Sample records for t10 spinal cord

  1. Fast and accurate semi-automated segmentation method of spinal cord MR images at 3T applied to the construction of a cervical spinal cord template.

    PubMed

    El Mendili, Mohamed-Mounir; Chen, Raphaël; Tiret, Brice; Villard, Noémie; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib

    2015-01-01

    To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects' images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template.

  2. Fast and Accurate Semi-Automated Segmentation Method of Spinal Cord MR Images at 3T Applied to the Construction of a Cervical Spinal Cord Template

    PubMed Central

    El Mendili, Mohamed-Mounir; Trunet, Stéphanie; Pélégrini-Issac, Mélanie; Lehéricy, Stéphane; Pradat, Pierre-François; Benali, Habib

    2015-01-01

    Objective To design a fast and accurate semi-automated segmentation method for spinal cord 3T MR images and to construct a template of the cervical spinal cord. Materials and Methods A semi-automated double threshold-based method (DTbM) was proposed enabling both cross-sectional and volumetric measures from 3D T2-weighted turbo spin echo MR scans of the spinal cord at 3T. Eighty-two healthy subjects, 10 patients with amyotrophic lateral sclerosis, 10 with spinal muscular atrophy and 10 with spinal cord injuries were studied. DTbM was compared with active surface method (ASM), threshold-based method (TbM) and manual outlining (ground truth). Accuracy of segmentations was scored visually by a radiologist in cervical and thoracic cord regions. Accuracy was also quantified at the cervical and thoracic levels as well as at C2 vertebral level. To construct a cervical template from healthy subjects’ images (n=59), a standardization pipeline was designed leading to well-centered straight spinal cord images and accurate probability tissue map. Results Visual scoring showed better performance for DTbM than for ASM. Mean Dice similarity coefficient (DSC) was 95.71% for DTbM and 90.78% for ASM at the cervical level and 94.27% for DTbM and 89.93% for ASM at the thoracic level. Finally, at C2 vertebral level, mean DSC was 97.98% for DTbM compared with 98.02% for TbM and 96.76% for ASM. DTbM showed similar accuracy compared with TbM, but with the advantage of limited manual interaction. Conclusion A semi-automated segmentation method with limited manual intervention was introduced and validated on 3T images, enabling the construction of a cervical spinal cord template. PMID:25816143

  3. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  4. Microsurgical resection of intramedullary spinal cord hemangioblastoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Spinal cord hemangioblastomas account for about 10% of spinal cord tumors. They usually arise from the dorsolateral pia mater and are characterized by their significant vascularity. The principles and techniques of safe resection are different than those employed for the more commonly occurring intramedullary glial tumors (e.g. ependymoma, astrocytoma) and consist of circumferential detachment of the tumor margin from the surrounding normal pia. This video demonstrates the microsurgical techniques of resection of a thoracic spinal cord hemangioblastoma. The video can be found here: http://youtu.be/yT5KLi4VyAo.

  5. [APPLICATION OF THREE DIMENSIONAL PRINTING ON MANUFACTURING BIONIC SCAFFOLDS OF SPINAL CORD IN RATS].

    PubMed

    Chen, Yisheng; Wang, Jingjing; Chen, Xuyi; Chen, Chong; Tu, Yue; Zhang, Sai; Li, Xiaohong

    2015-03-01

    To fabricate the bionic scaffolds of rat spinal cord by combining three dimensional (3D) printer and 3D software, so as to lay the foundation of theory and technology for the manufacture of scaffolds by using biomaterials. Three female Sprague Dawley rats were scanned by 7.0T MRI to obtain the shape and position data of the cross section and gray matter of T8 to T10 spinal cord. Combined with data of position and shape of nerve conduction beam, the relevant data were obtained via Getdata software. Then the 3D graphics were made and converted to stereolithography (STL) format by using SolidWorks software. Photosensitive resin was used as the materials of spinal cord scaffolds. The bionic scaffolds were fabricated by 3D printer. MRI showed that the section shape of T8 to T10 segments of the spinal cord were approximately oval with a relatively long sagittal diameter of (2.20 ± 0.52) mm and short transverse diameter of (2.05 ± 0.24) mm, and the data of nerve conduction bundle were featured in the STL format. The spinal cord bionic scaffolds of the target segments made by 3D printer were similar to the spinal cord of rat in the morphology and size, and the position of pores simulated normal nerve conduction of rat spinal cord. Spinal cord scaffolds produced by 3D printer which have similar shape and size of normal rat spinal cord are more bionic, and the procedure is simple. This technology combined with biomaterials is also promising in spinal cord repairing after spinal cord injury.

  6. Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.

    PubMed

    San Emeterio Nateras, Oscar; Yu, Fang; Muir, Eric R; Bazan, Carlos; Franklin, Crystal G; Li, Wei; Li, Jinqi; Lancaster, Jack L; Duong, Timothy Q

    2016-04-01

    To apply resting-state functional magnetic resonance (MR) imaging to map functional connectivity of the human spinal cord. Studies were performed in nine self-declared healthy volunteers with informed consent and institutional review board approval. Resting-state functional MR imaging was performed to map functional connectivity of the human cervical spinal cord from C1 to C4 at 1 × 1 × 3-mm resolution with a 3.0-T clinical MR imaging unit. Independent component analysis (ICA) was performed to derive resting-state functional MR imaging z-score maps rendered on two-dimensional and three-dimensional images. Seed-based analysis was performed for cross validation with ICA networks by using Pearson correlation. Reproducibility analysis of resting-state functional MR imaging maps from four repeated trials in a single participant yielded a mean z score of 6 ± 1 (P < .0001). The centroid coordinates across the four trials deviated by 2 in-plane voxels ± 2 mm (standard deviation) and up to one adjacent image section ± 3 mm. ICA of group resting-state functional MR imaging data revealed prominent functional connectivity patterns within the spinal cord gray matter. There were statistically significant (z score > 3, P < .001) bilateral, unilateral, and intersegmental correlations in the ventral horns, dorsal horns, and central spinal cord gray matter. Three-dimensional surface rendering provided visualization of these components along the length of the spinal cord. Seed-based analysis showed that many ICA components exhibited strong and significant (P < .05) correlations, corroborating the ICA results. Resting-state functional MR imaging connectivity networks are qualitatively consistent with known neuroanatomic and functional structures in the spinal cord. Resting-state functional MR imaging of the human cervical spinal cord with a 3.0-T clinical MR imaging unit and standard MR imaging protocols and hardware reveals prominent functional connectivity patterns within the

  7. Topologically preserving straightening of spinal cord MRI.

    PubMed

    De Leener, Benjamin; Mangeat, Gabriel; Dupont, Sara; Martin, Allan R; Callot, Virginie; Stikov, Nikola; Fehlings, Michael G; Cohen-Adad, Julien

    2017-10-01

    To propose a robust and accurate method for straightening magnetic resonance (MR) images of the spinal cord, based on spinal cord segmentation, that preserves spinal cord topology and that works for any MRI contrast, in a context of spinal cord template-based analysis. The spinal cord curvature was computed using an iterative Non-Uniform Rational B-Spline (NURBS) approximation. Forward and inverse deformation fields for straightening were computed by solving analytically the straightening equations for each image voxel. Computational speed-up was accomplished by solving all voxel equation systems as one single system. Straightening accuracy (mean and maximum distance from straight line), computational time, and robustness to spinal cord length was evaluated using the proposed and the standard straightening method (label-based spline deformation) on 3T T 2 - and T 1 -weighted images from 57 healthy subjects and 33 patients with spinal cord compression due to degenerative cervical myelopathy (DCM). The proposed algorithm was more accurate, more robust, and faster than the standard method (mean distance = 0.80 vs. 0.83 mm, maximum distance = 1.49 vs. 1.78 mm, time = 71 vs. 174 sec for the healthy population and mean distance = 0.65 vs. 0.68 mm, maximum distance = 1.28 vs. 1.55 mm, time = 32 vs. 60 sec for the DCM population). A novel image straightening method that enables template-based analysis of quantitative spinal cord MRI data is introduced. This algorithm works for any MRI contrast and was validated on healthy and patient populations. The presented method is implemented in the Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1209-1219. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  9. Imaging spinal cord atrophy in progressive myelopathies: HTLV-I-associated neurological disease (HAM/TSP) and multiple sclerosis (MS).

    PubMed

    Azodi, Shila; Nair, Govind; Enose-Akahata, Yoshimi; Charlip, Emily; Vellucci, Ashley; Cortese, Irene; Dwyer, Jenifer; Billioux, B Jeanne; Thomas, Chevaz; Ohayon, Joan; Reich, Daniel S; Jacobson, Steven

    2017-11-01

    Previous work measures spinal cord thinning in chronic progressive myelopathies, including human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and multiple sclerosis (MS). Quantitative measurements of spinal cord atrophy are important in fully characterizing these and other spinal cord diseases. We aimed to investigate patterns of spinal cord atrophy and correlations with clinical markers. Spinal cord cross-sectional area was measured in individuals (24 healthy controls [HCs], 17 asymptomatic carriers of HTLV-1 (AC), 47 HAM/TSP, 74 relapsing-remitting MS [RRMS], 17 secondary progressive MS [SPMS], and 40 primary progressive MS [PPMS]) from C1 to T10. Clinical disability scores, viral markers, and immunological parameters were obtained for patients and correlated with representative spinal cord cross-sectional area regions at the C2 to C3, C4 to C5, and T4 to T9 levels. In 2 HAM/TSP patients, spinal cord cross-sectional area was measured over 3 years. All spinal cord regions are thinner in HAM/TSP (56 mm 2 [standard deviation, 10], 59 [10], 23 [5]) than in HC (76 [7], 83 [8], 38 [4]) and AC (71 [7], 78 [9], 36 [7]). SPMS (62 [9], 66 [9], 32 [6]) and PPMS (65 [11], 68 [10], 35 [7]) have thinner cervical cords than HC and RRMS (73 [9], 77 [10], 37 [6]). Clinical disability scores (Expanded Disability Status Scale [p = 0.009] and Instituto de Pesquisas de Cananeia [p = 0.03]) and CD8 + T-cell frequency (p = 0.04) correlate with T4 to T9 spinal cord cross-sectional area in HAM/TSP. Higher cerebrospinal fluid HTLV-1 proviral load (p = 0.01) was associated with thinner spinal cord cross-sectional area. Both HAM/TSP patients followed longitudinally showed thoracic thinning followed by cervical thinning. Group average spinal cord cross-sectional area in HAM/TSP and progressive MS show spinal cord atrophy. We further hypothesize in HAM/TSP that is possible that neuroglial loss from a thoracic inflammatory

  10. Optical monitoring of spinal cord hemodynamics, a feasibility study

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Kwon, Brian K.; Streijger, Femke; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Cripton, Peter A.; Macnab, Andrew

    2017-02-01

    Background: After an acute traumatic spinal cord injury (SCI), the spinal cord is subjected to ischemia, hypoxia, and increased hydrostatic pressure which exacerbate further secondary damage and neuronal deficit. The purpose of this pilot study was to explore the use of near infrared spectroscopy (NIRS) for non-invasive and real-time monitoring of these changes within the injured spinal cord in an animal model. NIRS is a non-invasive optical technique that utilizes light in the near infrared spectrum to monitor changes in the concentration of tissue chromophores from which alterations in tissues oxygenation and perfusion can be inferred in real time. Methods: A custom-made miniaturized NIRS sensor was developed to monitor spinal cord hemodynamics and oxygenation noninvasively and in real time simultaneously with invasive, intraparenchymal monitoring in a pig model of SCI. The spinal cord around the T10 injury site was instrumented with intraparenchymal probes inserted directly into the spinal cord to measure oxygen pressure, blood flow, and hydrostatic pressure, and the same region of the spinal cord was monitored with the custom-designed extradural NIRS probe. We investigated how well the extradural NIRS probe detected intraparenchymal changes adjacent to the injury site after alterations in systemic blood pressure, global hypoxia, and traumatic injury generated by a weight-drop contusion. Results: The NIRS sensor successfully identified periods of systemic hypoxia, re-ventilation and changes in spinal cord perfusion and oxygenation during alterations of mean arterial pressure and following spinal cord injury. Conclusion: This pilot study indicates that extradural NIRS monitoring of the spinal cord is feasible as a non-invasive optical method to identify changes in spinal cord hemodynamics and oxygenation in real time. Further development of this technique would allow clinicians to monitor real-time physiologic changes within the injured spinal cord during the

  11. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  12. Sexuality and sexual dysfunction in spinal cord-injured men in Turkey.

    PubMed

    Akman, Ramazan Yavuz; Coşkun Çelik, Evrim; Karataş, Metin

    2015-01-01

    To provide a comprehensive evaluation of sexual function and dysfunction in spinal cord-injured men based on self-reports of patients. Forty-seven spinal cord-injured men who completed the spinal shock and rehabilitation period were included. Patients were asked to complete a questionnaire developed to assess social status, sexual activities, abilities, and sexuality education after injury. Neurologic levels of patients were classified according to American Spinal Cord Injury Association protocol. Erectile function was evaluated by International Index of Erectile Function-5 (IIEF-5) questionnaire. Patients were aged between 20 and 62 years (mean: 35.2). Twenty-eight patients had T10 and above, 15 between T11 and L2, and 4 cauda conus injury. While 61.7% of the patients declared sexual activity, 93.6% declared some degree of erection. Mean IIEF-5 score was 5.3 and 87.3% of the patients had moderate to severe erectile dysfunction. Continuation of sexual activity after injury is very important and has a great impact on quality of life and interpersonal relationships for spinal cord-injured men. More attention must be given to sexuality after spinal cord injury. A very high rate of sexual dysfunction in spinal cord-injured patients was found and the importance of sexual education was emphasized in this study.

  13. Cardio Respiratory Adaptations with Long Term Personalized Exercise Program in a T12 Spinal Cord Injured Person

    ERIC Educational Resources Information Center

    Vasiliadis, Angelo; Christoulas, Kosmas; Evaggelinou, Christina; Vrabas, Ioannis

    2009-01-01

    The purpose of this study was to investigate the physiological adaptations in cardio respiratory endurance with a personalized exercise program with arm-cranking exercise in a paraplegic person (incomplete T12 spinal cord injury). A 32 year-old man with spinal cord injury (T12) participated in the present study performing 30 minutes arm cranking…

  14. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study

    NASA Astrophysics Data System (ADS)

    Fernandes, Sofia R.; Salvador, Ricardo; Wenger, Cornelia; de Carvalho, Mamede; Miranda, Pedro C.

    2018-06-01

    Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.

  15. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... the spinal cord. These attachments cause an abnormal stretching of the spinal cord. The course of the ... the spinal cord. These attachments cause an abnormal stretching of the spinal cord. The course of the ...

  16. Neuropeptide Y in human spinal cord.

    PubMed

    Allen, J M; Gibson, S J; Adrian, T E; Polak, J M; Bloom, S R

    1984-08-06

    The distribution of a newly described peptide, neuropeptide Y (NPY) within the human spinal cord has been determined using radioimmunoassay and immunocytochemistry. Higher concentrations were found in the lumbar (49.9 +/- 6.8 pmol/g) and sacral (47.0 +/- 10.6 pmol/g) regions than in the cervical (27.6 +/- 2.7 pmol/g) and thoracic spinal cord (33.8 +/- 5.3 pmol/g). Immunocytochemistry revealed numerous nerve fibers containing NPY in the spinal cord; these were particularly concentrated in the substantia gelatinosa of the dorsal horn. In the ventral spinal cord NPY-containing nerves were sparse becoming more abundant in lumbosacral segments.

  17. [The metabolic profilings study of serum and spinal cord from acute spinal cord injury rats ¹H NMR spectroscopy].

    PubMed

    Hu, Hua-Hui; Huang, Xiao-Long; Quan, Ren-Fu; Yang, Zong-Bao; Xu, Jing-Jing

    2017-02-25

    To establish the rat model of acute spinal cord injury, followed by aprimary study on this model with ¹H NMR based on metabonomics and to explore the metabonomics and biomarkers of spinal cord injury rat. Twenty eight-week-old adult male SD rats of clean grade, with body weight of (200±10) g, were divided into sham operation group and model group in accordance with the law of random numbers, and every group had 10 rats. The rats of sham operation group were operated without damaging the spinal cord, and rats of model group were made an animal model of spinal cord incomplete injury according to the modified Allen's method. According to BBB score to observate the motor function of rats on the 1th, 5th, and 7th days after surgery. Postoperative spinal cord tissue was collected in order to pathologic observation at the 7th day, and the metabolic profilings of serum and spinal cord from spinal cord injury rats were studied by ¹H NMR spectroscopy. The hindlimb motion of rats did not obviously change in sham operation group, there was no significant difference at each time point;and rats of model group occurred flaccid paralysis of both lower extremities, there was a significant difference at each time; there was significant differences between two groups at each time. Pathological results showed the spinal cord structure was normal with uniform innervation in shame group, while in model group, the spinal cord structure was mussy, and the neurons were decreased, with inflammatory cells and necrotic tissue. Analysis of metabonomics showed that concentration of very low density fat protein (VLDL), low density fat protein (LDL), glutamine, citric acid, dimethylglycine (DMG) in the serum and glutathione, 3-OH-butyrate, N-Acetyl-L-aspartic acid (NAA), glycerophosphocholine (GPC), glutamic acid, and ascorbate in spinal cord had significant changes( P <0.05). There are significant differences in metabolic profile from serum and spinal cord sample between model group and sham

  18. Receptor activated bladder and spinal ATP release in neurally intact and chronic spinal cord injured rats

    PubMed Central

    Salas, Nilson A.; Somogyi, George T.; Gangitano, David A.; Boone, Timothy B.; Smith, Christopher P.

    2009-01-01

    Neurally intact (NI) rats and chronic spinal cord injured (SCI) rats were studied to determine how activation of mechanosensory or cholinergic receptors in the bladder urothelium evokes ATP release from afferent terminals in the bladder as well as in the spinal cord. Spinal cord transection was performed at the T9-T10 level 2–3 weeks prior to the experiment and a microdialysis fiber was inserted in the L6-S1 lumbosacral spinal cord. Mechanically evoked (i.e. 10cm/w bladder pressure) ATP release into the bladder lumen was approximately 6.5 fold higher in SCI compared to NI rats (p<0.05). Intravesical carbachol (CCh) induced a significantly greater release of ATP in the bladder from SCI as compared to NI rats (3424.32 ± 1255.57 vs. 613.74 ± 470.44 pmol/ml, respectively, p<0.05). However, ATP release in NI or SCI rats to intravesical CCh was not affected by the muscarinic antagonist atropine (Atr). Spinal release of ATP to bladder stimulation with 10cm/w pressure was 5-fold higher in SCI compared to NI rats (p<0.05). CCh also induced a significantly greater release of spinal ATP in SCI rats compared to controls (4.3 ± 0.9 vs. 0.90 ± 0.15 pmol, p < 0.05). Surprisingly, the percent inhibitory effect of Atr on CCh-induced ATP release was significantly less in SCI as compared to NI rats (49% vs. 89%, respectively). SCI induces a dramatic increase in intravesical pressure and cholinergic receptor evoked bladder and spinal ATP release. Muscarinic receptors do not mediate intravesical CCh induced ATP release into the bladder lumen in NI or SCI rats. In NI rats sensory muscarinic receptors are the predominant mechanism by which CCh induces ATP release from primary afferents within the lumbosacral spinal cord. Following SCI, however, nicotinic or purinergic receptor mechanisms become active, as evidenced by the fact that Atr was only partially effective in inhibiting CCh-induced spinal ATP release. PMID:17067723

  19. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    atrophy. Interestingly, there is a clinical phenomenon that stretching can lead to muscle fiber hypertrophy , but that doesn’t appear to be...specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have undertaken these studies because of an observation we...spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary: In this, the

  20. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Functional MR imaging of the spinal cord in cervical spinal cord injury patients by acupuncture at LI 4 (Hegu) and LI 11(Quchi).

    PubMed

    Chen, Y X; Kong, K M; Wang, W D; Xie, C H; Wu, R H

    2007-01-01

    To investigate the cervical spinal cord mapping on acupuncture at LI 4 (Hegu) and LI 11 (Quchi) by using 'Signal Enhancement by Extravascular water Protons' (SEEP)-fMRI, and to establish the response of using acupuncture in the cervical spinal cord. This research may provide some laboratory evidences from the acupuncture treatment on the cervical spinal cord of injuried patients. Seven healthy volunteers (healthy group) and three cervical spinal cord injury patients (injury group) were underwent low-frequency electrical stimulation at LI 4 and LI 11. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. The signals from the cervical spinal cord activated was measured both in sagittal and transverse imaging planes and then analyzed by AFNI (Analysis of Functional Neuroimages) system. It was found that in the sagittal view, two groups had an fMRI response in the cervical spinal cord after given acupuncture treatments at LI 4 and LI 11. The localizations of the segmental fMRI activation were focused at C6 and C2 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured from the four of seven healthy volunteers and from two of three cervical spinal cord injury patients. They were located at C6/7 segments. The cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. The signal amplitude varied mainly between 6.8%17.8%. However, the difference found between the two groups had no statistical meaning. The fMRI technique had detected an activation focused at C6 and C2 cervical spinal cord levels by use of acupuncture at LI 4 and LI 11 on a 1.5T GE clinical system. This proved that the meridians and points are found to be in existence. The fMRI can be used as a harmless research method to discuss the mechanisms of acupuncture as well as study the mechanisms of spinal cord diseases

  2. Reliable and fast volumetry of the lumbar spinal cord using cord image analyser (Cordial).

    PubMed

    Tsagkas, Charidimos; Altermatt, Anna; Bonati, Ulrike; Pezold, Simon; Reinhard, Julia; Amann, Michael; Cattin, Philippe; Wuerfel, Jens; Fischer, Dirk; Parmar, Katrin; Fischmann, Arne

    2018-04-30

    To validate the precision and accuracy of the semi-automated cord image analyser (Cordial) for lumbar spinal cord (SC) volumetry in 3D T1w MRI data of healthy controls (HC). 40 3D T1w images of 10 HC (w/m: 6/4; age range: 18-41 years) were acquired at one 3T-scanner in two MRI sessions (time interval 14.9±6.1 days). Each subject was scanned twice per session, allowing determination of test-retest reliability both in back-to-back (intra-session) and scan-rescan images (inter-session). Cordial was applied for lumbar cord segmentation twice per image by two raters, allowing for assessment of intra- and inter-rater reliability, and compared to a manual gold standard. While manually segmented volumes were larger (mean: 2028±245 mm 3 vs. Cordial: 1636±300 mm 3 , p<0.001), accuracy assessments between manually and semi-automatically segmented images showed a mean Dice-coefficient of 0.88±0.05. Calculation of within-subject coefficients of variation (COV) demonstrated high intra-session (1.22-1.86%), inter-session (1.26-1.84%), as well as intra-rater (1.73-1.83%) reproducibility. No significant difference was shown between intra- and inter-session reproducibility or between intra-rater reliabilities. Although inter-rater reproducibility (COV: 2.87%) was slightly lower compared to all other reproducibility measures, between rater consistency was very strong (intraclass correlation coefficient: 0.974). While under-estimating the lumbar SCV, Cordial still provides excellent inter- and intra-session reproducibility showing high potential for application in longitudinal trials. • Lumbar spinal cord segmentation using the semi-automated cord image analyser (Cordial) is feasible. • Lumbar spinal cord is 40-mm cord segment 60 mm above conus medullaris. • Cordial provides excellent inter- and intra-session reproducibility in lumbar spinal cord region. • Cordial shows high potential for application in longitudinal trials.

  3. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation.

    PubMed

    Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G

    2015-02-01

    To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.

  4. Thoracic Unilateral Spinal Cord Injury After Spinal Anaesthesia for Total Hip Replacement: Fate or Mistake?

    PubMed Central

    Fabio, Costa; Romualdo, Del Buono; Eugenio, Agrò Felice; Vittoradolfo, Tambone; Massimiliano, Vitali Andrea; Giovanna, Ricci

    2017-01-01

    Spinal anaesthesia is the most preffered anesthesia technique for total hip replacement, and its complications range from low entity (insignificant) to life threatening. The incidence of neurologic complications after neuraxial anaesthesia is not perfectly clear, although there are several described cases of spinal cord ischaemia. We present a case of unilateral T8–T11 spinal cord ischaemia following L2–L3 spinal anaesthesia for total hip replacement. Magnetic resonance imaging showed a hyperintense T8–T11 signal alteration on the leftside of paramedian spinal cord. A temporal epidemiologic linkage between the damage and the surgery seems to be present. The injury occurred without anatomical proximity between the injury site and the spinal needle entry site. This may be due to multiple contributing factors, each of them is probably not enough to determine the damage by itself; however, acting simultaneously, they could have been responsible for the complication. The result was unpredictable and unavoidable and was caused by unforeseeable circumstances and not by inadequate medical practice. PMID:28439446

  5. A rare case of multifocal intramedullary germinoma in cervical spinal cord.

    PubMed

    Wang, R; Fan, X; Zhang, B

    2014-06-01

    Case report. We present for the first time a patient with multifocal intramedullary cervical spinal cord germ cell tumors with elevated serum alpha-fetoprotein (AFP). Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China. A 19-year-old girl experienced numbness in her right leg 10 months before diagnosis. The numbness gradually became severe and extended up to the thorax. Magnetic resonance imaging (MRI) visualized several intramedullary masses with intensive enhancement and extensive peritumoral edema in the spinal cord at the C3-T1 vertebral body levels. Administration of methylprednisolone caused no treatment effect. The largest mass, which was located at the T1 level inside the normal spinal cord and confirmed by naked eye observation, was completely extracted under a microscope. Postoperative pathological examination demonstrated the so-called 'two-cell pattern,' which is typical of germinoma with placental alkaline phosphatase expression. The serum level of AFP was 64.50 ng ml(-1) (normal range: 0-5 ng ml(-1)). The residual tumor was eliminated through radiation therapy (local 30 Gy) following surgery. Afterward, the patient's neurological deficits were improved but not resolved. Six years after surgery, no recurrence was encountered and the patient remained stable. Radiotherapy is the salvage therapy for spinal cord germinoma. Steroids were of no therapeutic value in the treatment of intramedullary spinal cord germinoma.

  6. "Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury".

    PubMed

    Paula, Alecsandra Araujo; Nicolau, Renata Amadei; Lima, Mario de Oliveira; Salgado, Miguel Angel Castillo; Cogo, José Carlos

    2014-11-01

    Scientific advances have been made to optimize the healing process in spinal cord injury. Studies have been developed to obtain effective treatments in controlling the secondary injury that occurs after spinal cord injury, which substantially changes the prognosis. Low-intensity laser therapy (LILT) has been applied in neuroscience due to its anti-inflammatory effects on biological tissue in the repairing process. Few studies have been made associating LILT to the spinal cord injury. The objective of this study was to investigate the effect of the LILT (GaAlAs laser-780 nm) on the locomotor functional recovery, histomorphometric, and histopathological changes of the spinal cord after moderate traumatic injury in rats (spinal cord injury at T9 and T10). Thirty-one adult Wistar rats were used, which were divided into seven groups: control without surgery (n = 3), control surgery (n = 3), laser 6 h after surgery (n = 5), laser 48 h after surgery (n = 5), medullar lesion (n = 5) without phototherapy, medullar lesion + laser 6 h after surgery (n = 5), and medullar lesion + laser 48 h after surgery (n = 5). The assessment of the motor function was performed using Basso, Beattie, and Bresnahan (BBB) scale and adapted Sciatic Functional Index (aSFI). The assessment of urinary dysfunction was clinically performed. After 21 days postoperative, the animals were euthanized for histological and histomorphometric analysis of the spinal cord. The results showed faster motor evolution in rats with spinal contusion treated with LILT, maintenance of the effectiveness of the urinary system, and preservation of nerve tissue in the lesion area, with a notorious inflammation control and increased number of nerve cells and connections. In conclusion, positive effects on spinal cord recovery after moderate traumatic spinal cord injury were shown after LILT.

  7. Restoration of motor function after operative reconstruction of the acutely transected spinal cord in the canine model.

    PubMed

    Liu, Zehan; Ren, Shuai; Fu, Kuang; Wu, Qiong; Wu, Jun; Hou, Liting; Pan, Hong; Sun, Linlin; Zhang, Jian; Wang, Bingjian; Miao, Qing; Sun, Guiyin; Bonicalzi, Vincenzo; Canavero, Sergio; Ren, Xiaoping

    2018-05-01

    Cephalosomatic anastomosis or what has been called a "head transplantation" requires full reconnection of the respective transected ends of the spinal cords. The GEMINI spinal cord fusion protocol has been developed for this reason. Here, we report the first randomized, controlled study of the GEMINI protocol in large animals. We conducted a randomized, controlled study of a complete transection of the spinal cord at the level of T10 in dogs at Harbin Medical University, Harbin, China. These dogs were followed for up to 8 weeks postoperatively by assessments of recovery of motor function, somato-sensory evoked potentials, and diffusion tensor imaging using magnetic resonance imaging. A total of 12 dogs were subjected to operative exposure of the dorsal aspect of the spinal cord after laminectomy and longitudinal durotomy followed by a very sharp, controlled, full-thickness, complete transection of the spinal cord at T10. The fusogen, polyethylene glycol, was applied topically to the site of the spinal cord transection in 7 of 12 dogs; 0.9% NaCl saline was applied to the site of transection in the remaining 5 control dogs. Dogs were selected randomly to receive polyethylene glycol or saline. All polyethylene glycol-treated dogs reacquired a substantial amount of motor function versus none in controls over these first 2 months as assessed on the 20-point (0-19), canine, Basso-Beattie-Bresnahan rating scale (P<.006). Somatosensory evoked potentials confirmed restoration of electrical conduction cranially across the site of spinal cord transection which improved over time. Diffusion tensor imaging, a magnetic resonance permutation that assesses the integrity of nerve fibers and cells, showed restitution of the transected spinal cord with polyethylene glycol treatment (at-injury level difference: P<.02). A sharply and fully transected spinal cord at the level of T10 can be reconstructed with restoration of many aspects of electrical continuity in large animals following

  8. Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury.

    PubMed

    Birenbaum, Nathan K; MacEwan, Matthew R; Ray, Wilson Z

    2017-06-01

    Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T 9-10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-sieve electrode and recording both electromyography signals and evoked muscle force from distal musculature. Electromyography measurements were recorded from the tibialis anterior and gastrocnemius muscles, while evoked muscle force measurements were recorded from the tibialis anterior, extensor digitorum longus, and gastrocnemius muscles. The macro-sieve electrode and regenerated sciatic nerve were then explanted for histological evaluation. Successful sciatic nerve regeneration across the macro-sieve electrode interface following spinal cord injury was seen in all five animals. Recorded electromyography signals and muscle force recordings obtained through macro-sieve electrode stimulation confirm the ability of the macro-sieve electrode to successfully recruit distal musculature in this injury model. Taken together, these results demonstrate the macro-sieve electrode as a viable interface for peripheral nerve stimulation in the context of spinal cord injury.

  9. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; hide

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  10. Spinal cord ischemia following thoracotomy without epidural anesthesia.

    PubMed

    Raz, Aeyal; Avramovich, Aharon; Saraf-Lavi, Efrat; Saute, Milton; Eidelman, Leonid A

    2006-06-01

    Paraplegia is an uncommon yet devastating complication following thoracotomy, usually caused by compression or ischemia of the spinal cord. Ischemia without compression may be a result of global ischemia, vascular injury and other causes. Epidural anesthesia has been implicated as a major cause. This report highlights the fact that perioperative cord ischemia and paraplegia may be unrelated to epidural intervention. A 71-yr-old woman was admitted for a left upper lobectomy for resection of a non-small cell carcinoma of the lung. The patient refused epidural catheter placement and underwent a left T5-6 thoracotomy under general anesthesia. During surgery, she was hemodynamically stable and good oxygen saturation was maintained. Several hours following surgery the patient complained of loss of sensation in her legs. Neurological examination disclosed a complete motor and sensory block at the T5-6 level. Magnetic resonance imaging (MRI) revealed spinal cord ischemia. The patient received iv steroid treatment, but remained paraplegic. Five months following the surgery there was only partial improvement in her motor symptoms. A follow-up MRI study was consistent with a diagnosis of spinal cord ischemia. In this case of paraplegia following thoracic surgery for lung resection, epidural anesthesia/analgesia was not used. The MRI demonstrated evidence of spinal cord ischemia, and no evidence of cord compression. This case highlights that etiologies other than epidural intervention, such as injury to the spinal segmental arteries during thoracotomy, should be considered as potential causes of cord ischemia and resultant paraplegia in this surgical population.

  11. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  12. Peripheral ionotropic glutamate receptors contribute to Fos expression increase in the spinal cord through antidromic electrical stimulation of sensory nerves.

    PubMed

    Li, Jia-Heng; He, Pei-Yao; Fan, Dan-Ni; Alemujiang, Dilinapa; Huo, Fu-Quan; Zhao, Yan; Cao, Dong-Yuan

    2018-06-21

    Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Chronic spinal cord injury in the cervical spine of a young soccer player.

    PubMed

    Kato, Yoshihiko; Koga, Michiaki; Taguchi, Toshihiko

    2010-05-12

    A 17-year-old male soccer player presented with numbness in the upper- and lower-left extremities of 6 months' duration. He had no apparent history of trauma but experienced neck pain during heading of the ball 5 years prior. A high-signal intensity area was seen on T2-weighted magnetic resonance imaging (MRI) of the cervical spine. No muscle weakness was observed. Hypoesthesia was observed in bilateral forearms, hands, and extremities below the inguinal region. Plain radiographs in the neutral position showed local kyphosis at C3/4. A small protrusion of the C3/4 disk was observed on T1-weighted MRI. A high-signal area in the spinal cord at the C3/4 level was observed on T2-weighted MRI, but this was not enhanced by gadolinium. Multiple sclerosis, intramedullary spinal cord tumor, sarcoidosis and malignant lymphoma, and spinal cord injury were all considered in the differential diagnosis. However, in view of the clinical, laboratory, and radiological investigations, we concluded that repeated impacts to the neck caused by heading of the ball during soccer induced a chronic, minor spinal cord injury. This contributed to the high-signal intensity change of the spinal cord in T2-weighted MRI. The present case demonstrates that repeated impact may cause chronic spinal cord injury. Soccer, American football, or rugby players presenting with neck or extremity symptoms should not be overlooked for the possibility of latent spinal cord injury, as this could present later development of more severe or unrecoverable spinal cord injuries. Copyright 2010, SLACK Incorporated.

  14. Advanced Restoration Therapies in Spinal Cord Injury

    DTIC Science & Technology

    2016-05-01

    project. In addition, Dr. Belegu has performed SCI surgeries , electrode implantations, FES stimulation, and neurological assays. Name: Ali...month worked: 10.2 Contribution to Project: Dr. Liu has assisted Dr. Belegu in performing SCI surgeries , electrode implantation. In addition, she...training-based rehabilitation. Arch Phys Med Rehabil 93, 1508-1517. Karimi, M.T. (2013). Robotic rehabilitation of spinal cord injury individual

  15. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    PubMed

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  16. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level.

    PubMed

    Nacka-Aleksić, Mirjana; Djikić, Jasmina; Pilipović, Ivan; Stojić-Vukanić, Zorica; Kosec, Duško; Bufan, Biljana; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2015-10-01

    Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms

  17. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-12-1-0587 TITLE: Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord...3. DATES COVERED (From - To) 30Sep2014 - 29Sep2015 4. TITLE AND SUBTITLE Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on...ABSTRACT Essentially all spinal cord injured patients receive stretching therapies beginning within the first few weeks post-injury. Despite this fact

  18. Lower thoracic spinal cord injury without radiographic abnormality in an amateur rugby player.

    PubMed

    Smith, Hannah K; Durnford, Andrew J; Sherlala, Khaled; Merriam, William F

    2012-10-26

    A 37-year-old man, amateur rugby player sustained a hyperextension injury to his lower thoracic spine during a scrum collapse. The patient developed extreme hyperpathia in the T10-12 dermatome, and parasthesia from T12 to S1 in the left lower limb. Medical Research Council grade 5 power was regained rapidly within minutes of the accident, and the hyperpathia resolved within a week. MRI showed contusion of the spinal cord at T10 level but no associated osseoligamentous injury. Six months later, parasthesia and subjective weakness remained in the left lower limb. To our knowledge, this is the first description of a lower thoracic spinal cord injury without radiographic abnormality following an isolated low-energy injury in a skeletally mature patient.

  19. Lower thoracic spinal cord injury without radiographic abnormality in an amateur rugby player

    PubMed Central

    Smith, Hannah K; Durnford, Andrew J; Sherlala, Khaled; Merriam, William F

    2012-01-01

    A 37-year-old man, amateur rugby player sustained a hyperextension injury to his lower thoracic spine during a scrum collapse. The patient developed extreme hyperpathia in the T10-12 dermatome, and parasthesia from T12 to S1 in the left lower limb. Medical Research Council grade 5 power was regained rapidly within minutes of the accident, and the hyperpathia resolved within a week. MRI showed contusion of the spinal cord at T10 level but no associated osseoligamentous injury. Six months later, parasthesia and subjective weakness remained in the left lower limb. To our knowledge, this is the first description of a lower thoracic spinal cord injury without radiographic abnormality following an isolated low-energy injury in a skeletally mature patient. PMID:23104628

  20. Correlation between magnetic resonance T2 image signal intensity ratio and cell apoptosis in a rabbit spinal cord cervical myelopathy model.

    PubMed

    Ma, Lei; Zhang, Di; Chen, Wei; Shen, Yong; Zhang, Yingze; Ding, Wenyuan; Zhang, Wei; Wang, Linfeng; Yang, Dalong

    2014-01-01

    Cervical spondylotic myelopathy (CSM) is a common cause of disability in elderly patients. Previous studies have shown that spinal cord cell apoptosis due to spinal cord compression plays an important role in the pathology of myelopathy. Although changes in magnetic resonance imaging (MRI) T2 signal intensity ratio (SIR) are considered to be an indicator of CSM, little information is published supporting the correlation between changes in MRI signal and pathological changes. This study aims to testify the correlation between MRI T2 SIR changes and cell apoptosis using a CSM animal model. Forty-eight rabbits were randomly assigned to four groups: one control group and three experimental chronic compression groups, with each group containing 12 animals. Chronic compression of the cervical spinal cord was implemented in the experimental groups by implanting a screw in the C3 vertebra. The control group underwent sham surgery. Experimental groups were observed for 3, 6, or 9 months after surgery. MRI T2-weighted SIR Tarlov motor scores and cortical somatosensory-evoked potentials (CSEPs) were periodically monitored. At each time point, rabbits from one group were sacrificed to determine the level of apoptosis by histology (n = 6) and Western blotting (n = 6). Tarlov motor scores in the compression groups were lower at all time points than the control group scores, with the lowest score at 9 months (P < 0.001). Electrophysiological testing showed a significantly prolonged latency in CSEP in the compression groups compared with the control group. All rabbits in the compression groups showed higher MRI T2 SIR in the injury epicenter compared with controls, and higher SIR was also found at 9 months compared with 3 or 6 months. Histological analysis showed significant apoptosis in the spinal cord tissue in the compression groups, but not in the control group. There were significant differences in apoptosis degree over time (P < 0.001), with the 9-month group displaying the

  1. Spinal cord repair in MS

    PubMed Central

    Ciccarelli, O.; Altmann, D. R.; McLean, M. A.; Wheeler-Kingshott, C. A.; Wimpey, K.; Miller, D. H.; Thompson, A. J.

    2010-01-01

    Objective: To investigate the mechanisms of spinal cord repair and their relative contribution to clinical recovery in patients with multiple sclerosis (MS) after a cervical cord relapse, using spinal cord 1H-magnetic resonance spectroscopy (MRS) and volumetric imaging. Methods: Fourteen patients with MS and 13 controls underwent spinal cord imaging at baseline and at 1, 3, and 6 months. N-acetyl-aspartate (NAA) concentration, which reflects axonal count and metabolism in mitochondria, and the cord cross-sectional area, which indicates axonal count, were measured in the affected cervical region. Mixed effect linear regression models investigated the temporal evolution of these measures and their association with clinical changes. Ordinal logistic regressions identified predictors of recovery. Results: Patients who recovered showed a sustained increase in NAA after 1 month. In the whole patient group, a greater increase of NAA after 1 month was associated with greater recovery. Patients showed a significant decline in cord area during follow-up, which did not correlate with clinical changes. A worse recovery was predicted by a longer disease duration at study entry. Conclusions: The partial recovery of N-acetyl-aspartate levels after the acute event, which is concurrent with a decline in cord cross-sectional area, may be driven by increased axonal mitochondrial metabolism. This possible repair mechanism is associated with clinical recovery, and is less efficient in patients with longer disease duration. These insights into the mechanisms of spinal cord repair highlight the need to extend spinal cord magnetic resonance spectroscopy to other spinal cord disorders, and explore therapies that enhance recovery by modulating mitochondrial activity. GLOSSARY CI = confidence interval; EDSS = Expanded Disability Status Scale; FOV = field of view; MR = magnetic resonance; MRS = magnetic resonance spectroscopy; MS = multiple sclerosis; NAA = N-acetyl-aspartate; SC = spinal

  2. Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation

  3. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury

    PubMed Central

    Hofstoetter, Ursula S.; McKay, William B.; Tansey, Keith E.; Mayr, Winfried; Kern, Helmut; Minassian, Karen

    2014-01-01

    Context/objective To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. Design Interventional pilot study to produce preliminary data. Setting Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. Participants Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Interventions Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. Outcome measures The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. Results The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. Conclusion These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted. PMID:24090290

  4. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    PubMed

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  5. Management of chronic spinal cord dysfunction.

    PubMed

    Abrams, Gary M; Ganguly, Karunesh

    2015-02-01

    Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life.

  6. Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.

    PubMed

    Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine

    2012-04-01

    Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.

  7. Spinal Cord Tolerance to Reirradiation With Single-Fraction Radiosurgery: A Swine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Paul M., E-mail: Paul.medin@utsouthwestern.edu; Foster, Ryan D.; Kogel, Albert J. van der

    2012-07-01

    Purpose: This study was performed to determine swine spinal cord tolerance to single-fraction, partial-volume irradiation 1 year after receiving uniform irradiation to 30 Gy in 10 fractions. Methods and Materials: A 10-cm length of spinal cord (C3-T1) was uniformly irradiated to 30 Gy in 10 consecutive fractions and reirradiated 1 year later with a single radiosurgery dose centered within the previously irradiated segment. Radiosurgery was delivered to a cylindrical volume approximately 5 cm in length and 2 cm in diameter, which was positioned laterally to the cervical spinal cord, resulting in a dose distribution with the 90%, 50%, and 10%more » isodose lines traversing the ipsilateral, central, and contralateral spinal cord, respectively. Twenty-three pigs were stratified into six dose groups with mean maximum spinal cord doses of 14.9 {+-} 0.1 Gy (n = 2), 17.1 {+-} 0.3 Gy (n = 3), 19.0 {+-} 0.1 Gy (n = 5), 21.2 {+-} 0.1 Gy (n = 5), 23.4 {+-} 0.2 Gy (n = 5), and 25.4 {+-} 0.4 Gy (n = 3). The mean percentage of spinal cord volumes receiving {>=}10 Gy for the same groups were 34% {+-} 1%, 40% {+-} 1%, 46% {+-} 3%, 52% {+-} 1%, 56 {+-} 3%, and 57% {+-} 1%. The study endpoint was motor neurologic deficit as determined by a change in gait during a 1- year follow-up period. Results: A steep dose-response curve was observed with a 50% incidence of paralysis (ED{sub 50}) for the maximum point dose of 19.7 Gy (95% confidence interval, 17.4-21.4). With two exceptions, histology was unremarkable in animals with normal neurologic status, while all animals with motor deficits showed some degree of demyelination and focal white matter necrosis on the irradiated side, with relative sparing of gray matter. Histologic comparison with a companion study of de novo irradiated animals revealed that retreatment responders had more extensive tissue damage, including infarction of gray matter, only at prescription doses >20 Gy. Conclusion: Pigs receiving spinal radiosurgery 1 year

  8. Twiddler's syndrome in spinal cord stimulation.

    PubMed

    Al-Mahfoudh, Rafid; Chan, Yuen; Chong, Hsu Pheen; Farah, Jibril Osman

    2016-01-01

    The aims are to present a case series of Twiddler's syndrome in spinal cord stimulators with analysis of the possible mechanism of this syndrome and discuss how this phenomenon can be prevented. Data were collected retrospectively between 2007 and 2013 for all patients presenting with failure of spinal cord stimulators. The diagnostic criterion for Twiddler's syndrome is radiological evidence of twisting of wires in the presence of failure of spinal cord stimulation. Our unit implants on average 110 spinal cord stimulators a year. Over the 5-year study period, all consecutive cases of spinal cord stimulation failure were studied. Three patients with Twiddler's syndrome were identified. Presentation ranged from 4 to 228 weeks after implantation. Imaging revealed repeated rotations and twisting of the wires of the spinal cord stimulators leading to hardware failure. To the best of our knowledge this is the first reported series of Twiddler's syndrome with implantable pulse generators (IPGs) for spinal cord stimulation. Hardware failure is not uncommon in spinal cord stimulation. Awareness and identification of Twiddler's syndrome may help prevent its occurrence and further revisions. This may be achieved by implanting the IPG in the lumbar region subcutaneously above the belt line. Psychological intervention may have a preventative role for those who are deemed at high risk of Twiddler's syndrome from initial psychological screening.

