrated that the three genes belong to the MADS-Box family. According to the evolutionary trees of the three genes, the homologous genes from the same family cluster well together, while those from different orders doesn't match evolutionary regularity of individual organisms. The result of Quantitative RT-PCR analysis shows that the transcriptional levels of the three genes are up-regulated in early stage and down-regulated in late stage in pistillate floral development. However, it takes different time to reach respective expression peak among the three genes. In staminate floral development, the transcription trend of the three genes is up-regulated, subsequently down-regulated, and then up-regulated again. Nevertheless, those trajectories, peaks, expression levels, inflection points are different in pistillate floral development. The result suggests that their functions are different in between pistillate and staminate floral development. The probable ordinal site of the three genes in the flowering network from top down is CcAGL24, CcSOC1, and CcAP1, which is identical to that in herbaceous plants. Moreover, several adverse environmental factors trigger several negative genes and then confine the development of staminate floral buds. Our results suggest the possible relationship among the three critical floral genes and their functions throughout the floral development in hickory. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Transcription factor Sp1 regulates T-type Ca(2+) channel CaV 3.1 gene expression.

    PubMed

    González-Ramírez, Ricardo; Martínez-Hernández, Elizabeth; Sandoval, Alejandro; Felix, Ricardo

    2014-05-01

    Voltage-gated T-type Ca(2+) (CaV 3) channels mediate a number of physiological events in developing and mature cells, and are implicated in neurological and cardiovascular diseases. In mammals, there are three distinct T-channel genes (CACNA1G, CACNA1H, and CACNA1I) encoding proteins (CaV 3.1-CaV 3.3) that differ in their localization as well as in molecular, biophysical, and pharmacological properties. The CACNA1G is a large gene that contains 38 exons and is localized in chromosome 17q22. Only basic characteristics of the CACNA1G gene promoter region have been investigated classifying it as a TATA-less sequence containing several potential transcription factor-binding motifs. Here, we cloned and characterized a proximal promoter region and initiated the analysis of transcription factors that control CaV 3.1 channel expression using the murine Cacna1g gene as a model. We isolated a ∼1.5 kb 5'-upstream region of Cacna1g and verified its transcriptional activity in the mouse neuroblastoma N1E-115 cell line. In silico analysis revealed that this region possesses a TATA-less minimal promoter that includes two potential transcription start sites and four binding sites for the transcription factor Sp1. The ability of one of these sites to interact with the transcription factor was confirmed by electrophoretic mobility shift assays. Consistent with this, Sp1 over-expression enhanced promoter activity while siRNA-mediated Sp1 silencing significantly decreased the level of CaV 3.1 protein and reduced the amplitude of whole-cell T-type Ca(2+) currents expressed in the N1E-115 cells. These results provide new insights into the molecular mechanisms that control CaV 3.1 channel expression. © 2013 Wiley Periodicals, Inc.

  11. Gene expression profiling of 3T3-L1 adipocytes exposed to phloretin.

    PubMed

    Hassan, Meryl; El Yazidi, Claire; Malezet-Desmoulins, Christiane; Amiot, Marie-Josèphe; Margotat, Alain

    2010-07-01

    Adipocyte dysfunction plays a major role in the outcome of obesity, insulin resistance and related cardiovascular complications. Thus, considerable efforts are underway in the pharmaceutical industry to find molecules that target the now well-documented pleiotropic functions of adipocyte. We previously reported that the dietary flavonoid phloretin enhances 3T3-L1 adipocyte differentiation and adiponectin expression at least in part through PPAR gamma activation. The present study was designed to further characterize the molecular mechanisms underlying the phloretin-mediated effects on 3T3-L1 adipocytes using microarray technology. We show that phloretin positively regulates the expression of numerous genes involved in lipogenesis and triglyceride storage, including GLUT4, ACSL1, PEPCK1, lipin-1 and perilipin (more than twofold). The expression of several genes encoding adipokines, in addition to adiponectin and its receptor, is positively or negatively regulated in a way that suggests a possible reduction in systemic insulin resistance and obesity-associated inflammation. Improvement of insulin sensitivity is also suggested by the overexpression of genes associated with insulin signal transduction, such as CAP, PDK1 and Akt2. Many of these genes are PPAR gamma targets, confirming the involvement of PPAR gamma pathway in the phloretin effects on adipocytes. In light of these microarray data, it is reasonable to assume that phloretin may be beneficial for reducing insulin resistance, in a similar way to the thiazolidinedione class of antidiabetic drugs. (c) 2010 Elsevier Inc. All rights reserved.

  12. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  13. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata.

    PubMed

    Li, Shu; Sun, Penglin; Williams, Justin Stephen; Kao, Teh-hui

    2014-03-01

    The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.

  14. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    PubMed Central

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  15. Exergaming boxing versus heavy-bag boxing: are these equipotent for individuals with spinal cord injury?

    PubMed

    Mat Rosly, Maziah; Mat Rosly, Hadi; Hasnan, Nazirah; Davis, Glen M; Husain, Ruby

    2017-08-01

    Current strategies for increased physical activity and exercise in individuals with spinal cord injury (SCI) face many challenges with regards to maintaining their continuity of participation. Barriers cited often include problems with accessing facilities, mundane, monotonous or boring exercises and expensive equipment that is often not adapted for wheelchair users. To compare the physiological responses and user preferences between conventional heavy-bag boxing against a novel form of video game boxing, known as exergaming boxing. Cross-sectional study. Exercise laboratory setting in a university medical center. Seventeen participants with SCI were recruited, of which sixteen were male and only one female. Their mean age was 35.6±10.2 years. All of them performed a 15-minute physical exercise session of exergaming and heavy-bag boxing in a sitting position. The study assessed physiological responses in terms of oxygen consumption, metabolic equivalent (MET) and energy expenditure between exergaming and heavy-bag boxing derived from open-circuit spirometry. Participants also rated their perceived exertion using Borg's category-ratio ratings of perceived exertion. Both exergaming (MET: 4.3±1.0) and heavy-bag boxing (MET: 4.4±1.0) achieved moderate exercise intensities in these participants with SCI. Paired t-test revealed no significant differences (P>0.05, Cohen's d: 0.02-0.49) in the physiological or perceived exertional responses between the two modalities of boxing. Post session user survey reported all the participants found exergaming boxing more enjoyable. Exergaming boxing, was able to produce equipotent physiological responses as conventional heavy-bag boxing. The intensity of both exercise modalities achieved recommended intensities for health and fitness benefits. Exergaming boxing have the potential to provide an enjoyable, self-competitive environment for moderate-vigorous exercise even at the comfort of their homes.