  9. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists

    PubMed Central

    Priori, Alberto; Ciocca, Matteo; Parazzini, Marta; Vergari, Maurizio; Ferrucci, Roberta

    2014-01-01

    Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists. PMID:24907311

  10. Spinal cord lesions in Bangladesh: an epidemiological study 1994 - 1995.

    PubMed

    Hoque, M F; Grangeon, C; Reed, K

    1999-12-01

    Spinal Cord Lesions are a major public health problem in Bangladesh. This epidemiological study was undertaken in order to identify the causes of spinal cord lesions and thus to allow prevention and control programs to be developed. The records of 247 patients with spinal cord lesions admitted to The Centre for the Rehabilitation of the Paralysed (CRP), Savar, Dhaka from January 1994 to June 1995 were reviewed retrospectively. Comparisons were made with the reports of studies from other countries, both developing and developed. The most common cause of traumatic lesions was a fall from a height followed by falling when carrying a heavy weight on the head and road traffic accidents. Most of the patients were between 20 - 40 years old and the overall age group ranged from 10 - 70 years. The male:female ratio was 7.5 : 1.0. Among the traumatic spinal cord lesions, 60% were paraplegics and 40% tetraplegics. Among the non-traumatic spinal cord lesions cases 84% were paraplegics and 16% tetraplegics. The leading cause of death resulted from respiratory complications and these deaths occurred in the very early period of admission. From the results it can be deduced that the high incidence of spinal cord lesion as a result from falls from a height, and from falling when carrying a heavy weight on the head, can be explained by the mainly agricultural based economy of Bangladesh. The most common age group (10 - 40 years) of patients reflects the socio-economic conditions of Bangladesh. The male:female ratio (7.5 : 1.0) of patients with a spinal cord lesion is due to the socio-economic status and to the traditional culture of the society.

  11. Body composition of active persons with spinal cord injury and with poliomyelitis

    USDA-ARS?s Scientific Manuscript database

    This study sought to evaluate the body composition of subjects with active spinal cord injuries and polio. Two groups of males and females, active, free-living, of similar ages and body mass index (BMI), were distributed according to the source of deficiency: SCI – low spinal cord injury (T5-T12) an...

  12. MRI Atlas-Based Measurement of Spinal Cord Injury Predicts Outcome in Acute Flaccid Myelitis.

    PubMed

    McCoy, D B; Talbott, J F; Wilson, Michael; Mamlouk, M D; Cohen-Adad, J; Wilson, Mark; Narvid, J

    2017-02-01

    Recent advances in spinal cord imaging analysis have led to the development of a robust anatomic template and atlas incorporated into an open-source platform referred to as the Spinal Cord Toolbox. Using the Spinal Cord Toolbox, we sought to correlate measures of GM, WM, and cross-sectional area pathology on T2 MR imaging with motor disability in patients with acute flaccid myelitis. Spinal cord imaging for 9 patients with acute flaccid myelitis was analyzed by using the Spinal Cord Toolbox. A semiautomated pipeline using the Spinal Cord Toolbox measured lesion involvement in GM, WM, and total spinal cord cross-sectional area. Proportions of GM, WM, and cross-sectional area affected by T2 hyperintensity were calculated across 3 ROIs: 1) center axial section of lesion; 2) full lesion segment; and 3) full cord atlas volume. Spearman rank order correlation was calculated to compare MR metrics with clinical measures of disability. Proportion of GM metrics at the center axial section significantly correlated with measures of motor impairment upon admission ( r [9] = -0.78; P = .014) and at 3-month follow-up ( r [9] = -0.66; P = .05). Further, proportion of GM extracted across the full lesion segment significantly correlated with initial motor impairment ( r [9] = -0.74, P = .024). No significant correlation was found for proportion of WM or proportion of cross-sectional area with clinical disability. Atlas-based measures of proportion of GM T2 signal abnormality measured on a single axial MR imaging section and across the full lesion segment correlate with motor impairment and outcome in patients with acute flaccid myelitis. This is the first atlas-based study to correlate clinical outcomes with segmented measures of T2 signal abnormality in the spinal cord. © 2017 by American Journal of Neuroradiology.

  13. Multilevel thoracic hemangioma with spinal cord compression in a pediatric patient: case report and review of the literature.

    PubMed

    Cherian, Jacob; Sayama, Christina M; Adesina, Adekunle M; Lam, Sandi K; Luerssen, Thomas G; Jea, Andrew

    2014-09-01

    Vertebral hemangiomas are common benign vascular tumors of the spine. It is very rare for these lesions to symptomatically compress neural elements. If spinal cord compression does occur, it usually involves only a single level. Multilevel vertebral hemangiomas causing symptomatic spinal cord compression have never been reported in the pediatric population to the best of our knowledge. We report the case of a 15-year-old boy presenting with progressive paraparesis due to thoracic spinal cord compression from a multilevel thoracic hemangioma (T5-T10) with epidural extension. Because of his progressive neurological deficit, he was initially treated with urgent multilevel decompressive laminectomies from T4 to T11. This was to be followed by radiotherapy for residual tumor, but the patient was unfortunately lost to follow-up. He re-presented 3 years later with recurrent paraparesis and progressive disease. This was treated with urgent radiotherapy with good response. As of 6 months follow-up, he has made an excellent neurological recovery. In this report, we present the first case of a child with multilevel vertebral hemangiomas causing symptomatic spinal cord compression and review the literature to detail the pathophysiology, management, and treatment of other cases of spinal cord compression by vertebral hemangiomas.

  14. Therapeutic potential of spinal cord stimulation for gastrointestinal motility disorders: a preliminary rodent study.

    PubMed

    Song, G-Q; Sun, Y; Foreman, R D; Chen, J D Z

    2014-03-01

    Spinal cord electrical stimulation (SCS) has been applied for the management of chronic pain. Most of studies have revealed a decrease in sympathetic activity with SCS. The aim of this study was to investigate the effects and mechanisms of SCS on gastrointestinal (GI) motility in healthy and diabetic rats. Male rats chronically implanted with a unipolar electrode at T9/T10 were studied. The study included four experiments to assess the effects of SCS on (1) gastric tone; (2) gastric emptying of liquids and intestinal transit; (3) gastric emptying of solids; and (4) sympathovagal balance in healthy rats and/or in Streptozotocin (STZ)-induced diabetic rat. (1) Spinal cord stimulation intensity dependently increased gastric tone in healthy rats. The gastric volume was 0.97 ± 0.15 mL at baseline, and decreased to 0.92 ± 0.16 mL with SCS of the 30% motor threshold (MT; p = 0.13 vs baseline), 0.86 ± 0.14 mL with 60% MT (p = 0.045 vs baseline), and 0.46 ± 0.19 mL with 90% MT (p = 0.0050 vs baseline). (2) Spinal cord stimulation increased gastric emptying of liquids by about 17% and accelerated small intestinal transit by about 20% in healthy rats (p < 0.001). (3) Spinal cord stimulation accelerated gastric emptying of solids by about 24% in healthy rats and by about 78% in diabetic rats. (4) Spinal cord stimulation decreased sympathetic activity (1.13 ± 0.18 vs 0.68 ± 0.09, p < 0.04) and sympathovagal balance (0.51 ± 0.036 vs 0.40 ± 0.029, p = 0.028). Spinal cord stimulation accelerates gastric emptying of liquids and solids, and intestinal transit, probably by inhibiting the sympathetic activity. Spinal cord stimulation may have a therapeutic potential for treating GI motility disorders. © 2013 John Wiley & Sons Ltd.

  15. Spinal cord injury arising in anaesthesia practice.

    PubMed

    Hewson, D W; Bedforth, N M; Hardman, J G

    2018-01-01

    Spinal cord injury arising during anaesthetic practice is a rare event, but one that carries a significant burden in terms of morbidity and mortality. In this article, we will review the pathophysiology of spinal cord injury. We will then discuss injuries relating to patient position, spinal cord hypoperfusion and neuraxial techniques. The most serious causes of spinal cord injury - vertebral canal haematoma, spinal epidural abscess, meningitis and adhesive arachnoiditis - will be discussed in turn. For each condition, we draw attention to practical, evidence-based measures clinicians can undertake to reduce their incidence, or mitigate their severity. Finally, we will discuss transient neurological symptoms. Some cases of spinal cord injury during anaesthesia can be ascribed to anaesthesia itself, arising as a direct consequence of its conduct. The injury to a spinal nerve root by inaccurate and/or incautious needling during spinal anaesthesia is an obvious example. But in many cases, spinal cord injury during anaesthesia is not caused by, related to, or even associated with, the conduct of the anaesthetic. Surgical factors, whether direct (e.g. spinal nerve root damage due to incorrect pedicle screw placement) or indirect (e.g. cord ischaemia following aortic surgery) are responsible for a significant proportion of spinal cord injuries that occur concurrently with the delivery of regional or general anaesthesia. © 2018 The Association of Anaesthetists of Great Britain and Ireland.

  16. Duodenal afferent input converges onto T9-T10 spinal neurons responding to gastric distension in rats.

    PubMed

    Qin, Chao; Chen, Jiande D Z; Zhang, Jing; Foreman, Robert D

    2007-12-01

    Clinically, the overlap of gastroduodenal symptoms, such as visceral pain or hypersensitivity, is often observed in functional gastrointestinal disorders. The underlying mechanism may be related to intraspinal neuronal processing of noxious convergent inputs from the stomach and the intestine. The purpose of this study was to examine whether single low thoracic (T9-T10) spinal neurons responded to both gastric and duodenal mechanical stimulation. Extracellular potentials of single T9-T10 spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. Graded gastric distensions (GD, 20, 40, 60 mm Hg, 20 s) were induced by air inflation of a latex balloon surgically placed in the stomach. Graded duodenal distensions (DD, 0.2, 0.4, 0.6 ml, 20 s) were produced by water inflation of a latex balloon placed into the duodenum. Of 70 deeper (depth from dorsal surface of spinal cord: 0.3-1.2 mm) spinal neurons responsive to noxious GD (> or =40 mm Hg), 44(63%) also responded to noxious DD (> or =0.4 ml). Similarly, 13/17 (76%) superficial neurons (depth <0.3 mm) responded to both GD and DD. Of 57 gastroduodenal convergent neurons, 41 (72%) had excitatory and 6 had inhibitory responses to both GD and DD; the remaining neurons exhibited multiple patterns of excitation and inhibition. 43/57 (75%) gastroduodenal convergent neurons had low-threshold (< or =20 mm Hg) responses to GD, whereas 42/57 (74%) of these neurons had high-threshold (> or =0.4 ml) responses to DD. In addition, 34/40 (85%) gastroduodenal convergent neurons had somatic receptive fields on the back, flank, and medial/lateral abdominal areas. These results suggested that superficial and deeper T9-T10 spinal neurons received innocuous and/or noxious convergent inputs from mechanical stimulation of the stomach and duodenum. Gastroduodenal convergent spinal neurons might contribute to intraspinal sensory transmission for cross-organ afferent-afferent communication between the

  17. The Lesioned Spinal Cord Is a “New” Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey

    PubMed Central

    Parker, David

    2017-01-01

    Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where

  18. Rapid myelin water imaging in human cervical spinal cord.

    PubMed

    Ljungberg, Emil; Vavasour, Irene; Tam, Roger; Yoo, Youngjin; Rauscher, Alexander; Li, David K B; Traboulsee, Anthony; MacKay, Alex; Kolind, Shannon

    2017-10-01

    Myelin water imaging (MWI) using multi-echo T 2 relaxation is a quantitative MRI technique that can be used as an in vivo biomarker for myelin in the central nervous system. MWI using a multi-echo spin echo sequence currently takes more than 20 min to acquire eight axial slices (5 mm thickness) in the cervical spinal cord, making spinal cord MWI impractical for implementation in clinical studies. In this study, an accelerated gradient and spin echo sequence (GRASE), previously validated for brain MWI, was adapted for spinal cord MWI. Ten healthy volunteers were scanned with the GRASE sequence (acquisition time 8.5 min) and compared with the multi-echo spin echo sequence (acquisition time 23.5 min). Using region of interest analysis, myelin estimates obtained from the two sequences were found to be in good agreement (mean difference = -0.0092, 95% confidence interval =  - 0.0092 ± 0.061; regression slope = 1.01, ρ = 0.9). MWI using GRASE was shown to be highly reproducible with an average coefficient of variation of 6.1%. The results from this study show that MWI can be performed in the cervical spinal cord in less than 10 min, allowing for practical implementation in multimodal clinical studies. Magn Reson Med 78:1482-1487, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. SU-F-T-113: Inherent Functional Dependence of Spinal Cord Doses of Variable Irradiated Volumes in Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L; Braunstein, S; Chiu, J

    2016-06-15

    Purpose: Spinal cord tolerance for SBRT has been recommended for the maximum point dose level or at irradiated volumes such as 0.35 mL or 10% of contoured volumes. In this study, we investigated an inherent functional relationship that associates these dose surrogates for irradiated spinal cord volumes of up to 3.0 mL. Methods: A hidden variable termed as Effective Dose Radius (EDR) was formulated based on a dose fall-off model to correlate dose at irradiated spinal cord volumes ranging from 0 mL (point maximum) to 3.0 mL. A cohort of 15 spine SBRT cases was randomly selected to derive anmore » EDR-parameterized formula. The mean prescription dose for the studied cases was 21.0±8.0 Gy (range, 10–40Gy) delivered in 3±1 fractions with target volumes of 39.1 ± 70.6 mL. Linear regression and variance analysis were performed for the fitting parameters of variable EDR values. Results: No direct correlation was found between the dose at maximum point and doses at variable spinal cord volumes. For example, Pearson R{sup 2} = 0.643 and R{sup 2}= 0.491 were obtained when correlating the point maximum dose with the spinal cord dose at 1 mL and 3 mL, respectively. However, near perfect correlation (R{sup 2} ≥0.99) was obtained when corresponding parameterized EDRs. Specifically, Pearson R{sup 2}= 0.996 and R{sup 2} = 0.990 were obtained when correlating EDR (maximum point dose) with EDR (dose at 1 mL) and EDR(dose at 3 mL), respectively. As a result, high confidence level look-up tables were established to correlate spinal cord doses at the maximum point to any finite irradiated volumes. Conclusion: An inherent functional relationship was demonstrated for spine SBRT. Such a relationship unifies dose surrogates at variable cord volumes and proves that a single dose surrogate (e.g. point maximum dose) is mathematically sufficient in constraining the overall spinal cord dose tolerance for SBRT.« less

  20. Living with Spinal Cord Injury

    MedlinePlus

    ... With Spinal Cord Injury A spinal cord injury (SCI) can result from trauma, such as a motor ... these injuries occur in men. A person with SCI typically has some paralysis and decreased or loss ...

  1. Cervical Spinal Cord Atrophy Profile in Adult SMN1-Linked SMA

    PubMed Central

    El Mendili, Mohamed-Mounir; Lenglet, Timothée; Stojkovic, Tanya; Behin, Anthony; Guimarães-Costa, Raquel; Salachas, François; Meininger, Vincent; Bruneteau, Gaelle; Le Forestier, Nadine; Laforêt, Pascal; Lehéricy, Stéphane; Benali, Habib; Pradat, Pierre-François

    2016-01-01

    Purpose The mechanisms underlying the topography of motor deficits in spinal muscular atrophy (SMA) remain unknown. We investigated the profile of spinal cord atrophy (SCA) in SMN1-linked SMA, and its correlation with the topography of muscle weakness. Materials and Methods Eighteen SMN1-linked SMA patients type III/V and 18 age/gender-matched healthy volunteers were included. Patients were scored on manual muscle testing and functional scales. Spinal cord was imaged using 3T MRI system. Radial distance (RD) and cord cross-sectional area (CSA) measurements in SMA patients were compared to those in controls and correlated with strength and disability scores. Results CSA measurements revealed a significant cord atrophy gradient mainly located between C3 and C6 vertebral levels with a SCA rate ranging from 5.4% to 23% in SMA patients compared to controls. RD was significantly lower in SMA patients compared to controls in the anterior-posterior direction with a maximum along C4 and C5 vertebral levels (p-values < 10−5). There were no correlations between atrophy measurements, strength and disability scores. Conclusions Spinal cord atrophy in adult SMN1-linked SMA predominates in the segments innervating the proximal muscles. Additional factors such as neuromuscular junction or intrinsic skeletal muscle defects may play a role in more complex mechanisms underlying weakness in these patients. PMID:27089520

  2. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  3. [Repair of spinal cord injury with rats' umbilical cord MSCs].

    PubMed

    Zhu, Yuhai; Feng, Shiqing; Wang, Xue

    2009-12-01

    To study the growth characteristics of umbilical cord MSCs (UCMSCs) in vitro and its effect on the nerve regeneration after spinal cord injury (SCI). UCMSCs isolated from pregnant rats umbilical cord were cultured and purified in vitro. Sixty female Wistar rats weighing (300 +/- 10) g were randomized into three groups (n=20 per group). UCMSCs group (group A) in which UCMSCs suspension injection was conducted; DMEM control group (group B) in which 10% DMEM injection was conducted; sham group (group C) in which the animal received laminectomy only. Establish acute SCI model (T10) by Impactor model-II device in group A and group B. The recovery of the lower extremity was observed using BBB locomotor scoring system, neurofilament 200 (NF-200) immunofluorescence staining was performed to detect the neural regeneration, and then the corticospinal tract (CST) was observed using the biotinylated dextran amine (BDA) tracing. Cultured UCMSCs were spindle-shaped fibrocyte-like adherent growth, swirling or parallelly. The USMSCs expressed CD29, but not CD31, CD45, and HLA-DR. The BBB score was higher in group A than group B 4, 5, and 6 weeks after operation, and there was a significant difference between two groups (P < 0.05). The BBB scores at different time points were significantly lower in groups A and B than that in group C (P < 0.05). UCMSCs was proved to survive and assemble around the injured place by frozen section of the cords 6 weeks after injury. NF-200 positive response area in groups A, B, and C was (11,943 +/- 856), (7,986 +/- 627), and (13,117 +/- 945) pixels, respectively, suggesting there was a significant difference between groups A, C and group B (P < 0.05), and no significant difference was evident between group A and group C (P > 0.05). BDA anterograde tracing 10 weeks after operation demonstrated that more regenerated nerve fibers went through injured area in group A, but just quite few nerve fibers in group B went through the injuried cavity. The ratios

  4. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord.

    PubMed

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s(-1), respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  5. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord

    NASA Astrophysics Data System (ADS)

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  6. Spinal cord injury with central cord syndrome from surfing.

    PubMed

    Steinfeld, Yaniv; Keren, Yaniv; Haddad, Elias

    2018-01-01

    Central cord syndrome (CCS) is an injury to the center of the spinal cord. It is well known as a hyperextension injury, but it has never been described as a surfing injury. Our report describes this injury in detail. A 35-year-old male novice surfer presented to the emergency department with acute tetraplegia following falling off his surfboard and hitting sea floor at a shallow beach break. He was rescued by a fellow surfer while floating in the sea and unable to raise his head above sea level. Upon arrival at the hospital, tetraplegia and sensory deficits were noted. Radiological investigations showed advanced spinal stenosis at C4-6 levels. T2 magnetic resonance imaging (MRI) demonstrated myelopathy at C5-C6 level. He was diagnosed as having central cord syndrome, treated conservatively, and regained near full neurologic recovery after a month of rehabilitation. Unique sport activities lead to unique injuries. It is important to accurately describe these injuries in order to create protective measures against them. Neurologic injuries in surfers are uncommon. With low-energy trauma, surfer's myelopathy is still the most common diagnosis, but central cord syndrome should be in the differential diagnosis.

  7. Part 1: recognizing neonatal spinal cord injury.

    PubMed

    Brand, M Colleen

    2006-02-01

    Neonatal spinal cord injury can occur in utero, as well as after either a difficult delivery or a nontraumatic delivery. Spinal cord injury can also be related to invasive nursery procedures or underlying neonatal pathology. Early clinical signs of spinal cord injury that has occurred in utero or at delivery includes severe respiratory compromise and profound hypotonia. Knowledge of risk factors and awareness of symptoms is required for early recognition and appropriate treatment. This article reviews the embryological development of the spinal column highlighting mechanisms of injury and identifying underlying factors that increase the risk of spinal cord injury in newborns. Signs and symptoms of injury, cervical spine immobilization, and the differential diagnosis are discussed. Nursing implications, general prognosis, and research in spinal cord injury are provided.

  8. Cardiac dysfunctions following spinal cord injury

    PubMed Central

    Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F

    2009-01-01

    The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following

  9. Alterations in the Genital Microbiota in Women With Spinal Cord Injury.

    PubMed

    Pires, Cristhiane V G; Linhares, Iara M; Serzedello, Felipe; Fukazawa, Eiko I; Baracat, Edmund C; Witkin, Steven S

    2016-02-01

    To evaluate the vaginal and cervical microbiota in women with spinal cord injury compared with mobile women. Fifty-two women with spinal cord injury (study group) and 57 mobile women (control group) were evaluated in a case-control study. All answered a structured questionnaire and were submitted to the following microbiological tests: microscopic examination of vaginal secretions for Trichomonas vaginalis and yeasts, Nugent score by Gram stain, bacterial culture, yeast culture, and endocervical sampling for Chlamydia trachomatis, Neisseria gonorrhoeae, and Mycoplasma species. Candida species detected by direct microscopic examination of vaginal fluid was more common in women with spinal cord injuries than in control women: 17.3% (9/52) compared with 3.5% (2/57), respectively (P=.017). However, the frequency of yeast-positive cultures was similar in both groups (21.2% [10/52] compared with 15.8% [14/57]). Women with spinal cord injury were more likely to have positive vaginal cultures for Escherichia coli (15.4% [8/52] compared with 0% [0/57], P=.002) and Corynebacterium species (25.0% [13/52] compared with 8.8% [5/57], P=.037) and less likely for Lactobacillus species (63.5% [33/52] compared with 94.7% [54/57], P<.001). Women with spinal cord injury were more likely to have intermediate flora by Gram stain (Nugent score 4-6) than did the women in the control group (13.5% [7/52] compared with 1.8% [1/57], P=.033). The frequency of Mycoplasma species detection was similar in both groups (36.9% [18/52] compared with 34.6% [21/57]). No woman in either group was positive for T vaginalis, C trachomatis, or N gonorrhoeae. Women with spinal cord injury have an alteration in their vaginal microbiota away from a Lactobacillus species-dominated flora and a higher concentration of vaginal Candida species than do mobile women.

  10. Spinal cord stress injury assessment (SCOSIA): clinical applications of mechanical modeling of the spinal cord and brainstem

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Choi, Jae; Wilson, William; Berry, Joel; Henderson, Fraser C., Sr.

    2009-02-01

    Abnormal stretch and strain is a major cause of injury to the spinal cord and brainstem. Such forces can develop from age-related degeneration, congenital malformations, occupational exposure, or trauma such as sporting accidents, whiplash and blast injury. While current imaging technologies provide excellent morphology and anatomy of the spinal cord, there is no validated diagnostic tool to assess mechanical stresses exerted upon the spinal cord and brainstem. Furthermore, there is no current means to correlate these stress patterns with known spinal cord injuries and other clinical metrics such as neurological impairment. We have therefore developed the spinal cord stress injury assessment (SCOSIA) system, which uses imaging and finite element analysis to predict stretch injury. This system was tested on a small cohort of neurosurgery patients. Initial results show that the calculated stress values decreased following surgery, and that this decrease was accompanied by a significant decrease in neurological symptoms. Regression analysis identified modest correlations between stress values and clinical metrics. The strongest correlations were seen with the Brainstem Disability Index (BDI) and the Karnofsky Performance Score (KPS), whereas the weakest correlations were seen with the American Spinal Injury Association (ASIA) scale. SCOSIA therefore shows encouraging initial results and may have wide applicability to trauma and degenerative disease involving the spinal cord and brainstem.

  11. The beneficial effects of treadmill step training on activity-dependent synaptic and cellular plasticity markers after complete spinal cord injury.

    PubMed

    Ilha, Jocemar; Centenaro, Lígia A; Broetto Cunha, Núbia; de Souza, Daniela F; Jaeger, Mariane; do Nascimento, Patrícia S; Kolling, Janaína; Ben, Juliana; Marcuzzo, Simone; Wyse, Angela T S; Gottfried, Carmem; Achaval, Matilde

    2011-06-01

    Several studies have shown that treadmill training improves neurological outcomes and promotes plasticity in lumbar spinal cord of spinal animals. The morphological and biochemical mechanisms underlying these phenomena remain unclear. The purpose of this study was to provide evidence of activity-dependent plasticity in spinal cord segment (L5) below a complete spinal cord transection (SCT) at T8-9 in rats in which the lower spinal cord segments have been fully separated from supraspinal control and that subsequently underwent treadmill step training. Five days after SCT, spinal animals started a step-training program on a treadmill with partial body weight support and manual step help. Hindlimb movements were evaluated over time and scored on the basis of the open-field BBB scale and were significantly improved at post-injury weeks 8 and 10 in trained spinal animals. Treadmill training also showed normalization of withdrawal reflex in trained spinal animals, which was significantly different from the untrained animals at post-injury weeks 8 and 10. Additionally, compared to controls, spinal rats had alpha motoneuronal soma size atrophy and reduced synaptophysin protein expression and Na(+), K(+)-ATPase activity in lumbar spinal cord. Step-trained rats had motoneuronal soma size, synaptophysin expression and Na(+), K(+)-ATPase activity similar to control animals. These findings suggest that treadmill step training can promote activity-dependent neural plasticity in lumbar spinal cord, which may lead to neurological improvements without supraspinal descending control after complete spinal cord injury.

  12. Identification of neuroanatomic circuits from spinal cord to stomach in mouse: retrograde transneuronal viral tracing study.

    PubMed

    Ye, Da-Wei; Liu, Cheng; Tian, Xue-Bi; Xiang, Hong-Bing

    2014-01-01

    To determine the spinal innervation and neuronal connections is important for studying gastric carbohydrate metabolism and motor responses. Neurons involved in the efferent control of the stomach were identified following visualization of pseudorabies virus (PRV)-614 retrograde tracing. PRV-614 was injected into the ventral stomach wall in 13 adult C57BL/6J strain male mice. On the fifth day postinjection, animals were humanely sacrificed, and spinal cords were removed and sectioned, and processed for PRV visualization. The virus injected into the ventral stomach wall was specifically transported to the thoracic spinal cord. At 5 d after injection of the PRV-614, stomach enlargement and tissue edema were found, and PRV-614 positive cells were found in the intermediolateral cell column, the intercalates nucleus or the central autonomic nucleus of spinal cord segments T3 to L1, and major PRV-614 labeled cells were focused in the T6-10 segment. Our results revealed neuroanatomical circuits between stomach and the spinal intermediolateral cell column neurons.

  13. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    PubMed Central

    Chen, Nan-Fu; Sung, Chun-Sung; Wen, Zhi-Hong; Chen, Chun-Hong; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Tsui, Kuan-Hao; Chen, Wu-Fu

    2018-01-01

    Platelet-rich plasma (PRP) is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), and epithelial growth factor (EGF). The complex mechanisms underlying spinal cord injury (SCI) diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS) injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t.) PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration) exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an autologous

  14. Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.

    PubMed

    Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F

    2018-01-01

    There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores ( R 2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas ( R 2 = 0.74). Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.

  15. Diagnosis and management of traumatic cervical central spinal cord injury: A review.

    PubMed

    Epstein, Nancy E; Hollingsworth, Renee

    2015-01-01

    The classical clinical presentation, neuroradiographic features, and conservative vs. surgical management of traumatic cervical central spinal cord (CSS) injury remain controversial. CSS injuries, occurring in approximately 9.2% of all cord injuries, are usually attributed to significant hyperextension trauma combined with congenital/acquired cervical stenosis/spondylosis. Patients typically present with greater motor deficits in the upper vs. lower extremities accompanied by patchy sensory loss. T2-weighted magnetic resonance (MR) scans usually show hyperintense T2 intramedullary signals reflecting acute edema along with ligamentous injury, while noncontrast computed tomography (CT) studies typically show no attendant bony pathology (e.g. no fracture, dislocation). CSS constitute only a small percentage of all traumatic spinal cord injuries. Aarabi et al. found CSS patients averaged 58.3 years of age, 83% were male and 52.4% involved accidents/falls in patients with narrowed spinal canals (average 5.6 mm); their average American Spinal Injury Association (ASIA) motor score was 63.8, and most pathology was at the C3-C4 and C4-C5 levels (71%). Surgery was performed within 24 h (9 patients), 24-48 h (10 patients), or after 48 h (23 patients). In the Brodell et al. study of 16,134 patients with CSS, 39.7% had surgery. In the Gu et al. series, those with CSS and stenosis/ossification of the posterior longitudinal ligament (OPLL) exhibited better outcomes following laminoplasty. Recognizing the unique features of CSS is critical, as the clinical, neuroradiological, and management strategies (e.g. conservative vs. surgical management: early vs. late) differ from those utilized for other spinal cord trauma. Increased T2-weighted MR images best document CSS, while CT studies confirm the absence of fracture/dislocation.

  16. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury

    PubMed Central

    Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.

    2016-01-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672

  17. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury.

    PubMed

    Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J

    2016-11-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH) + neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH) - and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH + neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D 2 -like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH + neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH + cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH + neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. Published by Elsevier Inc.

  18. Cellular Scaling Rules for Primate Spinal Cords

    PubMed Central

    Burish, Mark J.; Peebles, J. Klint; Baldwin, Mary K.; Tavares, Luciano; Kaas, Jon H.; Herculano-Houzel, Suzana

    2010-01-01

    The spinal cord can be considered a major sensorimotor interface between the body and the brain. How does the spinal cord scale with body and brain mass, and how are its numbers of neurons related to the number of neurons in the brain across species of different body and brain sizes? Here we determine the cellular composition of the spinal cord in eight primate species and find that its number of neurons varies as a linear function of cord length, and accompanies body mass raised to an exponent close to 1/3. This relationship suggests that the extension, mass and number of neurons that compose the spinal cord are related to body length, rather than to body mass or surface. Moreover, we show that although brain mass increases linearly with cord mass, the number of neurons in the brain increases with the number of neurons in the spinal cord raised to the power of 1.7. This faster addition of neurons to the brain than to the spinal cord is consistent with current views on how larger brains add complexity to the processing of environmental and somatic information. PMID:20926855

  19. Migration of luque rods through a laminectomy defect causing spinal cord compression.

    PubMed

    Quint, D J; Salton, G

    1993-01-01

    Internal fixation of traumatic spinal injuries has been associated with spinal canal stenosis, spinal cord compression, and nerve root impingement. We present a case of spinal cord/cauda equina compression due to migration of intact, anchored thoracolumbar Luque rods into the spinal canal through a laminectomy defect, leading to neurologic complications 10 years after the original operation.

  20. Enrichment of spinal cord cell cultures with motoneurons

    PubMed Central

    1978-01-01

    Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221- 283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation. PMID:566275

  1. Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury

    PubMed Central

    Crupi, Rosalia; Impellizzeri, Daniela; Bruschetta, Giuseppe; Cordaro, Marika; Paterniti, Irene; Siracusa, Rosalba; Cuzzocrea, Salvatore; Esposito, Emanuela

    2016-01-01

    Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultraPEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5–T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally) daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor, and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases. PMID:27014061

  2. Spinal Cord Diseases

    MedlinePlus

    ... spinal muscular atrophy Symptoms vary but might include pain, numbness, loss of sensation and muscle weakness. These symptoms can occur around the spinal cord, and also in other areas such as your arms and legs. Treatments often include medicines and surgery.

  3. Can the mammalian lumbar spinal cord learn a motor task?

    PubMed

    Hodgson, J A; Roy, R R; de Leon, R; Dobkin, B; Edgerton, V R

    1994-12-01

    Progress toward restoring locomotor function in low thoracic spinal transected cats and the application of similar techniques to patients with spinal cord injury is reviewed. Complete spinal cord transection (T12-T13) in adult cats results in an immediate loss of locomotor function in the hindlimbs. Limited locomotor function returns after several months in cats that have not received specific therapies designed to restore hindlimb stepping. Training transected cats to step on a treadmill for 30 min.d-1 and 5 d.wk-1 greatly improves their stepping ability. The most successful outcome was in cats where training began early, i.e., 1 wk after spinal transection. Cats trained to stand instead of stepping had great difficulty using the hindlimbs for locomotion. These effects were reversible over a 20-month period such that cats unable to step as a result of standing training could be trained to step and, conversely, locomotion in stepping-trained cats could be abolished by standing training. These results indicate that the spinal cord is capable of learning specific motor tasks. It has not been possible to elicit locomotion in patients with clinically complete spinal injuries, but appropriately coordinated EMG activity has been demonstrated in musculature of the legs during assisted locomotion on a treadmill.

  4. 76 FR 71623 - Agency Information Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review AGENCY: Veterans Benefits Administration... INFORMATION: Title: Spinal Cord Injury Patient Care Survey, VA Form 10-0515. OMB Control Number: OMB Control... 10-0515 will be used to determine spinal cord patients' satisfaction with VA rehabilitation and...

  5. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2018-05-16

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  6. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    PubMed Central

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational

  7. Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection.

    PubMed

    Sharma, Hari S; Patnaik, Ranjana; Muresanu, Dafin F; Lafuente, José V; Ozkizilcik, Asya; Tian, Z Ryan; Nozari, Ala; Sharma, Aruna

    2017-01-01

    The possibility that histamine influences the spinal cord pathophysiology following trauma through specific receptor-mediated upregulation of neuronal nitric oxide synthase (nNOS) was examined in a rat model. A focal spinal cord injury (SCI) was inflicted by a longitudinal incision into the right dorsal horn of the T10-11 segments. The animals were allowed to survive 5h. The SCI significantly induced breakdown of the blood-spinal cord barrier to protein tracers, reduced the spinal cord blood flow at 5h, and increased the edema formation and massive upregulation of nNOS expression. Pretreatment with histamine H1 receptor antagonist mepyramine (1mg, 5mg, and 10mg/kg, i.p., 30min before injury) failed to attenuate nNOS expression and spinal cord pathology following SCI. On the other hand, blockade of histamine H2 receptors with cimetidine or ranitidine (1mg, 5mg, or 10mg/kg) significantly reduced these early pathophysiological events and attenuated nNOS expression in a dose-dependent manner. Interestingly, TiO 2 -naowire delivery of cimetidine or ranitidine (5mg doses) exerted superior neuroprotective effects on SCI-induced nNOS expression and cord pathology. It appears that effects of ranitidine were far superior than cimetidine at identical doses in SCI. On the other hand, pretreatment with histamine H3 receptor agonist α-methylhistamine (1mg, 2mg, or 5mg/kg, i.p.) that inhibits histamine synthesis and release in the central nervous system thwarted the spinal cord pathophysiology and nNOS expression when used in lower doses. Interestingly, histamine H3 receptor antagonist thioperamide (1mg, 2mg, or 5mg/kg, i.p.) exacerbated nNOS expression and cord pathology after SCI. These novel observations suggest that blockade of histamine H2 receptors or stimulation of histamine H3 receptors attenuates nNOS expression and induces neuroprotection in SCI. Taken together, our results are the first to demonstrate that histamine-induced pathophysiology of SCI is mediated via n

  8. Functional MR imaging of the cervical spinal cord by use of electrical stimulation at LI4 (Hegu).

    PubMed

    Wang, W D; Kong, K M; Xiao, Y Y; Wang, X J; Liang, B; Qi, W L; Wu, R H

    2006-01-01

    The purpose is to investigate the cervical spinal cord mapping on electrical stimulation at LI4 (Hegu) by using 'signal enhancement by extravascular water protons' (SEEP)-fMRI, and to establish the response of acupoint-stimulation in spinal cord. Three healthy volunteers were underwent low-frequency electrical stimulation at LI4. Meanwhile, a single-shot fast spin-echo (SSFSE) sequence was used to perform functional MR imaging on a 1.5 T GE Signa MR system. Cord activation was measured both in the sagittal and transverse imaging planes and then analyzed by AFNI (analysis of functional neuroimages) system. In the sagittal view, two subjects had an fMRI response in the cervical spinal cord upon electrical stimulation at LI4. The localizations of the segmental fMRI activation are both at C6 through T1 and C2/3 cervical spinal cord level. In the transverse imaging plane, significant fMRI responses could be measured in the last subjects locating at C6/7 segment, the cross-sectional localization of the activity measured in the spinal cord was most in terms of the ipsilateral posterior direction. It is concluded that the fMRI technique can be used for detecting with activity in the human cervical spinal cord by a single-shot fast spin-echo sequence on a 1.5 T GE clinical system. Investigating the acupoint-stimulation response in the spinal cord using the spinal fMRI will be helpful for the further discussion on the mechanisms of acupuncture to spinal cord diseases.

  9. Malignant spinal cord compression in cancer patients may be mimicked by a primary spinal cord tumour.

    PubMed

    Mohammadianpanah, M; Vasei, M; Mosalaei, A; Omidvari, S; Ahmadloo, N

    2006-12-01

    Although it is quite rare, second primary neoplasms in cancer patients may present with the signs and symptoms of malignant spinal cord compression. Primary spinal cord tumours in the cancer patients may be deceptive and considered as the recurrent first cancer. Therefore, it should be precisely differentiated and appropriately managed. We report such a case of intramedullary ependymoma of the cervical spinal cord mimicking metatstatic recurrent lymphoma and causing cord compression. A 50-year-old man developed intramedullary ependymoma of the cervical spinal cord 1.5 years following chemoradiation for Waldeyer's ring lymphoma. He presented with a 2-month history of neck pain, progressive upper- and lower-extremity numbness and weakness, and bowel and bladder dysfunction. Magnetic resonance imaging revealed an intramedullary expansive lesion extending from C4 to C6 levels of the cervical spinal cord. The clinical and radiological findings were suggestive of malignant process. A comprehensive investigation failed to detect another site of disease. He underwent operation, and the tumour was subtotally resected. The patient's neurological deficits improved subsequently. The development of the intramedullary ependymoma following treating lymphoma has not been reported. We describe the clinical, radiological and pathological findings of this case and review the literature.

  10. DTI and pathological changes in a rabbit model of radiation injury to the spinal cord after 125I radioactive seed implantation

    PubMed Central

    Cao, Xia; Fang, Le; Cui, Chuan-yu; Gao, Shi; Wang, Tian-wei

    2018-01-01

    Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy. PMID:29623940

  11. Valproic Acid Increases Expression of Neuronal Stem/Progenitor Cell in Spinal Cord Injury

    PubMed Central

    Bang, Woo-Seok; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung

    2013-01-01

    Objective This study investigates the effect of valproic acid (VPA) on expression of neural stem/progenitor cells (NSPCs) in a rat spinal cord injury (SCI) model. Methods Adult male rats (n=24) were randomly and blindly allocated into three groups. Laminectomy at T9 was performed in all three groups. In group 1 (sham), only laminectomy was performed. In group 2 (SCI-VPA), the animals received a dose of 200 mg/kg of VPA. In group 3 (SCI-saline), animals received 1.0 mL of the saline vehicle solution. A modified aneurysm clip with a closing force of 30 grams was applied extradurally around the spinal cord at T9, and then rapidly released with cord compression persisting for 2 minutes. The rats were sacrificed and the spinal cord were collected one week after SCI. Immunohistochemistry (IHC) and western blotting sample were obtained from 5 mm rostral region to the lesion and prepared. We analyzed the nestin immunoreactivity from the white matter of ventral cord and the ependyma of central canal. Nestin and SOX2 were used for markers for NSPCs and analyzed by IHC and western blotting, respectively. Results Nestin and SOX2 were expressed significantly in the SCI groups but not in the sham group. Comparing SCI groups, nestin and SOX2 expression were much stronger in SCI-VPA group than in SCI-saline group. Conclusion Nestin and SOX2 as markers for NSPCs showed increased expression in SCI-VPA group in comparison with SCI-saline group. This result suggests VPA increases expression of spinal NSPCs in SCI. PMID:24044073

  12. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.

    PubMed

    Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien

    2017-04-15

    The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T 2 * -weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T 2 *-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T 2 *-weighted data. Results of automatic segmentation on T 2 *-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white

  13. Widespread spinal cord involvement in progressive supranuclear palsy.

    PubMed

    Iwasaki, Yasushi; Yoshida, Mari; Hashizume, Yoshio; Hattori, Manabu; Aiba, Ikuko; Sobue, Gen

    2007-08-01

    We describe the histopathologic features of spinal cord lesions in 10 cases of progressive supranuclear palsy (PSP) and review the literature. Histologic examination revealed atrophy with myelin pallor in the anterior funiculus and anterolateral funiculus in the cervical and thoracic segments in eight of the 10 cases, whereas the posterior funiculus was well preserved. The degrees of atrophy of the anterior funiculus and the anterolateral funiculus correlated with that of the tegmentum of the medulla oblongata. Myelin pallor of the lateral corticospinal tract was observed in two of the 10 cases. Microscopic observation of the spinal white matter, particularly the cervical segment, revealed a few to several neuropil threads, particularly in the white matter surrounding the anterior horn after Gallyas-Braak (GB) staining or AT-8 tau immunostaining. However, the posterior funiculus was completely preserved from the presence of argyrophilic or tau-positive structures. In the spinal gray matter, widespread distribution of neurons with cytoplasmic inclusions and neuropil threads was observed, particularly in the medial division of the anterior horn and intermediate gray matter, especially in the cervical segment. Globose-type neurofibrillary tangles and pretangles were found. The distribution of GB- or AT-8 tau-positive small neurons and neuropil threads resembled that of the spinal interneurons. In conclusion, the spinal cord, especially the cervical segment, is constantly involved in the pathologic process of PSP. We speculate that spinal interneurons and their neuronal processes, particularly in the medial division of the anterior horn and intermediate gray matter of the cervical segment, are most severely damaged in the PSP spinal cord.

  14. Spinal cord injury - Symptoms and causes

    MedlinePlus

    ... are the leading cause of spinal cord injuries, accounting for almost half of new spinal cord injuries ... address these problems if they affect you. Respiratory system. Your injury may make it more difficult to ...

  15. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy.

    PubMed

    Chen, Xueming; Kong, Chao; Feng, Shiqing; Guan, Hua; Yu, Zhenshan; Cui, Libin; Wang, Yanhui

    2016-06-01

    To identify the correlations of diffusion tensor imaging (DTI) indices between the cervical spinal cord and lumbosacral enlargement in healthy volunteers and patients with cervical spondylotic myelopathy (CSM). DTI was performed at the cervical spinal cord and lumbosacral enlargement in 10 CSM patients and 10 volunteers at 1.5T. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of were measured and compared between CSM patients and volunteers. DTI indices of different cervical segments in volunteers were compared. DTI indices of the cervical spinal cord were correlated with those of the lumbosacral enlargement. In healthy subjects, DTI indices of different cervical cord sections showed no significant difference (ADC: F = 0.62; P = 0.65; FA: F = 1.228; P = 0.312); there was no correlation between the DTI indices of the cervical spinal cord and those of the lumbosacral enlargement (ADC: r = 0.442, P = 0.201; FA: r = -0.054, P = 0.881). In the CSM patients, the ADC value significantly increased, while the FA value significantly decreased in the cervical spinal cord (ADC: P = 0.002; FA: P < 0.001) and lumbosacral enlargement (ADC: P = 0.003; FA: P < 0.001) compared with the healthy group. Both DTI indices showed no correlation between the cervical spinal cord and those of the lumbosacral enlargement in the CSM group (ADC: r = -0.052, P = 0.887; FA: r = 0.129, P = 0.722). The ADC value of the cervical spinal cord and lumbosacral enlargement in CSM patients showed significant increase compared with healthy volunteers, while the FA value significantly decreased. Both DTI indices of the cervical spinal cord had no linear correlation with those of the lumbosacral enlargement. J. Magn. Reson. Imaging 2016;43:1484-1491. © 2015 Wiley Periodicals, Inc.

  16. [Subcutaneous stimulation as additional therapy to spinal cord stimulation in a post-laminectomy syndrome patient].

    PubMed

    Akbaş, Mert; Yeğin, Mehmet Arif; Özdemir, İrem; Göksu, Ethem; Akyüz, Mahmut

    2016-01-01

    Spinal cord stimulation as treatment of chronic low back pain via neuromodulation has been frequently performed in recent years. The dorsal column is stimulated by an electrode placed at the epidural region. In the case presently described, subcutaneous lead was implanted in a patient with failed back syndrome after spinal cord stimulation was inadequate to treat back and gluteal pain. A 65-year-old male had undergone surgery to treat lumbar disc herniation, after which he received physical therapy and multiple steroid injections due to unrelieved pain. He was admitted to the pain clinic with pain radiating to right gluteal muscle and leg. Spinal cord stimulation was performed and, as pain was not relieved, subcutaneous lead was applied to the right cluneal nerve distribution. Following treatment, the patient scored 1-2 on visual analog scale. Pain had been reduced by over 80%. Octad electrode was placed between T8 and T10 vertebrae after Tuohy needle was introduced to intervertebral area between L1 and L2. Paresthesia occurred in the right extremity. Boundaries were determined by area of right gluteal region in which paresthesia did not occur. Octad electrode was placed subcutaneously after vertical line was drawn from center point. Paresthesia occurred throughout the region. Pulse wave was 390-450 msec; frequency was 10-30 Hz. Subcutaneous electrode replacement is effective additional therapy when pain is not relieved by spinal cord stimulation.

  17. Topical Ketamine 10% for Neuropathic Pain in Spinal Cord Injury Patients: An Open-Label Trial.

    PubMed

    Rabi, Joseph; Minori, Joshua; Abad, Hasan; Lee, Ray; Gittler, Michelle

    2016-01-01

    Topical ketamine, an N-methyl-D-aspartate antagonist, has been shown to be effective in certain neuropathic pain syndromes. The objective of this study was to determine the efficacy of topical ketamine in spinal cord injury patients with neuropathic pain. An open label trial enrolled five subjects at an outpatient rehabilitation hospital with traumatic spinal cord injuries who had neuropathic pain at or below the level of injury. Subjects applied topical ketamine 10% three times a day for a two-week duration. Subjects recorded their numerical pain score-ranging from 0 to 10, with 0 representing "no pain, 5 representing "moderate pain," and 10 being described as "worst possible pain"-in a journal at the time of application of topical ketamine and one hour after application. Using a numerical pain scale allows for something as subjective as pain to be given an objective quantification. Subjects also recorded any occurrence of adverse events and level of satisfaction. All five subjects had a decrease in their numerical pain scale by the end of two weeks, ranging from 14% to 63%. The duration ranged from one hour in one subject to the next application in other subjects. There were no adverse effects. Overall, four out of the five subjects stated they were satisfied. Topical ketamine 10% is an effective neuropathic pain medicine in patients with spinal cord injuries; however, further studies need to be done with a placebo and larger sample size. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  18. Spinal cord compression in pseudohypoparathyroidism.

    PubMed

    Roberts, Timothy T; Khasnavis, Siddharth; Papaliodis, Dean N; Citone, Isabella; Carl, Allen L

    2013-12-01

    Spinal cord compression associated with pseudohypoparathyroidism (PHP) is an increasingly reported sequelae of the underlying metabolic syndrome. The association of neurologic dysfunction with PHP is not well appreciated. We believe this to be secondary to a combination of underlying congenital stenosis, manifest by short pedicles secondary to premature physeal closure, and hypertrophic ossification of the vertebral bony and ligamentous complexes. The purpose of this case report is to review the case of spinal stenosis in a child with PHP Type Ia. We are aware of only eight published reports of patients with PHP Type Ia and spinal stenosis-there are only two previously known cases of pediatric spinal stenosis secondary to PHP. This is a case report detailing the symptoms, diagnosis, interventions, complications, and ultimate outcomes of a pediatric patient undergoing spinal decompression and fusion for symptomatic stenosis secondary to PHP Type Ia. Literature search was reviewed regarding the reports of spinal stenosis and PHP, and the results are culminated and discussed. We report on a 14-year-old obese male with PHP and progressive lower extremity weakness secondary to congenital spinal stenosis. Examination revealed functional upper extremities with spastic paraplegia of bilateral lower extremities. The patient's neurologic function was cautiously monitored, but he deteriorated to a bed-bound state, preoperatively. The patient's chart was reviewed, summarized, and presented. Literature was searched using cross-reference of PHP and the terms "spinal stenosis," "myelopathy", "myelopathic," and "spinal cord compression." All relevant case reports were reviewed, and the results are discussed herein. The patient underwent decompression and instrumented fusion of T2-T11. He improved significantly with regard to lower extremity function, achieving unassisted ambulation function after extensive rehabilitation. Results from surgical decompression in previously reported

  19. Spinal column and spinal cord injuries in mountain bikers: a 13-year review.

    PubMed

    Dodwell, Emily R; Kwon, Brian K; Hughes, Barbara; Koo, David; Townson, Andrea; Aludino, Allan; Simons, Richard K; Fisher, Charles G; Dvorak, Marcel F; Noonan, Vanessa K

    2010-08-01

    Multiple studies have described in general the injuries associated with mountain biking, and detailed accounts of spine injuries sustained in hockey, gymnastics, skiing, snowboarding, rugby, and paragliding have previously been published. However, no large-scale detailed assessment of mountain biking associated spinal fractures and spinal cord injuries has previously been published. This study was undertaken to describe the patient demographics, injuries, mechanisms, treatments, outcomes, and resource requirements associated with spine injuries sustained while mountain biking. Case series; Level of evidence, 4. Patients who were injured while mountain biking, and who were seen at a provincial spine referral center between 1995 and 2007 inclusive, with spinal cord injuries and/or spine fracture were included. A chart review was performed to obtain demographic data, and details of the injury, treatment, outcome, and resource requirements. A total of 102 men and 5 women were identified for inclusion. The mean age at injury was 32.7 years (95% confidence interval 30.6, 35.0). Seventy-nine patients (73.8%) sustained cervical injuries, while the remainder sustained thoracic or lumbar injuries. Forty-three patients (40.2%) sustained a spinal cord injury. Of those with cord injuries, 18 (41.9%) were American Spinal Injury Association (ASIA) A, 5 (11.6%) were ASIA B, 10 (23.3%) ASIA C, and 10 (23.3%) ASIA D. Sixty-seven patients (62.6%) required surgical treatment. The mean length of stay in an acute hospital bed was 16.9 days (95% confidence interval 13.1, 30.0). Thirty-three patients (30.8%) required intensive care unit attention, and 31 patients (29.0%) required inpatient rehabilitation. Of the 43 patients (40.2%) seen with spinal cord injuries, 14 (32.5%) improved by 1 ASIA category, and 1 (2.3%) improved by 2 ASIA categories. Two patients remained ventilator-dependent at discharge. Spine fractures and spinal cord injuries caused by mountain biking accidents typically

  20. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier.

    PubMed

    Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana

    2018-02-13

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.

  1. Changes in Afferent Activity After Spinal Cord Injury

    PubMed Central

    de Groat, William C.; Yoshimura, Naoki

    2010-01-01

    Aims To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. Methods Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. Results Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordination centers (periaqueductal gray and pontine micturition center) located in the rostral brain stem. This reflex pathway, which is activated by small myelinated (Aδ) bladder afferent nerves, is in turn modulated by higher centers in the cerebral cortex involved in the voluntary control of micturition. Spinal cord injury at cervical or thoracic levels disrupts voluntary voiding, as well as the normal reflex pathways that coordinate bladder and sphincter function. Following spinal cord injury, the bladder is initially areflexic but then becomes hyperreflexic due to the emergence of a spinal micturition reflex pathway. The recovery of bladder function after spinal cord injury is dependent in part on the plasticity of bladder afferent pathways and the unmasking of reflexes triggered by unmyelinated, capsaicin-sensitive, C-fiber bladder afferent neurons. Plasticity is associated with morphologic, chemical, and electrical changes in bladder afferent neurons and appears to be mediated in part by neurotrophic factors released in the spinal cord and the peripheral target organs. Conclusions Spinal cord injury at sites remote from the lumbosacral spinal cord can indirectly influence properties of bladder afferent neurons by altering the function and chemical environment in the bladder or the spinal cord. PMID:20025033

  2. Characteristics of spinal cord stroke in clinical neurology.

    PubMed

    Romi, Fredrik; Naess, Halvor

    2011-01-01

    Spinal cord stroke accounts for about 0.3% of all strokes in our department. Thirty-two patients (15 males, 17 females; mean age 63.3 years) treated in the period 1995-2010 were included. Patients underwent thorough investigation including the use of different stroke scales (National Institute of Health Stroke Scale, Barthel Index and modified Rankin Scale). Twenty-eight patients had infarctions, 3 had hemorrhages, and 1 had arterio-venous fistula. Twenty-eight spinal cord strokes were spontaneous, 2 were secondary to aorta aneurysms, and 2 post surgery. Biphasic ictus was seen in 17% of all spontaneous infarctions. Younger age, male gender, hypertension, diabetes mellitus, and higher blood glucose on admission regardless of diabetes mellitus, were risk factors associated with more severe spinal cord stroke. Treatment and prevention of these risk factors should be essential in spinal cord stroke. We recommend a clinical classification into upper (cervical) and lower (thoracic or medullary conus) spinal cord strokes. Patients with upper strokes in this study had more severe strokes initially, but they had a better prognosis. Therefore it is important to identify this patient group.Acute sensory spinal cord deficit symptoms, common initial symptoms in biphasic spinal cord strokes, should be considered as possible spinal cord stroke, especially when preceded by radiating pain between the shoulders. Copyright © 2011 S. Karger AG, Basel.

  3. Adenovirus-delivered GFP-HO-1C[INCREMENT]23 attenuates blood-spinal cord barrier permeability after rat spinal cord contusion.

    PubMed

    Chang, Sheng; Bi, Yunlong; Meng, Xiangwei; Qu, Lin; Cao, Yang

    2018-03-21

    The blood-spinal cord barrier (BSCB) plays a key role in maintaining the microenvironment and is primarily composed of tight junction proteins and nonfenestrated capillary endothelial cells. After injury, BSCB damage results in increasing capillary permeability and release of inflammatory factors. Recent studies have reported that haem oxygenase-1 (HO-1) fragments lacking 23 amino acids at the C-terminus (HO-1C[INCREMENT]23) exert novel anti-inflammatory and antioxidative effects in vitro. However, no study has identified the role of HO-1C[INCREMENT]23 in vivo. We aimed to investigate the protective effects of HO-1C[INCREMENT]23 on the BSCB after spinal cord injury (SCI) in a rat model. Here, adenoviral HO-1C[INCREMENT]23 (Ad-GFP-HO-1C[INCREMENT]23) was intrathecally injected into the 10th thoracic spinal cord segment (T10) 7 days before SCI. In addition, nuclear and cytoplasmic extraction and immunofluorescence staining of HO-1 were used to examine the effect of Ad-GFP-HO-1C[INCREMENT]23 on HO-1 nuclear translocation. Evan's blue staining served as an index of capillary permeability and was detected by fluorescence microscopy at 633 nm. Western blotting was also performed to detect tight junction protein expression. The Basso, Beattie and Bresnahan score was used to evaluate kinematic functional recovery through the 28th day after SCI. In this study, the Ad-GFP-HO-1C[INCREMENT]23 group showed better kinematic functional recovery after SCI than the Ad-GFP and Vehicle groups, as well as smaller reductions in TJ proteins and capillary permeability compared with those in the Ad-GFP and Vehicle groups. These findings indicated that Ad-GFP-HO-1C[INCREMENT]23 might have a potential therapeutic effect that is mediated by its protection of BSCB integrity.

  4. Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning

    PubMed Central

    Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-01-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6–C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain–spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations. PMID:26125597

  5. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    PubMed

    Vahdat, Shahabeddin; Lungu, Ovidiu; Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-06-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  6. Normalization of Blood Pressure With Spinal Cord Epidural Stimulation After Severe Spinal Cord Injury

    PubMed Central

    Harkema, Susan J.; Wang, Siqi; Angeli, Claudia A.; Chen, Yangsheng; Boakye, Maxwell; Ugiliweneza, Beatrice; Hirsch, Glenn A.

    2018-01-01

    Chronic low blood pressure and orthostatic hypotension remain challenging clinical issues after severe spinal cord injury (SCI), affecting health, rehabilitation, and quality of life. We previously reported that targeted lumbosacral spinal cord epidural stimulation (scES) could promote stand and step functions and restore voluntary movement in patients with chronic motor complete SCI. This study addresses the effects of targeted scES for cardiovascular function (CV-scES) in individuals with severe SCI who suffer from chronic hypotension. We tested the hypothesis that CV-scES can increase resting blood pressure and attenuate chronic hypotension in individuals with chronic cervical SCI. Four research participants with chronic cervical SCI received an implant of a 16-electrode array on the dura (L1–S1 cord segments, T11–L1 vertebrae). Individual-specific CV-scES configurations (anode and cathode electrode selection, voltage, frequency, and pulse width) were identified to maintain systolic blood pressure within targeted normative ranges without skeletal muscle activity of the lower extremities as assessed by electromyography. These individuals completed five 2-h sessions using CV-scES in an upright, seated position during measurement of blood pressure and heart rate. Noninvasive continuous blood pressure was measured from a finger cuff by plethysmograph technique. For each research participant there were statistically significant increases in mean arterial pressure in response to CV-scES that was maintained within normative ranges. This result was reproducible over the five sessions with concomitant decreases or no changes in heart rate using individual-specific CV-scES that was modulated with modest amplitude changes throughout the session. Our study shows that stimulating dorsal lumbosacral spinal cord can effectively and safely activate mechanisms to elevate blood pressures to normal ranges from a chronic hypotensive state in humans with severe SCI with

  7. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings.

    PubMed

    Talbott, Jason F; Whetstone, William D; Readdy, William J; Ferguson, Adam R; Bresnahan, Jacqueline C; Saigal, Rajiv; Hawryluk, Gregory W J; Beattie, Michael S; Mabray, Marc C; Pan, Jonathan Z; Manley, Geoffrey T; Dhall, Sanjay S

    2015-10-01

    Previous studies that have evaluated the prognostic value of abnormal changes in signals on T2-weighted MRI scans of an injured spinal cord have focused on the longitudinal extent of this signal abnormality in the sagittal plane. Although the transverse extent of injury and the degree of spared spinal cord white matter have been shown to be important for predicting outcomes in preclinical animal models of spinal cord injury (SCI), surprisingly little is known about the prognostic value of altered T2 relaxivity in humans in the axial plane. The authors undertook a retrospective chart review of 60 patients who met the inclusion criteria of this study and presented to the authors' Level I trauma center with an acute blunt traumatic cervical SCI. Within 48 hours of admission, all patients underwent MRI examination, which included axial and sagittal T2 images. Neurological symptoms, evaluated with the grades according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS), at the time of admission and at hospital discharge were correlated with MRI findings. Five distinct patterns of intramedullary spinal cord T2 signal abnormality were defined in the axial plane at the injury epicenter. These patterns were assigned ordinal values ranging from 0 to 4, referred to as the Brain and Spinal Injury Center (BASIC) scores, which encompassed the spectrum of SCI severity. The BASIC score strongly correlated with neurological symptoms at the time of both hospital admission and discharge. It also distinguished patients initially presenting with complete injury who improved by at least one AIS grade by the time of discharge from those whose injury did not improve. The authors' proposed score was rapid to apply and showed excellent interrater reliability. The authors describe a novel 5-point ordinal MRI score for classifying acute SCIs on the basis of axial T2-weighted imaging. The proposed BASIC score stratifies the SCIs according to the extent of transverse T2

  8. Spinal Cord Ischemia Secondary to Hypovolemic Shock

    PubMed Central

    Kapoor, Siddhant; Koh, Roy KM; Yang, Eugene WR; Hee, Hwan-Tak

    2014-01-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable. PMID:25558328

  9. The triple monoamine re-uptake inhibitor DOV 216,303 promotes functional recovery after spinal cord contusion injury in mice.

    PubMed

    Chu, Tak-Ho; Cummins, Karen; Stys, Peter K

    2018-05-14

    Serotonin, noradrenaline and dopamine are important neuromodulators for locomotion in the spinal cord. Disruption of descending axons after spinal cord injury resulted in reduction of excitatory and neuromodulatory inputs to spinal neurons for locomotion. Receptor agonists or reuptake inhibitors for these neuromodulators have been shown to be beneficial in incomplete spinal cord injury. In this study, we tested a triple re-uptake inhibitor, DOV 216,303, for its ability to affect motor function recovery after spinal cord injury in mice. We impacted C57 mouse spinal cord at the T11 vertebral level and administered vehicle or DOV 216,303 at 10 mg/kg, b.i.d via intraperitoneal injections for 7 days. We monitored motor function with the Basso Mouse Scale for locomotion for 4 weeks. Spinal cords were harvested and histological examinations were performed to assess tissue sparing and lesion severity. Results showed that DOV 216,303-treated mice recovered significantly better than vehicle treated mice starting at 14 days post injury until the end of the survival period. Lesion size of the DOV 216,303 treated mice was also smaller compared to that of vehicle treated mice. This study suggests DOV 216,303 as a potential therapeutic after spinal cord injury warrants further investigation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, p<0.05) was observed following SCI, indicating progressive SC cellular damage at the injury site. Elevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  11. Involvement of the Spinal Cord in Mitochondrial Disorders.

    PubMed

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2018-01-01

    This review aims at summarising and discussing the current status concerning the clinical presentation, pathogenesis, diagnosis, and treatment of spinal cord affection in mitochondrial disorders (MIDs). A literature search using the database Pubmed was carried out by application of appropriate search terms and their combinations. Involvement of the spinal cord in MIDs is more frequent than anticipated. It occurs in specific and non-specific MIDs. Among the specific MIDs it has been most frequently described in LBSL, LS, MERRF, KSS, IOSCA, MIRAS, and PCH and only rarely in MELAS, CPEO, and LHON. Clinically, spinal cord involvement manifests as monoparesis, paraparesis, quadruparesis, sensory disturbances, hypotonia, spasticity, urinary or defecation dysfunction, spinal column deformities, or as transverse syndrome. Diagnosing spinal cord involvement in MIDs requires a thoroughly taken history, clinical exam, and imaging studies. Additionally, transcranial magnetic stimulation, somato-sensory-evoked potentials, and cerebro-spinal fluid can be supportive. Treatment is generally not at variance compared to the underlying MID but occasionally surgical stabilisation of the spinal column may be necessary. It is concluded that spinal cord involvement in MIDs is more frequent than anticipated but may be missed if cerebral manifestations prevail. Spinal cord involvement in MIDs may strongly determine the mobility of these patients.

  12. Inflammatory myofibroblastic tumour of the spinal cord: case report and review of the literature.

    PubMed

    Despeyroux-Ewers, M; Catalaâ, I; Collin, L; Cognard, C; Loubes-Lacroix, F; Manelfe, C

    2003-11-01

    Inflammatory myofibroblastic tumours (IMT), also called inflammatory pseudotumours, nodular lymphoid hyperplasia, plasma-cell granuloma and fibrous xanthoma, are rare soft-tissue lesions characterised by inflammatory cells and a fibrous stroma. Clinically and radiologically, they may look like malignant tumours. They rarely affect the central nervous system and are very rare in the spinal cord. We report an IMT of the spinal cord in a 22-year-old woman presenting with spinal cord compression and a cauda equina syndrome. MRI showed a lesion at T9 with extramedullary and intramedullary components giving low signal on T2-weighted images and enhancing homogeneously. Pial lesions on the lumbar enlargement and thoracic spinal were present 11 months after surgery, when the lesion recurred. We present the radiological, operative and pathological findings and review the literature.

  13. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R; Phelps, Patricia E

    2010-03-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. Copyright 2009 Elsevier Inc. All rights reserved.

  14. NORADRENERGIC INNERVATION OF THE RAT SPINAL CORD CAUDAL TO A COMPLETE SPINAL CORD TRANSECTION: EFFECTS OF OLFACTORY ENSHEATHING GLIA

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. PMID:20025875

  15. The spinal cord: a review of functional neuroanatomy.

    PubMed

    Bican, Orhan; Minagar, Alireza; Pruitt, Amy A

    2013-02-01

    The spinal cord controls the voluntary muscles of the trunk and limbs and receives sensory input from these areas. It extends from the medulla oblongata to the lower border of the first lumbar vertebra. A basic knowledge of spinal cord anatomy is essential for interpretation of clinical signs and symptoms and for understanding of pathologic processes involving the spinal cord. In this article, anatomic structures are correlated with relevant clinical signs and symptoms and a step-wise approach to spinal cord diagnosis is outlined. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Vascular dysfunctions following spinal cord injury

    PubMed Central

    Popa, F; Grigorean, VT; Onose, G; Sandu, AM; Popescu, M; Burnei, G; Strambu, V; Sinescu, C

    2010-01-01

    The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1–L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin–angiotensin–aldosterone activity, peripheral alpha–adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as

  17. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord.

    PubMed

    Zaporozhets, Eugene; Cowley, Kristine C; Schmidt, Brian J

    2011-06-01

    Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/N-methyl-D-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di-n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K(+) concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg(2+) ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the

  18. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation

    PubMed Central

    Machova Urdzikova, Lucia; Karova, Kristyna; Ruzicka, Jiri; Kloudova, Anna; Shannon, Craig; Dubisova, Jana; Murali, Raj; Kubinova, Sarka; Sykova, Eva; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2015-01-01

    Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. PMID:26729105

  19. [Rehabilitation programme using neuromuscular electrical stimulation in spinal cord: epidemiological aspects].

    PubMed

    Bittar, Cíntia Kelly; Cliquet, Alberto

    2011-01-01

    To assess epidemiological profile of spinal cord injury outpatients which have been participating of rehabilitation programme using neuromuscular electrical stimulation, in order to implement campaigns for preventing spinal cord trauma. From January to April 2009, 30 patients at the spinal cord injury ambulatory clinic at Hospital das Clínicas of Unicamp were analysed by some epidemiologic characteristics: age, profession, type and level of their paralysis, origin and time of injury. All patients had complete spinal cord injury (ASIA); 24 patients were men and six were women, the mean age was 34.6 years (range, 10-64 years), two patients were children. Twenty-one patients were paraplegic and nine were tetraplegic; causes included automobile accident (12), run over (three), diving (four), bicycle accident (one), motorcycle accident (three), gunshot wound (six), thoracic tuberculosis (one), and lumbar surgery (one). The mean lesion time was 8.2 years (range, 1-15 years). Two patients were retired. The results suggested that spinal cord injury affects mainly young active men. It is necessary to develop incisive actions to prevent accidents, specially directed to traffic security.

  20. Intramedullary pressure changes in rats after spinal cord injury.

    PubMed

    Dong, X; Yang, D; Li, J; Liu, C; Yang, M; Du, L; Gu, R; Hu, A; Zhang, H

    2016-11-01

    The objectives of this study were to explore the change of intramedullary pressure over time in rats after different degrees of spinal cord contusion injury and to verify the hypothesis that the more serious the injury, the higher the intramedullary pressure. The control group rats underwent laminectomy only, whereas the rats in the three experimental groups were subjected to mild, moderate or severe 10th thoracic cord (T10) contusion injury after laminectomy. In addition, an intramedullary pressure of T10 was measured by a Millar Mikro-Tip pressure catheter (Millar Incorporated Company, Houston, TX, USA) immediately in the control group or at different time points after injury in the experimental groups. The average intramedullary pressure of the rats in the control group was 6.88±1.67 mm Hg, whereas that of the rats in any injury group was significantly higher (P=0.000). There was statistical difference among the different time points in the mild or moderate injury group (P=0.007/0.017), but no in the severe (P=0.374). The curves of intramedullary pressure over time in the mild and moderate injury group were bimodal, peaking at 1 and 48 h after the injury. The intramedullary pressure after injury was positively correlated with the injury degree (r=0.438, P=0.000). The intramedullary pressure of the rats increased after traumatic spinal cord injury. If the injury was not serious, the intramedullary pressure fluctuated with time and peaked at 1 and 48 h after injury. If the injury was serious, the intramedullary pressure remained high. The more serious the injury, the higher the intramedullary pressure.

  1. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs.

    PubMed

    Lim, Ji Hey; Byeon, Ye Eun; Ryu, Hak Hyun; Jeong, Yun Hyeok; Lee, Young Won; Kim, Wan Hee; Kang, Kyung Sun; Kweon, Oh Kyeong

    2007-09-01

    This study was to determine the effects of allogenic umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) and recombinant methionyl human granulocyte colony-stimulating factor (rmhGCSF) on a canine spinal cord injury model after balloon compression at the first lumbar vertebra. Twenty-five adult mongrel dogs were assigned to five groups according to treatment after a spinal cord injury: no treatment (CN); saline treatment (CP); rmhGCSF treatment (G); UCB-MSCs treatment (UCB-MSC); co-treatment (UCBG). The UCBMSCs isolated from cord blood of canine fetuses were prepared as 10(6) cells/150 microl saline. The UCB-MSCs were directly injected into the injured site of the spinal cord and rmhGCSF was administered subcutaneously 1 week after the induction of spinal cord injury. The Olby score, magnetic resonance imaging, somatosensory evoked potentials and histopathological examinations were used to evaluate the functional recovery after transplantation. The Olby scores of all groups were zero at the 0-week evaluation. At 2 week after the transplantation, the Olby scores in the groups with the UCB-MSC and UCBG were significantly higher than in the CN and CP groups. However, there were no significant differences between the UCB-MSC and UCBG groups, and between the CN and CP groups. These comparisons remained stable at 4 and 8 week after transplantation. There was significant improvement in the nerve conduction velocity based on the somatosensory evoked potentials. In addition, a distinct structural consistency of the nerve cell bodies was noted in the lesion of the spinal cord of the UCB-MSC and UCBG groups. These results suggest that transplantation of the UCB-MSCs resulted in recovery of nerve function in dogs with a spinal cord injury and may be considered as a therapeutic modality for spinal cord injury.

  2. Recurrent ‘universal tumour’ of the spinal cord

    PubMed Central

    O'Grady, John; Kaliaperumal, Chandrasekaran; O'Sullivan, Michael

    2012-01-01

    Lipoma is popularly known as the ‘universal tumour’ because of its ubiquitous presence anywhere in the body. This is the first documented case of recurrent thoracic spinal cord intramedullary lipoma in a 44-year-old man, with a background of spinal dysraphism, which recurred 15 years after initial surgery. He was followed up every 2 years and currently presented with an 8-month history of progressive weakness in his lower limbs. An MRI of the spine confirmed recurrence of lipoma. He underwent redo laminectomy and partial resection and spinal cord decompression with duroplasty. Lipoma, although a low-grade tumour, can cause significant neurological deficits because of its location. Surgical exploration and removal of lipoma is recommended. However, to preserve the functionality of the spinal cord, one may resort to partial resection and aim for spinal cord decompression. The literature on spinal cord lipoma is reviewed and the aetiopathogenesis of this rare occurrence is described. PMID:22675149

  3. Longitudinal study of bone loss in chronic spinal cord injury patients

    PubMed Central

    Karapolat, Inanc; Karapolat, Hale Uzumcugil; Kirazli, Yesim; Capaci, Kazim; Akkoc, Yesim; Kumanlioglu, Kamil

    2015-01-01

    [Purpose] This prospective longitudinal study evaluated the changes in bone metabolism markers and bone mineral density of spinal cord injury patients over 3 years. We also assessed the relationships among the bone mineral density, bone metabolism, and clinical data of spinal cord injury patients. [Subjects and Methods] We assessed the clinical data (i.e., immobilization due to surgery, neurological status, neurological level, and extent of lesion) in 20 spinal cord injury patients. Bone mineral density, and hormonal and biochemical markers of the patients were measured at 0, 6, 12, and 36 months. [Results] Femoral neck T score decreased significantly at 36 months (p < 0.05). Among the hormonal markers, parathyroid hormone and vitamin D were significantly elevated, while bone turnover markers (i.e., deoxypyridinoline and osteocalcin) were significantly decreased at 12 and 36 months (p < 0.05). [Conclusion] Bone mineral density of the femoral neck decreases significantly during the long-term follow-up of patients with spinal cord injury due to osteoporosis. This could be due to changes in hormonal and bone turnover markers. PMID:26157234

  4. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats.

    PubMed

    Gad, Parag; Choe, Jaehoon; Nandra, Mandheerej Singh; Zhong, Hui; Roy, Roland R; Tai, Yu-Chong; Edgerton, V Reggie

    2013-01-21

    Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific

  5. Coupling between the spinal cord and cervical vertebral column under tensile loading.

    PubMed

    Kroeker, Shannon G; Ching, Randal P

    2013-02-22

    Current neck injury criteria are based on structural failure of the spinal (vertebral) column without consideration of injury to the spinal cord. Since one of the primary functions of the vertebral column is to protect the cord, it stands to reason that a more refined measure of neck injury threshold would be the onset of spinal cord injury (SCI). This study investigated the relationship between axial strains in the cervical vertebral column and the spinal cord using an in vitro primate model (n=10) under continuous tensile loading. Mean failure loads occurred at 1951.5±396N with failure strains in the vertebral column of 16±5% at the level of failure. Average tensile strains in the spinal cord at failure were 11±5% resulting in a mean coupling ratio of 0.54±0.17 between C1 and C7. The level of peak strain measured in the spinal cord did not always occur at the location of vertebral column failure. Spinal cord strains were less than spine strains and coupling ratios were not significantly different along the length of the spine. The largest coupling ratio was measured in the atlanto-occipital joint whereas the smallest coupling ratio occurred at the adjacent C1-C2 joint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Are there endogenous stem cells in the spinal cord?

    PubMed

    Ferrucci, Michela; Ryskalin, Larisa; Busceti, Carla L; Gaglione, Anderson; Biagioni, Francesca; Fornai, Francesco

    2017-12-01

    Neural progenitor cells (NPC) represent the stem-like niche of the central nervous system that maintains a regenerative potential also in the adult life. Despite NPC in the brain are well documented, the presence of NPC in the spinal cord has been controversial for a long time. This is due to a scarce activity of NPC within spinal cord, which also makes difficult their identification. The present review recapitulates the main experimental studies, which provided evidence for the occurrence of NPC within spinal cord, with a special emphasis on spinal cord injury and amyotrophic lateral sclerosis. By using experimental models, here we analyse the site-specificity, the phenotype and the main triggers of spinal cord NPC. Moreover, data are reported on the effect of specific neurogenic stimuli on these spinal cord NPC in an effort to comprehend the endogenous neurogenic potential of this stem cell niche.

  7. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.

    PubMed

    Sławińska, Urszula; Miazga, Krzysztof; Cabaj, Anna M; Leszczyńska, Anna N; Majczyński, Henryk; Nagy, James I; Jordan, Larry M

    2013-09-01

    In rodent models of spinal cord injury, there is increasing evidence that activation of the locomotor central pattern generator (CPG) below the site of injury with 5-hydroxytryptamine (5-HT) agonists improves locomotor recovery and restores coordination. A promising means of replacing 5-HT control of locomotion is to graft brainstem 5-HT neurons into the spinal cord below the level of the spinal cord injury. However, it is not known whether this approach improves limb coordination because recovery of coordinated stepping has not been documented in detail in previous studies employing this transplantation strategy. Here, adult rats with complete spinal cord transections at the T9/10 level were grafted with E14 fetal neurons from the medulla at the T10/11 vertebra level one month after injury. The B1, B2 and B3 fetal anlagen of brainstem 5-HT neurons, a grouping that included the presumed precursors of recently described 5-HT locomotor command neurons, were used in these grafts. EMG and video recordings of treadmill locomotion evoked by tail stimulation showed full recovery of inter- and intralimb coordination in the grafted rats. We showed, using systemically applied antagonists, that 5-HT₂ and 5-HT₇ receptors mediate the improved locomotion after grafting, but through actions on different populations of spinal locomotor neurons. Specifically, 5-HT₂ receptors control CPG activation as well as motoneuron output, while 5-HT₇ receptors contribute primarily to activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Dynamic Detection of Spinal Cord Position During Postural Changes Using Near-Infrared Reflectometry.

    PubMed

    Wolf, Erich W

    2015-08-01

    Motion of the spinal cord relative to a spinal cord stimulator epidural electrode array can cause suboptimal stimulation: either noxious, inefficient, or insufficient. Adaptive stimulation attempts to mitigate these effects by modulating stimulation parameters in a position-dependent fashion. Near-infrared (NIR) reflectometry is demonstrated to provide real-time direct measurement of spinal cord position at the site of stimulation, which can facilitate closed-loop adaptive stimulation during static and dynamic motion states. A miniature sensor array consisting of an NIR light emitting diode flanked by phototransistors potted in epoxy was placed in the dorsal epidural space of a human cadaver at the T8 level via laminotomy. Turgor of the subarachnoid space was maintained by intrathecal infusion of saline. NIR reflectance was measured as the cadaver was rotated about its longitudinal axis on a gantry. NIR reflectance was correlated with gantry position and velocity. NIR reflectometry suggests gravitational force is the primary determinant of cord position in static, ordinal positions. Under dynamic motion conditions, there was statistically significant cross-correlation between reflectometry data and the tangential velocity squared, suggesting that centripetal force was the primary determinant of cord position as the gantry was rotated. Reflectometry data strongly correlated with a simple geometric model of anticipated spinal cord precession within the spinal canal. Spinal cord position during dynamic motion has been shown to differ from static predictions due to additional influences such as centripetal force. These findings underscore limitations in extrapolating spinal cord position from surrogates such as body position or body acceleration at sites remote from the stimulating electrodes. NIR reflectometry offers a real-time direct measure of spinal cord position in both static and dynamic motion states, which may facilitate closed-loop adaptive stimulation

  9. The negotiated equilibrium model of spinal cord function.

    PubMed

    Wolpaw, Jonathan R

    2018-04-16

    The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Recovery of locomotion in the cat following spinal cord lesions.

    PubMed

    Rossignol, S; Bouyer, L; Barthélemy, D; Langlet, C; Leblond, H

    2002-10-01

    In most species, locomotor function beneath the level of a spinal cord lesion can be restored even if the cord is completely transected. This suggests that there is, within the spinal cord, an autonomous network of neurons capable of generating a locomotor pattern independently of supraspinal inputs. Recent studies suggest that several physiological and neurochemical changes have to occur in the neuronal networks located caudally to the lesion to allow the expression of spinal locomotion. Some evidence of this plasticity will be addressed in this review. In addition, original data on the functional organisation of the lumbar spinal cord will also be presented. Recent works in our lab show that segmental responsiveness of the spinal cord of the cat to locally micro-injected drugs in different lumbar segments, in combination with complete lesions at various level of the spinal cord, suggest a rostro-caudal organisation of spinal locomotor control. Moreover, the integrity of midlumbar segments seems to be crucial for the expression of spinal locomotion. These data suggest that the regions of critical importance for locomotion can be confined to a restricted portion of the spinal cord. Later, these midlumbar segments could be targeted by electrical stimulation or grafts to improve recovery of function. Understanding the changes in spinal cord neurophysiology and neurochemistry after a lesion is of critical importance to the improvement of treatments for locomotor rehabilitation in spinal-cord-injured patients.

  11. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  12. Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord.

    PubMed

    Conrad, Benjamin N; Barry, Robert L; Rogers, Baxter P; Maki, Satoshi; Mishra, Arabinda; Thukral, Saakshi; Sriram, Subramaniam; Bhatia, Aashim; Pawate, Siddharama; Gore, John C; Smith, Seth A

    2018-06-01

    Patients with multiple sclerosis present with focal lesions throughout the spinal cord. There is a clinical need for non-invasive measurements of spinal cord activity and functional organization in multiple sclerosis, given the cord's critical role in the disease. Recent reports of spontaneous blood oxygenation level-dependent fluctuations in the spinal cord using functional MRI suggest that, like the brain, cord activity at rest is organized into distinct, synchronized functional networks among grey matter regions, likely related to motor and sensory systems. Previous studies looking at stimulus-evoked activity in the spinal cord of patients with multiple sclerosis have demonstrated increased levels of activation as well as a more bilateral distribution of activity compared to controls. Functional connectivity studies of brain networks in multiple sclerosis have revealed widespread alterations, which may take on a dynamic trajectory over the course of the disease, with compensatory increases in connectivity followed by decreases associated with structural damage. We build upon this literature by examining functional connectivity in the spinal cord of patients with multiple sclerosis. Using ultra-high field 7 T imaging along with processing strategies for robust spinal cord functional MRI and lesion identification, the present study assessed functional connectivity within cervical cord grey matter of patients with relapsing-remitting multiple sclerosis (n = 22) compared to a large sample of healthy controls (n = 56). Patient anatomical images were rated for lesions by three independent raters, with consensus ratings revealing 19 of 22 patients presented with lesions somewhere in the imaged volume. Linear mixed models were used to assess effects of lesion location on functional connectivity. Analysis in control subjects demonstrated a robust pattern of connectivity among ventral grey matter regions as well as a distinct network among dorsal regions. A gender effect

  13. LPS-induced knee-joint reactive arthritis and spinal cord glial activation were reduced after intrathecal thalidomide injection in rats.

    PubMed

    Bressan, Elisângela; Mitkovski, Mišo; Tonussi, Carlos Rogério

    2010-10-09

    Thalidomide is thought to prevent TNF-α production, and such mechanism could be useful in a spinally delivered drug approach for the control of peripheral inflammation. This study aimed to evaluate the effect of intrathecal thalidomide, in comparison with that of intraperitoneal treatment, on articular incapacitation, edema, synovial leukocyte content, and spinal cord glial activation in a model of Escherichia coli lipopolysaccharide (LPS)-induced reactive arthritis in rats. LPS (30ng) was injected into a knee-joint previously primed with carrageenan (300μg). Systemic (30 and 100mg/kg; intraperitoneal, i.p.) and intrathecal (10 and 100μg; i.t.) thalidomide were given 1h or 20min before LPS injection, respectively. Articular incapacitation and edema were evaluated hourly. After 6h, synovial fluid and lumbar spinal cords were collected for subsequent evaluations of cell migration and expression of CD11b/c and GFAP markers, respectively. Systemic (30 and 100mg/kg) or intrathecal (10 and 100μg) thalidomide reduced articular incapacitation, edema, and polymorphonuclear migration. In addition, i.p. and i.t. thalidomide reduced the expression of CD11b/c and GFAP markers in the lumbar spinal cord. These results suggest that thalidomide can also produce peripheral anti-inflammatory effects through action in the spinal cord that may involve glia inhibition. This study provides new evidence that the direct spinal delivery of immunomodulators may be an alternative for the treatment of arthritic diseases, which require long systemic treatment with drugs associated with undesirable side effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. What are the Causes of Spinal Cord Injury?

    MedlinePlus

    ... in a New Light An Honest Wheelchair Love Story Seven Helpful Smart Home Devices for People With Disabilities Can’t Work Because of a Spinal Cord Injury? Tags accessibility accident ADA adaptive adaptive equipment Adaptive technology Americans with Disabilities Act Ben Mattlin caregiver Cerebral ...

  15. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    PubMed

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.

  16. Revisiting the segmental organization of the human spinal cord.

    PubMed

    Leijnse, J N; D'Herde, K

    2016-09-01

    In classic anatomic atlases, the spinal cord is standardly represented in its anatomical form with symmetrically emerging anterior and posterior roots, which at the level of the intervertebral foramen combine into the spinal nerves. The parts of the cord delimited by the boundaries of the roots are called segments or myelomeres. Associated with their regular repetitive appearance is the notion that the cord is segmentally organized. This segmental view is reinforced by clinical practice. Spinal cord roots innervate specific body parts. The level of cord trauma is diagnosed by the de-innervation symptoms of these parts. However, systemically, the case for a segmentally organized cord is not so clear. To date, developmental and genetic research points to a regionally rather than a segmentally organized cord. In the present study, to what degree the fila radicularia are segmentally implanted along the cord was investigated. The research hypothesis was that if the fila radicularia were non-segmentally implanted at the cord surface, it would be unlikely that the internal neuron stratum would be segmented. The visual segmented aspect of the myelomeres would then be the consequence of the necessary bundling of axons towards the vertebral foramen as the only exits of the vertebral canal, rather than of an underlying segment organization of the cord itself. To investigate the research hypothesis, the fila radicularia in the cervical-upper thoracic part of five spinal cords were detached from their spinal nerves and dissected in detail. The principal research question was if the fila radicularia are separated from their spinal nerves and dissected from their connective tissues up to the cord, would it be possible to reconstruct the original spinal segments from the morphology and interspaces of the fila? The dissections revealed that the anterior fila radicularia emerge from the cord at regular regionally modulated interspaces without systematic segmental delineations. The

  17. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia

    PubMed Central

    Ardell, Jeffrey L.; Cardinal, René; Vermeulen, Michel; Armour, J. Andrew

    2009-01-01

    Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects. PMID:19515981

  18. Spinal cord tumors: new views and future directions.

    PubMed

    Mechtler, Laszlo L; Nandigam, Kaveer

    2013-02-01

    Spinal cord tumors are uncommon neoplasms that, without treatment, can cause significant neurologic morbidity and mortality. The historic classification of spine tumors is based on the use of myelography with 3 main groups: (1) extramedullary extradural, (2) intradural extramedullary, and (3) intradural intramedullary. This chapter focuses on intramedullary spinal cord tumors (ISCTs), with an emphasis on new diagnostic imaging modalities and treatment options. The common ISCTs include ependymoma, astrocytoma and hemangioblastoma, which together account for over 90% of primary ISCTs. Rare tumors such as gangliglioma, oligodendroglioma, paraganglioma, melanocytoma, lipoma, and primary spinal cord lymphoma are also included in this review, in addition to spinal cord metastatic disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Update on traumatic acute spinal cord injury. Part 2.

    PubMed

    Mourelo Fariña, M; Salvador de la Barrera, S; Montoto Marqués, A; Ferreiro Velasco, M E; Galeiras Vázquez, R

    The aim of treatment in acute traumatic spinal cord injury is to preserve residual neurologic function, avoid secondary injury, and restore spinal alignment and stability. In this second part of the review, we describe the management of spinal cord injury focusing on issues related to short-term respiratory management, where the preservation of diaphragmatic function is a priority, with prediction of the duration of mechanical ventilation and the need for tracheostomy. Surgical assessment of spinal injuries based on updated criteria is discussed, taking into account that although the type of intervention depends on the surgical team, nowadays treatment should afford early spinal decompression and stabilization. Within a comprehensive strategy in spinal cord injury, it is essential to identify and properly treat patient anxiety and pain associated to spinal cord injury, as well as to prevent and ensure the early diagnosis of complications secondary to spinal cord injury (thromboembolic disease, gastrointestinal and urinary disorders, pressure ulcers). Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  20. Brain protection by methylprednisolone in rats with spinal cord injury.

    PubMed

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  1. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to relieve... on the patient's spinal cord and an external transmitter for transmitting the stimulating pulses...

  2. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord.

    PubMed

    Zhang, B; Gensel, J C

    2014-08-01

    The field of neuroimmunology is rapidly advancing. There is a growing appreciation for heterogeneity, both in inflammatory composition and region-specific inflammatory responses. This understanding underscores the importance of developing targeted immunomodulatory therapies for treating neurological disorders. Concerning neurotrauma, there is a dearth of publications directly comparing inflammatory responses in the brain and spinal cord after injury. The question therefore remains as to whether inflammatory cells responding to spinal cord vs. brain injury adopt similar functions and are therefore amenable to common therapies. In this review, we address this question while revisiting and modernizing the conclusions from publications that have directly compared inflammation across brain and spinal cord injuries. By examining molecular differences, anatomical variations, and inflammatory cell phenotypes between the injured brain and spinal cord, we provide insight into how neuroinflammation relates to neurotrauma and into fundamental differences between the brain and spinal cord. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Spinal cord protection during radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coia, L.; Chu, J.; Larsen, R.

    1986-09-01

    Treating intrathoracic malignancies to high doses, particularly those of lung and esophagus, requires limiting the radiation dose delivered to the spinal cord. Several factors are important in determining the cord dose. These are: The distance from the block or collimator edge to the cord, the variation of dose with distance from the block or collimator edge and, the expected variation of this distance for clinical set-up from day-to-day. When treating with an oblique beam, the position of the cord may be difficult to identify. A technique for localizing the spinal cord on a simulator film at an arbitrary gantry anglemore » is presented. The technique requires determination of distances from the central axis of the beam to the medial aspect of the pedicle and posterior vertebral body. These can readily be obtained from measurements on orthogonal, AP/PA and lateral isocentric simulator radiographs. A mathematical transformation is applied to determine the corresponding cord locations on the oblique radiographs for any arbitrary gantry angle. The accuracy of cord localization was within 2-3 mm with a precision of 2 mm for five physicians who used this technique. The beam edge characteristics for 60Co, 6 MV, and 10 MV teletherapy unit were measured for various depths and field sizes. For the 6 and 10 MV units, the beam penumbra is nearly independent of the field size, depth and field defining devices (inner and outer collimator jaws, trimmer bars, and shielding blocks). Because the beam penumbra is dependent on the design of the linear accelerator, its measurement should be made individually for each linear accelerator. Our preliminary data on patient positioning uncertainty did not exceed the 6-8 mm limit documented in the literature.« less

  4. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui

    2017-06-01

    Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.