  16. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome.

    PubMed

    Liu, Xin; Li, Rong; Dai, Yaqing; Chen, Xuesen; Wang, Xiaoyun

    2018-04-01

    The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.

  17. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    PubMed

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  18. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits

    USDA-ARS?s Scientific Manuscript database

    MADS-box transcription factors are key elements of the genetic networks controlling flower and fruit development. Among these, the class D clade are involved in seed, ovule, and funiculus development. The tomato genome comprises two class D genes, Sl-AGL11 and Sl-MBP3, both displaying high expressio...

  19. Cloning of the promoter region of a human gene, FOXL2, and its regulation by STAT3.

    PubMed

    Han, Yangyang; Wang, Tianxiao; Sun, Shudong; Zhai, Zhaohui; Tang, Shengjian

    2017-09-01

    Forkhead box L2 (FOXL2) is a transcription factor, which is involved in blepharophimosis, ptosis, and epicanthus in versus syndrome (BPES), premature ovarian failure (POF), as well as almost all stages of ovarian development and function. FOXL2 has various target genes, which are implicated in numerous processes, including sex determination, cell cycle regulation and apoptosis and stress response regulation in mammals. However, studies regarding the upstream regulation of FOXL2 are limited. In the present study, the promoter of FOXL2 was successfully cloned and registered in Gen Bank, and a dual luciferase reporter (DLR) analysis demonstrated that the luciferase activity was significantly induced by the promoter of FOXL2. Subsequently, bioinformatics analysis indicated that FOXL2 may be regulated by STAT3, and this was confirmed by a DLR analysis and western blotting, using STAT3 inhibitors. Further study using real‑time cellular analysis indicated that the viability of He La cells was markedly suppressed by STAT3 inhibitors. The present study demonstrated novel findings regarding the upstream regulation of FOXL2 expression and provide a new perspective for future studies in the field.

  20. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells.

    PubMed

    Cho, Sung Hwan; An, Hui Jeong; Kim, Kyung Ah; Ko, Jung Jae; Kim, Ji Hyang; Kim, Young Ran; Ahn, Eun Hee; Rah, HyungChul; Lee, Woo Sik; Kim, Nam Keun

    2017-01-01

    MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation.

  1. Single nucleotide polymorphisms at miR-146a/196a2 and their primary ovarian insufficiency-related target gene regulation in granulosa cells

    PubMed Central

    Cho, Sung Hwan; An, Hui Jeong; Kim, Kyung Ah; Ko, Jung Jae; Kim, Ji Hyang; Kim, Young Ran; Ahn, Eun Hee; Rah, HyungChul; Lee, Woo Sik

    2017-01-01

    MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-arrays to examine the changes in the messenger RNA expression profile. We show miR-146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3. Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms may be involved in granulosa cell regulation. PMID:28841705

  2. Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes

    PubMed Central

    Burrill, Joel S.; Long, Eric K.; Reilly, Brian; Deng, Yingfeng; Armitage, Ian M.; Scherer, Philipp E.

    2015-01-01

    Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [14C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation. PMID:25635940

  3. Transcriptional regulation of α1H T-type calcium channel under hypoxia

    PubMed Central

    Sellak, Hassan; Zhou, Chun; Liu, Bainan; Chen, Hairu; Lincoln, Thomas M.

    2014-01-01

    The low-voltage-activated T-type Ca2+ channels play an important role in mediating the cellular responses to altered oxygen tension. Among three T-type channel isoforms, α1G, α1H, and α1I, only α1H was found to be upregulated under hypoxia. However, mechanisms underlying such hypoxia-dependent isoform-specific gene regulation remain incompletely understood. We, therefore, studied the hypoxia-dependent transcriptional regulation of α1G and α1H gene promoters with the aim to identify the functional hypoxia-response elements (HREs). In rat pulmonary artery smooth muscle cells (PASMCs) and pheochromocytoma (PC12) cells after hypoxia (3% O2) exposure, we observed a prominent increase in α1H mRNA at 12 h along with a significant rise in α1H-mediated T-type current at 24 and 48 h. We then cloned two promoter fragments from the 5′-flanking regions of rat α1G and α1H gene, 2,000 and 3,076 bp, respectively, and inserted these fragments into a luciferase reporter vector. Transient transfection of PASMCs and PC12 cells with these recombinant constructs and subsequent luciferase assay revealed a significant increase in luciferase activity from the reporter containing the α1H, but not α1G, promoter fragment under hypoxia. Using serial deletion and point mutation analysis strategies, we identified a functional HRE at site −1,173cacgc−1,169 within the α1H promoter region. Furthermore, an electrophoretic mobility shift assay using this site as a DNA probe demonstrated an increased binding activity to nuclear protein extracts from the cells after hypoxia exposure. Taken together, these findings indicate that hypoxia-induced α1H upregulation involves binding of hypoxia-inducible factor to an HRE within the α1H promoter region. PMID:25099734

  4. A survey of disease connections for CD4+ T cell master genes and their directly linked genes.

    PubMed

    Li, Wentian; Espinal-Enríquez, Jesús; Simpfendorfer, Kim R; Hernández-Lemus, Enrique