  5. Spinal cord aspergillus invasion--complication of an aspergilloma.

    PubMed

    Sheth, N K; Varkey, B; Wagner, D K

    1985-12-01

    Acute paraplegia developed in a 53-year-old man with pulmonary aspergilloma because of contiguous extension of Aspergillus infection to the epidural and subdural spaces and spinal cord. Histopathologic findings of the spinal cord showed Aspergillus hyphae penetrating the myelin sheath and myelomalacia, predominantly in the anterior and lateral columns. To the authors' knowledge, there have been no previous descriptions or illustrations of spinal cord involvement and the pathologic changes caused by Aspergillus infection.

  6. 46-year-old man with a spinal cord mass.

    PubMed

    Sanders, Mary Ann; Vitaz, Todd; Rosenblum, Marc; Plaga, Alexis R; Parker, Joseph C; Parker, John R

    2011-01-01

    Medulloblastoma accounts for only 1% of all adult CNS tumors. Likewise, recurrence of adult medulloblastoma greater than 20 years after initial diagnosis is extremely rare.We describe a case of adult medulloblastoma with late relapse of disease. The patient was 24 years old when first diagnosed and was treated with total tumor resection and craniospinal radiation. At the age of 45, an enhancing 1.3 cm intradural extramedullary spinal cord lesion at T5 was discovered on MRI. This was presumed to be recurrent medulloblastoma in the form of drop metastasis and the patient was treated with spinal radiation. Several months following treatment, at the age of 46, a follow-up MRI demonstrated an enhancing 1.4 cm intradural extramedullary spinal cord lesion at T7. The lesion was resected and histopathologic examination was most consistent with medulloblastoma, late drop metastasis. Although rare, adult medulloblastoma recurring 20 years after initial diagnosis should always be considered in the main differential diagnosis when working up CNS lesions at or outside the primary tumor site.

  7. A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury.

    PubMed

    Paterniti, Irene; Impellizzeri, Daniela; Di Paola, Rosanna; Navarra, Michele; Cuzzocrea, Salvatore; Esposito, Emanuela

    2013-07-23

    It has recently been demonstrated that palmitoylethanolamide (PEA), an endogenous lipid amide belonging to the N-acylethanolamine family, exerts neuroprotection in central nervous system (CNS) pathologies. In recent studies, we have demonstrated that treatment with PEA significantly reduced inflammatory secondary events associated with spinal cord injury (SCI). Since oxidative stress is considered to play an important role in neuroinflammatory disorders, in the present work we studied a new composite, a formulation including PEA and the antioxidant compound luteolin (Lut), subjected to an ultramicronization process, co-ultraPEALut. We investigated the effect of co-ultraPEALut (in the respective fixed doses of 10:1 in mass) in both an ex vivo organotypic spinal cord culture model and an in vivo model of SCI. For the organotypic cultures, spinal cords were prepared from mice at postnatal day 6 and were cut into transverse slices of 400 μm thickness to generate the lumbar organotypic slice cultures. After 7 days of culturing, the slices were mechanically injured onto the center of the slice and the co-ultraPEALut was applied at different concentrations (0.00009, 0.0009 and 0.009 g/l) 1 hour before damage. For in vivo studies, SCI was induced in mice through spinal cord compression by the application of vascular clips (force of 24 g) to the dura via a four-level T5 to T8 laminectomy, and co-ultraPEALut (1 mg/kg ip) was administered at 1 and 6 hours after SCI. At 24 hours after SCI, mice were sacrificed and the spinal cords were collected for further evaluation. Additional animals were treated similarly and sacrificed 10 days after SCI. Pretreatment with co-ultraPEALut significantly reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner, restored neuronal nitric oxide synthase (nNOS) expression at all three tested concentrations, and protected cells by cell death (MTT assay) in spinal cord organotypic

  8. A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury

    PubMed Central

    2013-01-01

    Background It has recently been demonstrated that palmitoylethanolamide (PEA), an endogenous lipid amide belonging to the N-acylethanolamine family, exerts neuroprotection in central nervous system (CNS) pathologies. In recent studies, we have demonstrated that treatment with PEA significantly reduced inflammatory secondary events associated with spinal cord injury (SCI). Since oxidative stress is considered to play an important role in neuroinflammatory disorders, in the present work we studied a new composite, a formulation including PEA and the antioxidant compound luteolin (Lut), subjected to an ultramicronization process, co-ultraPEALut. We investigated the effect of co-ultraPEALut (in the respective fixed doses of 10:1 in mass) in both an ex vivo organotypic spinal cord culture model and an in vivo model of SCI. Methods For the organotypic cultures, spinal cords were prepared from mice at postnatal day 6 and were cut into transverse slices of 400 μm thickness to generate the lumbar organotypic slice cultures. After 7 days of culturing, the slices were mechanically injured onto the center of the slice and the co-ultraPEALut was applied at different concentrations (0.00009, 0.0009 and 0.009 g/l) 1 hour before damage. For in vivo studies, SCI was induced in mice through spinal cord compression by the application of vascular clips (force of 24 g) to the dura via a four-level T5 to T8 laminectomy, and co-ultraPEALut (1 mg/kg ip) was administered at 1 and 6 hours after SCI. At 24 hours after SCI, mice were sacrificed and the spinal cords were collected for further evaluation. Additional animals were treated similarly and sacrificed 10 days after SCI. Results Pretreatment with co-ultraPEALut significantly reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner, restored neuronal nitric oxide synthase (nNOS) expression at all three tested concentrations, and protected cells by cell death (MTT assay

  9. Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.

    PubMed

    Khan, T; Myklebust, J; Swiontek, T; Sayers, S; Dauzvardis, M

    1994-12-01

    This study investigated the spontaneous injury potentials measured after contusion or transection injury to the cat spinal cord. In addition, the distribution of electrical field potentials on the surface and within the spinal cord were measured following applied electrical fields after transection and contusion injuries. After transection of the spinal cord, the injury potentials were -19.8 +/- 2.6 mV; after contusion of the spinal cord, the injury potentials were -9.5 +/- 2.2 mV. These potentials returned to control values within 2.5-4h after injury. The electrical field distribution measured on the dorsal surface, as well as within the spinal cord, after the application of a 10 microA current, showed little difference between contusion and transection injuries. Scalar potential fields were measured using two configurations of stimulating electrodes: dorsal to dorsal (D-D), in which both electrodes were placed epidurally on the dorsal surface of the spinal cord, and ventral to dorsal (V-D), in which one electrode was placed dorsally and one ventrally. As reported in normal uninjured cats, the total current in the midsagittal plane for the D-D configuration was largely confined to the dorsal portion of the spinal cord; with the V-D configuration, the current distribution was uniform throughout the spinal cord. In the injured spinal cord, the equipotential lines midway between the stimulating electrodes have a wider separation than in the uninjured spinal cord. Because the magnitude of the electrical field E is equal to the current density J multiplied by the resistivity r, this suggests that either the current density is reduced or that the resistivity is reduced.

  10. Compressive mechanical characterization of non-human primate spinal cord white matter.

    PubMed

    Jannesar, Shervin; Allen, Mark; Mills, Sarah; Gibbons, Anne; Bresnahan, Jacqueline C; Salegio, Ernesto A; Sparrey, Carolyn J

    2018-05-02

    The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments. Spinal cord injury (SCI) finite element (FE) models provide an important tool to bridge the gap between animal studies and human injury, assess injury

  11. Acute spinal cord injury (SCI) transforms how GABA affects nociceptive sensitization.

    PubMed

    Huang, Yung-Jen; Lee, Kuan H; Murphy, Lauren; Garraway, Sandra M; Grau, James W

    2016-11-01

    Noxious input can sensitize pain (nociceptive) circuits within the spinal cord, inducing a lasting increase in spinal cord neural excitability (central sensitization) that is thought to contribute to chronic pain. The development of spinally-mediated central sensitization is regulated by descending fibers and GABAergic interneurons. The current study provides evidence that spinal cord injury (SCI) transforms how GABA affects nociceptive transmission within the spinal cord, recapitulating an earlier developmental state wherein GABA has an excitatory effect. In spinally transected rats, noxious electrical stimulation and inflammation induce enhanced mechanical reactivity (EMR), a behavioral index of nociceptive sensitization. Pretreatment with the GABA A receptor antagonist bicuculline blocked these effects. Peripheral application of an irritant (capsaicin) also induced EMR. Both the induction and maintenance of this effect were blocked by bicuculline. Cellular indices of central sensitization [c-fos expression and ERK phosphorylation (pERK)] were also attenuated. In intact (sham operated) rats, bicuculline had the opposite effect. Pretreatment with a GABA agonist (muscimol) attenuated nociceptive sensitization in intact, but not spinally injured, rats. The effect of SCI on GABA function was linked to a reduction in the Cl - transporter, KCC2, leading to a reduction in intracellular Cl - that would attenuate GABA-mediated inhibition. Pharmacologically blocking the KCC2 channel (with i.t. DIOA) in intact rats mimicked the effect of SCI. Conversely, a pharmacological treatment (bumetanide) that should increase intracellular Cl - levels blocked the effect of SCI. The results suggest that GABAergic neurons drive, rather than inhibit, the development of nociceptive sensitization after spinal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Idiopathic thoracic transdural intravertebral spinal cord herniation

    PubMed Central

    Turel, Mazda K; Wewel, Joshua T; Kerolus, Mena G; O'Toole, John E

    2017-01-01

    Idiopathic spinal cord herniation is a rare and often missed cause of thoracic myelopathy. The clinical presentation and radiological appearance is inconsistent and commonly confused with a dorsal arachnoid cyst and often is a misdiagnosed entity. While ventral spinal cord herniation through a dural defect has been previously described, intravertebral herniation is a distinct entity and extremely rare. We present the case of a 70-year old man with idiopathic thoracic transdural intravertebral spinal cord herniation and discuss the clinico-radiological presentation, pathophysiology and operative management along with a review the literature of this unusual entity. PMID:29021685

  13. Spinal Cord as an Adjunct to Brain Magnetic Resonance Imaging in Defining “No Evidence of Disease Activity” in Multiple Sclerosis

    PubMed Central

    Tummala, Subhash; Singhal, Tarun; Oommen, Vinit V.; Kim, Gloria; Khalid, Fariha; Healy, Brian C.

    2017-01-01

    Background: Monitoring patients with multiple sclerosis (MS) for “no evidence of disease activity” (NEDA) may help guide disease-modifying therapy (DMT) management decisions. Whereas surveillance brain magnetic resonance imaging (MRI) is common, the role of spinal cord monitoring for NEDA is unknown. Objective: To evaluate the role of brain and spinal cord 3T MRI in the 1-year evaluation of NEDA. Methods: Of 61 study patients (3 clinically isolated syndrome, 56 relapsing-remitting, 2 secondary progressive), 56 (91.8%) were receiving DMT. The MRI included brain fluid-attenuated inversion recovery and cervical/thoracic T2-weighted fast spin echo images. On MRI, NEDA was defined as the absence of new or enlarging T2 lesions at 1 year. Results: Thirty-nine patients (63.9%) achieved NEDA by brain MRI, only one of whom had spinal cord activity. This translates to a false-positive rate for NEDA based on the brain of 2.6% (95% CI, 0.1%–13.5%). Thirty-eight patients (62.3%) had NEDA by brain and spinal cord MRI. Fifty-five patients (90.2%) had NEDA by spinal cord MRI, 17 of whom had brain activity. Of the 22 patients (36.1%) with brain changes, 5 had spinal cord changes. No evidence of disease activity was sustained in 48.3% of patients at 1 year and was the same with the addition of spinal cord MRI. Patients with MRI activity in either the brain or the spinal cord only were more likely to have activity in the brain (P = .0001). Conclusions: Spinal cord MRI had a low diagnostic yield as an adjunct to brain MRI at 3T in monitoring patients with MS for NEDA over 1 year. Studies with larger data sets are needed to confirm these findings. PMID:28603465

  14. Spinal Meninges and Their Role in Spinal Cord Injury: A Neuroanatomical Review.

    PubMed

    Grassner, Lukas; Grillhösl, Andreas; Griessenauer, Christoph J; Thomé, Claudius; Bühren, Volker; Strowitzki, Martin; Winkler, Peter A

    2018-02-01

    Current recommendations support early surgical decompression and blood pressure augmentation after traumatic spinal cord injury (SCI). Elevated intraspinal pressure (ISP), however, has probably been underestimated in the pathophysiology of SCI. Recent studies provide some evidence that ISP measurements and durotomy may be beneficial for individuals suffering from SCI. Compression of the spinal cord against the meninges in SCI patients causes a "compartment-like" syndrome. In such cases, intentional durotomy with augmentative duroplasty to reduce ISP and improve spinal cord perfusion pressure (SCPP) may be indicated. Prior to performing these procedures routinely, profound knowledge of the spinal meninges is essential. Here, we provide an in-depth review of relevant literature along with neuroanatomical illustrations and imaging correlates.

  15. Baclofen or nNOS inhibitor affect molecular and behavioral alterations evoked by traumatic spinal cord injury in rat spinal cord.

    PubMed

    Kisucká, Alexandra; Hricová, Ľudmila; Pavel, Jaroslav; Strosznajder, Joanna B; Chalimoniuk, Malgorzata; Langfort, Jozef; Gálik, Ján; Maršala, Martin; Radoňak, Jozef; Lukáčová, Nadežda

    2015-06-01

    The loss of descending control after spinal cord injury (SCI) and incessant stimulation of Ia monosynaptic pathway, carrying proprioceptive impulses from the muscles and tendons into the spinal cord, evoke exaggerated α-motoneuron activity leading to increased reflex response. Previous results from our laboratory have shown that Ia monosynaptic pathway is nitrergic. The aim of this study was to find out whether nitric oxide produced by neuronal nitric oxide synthase (nNOS) plays a role in setting the excitability of α-motoneurons after thoracic spinal cord transection. We tested the hypothesis that the inhibition of nNOS in α-motoneurons after SCI could have a neuroprotective effect on reflex response. Rats underwent spinal cord transection at Th10 level followed by 7, 10, and 14 days of survival. The animals were treated with Baclofen (a gamma aminobutyric acid B receptor agonist, 3 μg/two times per day/intrathecally) applied for 3 days from the seventh day after transection; N-nitro-l-arginine (NNLA) (nNOS blocator) applied for the first 3 days after injury (20 mg/kg per day, intramuscularly); NNLA and Baclofen; or NNLA (60 mg/kg/day, single dose) applied on the 10th day after transection. We detected the changes in the level of nNOS protein, nNOS messenger RNA, and nNOS immunoreactivity. To investigate the reflex response to heat-induced stimulus, tail-flick test was monitored in treated animals up to 16 days after SCI. Our data indicate that Baclofen therapy is more effective than the combined treatment with NNLA and Baclofen therapy. The single dose of NNLA (60 mg/kg) applied on the 10th day after SCI or Baclofen therapy reduced nNOS expression in α-motoneurons and suppressed symptoms of increased reflex activity. The results clearly show that increased nNOS expression in α-motoneurons after SCI may be pharmacologically modifiable with Baclofen or bolus dose of nNOS blocker. Copyright © 2015. Published by Elsevier Inc.

  16. Distribution of glycinergic neuronal somata in the rat spinal cord.

    PubMed

    Hossaini, Mehdi; French, Pim J; Holstege, Jan C

    2007-04-20

    Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.

  17. General Information about Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Cord Tumors Treatment Overview (PDQ®)–Patient Version General Information About Childhood Brain and Spinal Cord Tumors Go ... types of brain and spinal cord tumors. The information from tests and procedures done to detect (find) ...

  18. Spinal cord trauma

    MedlinePlus

    ... Oh's Intensive Care Manual . 7th ed. Philadelphia, PA: Elsevier; 2014:chap 78. Bryce TN. Spinal cord injury. ... Physical Medicine and Rehabilitation . 5th ed. Philadelphia, PA: Elsevier; 2016:chap 49. Dalzell K, Nouri A, Fehlings ...

  19. 2D phase sensitive inversion recovery imaging to measure in-vivo spinal cord gray and white matter areas in clinically feasible acquisition times

    PubMed Central

    Papinutto, N.; Schlaeger, R.; Panara, V.; Caverzasi, E.; Ahn, S.; Johnson, K.J.; Zhu, A.H.; Stern, W.A.; Laub, G.; Hauser, S.L.; Henry, R.G.

    2018-01-01

    PURPOSE In-vivo assessment of spinal cord gray matter (GM) and white matter (WM) could become pivotal to study various neurological diseases, but it is challenging because of insufficient GM/WM contrast provided by conventional MRI. Here we present and assess a procedure for measurement of spinal cord total cross-sectional area (TCA) and GM areas based on phase sensitive inversion recovery imaging (PSIR). MATERIALS AND METHODS We acquired 2D PSIR images at 3T at each disc level of the spinal axis on 10 healthy subjects and measured TCA, cord diameters, WM and GM area, and GM area/TCA ratio. We secondly investigated 32 healthy subjects at 4 selected levels (C2–C3, C3–C4, T8–T9, T9–T10, total acquisition time <8 minutes) and generated normative reference values of TCA and GM areas. We assessed test-retest, intra- and inter-operator reliability of the acquisition strategy and measurement steps. RESULTS The measurement procedure based on 2D PSIR imaging allowed TCA and GM area assessments along the entire spinal cord axis. The tests we performed revealed high test-retest/intra-operator reliability (mean coefficient of variation (COV) at C2–C3: TCA=0.41%, GM area=2.75%) and inter-operator reliability of the measurements (mean COV on the 4 levels: TCA=0.44%, GM area= 4.20%; mean intra-class correlation coefficient: TCA=0.998, GM area=0.906). CONCLUSION 2D PSIR allows reliable in-vivo assessment of spinal cord TCA, GM and WM areas in clinically feasible acquisition times. The area measurements presented here are in agreement with previous MRI and post-mortem studies. PMID:25483607

  20. Changes in Body Temperature in Incomplete Spinal Cord Injury by Digital Infrared Thermographic Imaging

    PubMed Central

    Song, Yun-Gyu; Won, Yu Hui; Park, Sung-Hee; Ko, Myoung-Hwan

    2015-01-01

    Objective To investigate changes in the core temperature and body surface temperature in patients with incomplete spinal cord injuries (SCI). In incomplete SCI, the temperature change is difficult to see compared with complete spinal cord injuries. The goal of this study was to better understand thermal regulation in patients with incomplete SCI. Methods Fifty-six SCI patients were enrolled, and the control group consisted of 20 healthy persons. The spinal cord injuries were classified according to International Standards for Neurological Classification of Spinal Cord Injury. The patients were classified into two groups: upper (neurological injury level T6 or above) and lower (neurological injury level T7 or below) SCIs. Body core temperature was measured using an oral thermometer, and body surface temperature was measured using digital infrared thermographic imaging. Results Twenty-nine patients had upper spinal cord injuries, 27 patients had lower SCIs, and 20 persons served as the normal healthy persons. Comparing the skin temperatures of the three groups, the temperatures at the lower abdomen, anterior thigh and anterior tibia in the patients with upper SCIs were lower than those of the normal healthy persons and the patients with lower SCIs. No significant temperature differences were observed between the normal healthy persons and the patients with lower SCIs. Conclusion In our study, we found thermal dysregulation in patients with incomplete SCI. In particular, body surface temperature regulation was worse in upper SCIs than in lower injuries. Moreover, cord injury severity affected body surface temperature regulation in SCI patients. PMID:26605167

  1. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    PubMed

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  2. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].

    PubMed

    Esclarín-De Ruz, A; Alcobendas-Maestro, M; Casado-López, R; Muñoz-Gonzalez, A; Florido-Sánchez, M A; González-Valdizán, E

    A spinal cord injury involves the loss or alteration of motor patterns in walking, the recovery of which depends partly on the rearrangement of the preserved neural circuits. AIM. To evaluate the changes that take place in the gait of patients with incomplete spinal cord injuries who were treated with a robotic walking system in association with conventional therapy. The study conducted was an open-label, prospective, descriptive trial with statistical inference in patients with C2-L3 spinal cord injuries that were classified as degrees C and D according to the American Spinal Injury Association (ASIA) scale. The variables that were analysed on the first and the last day of the study were: number of walkers, 10-m gait test, the Walking Index for Spinal Cord Injury scale revision, technical aids, muscle balance in the lower limbs, locomotor subscale of the measure of functional independence, modified Ashworth scale for spasticity and the visual analogue scale for pain. At the end, data were recorded from the impression of change scale. The analysis was conducted by means of Student's t, chi squared and Pearson's correlation; p < or = 0.05. Forty-five patients, with a mean age of 44 +/- 14.3 years, finished the study; 76% were males, injury was caused by trauma in 58% of cases, and the time of progression was 139 +/- 70 days. Statistically significant increases were observed in the number of subjects capable of walking, walking speed, less need for technical aids, strength in the lower limbs and independence in activities of daily living. Treatment using the robotic system in association with conventional therapy improves walking capacity in patients with incomplete spinal cord injuries.

  3. The adaptation to pregnancy of spinal cord injured women.

    PubMed

    Craig, D I

    1990-01-01

    This study explored the experiences encountered by spinal cord injured women during pregnancy. The spinal cord injured women experienced complications associated with pregnancy: recurring urinary tract infections, an increase in incontinence, and autonomic dysreflexia. (The first two of these are not unique to spinal cord injury, but are common in all pregnancies.) They neither developed pressure areas nor experienced premature deliveries, major complications predicted by the literature. All felt they were victims of inadequate environmental design that hindered their mobility and inhibited their independence. Many of the psychosocial aspects studied proved to be common to pregnant women in general and not specific to the spinal cord injured population.

  4. Challenges of transcutaneous laser application for the potential of photobiomodulation of the spinal cord at the scale of a large companion animal

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Sypniewski, Lara A.; Bartels, Kenneth E.

    2017-02-01

    Photobiomodulation (PBM) has been used successfully for the treatment of nervous system and has been demonstrated in the rodent model. In contrast, the percutaneous use of PBM to treat spinal cord of companion animals is expected to be challenging due to the significant attenuation of light energy as it travels through the thick and heterogeneous layers of tissue and bone to reach the level of the spinal cord. This pilot study was performed on a cadaverous dog to determine if the recommended bio-stimulatory treatment dose can be delivered to the spinal canal via percutaneous application of a clinically acceptable surface dose. The dose reaching the spinal canal after percutaneous application was measured at 980nm by using a miniature photo-diode sensor with a dose-response sensitivity of 1V per 1mW/cm2 dose and a 2mm spherical isotropic fiber-optical diffusor probe. The two sensors were embedded in different longitudinal positions along the dorsal portion of the spinal canal just below the soft tissues and vertebral processes in a 40lbs cadaverous dog. The spinal cord was then accessed via a hemilaminectomy. Once embedded in the target tissue, 1W-10 W surface irradiation was applied. At the T12/13 and T13/L1 intervertebral disc positions, photo-diode sensors detected the intra-spinal dose above the noise floor at the 10W surface dose. A narrow treatment window for percutaneous PBM in large dog may exist only for the shallowest segment of the spinal cord, which may be important to avoid potential collateral photothermal effects. Works for simultaneous multi-site intra-spinal measurements are on-going.

  5. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury

    PubMed Central

    Ji, Yiming; Meng, Bin; Yuan, Chenxi; Yang, Huilin; Zou, Jun

    2013-01-01

    It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30–180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in-creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potential latency can reflect the degree of spinal cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. PMID:25206629

  6. Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats.

    PubMed

    Peterson, C A; Murphy, R J; Dupont-Versteegden, E E; Houlé, J D

    2000-01-01

    The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.

  7. Management of subaxial cervical facet dislocation through anterior approach monitored by spinal cord evoked potential.

    PubMed

    Du, Wei; Wang, Cheng; Tan, Jiangwei; Shen, Binghua; Ni, Shuqin; Zheng, Yanping

    2014-01-01

    Retrospective case series. To discuss the clinical efficacy of anterior cervical surgery of decompression, reduction, stabilization, and fusion in treating subaxial cervical facet dislocation without spinal cord injury or with mild spinal cord injury monitored by spinal cord evoked potential. The optimal treatment of lower cervical facet dislocation has been controversial. Because of the risk of iatrogenic damage of neurological function, it is challenging for surgeons to manage the lower cervical facet dislocation without or with mild spinal cord injury. To avoid the risks, more secure strategy need to be designed. A retrospective study was performed on 17 cases of subaxial cervical facet dislocation without spinal cord injury or with mild spinal cord injury treated by anterior cervical surgery under spinal cord evoked potential monitor from January 2008 to June 2012. There were 12 males, 5 females, with a mean age of 40.1 years (from 21 to 73 yr). Dislocation sites: 1 in C3-C4, 2 in C4-C5, 6 in C5-C6, 8 in C6-C7; 10 cases with unilateral cervical facet dislocation, 7 cases with bilateral dislocation. Thirteen patients were preoperatively classified as grade D and 4 as E according to Frankel standard. All patients were followed up for average of 16 months. All operations were completed successfully. Postoperative radiographs showed that the sequence and curvature of the cervical spine were well recovered. And, evidence of intervertebral fusion was observed at 3 months in all cases. No redislocation or symptoms of spinal cord injury occurred. Thirteen cases with mild spinal cord injury recovered at 1 month after operation. Anterior cervical surgery of decompression, reduction, stabilization, and fusion monitored by spinal cord evoked potential is an effective and safe method for treatment of subaxial cervical facet dislocation without or with mild spinal cord injury. 4.

  8. Effect of thalidomide on signal transduction pathways and secondary damage in experimental spinal cord trauma.

    PubMed

    Genovese, Tiziana; Mazzon, Emanuela; Esposito, Emanuela; Di Paola, Rosanna; Caminiti, Rocco; Meli, Rosaria; Bramanti, Placido; Cuzzocrea, Salvatore

    2008-09-01

    TNF-alpha seems to play a central role in the inflammatory process of spinal cord injury. We tested the neuroprotective effects of thalidomide, an immunomodulatory agent that inhibits TNF-alpha production, which have not been investigated so far. The aim of our study was to evaluate the therapeutic efficacy of thalidomide in an experimental model of spinal cord trauma, which was induced by the application of vascular clips (force of 24 g) to the dura via a 4-level T5 to T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and cytokine production that is followed by recruitment of other inflammatory cells, production of a range of inflammation mediators, tissue damage, apoptosis, and disease. Thalidomide treatment significantly reduced the degree of: 1) spinal cord inflammation and tissue injury (histological score); 2) neutrophil infiltration (myeloperoxidase evaluation); 3) iNOS, nitrotyrosine, lipid peroxidation, and cytokine expression (TNF-alpha and IL-1beta); 4) apoptosis (terminal deoxynucleotidyltransferase-mediated UTP end labeling staining, and Bax and Bcl-2 expression); and 5) nuclear factor-kappaB activation. In a separate set of experiments, we have also clearly demonstrated that thalidomide significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with thalidomide reduces the development of inflammation and tissue injury events associated with spinal cord trauma.

  9. The development of spinal cord anatomy.

    PubMed

    Pearce, J M S

    2008-01-01

    A panel illustrating spinal cord injury in The Dying Lioness in the British Museum dates to 650 BC. This paper outlines the subsequent progression of knowledge of the anatomy of the spinal cord. The animal dissections of Galen are considered because his deductions persisted through the Dark Ages until the late 18th century. Anatomy advanced gradually to yield discoveries of the complex tracts and grey matter elements of the cord and their functions. Amongst many distinguished exponents, the works of Blasius, Huber, Vicq d'Azyr and Stilling are emphasised. (c) 2008 S. Karger AG, Basel

  10. Clinical, magnetic resonance imaging, and histopathologic findings in 6 dogs with surgically resected extraparenchymal spinal cord hematomas.

    PubMed

    Hague, D W; Joslyn, S; Bush, W W; Glass, E N; Durham, A C

    2015-01-01

    Extraparenchymal spinal cord hematoma has been described in veterinary medicine in association with neoplasia, intervertebral disk disease, and snake envenomation. There are rare reports of spontaneous extraparenchymal spinal cord hematoma formation with no known cause in human medicine. Multiple cases of spontaneous extraparenchymal spinal cord hematoma have not been described previously in veterinary medicine. To describe the signalment, clinical findings, magnetic resonance imaging (MRI) features, and surgical outcomes in histopathologically confirmed extraparenchymal spinal cord hematomas in dogs with no identified underlying etiology. Six dogs had MRI of the spinal cord, decompressive spinal surgery, and histopathologic confirmation of extraparenchymal spinal cord hematoma not associated with an underlying cause. Multi-institutional retrospective study. Six patients had spontaneous extraparenchymal spinal cord hematoma formation. MRI showed normal signal within the spinal cord parenchyma in all patients. All hematomas had T2-weighted hyperintensity and the majority (5/6) had no contrast enhancement. All dogs underwent surgical decompression and most patients (5/6) returned to normal or near normal neurologic function postoperatively. Follow-up of the patients (ranging between 921 and 1,446 days) showed no progression of neurologic clinical signs or any conditions associated with increased bleeding tendency. Before surgery and histopathology confirming extraparenchymal hematoma, the primary differential in most cases was neoplasia, based on the MRI findings. This retrospective study reminds clinicians of the importance of the combination of advanced imaging combined with histopathologic diagnosis. The prognosis for spontaneous spinal cord extraparenchymal hematoma with surgical decompression appears to be favorable in most cases. Copyright © 2015 by the American College of Veterinary Internal Medicine.

  11. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.

    PubMed

    Falci, Scott; Indeck, Charlotte; Barnkow, Dave

    2018-06-01

    OBJECTIVE Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators. METHODS Three unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords-only cephalad to the level of spinal cord transection-with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years. RESULTS All 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators. CONCLUSIONS The results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique

  12. 'Full dose' reirradiation of human cervical spinal cord.

    PubMed

    Ryu, S; Gorty, S; Kazee, A M; Bogart, J; Hahn, S S; Dalal, P S; Chung, C T; Sagerman, R H

    2000-02-01

    With the progress of modern multimodality cancer treatment, retreatment of late recurrences or second tumors became more commonly encountered in management of patients with cancer. Spinal cord retreatment with radiation is a common problem in this regard. Because radiation myelopathy may result in functional deficits, many oncologists are concerned about radiation-induced myelopathy when retreating tumors located within or immediately adjacent to the previous radiation portal. The treatment decision is complicated because it requires a pertinent assessment of prognostic factors with and without reirradiation, radiobiologic estimation of recovery of occult spinal cord damage from the previous treatment, as well as interactions because of multimodality treatment. Recent studies regarding reirradiation of spinal cord in animals using limb paralysis as an endpoint have shown substantial and almost complete recovery of spinal cord injury after a sufficient time after the initial radiotherapy. We report a case of "full" dose reirradiation of the entire cervical spinal cord in a patient who has not developed clinically detectable radiation-induced myelopathy on long-term follow-up of 17 years after the first radiotherapy and 5 years after the second radiotherapy.

  13. Early Versus Delayed Surgical Decompression of Spinal Cord after Traumatic Cervical Spinal Cord Injury: A Cost-Utility Analysis.

    PubMed

    Furlan, Julio C; Craven, B Catharine; Massicotte, Eric M; Fehlings, Michael G

    2016-04-01

    This cost-utility analysis was undertaken to compare early (≤24 hours since trauma) versus delayed surgical decompression of spinal cord to determine which approach is more cost effective in the management of patients with acute traumatic cervical spinal cord injury (SCI). This study includes the patients enrolled into the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS) and admitted at Toronto Western Hospital. Cases were grouped into patients with motor complete SCI and individuals with motor incomplete SCI. A cost-utility analysis was performed for each group of patients by the use of data for the first 6 months after SCI. The perspective of a public health care insurer was adopted. Costs were estimated in 2014 U.S. dollars. Utilities were estimated from the STASCIS. The baseline analysis indicates early spinal decompression is more cost-effective approach compared with the delayed spinal decompression. When we considered the delayed spinal decompression as the baseline strategy, the incremental cost-effectiveness ratio analysis revealed a saving of US$ 58,368,024.12 per quality-adjusted life years gained for patients with complete SCI and a saving of US$ 536,217.33 per quality-adjusted life years gained in patients with incomplete SCI for the early spinal decompression. The probabilistic analysis confirmed the early-decompression strategy as more cost effective than the delayed-decompression approach, even though there is no clearly dominant strategy. The results of this economic analysis suggests that early decompression of spinal cord was more cost effective than delayed surgical decompression in the management of patients with motor complete and incomplete SCI, even though no strategy was clearly dominant. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia

    PubMed Central

    Haller, Edward; Tajiri, Naoki; Thomson, Avery; Barretta, Jennifer; Williams, Stephanie N.; Haim, Eithan D.; Qin, Hua; Frisina-Deyo, Aric; Abraham, Jerry V.; Sanberg, Paul R.; Van Loveren, Harry; Borlongan, Cesario V.

    2016-01-01

    We previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO. Major BSCB ultrastructural changes in spinal cord gray and white matter included vacuolated endothelial cells containing autophagosomes, pericyte degeneration with enlarged mitochondria, astrocyte end-feet degeneration and perivascular edema; damaged motor neurons, swollen axons with unraveled myelin in ascending and descending tracts and astrogliosis were also observed. Evans Blue dye extravasation was maximal at 7 days. There was immunofluorescence evidence of reduction of microvascular expression of tight junction occludin, upregulation of Beclin-1 and LC3B immunoreactivities at 7 days and a reduction of the latter at 30 days post-ischemia. These novel pathological alterations on the cervical spinal cord microvasculature in rats after tMCAO suggest pervasive and long-lasting BSCB damage after focal cerebral ischemia, and that spinal cord ischemic diaschisis should be considered in the pathophysiology and therapeutic approaches in patients with ischemic cerebral infarction. PMID:27283328

  15. Reliability analysis of the epidural spinal cord compression scale.

    PubMed

    Bilsky, Mark H; Laufer, Ilya; Fourney, Daryl R; Groff, Michael; Schmidt, Meic H; Varga, Peter Paul; Vrionis, Frank D; Yamada, Yoshiya; Gerszten, Peter C; Kuklo, Timothy R

    2010-09-01

    The evolution of imaging techniques, along with highly effective radiation options has changed the way metastatic epidural tumors are treated. While high-grade epidural spinal cord compression (ESCC) frequently serves as an indication for surgical decompression, no consensus exists in the literature about the precise definition of this term. The advancement of the treatment paradigms in patients with metastatic tumors for the spine requires a clear grading scheme of ESCC. The degree of ESCC often serves as a major determinant in the decision to operate or irradiate. The purpose of this study was to determine the reliability and validity of a 6-point, MR imaging-based grading system for ESCC. To determine the reliability of the grading scale, a survey was distributed to 7 spine surgeons who participate in the Spine Oncology Study Group. The MR images of 25 cervical or thoracic spinal tumors were distributed consisting of 1 sagittal image and 3 axial images at the identical level including T1-weighted, T2-weighted, and Gd-enhanced T1-weighted images. The survey was administered 3 times at 2-week intervals. The inter- and intrarater reliability was assessed. The inter- and intrarater reliability ranged from good to excellent when surgeons were asked to rate the degree of spinal cord compression using T2-weighted axial images. The T2-weighted images were superior indicators of ESCC compared with T1-weighted images with and without Gd. The ESCC scale provides a valid and reliable instrument that may be used to describe the degree of ESCC based on T2-weighted MR images. This scale accounts for recent advances in the treatment of spinal metastases and may be used to provide an ESCC classification scheme for multicenter clinical trial and outcome studies.

  16. Effects of wheelchair propulsion on neuropathic pain and resting electroencephalography after spinal cord injury.

    PubMed

    Sato, Gosuke; Osumi, Michihiro; Morioka, Shu

    2017-01-31

    To investigate the effects of wheelchair propulsion on neuropathic pain and to examine resting electroencephalography pre- and post-wheelchair propulsion after spinal cord injury. Cross-sectional study. Eleven individuals with spinal cord injury and pain and 10 healthy controls. Single-session 15-min wheelchair propulsion and measurement of resting electroence-phalography. Effects of wheelchair propulsion were investigated using numerical rating scale (NRS) for neuropathic pain and short-form Profile of Mood States-Brief for mood. Peak alpha frequency on electroencephalography was calculated in 4 regions of interest; frontal, central, parietal and occipital areas. These outcomes were compared between pre- and post-wheelchair propulsion. Ten participants with spinal cord injury and all healthy controls completed the wheelchair propulsion exercise. NRS scores and negative mood were significantly improved following the wheelchair propulsion exercise. Pre-wheelchair propulsion, parietal and occipital peak alpha frequencies were significantly lower in the spinal cord injury group compared with the healthy controls group. Post-wheelchair propulsion, central peak alpha frequency increased in the spinal cord injury group. Wheelchair propulsion exercise temporarily decreased neuropathic pain intensity, improved negative mood, and modified alpha activity in spinal cord injury.

  17. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats.

    PubMed

    Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace

    2018-01-01

    Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso-Beattie-Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions ( P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.

  18. "Black butterfly" sign on T2*-weighted and susceptibility-weighted imaging: A novel finding of chronic venous congestion of the brain stem and spinal cord associated with dural arteriovenous fistulas.

    PubMed

    Enokizono, Mikako; Sato, Noriko; Morikawa, Minoru; Kimura, Yukio; Sugiyama, Atsuhiko; Maekawa, Tomoko; Sone, Daichi; Takewaki, Daiki; Okamoto, Tomoko; Takahashi, Yuji; Horie, Nobutaka; Matsuo, Takayuki

    2017-08-15

    A dural arteriovenous fistula (DAVF) with spinal perimedullary venous drainage can cause progressive myelopathy, and it is sometimes incorrectly diagnosed as another spinal cord disease. Here we report the cases of three individuals with a DAVF (one craniocervical junction DAVF and two tentorial DAVFs) with progressive myelopathy showing unique magnetic resonance (MR) imaging findings. MR T2*WI or susceptibility-weighted imaging (SWI) demonstrated symmetrical dark signal intensity lesions predominantly in the dorsal aspect of medulla and the central gray matter of cervical spinal cord that showed the "black butterfly" silhouette. Cerebral angiography revealed DAVFs draining into anterior and posterior spinal veins. Dark signals on T2*WI and SWI were presumed to be hemorrhages, which were probably caused by prolonged venous congestion. Identifying this "black butterfly" sign can facilitate the diagnosis of DAVF, differentiating DAVF from other spinal cord diseases such as demyelinating lesions and neoplasms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Percutaneous Radiofrequency Ablation of Painful Spinal Tumors Adjacent to the Spinal Cord with Real-Time Monitoring of Spinal Canal Temperature: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuka, Atsuhiro, E-mail: nakatuka@clin.medic.mie-u.ac.jp; Yamakado, Koichiro; Takaki, Haruyuki

    2009-01-15

    PurposeTo prospectively evaluate the feasibility, safety, and clinical utility of bone radiofrequency (RF) ablation with real-time monitoring of the spinal canal temperature for the treatment of spinal tumors adjacent to the spinal cord.Materials and MethodsOur Institutional Review Board approved this study. Patients gave informed consent. The inclusion criteria were (a) a painful spinal metastasis and (b) a distance of 1 cm or less between the metastasis and the spinal cord. The thermocouple was placed in the spinal canal under CT fluoroscopic guidance. When the spinal canal temperature reached 45{sup o}C, RF application was immediately stopped. RF ablation was considered technicallymore » successful when the procedure was performed without major complications. Clinical success was defined as a fall in the visual analogue scale score of at least 2 points.ResultsTen patients with spinal tumors measuring 3-8 cm (mean, 4.9 {+-} 1.5 cm) were enrolled. The distance between the tumor and the spinal cord was 1-6 mm (mean, 2.4 {+-} 1.6 mm). All procedures were judged technically successful (100%). The spinal canal temperature did not exceed 45{sup o}C in 9 of the 10 patients (90%). In the remaining patient, the temperature rose to 48{sup o}C, resulting in transient neural damage, although RF application was immediately stopped when the temperature reached 45{sup o}C. Clinical success was achieved within 1 week in all patients (100%).ConclusionBone RF ablation with real-time monitoring of the spinal canal temperature is feasible, safe, and clinically useful for the treatment of painful spinal metastases adjacent to the spinal cord.« less

  20. Spinal cord evolution in early Homo.

    PubMed

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Convection-enhanced delivery of a hydrophilic nitrosourea ameliorates deficits and suppresses tumor growth in experimental spinal cord glioma models.

    PubMed

    Ogita, Shogo; Endo, Toshiki; Sugiyama, Shinichiro; Saito, Ryuta; Inoue, Tomoo; Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta; Sonoda, Yukihiko; Tominaga, Teiji

    2017-05-01

    Convection-enhanced delivery (CED) is a technique allowing local infusion of therapeutic agents into the central nervous system, circumventing the blood-brain or spinal cord barrier. To evaluate the utility of nimustine hydrochloride (ACNU) CED in controlling tumor progression in an experimental spinal cord glioma model. Toxicity studies were performed in 42 rats following the administration of 4 μl of ACNU CED into the mid-thoracic spinal cord at concentrations ranging from 0.1 to 10 mg/ml. Behavioral analyses and histological evaluations were performed to assess ACNU toxicity in the spinal cord. A survival study was performed in 32 rats following the implantation of 9 L cells into the T8 spinal cord. Seven days after the implantation, rats were assigned to four groups: ACNU CED (0.25 mg/ml; n = 8); ACNU intravenous (i.v.) (0.4 mg; n = 8); saline CED (n = 8); saline i.v. (n = 8). Hind limb movements were evaluated daily in all rats for 21 days. Tumor sizes were measured histologically. The maximum tolerated ACNU concentration was 0.25 mg/ml. Preservation of hind limb motor function and tumor growth suppression was observed in the ACNU CED (0.25 mg/ml) and ACNU i.v. groups. Antitumor effects were more prominent in the ACNU CED group especially in behavioral analyses (P < 0.05; log-rank test). ACNU CED had efficacy in controlling tumor growth and preserving neurological function in an experimental spinal cord tumor model. ACNU CED can be a viable treatment option for spinal cord high-grade glioma.

  2. The Animal Model of Spinal Cord Injury as an Experimental Pain Model

    PubMed Central

    Nakae, Aya; Nakai, Kunihiro; Yano, Kenji; Hosokawa, Ko; Shibata, Masahiko; Mashimo, Takashi

    2011-01-01

    Pain, which remains largely unsolved, is one of the most crucial problems for spinal cord injury patients. Due to sensory problems, as well as motor dysfunctions, spinal cord injury research has proven to be complex and difficult. Furthermore, many types of pain are associated with spinal cord injury, such as neuropathic, visceral, and musculoskeletal pain. Many animal models of spinal cord injury exist to emulate clinical situations, which could help to determine common mechanisms of pathology. However, results can be easily misunderstood and falsely interpreted. Therefore, it is important to fully understand the symptoms of human spinal cord injury, as well as the various spinal cord injury models and the possible pathologies. The present paper summarizes results from animal models of spinal cord injury, as well as the most effective use of these models. PMID:21436995

  3. Functional characterization of mouse spinal cord infiltrating CD8+ lymphocytes

    PubMed Central

    Deb, Chandra; Howe, Charles L

    2011-01-01

    Understanding the immunopathogenesis of neuroimmunological diseases of the CNS requires a robust method for isolating and characterizing the immune effector cells that infiltrate the spinal cord in animal models. We have developed a simple and rapid isolation method that produces high yields of spinal cord infiltrating leukocytes from a single demyelinated spinal cord and which maintains high surface expression of key immunophenotyping antigens. Using this method and the Theiler’s virus model of chronic demyelination, we report the presence of spinal cord infiltrating acute effector CD8+ lymphocytes that are CD45hiCD44loCD62L− and a population of spinal cord infiltrating target effector memory CD8+ lymphocytes that are CD45hiCD44hiCD62L−. These cells respond robustly to ex vivo stimulation by producing interferon γ but do not exhibit specificity for Theiler’s virus in a cytotoxicity assay. We conclude that target-derived lymphocytes in a mouse model of chronic spinal cord demyelination may have unique functional specificities. PMID:19596449

  4. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    PubMed

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  5. Intraspinal AAV Injections Immediately Rostral to a Thoracic Spinal Cord Injury Site Efficiently Transduces Neurons in Spinal Cord and Brain

    PubMed Central

    Klaw, Michelle C; Xu, Chen; Tom, Veronica J

    2013-01-01

    In the vast majority of studies utilizing adeno-associated virus (AAV) in central nervous system applications, including those published with spinal cord injury (SCI) models, AAV has been administered at the level of the cell body of neurons targeted for genetic modification, resulting in transduction of neurons in the vicinity of the injection site. However, as SCI interrupts many axon tracts, it may be more beneficial to transduce a diverse pool of supraspinal neurons. We determined if descending axons severed by SCI are capable of retrogradely transporting AAV to remotely transduce a variety of brain regions. Different AAV serotypes encoding the reporter green fluorescent protein (GFP) were injected into gray and white matter immediately rostral to a spinal transection site. This resulted in the transduction of thousands of neurons within the spinal cord and in multiple regions within the brainstem that project to spinal cord. In addition, we established that different serotypes had disparate regional specificity and that AAV5 transduced the most brain and spinal cord neurons. This is the first demonstration that retrograde transport of AAV by axons severed by SCI is an effective means to transduce a collection of supraspinal neurons. Thus, we identify a novel, minimally invasive means to transduce a variety of neuronal populations within both the spinal cord and the brain following SCI. This paradigm to broadly distribute viral vectors has the potential to be an important component of a combinatorial strategy to promote functional axonal regeneration. PMID:23881451

  6. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    PubMed

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2017-07-01

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  7. Clinical characteristics of bladder cancer in patients with spinal cord injury: the experience from a single centre.