    2015-12-01

    Genome-wide association studies and other genetic analyses have identified a large number of genes and variants implicating a variety of disease etiological mechanisms. It is imperative for the study of human diseases to put these genetic findings into a coherent functional context. Here we use system biology tools to examine disease connections of five master genes for CD4+ T cell subtypes (TBX21, GATA3, RORC, BCL6, and FOXP3). We compiled a list of genes functionally interacting (protein-protein interaction, or by acting in the same pathway) with the master genes, then we surveyed the disease connections, either by experimental evidence or by genetic association. Embryonic lethal genes (also known as essential genes) are over-represented in master genes and their interacting genes (55% versus 40% in other genes). Transcription factors are significantly enriched among genes interacting with the master genes (63% versus 10% in other genes). Predicted haploinsufficiency is a feature of most these genes. Disease-connected genes are enriched in this list of genes: 42% of these genes have a disease connection according to Online Mendelian Inheritance in Man (OMIM) (versus 23% in other genes), and 74% are associated with some diseases or phenotype in a Genome Wide Association Study (GWAS) (versus 43% in other genes). Seemingly, not all of the diseases connected to genes surveyed were immune related, which may indicate pleiotropic functions of the master regulator genes and associated genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereasmore » miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.« less

  6. Cloning and characterization of the mouse XPAC gene.

    PubMed Central

    van Oostrom, C T; de Vries, A; Verbeek, S J; van Kreijl, C F; van Steeg, H

    1994-01-01

    Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene targeting in embryonic stem cells, we cloned and characterized the mouse homologue of the XPAC gene. The mouse XPAC gene was found to consist of 6 exons, spanning approximately 21 kb. The nucleotide sequence of the exons is identical to that of the also cloned the mouse XPAC cDNA. Furthermore, the deduced amino acid sequence of the XPAC protein is the same as the one published previously by Tanaka et al. From CAT assay analysis, the promoter of the XPAC gene appeared to be located within 313 bp upstream of the assumed transcriptional start site. Like the promoters of other eukaryotic DNA repair genes (i.e. ERCC-1 and XPBC/ERCC-3), the mouse XPAC promoter region lacks classical promoter elements like TATA-, GC- and CAAT boxes. However, it contains an unique polypyrimidine-rich box, which is so far only found in genes encoding DNA repair enzymes. The function of this box in the regulation of transcription is still unclear. PMID:8127648

  7. A short region of the promoter of the breast cancer associated PLU-1 gene can regulate transcription in vitro and in vivo.

    PubMed

    Catteau, Aurélie; Rosewell, Ian; Solomon, Ellen; Taylor-Papadimitriou, Joyce

    2004-07-01

    The recently cloned gene PLU-1 shows restricted expression in adult tissues, with high expression being found in testis, and transiently in the pregnant mammary gland. However, both the gene and the protein product are specifically up-regulated in breast cancer. To investigate the control of expression of the PLU-1 gene, we have cloned and functionally characterised the 5' flanking region of the gene, which was found to contain another putative gene. Two transcription start sites of the PLU-1 gene were mapped by 5' RACE. A short proximal 249 bp region was defined using reporter gene assays, which encompasses the major transcription start site and exhibits a strong constitutive promoter activity in all cell lines tested. However, regions upstream of this sequence repress transcription more effectively in a non-malignant breast cell line as compared to breast cancer cell lines. The 249 bp region is GC-rich and includes consensus Sp1 sites, GC boxes, cAMP-responsive element (CRE) and other putative cis-elements. Mutational analysis showed that two intact conserved Sp1 binding sites (shown here to bind Sp1 and/or Sp3) are critical for constitutive promoter activity, while a negative role for a neighbouring GC box is indicated. The sequence of the core promoter is highly conserved in the mouse and Plu-1 expression in the mouse embryo has been documented. Using transgenesis, we therefore examined the ability of the 249 bp fragment to control expression of a reporter gene during embryogenesis. We found that not only is the core promoter sufficient to activate transcription in vivo, but that the expression of the reporter gene coincides both temporally and spatially with regions where endogenous Plu-1 is highly expressed. This suggests that tissue specific controlling elements are found within the short fragment and are functional in the embryonic environment.

  8. The autoimmune regulator gene (AIRE) is strongly associated with vitiligo.

    PubMed

    Tazi-Ahnini, R; McDonagh, A J G; Wengraf, D A; Lovewell, T R J; Vasilopoulos, Y; Messenger, A G; Cork, M J; Gawkrodger, D J

    2008-09-01

    Vitiligo is an autoimmune disorder that occurs with greatly increased frequency in the rare recessive autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) caused by mutations of the autoimmune regulator (AIRE) gene on chromosome 21q22.3. We have previously detected an association between alopecia areata and single nucleotide polymorphisms (SNPs) in the AIRE gene. To report the findings of an extended study including haplotype analysis on six AIRE polymorphisms (AIRE C-103T, C4144G, T5238C, G6528A, T7215C and T11787C) in vitiligo, another APECED-associated disease. A case-control analysis was performed. Results showed a strong association between AIRE 7215C and vitiligo [P = 1.36 x 10(-5), odds ratio (OR) 3.12, 95% confidence interval (CI) 1.87-5.46]. We found no significant association with the other polymorphisms individually. However, haplotype analysis revealed that the AIRE haplotype CCTGCC showed a highly significant association with vitiligo (P = 4.14 x 10(-4), OR 3.00, 95% CI 1.70-5.28). To select the most informative minimal haplotypes, we tagged the polymorphisms using SNP tag software. Using AIRE C-103T, G6528A, T7215C and T11787C as tag SNPs, the haplotype AIRE CGCC was associated with vitiligo (P = 0.003, OR 2.49, 95% CI 1.45-4.26). The link between vitiligo and AIRE raises the possibility that defective skin peripheral antigen selection in the thymus is involved in the changes that result in melanocyte destruction in this disorder.

  9. Immortalization-susceptible elements and their binding factors mediate rejuvenation of regulation of the type I collagenase gene in simian virus 40 large T antigen-transformed immortal human fibroblasts.

    PubMed Central

    Imai, S; Fujino, T; Nishibayashi, S; Manabe, T; Takano, T

    1994-01-01

    Dramatic changes occur in expression of the type I collagenase gene during the process of immortalization in simian virus 40 large T antigen-transformed human fibroblasts (S. Imai and T. Takano, Biochem. Biophys. Res. Commun. 189:148-153, 1992). From transient transfection assays, it was determined that these changes involved the functions of two immortalization-susceptible cis-acting elements, ISE1 and ISE2, located in a 100-bp region about 1.7 kb upstream. The profiles of binding of an activator, Proserpine, to the enhancer ISE1 were similar in the extracts of young, senescent preimmortalized and immortalized cells. ISE2 contained both negative and positive regulatory elements located adjacent to each other. The positive regulatory element consisted of a tandem array of putative Ets family- and AP-1-binding sites. An activator, Pluto, interacted with this positive regulatory element and had an AP-1-related component as a complex. The binding activity of Pluto was predominantly detected only in the extract from senescent preimmortalized cells. In contrast, a repressor, Orpheus, which bound to the ATG-rich negative regulatory element of ISE2, was prominently detected in extracts from both young preimmortalized and immortalized cells and appeared to suppress transcription in an orientation-dependent manner. Thus, the interplay of Pluto and Orpheus was suggested to be crucial for regulation of the collagenase gene accompanying in vitro aging and immortalization. Proserpine seemed to interact with Pluto to mediate strong expression of the collagenase gene in cellular senescence. On the basis of these results, we propose a model for regulation of the collagenase gene during in vitro aging and immortalization. Images PMID:7935433

  10. An atlas of gene expression and gene co-regulation in the human retina.

    PubMed

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-08

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

    PubMed Central

    Vernes, Sonja C.; Oliver, Peter L.; Spiteri, Elizabeth; Lockstone, Helen E.; Puliyadi, Rathi; Taylor, Jennifer M.; Ho, Joses; Mombereau, Cedric; Brewer, Ariel; Lowy, Ernesto; Nicod, Jérôme; Groszer, Matthias; Baban, Dilair; Sahgal, Natasha; Cazier, Jean-Baptiste; Ragoussis, Jiannis; Davies, Kay E.; Geschwind, Daniel H.; Fisher, Simon E.

    2011-01-01

    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections. PMID:21765815

  12. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.

    PubMed

    Vernes, Sonja C; Oliver, Peter L; Spiteri, Elizabeth; Lockstone, Helen E; Puliyadi, Rathi; Taylor, Jennifer M; Ho, Joses; Mombereau, Cedric; Brewer, Ariel; Lowy, Ernesto; Nicod, Jérôme; Groszer, Matthias; Baban, Dilair; Sahgal, Natasha; Cazier, Jean-Baptiste; Ragoussis, Jiannis; Davies, Kay E; Geschwind, Daniel H; Fisher, Simon E

    2011-07-01

    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.

  13. Immuno-Navigator, a batch-corrected coexpression database, reveals cell type-specific gene networks in the immune system

    PubMed Central

    Vandenbon, Alexis; Dinh, Viet H.; Mikami, Norihisa; Kitagawa, Yohko; Teraguchi, Shunsuke; Ohkura, Naganari; Sakaguchi, Shimon

    2016-01-01

    High-throughput gene expression data are one of the primary resources for exploring complex intracellular dynamics in modern biology. The integration of large amounts of public data may allow us to examine general dynamical relationships between regulators and target genes. However, obstacles for such analyses are study-specific biases or batch effects in the original data. Here we present Immuno-Navigator, a batch-corrected gene expression and coexpression database for 24 cell types of the mouse immune system. We systematically removed batch effects from the underlying gene expression data and showed that this removal considerably improved the consistency between inferred correlations and prior knowledge. The data revealed widespread cell type-specific correlation of expression. Integrated analysis tools allow users to use this correlation of expression for the generation of hypotheses about biological networks and candidate regulators in specific cell types. We show several applications of Immuno-Navigator as examples. In one application we successfully predicted known regulators of importance in naturally occurring Treg cells from their expression correlation with a set of Treg-specific genes. For one high-scoring gene, integrin β8 (Itgb8), we confirmed an association between Itgb8 expression in forkhead box P3 (Foxp3)-positive T cells and Treg-specific epigenetic remodeling. Our results also suggest that the regulation of Treg-specific genes within Treg cells is relatively independent of Foxp3 expression, supporting recent results pointing to a Foxp3-independent component in the development of Treg cells. PMID:27078110

  14. VanT, a Homologue of Vibrio harveyi LuxR, Regulates Serine, Metalloprotease, Pigment, and Biofilm Production in Vibrio anguillarum

    PubMed Central

    Croxatto, Antony; Chalker, Victoria J.; Lauritz, Johan; Jass, Jana; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L.

    2002-01-01

    Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum ΔvanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the ΔvanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an l-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum ΔvanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production. PMID:11872713

  15. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum.

    PubMed

    Croxatto, Antony; Chalker, Victoria J; Lauritz, Johan; Jass, Jana; Hardman, Andrea; Williams, Paul; Cámara, Miguel; Milton, Debra L

    2002-03-01

    Vibrio anguillarum possesses at least two N-acylhomoserine lactone (AHL) quorum-sensing circuits, one of which is related to the luxMN system of Vibrio harveyi. In this study, we have cloned an additional gene of this circuit, vanT, encoding a V. harveyi LuxR-like transcriptional regulator. A V. anguillarum Delta vanT null mutation resulted in a significant decrease in total protease activity due to loss of expression of the metalloprotease EmpA, but no changes in either AHL production or virulence. Additional genes positively regulated by VanT were identified from a plasmid-based gene library fused to a promoterless lacZ. Three lacZ fusions (serA::lacZ, hpdA-hgdA::lacZ, and sat-vps73::lacZ) were identified which exhibited decreased expression in the Delta vanT strain. SerA is similar to 3-phosphoglycerate dehydrogenases and catalyzes the first step in the serine-glycine biosynthesis pathway. HgdA has identity with homogentisate dioxygenases, and HpdA is homologous to 4-hydroxyphenylpyruvate dioxygenases (HPPDs) involved in pigment production. V. anguillarum strains require an active VanT to produce high levels of an L-tyrosine-induced brown color via HPPD, suggesting that VanT controls pigment production. Vps73 and Sat are related to Vibrio cholerae proteins encoded within a DNA locus required for biofilm formation. A V. anguillarum Delta vanT mutant and a mutant carrying a polar mutation in the sat-vps73 DNA locus were shown to produce defective biofilms. Hence, a new member of the V. harveyi LuxR transcriptional activator family has been characterized in V. anguillarum that positively regulates serine, metalloprotease, pigment, and biofilm production.