    PubMed

    Böthig, Ralf; Kurze, Ines; Fiebag, Kai; Kaufmann, Albert; Schöps, Wolfgang; Kadhum, Thura; Zellner, Michael; Golka, Klaus

    2017-06-01

    Life expectancy for people with spinal cord injury has shown a marked increase due to modern advances in treatment methods and in neuro-urology. However, since life expectancy of people with paralysis increases, the risk of developing of urinary bladder cancer is gaining importance. Single-centre retrospective evaluation of patient data with spinal cord injuries and proven urinary bladder cancer and summary of the literature. Between 1998 and 2014, 24 (3 female, 21 male) out of a total of 6599 patients with spinal cord injury were diagnosed with bladder cancer. The average age at bladder cancer diagnosis was 57.67 years, which is well below the average for bladder cancer cases in the general population (male: 73, female: 77). All but one patient had a latency period between the onset of the spinal paralysis and tumour diagnosis of more than 10 years. The median latency was 29.83 years. The median survival for these patients was 11.5 months. Of the 24 patients, 19 (79%) had muscle invasive bladder cancer at ≥T2 at the time of diagnosis. The type of neurogenic bladder (neurogenic detrusor overactivity or acontractility) and the form of bladder drainage do not appear to influence the risk. Long-term indwelling catheter drainage played only a minor role in the investigated patients. The significantly younger age at onset and the frequency of invasive tumours at diagnosis indicate that spinal cord injury influences bladder cancer risk and prognosis as well. Early detection of bladder cancer in patients with spinal cord injury remains a challenge.

  8. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.

    PubMed

    Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A

    2013-12-01

    Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

  9. [Neurotoxic effects of levobupivacaine and fentanyl on rat spinal cord].

    PubMed

    Abut, Yesim Cokay; Turkmen, Asli Zengin; Midi, Ahmet; Eren, Burak; Yener, Nese; Nurten, Asiye

    2015-01-01

    The purpose of the study was to compare the neurotoxic effects of intrathecally administered levobupivacaine, fentanyl and their mixture on rat spinal cord. In experiment, there were four groups with medication and a control group. Rats were injected 15μL saline or fentanyl 0.0005μg/15μL, levobupivacaine 0.25%/15μL and fentanyl 0.0005μg+levobupivacaine 0.25%/15μL intrathecally for four days. Hot plate test was performed to assess neurologic function after each injection at 5th, 30th and 60th min. Five days after last lumbal injection, spinal cord sections between the T5 and T6 vertebral levels were obtained for histologic analysis. A score based on subjective assessment of number of eosinophilic neurons - Red neuron - which means irreversible neuronal degeneration. They reflect the approximate number of degenerating neurons present in the affected neuroanatomic areas as follows: 1, none; 2, 1-20%; 3, 21-40%; 4, 41-60%; and 5, 61-100% dead neurons. An overall neuropathologic score was calculated for each rat by summating the pathologic scores for all spinal cord areas examined. In the results of HPT, comparing the control group, analgesic latency statistically prolonged for all four groups. In neuropathologic investment, the fentanyl and fentanyl+levobupivacaine groups have statistically significant high degenerative neuron counts than control and saline groups. These results suggest that, when administered intrathecally in rats, fentanyl and levobupivacaine behave similar for analgesic action, but fentanyl may be neurotoxic for spinal cord. There was no significant degeneration with levobupivacaine, but fentanyl group has had significant degeneration. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Musculoskeletal Deterioration and Hemicorporectomy After Spinal Cord Injury

    PubMed Central

    Dudley-Javoroski, Shauna

    2014-01-01

    Background and Purpose The long-term management following an hemicorporectomy (HCP) is not well documented in the scientific literature. The purpose of this case report is to describe the 25-year history of a man with a spinal cord injury who experienced severe musculoskeletal deterioration and hemicorporectomy. Case Description The client sustained T10 complete paraplegia at age 18 years, developed severe decubitus ulcers, and required an HCP as a lifesaving measure 13 years later. The authors describe the chronology of several rehabilitation and prosthetic strategies and speculate on factors that may have contributed to their successes and failures. Outcomes The client survived 12 years after the HCP and returned to independent mobility, self-care, and schooling despite complications with continued skin breakdown. Over the 12 years following discharge from the hospital after the spinal cord injury, he spent 749 days in the hospital. During the 12 years he lived after discharge from the hospital following the HCP, he was hospitalized 190 days. Discussion The authors discuss factors contributing to the client’s musculoskeletal deterioration including chronic wounds, postural deviations, and incomplete adherence to pressure-relief recommendations and raise considerations for physical therapists who treat patients after HCP. PMID:12620090

  11. Three Element Phased Array Coil for Imaging of Rat Spinal Cord at 7T

    PubMed Central

    Mogatadakala, Kishore V.; Bankson, James A.; Narayana, Ponnada A.

    2008-01-01

    In order to overcome some of the limitations of an implantable coil, including its invasive nature and limited spatial coverage, a three element phased array coil is described for high resolution magnetic resonance imaging (MRI) of rat spinal cord. This coil allows imaging both thoracic and cervical segments of rat spinal cord. In the current design, coupling between the nearest neighbors was minimized by overlapping the coil elements. A simple capacitive network was used for decoupling the next neighbor elements. The dimensions of individual coils in the array were determined based on the signal-to-noise ratio (SNR) measurements performed on a phantom with three different surface coils. SNR measurements on a phantom demonstrated higher SNR of the phased array coil relative to two different volume coils. In-vivo images acquired on rat spinal cord with our coil demonstrated excellent gray and white matter contrast. To evaluate the performance of the phased array coil under parallel imaging, g-factor maps were obtained for two different acceleration factors of 2 and 3. These simulations indicate that parallel imaging with acceleration factor of 2 would be possible without significant image reconstruction related noise amplifications. PMID:19025892

  12. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  13. [Spinal cord injury due to penetrating missiles].

    PubMed

    Ohry, Avi

    2003-10-01

    Gunshot wound of the spine is a major cause of spinal cord injury among US civilian population, members of the military armed conflict personnel, or civilians injured in terrorists attacks. The bullet fragments cause damage to the spinal cord even without penetrating the spinal canal. Concussive effects, heat, fractures or vascular injury may cause the neurological damage. Unfortunately, bullet or shrapnel removal or laminectomy do not change the prognosis. In this article we review the historical background, the Israeli experience, ballistic-forensic considerations, complications, treatment and prognosis.

  14. Observational study of the effectiveness of spinal cord injury rehabilitation using the Spinal Cord Injury-Ability Realization Measurement Index.

    PubMed

    Scivoletto, G; Bonavita, J; Torre, M; Baroncini, I; Tiberti, S; Maietti, E; Laurenza, L; China, S; Corallo, V; Guerra, F; Buscaroli, L; Candeloro, C; Brunelli, E; Catz, A; Molinari, M

    2016-06-01

    Retrospective observational study. The objective of this study was to determine the rehabilitation potential and the extent to which it is realized in a cohort of spinal cord injury patients using the Spinal Cord Injury-Ability Realization Measurement Index (SCI-ARMI) and to study the clinical factors that influence this realization. Two spinal units in Italy. Consecutive patients were assessed at the end of an in-patient rehabilitation program using the Spinal Cord Independence Measure and the International Standards for Neurological Classification of Spinal Cord Injury. On the basis of these data and of the age and gender of the patients, we calculated the SCI-ARMI score. Regression analyses were performed to study the relationship between clinical factors and the extent to which rehabilitation potential is realized. We examined the data for 306 patients. Most patients were discharged without having reached their rehabilitation potential, with an SCI-ARMI score <80%. SCI-ARMI scores at discharge were positively influenced by etiology and the lesion level and correlated negatively with lesion severity and the presence of complications during rehabilitation. The SCI-ARMI is an effective tool that can be used to measure the achievement of rehabilitation potential in SCI patients and to identify groups of patients who are at risk of not meeting their rehabilitative potential.

  15. Spinal cord injury following operative shoulder intervention: A case report.

    PubMed

    Cleveland, Christine; Walker, Heather

    2015-07-01

    Cervical myelopathy is a spinal cord dysfunction that results from extrinsic compression of the spinal cord, its blood supply, or both. It is the most common cause of spinal cord dysfunction in patients greater than 55 years of age. A 57-year-old male with right shoulder septic arthritis underwent surgical debridement of his right shoulder and sustained a spinal cord injury intraoperatively. The most likely etiology is damage to the cervical spinal cord during difficult intubation requiring multiple attempts in this patient with underlying asymptomatic severe cervical stenosis. Although it is not feasible to perform imaging studies on all patients undergoing intubation for surgery, this patient's outcome would suggest consideration of inclusion of additional pre-surgical screening examination techniques, such as testing for a positive Hoffman's reflex, is appropriate to detect asymptomatic patients who may have underlying cervical stenosis.

  16. Making sense out of spinal cord somatosensory development

    PubMed Central

    Seal, Rebecca P.

    2016-01-01

    The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits. PMID:27702783

  17. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury.

    PubMed

    Pomeshchik, Yuriy; Kidin, Iurii; Korhonen, Paula; Savchenko, Ekaterina; Jaronen, Merja; Lehtonen, Sarka; Wojciechowski, Sara; Kanninen, Katja; Koistinaho, Jari; Malm, Tarja

    2015-02-01

    Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic

  18. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.

    PubMed

    Sengul, Gulgun; Puchalski, Ralph B; Watson, Charles

    2012-05-01

    Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord. Copyright © 2012 Wiley Periodicals, Inc.

  19. Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients.

    PubMed

    Delic, Vedad; Kurien, Crupa; Cruz, Josean; Zivkovic, Sandra; Barretta, Jennifer; Thomson, Avery; Hennessey, Daniel; Joseph, Jaheem; Ehrhart, Jared; Willing, Alison E; Bradshaw, Patrick; Garbuzova-Davis, Svitlana

    2018-08-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients. However, molecular mechanisms leading to mitochondrial dysfunction in sporadic ALS (sALS) patients remain unclear. Also, segmental or regional variation in mitochondrial activity in the spinal cord has not been extensively examined in ALS. In our study, the activity of mitochondrial electron transport chain complex IV was examined in post-mortem gray and white matter of the cervical and lumbar spinal cords from male and female sALS patients and controls. Mitochondrial distribution and density in spinal cord motor neurons, lateral funiculus, and capillaries in gray and white matter were analyzed by immunohistochemistry. Results showed that complex IV activity was significantly decreased only in gray matter in both cervical and lumbar spinal cords from ALS patients. In ALS cervical and lumbar spinal cords, significantly increased mitochondrial density and altered distribution were observed in motor neurons, lateral funiculus, and cervical white matter capillaries. Discrete decreased complex IV activity in addition to changes in mitochondria distribution and density determined in the spinal cord in sALS patients are novel findings. These explicit mitochondrial defects in the spinal cord may contribute to ALS pathogenesis and should be considered in development of therapeutic approaches for this disease. © 2018 Wiley Periodicals, Inc.

  20. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  1. Spinal cord blood flow and ischemic injury after experimental sacrifice of thoracic and abdominal segmental arteries.

    PubMed

    Etz, Christian D; Homann, Tobias M; Luehr, Maximilian; Kari, Fabian A; Weisz, Donald J; Kleinman, George; Plestis, Konstadinos A; Griepp, Randall B

    2008-06-01

    Spinal cord blood flow (SCBF) after sacrifice of thoracoabdominal aortic segmental arteries (TAASA) during thoracoabdominal aortic aneurysm (TAAA) repair remains poorly understood. This study explored SCBF for 72 h after sacrifice of all TAASA. Fourteen juvenile Yorkshire pigs underwent complete serial TAASA sacrifice (T4-L5). Six control pigs underwent anesthesia and cooling to 32 degrees C with no TAASA sacrifice. In the experimental animals, spinal cord function was continuously monitored using motor evoked potentials (MEPs) until 1h after clamping the last TAASA. Fluorescent microspheres enabled segmental measurement of SCBF along the entire spinal cord before, and 5 min, 1 h, 5 h, 24 h and 72 h after complete TAASA sacrifice. A modified Tarlov score was obtained for 3 days after surgery. All the pigs with complete TAASA sacrifice retained normal cord function (MEP) until 1h after TAASA ligation. Seven pigs (50%) with complete TAASA sacrifice recovered after 72 h; seven pigs suffered paraparesis or paraplegia. Intraoperatively, and until 1h postoperatively, SCBF was similar among the three groups along the entire cord. Postoperatively, SCBF did not decrease in any group, but significant hyperemia occurred at 5h in controls and recovery animals, but did not occur in pigs that developed paraparesis or paraplegia in the T8-L2 segments (p=0.0002) and L3-S segments (p=0.0007). At 24h, SCBF remained marginally lower from T8 caudally; at 72h, SCBF was similar among all groups along the entire cord. SCBF in the segments T8-L2 at 5h predicted functional recovery (p=0.003). This study suggests that critical spinal cord ischemia after complete TAASA sacrifice does not occur immediately (intraoperatively), but is delayed 1-5h or longer after clamping, and represents failure to mount a hyperemic response to rewarming and awakening. The short duration of low SCBF associated with spinal cord injury suggests that hemodynamic and metabolic manipulation lasting only 24-72 h may

  2. Shriners Hospital Spinal Cord Injury Self Care Manual.

    ERIC Educational Resources Information Center

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  3. Anejaculation following spinal cord injury does not induce sperm-agglutinating antibodies.

    PubMed

    Dahlberg, A; Hovatta, O

    1989-02-01

    Antisperm antibodies were tested for by the MAR-test and the tray agglutination test in 16 men with spinal cord injury. None of these men could ejaculate without artificial methods. Seven men ejaculated externally by vibrator stimulation or electroejaculation, while seven exhibited retrograde ejaculation; in two cases no semen was obtained. Sperm density in the external ejaculations was high (average = 405 x 10(6)/ml), with 10-45% motility. None of these 16 men had antisperm antibodies. This result indicates that anejaculation and sperm retention in men with spinal cord injury, even of 30 years duration, does not result in antisperm antibody formation.

  4. The adult spinal cord injury without radiographic abnormalities syndrome: magnetic resonance imaging and clinical findings in adults with spinal cord injuries having normal radiographs and computed tomography studies.

    PubMed

    Kasimatis, Georgios B; Panagiotopoulos, Elias; Megas, Panagiotis; Matzaroglou, Charalambos; Gliatis, John; Tyllianakis, Minos; Lambiris, Elias

    2008-07-01

    Spinal cord injury without radiographic abnormalities (SCIWORA) is thought to represent mostly a pediatric entity and its incidence in adults is rather underreported. Some authors have also proposed the term spinal cord injury without radiologic evidence of trauma, as more precisely describing the condition of adult SCIWORA in the setting of cervical spondylosis. The purpose of the present study was to evaluate adult patients with cervical spine injuries and radiological-clinical examination discrepancy, and to discuss their characteristics and current management. During a 16-year period, 166 patients with a cervical spine injury were admitted in our institution (Level I trauma center). Upper cervical spine injuries (occiput to C2, 54 patients) were treated mainly by a Halo vest, whereas lower cervical spine injuries (C3-T1, 112 patients) were treated surgically either with an anterior, or posterior procedure, or both. Seven of these 166 patients (4.2%) had a radiologic-clinical mismatch, i.e., they presented with frank spinal cord injury with no signs of trauma, and were included in the study. Magnetic resonance imaging was available for 6 of 7 patients, showing intramedullary signal changes in 5 of 6 patients with varying degrees of compression from the disc and/or the ligamentum flavum, whereas the remaining patient had only traumatic herniation of the intervertebral disc and ligamentum flavum bulging. Follow-up period was 6.4 years on average (1-10 years). This retrospective chart review provides information on adult patients with cervical spinal cord injuries whose radiographs and computed tomography studies were normal. It furthers reinforces the pathologic background of SCIWORA in an adult population, when evaluated by magnetic resonance imaging. Particularly for patients with cervical spondylosis, special attention should be paid with regard to vascular compromise by predisposing factors such as smoking or vascular disease, since they probably contribute in

  5. Sexual counseling with spinal cord-injured clients.

    PubMed

    Miller, D K

    1975-01-01

    Spinal cord-injured clients have many fears and misapprehension about their sexual functioning. Common beliefs include: (a) disabled men cannot sexually satisfy able-bodied women; and (b) cord-injured persons cannot have sexual intercourse. Such misapprehensions can be helped by the counselor's willingness to discuss sexual issues openly. Clients need a clear and accurate picture of the facts, as well as encouragement and support to help them rediscover their sexuality. Spinal cord injury does not mean sexual incapacity. Given a knowing and patient partner, most clients can enjoy a satisfying sex life.

  6. Dynamic diffusion tensor imaging of spinal cord contusion: A canine model.

    PubMed

    Liu, Changbin; Yang, Degang; Li, Jianjun; Li, Dapeng; Yang, Mingliang; Sun, Wei; Meng, Qianru; Zhang, Wenhao; Cai, Chang; Du, Liangjie; Li, Jun; Gao, Feng; Gu, Rui; Feng, Yutong; Dong, Xuechao; Miao, Qi; Yang, Xinghua; Zuo, Zhentao

    2018-06-01

    This study aimed to explore the dynamic diffusion tensor imaging (DTI) of changes in spinal cord contusion using a canine model of injury involving rostral and caudal levels. In this study, a spinal cord contusion model was established in female dogs using a custom-made weight-drop lesion device. DTI was performed on dogs with injured spinal cords (n=7) using a Siemens 3.0T MRI scanner at pre-contusion and at 3 h, 24 h, 6 weeks and 12 weeks post-injury. The tissue sections were stained for immunohistochemical analysis. Canine models of spinal cord contusion were created successfully using the weight-drop lesion device. The fractional anisotropy (FA) value of lesion epicenter decreased, while the apparent diffusion coefficient (ADC), mean diffusivity (MD), and radial diffusivity (RD) values increased, and the extent of the curve was apparent gradually. The site and time affected the DTI parameters significantly in the whole spinal cord, ADC (site, P < 0.001 and time, P = 0.077, respectively); FA (site, P < 0.001 and time, P = 0.002, respectively). Immunohistological analysis of GFAP and NF revealed the pathologic changes of reactive astrocytes and axons, as well as the cavity and glial scars occurring during chronic SCI. DTI is a sensitive and noninvasive imaging tool useful to assess edema, hemorrhage, cavity formation, structural damage and reconstruction of axon, and myelin in dogs. The DTI parameters after contusion vary. However, the curves of ADC, MD, and RD were nearly similar and the FA curve was distinct. All the DTI parameters were affected by distance and time. © 2018 Wiley Periodicals, Inc.

  7. Effects of electroacupuncture and the retinoid X receptor (RXR) signalling pathway on oligodendrocyte differentiation in the demyelinated spinal cord of rats

    PubMed Central

    Yang, Xiao-Hua; Ding, Ying; Li, Wen; Zhang, Rong-Yi; Wu, Jin-Lang; Ling, Eng-Ang; Wu, Wutian

    2017-01-01

    Objectives In spinal cord demyelination, some oligodendrocyte precursor cells (OPCs) remain in the demyelinated region but have a reduced capacity to differentiate into oligodendrocytes. This study investigated whether ‘Governor Vessel’ (GV) electroacupuncture (EA) would promote the differentiation of endogenous OPCs into oligodendrocytes by activating the retinoid X receptor γ (RXR-γ)-mediated signalling pathway. Methods Adult rats were microinjected with ethidium bromide (EB) into the T10 spinal cord to establish a model of spinal cord demyelination. EB-injected rats remained untreated (EB group, n=26) or received EA treatment (EB+EA group, n=26). A control group (n=26) was also included that underwent dural exposure without EB injection. After euthanasia at 7 days (n=5 per group), 15 days (n=8 per group) or 30 days (n=13 per group), protein expression of RXR-γ in the demyelinated spinal cord was evaluated by immunohistochemistry and Western blotting. In addition, OPCs derived from rat embryonic spinal cord were cultured in vitro, and exogenous 9-cis-RA (retinoic acid) and RXR-γ antagonist HX531 were administered to determine whether RA could activate RXR-γ and promote OPC differentiation. Results EA was found to increase the numbers of both OPCs and oligodendrocytes expressing RXR-γ and RALDH2, and promote remyelination in the remyelinated spinal cord. Exogenous 9-cis-RA enhanced the differentiation of OPCs into mature oligodendrocytes by activating RXR-γ. Conclusions The results suggest that EA may activate RXR signalling to promote the differentiation of OPCs into oligodendrocytes in spinal cord demyelination. PMID:27841975

  8. Motor exam of patients with spinal cord injury: a terminological imbroglio.

    PubMed

    Figueiredo, Nicandro

    2017-07-01

    The description of the motor deficit of patients with spinal cord injury (SCI) varies significantly, leading to confusion within the neurological terminology. This paper proposes a concise and easy to use terminology to describe the motor deficit of patients with SCI. A broad review of the origin of the nomenclature used to describe the motor deficit of patients with SCI was performed and discussed. The prefix: "hemi" should be used to describe paralysis of one half of the body; "mono" for one limb; "para" for lower limbs, di" for two symmetrical segments and/or parts in both sides of the body; "tri" for three limbs, or two limbs and one side of the face; and "tetra" for four limbs. The suffix: "plegia" should be used for total paralysis of a limb or part of the body, and "paresis" for partial paralysis. The term "brachial" refers to the upper limbs; and "podal" to the lower limbs. According to the spinal cord origin of the main key muscles for the limbs, patients with complete injury affecting spinal cord segments C1-5 usually presents with "tetraplegia"; C6-T1 presents with "paraplegia and brachial diparesis"; T2-L2 with "paraplegia"; and L3-S1 with "paraparesis".

  9. Microsurgical resection of intramedullary spinal cord ependymoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Ependymomas are the most commonly occurring intramedullary spinal cord tumor in adults. With few exceptions these tumors are histologically benign, although they exhibit some biologic variability with respect to growth rate. While unencapsulated, spinal ependymomas are non-infiltrative and present a clear margin of demarcation from the surrounding spinal cord that serves as an effective dissection plane. This video demonstrates the technique of microsurgical resection of an intramedullary ependymoma through a posterior midline myelotomy. The video can be found here: http://youtu.be/lcHhymSvSqU.

  10. Brown-Sequard syndrome associated with unusual spinal cord injury by a screwdriver stab wound

    PubMed Central

    Beer-Furlan, André Luiz; Paiva, Wellingson Silva; Tavares, Wagner Malagó; de Andrade, Almir Ferreira; Teixeira, Manoel Jacobsen

    2014-01-01

    Introduction: Stab wounds resulting in spinal cord injuries are very rare. In direct central back stabbings, the layers of muscles and the spinal column tends to deflect blades, rarely causing injuries to the spinal cord. We report an unusual case of traumatic spinal cord injury by a screwdriver stab, presented as Brown-Séquard syndrome and discuss possible pitfalls on the surgical treatment. Case report: A 34 year-old man was brought to the emergency department after a group assault with a single screwdriver stab wound on the back. Neurological examination revealed an incomplete Brown-Sequard syndrome, with grade IV motor deficit on the left leg and contralateral hemihypoalgesia below T9 level. Radiological evaluation showed a retained 9 cm screwdriver that entered and trespassed the spinal canal at T6 level, reaching the posterior mediastinum with close relation to the thoracic aorta. Vascular injury could not be excluded. The joint decision between the neurosurgery and the vascular surgery teams was the surgical removal of the screwdriver under direct visualization. A left mini-thoracotomy was performed. Simultaneously, a careful dissection was done and screwdriver was firmly pulled back on the opposite path of entry under direct visualization of the aorta. The neurological deficit was maintained immediately after the surgical procedure. Follow-up visit after 1 year showed minor motor deficit and good healing. Conclusions: It is important to consider all aspects of secondary injury on the surgical planning of penetrating spinal cord injury. The secondary injury can be minimized with multidisciplinary planning of the surgical procedure. PMID:24482724

  11. Exploration of Spinal Cord Aging-Related Proteins Using a Proteomics Approach.

    PubMed

    Kamiya, Koshiro; Furuya, Takeo; Hashimoto, Masayuki; Mannoji, Chikato; Inada, Taigo; Ota, Mitsutoshi; Maki, Satoshi; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Orita, Sumihisa; Inage, Kazuhide; Yamazaki, Masashi; Koda, Masao

    2017-01-01

    How aging affects the spinal cord at a molecular level is unclear. The aim of this study was to explore spinal cord aging-related proteins that may be involved in pathological mechanisms of age-related changes in the spinal cord. Spinal cords of 2-year-old and 8-week-old female Sprague-Dawley rats were dissected from the animals. Protein samples were subjected to 2-dimentional polyacrylamide gel electrophoresis followed by mass spectrometry. Screened proteins were further investigated with immunohistochemistry and Western blotting. Among the screened proteins, we selected α-crystallin B-subunit (αB-crystallin) and peripherin for further investigation because these proteins were previously reported to be related to central nervous system pathologies. Immunohistochemistry and Western blotting revealed significant upregulation of αB-crystallin and peripherin expression in aged rat spinal cord. Further exploration is needed to elucidate the precise mechanism and potential role of these upregulated proteins in spinal cord aging processes.

  12. Exploration of Spinal Cord Aging–Related Proteins Using a Proteomics Approach

    PubMed Central

    Kamiya, Koshiro; Furuya, Takeo; Hashimoto, Masayuki; Mannoji, Chikato; Inada, Taigo; Ota, Mitsutoshi; Maki, Satoshi; Ijima, Yasushi; Saito, Junya; Kitamura, Mitsuhiro; Ohtori, Seiji; Orita, Sumihisa; Inage, Kazuhide; Yamazaki, Masashi; Koda, Masao

    2017-01-01

    How aging affects the spinal cord at a molecular level is unclear. The aim of this study was to explore spinal cord aging–related proteins that may be involved in pathological mechanisms of age-related changes in the spinal cord. Spinal cords of 2-year-old and 8-week-old female Sprague-Dawley rats were dissected from the animals. Protein samples were subjected to 2-dimentional polyacrylamide gel electrophoresis followed by mass spectrometry. Screened proteins were further investigated with immunohistochemistry and Western blotting. Among the screened proteins, we selected α-crystallin B-subunit (αB-crystallin) and peripherin for further investigation because these proteins were previously reported to be related to central nervous system pathologies. Immunohistochemistry and Western blotting revealed significant upregulation of αB-crystallin and peripherin expression in aged rat spinal cord. Further exploration is needed to elucidate the precise mechanism and potential role of these upregulated proteins in spinal cord aging processes. PMID:28634429

  13. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  14. Predictors of outcome in acute traumatic central cord syndrome due to spinal stenosis.

    PubMed

    Aarabi, Bizhan; Alexander, Melvin; Mirvis, Stuart E; Shanmuganathan, Kathirkamanathan; Chesler, David; Maulucci, Christopher; Iguchi, Mark; Aresco, Carla; Blacklock, Tiffany

    2011-01-01

    the objective of this study was to elucidate the relationship between admission demographic data, validated injury severity measures on imaging studies, and clinical indicators on the American Spinal Injury Association (ASIA) motor score, Functional Independence Measure (FIM), manual dexterity, and dysesthetic pain at least 12 months after surgery for acute traumatic central cord syndrome (ATCCS) due to spinal stenosis. over a 100-month period (January 2000 to April 2008), of 211 patients treated for ATCCS, 59 cases were due to spinal stenosis, and these patients underwent surgical decompression. Five of these patients died, 2 were lost to follow-up, 10 were not eligible for the study, and the remaining 42 were followed for at least 12 months. in the cohort of 42 patients, mean age was 58.3 years, 83% of the patients were men, and 52.4% of the accidents were due to falls. Mean admission ASIA motor score was 63.8 (upper extremities score, 25.8 and lower extremities score, 39.8), the spinal cord was most frequently compressed at skeletal segments C3-4 and C4-5 (71%), mean midsagittal diameter at the point of maximum compression was 5.6 mm, maximum canal compromise (MCC) was 50.5%, maximum spinal cord compression was 16.5%, and length of parenchymal damage on T2-weighted MR imaging was 29.4 mm. Time after injury until surgery was within 24 hours in 9 patients, 24-48 hours in 10 patients, and more than 48 hours in 23 patients. At the 1-year follow-up, the mean ASIA motor score was 94.1 (upper extremities score, 45.7 and lower extremities score, 47.6), FIM was 111.1, manual dexterity was 64.4% of baseline, and pain level was 3.5. Stepwise regression analysis of 10 independent variables indicated significant relationships between ASIA motor score at follow-up and admission ASIA motor score (p = 0.003), MCC (p = 0.02), and midsagittal diameter (p = 0.02); FIM and admission ASIA motor score (p = 0.03), MCC (p = 0.02), and age (p = 0.02); manual dexterity and admission ASIA

  15. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats

    PubMed Central

    Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace

    2018-01-01

    Background: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Methods: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso–Beattie–Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Results: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Conclusions: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery. PMID:29497572

  16. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish

    PubMed Central

    Mokalled, Mayssa H.; Patra, Chinmoy; Dickson, Amy L.; Endo, Toyokazu; Stainier, Didier Y. R.; Poss, Kenneth D.

    2016-01-01

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration, a relatively unexplored process. Here, we performed a genome-wide profiling screen for secreted factors that are upregulated during zebrafish spinal cord regeneration. We find that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupt spinal cord repair, while transgenic ctgfa overexpression and local human CTGF recombinant protein delivery accelerate bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. PMID:27811277

  17. The Prevalence and Phenotype of Activated Microglia/Macrophages within the Spinal Cord of the Hyperostotic Mouse (twy/twy) Changes in Response to Chronic Progressive Spinal Cord Compression: Implications for Human Cervical Compressive Myelopathy

    PubMed Central

    Hirai, Takayuki; Uchida, Kenzo; Nakajima, Hideaki; Guerrero, Alexander Rodriguez; Takeura, Naoto; Watanabe, Shuji; Sugita, Daisuke; Yoshida, Ai; Johnson, William E. B.; Baba, Hisatoshi

    2013-01-01

    Background Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease. Methods Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass. Results The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) −2 progressively increased. Conclusions Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination

  18. Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.

    PubMed

    Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z

    2018-03-15

    Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.

  19. Osthole attenuates spinal cord ischemia-reperfusion injury through mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction in rats.

    PubMed

    Zhou, Yue-fei; Li, Liang; Feng, Feng; Yuan, Hua; Gao, Da-kuan; Fu, Luo-an; Fei, Zhou

    2013-12-01

    Osthole, the main bioactive compounds isolated from the traditional Chinese medical herb broad Cnidium monnieri (L.) cusson, has been shown to exert spectrum of pharmacologic activities. The aim of this study was to investigate the potential neuroprotective effects of osthole against spinal cord ischemia-reperfusion injury in rats. Osthole was administrated at the concentration of 0.1, 1, 10, 50, or 200 mg/kg (intraperitoneally) 1 h before spinal cord ischemia. The effects on spinal cord injury were measured by spinal cord water content, infarct volume, hematoxylin and eosin staining, and neurologic assessment. Mitochondria were purified from injured spinal cord tissue to determine mitochondrial function. We found that treatment with osthole (10 and 50 mg/kg) significantly decreased spinal cord water content and infarct volume, preserved normal motor neurons, and improved neurologic functions. These protective effects can be also observed even if the treatment was delayed to 4 h after reperfusion. Osthole treatment preserved mitochondrial membrane potential level, reduced reactive oxygen species production, increased adenosine triphosphate generation, and inhibited cytochrome c release in mitochondrial samples. Moreover, osthole increased mitochondria respiratory chain complex activities in spinal cord tissue, with no effect on mitochondrial DNA content and the expression of mitochondrial-specific transcription factors. All these findings demonstrate the neuroprotective effect of osthole in spinal cord ischemia-reperfusion injury model and suggest that oshtole-induced neuroprotection was mediated by mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The current state-of-the-art of spinal cord imaging: Methods

    PubMed Central

    Stroman, P.W.; Wheeler-Kingshott, C.; Bacon, M.; Schwab, J.M.; Bosma, R.; Brooks, J.; Cadotte, D.; Carlstedt, T.; Ciccarelli, O.; Cohen-Adad, J.; Curt, A.; Evangelou, N.; Fehlings, M.G.; Filippi, M.; Kelley, B.J.; Kollias, S.; Mackay, A.; Porro, C.A.; Smith, S.; Strittmatter, S.M.; Summers, P.; Tracey, I.

    2015-01-01

    A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of “critical mass” of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research. PMID:23685159

  1. Exercise modulates chloride homeostasis after spinal cord injury.

    PubMed

    Côté, Marie-Pascale; Gandhi, Sapan; Zambrotta, Marina; Houlé, John D

    2014-07-02

    Activity-based therapies are routinely integrated in spinal cord injury (SCI) rehabilitation programs because they result in a reduction of hyperreflexia and spasticity. However, the mechanisms by which exercise regulates activity in spinal pathways to reduce spasticity and improve functional recovery are poorly understood. Persisting alterations in the action of GABA on postsynaptic targets is a signature of CNS injuries, including SCI. The action of GABA depends on the intracellular chloride concentration, which is determined largely by the expression of two cation-chloride cotransporters (CCCs), KCC2 and NKCC1, which serve as chloride exporters and importers, respectively. We hypothesized that the reduction in hyperreflexia with exercise after SCI relies on a return to chloride homeostasis. Sprague Dawley rats received a spinal cord transection at T12 and were assigned to SCI-7d, SCI-14d, SCI-14d+exercise, SCI-28d, SCI-28d+exercise, or SCI-56d groups. During a terminal experiment, H-reflexes were recorded from interosseus muscles after stimulation of the tibial nerve and the low-frequency-dependent depression (FDD) was assessed. We provide evidence that exercise returns spinal excitability and levels of KCC2 and NKCC1 toward normal levels in the lumbar spinal cord. Acutely altering chloride extrusion using the KCC2 blocker DIOA masked the effect of exercise on FDD, whereas blocking NKCC1 with bumetanide returned FDD toward intact levels after SCI. Our results indicate that exercise contributes to reflex recovery and restoration of endogenous inhibition through a return to chloride homeostasis after SCI. This lends support for CCCs as part of a pathway that could be manipulated to improve functional recovery when combined with rehabilitation programs. Copyright © 2014 the authors 0270-6474/14/348976-12$15.00/0.

  2. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons.

    PubMed

    Cocks, Graham; Romanyuk, Nataliya; Amemori, Takashi; Jendelova, Pavla; Forostyak, Oksana; Jeffries, Aaron R; Perfect, Leo; Thuret, Sandrine; Dayanithi, Govindan; Sykova, Eva; Price, Jack

    2013-06-07

    The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease.

  3. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for pain relief. 882.5880 Section 882.5880 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator...

  4. Identification of ghost artifact using texture analysis in pediatric spinal cord diffusion tensor images.

    PubMed

    Alizadeh, Mahdi; Conklin, Chris J; Middleton, Devon M; Shah, Pallav; Saksena, Sona; Krisa, Laura; Finsterbusch, Jürgen; Faro, Scott H; Mulcahey, M J; Mohamed, Feroze B

    2018-04-01

    Ghost artifacts are a major contributor to degradation of spinal cord diffusion tensor images. A multi-stage post-processing pipeline was designed, implemented and validated to automatically remove ghost artifacts arising from reduced field of view diffusion tensor imaging (DTI) of the pediatric spinal cord. A total of 12 pediatric subjects including 7 healthy subjects (mean age=11.34years) with no evidence of spinal cord injury or pathology and 5 patients (mean age=10.96years) with cervical spinal cord injury were studied. Ghost/true cords, labeled as region of interests (ROIs), in non-diffusion weighted b0 images were segmented automatically using mathematical morphological processing. Initially, 21 texture features were extracted from each segmented ROI including 5 first-order features based on the histogram of the image (mean, variance, skewness, kurtosis and entropy) and 16s-order feature vector elements, incorporating four statistical measures (contrast, correlation, homogeneity and energy) calculated from co-occurrence matrices in directions of 0°, 45°, 90° and 135°. Next, ten features with a high value of mutual information (MI) relative to the pre-defined target class and within the features were selected as final features which were input to a trained classifier (adaptive neuro-fuzzy interface system) to separate the true cord from the ghost cord. The implemented pipeline was successfully able to separate the ghost artifacts from true cord structures. The results obtained from the classifier showed a sensitivity of 91%, specificity of 79%, and accuracy of 84% in separating the true cord from ghost artifacts. The results show that the proposed method is promising for the automatic detection of ghost cords present in DTI images of the spinal cord. This step is crucial towards development of accurate, automatic DTI spinal cord post processing pipelines. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cervical spinal stenosis and sports-related cervical cord neurapraxia in children.

    PubMed

    Boockvar, J A; Durham, S R; Sun, P P

    2001-12-15

    Congenital spinal stenosis has been demonstrated to contribute to cervical cord neurapraxia after cervical spinal cord injury in adult athletes. A sagittal canal diameter <14 mm and/or a Torg ratio (sagittal diameter of the spinal canal: midcervical sagittal vertebral body diameter) of <0.8 are indicative of significant cervical spinal stenosis. Although sports-related cervical spine injuries are common in children, the role of congenital cervical stenosis in the etiology of these injuries remains unclear. The authors measured the sagittal canal diameter and the Torg ratio in children presenting with cervical cord neurapraxia resulting from sports-related cervical spinal cord injuries to determine the presence of congenital spinal stenosis. A total of 13 children (9 male, 4 female) presented with cervical cord neurapraxia after a sports-related cervical spinal cord injury. Age ranged from 7 to 15 years (mean +/- SD, 11.5 +/- 2.7 years). The sports involved were football (n = 4), wrestling (n = 2), hockey (n = 2), and soccer, gymnastics, baseball, kickball, and pogosticking (n = 1 each). Lateral cervical spine radiographs were used to determine the sagittal canal diameter and the Torg ratio at C4. The sagittal canal diameter (mean +/- SD, 17.58 +/- 1.63 mm) and the Torg ratio (mean +/- SD, 1.20 +/- 0.24) were normal in all of these children. Using the sagittal canal diameter and the Torg ratio as a measurement of congenital spinal stenosis, the authors did not find evidence of congenital cervical spinal stenosis in a group of children with sports-related cervical spinal cord neurapraxia. The occurrence of cervical cord neurapraxia in pediatric patients can be attributed to the mobility of the pediatric spine rather than to congenital cervical spinal stenosis.

  6. Clinical and imaging features of spinal cord type of neuro Behçet disease: A case report and systematic review.

    PubMed

    Liu, Hui-Miao; Dong, Ci; Zhang, Yong-Zhi; Tian, Ya-Yun; Chen, Hong-Xu; Zhang, Sai; Li, Na; Gu, Ping

    2017-10-01

    To investigate the clinical and MRI characteristics of spinal cord nerve Behçet's disease. One patient with spinal cord nerve Behçet's disease was admitted to our hospital at October 20, 2015. Spinal cord nerve Behçet's disease. Retrospective analysis was performed on such case as well as 16 cases of spinal cord nerve Behçet's disease reported in China or abroad. Seventeen cases of spinal cord type of neuro Behçet's disease include 13 men and 4 women, with an average age of onset of 34.8 years old. The mean time from Behçet's disease symptoms to spinal cord involvement were 10.8 years. The initial symptom in one case was spinal cord injury, and another 4 cases had a recurrence course. The most common performance of spinal cord injury was sensory disturbance (82.4%), following by weakness (76.5%), sphincter or sexual dysfunction (58.8%), and pain in back, backside of neck or lower chest (29.4%). The number of cells was slightly increased or the protein level was increased in cerebrospinal fluid test. And the water channel protein antibody and oligoclonal band of serum levels were all negative. The spinal cord injury involved more than 3 vertebral bodies in 10 cases, and involved more than half of spinal cord in sagittal plane in 8 cases. In acute stage, shock therapy with large dose of glucocorticoid was generally applied both in China and abroad. The clinical features of spinal cord nerve Behçet's disease were various, making it easily misdiagnosed. Longitudinal extensive transverse myelitis performs as a characteristic manifestation.

  7. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    PubMed

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  8. Glycogen synthase kinase-3 beta inhibition reduces secondary damage in experimental spinal cord trauma.

    PubMed

    Cuzzocrea, Salvatore; Genovese, Tiziana; Mazzon, Emanuela; Crisafulli, Concetta; Di Paola, Rosanna; Muià, Carmelo; Collin, Marika; Esposito, Emanuela; Bramanti, Placido; Thiemermann, Christoph

    2006-07-01

    Glycogen synthase kinase-3 (GSK-3) has recently been identified as an ubiquitous serine-threonine protein kinase that participates in a multitude of cellular processes and plays an important role in the pathophysiology of a number of diseases. The aim of this study was to investigate the effects of GSK-3beta inhibition on the degree of experimental spinal cord trauma induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury (SCI) in mice resulted in severe trauma characterized by edema, neutrophil infiltration, production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), a potent and selective GSK-3beta inhibitor, significantly reduced the degree of 1) spinal cord inflammation and tissue injury (histological score); 2) neutrophil infiltration (myeloperoxidase activity); 3) inducible nitric-oxide synthase, nitrotyrosine, and cyclooxygenase-2 expression; and 4) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and Bax and Bcl-2 expression). In a separate set of experiments, TDZD-8 significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with TDZD-8 reduces the development of inflammation and tissue injury associated with spinal cord trauma.

  9. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    PubMed

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Variations in the formation of the human caudal spinal cord.

    PubMed

    Saraga-Babić, M; Sapunar, D; Wartiovaara, J

    1995-01-01

    Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.