  16. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes.

    PubMed

    Shukunami, Chisa; Takimoto, Aki; Nishizaki, Yuriko; Yoshimoto, Yuki; Tanaka, Seima; Miura, Shigenori; Watanabe, Hitomi; Sakuma, Tetsushi; Yamamoto, Takashi; Kondoh, Gen; Hiraki, Yuji

    2018-02-16

    Tenomodulin (Tnmd) is a type II transmembrane glycoprotein predominantly expressed in tendons and ligaments. We found that scleraxis (Scx), a member of the Twist-family of basic helix-loop-helix transcription factors, is a transcriptional activator of Tnmd expression in tenocytes. During embryonic development, Scx expression preceded that of Tnmd. Tnmd expression was nearly absent in tendons and ligaments of Scx-deficient mice generated by transcription activator-like effector nucleases-mediated gene disruption. Tnmd mRNA levels were dramatically decreased during serial passages of rat tenocytes. Scx silencing by small interfering RNA significantly suppressed endogenous Tnmd mRNA levels in tenocytes. Mouse Tnmd contains five E-box sites in the ~1-kb 5'-flanking region. A 174-base pair genomic fragment containing a TATA box drives transcription in tenocytes. Enhancer activity was increased in the upstream region (-1030 to -295) of Tnmd in tenocytes, but not in NIH3T3 and C3H10T1/2 cells. Preferential binding of both Scx and Twist1 as a heterodimer with E12 or E47 to CAGATG or CATCTG and transactivation of the 5'-flanking region were confirmed by electrophoresis mobility shift and dual luciferase assays, respectively. Scx directly transactivates Tnmd via these E-boxes to positively regulate tenocyte differentiation and maturation.

  17. [Up regulation of phenylacetate to glioma homeobox gene expression].

    PubMed

    Tian, Yu; Yang, Chaohua; Zhao, Conghai

    2002-03-01

    Even though phenylacetate (PA) bas been shown to inhibit the growth and induce differentiation in rat C6 glioma cell line, its mechanisms are still poorly understood. This study is aimed to identify which Hox gene is related to glioma and to observe the change in expression on mRNA level as treated by phenylasetate. Twenty-two kinds of Hox gene were divided into 3 groups according to their primer sequence. Semiquantitative reverse transcription- polymerase chain reaction (RT-PCR) was used to investigate the mRNA expression of Hox gene groups and some Hox gene in rat C6 glioma cell line following differentiation induced by PA. The level of Hox gene expression was expressed as ratio expression rate (RER) of Hox gene/beta-actin according to computer image analysis and the difference between C6 cells and PA treated C6 cells was analyzed by student t-test. It was found that Hox genes matching to primers P2 were mildly expressed in C6 cells and the expression of HoxB2 mRNA was significantly up-regulated in PA treated C6 cells (P < 0.001). The weak expression of HoxB2 may be involved in glioma origin and the mechanisms of PA action are correlated with transcription process in the glioma cells.

  18. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation

    PubMed Central

    Chornoguz, Olesya; Hagan, Robert S.; Haile, Azeb; Arwood, Matthew L.; Gamper, Christopher J.; Banerjee, Arnob; Powell, Jonathan D.

    2017-01-01

    CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFNγ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis – multiple reaction monitoring mass spectrometry (MRM-MS). We used MRM-MS to detect and quantify predicted phospho-peptides derived from T-bet. By analyzing activated murine WT and Rheb deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify 6 T-bet phosphorylation sites. Five of these are novel, and 4 sites are consistently dephosphorylated in both Rheb deficient CD4+ T-cells and T-cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the 6 phosphorylation sites was tested for the ability to impair IFNγ expression. Single phosphorylation site mutants still support induction of IFNγ expression, however simultaneous mutation of 3 of the mTORC1-dependent sites results in significantly reduced IFNγ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation. PMID:28424242

  19. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses.

    PubMed

    Pascual, Ma Belén; Cánovas, Francisco M; Ávila, Concepción

    2015-10-24

    NAC transcription factors comprise a large plant-specific gene family involved in the regulation of diverse biological processes. Despite the growing number of studies on NAC transcription factors in various species, little information is available about this family in conifers. The goal of this study was to identify the NAC transcription family in maritime pine (Pinus pinaster), to characterize ATAF-like genes in response to various stresses and to study their molecular regulation. We have isolated two maritime pine NAC genes and using a transient expression assay in N. benthamiana leaves estudied the promoter jasmonate response. In this study, we identified 37 NAC genes from maritime pine and classified them into six main subfamilies. The largest group includes 12 sequences corresponding to stress-related genes. Two of these NAC genes, PpNAC2 and PpNAC3, were isolated and their expression profiles were examined at various developmental stages and in response to various types of stress. The expression of both genes was strongly induced by methyl jasmonate (MeJA), mechanical wounding, and high salinity. The promoter regions of these genes were shown to contain cis-elements involved in the stress response and plant hormonal regulation, including E-boxes, which are commonly found in the promoters of genes that respond to jasmonate, and binding sites for bHLH proteins. Using a transient expression assay in N. benthamiana leaves, we found that the promoter of PpNAC3 was rapidly induced upon MeJA treatment, while this response disappeared in plants in which the transcription factor NbbHLH2 was silenced. Our results suggest that PpNAC2 and PpNAC3 encode stress-responsive NAC transcription factors involved in the jasmonate response in pine. Furthermore, these data also suggest that the jasmonate signaling pathway is conserved between angiosperms and gymnosperms. These findings may be useful for engineering stress tolerance in pine via biotechnological approaches.