  11. Evaluation of normal appearing spinal cord by diffusion tensor imaging, fiber tracking, fractional anisotropy, and apparent diffusion coefficient measurement in 13 dogs

    PubMed Central

    2013-01-01

    Background Functional magnetic resonance (fMR) imaging offers plenty of new opportunities in the diagnosis of central nervous system diseases. Diffusion tensor imaging (DTI) is a technique sensitive to the random motion of water providing information about tissue architecture. We applied DTI to normal appearing spinal cords of 13 dogs of different breeds and body weights in a 3.0 T magnetic resonance (MR) scanner. The aim was to study fiber tracking (FT) patterns by tractography and the variations of the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) observed in the spinal cords of dogs with different sizes and at different locations (cervical and thoracolumbar). For that reason we added a DTI sequence to the standard clinical MR protocol. The values of FA and ADC were calculated by means of three regions of interest defined on the cervical or the thoracolumbar spinal cord (ROI 1, 2, and 3). Results The shape of the spinal cord fiber tracts was well illustrated following tractography and the exiting nerve roots could be differentiated from the spinal cord fiber tracts. Routine MR scanning times were extended for 8 to 12 min, depending on the size of the field of view (FOV), the slice thickness, and the size of the interslice gaps. In small breed dogs (< 15 kg body weight) the fibers could be tracked over a length of approximately 10 vertebral bodies with scanning times of about 8 min, whereas in large breed dogs (> 25 kg body weight) the traceable fiber length was about 5 vertebral bodies which took 10 to 12 min scanning time. FA and ADC values showed mean values of 0.447 (FA), and 0.560 × 10-3 mm2/s (ADC), respectively without any differences detected with regard to different dog sizes and spinal cord 45 segments examined. Conclusion FT is suitable for the graphical depiction of the canine spinal cord and the exiting nerve roots. The FA and ADC values offer an objective measure for evaluation of the spinal cord fiber

  12. Spinal Cord Tolerance to Single-Fraction Partial-Volume Irradiation: A Swine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Paul M., E-mail: Paul.medin@utsouthwestern.ed; Foster, Ryan D.; Kogel, Albert J. van der

    2011-01-01

    Purpose: To determine the spinal cord tolerance to single-fraction, partial-volume irradiation in swine. Methods and Materials: A 5-cm-long cervical segment was irradiated in 38-47-week-old Yucatan minipigs using a dedicated, image-guided radiosurgery linear accelerator. The radiation was delivered to a cylindrical volume approximately 5 cm in length and 2 cm in diameter that was positioned lateral to the cervical spinal cord, resulting in a dose distribution with the 90%, 50%, and 10% isodose lines traversing the ipsilateral, central, and contralateral spinal cord, respectively. The dose was prescribed to the 90% isodose line. A total of 26 pigs were stratified into eightmore » dose groups of 12-47 Gy. The mean maximum spinal cord dose was 16.9 {+-} 0.1, 18.9 {+-} 0.1, 21.0 {+-} 0.1, 23.0 {+-} 0.2, and 25.3 {+-} 0.3 Gy in the 16-, 18-, 20-, 22-, and 24-Gy dose groups, respectively. The mean percentage of spinal cord volumes receiving {>=}10 Gy for the same groups were 43% {+-} 3%, 48% {+-} 4%, 51% {+-} 2%, 57% {+-} 2%, and 59% {+-} 4%. The study endpoint was motor neurologic deficit determined by a change in gait during a 1-year follow-up period. Results: A steep dose-response curve was observed with a median effective dose for the maximum dose point of 20.0 Gy (95% confidence interval, 18.3-21.7). Excellent agreement was observed between the occurrence of neurologic change and the presence of histologic change. All the minipigs with motor deficits showed some degree of demyelination and focal white matter necrosis on the irradiated side, with relative sparing of the gray matter. The histologic findings were unremarkable in the minipigs with normal neurologic status. Conclusions: Our results have indicated that for a dose distribution with a steep lateral gradient, the pigs had a lower median effective dose for paralysis than has been observed in rats and more closely resembles that for rats, mice, and guinea pigs receiving uniform spinal cord irradiation.« less

  13. Protective effect of melatonin on experimental spinal cord ischemia.

    PubMed

    Erten, S F; Kocak, A; Ozdemir, I; Aydemir, S; Colak, A; Reeder, B S

    2003-10-01

    Experimental animal model to assess ischemic spinal cord injury following occlusion of the thoraco-abdominal aorta. To measure whether melatonin administered to rabbits before and after occlusion exerts an effect on the repair of ischemia-reperfusion (IR) injury. Medical Biology Laboratory, Inonu University, Malatya, Turkey. Rabbits were divided into three IR treatment groups and one sham-operated (ShOp) control group. The three treatment groups had their infrarenal aorta temporarily occluded for 25 min, while the ShOp group had laparotomy without aortic occlusion. Melatonin was administered either 10 min before aortic occlusion or 10 min after the clamp was removed. Physiologic saline was administered to the control animals. After treatment, the animals were euthanized and lumbosacral spinal cord tissue was removed for the determination of relevant enzyme activities. Malondialdehyde levels, indicating the extent of lipid peroxidation, were found to be significantly increased in the nonmelatonin treated (IR) group when compared to the ShOp group. Melatonin, whether given to pre- or post occlusion groups, suppressed malondialdehyde levels below that of the ShOp group. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were increased in the IR group compared to the ShOp group. Melatonin given preocclusion resulted in a significant decrease in both CAT and GSH-Px enzyme levels. The superoxide dismutase (SOD) enzyme activity was decreased in the ischemia-reperfusion treatment group. However, the melatonin treatment increased SOD enzyme activity to levels approximating that of the ShOp group. To our knowledge, this is the first study that shows the effects of melatonin administered both pre- and postischemia on induced oxidative damage to injured spinal cords. Our data also expands on reports that melatonin administration may significantly reduce the incidence of spinal cord injury following temporary aortic occlusion.

  14. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    PubMed

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P < 0.05 for each). Thus, edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  15. Training unsupported sitting in people with chronic spinal cord injuries: a randomized controlled trial.

    PubMed

    Boswell-Ruys, C L; Harvey, L A; Barker, J J; Ben, M; Middleton, J W; Lord, S R

    2010-02-01

    Randomized, assessor-blinded trial. To evaluate the effectiveness of a 6-week task-specific training programme on the abilities of people with chronic spinal cord injuries to sit unsupported. NSW, Australia. Thirty adults with spinal cord injuries of at least 1-year duration were recruited. Participants in the training group (n=15) performed up to 1 h of task-specific training three times a week for 6 weeks. Participants in the control group (n=15) did not receive any training or additional therapy. Primary outcome measures were the Canadian Occupational Performance Measure (COPM), and tests of Upper Body Sway, Maximal Balance Range and donning and doffing a T-shirt (the T-shirt test). The between-group mean difference (95% confidence interval) for the maximal balance range was 64 mm (95% confidence interval 20 to 108 mm; P=0.006). There were no significant between-group mean differences for the COPM and the Upper Body Sway and T-shirt tests. This trial shows initial support for intensive task-specific training for improving the abilities of people with chronic spinal cord injuries to sit unsupported, although the real-world implications of the observed treatment effects are yet to be determined.

  16. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation.

    PubMed

    Bartlett, Richard D; Choi, David; Phillips, James B

    2016-10-01

    Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering.

  17. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  18. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  19. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection.

    PubMed

    Zhang, Qiang; Shao, Yang; Zhao, Changsong; Cai, Juan; Sun, Sheng

    2014-12-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.

  20. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection

    PubMed Central

    ZHANG, QIANG; SHAO, YANG; ZHAO, CHANGSONG; CAI, JUAN; SUN, SHENG

    2014-01-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection. PMID:25371724

  1. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord.

    PubMed Central

    Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M

    1994-01-01

    1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7529113

  2. Spinal Cord Injury After Extremity Surgery in Children With Thoracic Kyphosis.

    PubMed

    Pruszczynski, Blazej; Mackenzie, William G; Rogers, Kenneth; White, Klane K

    2015-10-01

    Spinal cord injury is a rare complication after lower extremity surgery in children with skeletal dysplasia and thoracic kyphosis. We encountered two patients who had this complication, from among 51 (39 from Nemours/Alfred I. duPont Hospital for Children and 12 from Seattle Children's Hospital) who underwent lower extremity surgery during an 8.5-year period (June 2004 to December 2012). Because spinal cord injury is a devastating complication likely not known to most physicians treating patients with skeletal dysplasias, we sought to examine factors that may contribute to this rare complication. We performed a retrospective review of two patients with skeletal dysplasia who had paraplegia develop after extremity surgery. Outcome measures included operative time, vital signs, and postsurgery recovery of neurologic deficit. MR images were reviewed. Two patients were found-an 8.5-year-old boy with spondyloepiphyseal dysplasia congenita with a 76°-thoracic kyphosis apex at T4 and a 6.5-year-old boy with mucopolysaccharidosis type 1-H with an 80°-thoracic kyphosis apex at T2. Bilateral proximal femoral osteotomies or bilateral innominate and proximal femoral osteotomies had been performed. The spinal cord injuries occurred at the apex of the kyphosis as determined by clinical examination and MRI assessment. In both patients, the mean arterial blood pressure decreased below 50 mm Hg and might be a factor in the etiology of the paralysis. The first patient recovered motor function in 5 months; the second had no recovery. Paraplegia is extremely rare after nonspine operations. Many factors contribute to the risk for a spinal cord event: low mean arterial pressure, duration of the surgery, position on the operating table, the kyphotic spine deformity, or unappreciated vascular disease. Motor-evoked potentials and somatosensory-evoked potentials together potentially provide high sensitivity and specificity for predicting a postoperative neurologic deficit. Based on our

  3. In vivo PET imaging of the neuroinflammatory response in rat spinal cord injury using the TSPO tracer [(18)F]GE-180 and effect of docosahexaenoic acid.

    PubMed

    Tremoleda, J L; Thau-Zuchman, O; Davies, M; Foster, J; Khan, I; Vadivelu, K C; Yip, P K; Sosabowski, J; Trigg, W; Michael-Titus, A T

    2016-08-01

    Traumatic spinal cord injury (SCI) is a devastating condition which affects millions of people worldwide causing major disability and substantial socioeconomic burden. There are currently no effective treatments. Modulating the neuroinflammatory (NI) response after SCI has evolved as a major therapeutic strategy. PET can be used to detect the upregulation of the 18-kDa translocator protein (TSPO), a hallmark of activated microglia in the CNS. We investigated whether PET imaging using the novel TSPO tracer [(18)F]GE-180 can be used as a clinically relevant biomarker for NI in a contusion SCI rat model, and we present data on the modulation of NI by the lipid docosahexaenoic acid (DHA). A total of 22 adult male Wistar rats were subjected to controlled spinal cord contusion at the T10 spinal cord level. Six non-injured and ten T10 laminectomy only (LAM) animals were used as controls. A subset of six SCI animals were treated with a single intravenous dose of 250 nmol/kg DHA (SCI-DHA group) 30 min after injury; a saline-injected group of six animals was used as an injection control. PET and CT imaging was carried out 7 days after injury using the [(18)F]GE-180 radiotracer. After imaging, the animals were killed and the spinal cord dissected out for biodistribution and autoradiography studies. In vivo data were correlated with ex vivo immunohistochemistry for TSPO. In vivo dynamic PET imaging revealed an increase in tracer uptake in the spinal cord of the SCI animals compared with the non-injured and LAM animals from 35 min after injection (P < 0.0001; SCI vs. LAM vs. non-injured). Biodistribution and autoradiography studies confirmed the high affinity and specific [(18)F]GE-180 binding in the injured spinal cord compared with the binding in the control groups. Furthermore, they also showed decreased tracer uptake in the T10 SCI area in relation to the non-injured remainder of the spinal cord in the SCI-DHA group compared with the SCI-saline group (P < 0

  4. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    PubMed

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  5. What Are the Key Statistics about Brain and Spinal Cord Cancers?

    MedlinePlus

    ... Brain and Spinal Cord Tumors in Adults Key Statistics for Brain and Spinal Cord Tumors The American ... Cord Tumors . Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Written by References ...

  6. Simultaneously diagnosed pulmonary thromboembolism and hemopericardium in a man with thoracic spinal cord injury.

    PubMed

    Han, Jae-Young; Seon, Hyo-Jeong; Choi, In-Sung; Ahn, Youngkeun; Jeong, Myung-Ho; Lee, Sam-Gyu

    2012-05-01

    Simultaneous pulmonary thromboembolism (PTE) and hemopericardium is a rare but life-threatening condition. As hemopericardium is a contraindication to anticoagulation treatment, it is challenging to handle both conditions together. The objective of the study was to report a rare case of a man with thoracic spinal cord injury presenting with simultaneous PTE and hemopericardium. Case report. A 43-year-old man with incomplete T9 paraplegia (American Spinal Injury Association Impairment Scale D) complained of fever one and a half months after spinal cord injury sustained in a fall. During evaluation of fever origin, chest computed tomography and transthoracic echocardiogram revealed simultaneous PTE and hemopericardium. After serial echocardiograms over 2 days demonstrated stability, intravenous heparin, and oral warfarin were administered and his medical status was observed closely. Ultimately, both conditions improved without significant complications. We report successful treatment of man with acute spinal cord injury who presented with simultaneously diagnosed PTE and hemopericardium, a rare complication involving two distinct and opposing pathological mechanisms and conflicting treatments.

  7. Ex Vivo Diffusion Tensor Imaging of Spinal Cord Injury in Rats of Varying Degrees of Severity

    PubMed Central

    Jirjis, Michael B.; Kurpad, Shekar N.

    2013-01-01

    Abstract The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague–Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm2. Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r2=0.80). The diffusivity of water significantly decreased throughout “uninjured” portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury. PMID:23782233

  8. Low-Grade Inflammation and Spinal Cord Injury: Exercise as Therapy?

    PubMed Central

    da Silva Alves, Eduardo; de Aquino Lemos, Valdir; Ruiz da Silva, Francieli; Lira, Fabio Santos; dos Santos, Ronaldo Vagner Thomathieli; Rosa, João Paulo Pereira; Caperuto, Erico; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    An increase in the prevalence of obesity in people with spinal cord injury can contribute to low-grade chronic inflammation and increase the risk of infection in this population. A decrease in sympathetic activity contributes to immunosuppression due to the lower activation of immune cells in the blood. The effects of physical exercise on inflammatory parameters in individuals with spinal cord injury have not been well described. We conducted a review of the literature published from 1974 to 2012. This review explored the relationships between low-grade inflammation, spinal cord injury, and exercise to discuss a novel mechanism that might explain the beneficial effects of exercise involving an increase in catecholamines and cytokines in people with spinal cord injury. PMID:23533315

  9. Sudden-onset paraplegia during pregnancy caused by haemorrhage in a spinal cord haemangioblastoma: A case report.

    PubMed

    Gormeli, Cemile Ayse; Sarac, Kaya; Ozdemir, Zeynep Maras; Gormeli, Gokay; Kahraman, Aysegul Sagir; Kahraman, Bayram; Oztanir, Mustafa Namik; Karadag, Nese

    2016-09-01

    Spinal cord haemangioblastomas are rare central nervous systems tumours, and haemorrhage.It is an uncommon occurance. We report a 28-year-old pregnant patient who presented with paraplegia due to acute haemorrhage of a spinal haemangioblastoma. Magnetic resonance imaging showed extensive syrinx cavities, an intramedullary lesion at the T4-T5 spinal cord level e, and a subarachnoid haemorrhage. Digital subtraction angiography showed the feeding artery and dilated tortuous draining vein within the dural sac. The lesion was deemed a haemangioblastoma. The histopathological examination confirmed the diagnosis. Postoperatively, the paraplegia improved and the patient was able to walk within 2 weeks. Imaging is important for early diagnosis to prevent patients persistent neurological deficits.

  10. Fertility and sexuality in the spinal cord injury patient.

    PubMed

    Stoffel, J T; Van der Aa, F; Wittmann, D; Yande, S; Elliott, S

    2018-06-14

    After a spinal cord injury, patients have different perceptions of sexuality, sexual function, and potential for fertility. These changes can greatly impact quality of life over a lifetime. The purpose of this workgroup was to identify common evidence based or expert opinion themes and recommendations regarding treatment of sexuality, sexual function and fertility in the spinal cord injury population. As part of the SIU-ICUD joint consultation of Urologic Management of the Spinal Cord Injury (SCI), a workgroup and comprehensive literature search of English language manuscripts regarding fertility and sexuality in the spinal cord injury patient were formed. Articles were compiled, and recommendations in the chapter are based on group discussion and follow the Oxford Centre for Evidence-based Medicine system for levels of evidence (LOEs) and grades of recommendation (GORs). Genital arousal, ejaculation, and orgasm are significantly impacted after spinal cord injury in both male and female SCI patients. This may have a more significant impact on potential for fertility in male spinal cord injury patients, particularly regarding ability of generate erection, semen quantity and quality. Female patients should be consulted that pregnancy is still possible after injury and a woman should expect resumption of normal reproductive function. As a result, sexual health teaching should be continued in women despite injury. Pregnancy in a SCI may cause complications such as autonomic dysreflexia, so this group should be carefully followed during pregnancy. By understanding physiologic changes after injury, patients and care teams can work together to achieve goals and maximize sexual quality of life after the injury.

  11. Characterization of the Antibody Response after Cervical Spinal Cord Injury

    PubMed Central

    Ulndreaj, Antigona; Tzekou, Apostolia; Mothe, Andrea J.; Siddiqui, Ahad M.; Dragas, Rachel; Tator, Charles H.; Torlakovic, Emina E.

    2017-01-01

    Abstract The immune system plays a critical and complex role in the pathobiology of spinal cord injury (SCI), exerting both beneficial and detrimental effects. Increasing evidence suggests that there are injury level–dependent differences in the immune response to SCI. Patients with traumatic SCI have elevated levels of circulating autoantibodies against components of the central nervous system, but the role of these antibodies in SCI outcomes remains unknown. In rodent models of mid-thoracic SCI, antibody-mediated autoimmunity appears to be detrimental to recovery. However, whether autoantibodies against the spinal cord are generated following cervical SCI (cSCI), the most common level of injury in humans, remains undetermined. To address this knowledge gap, we investigated the antibody responses following cSCI in a rat model of injury. We found increased immunoglobulin G (IgG) and IgM antibodies in the spinal cord in the subacute phase of injury (2 weeks), but not in more chronic phases (10 and 20 weeks). At 2 weeks post-cSCI, antibodies were detected at the injury epicenter and co-localized with the astroglial scar and neurons of the ventral horn. These increased levels of antibodies corresponded with enhanced activation of immune responses in the spleen. Higher counts of antibody-secreting cells were observed in the spleen of injured rats. Further, increased levels of secreted IgG antibodies and enhanced proliferation of T-cells in splenocyte cultures from injured rats were found. These findings suggest the potential development of autoantibody responses following cSCI in the rat. The impact of the post-traumatic antibody responses on functional outcomes of cSCI is a critical topic that requires further investigation. PMID:27775474

  12. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury.

    PubMed

    Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A

    2017-09-01

    Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.

  13. Psychosocial outcome following spinal cord injury.

    PubMed

    Hammell, K R

    1994-11-01

    Studies have indicated that loss of social contact remains the primary complaint of people with head injuries many years after discharge. In an attempt to disentangle specific and nonspecific effects of head injury a study was undertaken to compare a group of 15 men with severe closed head injuries and their wives, with a group of 15 men with complete, traumatic spinal cord injuries and their partners (n = 60). Time since discharge extended from 4 months to several years. This paper focuses primarily upon the results and implication of the responses from the group of men with spinal cord injuries and their partners. The Interview Schedule for Social Interaction was correlated with the Leeds Scale for the Self Assessment of Anxiety and Depression. All groups reported low availability and adequacy of social integration and exhibited high levels of depression. The group of men with spinal cord injuries had the lowest scores for the availability of social integration, indicating that the social isolation which has previously been identified amongst people with head injuries may not be attributable solely to brain damage.

  14. A spinal thecal sac constriction model supports the theory that induced pressure gradients in the cord cause edema and cyst formation.

    PubMed

    Josephson, A; Greitz, D; Klason, T; Olson, L; Spenger, C

    2001-03-01

    Spinal cord cysts are a devastating condition that occur secondary to obstructions of the spinal canal, which may be caused by congenital malformations, trauma, spinal canal stenosis, tumors, meningitis, or arachnoiditis. A hypothesis that could explain how spinal cord cysts form in these situations has been presented recently. Therefore, a novel spinal thecal sac constriction model was implemented to test various aspects of this hypothesis. Thecal sac constriction was achieved by subjecting rats to an extradural silk ligature at the T8 spinal cord level. Rats with complete spinal cord transection served as a second model for comparison. The animals underwent high-resolution magnetic resonance imaging and histological analysis. Thecal sac constriction caused edema cranial and caudal to the ligation within 3 weeks, and cysts developed after 8 to 13 weeks. In contrast, cysts in rats with spinal cord transection were located predominantly in the cranial spinal cord. Histological sections of spinal cords confirmed the magnetic resonance imaging results. Magnetic resonance imaging provided the specific advantage of enabling characterization of events as they occurred repeatedly over time in the spinal cords of individual living animals. The spinal thecal sac constriction model proved useful for investigation of features of the cerebrospinal fluid pulse pressure theory. Edema and cyst distributions were in accordance with this theory. We conclude that induced intramedullary pressure gradients originating from the cerebrospinal fluid pulse pressure may underlie cyst formation in the vicinity of spinal canal obstructions and that cysts are preceded by edema.

  15. The mechanism of Naringin-enhanced remyelination after spinal cord injury

    PubMed Central

    Rong, Wei; Pan, Yong-wei; Cai, Xu; Song, Fei; Zhao, Zhe; Xiao, Song-hua; Zhang, Cheng

    2017-01-01

    Our previous study revealed that intragastric administration of naringin improved remyelination in rats with spinal cord injury and promoted the recovery of neurological function of the injured spinal cord. This study sought to reveal the mechanisms by which naringin improves oligodendrocyte precursor cell differentiation and maturation, and promotes remyelination. Spinal cord injury was induced in rats by the weight-drop method. Naringin was intragastrically administered daily (20, 40 mg/kg) for 4 weeks after spinal cord injury induction. Behavioral assessment, histopathological staining, immunofluorescence spectroscopy, ultrastructural analysis and biochemical assays were employed. Naringin treatment remarkably mitigated demyelination in the white matter, increased the quality of myelinated nerve fibers and myelin sheath thickness, promoted oligodendrocyte precursor cell differentiation by upregulating the expression of NKx2.2 and 2′3′-cyclic nucleotide 3′-phosphodiesterase, and inhibited β-catenin expression and glycogen synthase kinase-3β (GSK-3β) phosphorylation. These findings indicate that naringin treatment regulates oligodendrocyte precursor cell differentiation and promotes remyelination after spinal cord injury through the β-catenin/GSK-3β signaling pathway. PMID:28469664

  16. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    PubMed

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  17. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    PubMed

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright

  18. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.

    PubMed

    Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki

    2017-01-01

    Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.

  19. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs

    PubMed Central

    Lim, Ji-Hey; Byeon, Ye-Eun; Ryu, Hak-Hyun; Jeong, Yun-Hyeok; Lee, Young-Won; Kim, Wan Hee

    2007-01-01

    This study was to determine the effects of allogenic umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) and recombinant methionyl human granulocyte colony-stimulating factor (rmhGCSF) on a canine spinal cord injury model after balloon compression at the first lumbar vertebra. Twenty-five adult mongrel dogs were assigned to five groups according to treatment after a spinal cord injury: no treatment (CN); saline treatment (CP); rmhGCSF treatment (G); UCB-MSCs treatment (UCB-MSC); co-treatment (UCBG). The UCB-MSCs isolated from cord blood of canine fetuses were prepared as 106 cells/150 µl saline. The UCB-MSCs were directly injected into the injured site of the spinal cord and rmhGCSF was administered subcutaneously 1 week after the induction of spinal cord injury. The Olby score, magnetic resonance imaging, somatosensory evoked potentials and histopathological examinations were used to evaluate the functional recovery after transplantation. The Olby scores of all groups were zero at the 0-week evaluation. At 2 week after the transplantation, the Olby scores in the groups with the UCB-MSC and UCBG were significantly higher than in the CN and CP groups. However, there were no significant differences between the UCB-MSC and UCBG groups, and between the CN and CP groups. These comparisons remained stable at 4 and 8 week after transplantation. There was significant improvement in the nerve conduction velocity based on the somatosensory evoked potentials. In addition, a distinct structural consistency of the nerve cell bodies was noted in the lesion of the spinal cord of the UCB-MSC and UCBG groups. These results suggest that transplantation of the UCB-MSCs resulted in recovery of nerve function in dogs with a spinal cord injury and may be considered as a therapeutic modality for spinal cord injury. PMID:17679775

  20. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    PubMed

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  1. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats

    PubMed Central

    Kim, Jae Young; Mun, Chin Hee; Suh, Minah

    2017-01-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype. PMID:29093636

  2. Spectrum of Spinal Cord, Spinal Root, and Brain MRI Abnormalities in Congenital Zika Syndrome with and without Arthrogryposis.

    PubMed

    Aragao, M F V V; Brainer-Lima, A M; Holanda, A C; van der Linden, V; Vasco Aragão, L; Silva Júnior, M L M; Sarteschi, C; Petribu, N C L; Valença, M M

    2017-05-01

    Arthrogryposis is among the malformations of congenital Zika syndrome. Similar to the brain, there might exist a spectrum of spinal cord abnormalities. The purpose of this study was to explore and describe in detail the MR imaging features found in the spinal cords, nerve roots, and brains of children with congenital Zika syndrome with and without arthrogryposis. Twelve infants with congenital Zika syndrome (4 with arthrogryposis and 8 without) who had undergone brain and spinal cord MR imaging were retrospectively selected. Qualitative and quantitative analyses were performed and compared between groups. At visual inspection, both groups showed reduced thoracic spinal cord thickness: 75% (6/8) of the group without arthrogryposis and 100% (4/4) of the arthrogryposis group. However, the latter had the entire spinal cord reduced and more severely reduced conus medullaris anterior roots (respectively, P = .002 and .007). Quantitative differences were found for conus medullaris base and cervical and lumbar intumescences diameters (respectively, P = .008, .048, .008), with more prominent reduction in arthrogryposis. Periventricular calcifications were more frequent in infants with arthrogryposis ( P = .018). Most infants had some degree of spinal cord thickness reduction, predominant in the thoracic segment (without arthrogryposis) or in the entire spinal cord (with arthrogryposis). The conus medullaris anterior roots were reduced in both groups (thinner in arthrogryposis). A prominent anterior median fissure of the spinal cord was absent in infants without arthrogryposis. Brain stem hypoplasia was present in all infants with arthrogryposis, periventricular calcifications, in the majority, and polymicrogyria was absent. © 2017 by American Journal of Neuroradiology.

  3. Bipedal locomotion of bonnet macaques after spinal cord injury.

    PubMed

    Babu, Rangasamy Suresh; Anand, P; Jeraud, Mathew; Periasamy, P; Namasivayam, A

    2007-10-01

    Experimental studies concerning the analysis of locomotor behavior in spinal cord injury research are widely performed in rodent models. The purpose of this study was to quantitatively evaluate the degree of functional recovery in reflex components and bipedal locomotor behavior of bonnet macaques (Macaca radiata) after spinal contusive injury. Six monkeys were tested for various reflex components (grasping, righting, hopping, extension withdrawal) and were trained preoperatively to walk in bipedal fashion on the simple and complex locomotor runways (narrow beam, grid, inclined plane, treadmill) of this investigation. The overall performance of the animals'motor behavior and the functional status of limb movements during bipedal locomotion were graded by the Combined Behavioral Score (CBS) system. Using the simple Allen weight-drop technique, a contusive injury was produced by dropping a 13-g weight from a height of 30 cm to the exposed spinal cord at the T12-L1 vertebral level of the trained monkeys. All the monkeys showed significant impairments in every reflex activity and in walking behavior during the early part of the postoperative period. In subsequent periods, the animals displayed mild alterations in certain reflex responses, such as grasping, extension withdrawal, and placing reflexes, which persisted through a 1-year follow-up. The contused animals traversed locomotor runways--narrow beam, incline plane, and grid runways--with more steps and few errors, as evaluated with the CBS system. Eventually, the behavioral performance of all spinal-contused monkeys recovered to near-preoperative level by the fifth postoperative month. The findings of this study reveal the recovery time course of various reflex components and bipedal locomotor behavior of spinal-contused macaques on runways for a postoperative period of up to 1 year. Our spinal cord research in primates is advantageous in understanding the characteristics of hind limb functions only, which possibly

  4. Standardization of a spinal cord lesion model and neurologic evaluation using mice

    PubMed Central

    Borges, Paulo Alvim; Cristante, Alexandre Fogaça; de Barros-Filho, Tarcísio Eloy Pessoa; Natalino, Renato Jose Mendonça; dos Santos, Gustavo Bispo; Marcon, Raphael Marcus

    2018-01-01

    OBJECTIVE: To standardize a spinal cord lesion mouse model. METHODS: Thirty BALB/c mice were divided into five groups: four experimental groups and one control group (sham). The experimental groups were subjected to spinal cord lesion by a weight drop from different heights after laminectomy whereas the sham group only underwent laminectomy. Mice were observed for six weeks, and functional behavior scales were applied. The mice were then euthanized, and histological investigations were performed to confirm and score spinal cord lesion. The findings were evaluated to prove whether the method of administering spinal cord lesion was effective and different among the groups. Additionally, we correlated the results of the functional scales with the results from the histology evaluations to identify which scale is more reliable. RESULTS: One mouse presented autophagia, and six mice died during the experiment. Because four of the mice that died were in Group 5, Group 5 was excluded from the study. All the functional scales assessed proved to be significantly different from each other, and mice presented functional evolution during the experiment. Spinal cord lesion was confirmed by histology, and the results showed a high correlation between the Basso, Beattie, Bresnahan Locomotor Rating Scale and the Basso Mouse Scale. The mouse function scale showed a moderate to high correlation with the histological findings, and the horizontal ladder test had a high correlation with neurologic degeneration but no correlation with the other histological parameters evaluated. CONCLUSION: This spinal cord lesion mouse model proved to be effective and reliable with exception of lesions caused by a 10-g drop from 50 mm, which resulted in unacceptable mortality. The Basso, Beattie, Bresnahan Locomotor Rating Scale and Basso Mouse Scale are the most reliable functional assessments, and but the horizontal ladder test is not recommended. PMID:29561931

  5. Pathology of radiation injury to the canine spinal cord.

    PubMed

    Powers, B E; Beck, E R; Gillette, E L; Gould, D H; LeCouter, R A

    1992-01-01

    The histopathologic response of the canine spinal cord to fractionated doses of radiation was investigated. Forty-two dogs received 0, 44, 52, 60, or 68 Gy in 4 Gy fractions to the thoracic spinal cord. Dogs were evaluated for neurologic signs and were observed for 1 or 2 years after irradiation. Six major lesion types were observed; five in the irradiated spinal cord and one in irradiated dorsal root ganglia. The three most severe spinal cord lesions were white matter necrosis, massive hemorrhage, and segmental parenchymal atrophy which had an ED50 of 56.9 Gy (51.3-63.3 Gy 95% CI) in 4 Gy fractions. These lesions were consistently associated with abnormal neurologic signs. Radiation damage to the vasculature was the most likely cause of these three lesions. The two less severe spinal cord lesions were focal fiber loss, which had an ED50 of 49.5 Gy (44.8-53.6 Gy 95% CI) in 4 gy fractions and scattered white matter vacuolation that occurred at all doses. These less severe lesions were not consistently associated with neurologic signs and indicated the presence of residual damage that may occur after lower doses of radiation. Radiation damage to glial cells, axons, and/or vasculature were possible causes of these lesions. In the irradiated dorsal root ganglia, affected sensory neurons contained large intracytoplasmic vacuoles, and there was loss of neurons and satellite cells. Such alterations could affect sensory function. The dog is a good model for spinal cord irradiation studies as tolerance doses for lesions causing clinical signs are close to the estimated tolerance doses for humans, and studies involving volume and long-term observation can be done.

  6. Inflammatory cascades mediate synapse elimination in spinal cord compression

    PubMed Central

    2014-01-01

    Background Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated. The purpose of this study was to investigate the pathophysiology of CCM by evaluating the global gene expression of the compressed spinal cord and comparing the transcriptome analysis with the physical and histological findings in twy mice. Methods Twenty-week-old twy mice were divided into two groups according to the magnetic resonance imaging (MRI) findings: a severe compression (S) group and a mild compression (M) group. The transcriptome was analyzed by microarray and RT-PCR. The cellular pathophysiology was examined by immunohistological analysis and immuno-electron microscopy. Motor function was assessed by Rotarod treadmill latency and stride-length tests. Results Severe cervical calcification caused spinal canal stenosis and low functional capacity in twy mice. The microarray analysis revealed 215 genes that showed significantly different expression levels between the S and the M groups. Pathway analysis revealed that genes expressed at higher levels in the S group were enriched for terms related to the regulation of inflammation in the compressed spinal cord. M1 macrophage-dominant inflammation was present in the S group, and cysteine-rich protein 61 (Cyr61), an inducer of M1 macrophages, was markedly upregulated in these spinal cords. Furthermore, C1q, which initiates the classical complement cascade, was more upregulated in the S group than in the M group. The confocal and electron microscopy observations indicated

  7. Exercise recommendations for individuals with spinal cord injury.

    PubMed

    Jacobs, Patrick L; Nash, Mark S

    2004-01-01

    Persons with spinal cord injury (SCI) exhibit deficits in volitional motor control and sensation that limit not only the performance of daily tasks but also the overall activity level of these persons. This population has been characterised as extremely sedentary with an increased incidence of secondary complications including diabetes mellitus, hypertension and atherogenic lipid profiles. As the daily lifestyle of the average person with SCI is without adequate stress for conditioning purposes, structured exercise activities must be added to the regular schedule if the individual is to reduce the likelihood of secondary complications and/or to enhance their physical capacity. The acute exercise responses and the capacity for exercise conditioning are directly related to the level and completeness of the spinal lesion. Appropriate exercise testing and training of persons with SCI should be based on the individual's exercise capacity as determined by accurate assessment of the spinal lesion. The standard means of classification of SCI is by application of the International Standards for Classification of Spinal Cord Injury, written by the Neurological Standards Committee of the American Spinal Injury Association. Individuals with complete spinal injuries at or above the fourth thoracic level generally exhibit dramatically diminished cardiac acceleration with maximal heart rates less than 130 beats/min. The work capacity of these persons will be limited by reductions in cardiac output and circulation to the exercising musculature. Persons with complete spinal lesions below the T(10) level will generally display injuries to the lower motor neurons within the lower extremities and, therefore, will not retain the capacity for neuromuscular activation by means of electrical stimulation. Persons with paraplegia also exhibit reduced exercise capacity and increased heart rate responses (compared with the non-disabled), which have been associated with circulatory limitations

  8. Targeting Lumbar Spinal Neural Circuitry by Epidural Stimulation to Restore Motor Function After Spinal Cord Injury.

    PubMed

    Minassian, Karen; McKay, W Barry; Binder, Heinrich; Hofstoetter, Ursula S

    2016-04-01

    Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.

  9. Brachial plexus injury mimicking a spinal-cord injury

    PubMed Central

    Macyszyn, Luke J.; Gonzalez-Giraldo, Ernesto; Aversano, Michael; Heuer, Gregory G.; Zager, Eric L.; Schuster, James M.

    2010-01-01

    Objective: High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis. Clinical presentation: A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department. Intervention: Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion. Conclusion: Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury. PMID:22956928

  10. Spine and Spinal Cord Injuries After Falls From Tree Stands During the Wisconsin Deer Hunting Season.

    PubMed

    Hamilton, Kimberly; Rocque, Brandon; Brooks, Nathaniel

    2017-11-01

    Deer hunting is popular in much of the United States. In Wisconsin, use of tree stands for hunting is common. Spine surgeons at a Level 1 Trauma Center observed a high incidence of spine and spinal cord injury due to falls from tree stands while hunting. This study's purpose is to systematically characterize and classify those injuries. We reviewed the University of Wisconsin Hospital and Clinics' trauma database for tree stand-related injuries from 1999 to 2013. We collected and analyzed data pertaining to hunters' demographics, comorbidities, type and mechanism of injury, injury severity, and management. We identified 117 patients evaluated after a tree stand fall. Sixty-five (ages 16-76) suffered spine fractures that occurred at all levels, from occipital condyle to sacrum, with thoracolumbar compression and burst fractures being most common. Fractures occurred in the following locations: cranio-cervical junction (8.7%), cervical spine (7.6%), cervical-thoracic junction (6.5%), thoracic spine (32.6%), thoracolumbar junction (33.7%), and lumbar spine (10.9%). Twenty-one patients (32%) experienced a single spinal fracture; 44 patients (68%) suffered multiple spinal fractures. Twenty-five patients (38%) required surgical fixation; 19 patients experienced loss of neurologic function: 5 complete spinal cord injuries (SCI), 5 incomplete SCI, 2 central cord syndromes, and 8 radiculopathies. Two mortalities, both of cardiopulmonary etiology, were noted-one in a patient without a spine fracture and the other in a patient with a complete spinal cord injury at T4. The majority of spine fractures are treated nonoperatively. However, enough patients require surgical intervention that consultation with a neurosurgical or orthopedic spine surgeon is prudent. It is more common to have multiple spine fractures from a tree stand fall, therefore, it is recommended that if 1 fracture is identified the entire spine be evaluated for additional fractures. For safety, it is recommended

  11. Acute intraparenchymal spinal cord injury in a cat due to high-rise syndrome.

    PubMed

    Cruz-Arámbulo, Robert; Nykamp, Stephanie

    2012-03-01

    A 9-year-old spayed female Bengal Red cat was evaluated for high-rise syndrome. The cat had paraplegia of the hind limbs, intact reflexes and pain perception, and hyperesthesia in the caudal thoracic area. Mentation, cranial nerve function, forelimb proprioceptive responses, and spinal reflexes were normal. There were no abnormalities on radiographs or computed tomography scan, but magnetic resonance imaging revealed a hyperintense intraparenchymal spinal cord lesion on T2-weighted and T2 fat saturation images.

  12. The change tendency of PI3K/Akt pathway after spinal cord injury

    PubMed Central

    Zhang, Peixun; Zhang, Luping; Zhu, Lei; Chen, Fangmin; Zhou, Shuai; Tian, Ting; Zhang, Yuqiang; Jiang, Xiaorui; Li, Xuekun; Zhang, Chuansen; Xu, Lin; Huang, Fei

    2015-01-01

    Spinal cord injury (SCI) refers to the damage of spinal cord’s structure and function due to a variety of causes. At present, many scholars have confirmed that apoptosis is the main method of secondary injury in spinal cord injury. In view of understanding the function of PI3K/Akt pathway on spinal cord injury, this study observed the temporal variation of key molecules (PI3K, Akt, p-Akt) in the PI3K/Akt pathway after spinal cord injury by immunohistochemistry and Western-blot. The results showed that the expression of PI3K, Akt and p-Akt display a sharp increase one day after the spinal cord injury, and then it decreased gradually with the time passing by, but the absolute expression was certainly higher than the normal group. These results indicate that the PI3K/Akt signaling pathway is involved in the spinal cord injury and the mechanism may be related to apoptosis. PMID:26807170

  13. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord.

    PubMed

    Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M

    1994-09-01

    1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors. 6. Effects of individual peptidase inhibitors on the enzymatic degradation of SP and NKA by synaptic membrane fractions were examined. Thiorphan, actinonin and captopril inhibited SP degradation, while thiorphan and actinonin, but not captopril, inhibited NKA degradation. The potency of the inhibition of each peptidase inhibitor was lower than

  14. [Spanish validation of the International Spinal Cord Injury Pulmonary Function Basic Data Set questionnaire for the study of the repercussion of spinal cord injury in the respiratory system].

    PubMed

    Gómez Garrido, Alba; León Espitia, Ana María; Montesinos Magraner, Lluïsa; Ramirez Galceran, Lucrecia; Soler Canudes, Emilia; González Viejo, Miguel Angel

    2015-12-07

    The dysfunction of the respiratory system and the breathing complications in persons with injured spinal cord has an effect on the morbidity and the mortality of the disease. The objectives were: 1) to translate to Spanish and validate the questionnaire of international consensus: International Spinal Cord Injury Pulmonary Function Basic Data Set, and 2) to determine the influence of chronic spinal cord injury in the respiratory system in terms of respiratory functionalism. Translation to Spanish and validation of the questionnaire of international consensus intended for the study of the pulmonary function in spinal cord injury disease. We tested the reliability of that questionnaire. We conducted a descriptive transversal study to determine the degree of involvement of the respiratory system in spinal cord injury. A percentage of 91.9 did not have any respiratory pathology before spinal cord injury and 54.8% of patients smoked. A percentage of 27.4 of patients presented breathing complications one year after the injury. Results of the respiratory function tests were: FVC 67%, FEV1 72% and PEF 70%. Concordance and reliability were 98%. The Spanish version of the questionnaire of international consensus about the pulmonary function is a useful tool for the study of the respiratory involvement in spinal cord injury. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  15. Multifocal Spinal Cord Nephroblastoma in a Dog.

    PubMed

    Henker, L C; Bianchi, R M; Vargas, T P; de Oliveira, E C; Driemeier, D; Pavarini, S P

    2018-01-01

    A 1-year-old male American pit bull terrier was presented with a history of proprioceptive deficits and mild lameness of the right hindlimb, which progressed after 5 months to paraparesis, culminating in tetraparesis after 2 weeks. Necropsy findings were limited to the spinal cord and consisted of multiple, intradural, extramedullary, slightly red masses which produced segmental areas of medullary swelling located in the cervical intumescence, thoracolumbar column, sacral segment and cauda equina. Histological evaluation revealed a tumour, composed of epithelial, stromal and blastemal cells, with structures resembling tubules, acini and embryonic glomeruli. Immunohistochemical labelling for vimentin, cytokeratin and S100 was positive for the stromal, epithelial and blastemal cells, respectively. A final diagnosis of multifocal spinal cord nephroblastoma was established. This is the first report of such a tumour showing concomitant involvement of the cervicothoracic, thoracolumbar, sacral and cauda equina areas of the spinal cord. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Integral multidisciplinary approach in a patient with chronic complete spinal cord injury and hip disarticulation.

    PubMed

    Quinzaños-Fresnedo, J; Rodríguez-Reyes, G; Mendoza-Cosío, C; Pérez-Zavala, R; Márquez-Guitérrez, E A; Hernández-Sandoval, S

    2015-01-01

    Case report. To highlight the importance of the integral multidisciplinary management of a patient with complete chronic spinal cord injury and hip disarticulation secondary to pressure ulcers (PU). Mexico City. The case of a 40-year-old male violinist with a spinal cord injury, American Spinal Injury Association Impairment Scale A and neurological level T4, is reported. The patient initiated with bilateral ischiatic, left trochanteric and sacral PU. The ulcers were complicated with infection with sluggish evolution. Thus, it was decided a multidisciplinary management by means of left hip disarticulation and elaboration of a cosmetic prosthesis and the manufacture of a viscous elastic foam cushion for the prevention of new PU. The patient was quickly included in his professional and social activities. This study proves that multidisciplinary management of patients with spinal cord injury with complications such as the presence of PU that are resistant to noninvasive treatment can be the solution for the patient's reintegration into their normal life with adequate quality of life.

  17. Significance of fixation of the vertebral column for spinal cord injury experiments.

    PubMed

    Liu, Fei; Luo, Zhuo-Jin; You, Si-Wei; Jiao, Xi-Ying; Meng, Xiao-Mei; Shi, Ming; Wang, Chun-Ting; Ju, Gong

    2003-08-01

    Thoracic spinal cord transections were performed in adult rats. The animals were divided into two groups, with or without internal fixation of the involved vertebral column. Histologic and immunohistochemical studies were performed to compare the effect of internal fixation of the vertebral column. To find out the aspects and extent of beneficial effects of vertebral column fixation for spinal cord repair. Vertebral column fixation is a routine procedure in clinical spinal cord surgery. Paradoxically, most, if not all, animal spinal cord experiments seem to have ignored the importance of vertebral column fixation. During trunk movements, the vertebral column flexes to different directions, accompanied by bending of the spinal cord. Following spinal cord lesions, with frequent bending of the cord there will be repeated bleeding, inflammation, and other pathologic processes at the lesion site. Thus, the healing process will be hampered. The severity of the damages that will be brought about by bending of the cord is, to a certain degree, unpredictable. There will be rather big individual variations in injury and repair among the same type of experiments, rendering quantification and conclusion difficult. Adult Sprague-Dawley rats were used. The thoracic spinal cord was transected. Strong stainless steel wires were used for internal fixation of the vertebral column. The histology of the horizontal sections of the spinal cord segment, which included the lesion site, was examined at the 14th postoperative day. The volumes of the secondary degeneration and meningeal scar, the gap between the borders of the proximal and distal stumps of the transected spinal cord, the thickness of the meningeal scar, the astrocytic reaction, and the abundance of regenerating nerve fibers at the lesion site were compared between the vertebral column fixed and nonfixed groups. Whenever possible, the results were evaluated quantitatively. In all these aspects, the internally fixed group was

  18. Secondary damage in the spinal cord after motor cortex injury in rats.

    PubMed

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  19. Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S. E.; Rodriguez, A. O.

    2014-11-01

    Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.

  20. International spinal cord injury cardiovascular function basic data set.

    PubMed

    Krassioukov, A; Alexander, M S; Karlsson, A-K; Donovan, W; Mathias, C J; Biering-Sørensen, F

    2010-08-01

    To create an International Spinal Cord Injury (SCI) Cardiovascular Function Basic Data Set within the framework of the International SCI Data Sets. An international working group. The draft of the data set was developed by a working group comprising members appointed by the American Spinal Injury Association (ASIA), the International Spinal Cord Society (ISCoS) and a representative of the executive committee of the International SCI Standards and Data Sets. The final version of the data set was developed after review by members of the executive committee of the International SCI Standards and Data Sets, the ISCoS scientific committee, ASIA board, relevant and interested international organizations and societies, individual persons with specific interest and the ISCoS Council. To make the data set uniform, each variable and each response category within each variable have been specifically defined in a way that is designed to promote the collection and reporting of comparable minimal data. The variables included in the International SCI Cardiovascular Function Basic Data Set include the following items: date of data collection, cardiovascular history before the spinal cord lesion, events related to cardiovascular function after the spinal cord lesion, cardiovascular function after the spinal cord lesion, medications affecting cardiovascular function on the day of examination; and objective measures of cardiovascular functions, including time of examination, position of examination, pulse and blood pressure. The complete instructions for data collection and the data sheet itself are freely available on the websites of both ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  1. In vivo, noncontact, real-time, optical and spectroscopic assessment of the immediate local physiological response to spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Fillioe, Seth; Bishop, Kyle Kelly; Jannini, Alexander Vincent Struck; Kim, Jon; McDonough, Ricky; Ortiz, Steve; Goodisman, Jerry; Hasenwinkel, Julie; Chaiken, J.

    2018-02-01

    We report a small study to test a methodology for real-time probing of chemical and physical changes in spinal cords in the immediate aftermath of a localized contusive injury. Raman spectroscopy, optical profilimetry and scanning NIR autofluorescence images were obtained simultaneously in vivo, within a 3 x 7 mm field, on spinal cords that had been surgically exposed between T9 and T10. The collected data was used alone and/or combined in a unique algorithm. A total of six rats were studied in two N=3 groups i.e. Injured and Control. A single 830 nm laser (100 μm round spot) was either 1) spatially scanned across the cord or 2) held at a specified location relative to the injury for a longer period of time to improve signal to noise in the Raman spectra. Line scans reveal photobleaching effects and surface profiles possibly allowing identification of the anterior median longitudinal artery. Analysis of the Raman spectra suggest that the tissues were equally hypoxic for both the control and injured animals i.e. a possible artifact of anesthesia and surgery. On the other hand, only injured cords display Raman features possibly indicating that extensive, localized protein phosphorylation occurs in minutes following spinal cord trauma.

  2. A PET/CT approach to spinal cord metabolism in amyotrophic lateral sclerosis.

    PubMed

    Marini, Cecilia; Cistaro, Angelina; Campi, Cristina; Calvo, Andrea; Caponnetto, Claudia; Nobili, Flavio Mariano; Fania, Piercarlo; Beltrametti, Mauro C; Moglia, Cristina; Novi, Giovanni; Buschiazzo, Ambra; Perasso, Annalisa; Canosa, Antonio; Scialò, Carlo; Pomposelli, Elena; Massone, Anna Maria; Bagnara, Maria Caludia; Cammarosano, Stefania; Bruzzi, Paolo; Morbelli, Silvia; Sambuceti, Gianmario; Mancardi, Gianluigi; Piana, Michele; Chiò, Adriano

    2016-10-01

    In amyotrophic lateral sclerosis, functional alterations within the brain have been intensively assessed, while progression of lower motor neuron damage has scarcely been defined. The aim of the present study was to develop a computational method to systematically evaluate spinal cord metabolism as a tool to monitor disease mechanisms. A new computational three-dimensional method to extract the spinal cord from (18)F-FDG PET/CT images was evaluated in 30 patients with spinal onset amyotrophic lateral sclerosis and 30 controls. The algorithm identified the skeleton on the CT images by using an extension of the Hough transform and then extracted the spinal canal and the spinal cord. In these regions, (18)F-FDG standardized uptake values were measured to estimate the metabolic activity of the spinal canal and cord. Measurements were performed in the cervical and dorsal spine and normalized to the corresponding value in the liver. Uptake of (18)F-FDG in the spinal cord was significantly higher in patients than in controls (p < 0.05). By contrast, no significant differences were observed in spinal cord and spinal canal volumes between the two groups. (18)F-FDG uptake was completely independent of age, gender, degree of functional impairment, disease duration and riluzole treatment. Kaplan-Meier analysis showed a higher mortality rate in patients with standardized uptake values above the fifth decile at the 3-year follow-up evaluation (log-rank test, p < 0.01). The independence of this value was confirmed by multivariate Cox analysis. Our computational three-dimensional method enabled the evaluation of spinal cord metabolism and volume and might represent a potential new window onto the pathophysiology of amyotrophic lateral sclerosis.

  3. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  4. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for bladder evacuation. 882.5850 Section 882.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal...

  5. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for bladder evacuation. 882.5850 Section 882.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal...

  6. Spasticity therapy reacts to astrocyte GluA1 receptor upregulation following spinal cord injury

    PubMed Central

    Gómez-Soriano, Julio; Goiriena, Eider; Taylor, Julian

    2010-01-01

    For almost three decades intrathecal baclofen therapy has been the standard treatment for spinal cord injury spasticity when oral medication is ineffective or produces serious side effects. Although intrathecal baclofen therapy has a good clinical benefit-risk ratio for spinal spasticity, tolerance and the life-threatening withdrawal syndrome present serious problems for its management. Now, in an experimental model of spinal cord injury spasticity, AMPA receptor blockade with NGX424 (Tezampanel) has been shown to reduce stretch reflex activity alone and during tolerance to intrathecal baclofen therapy. These results stem from the observation that GluA1 receptors are overexpressed on reactive astrocytes following experimental ischaemic spinal cord injury. Although further validation is required, the appropriate choice of AMPA receptor antagonists for treatment of stretch hyperreflexia based on our recent understanding of reactive astrocyte neurobiology following spinal cord injury may lead to the development of a better adjunct clinical therapy for spasticity without the side effects of intrathecal baclofen therapy. LINKED ARTICLE This article is a commentary on Oshiro et al., pp. 976–985 of this issue. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2010.00954.x PMID:20662840

  7. Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation

    PubMed Central

    Danner, Simon M.; Krenn, Matthias; Hofstoetter, Ursula S.; Toth, Andrea; Mayr, Winfried; Minassian, Karen

    2016-01-01

    Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting

  8. Modeling the neuroanatomic propagation of ALS in the spinal cord

    NASA Astrophysics Data System (ADS)

    Drawert, Brian; Thakore, Nimish; Mitchell, Brian; Pioro, Erik; Ravits, John; Petzold, Linda R.

    2017-07-01

    Recent hypotheses of amyotrophic lateral sclerosis (ALS) progression have posited a point-source origin of motor neuron death with neuroanatomic propagation either contiguously to adjacent regions, or along networks via axonal and synaptic connections. Although the molecular mechanisms of propagation are unknown, one leading hypothesis is a "prion-like" spread of misfolded and aggregated proteins, including SOD1 and TDP-43. We have developed a mathematical model representing cellular and molecular spread of ALS in the human spinal cord. Our model is based on the stochastic reaction-diffusion master equation approach using a tetrahedral discretized space to capture the complex geometry of the spinal cord. Domain dimension and shape was obtained by reconstructing human spinal cord from high-resolution magnetic resonance (MR) images and known gross and histological neuroanatomy. Our preliminary results qualitatively recapitulate the clinically observed pattern of spread of ALS thorough the spinal cord.

  9. Spinal cord injuries in Australian footballers.

    PubMed

    2003-07-01

    Acute spinal cord injury is a serious concern in football, particularly the rugby codes. This Australia-wide study covers the years 1986-1996 and data are compared with those from a previous identical study for 1960-1985. A retrospective review of 80 players with a documented acute spinal cord injury admitted to the six spinal cord injury units in Australia. Personal interview was carried out in 85% of the participants to determine the injury circumstances and the level of compensation. The severity of the neurological deficit and the functional recovery were determined (Frankel grade). The annual incidence of injuries for all codes combined did not change over the study period, but there was some decrease in rugby union and an increase in rugby league. In particular there was a significant decline in the incidence of adult rugby union injuries (P = 0.048). Scrum injuries in union have decreased subsequent to law changes in 1985, particularly in schoolboys, although ruck and maul injuries are increasing; 39% of scrum injuries occurred in players not in their regular position. Tackles were the most common cause of injury in league, with two-on-one tackles accounting for nearly half of these. Schoolboy injuries tended to mirror those in adults, but with a lower incidence. Over half of the players remain wheelchair-dependent, and 10% returned to near-normality. Six players (7.5%) died as a result of their injuries. The rugby codes must be made safer by appropriate preventative strategies and law changes. In particular, attention is necessary for tackle injuries in rugby league and players out of regular position in scrummage. Compensation for injured players is grossly inadequate. There is an urgent need to establish a national registry to analyse these injuries prospectively.

  10. Assessment of physiological noise modelling methods for functional imaging of the spinal cord.

    PubMed

    Kong, Yazhuo; Jenkinson, Mark; Andersson, Jesper; Tracey, Irene; Brooks, Jonathan C W

    2012-04-02

    The spinal cord is the main pathway for information between the central and the peripheral nervous systems. Non-invasive functional MRI offers the possibility of studying spinal cord function and central sensitisation processes. However, imaging neural activity in the spinal cord is more difficult than in the brain. A significant challenge when dealing with such data is the influence of physiological noise (primarily cardiac and respiratory), and currently there is no standard approach to account for these effects. We have previously studied the various sources of physiological noise for spinal cord fMRI at 1.5T and proposed a physiological noise model (PNM) (Brooks et al., 2008). An alternative de-noising strategy, selective averaging filter (SAF), was proposed by Deckers et al. (2006). In this study we reviewed and implemented published physiological noise correction methods at higher field (3T) and aimed to find the optimal models for gradient-echo-based BOLD acquisitions. Two general techniques were compared: physiological noise model (PNM) and selective averaging filter (SAF), along with regressors designed to account for specific signal compartments and physiological processes: cerebrospinal fluid (CSF), motion correction (MC) parameters, heart rate (HR), respiration volume per time (RVT), and the associated cardiac and respiratory response functions. Functional responses were recorded from the cervical spinal cord of 18 healthy subjects in response to noxious thermal and non-noxious punctate stimulation. The various combinations of models and regressors were compared in three ways: the model fit residuals, regression model F-tests and the number of activated voxels. The PNM was found to outperform SAF in all three tests. Furthermore, inclusion of the CSF regressor was crucial as it explained a significant amount of signal variance in the cord and increased the number of active cord voxels. Whilst HR, RVT and MC explained additional signal (noise) variance

  11. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection

    PubMed Central

    Bui, Tuan V; Stifani, Nicolas; Akay, Turgay; Brownstone, Robert M

    2016-01-01

    The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery. DOI: http://dx.doi.org/10.7554/eLife.21715.001 PMID:27977000

  12. The Role of Acid Sensing Ion Channels in Spinal Cord Injury

    DTIC Science & Technology

    2012-10-01

    ASIC1a is localized to the cell bodies and dendrites of neurons [4]. Pathological cerebral acidosis activates these channels which, in turn, kill...Tripathi, P. Wei, and A.T. Lash, The PPAR gamma agonist Pioglitazone improves anatomical and locomotor recovery after rodent spinal cord injury. Exp Neurol

  13. Return to work following spinal cord injury: a review.

    PubMed

    Lidal, Ingeborg Beate; Huynh, Tuan Khai; Biering-Sørensen, Fin

    2007-09-15

    To review literature on return to work (RTW) and employment in persons with spinal cord injury (SCI), and present employment rates, factors influencing employment, and interventions aimed at helping people with SCI to obtain and sustain productive work. A systematic review for 2000 - 2006 was carried out in PubMed/Medline, AMED, (ISI) Web of Science, EMBASE, CINAHL, PsycInfo and Sociological abstracts database. The keywords 'spinal cord injuries', 'spinal cord disorder', 'spinal cord lesion' or 'spinal cord disease' were cross-indexed with 'employment', 'return to work', 'occupation' or 'vocational'. Out of approximately 270 hits, 110 references were used, plus 13 more found elsewhere. Among individuals with SCI working at the time of injury 21 - 67% returned to work after injury. RTW was higher in persons injured at a younger age, had less severe injuries and higher functional independence. Employment rate improved with time after SCI. Persons with SCI employed ranged from 11.5% to 74%. Individuals who sustained SCI during childhood or adolescence had higher adult employment rates. Most common reported barriers to employment were problems with transportation, health and physical limitations, lack of work experience, education or training, physical or architectural barriers, discrimination by employers, and loss of benefits. Individuals with SCI discontinue working at younger age. This review confirmed low employment rates after SCI. Future research should explore interventions aimed at helping people with SCI to obtain and sustain productive work.

  14. Single fraction spine radiosurgery for myeloma epidural spinal cord compression.

    PubMed

    Jin, Ryan; Rock, Jack; Jin, Jian-Yue; Janakiraman, Nalini; Kim, Jae Ho; Movsas, Benjamin; Ryu, Samuel

    2009-01-01

    Radiosurgery delivers highly focused radiation beams to the defined target with high precision and accuracy. It has been demonstrated that spine radiosurgery can be safely used for treatment of spine metastasis with rapid and durable pain control, but without detrimental effects to the spinal cord. This study was carried out to determine the role of single fraction radiosurgery for epidural spinal cord compression due to multiple myeloma. A total of 31 lesions in 24 patients with multiple myeloma, who presented with epidural spinal cord compression, were treated with spine radiosurgery. Single fraction radiation dose of 10-18 Gy (median of 16 Gy) was administered to the involved spine including the epidural or paraspinal tumor. Patients were followed up with clinical exams and imaging studies. Median follow-up was 11.2 months (range 1-55). Primary endpoints of this study were pain control, neurological improvement, and radiographic tumor control. Overall pain control rate was 86%; complete relief in 54%, and partial relief in 32% of the patients. Seven patients presented with neurological deficits. Five patients neurologically improved or became normal after radiosurgery. Complete radiographic response of the epidural tumor was noted in 81% at 3 months after radiosurgery. During the follow-up time, there was no radiographic or neurological progression at the treated spine. The treatment was non-invasive and well tolerated. Single fraction radiosurgery achieved an excellent clinical and radiographic response of myeloma epidural spinal cord compression. Radiosurgery can be a viable treatment option for myeloma epidural compression.

  15. Small mammal MRI imaging in spinal cord injury: a novel practical technique for using a 1.5 T MRI.

    PubMed

    Levene, Howard B; Mohamed, Feroze B; Faro, Scott H; Seshadri, Asha B; Loftus, Christopher M; Tuma, Ronald F; Jallo, Jack I

    2008-07-30

    The field of spinal cord injury research is an active one. The pathophysiology of SCI is not yet entirely revealed. As such, animal models are required for the exploration of new therapies and treatments. We present a novel technique using available hospital MRI machines to examine SCI in a mouse SCI model. The model is a 60 kdyne direct contusion injury in a mouse thoracic spine. No new electronic equipment is required. A 1.5T MRI machine with a human wrist coil is employed. A standard multisection 2D fast spin-echo (FSE) T2-weighted sequence is used for imaging the mouse. The contrast-to-noise ratio (CNR) between the injured and normal area of the spinal cord showed a three-fold increase in the contrast between these two regions. The MRI findings could be correlated with kinematic outcome scores of ambulation, such as BBB or BMS. The ability to follow a SCI in the same animal over time should improve the quality of data while reducing the quantity of animals required in SCI research. It is the aim of the authors to share this non-invasive technique and to make it available to the scientific research community.

  16. Spinal cord grey matter segmentation challenge.

    PubMed

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-05-15

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    PubMed

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  18. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling

    PubMed Central

    Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to

  19. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.

    PubMed

    Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul

    2017-01-01

    Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared

  20. Release of neuropeptide FF (FLFQPQRF-NH2) from rat spinal cord.

    PubMed

    Zhu, J; Jhamandas, K; Yang, H Y

    1992-10-02

    Neuropeptide FF (FLFQPQRF-NH2), originally isolated from bovine brain, is an FMRF-NH2-like peptide with morphine-modulating activity. Neuropeptide FF (NPFF) is highly localized in the dorsal spinal cords where there are also specific NPFF binding sites. Furthermore, there have been studies indicating that NPFF may participate in the regulation of pain threshold in the spinal cord. However, whether NPFF can be released from the spinal cord is not known. The present experiments, using an in vitro superfusion of an isolated whole rat spinal cord, demonstrated that high concentrations of KCl or substance P caused a release of NPFF immunoreactive material (IR) from the spinal cord into the perfusion medium in a calcium-dependent manner. Substance P (1-11) also produced a detectable release of NPFF-IR in vivo although the response was quite variable. The released NPFF-IR was analyzed by an HPLC study and found to consist of NPFF and other minor immunoreactive peptides. Further studies with substance P-related peptides showed that the in vitro release of NPFF-IR could also be induced by substance P (1-7) but not by [pGlu5,Me-Phe8,Sar9]-substance P (5-11) or substance K. These results suggest that the specific substance P receptor (SP-N), which is recognized by both substance P (1-11) and substance P (1-7) rather than the tachykinin receptor, is involved in NPFF secretion from the spinal cord. In view of the role of substance P (1-11) and substance P (1-7) in sensory transmission, the results of this study further support the role of NPFF in the modulation of antinociception in the spinal cord.

  1. Congenital Zika Virus Infection Induces Severe Spinal Cord Injury.

    PubMed

    Ramalho, Fernando S; Yamamoto, Aparecida Y; da Silva, Luis L; Figueiredo, Luiz T M; Rocha, Lenaldo B; Neder, Luciano; Teixeira, Sara R; Apolinário, Letícia A; Ramalho, Leandra N Z; Silva, Deisy M; Coutinho, Conrado M; Melli, Patrícia P; Augusto, Marlei J; Santoro, Ligia B; Duarte, Geraldo; Mussi-Pinhata, Marisa M

    2017-08-15

    We report 2 fatal cases of congenital Zika virus (ZIKV) infection. Brain anomalies, including atrophy of the cerebral cortex and brainstem, and cerebellar aplasia were observed. The spinal cord showed architectural distortion, severe neuronal loss, and microcalcifications. The ZIKV proteins and flavivirus-like particles were detected in cytoplasm of spinal neurons, and spinal cord samples were positive for ZIKV RNA. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Gastrointestinal symptoms in spinal cord injury: relationships with level of injury and psychologic factors.

    PubMed

    Ng, Clinton; Prott, Gillian; Rutkowski, Susan; Li, Yueming; Hansen, Ross; Kellow, John; Malcolm, Allison

    2005-08-01

    Previous surveys of gastrointestinal symptoms after spinal cord injury have not used validated questionnaires and have not focused on the full spectrum of such symptoms and their relationship to factors, such as level of spinal cord injury and psychologic dysfunction. This study was designed to detail the spectrum and prevalence of gastrointestinal symptoms in spinal cord injury and to determine clinical and psychologic factors associated with such symptoms. Established spinal cord injury patients (>12 months) randomly selected from a spinal cord injury database completed the following three questionnaires: 1) Rome II Integrative Questionnaire, 2) Hospital Anxiety and Depression Scale, and 3) Burwood Bowel Dysfunction after spinal cord injury. A total of 110 patients participated. The prevalence of abdominal bloating and constipation were 22 and 46 percent, respectively. Bloating was associated with cervical (odds ratio = 9.5) and lumbar (odds ratio = 12.1) level but not with thoracic level of injury. Constipation was associated with a higher level of injury (cervical odds ratio = 5.6 vs. lumbar) but not with psychologic factors. In contrast, abdominal pain (33 percent) and fecal incontinence (41 percent) were associated with higher levels of anxiety (odds ratio = 6.8, and odds ratio = 2.4) but not with the level of injury. There is a high prevalence and wide spectrum of gastrointestinal symptoms in spinal cord injury. Abdominal bloating and constipation are primarily related to specific spinal cord levels of injury, whereas abdominal pain and fecal incontinence are primarily associated with higher levels of anxiety. Based on our findings, further physiologic and psychologic research studies in spinal cord injury patients should lead to more rational management strategies for the common gastrointestinal symptoms in spinal cord injury.

  3. Survey of spinal cord injury-induced neurogenic bladder studies using the Web of Science.

    PubMed

    Zou, Benjing; Zhang, Yongli; Li, Yucheng; Wang, Zantao; Zhang, Ping; Zhang, Xiyin; Wang, Bingdong; Long, Zhixin; Wang, Feng; Song, Guo; Wang, Yan

    2012-08-15

    To identify global trends in research on spinal cord injury-induced neurogenic bladder, through a bibliometric analysis using the Web of Science. We performed a bibliometric analysis of studies on spinal cord injury-induced neurogenic bladder using the Web of Science. Data retrieval was performed using key words "spinal cord injury", "spinal injury", "neurogenic bladder", "neuropathic bladder", "neurogenic lower urinary tract dysfunction", "neurogenic voiding dysfunction", "neurogenic urination disorder" and "neurogenic vesicourethral dysfunction". (a) published peer-reviewed articles on spinal cord injury-induced neurogenic bladder indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: no limitation. (a) articles that required manual searching or telephone access; (b) Corrected papers and book chapters. (1) Annual publication output; (2) distribution according to journals; (3) distribution according to subject areas; (4) distribution according to country; (5) distribution according to institution; and (6) top cited publications. There were 646 research articles addressing spinal cord injury-induced neurogenic bladder in the Web of Science. Research on spinal cord injury-induced neurogenic bladder was found in the Science Citation Index-Expanded as of 1946. The United States, Ireland and Switzerland were the three major countries contributing to studies in spinal cord injury-induced neurogenic bladder in the 1970s. However, in the 1990s, the United States, the United Kingdom, the Netherlands, Germany and Japan published more papers on spinal cord injury-induced neurogenic bladder than Switzerland, and Ireland fell off the top ten countries list. In this century, the United States ranks first in spinal cord injury-induced neurogenic bladder studies, followed by France, the United Kingdom, Germany, Switzerland and Japan. Subject categories including urology, nephrology and clinical neurology, as well as

  4. Spinal cord herniation following cervical meningioma excision: a rare clinical entity and review of literature.

    PubMed

    Aiyer, Siddharth N; Shetty, Ajoy Prasad; Kanna, Rishi; Maheswaran, Anupama; Rajasekaran, S

    2016-05-01

    Spinal cord herniation following surgery is an extremely uncommon clinical condition with very few reports in published literature. This condition usually occurs as a spontaneous idiopathic phenomenon often in the thoracic spine or following a scenario of post traumatic spinal cord/nerve root injury. Rarely has it been reported following spinal cord tumor surgery. To document a case of cervical spinal cord herniation as a late onset complication following spinal cord tumor surgery with an atypical presentation of monoparesis. Case report. We describe the clinical presentation, operative procedure, post operative outcome and review of literature of this rare clinical condition. A 57-year-old man presented with right upper limb monoparesis due to a spinal cord herniation 6 years after a cervical intradural meningioma excision. The patients underwent surgery to reduce the herniation and duroplasty with subsequent complete resolution of symptoms. Spinal cord herniation must be considered as differential diagnosis in scenarios of spinal cord tumor excision presenting with late onset neurological deficit. These cases may present as paraparesis, Brown-sequard syndrome and rarely as in our case as monoparesis.

  5. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    PubMed Central

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  6. Cervical Spinal Cord Dimensions and Clinical Outcomes in Adults with Klippel-Feil Syndrome: A Comparison with Matched Controls

    PubMed Central

    Cho, Woojin; Lee, Dong-Ho; Auerbach, Joshua D.; Sehn, Jennifer K.; Nabb, Colin E.; Riew, K. Daniel

    2014-01-01

    Study Design Retrospective case–control study. Objectives To confirm the fact that spinal cord dimensions are smaller in adults with Klippel-Feil syndrome (KFS) than in pediatric patients with KFS and to compare the clinical characteristics and outcomes of neurologic complications in patients with KFS with matched controls. Methods We performed an independent 1:2 case–control retrospective radiographic and chart review of a consecutive series of adults with KFS who underwent surgical intervention. The control group consisted of consecutive non-KFS surgical patients. Patients were matched in 1:2 case–control manner. Their charts were reviewed and the clinical characteristics were compared. Axial T2-weighted magnetic resonance imaging (MRI) was used to measure the anteroposterior and mediolateral axial spinal cord and spinal canal at the operative levels and measurements were compared. Results A total of 22 patients with KFS and 44 controls were identified. The KFS group had a tendency of more myeloradiculopathy, and the control group had a tendency toward more radiculopathy. Both tendencies, however, were not significantly different. MRIs of 10 patients from the KFS group and 22 controls were available. There was no difference in the area of both spinal cord and canal at the operative levels. Conclusion Contrary to the finding in previous reports on pediatric patients, there were no differences between KFS and well-matched control groups in terms of age of onset, presentation, revision rate, complication rate, surgical outcome, and cross-sectional spinal cord and canal dimensions at the operative level. PMID:25396101

  7. Spinal cord electrophysiology II: extracellular suction electrode fabrication.

    PubMed

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-02-20

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively.

  8. Learning from the spinal cord: How the study of spinal cord plasticity informs our view of learning

    PubMed Central

    Grau, James W.

    2013-01-01

    The paper reviews research examining whether and how training can induce a lasting change in spinal cord function. A framework for the study of learning, and some essential issues in experimental design, are discussed. A core element involves delayed assessment under common conditions. Research has shown that brain systems can induce a lasting (memory-like) alteration in spinal function. Neurons within the lower (lumbosacral) spinal cord can also adapt when isolated from the brain by means of a thoracic transection. Using traditional learning paradigms, evidence suggests that spinal neurons support habituation and sensitization as well as Pavlovian and instrumental conditioning. At a neurobiological level, spinal systems support phenomena (e.g., long-term potentiation), and involve mechanisms (e.g., NMDA mediated plasticity, protein synthesis) implicated in brain-dependent learning and memory. Spinal learning also induces modulatory effects that alter the capacity for learning. Uncontrollable/unpredictable stimulation disables the capacity for instrumental learning and this effect has been linked to the cytokine tumor necrosis factor (TNF). Predictable/controllable stimulation enables learning and counters the adverse effects of uncontrollable simulation through a process that depends upon brain-derived neurotrophic factor (BDNF). Finally, uncontrollable, but not controllable, nociceptive stimulation impairs recovery after a contusion injury. A process-oriented approach (neurofunctionalism) is outlined that encourages a broader view of learning phenomena. PMID:23973905

  9. [Analysis for related factors of upper urinary tract deterioration in patients with spinal cord injury].

    PubMed

    Jing, Hua-fang; Liao, Li-min; Fu, Guang; Wu, Juan; Ju, Yan-he; Chen, Guo-qing

    2014-08-18

    To evaluate the related factors of upper urinary tract deterioration in spinal cord injured patients. Medical records of spinal cord injured patients from Jan.2002 to Sep.2009 were retrospectively reviewed. All the patients were divided into the upper urinary tract deterioration group and non-deterioration group according to the diagnostic criteria. Indexes such as demographic characteristic (gender, age), spinal cord injury information (cause, level, completeness), statuses of urinary tract system (bladder management, urine routine, urine culture, ultrasound, serum creatinine, fever caused by urinary tract infection) and urodynamics information(bladder compliance, bladder stability, bladder sensation, detrusor sphincter dyssynergia, detrusor leak point pressure, maximum cystometric capacity, relative safe bladder capacity, maximum flow rate, maximum urethra closure pressure) were compared between the two groups.Then Logistic regression analysis were performed. There was significantly difference between the two groups in spinal cord injury level(χ(2) = 8.840, P = 0.031),bladder management(χ(2) = 11.362, P = 0.045), urinary rutine(χ(2) = 17.983, P = 0.000), fever caused by urinary tract infection(χ(2)= 64.472, P = 0.000), bladder compliance(χ(2) = 6.531, P = 0.011), bladder sensation(χ(2) = 11.505, P = 0.009), maximum cystometric capacity(t = 2.209, P = 0.043), and detrusor-sphincter dyssynergia(χ(2) = 4.247, P = 0.039). The multiple-factor non-conditional Logistic regression analysis showed that bladder management (OR = 1.114, P = 0.006), fever caused by urinary tract infection(OR = 1.018,P = 0.000), bladder compliance (OR = 1.588, P = 0.040) and detrusor-sphincter dyssynergia(OR = 1.023, P = 0.034) were the key factors of upper urinary tract deterioration in spinal cord injured patients. Urinary tract infection, lower bladder compliance, detrusor-sphincter dyssynergia and unreasonable bladder management are the risk factors of upper urinary tract

  10. Magnetic Resonance Imaging of the Codman Microsensor Transducer Used for Intraspinal Pressure Monitoring: Findings From the Injured Spinal Cord Pressure Evaluation Study.

    PubMed

    Phang, Isaac; Mada, Marius; Kolias, Angelos G; Newcombe, Virginia F J; Trivedi, Rikin A; Carpenter, Adrian; Hawkes, Rob C; Papadopoulos, Marios C

    2016-05-01

    Laboratory and human study. To test the Codman Microsensor Transducer (CMT) in a cervical gel phantom. To test the CMT inserted to monitor intraspinal pressure in a patient with spinal cord injury. We recently introduced the technique of intraspinal pressure monitoring using the CMT to guide management of traumatic spinal cord injury [Werndle et al. Crit Care Med 2014;42:646]. This is analogous to intracranial pressure monitoring to guide management of patients with traumatic brain injury. It is unclear whether magnetic resonance imaging (MRI) of patients with spinal cord injury is safe with the intraspinal pressure CMT in situ. We measured the heating produced by the CMT placed in a gel phantom in various configurations. A 3-T MRI system was used with the body transmit coil and the spine array receive coil. A CMT was then inserted subdurally at the injury site in a patient who had traumatic spinal cord injury and MRI was performed at 1.5 T. In the gel phantom, heating of up to 5°C occurred with the transducer wire placed straight through the magnet bore. The heating was abolished when the CMT wire was coiled and passed away from the bore. We then tested the CMT in a patient with an American Spinal Injuries Association grade C cervical cord injury. The CMT wire was placed in the configuration that abolished heating in the gel phantom. Good-quality T1 and T2 images of the cord were obtained without neurological deterioration. The transducer remained functional after the MRI. Our data suggest that the CMT is MR conditional when used in the spinal configuration in humans. Data from a large patient group are required to confirm these findings. N/A.

  11. The Process of Adjustment among Caregivers of Individuals with Spinal Cord Injury: A Qualitative Study

    DTIC Science & Technology

    2015-10-01

    Paralyzed Veterans of America Summit highlighting caregiver quality of life and social support. 10 What was the...1 AWARD NUMBER: W81XWH-14-1-0621 TITLE: The Process of Adjustment among Caregivers of Individuals with Spinal Cord Injury: A Qualitative Study...among Caregivers of Individuals with Spinal Cord Injury: A Qualitative Study 5b. GRANT NUMBER W81XWH-14-1-0621 5c. PROGRAM ELEMENT NUMBER 6

  12. Cannabis use in persons with traumatic spinal cord injury in Denmark.

    PubMed

    Andresen, Sven R; Biering-Sørensen, Fin; Hagen, Ellen Merete; Nielsen, Jørgen F; Bach, Flemming W; Finnerup, Nanna B

    2017-01-31

    To evaluate recreational and medical cannabis use in individuals with traumatic spinal cord injury, including reasons and predictors for use, perceived benefits and negative consequences. Cross-sectional survey in Denmark. A 35-item questionnaire was sent to 1,101 patients with spinal cord injury who had been in contact with a rehabilitation centre between 1990 and 2012. A total of 537 participants completed the questionnaire. Of these, 36% had tried cannabis at least once and 9% were current users. Of current users, 79% had started to use cannabis before their spinal cord injury. The main reason for use was pleasure, but 65% used cannabis partly for spinal cord injury-related consequences and 59% reported at least good effect on pain and spasticity. Negative consequences of use were primarily inertia and feeling quiet/subdued. Lower age, living in rural areas/larger cities, tobacco-smoking, high alcohol intake and higher muscle stiffness were significantly associated with cannabis use. Those who had never tried cannabis reported that they would mainly use cannabis to alleviate pain and spasticity if it were legalized. Cannabis use is more frequent among individuals with spinal cord injury in Denmark than among the general population. High muscle stiffness and various demographic characteristics (lower age, living in rural areas/larger cities, tobacco-smoking and high alcohol intake) were associated with cannabis use. Most participants had started using cannabis before their spinal cord injury. There was considerable overlap between recreational and disability-related use.

  13. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats.

    PubMed

    Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan

    2015-11-01

    Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  15. Integral multidisciplinary approach in a patient with chronic complete spinal cord injury and hip disarticulation

    PubMed Central

    Quinzaños-Fresnedo, J; Rodríguez-Reyes, G; Mendoza-Cosío, C; Pérez-Zavala, R; Márquez-Guitérrez, E A; Hernández-Sandoval, S

    2015-01-01

    Study design: Case report. Objectives: To highlight the importance of the integral multidisciplinary management of a patient with complete chronic spinal cord injury and hip disarticulation secondary to pressure ulcers (PU). Setting: Mexico City. Methods: The case of a 40-year-old male violinist with a spinal cord injury, American Spinal Injury Association Impairment Scale A and neurological level T4, is reported. The patient initiated with bilateral ischiatic, left trochanteric and sacral PU. The ulcers were complicated with infection with sluggish evolution. Thus, it was decided a multidisciplinary management by means of left hip disarticulation and elaboration of a cosmetic prosthesis and the manufacture of a viscous elastic foam cushion for the prevention of new PU. The patient was quickly included in his professional and social activities. Conclusion: This study proves that multidisciplinary management of patients with spinal cord injury with complications such as the presence of PU that are resistant to noninvasive treatment can be the solution for the patient’s reintegration into their normal life with adequate quality of life. PMID:28053719

  16. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    PubMed

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  17. Advances in the management of infertility in men with spinal cord injury

    PubMed Central

    Ibrahim, Emad; Brackett, Nancy L; Lynne, Charles M

    2016-01-01

    Couples with a spinal cord injured male partner require assisted ejaculation techniques to collect semen that can then be further used in various assisted reproductive technology methods to achieve a pregnancy. The majority of men sustaining a spinal cord injury regardless of the cause or the level of injury cannot ejaculate during sexual intercourse. Only a small minority can ejaculate by masturbation. Penile vibratory stimulation and electroejaculation are the two most common methods used to retrieve sperm. Other techniques such as prostatic massage and the adjunct application of other medications can be used, but the results are inconsistent. Surgical sperm retrieval should be considered as a last resort if all other methods fail. Special attention must be paid to patients with T6 and rostral levels of injury due to the risk of autonomic dysreflexia resulting from stimulation below the level of injury. Bladder preparation should be performed before stimulation if retrograde ejaculation is anticipated. Erectile dysfunction is ubiquitous in the spinal cord injured population but is usually easily managed and does not pose a barrier to semen retrieval in these men. Semen analysis parameters of men with spinal cord injury are unique for this population regardless of the method of retrieval, generally presenting as normal sperm concentration but abnormally low sperm motility and viability. When sperm retrieval is desired in this population, emphasis should be placed on initially trying the simple methods of penile vibratory stimulation or electroejaculation before resorting to more advanced and invasive surgical procedures. PMID:27048781

  18. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    PubMed

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P < 0.05). Dex significantly decreased apoptotic cells compared with that of vehicle control cells by 50% (P < 0.05). Necrosis was not significantly different between treatment groups. Mechanistically, Dex treatment significantly increased phosphorylated Akt (P < 0.05), but protective effects of Dex were eliminated by an alpha-2a antagonist or Akt inhibitor (P < 0.05). Using a novel spinal cord neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Spinal Cord Electrophysiology II: Extracellular Suction Electrode Fabrication

    PubMed Central

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-01-01

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively. PMID:21372792

  20. Comparison of alpha-synuclein immunoreactivity in the spinal cord between the adult and aged beagle dog

    PubMed Central

    Ahn, Ji-Hyeon; Choi, Jung-Hoon; Park, Joon-Ha; Yan, Bing-Chun; Kim, In-Hye; Lee, Jae-Chul; Lee, Dae-Hwan; Kim, Jin-Sang

    2012-01-01

    Alpha-synuclein (α-syn) is a presynaptic protein that is richly expressed in the central and peripheral nervous systems of mammals, and it is related to the pathogenesis of Parkinson's disease and other neurodegenerative disorders. In the present study, we compared the distribution of the immunoreactivity of α-syn and its related gliosis in the spinal cord of young adult (2-3 years) and aged (10-12 years) beagle dogs. We discovered that α-syn immunoreactivity was present in many neurons in the thoracic level of the aged spinal cord, however, its protein level was not distinct inform that of the adult spinal cord. In addition, ionized calcium-binding adapter molecule-1 (a marker for microglia) immunoreactivity, and not glial fibrillary acidic protein (a marker for astrocytes) immunoreactivity, was somewhat increased in the aged group compared to the adult group. These results indicate that α-syn immunoreactivity was not dramatically changed in the dog spinal cord during aging. PMID:23091516

  1. Cardiovascular effects of spinal cord substance P: studies with a stable receptor agonist.

    PubMed

    Keeler, J R; Charlton, C G; Helke, C J

    1985-06-01

    The role of spinal cord substance P (SP) in regulating sympathetic outflow to the cardiovascular system was assessed with the stable active analog [pGlu5,MePhE8,MeGly9]-SP(5-11) (DiME-SP). The interaction of DiME-SP with spinal cord SP receptors was evaluated initially in binding studies. Saturable, high-affinity binding of [125I]Bolton-Hunter-SP to rat spinal cord membranes was dose-dependently inhibited by DiME-SP (IC50 = 1.5 microM). Intrathecal (i.t.) injections of DiME-SP (1.0-33 nmol) in anesthetized rats produced dose-dependent increases in blood pressure and heart rate that were accompanied by increases in plasma epinephrine and norepinephrine. Intravenous injections of the ganglionic blocker pentolinium blocked the cardiovascular and plasma catecholamine responses to i.t. injections of DiME-SP. Bulbospinal sympathoexcitatory pathways originating in the ventral medulla and their mediation by SP were also assessed. As demonstrated previously, application of bicuculline, the gamma-aminobutyric acid receptor antagonist, to the ventral surface of the medulla produced sympathetic mediated increases in blood pressure and these effects were blocked by i.t. injection of the SP receptor antagonist [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP. In this study, we studied the specificity of the SP antagonist for SP receptors by attempting to alter the actions of the SP antagonist with a SP agonist. Administration of DiME-SP (33 nmol i.t.) blocked the effects of [D-Arg1,D-Pro2,D-Trp7,9,Leu11]-SP (3.3 nmol i.t.). Specifically, the SP agonist countered the SP antagonist-mediated 1) hypotensive response and 2) inhibitory effect on bicuculline-induced sympathoexcitatory responses elicited from the ventral surface of the medulla. These data provide further evidence that SP transmits excitatory information to the cardiovascular system via spinal sympathetic pathways.

  2. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord.

    PubMed

    Elliott Donaghue, Irja; Tator, Charles H; Shoichet, Molly S

    2015-01-01

    Spinal cord injury is a debilitating condition that currently lacks effective clinical treatment. Neurotrophin-3 (NT-3) has been demonstrated in experimental animal models to induce axonal regeneration and functional improvements, yet its local delivery remains challenging. For ultimate clinical translation, a drug delivery system is required for localized, sustained, and minimally invasive release. Here, an injectable composite drug delivery system (DDS) composed of biodegradable polymeric nanoparticles dispersed in a hyaluronan/methyl cellulose hydrogel was injected into the intrathecal space to achieve acute local delivery to the spinal cord after a thoracic clip compression injury. NT-3 was encapsulated in the DDS and released in vitro for up to 50 d. With a single injection of the DDS into the intrathecal space of the injured spinal cord, NT-3 diffused ventrally through the cord and was detectable in the spinal cord for at least 28 d therein. Delivery of NT-3 resulted in significant axon growth with no effect on the astroglial response to injury in comparison with vehicle and injury controls. NT-3 treatment promoted functional improvements at 21 d according to the Basso Beattie Bresnahan locomotor scale in comparison with the DDS alone. The sustained delivery of bioactive NT-3 to the injured spinal cord achieved in this study demonstrates the promise of this DDS for central nervous system repair.

  3. Morphology of the caudal spinal cord in Rana (Ranidae) and Xenopus (Pipidae) tadpoles.

    PubMed

    Nishikawa, K; Wassersug, R

    1988-03-08

    Using a variety of neuroanatomical and histological techniques, we compare the spinal cord and peripheral nerve distribution in the tails of larvae from Xenopus laevis and three species of Rana. The relatively large, postsacral spinal cord of Xenopus contains abundant motoneurons and their axons. Spinal nerves exit from the spinal cord in a regular array, one nerve per myotome, from the cervical region to near the end of the tail. Somata of motoneurons innervating caudal myotomes are found along the entire length of the tail. In contrast, the caudal cord of Rana is reduced to a filum terminale consisting of little more than an ependymal tube; spinal nerves to all caudal myotomes leave the cord in the sacral region and reach their motor targets via a cauda equina and caudal plexus. Motoneuron cell bodies innervating caudal myotomes are found only in the sacral region. The Rana larval pattern is similar to that of adult frogs and mammals, whereas the Xenopus larval pattern is more like that of salamanders and reptiles. These gross neuroanatomical differences are not due to differences in the size or developmental stage of the tadpoles, but instead are associated with differences in the swimming behavior of the larvae. The presence of motoneurons in the caudal spinal cord of Xenopus may provide local intermyotomal control within the tail; the elongated topography of the cord appears to permit finer, rostral-to-caudal regulation of neuromuscular activity. The Rana spinal cord, on the other hand--with motoneurons clustered anteriorly--may produce concurrent firing of adjacent ipsilateral myotomes, but at the expense of fine intermyotomal regulation. The fact that nerves in the tail of Xenopus enter and exit from the spinal cord locally, as opposed to far anteriorly as in Rana, means that for tadpoles of the same size, reflex arc lengths are many times shorter in Xenopus.

  4. Release of substance P from the cat spinal cord.

    PubMed Central

    Go, V L; Yaksh, T L

    1987-01-01

    1. The present experiments examine the physiology and pharmacology of the release of substance P-like immunoreactivity (SP-l.i.), from the spinal cord in the halothane-anaesthetized, artificially ventilated cat. 2. Resting release of SP-l.i. was 36 +/- 4 fmol/30 min (mean +/- S.E.; n = 106). Bilateral stimulation of the sciatic nerves at intensities which evoked activity in fibres conducting at A beta conduction velocities (greater than 40 m/s), resulted in no change in blood pressure, pupil diameter or release of SP-l.i. Stimulation intensities which activate fibres conducting at velocities less than 2 m/s resulted in increased blood pressure, miosis and elevated release of SP-l.i. (278 +/- 16% of control). 3. The relationship between nerve-stimulation frequency and release was monotonic up to approximately 20 Hz. Higher stimulation frequencies did not increase the amounts of SP-l.i. released. At 200 Hz there was a reduction. 4. Capsaicin (0.1 mM) increased the release of SP-l.i. from the spinal cord and resulted in an acute desensitization to subsequent nerve stimulation. This acute effect was not accompanied by a reduction in spinal levels of SP-l.i. measured 2 h after stimulation. 5. Cold block of the cervical spinal cord resulted in an increase in the amounts of SP-l.i. released by nerve stimulation. 6. Pre-treatment with intrathecal 5,6-dihydroxytryptamine (300 micrograms) 7 days prior to the experiment caused a reduction in the dorsal and ventral horn stores of SP-l.i., but had no effect on the release of SP-l.i. evoked by nerve stimulation. Similar pre-treatment with intrathecal capsaicin (300 micrograms) resulted in depletion of SP-l.i. in the dorsal but not in the ventral horn of the spinal cord and diminished the release of SP-l.i. evoked by nerve stimulation. 7. Intense thermal stimulation of the flank resulted in small (20-35%), but reliable increases in the release of SP-l.i. above control. 8. Putative agonists for the opioid mu-receptor (morphine, 10

  5. Inflammatory response to Escherichia coli urinary tract infection in the neurogenic bladder of the spinal cord injured host.

    PubMed

    Chaudhry, Rajeev; Madden-Fuentes, Ramiro J; Ortiz, Tara K; Balsara, Zarine; Tang, Yuping; Nseyo, Unwanaobong; Wiener, John S; Ross, Sherry S; Seed, Patrick C

    2014-05-01

    Urinary tract infections cause significant morbidity in patients with spinal cord injury. An in vivo spinal cord injured rat model of experimental Escherichia coli urinary tract infection mimics human disease with enhanced susceptibility to urinary tract infection compared to controls. We hypothesized that a dysregulated inflammatory response contributes to enhanced susceptibility to urinary tract infection. Spinal cord injured and sham injured rats were inoculated transurethrally with E. coli. Transcript levels of 84 inflammatory pathway genes were measured in bladder tissue of each group before infection, 24 hours after infection and after 5 days of antibiotic therapy. Before infection quantitative polymerase chain reaction array revealed greater than twofold up-regulation in the proinflammatory factor transcripts slc11a1, ccl4 and il1β, and down-regulation of the antimicrobial peptides lcn2 and mpo in spinal cord injured vs control bladders. At 24 hours after infection spinal cord injured bladders showed an attenuated innate immune response with decreased expression of il6, slc11a1, il1β and lcn2, and decreased il10 and slpi expression compared to controls. Despite clearance of bacteriuria with antibiotics spinal cord injured rats had delayed induction of il6 transcription and a delayed anti-inflammatory response with decreased il10 and slpi transcript levels relative to controls. Spinal cord injured bladders fail to mount a characteristic inflammatory response to E. coli infection and cannot suppress inflammation after infection is eliminated. This may lead to increased susceptibility to urinary tract infection and persistent chronic inflammation through neural mediated pathways, which to our knowledge remain to be defined. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  6. Gray matter segmentation of the spinal cord with active contours in MR images.