  20. Insulin Is Required to Maintain Albumin Expression by Inhibiting Forkhead Box O1 Protein*

    PubMed Central

    Chen, Qing; Lu, Mingjian; Monks, Bobby R.; Birnbaum, Morris J.

    2016-01-01

    Diabetes is accompanied by dysregulation of glucose, lipid, and protein metabolism. In recent years, much effort has been spent on understanding how insulin regulates glucose and lipid metabolism, whereas the effect of insulin on protein metabolism has received less attention. In diabetes, hepatic production of serum albumin decreases, and it has been long established that insulin positively controls albumin gene expression. In this study, we used a genetic approach in mice to identify the mechanism by which insulin regulates albumin gene transcription. Albumin expression was decreased significantly in livers with insulin signaling disrupted by ablation of the insulin receptor or Akt. Concomitant deletion of Forkhead Box O1 (Foxo1) in these livers rescued the decreased albumin secretion. Furthermore, activation of Foxo1 in the liver is sufficient to suppress albumin expression. These results suggest that Foxo1 acts as a repressor of albumin expression. PMID:26668316

  1. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    NASA Astrophysics Data System (ADS)

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA

  2. Short Vegetative Phase-Like MADS-Box Genes Inhibit Floral Meristem Identity in Barley1[W][OA

    PubMed Central

    Trevaskis, Ben; Tadege, Million; Hemming, Megan N.; Peacock, W. James; Dennis, Elizabeth S.; Sheldon, Candice

    2007-01-01

    Analysis of the functions of Short Vegetative Phase (SVP)-like MADS-box genes in barley (Hordeum vulgare) indicated a role in determining meristem identity. Three SVP-like genes are expressed in vegetative tissues of barley: Barley MADS1 (BM1), BM10, and Vegetative to Reproductive Transition gene 2. These genes are induced by cold but are repressed during floral development. Ectopic expression of BM1 inhibited spike development and caused floral reversion in barley, with florets at the base of the spike replaced by tillers. Head emergence was delayed in plants that ectopically express BM1, primarily by delayed development after the floral transition, but expression levels of the barley VRN1 gene (HvVRN1) were not affected. Ectopic expression of BM10 inhibited spike development and caused partial floral reversion, where florets at the base of the spike were replaced by inflorescence-like structures, but did not affect heading date. Floral reversion occurred more frequently when BM1 and BM10 ectopic expression lines were grown in short-day conditions. BM1 and BM10 also inhibited floral development and caused floral reversion when expressed in Arabidopsis (Arabidopsis thaliana). We conclude that SVP-like genes function to suppress floral meristem identity in winter cereals. PMID:17114273

  3. Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus.

    PubMed

    Willett, Christopher S; Burton, Ronald S

    2002-08-01

    Diverse organisms regulate concentrations of intracellular organic osmolytes in response to changes in environmental salinity or desiccation. In marine crustaceans, accumulation of high concentrations of proline is a dominant component of response to hyperosmotic stress. In the euryhaline copepod Tigriopus californicus, synthesis of proline from its metabolic precursor glutamate is tightly regulated by changes in environmental salinity. Here, for the first time in a marine invertebrate, the genes responsible for this pathway have been cloned and characterized. The two proteins display the sequence features of homologous enzymes identified from other eukaryotes. One of the cloned genes, delta1-pyrroline-5-carboxylase reductase (P5CR), is demonstrated to have the reductase enzyme activity when expressed in proline-auxotroph bacteria, while the second, delta1-pyrroline-5-carboxylase synthase (P5CS), does not rescue proline-auxotroph bacteria. In contrast to results from higher plants, neither levels of P5CS nor P5CR mRNAs increase in response to salinity stress in T. californicus. Hence, regulation of proline synthesis during osmotic stress in T. californicus is likely mediated by some form of post-transcriptional regulation of either P5CS or P5CR. Understanding the regulation this pathway may elucidate the mechanisms limiting the salinity ranges of marine taxa. Copyright 2002 Elsevier Science Inc.

  4. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cleveland, Beth M; Weber, Gregory M

    2015-05-15

    Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids. Published by Elsevier Inc.

  5. Identification of rare paired box 3 variant in strabismus by whole exome sequencing.

    PubMed

    Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang

    2017-01-01

    To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.

  6. Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression.

    PubMed

    Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina; Lorenzini, Leonardo; Carnicelli, Vittoria; Rogowski, Micheal; Selen Alpergin, Ebru S; Tonelli, Marco; Ghelardoni, Sandra; Saba, Alessandro; Zucchi, Riccardo; Chiellini, Grazia

    2018-05-22

    Obesity is a complex disease associated with environmental and genetic factors. 3-Iodothyronamine (T1AM) has revealed great potential as an effective weight loss drug. We used metabolomics and associated transcriptional gene and protein expression analysis to investigate the tissue specific metabolic reprogramming effects of subchronic T1AM treatment at two pharmacological daily doses (10 and 25 mg/kg) on targeted metabolic pathways. Multi-analytical results indicated that T1AM at 25 mg/kg can act as a novel master regulator of both glucose and lipid metabolism in mice through sirtuin-mediated pathways. In liver, we observed an increased gene and protein expression of Sirt6 (a master gene regulator of glucose) and Gck (glucose kinase) and a decreased expression of Sirt4 (a negative regulator of fatty acids oxidation (FAO)), whereas in white adipose tissue only Sirt6 was increased. Metabolomics analysis supported physiological changes at both doses with most increases in FAO, glycolysis indicators and the mitochondrial substrate, at the highest dose of T1AM. Together our results suggest that T1AM acts through sirtuin-mediated pathways to metabolically reprogram fatty acid and glucose metabolism possibly through small molecules signaling. Our novel mechanistic findings indicate that T1AM has a great potential as a drug for the treatment of obesity and possibly diabetes.

  7. Down-Regulation of Kelch Domain-Containing F-Box Protein in Arabidopsis Enhances the Production of (Poly)phenols and Tolerance to Ultraviolet Radiation1[OPEN

    PubMed Central

    Zhang, Xuebin; Gou, Mingyue; Guo, Chunrong; Yang, Huijun; Liu, Chang-Jun

    2015-01-01

    Phenylpropanoid biosynthesis in plants engenders myriad phenolics with diverse biological functions. Phenylalanine ammonia-lyase (PAL) is the first committed enzyme in the pathway, directing primary metabolic flux into a phenylpropanoid branch. Previously, we demonstrated that the Arabidopsis (Arabidopsis thaliana) Kelch domain-containing F-box proteins, AtKFB01, AtKFB20, and AtKFB50, function as the negative regulators controlling phenylpropanoid biosynthesis via mediating PAL’s ubiquitination and subsequent degradation. Here, we reveal that Arabidopsis KFB39, a close homolog of AtKFB50, also interacts physically with PAL isozymes and modulates PAL stability and activity. Disturbing the expression of KFB39 reciprocally affects the accumulation/deposition of a set of phenylpropanoid end products, suggesting that KFB39 is an additional posttranslational regulator responsible for the turnover of PAL and negatively controlling phenylpropanoid biosynthesis. Furthermore, we discover that exposure of Arabidopsis to ultraviolet (UV)-B radiation suppresses the expression of all four KFB genes while inducing the transcription of PAL isogenes; these data suggest that Arabidopsis consolidates both transcriptional and posttranslational regulation mechanisms to maximize its responses to UV light stress. Simultaneous down-regulation of all four identified KFBs significantly enhances the production of (poly)phenols and the plant’s tolerance to UV irradiation. This study offers a biotechnological approach for engineering the production of useful phenolic chemicals and for increasing a plant’s resistance to environmental stress. PMID:25502410

  8. Development of a qPCR Strategy to Select Bean Genes Involved in Plant Defense Response and Regulated by the Trichoderma velutinum - Rhizoctonia solani Interaction.

    PubMed

    Mayo, Sara; Cominelli, Eleonora; Sparvoli, Francesca; González-López, Oscar; Rodríguez-González, Alvaro; Gutiérrez, Santiago; Casquero, Pedro A

    2016-01-01

    Bean production is affected by a wide diversity of fungal pathogens, among them Rhizoctonia solani is one of the most important. A strategy to control bean infectious diseases, mainly those caused by fungi, is based on the use of biocontrol agents (BCAs) that can reduce the negative effects of plant pathogens and also can promote positive responses in the plant. Trichoderma is a fungal genus that is able to induce the expression of genes involved in plant defense response and also to promote plant growth, root development and nutrient uptake. In this article, a strategy that combines in silico analysis and real time PCR to detect additional bean defense-related genes, regulated by the presence of Trichoderma velutinum and/or R. solani has been applied. Based in this strategy, from the 48 bean genes initially analyzed, 14 were selected, and only WRKY33, CH5b and hGS showed an up-regulatory response in the presence of T. velutinum. The other genes were or not affected (OSM34) or down-regulated by the presence of this fungus. R. solani infection resulted in a down-regulation of most of the genes analyzed, except PR1, OSM34 and CNGC2 that were not affected, and the presence of both, T. velutinum and R. solani, up-regulates hGS and down-regulates all the other genes analyzed, except CH5b which was not significantly affected. As conclusion, the strategy described in the present work has been shown to be effective to detect genes involved in plant defense, which respond to the presence of a BCA or to a pathogen and also to the presence of both. The selected genes show significant homology with previously described plant defense genes and they are expressed in bean leaves of plants treated with T. velutinum and/or infected with R. solani.

  9. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  10. Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes.

    PubMed

    Alvarez-Buylla, Elena R; García-Ponce, Berenice; Garay-Arroyo, Adriana

    2006-01-01

    APETALA1 (AP1) and CAULIFLOWER (CAL) are closely related MADS box genes that are partially redundant during Arabidopsis thaliana floral meristem determination. AP1 is able to fully substitute for CAL functions, but not vice versa, and AP1 has unique sepal and petal identity specification functions. In this study, the unique and redundant functions of these two genes has been mapped to the four protein domains that characterize type-II MADS-domain proteins by expressing all 15 chimeric combinations of AP1 and CAL cDNA regions under control of the AP1 promoter in ap1-1 loss-of-function plants. The "in vivo" function of these chimeric genes was analysed in Arabidopsis plants by expressing the chimeras. Rescue of flower meristem and sepal/petal identities was scored in single and multiple insert homozygous transgenic lines. Using these chimeric lines, it was found that distinct residues of the AP1 K domain not shared by the same CAL domain are necessary and sufficient for complete recovery of floral meristem identity, in the context of the CAL protein sequence, while both AP1 COOH and K domains are indispensable for complete rescue of sepal identity. By contrast, either one of these two AP1 domains is necessary and sufficient for complete petal identity recovery. It was also found that there were positive and negative synergies among protein domains and their combinations, and that multiple-insert lines showed relatively better rescue than equivalent single-insert lines. Finally, several lines had flowers with extra sepals and petals suggesting that chimeric proteins yield abnormal transcriptional complexes that may alter the expression or regulation of genes that control floral organ number under normal conditions.

  11. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    PubMed Central

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  12. Placing Ion Channels into a Signaling Network of T Cells: From Maturing Thymocytes to Healthy T Lymphocytes or Leukemic T Lymphoblasts

    PubMed Central

    Delgado-Enciso, Iván; Best-Aguilera, Carlos; Rojas-Sotelo, Rocío Monserrat; Pottosin, Igor

    2015-01-01

    T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting “leukemogenic” signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility. PMID:25866806

  13. The SOS Response Master Regulator LexA Regulates the Gene Transfer Agent of Rhodobacter capsulatus and Represses Transcription of the Signal Transduction Protein CckA.

    PubMed

    Kuchinski, Kevin S; Brimacombe, Cedric A; Westbye, Alexander B; Ding, Hao; Beatty, J Thomas

    2016-02-01

    The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (<1%) of cells in a stationary-phase culture. RcGTA particles deliver this DNA to surrounding R. capsulatus cells, and the DNA is integrated into the recipient genome though a process that requires homologs of natural transformation genes and RecA-mediated homologous recombination. Here, we report the identification of the LexA repressor, the master regulator of the SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5' of typical SOS response coding sequences and also 5' of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive Rc

  14. UV-B-Responsive Association of the Arabidopsis bZIP Transcription Factor ELONGATED HYPOCOTYL5 with Target Genes, Including Its Own Promoter[W][OPEN

    PubMed Central

    Binkert, Melanie; Kozma-Bognár, László; Terecskei, Kata; De Veylder, Lieven; Nagy, Ferenc; Ulm, Roman

    2014-01-01

    In plants subjected to UV-B radiation, responses are activated that minimize damage caused by UV-B. The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8) and promotes UV-B-induced photomorphogenesis and acclimation. Expression of HY5 is induced by UV-B; however, the transcription factor(s) that regulate HY5 transcription in response to UV-B and the impact of UV-B on the association of HY5 with its target promoters are currently unclear. Here, we show that HY5 binding to the promoters of UV-B-responsive genes is enhanced by UV-B in a UVR8-dependent manner in Arabidopsis thaliana. In agreement, overexpression of REPRESSOR OF UV-B PHOTOMORPHOGENESIS2, a negative regulator of UVR8 function, blocks UV-B-responsive HY5 enrichment at target promoters. Moreover, we have identified a T/G-box in the HY5 promoter that is required for its UV-B responsiveness. We show that HY5 and its homolog HYH bind to the T/GHY5-box cis-acting element and that they act redundantly in the induction of HY5 expression upon UV-B exposure. Therefore, HY5 is enriched at target promoters in response to UV-B in a UVR8 photoreceptor-dependent manner, and HY5 and HYH interact directly with a T/G-box cis-acting element of the HY5 promoter, mediating the transcriptional activation of HY5 in response to UV-B. PMID:25351492

  15. A Novel Thyroid Hormone Mediated Regulation of HSV-1 Gene Expression and Replication is Specific to Neuronal Cells and Associated with Disruption of Chromatin Condensation

    PubMed Central

    Chen, Feng; Palem, Jay; Balish, Matthew; Figliozzi, Robert; Ajavon, Amakoe; Hsia, S Victor

    2014-01-01

    Previously we showed that thyroid hormone (T3) regulated the Herpes Simplex Virus Type -1 (HSV-1) gene expression and replication through its nuclear receptor TR via histone modification and chromatin remodeling in a neuroblastoma cell line neuro-2a cells (N2a). This observation suggested that T3 regulation may be neuron-specific and have implication in HSV-1 latency and reactivation. In this study, our in vitro latency/reactivation model demonstrated that removal of T3 can de-repress the HSV-1 replication and favor reactivation. Transfection studies and infection assays indicated that HSV-1 thymidine kinase (TK), a key viral gene during reactivation, was repressed by TR/T3 in cells with neuronal origin but not in non-neuronal cells. Additional studies showed that RCC1 (Regulator of Chromosome Condensation 1) was sequestered but efficiently detected upon viral infection in N2a cells. Western blot analyses indicated that addition of T3 repressed the RCC1 expression upon infection. It is likely that diminution of RCC1 upon infection in neuronal cells under the influence of TR/T3 may lead to repression of viral replication/gene expression thus promote latency. Together these results demonstrated that TR/T3 mediated regulation is specific to neuronal cells and differential chromosome condensation may play a critical role in this process. PMID:25346944

  16. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  17. Measuring Helicase Inhibition of the DEAD-box Protein Dbp2 by Yra1

    PubMed Central

    Ma, Wai Kit; Tran, Elizabeth J.

    2016-01-01

    Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to RNA helicase and purified co-factor. PMID:25579587

  18. T Cell Intrinsic Function of the Noncanonical NF-κB Pathway in the Regulation of GM-CSF Expression and EAE Pathogenesis

    PubMed Central

    Yu, Jiayi; Zhou, Xiaofei; Nakaya, Mako; Jin, Wei; Cheng, Xuhong; Sun, Shao-Cong

    2014-01-01

    The Noncanonical NF-κB pathway induces processing of the NF-κB2 precursor protein p100 and, thereby, mediates activation of p52-containing NF-κB complexes. This pathway is crucial for B-cell maturation and humoral immunity, but its role in regulating T-cell function is less clear. Using mutant mice that express a non-processible p100, NF-κB2lym1, we show that the noncanonical NF-κB pathway has a T cell-intrinsic role in regulating the pathogenesis of a T cell-mediated autoimmunity, experimental autoimmune encephalomyelitis (EAE). Although the lym1 mutation does not interfere with naïve T-cell activation, it renders the Th17 cells defective in the production of inflammatory effector molecules, particularly the cytokine GM-CSF. We provide evidence that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. Introduction of exogenous p52 or GM-CSF to the NF-κB2lym1 mutant T cells partially restores their ability to induce EAE. These results suggest that the noncanonical NF-κB pathway mediates induction of EAE by regulating the effector function of inflammatory T cells. PMID:24899500

  19. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit.

  20. Mechanisms of specificity in neuronal activity-regulated gene transcription

    PubMed Central

    Lyons, Michelle R.; West, Anne E.

    2011-01-01

    The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929