    PubMed

    Datta, Esha; Papinutto, Nico; Schlaeger, Regina; Zhu, Alyssa; Carballido-Gamio, Julio; Henry, Roland G

    2017-02-15

    Fully or partially automated spinal cord gray matter segmentation techniques for spinal cord gray matter segmentation will allow for pivotal spinal cord gray matter measurements in the study of various neurological disorders. The objective of this work was multi-fold: (1) to develop a gray matter segmentation technique that uses registration methods with an existing delineation of the cord edge along with Morphological Geodesic Active Contour (MGAC) models; (2) to assess the accuracy and reproducibility of the newly developed technique on 2D PSIR T1 weighted images; (3) to test how the algorithm performs on different resolutions and other contrasts; (4) to demonstrate how the algorithm can be extended to 3D scans; and (5) to show the clinical potential for multiple sclerosis patients. The MGAC algorithm was developed using a publicly available implementation of a morphological geodesic active contour model and the spinal cord segmentation tool of the software Jim (Xinapse Systems) for initial estimate of the cord boundary. The MGAC algorithm was demonstrated on 2D PSIR images of the C2/C3 level with two different resolutions, 2D T2* weighted images of the C2/C3 level, and a 3D PSIR image. These images were acquired from 45 healthy controls and 58 multiple sclerosis patients selected for the absence of evident lesions at the C2/C3 level. Accuracy was assessed though visual assessment, Hausdorff distances, and Dice similarity coefficients. Reproducibility was assessed through interclass correlation coefficients. Validity was assessed through comparison of segmented gray matter areas in images with different resolution for both manual and MGAC segmentations. Between MGAC and manual segmentations in healthy controls, the mean Dice similarity coefficient was 0.88 (0.82-0.93) and the mean Hausdorff distance was 0.61 (0.46-0.76) mm. The interclass correlation coefficient from test and retest scans of healthy controls was 0.88. The percent change between the manual

  7. Clinical interpretation of the Spinal Cord Injury Functional Index (SCI-FI).

    PubMed

    Fyffe, Denise; Kalpakjian, Claire Z; Slavin, Mary; Kisala, Pamela; Ni, Pengsheng; Kirshblum, Steven C; Tulsky, David S; Jette, Alan M

    2016-09-01

    To provide validation of functional ability levels for the Spinal Cord Injury - Functional Index (SCI-FI). Cross-sectional. Inpatient rehabilitation hospital and community settings. A sample of 855 individuals with traumatic spinal cord injury enrolled in 6 rehabilitation centers participating in the National Spinal Cord Injury Model Systems Network. Not Applicable. Spinal Cord Injury-Functional Index (SCI-FI). Cluster analyses identified three distinct groups that represent low, mid-range and high SCI-FI functional ability levels. Comparison of clusters on personal and other injury characteristics suggested some significant differences between groups. These results strongly support the use of SCI-FI functional ability levels to document the perceived functional abilities of persons with SCI. Results of the cluster analysis suggest that the SCI-FI functional ability levels capture function by injury characteristics. Clinical implications regarding tracking functional activity trajectories during follow-up visits are discussed.

  8. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  9. Crossed reciprocal inhibition evoked by electrical stimulation of the lamprey spinal cord.

    PubMed

    Fagerstedt, P; Zelenin, P V; Deliagina, T G; Orlovsky, G N; Grillner, S

    2000-09-01

    Activation of a motoneuron pool is often accompanied by inhibition of the antagonistic pool through a system of reciprocal inhibition between the two parts of the neuronal network controlling the antagonistic pools. In the present study, we describe the activity of such a system in the isolated spinal cord of the lamprey, when a tonic motor output is evoked by extracellular stimulation (0.5-1 s train of pulses, 20 Hz) of either end of the spinal cord. With two electrodes symmetrically positioned in relation to the midline, stimulation with either of them separately elicited prolonged (1-5 s) ipsilateral ventral root activity. Activity could be abolished by stronger, simultaneously applied, stimulation of the contralateral side of the cord, suggesting that reciprocal inhibition between hemisegments operates when a tonic motor output is generated. Simultaneous stimulation of both sides of the spinal cord with a single electrode with a large tip (300-400 microm in diameter), positioned over the anatomical midline, elicited inconsistent right-side, leftside, or bilateral ventral root responses. A minor displacement (10-20 microm) to the left or right from the midline resulted in activation of ipsilateral motoneurons, whereas the contralateral motoneurons were silent. These findings indicate that a small asymmetry in the excitatory drive to the left and right spinal hemisegments can be further amplified by reciprocal inhibition between the hemisegments. Longitudinal splitting of the spinal cord along the midline resulted in reduced reciprocal inhibition between the hemisegments separated by the lesion. The reduction was proportional to the extent of the split. The inhibition was abolished when the split reached nine segments in length. From these experiments, the longitudinal distribution of the commissural axons responsible for inhibition of contralateral motor output could be estimated.

  10. Focal thoracolumbar spinal cord lymphosarcoma in a ferret (Mustela putorius furo)

    PubMed Central

    Ingrao, Joelle C.; Eshar, David; Vince, Andrew; Lee-Chow, Bridget; Nykamp, Stephanie; DeLay, Josepha; Smith, Dale

    2014-01-01

    A 6-year-old, castrated male domestic ferret (Mustela putorius furo) was euthanized following progressive hind limb paresis and atonia of the bladder of 1-year duration. Neurological evaluation localized the lesion to the thoracolumbar spinal region, and magnetic resonance imaging showed a focal intramedullary spinal cord lesion. Histopathology revealed an extensive, unencapsulated, poorly demarcated mass within the thoracolumbar spinal cord, diagnosed as lymphosarcoma. PMID:24982519

  11. Systemic hypothermia for the treatment of acute cervical spinal cord injury in sports.

    PubMed

    Dietrich, William Dalton; Cappuccino, Andrew; Cappuccino, Helen

    2011-01-01

    Spinal cord injury is a devastating condition that affects approximately 12,000 patients each year in the United States. Major causes for spinal cord injury include motor vehicle accidents, sports-related injuries, and direct trauma. Moderate hypothermia has gained attention as a potential therapy due to recent experimental and clinical studies and the use of modest systemic hypothermia (MSH) in high profile case of spinal cord injury in a National Football League (NFL) player. In experimental models of spinal cord injury, moderate hypothermia has been shown to improve functional recovery and reduce overall structural damage. In a recent Phase I clinical trial, systemic hypothermia has been shown to be safe and provide some encouraging results in terms of functional recovery. This review will summarize recent preclinical data, as well as clinical findings that support the continued investigations for the use of hypothermia in severe cervical spinal cord injury.

  12. [Exoskeletons for rehabilitation of patients with spinal cord injuries. Options and limitations].

    PubMed

    Aach, M; Meindl, R C; Geßmann, J; Schildhauer, T A; Citak, M; Cruciger, O

    2015-02-01

    Mobile exoskeletons are increasingly being applied in the course of rehabilitation and provision of medical aids to patients with spinal cord injuries. This article gives a description of the currently available exoskeletal systems and the clinical application including scientific and medical evidence, to derive recommendations regarding clinical practice of the various exoskeletons in the rehabilitation of patients with spinal cord injuries. The different systems represent a useful adjunct to the therapeutic regimen depending on the medical objectives. Posture-controlled exoskeletons in particular enable mobilization of patients with neurological gait disorders via direct motion support. In addition the neurologically controlled exoskeleton HAL® leads to functional improvements in patients with residual muscular functions in the chronic phase of spinal cord injury in terms of improved walking abilities subsequent to training. However, beneficial effects on bone density, bladder function and perfusion are conceivable but not yet adequately supported by evidence. Positive effects on spasticity and neuropathic pain are currently based only on case series or small clinical trials. Although exoskeletons are not yet an established tool in the treatment of spinal cord injuries, the systems will play a more important role in rehabilitation of patients with spinal cord injuries in the future. Neurologically controlled exoskeletons show beneficial effects in the treatment of acute and chronic spinal cord injuries and might therefore evolve to be a useful alternative to conventional locomotion training.

  13. Spinal cord stimulation paresthesia and activity of primary afferents.

    PubMed

    North, Richard B; Streelman, Karen; Rowland, Lance; Foreman, P Jay

    2012-10-01

    A patient with failed back surgery syndrome reported paresthesia in his hands and arms during a spinal cord stimulation (SCS) screening trial with a low thoracic electrode. The patient's severe thoracic stenosis necessitated general anesthesia for simultaneous decompressive laminectomy and SCS implantation for chronic use. Use of general anesthesia gave the authors the opportunity to characterize the patient's unusual distribution of paresthesia. During SCS implantation, they recorded SCS-evoked antidromic potentials at physiologically relevant amplitudes in the legs to guide electrode placement and in the arms as controls. Stimulation of the dorsal columns at T-8 evoked potentials in the legs (common peroneal nerves) and at similar thresholds, consistent with the sensation of paresthesia in the arms, in the right ulnar nerve. The authors' electrophysiological observations support observations by neuroanatomical specialists that primary afferents can descend several (in this case, at least 8) vertebral segments in the spinal cord before synapsing or ascending. This report thus confirms a physiological basis for unusual paresthesia distribution associated with thoracic SCS.

  14. Irradiation of Pediatric High-Grade Spinal Cord Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tendulkar, Rahul D.; Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.or; Wu Shengjie

    2010-12-01

    Purpose: To report the outcome using radiation therapy (RT) for pediatric patients with high-grade spinal cord tumors. Methods and Materials: A retrospective chart review was conducted that included 17 children with high-grade spinal cord tumors treated with RT at St. Jude Children's Research Hospital between 1981 and 2007. Three patients had gross total resection, 11 had subtotal resection, and 3 underwent biopsy. The tumor diagnosis was glioblastoma multiforme (n = 7), anaplastic astrocytoma (n = 8), or anaplastic oligodendroglioma (n = 2). Seven patients received craniospinal irradiation (34.2-48.6 Gy). The median dose to the primary site was 52.2 Gy (range,more » 38-66 Gy). Results: The median progression-free and overall survivals were 10.8 and 13.8 months, respectively. Local tumor progression at 12 months (79% vs. 30%, p = 0.02) and median survival (13.1 vs. 27.2 months, p = 0.09) were worse for patients with glioblastoma multiforme compared with anaplastic astrocytoma or oligodendroglioma. The median overall survival was shorter for patients when failure included neuraxis dissemination (n = 8) compared with local failure alone (n = 5), 9.6 vs. 13.8 months, p = 0.08. Three long-term survivors with World Health Organization Grade III tumors were alive with follow-up, ranging from 88-239 months. Conclusions: High-grade spinal cord primary tumors in children have a poor prognosis. The propensity for neuraxis metastases as a component of progression after RT suggests the need for more aggressive therapy.« less

  15. Electrically evoked compound action potentials recorded from the sheep spinal cord.

    PubMed

    Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Laird, James; Gorman, Robert B; Ladd, Leigh A; Cousins, Michael J

    2013-01-01

    The study aims to characterize the electrical response of dorsal column axons to depolarizing stimuli to help understand the mechanisms of spinal cord stimulation (SCS) for the relief of chronic pain. We recorded electrically evoked compound action potentials (ECAPs) during SCS in 10 anesthetized sheep using stimulating and recording electrodes on the same epidural SCS leads. A novel stimulating and recording system allowed artifact contamination of the ECAP to be minimized. The ECAP in the sheep spinal cord demonstrates a triphasic morphology, with P1, N1, and P2 peaks. The amplitude of the ECAP varies along the length of the spinal cord, with minimum amplitudes recorded from electrodes positioned over each intervertebral disc, and maximum amplitudes recorded in the midvertebral positions. This anatomically correlated depression of ECAP also correlates with the areas of the spinal cord with the highest thresholds for stimulation; thus regions of weakest response invariably had least sensitivity to stimulation by as much as a factor of two. The choice of stimulating electrode location can therefore have a profound effect on the power consumption for an implanted stimulator for SCS. There may be optimal positions for stimulation in the sheep, and this observation may translate to humans. Almost no change in conduction velocity (∼100 ms) was observed with increasing currents from threshold to twice threshold, despite increased Aβ fiber recruitment. Amplitude of sheep Aβ fiber potentials during SCS exhibit dependence on electrode location, highlighting potential optimization of Aβ recruitment and power consumption in SCS devices. © 2013 International Neuromodulation Society.

  16. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury.

    PubMed

    Keirstead, Hans S; Nistor, Gabriel; Bernal, Giovanna; Totoiu, Minodora; Cloutier, Frank; Sharp, Kelly; Steward, Oswald

    2005-05-11

    Demyelination contributes to loss of function after spinal cord injury, and thus a potential therapeutic strategy involves replacing myelin-forming cells. Here, we show that transplantation of human embryonic stem cell (hESC)-derived oligodendrocyte progenitor cells (OPCs) into adult rat spinal cord injuries enhances remyelination and promotes improvement of motor function. OPCs were injected 7 d or 10 months after injury. In both cases, transplanted cells survived, redistributed over short distances, and differentiated into oligodendrocytes. Animals that received OPCs 7 d after injury exhibited enhanced remyelination and substantially improved locomotor ability. In contrast, when OPCs were transplanted 10 months after injury, there was no enhanced remyelination or locomotor recovery. These studies document the feasibility of predifferentiating hESCs into functional OPCs and demonstrate their therapeutic potential at early time points after spinal cord injury.

  17. Expression and Cellular Distribution of Ubiquitin in Response to Injury in the Developing Spinal Cord of Monodelphis domestica

    PubMed Central

    Noor, Natassya M.; Møllgård, Kjeld; Wheaton, Benjamin J.; Steer, David L.; Truettner, Jessie S.; Dziegielewska, Katarzyna M.; Dietrich, W. Dalton; Smith, A. Ian; Saunders, Norman R.

    2013-01-01

    Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to postnatal day P35 in control opossums (Monodelphis domestica) and in response to complete spinal transection (T10) at P7, when axonal growth through site of injury occurs, and P28 when this is no longer possible. Cords were collected 1 or 7 days after injury, with age-matched controls and segments rostral to lesion were studied. Following spinal injury ubiquitin levels (western blotting) appeared reduced compared to controls especially one day after injury at P28. In contrast, after injury mRNA expression (qRT-PCR) was slightly increased at P7 but decreased at P28. Changes in isoelectric point of separated ubiquitin indicated possible post-translational modifications. Cellular distribution demonstrated a developmental shift between earliest (P8) and latest (P35) ages examined, from a predominantly cytoplasmic immunoreactivity to a nuclear expression; staining level and shift to nuclear staining was more pronounced following injury, except 7 days after transection at P28. After injury at P7 immunostaining increased in neurons and additionally in oligodendrocytes at P28. Mass spectrometry showed two ubiquitin bands; the heavier was identified as a fusion product, likely to be an ubiquitin precursor. Apparent changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets. PMID:23626776

  18. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.

    2011-02-01

    The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.

  19. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells

    PubMed Central

    Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan

    2016-01-01

    Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is

  20. Involvement of peripheral and spinal tumor necrosis factor α in spinal cord hyperexcitability during knee joint inflammation in rats.

    PubMed

    König, Christian; Zharsky, Maxim; Möller, Christian; Schaible, Hans-Georg; Ebersberger, Andrea

    2014-03-01

    Tumor necrosis factor α (TNFα) is produced not only in peripheral tissues, but also in the spinal cord. The purpose of this study was to address the potential of peripheral and spinal TNFα to induce and maintain spinal hyperexcitability, which is a hallmark of pain states in the joints during rheumatoid arthritis and osteoarthritis. In vivo recordings of the responses of spinal cord neurons to nociceptive knee input under normal conditions and in the presence of experimental knee joint inflammation were obtained in anesthetized rats. TNFα, etanercept, or antibodies to TNF receptors were applied to either the knee joint or the spinal cord surface. Injection of TNFα into the knee joint cavity increased the responses of spinal cord neurons to mechanical joint stimulation, and injection of etanercept into the knee joint reduced the inflammation-evoked spinal activity. These spinal effects closely mirrored the induction and reduction of peripheral sensitization. Responses to joint stimulation were also enhanced by spinal application of TNFα, and spinal application of either etanercept or anti-TNF receptor type I significantly attenuated the generation of inflammation-evoked spinal hyperexcitability, which is characterized by widespread pain sensitization beyond the inflamed joint. Spinally applied etanercept did not reduce established hyperexcitability in the acute kaolin/carrageenan model. In antigen-induced arthritis, etanercept decreased spinal responses on day 1, but not on day 3. While peripheral TNFα increases spinal responses to joint stimulation, spinal TNFα supports the generation of the full pattern of spinal hyperexcitability. However, established spinal hyperexcitability may be maintained by downstream mechanisms that are independent of spinal TNFα. Copyright © 2014 by the American College of Rheumatology.

  1. Rehabilitation outcomes following traumatic spinal cord injury in a tertiary spinal cord injury centre: a comparison with an international standard.

    PubMed

    Chan, S C C; Chan, A P S

    2005-08-01

    Retrospective descriptive analysis of data of patients with traumatic spinal cord injury (SCI) in a tertiary SCI centre. To identify the characteristics of the rehabilitation outcomes of patients with different levels of traumatic SCI and to compare the results with data reported in the American Consortium for Spinal Cord Medicine. A newly established tertiary SCI centre in Tai Po Hospital, Tai Po, Hong Kong. A total of 33 patients with traumatic SCI admitted in 2002 were included in the study. They were classified into different ASIA subgroups based on their levels and completeness of injury. The functional status changes measured by the Functional Independence Measure (FIM) (on admission, placement and upon discharge, and at 1 and 3 months post discharge) and discharge placement were recorded as rehabilitation outcomes. A total, 24 patients were tetraplegic while nine were paraplegic. Seven and two from tetraplegic and paraplegic groups were readmitted with late complications due to urinary tract infection, spasticity and/or occurrence of pressure sores. The mean age was found to be 48.36 (SD=15.64) years. In all, 16 (48.48%) sustained the injury from falling from height. The trend of FIM motor scores at discharge across different ASIA subgroups appeared to be comparable to those reported in the American Consortium for Spinal Cord Medicine with scores generally lower. Significant functional improvements during the hospital phase were found in the two tetraplegic and paraplegic ASIA D subgroups (t3=3.430, P<0.05; t2=4.083, P=0.55, respectively). Significant differences were also revealed among subgroups (F(7,32)=6.625, P<0.0005) with lower level tetraplegic groups appearing to stay much longer in the rehabilitation centre. In all, 64.5% of newly diagnosed patients returned to live in the community. This report gives a preliminary overview on the characteristics of rehabilitation outcomes in one of the SCI centres in Hong Kong in relation to the international

  2. Complete segmental resection of the spine, including the spinal cord, for telangiectatic osteosarcoma: a report of 2 cases.

    PubMed

    Murakami, Hideki; Tomita, Katsuro; Kawahara, Norio; Oda, Makoto; Yahata, Tetsutaro; Yamaguchi, Takehiko

    2006-02-15

    Two case reports of telangiectatic osteosarcoma treated with complete segmental resection of the spine, including the spinal cord. To report the en bloc tumor excision, including the spinal cord, for telangiectatic osteosarcoma, and discuss the indication of cord transection and influence after cutting the spinal cord. To our knowledge, there are no previous reports describing telangiectatic osteosarcoma of the spine and the subsequent en bloc excision of the spine, including the spinal cord. The clinical and radiographic presentations of 2 cases with telangiectatic osteosarcoma are presented. Because these 2 cases already had complete paralysis for at least 1 month, it was suspected that there was no possibility of recovering spinal cord function. Complete segmental spinal resection (total en bloc spondylectomy) was performed. At that level, the spinal cord was also cut and resected. En bloc excision of the tumor with a wide margin was achieved in both cases. In the resected specimen, the nerve cells in the spinal cord had lapsed into degenerative necrosis. The pathologic findings showed that there was no hope for recovery of spinal cord function. En bloc spinal resection, including the spinal cord, is an operation allowed when there is no hope for recovery of spinal cord function. This surgery should be accepted as an option in spine tumor surgeries.

  3. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo.

    PubMed

    Battiston, Marco; Grussu, Francesco; Ianus, Andrada; Schneider, Torben; Prados, Ferran; Fairney, James; Ourselin, Sebastien; Alexander, Daniel C; Cercignani, Mara; Gandini Wheeler-Kingshott, Claudia A M; Samson, Rebecca S

    2018-05-01

    To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k FB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm 3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and k FB  = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and k FB . The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc

  4. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo

    PubMed Central

    Grussu, Francesco; Ianus, Andrada; Schneider, Torben; Prados, Ferran; Fairney, James; Ourselin, Sebastien; Alexander, Daniel C.; Cercignani, Mara; Gandini Wheeler‐Kingshott, Claudia A.M.; Samson, Rebecca S.

    2017-01-01

    Purpose To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. Methods A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field‐of‐view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer‐Rao‐lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k FB]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. Results Cramer‐Rao‐lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady‐state MT effect. The proposed framework allows quantitative voxel‐wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole‐cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and k FB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and k FB. Conclusion The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576–2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28921614

  5. Evaluation of purinergic mechanism for the treatment of voiding dysfunction: a study in conscious spinal cord-injured rats.

    PubMed

    Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S

    2007-10-01

    To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p < 0.05) increased the interval between voids by 25%, reduced the number of NVCs by 42-62%, and increased the pressure threshold for voiding by 53-73%, but did not change the amplitude of the duration of the voiding contractions. The effects of the drug were apparent within 10 minutes following administration. These results indicate that purinergic mechanisms, presumably involving P2X(3) or P2X(2/3) receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.

  6. Improving the Efficiency and Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    2   INTRODUCTION: The magnitude of acute post- traumatic hemorrhagic necrosis (PHN) is an early prognostic indicator of long-term...Efficacy of Glibenclamide in Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury PRINCIPAL INVESTIGATOR: J. Marc Simard...Limiting Progressive Hemorrhagic Necrosis Following Traumatic Spinal Cord Injury 5b. GRANT NUMBER W81XWH-10-1-0898 5c. PROGRAM ELEMENT NUMBER 6

  7. Capillary Hemangioma of the Thoracic Spinal Cord

    PubMed Central

    Chung, Sung-Kyun; Nam, Taek-Kyun; Park, Seung-Won

    2010-01-01

    Capillary hemangiomas are common soft tissue tumors on the skin or mucosa of the head and neck in the early childhood, but very rare in the neuraxis. A 47-year-old man presented with one month history of back pain on the lower thoracic area, radiating pain to both legs, and hypesthesia below T7 dermatome. Thoracic spine MRI showed 1×1.3×1.5 cm, well-defined intradural mass at T6-7 disc space level, which showed isointensity to spinal cord on T1, heterogeneous isointensity on T2-weighted images, and homogeneous strong enhancement. The patient underwent T6-7 total laminotomy, complete tumor removal and laminoplasty. Histologically, the mass showed a capsulated nodular lesion composed of capillary-sized vascular channels, which were tightly packed into nodules separated by fibrous septa. These features were consistent with capillary hemangioma. PMID:21082058

  8. Clinical interpretation of the Spinal Cord Injury Functional Index (SCI-FI)

    PubMed Central

    Fyffe, Denise; Kalpakjian, Claire Z.; Slavin, Mary; Kisala, Pamela; Ni, Pengsheng; Kirshblum, Steven C.; Tulsky, David S.; Jette, Alan M.

    2016-01-01

    Objective: To provide validation of functional ability levels for the Spinal Cord Injury – Functional Index (SCI-FI). Design: Cross-sectional. Setting: Inpatient rehabilitation hospital and community settings. Participants: A sample of 855 individuals with traumatic spinal cord injury enrolled in 6 rehabilitation centers participating in the National Spinal Cord Injury Model Systems Network. Interventions: Not Applicable. Main Outcome Measures: Spinal Cord Injury-Functional Index (SCI-FI). Results: Cluster analyses identified three distinct groups that represent low, mid-range and high SCI-FI functional ability levels. Comparison of clusters on personal and other injury characteristics suggested some significant differences between groups. Conclusions: These results strongly support the use of SCI-FI functional ability levels to document the perceived functional abilities of persons with SCI. Results of the cluster analysis suggest that the SCI-FI functional ability levels capture function by injury characteristics. Clinical implications regarding tracking functional activity trajectories during follow-up visits are discussed. PMID:26781769

  9. Neuroprotective Effects of Sulforaphane after Contusive Spinal Cord Injury

    PubMed Central

    Benedict, Andrea L.; Mountney, Andrea; Hurtado, Andres; Bryan, Kelley E.; Schnaar, Ronald L.; Dinkova-Kostova, Albena T.

    2012-01-01

    Abstract Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI. PMID:22853439

  10. Neuroprotective effects of sulforaphane after contusive spinal cord injury.

    PubMed

    Benedict, Andrea L; Mountney, Andrea; Hurtado, Andres; Bryan, Kelley E; Schnaar, Ronald L; Dinkova-Kostova, Albena T; Talalay, Paul

    2012-11-01

    Traumatic spinal cord injury (SCI) leads to oxidative stress, calcium mobilization, glutamate toxicity, the release of proinflammatory factors, and depletion of reduced glutathione (GSH) at the site of injury. Induction of the Keap1/Nrf2/ARE pathway can alleviate neurotoxicity by protecting against GSH depletion, oxidation, intracellular calcium overload, mitochondrial dysfunction, and excitotoxicity. Sulforaphane (SF), an isothiocyanate derived from broccoli, is a potent naturally-occurring inducer of the Keap1/Nrf2/ARE pathway, leading to upregulation of genes encoding cytoprotective proteins such as NAD(P)H: quinone oxidoreductase 1, and GSH-regulatory enzymes. Additionally, SF can attenuate inflammation by inhibiting the nuclear factor-κB (NF-κB) pathway, and the enzymatic activity of the proinflammatory cytokine macrophage inhibitory factor (MIF). Our study examined systemic administration of SF in a rat model of contusion SCI, in an effort to utilize its indirect antioxidant and anti-inflammatory properties to decrease secondary injury. Two doses of SF (10 or 50 mg/kg) were administered at 10 min and 72 h after contusion SCI. SF (50 mg/kg) treatment resulted in both acute and long-term beneficial effects, including upregulation of the phase 2 antioxidant response at the injury site, decreased mRNA levels of inflammatory cytokines (i.e., MMP-9) in the injured spinal cord, inactivation of urinary MIF tautomerase activity, enhanced hindlimb locomotor function, and an increased number of serotonergic axons caudal to the lesion site. These findings demonstrate that SF provides neuroprotective effects in the spinal cord after injury, and could be a candidate for therapy of SCI.

  11. Boomerang deformity of cervical spinal cord migrating between split laminae after laminoplasty.

    PubMed

    Kimura, S; Gomibuchi, F; Shimoda, H; Ikezawa, Y; Segawa, H; Kaneko, F; Uchiyama, S; Homma, T

    2000-04-01

    Patients with cervical compression myelopathy were studied to elucidate the mechanism underlying boomerang deformity, which results from the migration of the cervical spinal cord between split laminae after laminoplasty with median splitting of the spinous processes (boomerang sign). Thirty-nine cases, comprising 25 patients with cervical spondylotic myelopathy, 8 patients with ossification of the posterior longitudinal ligament, and 6 patients with cervical disc herniation with developmental canal stenosis, were examined. The clinical and radiological findings were retrospectively compared between patients with (B group, 8 cases) and without (C group, 31 cases) boomerang sign. Moderate increase of the grade of this deformity resulted in no clinical recovery, although there was no difference in clinical recovery between the two groups. Most boomerang signs developed at the C4/5 and/or C5/6 level, where maximal posterior movement of the spinal cord was achieved. Widths between lateral hinges and between split laminae in the B group were smaller than in the C group. Flatness of the spinal cord in the B group was more severe than in the C group. In conclusion, the boomerang sign was caused by posterior movement of the spinal cord, narrower enlargement of the spinal canal and flatness of the spinal cord.

  12. Experiences of Living with Pain after a Spinal Cord Injury

    DTIC Science & Technology

    2013-09-01

    AD_________________ Award Number: W81XWH-12-1-0465 TITLE: Experiences of Living with Pain after a...COVERED 01 September 2012 – 31 August 2013 4. TITLE AND SUBTITLE Experiences of Living with Pain after a Spinal Cord Injury 5a. CONTRACT NUMBER...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Persistent chronic pain is prevalent after a spinal cord injury (SCI), with

  13. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.

    PubMed

    Mazzoleni, S; Battini, E; Rustici, A; Stampacchia, G

    2017-07-01

    The aim of this study is to investigate the effects of an integrated gait rehabilitation training based on Functional Electrical Stimulation (FES)-cycling and overground robotic exoskeleton in a group of seven complete spinal cord injury patients on spasticity and patient-robot interaction. They underwent a robot-assisted rehabilitation training based on two phases: n=20 sessions of FES-cycling followed by n= 20 sessions of robot-assisted gait training based on an overground robotic exoskeleton. The following clinical outcome measures were used: Modified Ashworth Scale (MAS), Numerical Rating Scale (NRS) on spasticity, Penn Spasm Frequency Scale (PSFS), Spinal Cord Independence Measure Scale (SCIM), NRS on pain and International Spinal Cord Injury Pain Data Set (ISCI). Clinical outcome measures were assessed before (T0) after (T1) the FES-cycling training and after (T2) the powered overground gait training. The ability to walk when using exoskeleton was assessed by means of 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Timed Up and Go test (TUG), standing time, walking time and number of steps. Statistically significant changes were found on the MAS score, NRS-spasticity, 6MWT, TUG, standing time and number of steps. The preliminary results of this study show that an integrated gait rehabilitation training based on FES-cycling and overground robotic exoskeleton in complete SCI patients can provide a significant reduction of spasticity and improvements in terms of patient-robot interaction.

  14. Spinal cord injury in the emergency context: review of program outcomes of a spinal cord injury rehabilitation program in Sri Lanka

    PubMed Central

    2014-01-01

    Background The final months of the conflict in Sri Lanka in 2009 resulted in massive displacement of the civilian population and a high volume of orthopedic trauma including spinal cord injury. In response to this need, Médecins Sans Frontières implemented a multidisciplinary rehabilitation program. Methods Patients were admitted to the program if they had a spinal cord injury, a stable spine and absence of a high-grade pressure ulcer. All patients were assessed on admission with a standardized functional scale the Spinal Cord Independence Measure II (SCIM) and the American Spinal Injury Association Impairment Scale (ASIA). A multidisciplinary team provided nursing care, physiotherapy, bowel and bladder training, mental health care, and vocational rehabilitation. Patients were discharged from the program when medically stable and able to perform activities of daily living independently or with assistance of a caregiver. The primary outcome measures were discharge to the community, and change in SCIM score on discharge. Secondary outcome measures were measured at 6-12 weeks post-discharge, and included SCIM score and presence of complications (pressure ulcers, urinary tract infections and bowel problems). Results 89 patients were admitted. The majority of injuries were to the thoracic region or higher (89%). The injuries were classified as ASIA grade A in 37 (43%), grade B in 17(20%), grade C in 15 (17%) and grade D in 17(20%). 83.2% met the criteria for discharge, with a further 7.9% patients requiring transfer to hospital for surgical care of pressure ulcers. There was a significant change in SCIM score from 55 on admission to 71 on discharge (p < 0.01). 79.8% and 66.7% achieved a clinically significant and substantially significant SCIM score improvement, respectively. Amongst those with follow up data, there was a reduction in post spinal cord injury complications from those experienced either at or during admission. A further 79% of SCIM scores were

  15. Spinal cord stimulation for refractory angina in a patient implanted with a cardioverter defibrillator.

    PubMed

    Ferrero, Paolo; Grimaldi, Roberto; Massa, Riccardo; Chiribiri, Amedeo; De Luca, Anna; Castellano, Maddalena; Cardano, Paola; Trevi, Gian Paolo

    2007-01-01

    Spinal cord stimulation is currently used to treat refractory angina. Some concerns may arise about the possible interaction concerning the spinal cord stimulator in patients already implanted with a pacemaker or a cardioverter defibrillator. We are going to describe the successful implantation of a spinal cord stimulator in a patient previously implanted with a cardioverter defibrillator.

  16. Terminations of reticulospinal fibers originating from the gigantocellular reticular formation in the mouse spinal cord.

    PubMed

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2016-04-01

    The present study investigated the projections of the gigantocellular reticular nucleus (Gi) and its neighbors--the dorsal paragigantocellular reticular nucleus (DPGi), the alpha/ventral part of the gigantocellular reticular nucleus (GiA/V), and the lateral paragigantocellular reticular nucleus (LPGi)--to the mouse spinal cord by injecting the anterograde tracer biotinylated dextran amine (BDA) into the Gi, DPGi, GiA/GiV, and LPGi. The Gi projected to the entire spinal cord bilaterally with an ipsilateral predominance. Its fibers traveled in both the ventral and lateral funiculi with a greater presence in the ventral funiculus. As the fibers descended in the spinal cord, their density in the lateral funiculus increased. The terminals were present mainly in laminae 7-10 with a dorsolateral expansion caudally. In the lumbar and sacral cord, a considerable number of terminals were also present in laminae 5 and 6. Contralateral fibers shared a similar pattern to their ipsilateral counterparts and some fibers were seen to cross the midline. Fibers arising from the DPGi were similarly distributed in the spinal cord except that there was no dorsolateral expansion in the lumbar and sacral segments and there were fewer fiber terminals. Fibers arising from GiA/V predominantly traveled in the ventral and lateral funiculi ipsilaterally. Ipsilaterally, the density of fibers in the ventral funiculus decreased along the rostrocaudal axis, whereas the density of fibers in the lateral funiculus increased. They terminate mainly in the medial ventral horn and lamina 10 with a smaller number of fibers in the dorsal horn. Fibers arising from the LPGi traveled in both the ventral and lateral funiculi and the density of these fibers in the ventral and lateral funiculi decreased dramatically in the lumbar and sacral segments. Their terminals were present in the ventral horn with a large portion of them terminating in the motor neuron columns. The present study is the first demonstration

  17. The distribution and origin of a novel brain peptide, neuropeptide Y, in the spinal cord of several mammals.

    PubMed

    Gibson, S J; Polak, J M; Allen, J M; Adrian, T E; Kelly, J S; Bloom, S R

    1984-07-20

    The distribution of neuropeptide Y [NPY]-immunoreactive material was examined in the spinal cord and dorsal root ganglia of rat, guinea-pig, cat, marmoset, and horse. Considerable concentrations of NPY and similar distribution patterns of immunoreactive nerve fibres were found in the spinal cord of all species investigated. The dorsal root ganglia of the cat and the horse contained numerous immunoreactive nerve fibres, but in these species, as in the other three studied [rat, guinea-pig, marmoset], no positively stained cell bodies were found. Neuropeptide Y-immunoreactive nerves were observed at all levels of the spinal cord, being most concentrated in the dorsal horn. In the rat, guinea-pig, and marmoset, there was a marked increase of NPY-immunoreactive fibres in the lumbosacral regions of the spinal cord, and this was reflected by a considerable increase of extractable NPY. Estimations of NPY-immunoreactive material in the various regions of the rat spinal cord were as follows: cervical, 13.8 +/- 1.0; thoracic, 21.1 +/- 2.5; lumbar, 16.3 +/- 2.9; sacral, 92.4 +/- 8.5 pmol/gm wet weight of tissue +/- SEM. In the ventral portion of the guinea-pig spinal cord they were as follows: cervical, 7.1 +/- 1.2; thoracic, 8.2 +/- 3.6; lumbar, 22.6 +/- 7.0; sacral, 36.7 +/- 9.5 pmol/gm wet weight of tissue +/- SEM. Analysis of spinal cord extracts by reverse phase high performance liquid chromatography [HPLC] demonstrated that NPY-immunoreactive material elutes in the position of pure NPY standard. No changes in the concentration and distribution of the NPY-like material in the rat spinal cord were observed following a variety of surgical and pharmacological manipulations, including cervical rhizotomy, sciatic nerve section and ligation, and local application of capsaicin [50 mM] to one sciatic nerve. It is therefore suggested that most of the NPY-immunoreactive material in the spinal cord is derived either from intrinsic nerve cell bodies or from supraspinal tracts.

  18. Scissors stab wound to the cervical spinal cord at the craniocervical junction.

    PubMed

    Zhang, Xiao-Yong; Yang, Ying-Ming

    2016-06-01

    Stab wounds resulting in spinal cord injury of the craniocervical junction are rare. A scissors stab wound to the cervical spinal cord has been reported only once in the literature. This paper aimed to report a case of Brown-Séquard-plus syndrome in an 8-year-old boy secondary to a scissors stab wound at the craniocervical junction. Case report and review of the literature. Case report of an 8-year-old boy accidentally stabbed in the neck by scissors, which were thrown as a dart. The case study of an 8-year-old boy who was hospitalized because of a scissors stab wound at the craniocervical junction. The patient developed Brown-Séquard-plus syndrome on the left side of the body. Magnetic resonance imaging revealed a laceration of the spinal cord at the craniocervical junction with cerebrospinal fluid leakage. Careful cleansing and interrupted sutures of the wounds were performed to prevent cerebrospinal fluid leakage. Rehabilitation therapy was performed 2 days later. A follow-up examination revealed complete recovery of the neurologic deficit 8 months post-injury. Treatment of scissors stab wounds to the cervical spinal cord, whether conservative management or thorough surgical exploration, should be individualized based on history, examination, and imaging. As shown in this case report, despite conservative management, complete recovery, which was unexpected, was attributed to the initial mild laceration of the spinal cord and ipsilateral spinal cord functional compensation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Site-specific gene transfer into the rat spinal cord by photomechanical waves

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Toyooka, Terushige; Uozumi, Yoichi; Nawashiro, Hiroshi; Ashida, Hiroshi; Obara, Minoru

    2011-10-01

    Nonviral, site-specific gene delivery to deep tissue is required for gene therapy of a spinal cord injury. However, an efficient method satisfying these requirements has not been established. This study demonstrates efficient and targeted gene transfer into the spinal cord by using photomechanical waves (PMWs), which were generated by irradiating a black laser absorbing rubber with 532-nm nanosecond Nd:YAG laser pulses. After a solution of plasmid DNA coding for enhanced green fluorescent protein (EGFP) or luciferase was intraparenchymally injected into the spinal cord, PMWs were applied to the target site. In the PMW application group, we observed significant EGFP gene expression in the white matter and remarkably high luciferase activity only in the spinal cord segment exposed to the PMWs. We also assessed hind limb movements 24 h after the application of PMWs based on the Basso-Beattie-Bresnahan (BBB) score to evaluate the noninvasiveness of this method. Locomotor evaluation showed no significant decrease in BBB score under optimum laser irradiation conditions. These findings demonstrated that exogenous genes can be efficiently and site-selectively delivered into the spinal cord by applying PMWs without significant locomotive damage.

  20. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    PubMed

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  1. Emotional Intelligence in Patients with Spinal Cord Injury (SCI).

    PubMed

    Saberi, Hooshang; Ghajarzadeh, Mahsa

    2017-05-01

    Spinal Cord Injury (SCI) is a devastating situation. Spinal Cord Injury affects functional, psychological and socioeconomic aspects of patients' lives. The ability to accomplish and explicate the one's own and other's feelings and emotions to spread over appropriate information for confirming thoughts and actions is defined as emotional intelligence (EI). The goal of this study was to evaluate depression and EI in SCI patients in comparison with healthy subjects. One-hundred-ten patients with SCI and 80 healthy subjects between Aug 2014 and Aug 2015 were enrolled. The study was conducted in Imam Hospital, Tehran, Iran. All participants were asked to fill valid and reliable Persian version Emotional Quotient inventory (EQ-i) and Beck Depression Inventory (BDI). All data were analyzed using SPSS. Data were presented as Mean±SD for continuous or frequencies for categorical variables. Continuous variables compared by means of independent sample t -test. P -values less than 0.05 were considered as significant. Mean age of patients was 28.7 and mean age of controls was 30.2 yr. Spinal cord injury in 20 (18.3%) were at cervical level, in 83 (75.4%) were thoracic and in 7 (6.3%) were lumbar. Mean values of independence, stress tolerance, self-actualization, emotional Self-Awareness, reality testing, Impulse Control, flexibility, responsibility, and assertiveness were significantly different between cases and controls. Mean values of stress tolerance, optimism, self-regard, and responsibility were significantly different between three groups with different injury level. Most scales were not significantly different between male and female cases. Emotional intelligence should be considered in SCI cases as their physical and psychological health is affected by their illness.

  2. Potential neuroprotective effect of Anakinra in spinal cord injury in an in vivo experimental animal model

    PubMed Central

    Hasturk, Askin E.; Yilmaz, Erdal R.; Turkoglu, Erhan; Arikan, Murat; Togral, Guray; Hayirli, Nazli; Erguder, Berrin I.; Evirgen, Oya

    2015-01-01

    Objective: To evaluate the therapeutic effects of inhibiting interleukin-1 beta (IL-1β) in vivo using Anakinra in an experimental model of spinal cord injury (SCI). Methods: All experimental procedures were performed in the animal laboratory of Ankara Education and Research Hospital, Ankara, Turkey between August 2012 and May 2014. The SCI was induced by applying vascular clips to the dura via a 4-level T5-T8 laminectomy. Fifty-four rats were randomized into the following groups: controls (n = 18), SCI + saline (n = 18), and SCI + Anakinra (n = 18). Spinal cord samples were obtained from animals in both SCI groups at one, 6, and 24 hours after surgery (n = 6 for each time point). Spinal cord tissue and serum were extracted, and the levels of IL-1β, malondialdehyde, glutathione peroxidase, superoxide dismutase, and catalase were analyzed. Furthermore, histopathological evaluation of the tissues was performed. Results: The SCI in rats caused severe injury characterized by edema, neutrophil infiltration, and cytokine production followed by recruitment of other inflammatory cells, lipid peroxidation, and increased oxidative stress. After SCI, tissue and serum IL-1β levels were significantly increased, but were significantly decreased by Anakinra administration. Following trauma, glutathione peroxidase, superoxide dismutase, and catalase levels were decreased; however, Anakinra increased the activity of these antioxidant enzymes. Malondialdehyde levels were increased after trauma, but were unaffected by Anakinra. Histopathological analysis showed that Anakinra effectively protected the spinal cord tissue from injury. Conclusion: Treatment with Anakinra reduces inflammation and other tissue injury events associated with SCI. PMID:25864064

  3. MANF attenuates neuronal apoptosis and promotes behavioral recovery via Akt/MDM-2/p53 pathway after traumatic spinal cord injury in rats.

    PubMed

    Gao, Liansheng; Xu, Weilin; Fan, Shuangbo; Li, Tao; Zhao, Tengfei; Ying, Guangyu; Zheng, Jingwei; Li, Jianru; Zhang, Zhongyuan; Yan, Feng; Zhu, Yongjian; Chen, Gao

    2018-05-24

    The aim of this study was to investigate the potential effect and mechanism of action of MANF in attenuating neuronal apoptosis following t-SCI. A clip compressive model was used to induce a crush injury of the spinal cord in a total of 230 rats. The Basso, Beattie, and Bresnahan (BBB) score, spinal cord water content, and blood spinal cord barrier (BSCB) permeability were evaluated. The expression levels of MANF and its downstream proteins were examined by western blotting. Immunofluorescence staining of MANF, NeuN, GFAP, Iba-1, cleaved caspase-3, and TUNEL staining were also performed. Cells were counted in six randomly selected fields in the gray matter regions of the sections from two spinal cord sites (2 mm rostral and caudal to the epicenter of the injury) per sample. A cell-based mechanical injury model was also conducted using SH-SY5Y cells. Cell apoptosis and viability were assessed by flow cytometry, an MTT assay, and trypan blue staining. Subcellular structures were observed by transmission electron microscopy. MANF was mainly expressed in neurons. The expression levels of MANF, and its downstream target, p-Akt, were gradually increased and after t-SCI. Treatment with MANF increased Bcl-2 and decreased Bax and CC-3 levels; these effects were reversed on treatment with MK2206. The BBB score, spinal cord water content, and BSCB destruction were also ameliorated by MANF treatment. MANF decreases neuronal apoptosis and improves neurological function through Akt/MDM-2/p53 pathway after t-SCI. Therefore, MANF might be a potential treatment for patients with t-SCI.© 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  4. Naturally Occurring Disk Herniation in Dogs: An Opportunity for Pre-Clinical Spinal Cord Injury Research

    PubMed Central

    Levine, Gwendolyn J.; Porter, Brian F.; Topp, Kimberly; Noble-Haeusslein, Linda J.

    2011-01-01

    Abstract Traumatic spinal cord injuries represent a significant source of morbidity in humans. Despite decades of research using experimental models of spinal cord injury to identify candidate therapeutics, there has been only limited progress toward translating beneficial findings to human spinal cord injury. Thoracolumbar intervertebral disk herniation is a naturally occurring disease that affects dogs and results in compressive/contusive spinal cord injury. Here we discuss aspects of this disease that are analogous to human spinal cord injury, including injury mechanisms, pathology, and metrics for determining outcomes. We address both the strengths and weaknesses of conducting pre-clinical research in these dogs, and include a review of studies that have utilized these animals to assess efficacy of candidate therapeutics. Finally, we consider a two-species approach to pre-clinical data acquisition, beginning with a reproducible model of spinal cord injury in the rodent as a tool for discovery with validation in pet dogs with intervertebral disk herniation. PMID:21438715

  5. Breaking the News in Spinal Cord Injury

    PubMed Central

    Kirshblum, Steven; Fichtenbaum, Joyce

    2008-01-01

    Summary: Breaking the bad news in terms of prognosis for significant motor recovery following a neurologically complete spinal cord injury (SCI) is one of the most difficult tasks for the spinal cord medicine specialist. Learning the skills to facilitate this communication is extremely important to better assist patients to understand their prognosis as well as foster hope for their future. If bad news is delivered poorly it can cause confusion and long-lasting distress and resentment; if done well, it may assist understanding, adjustment, and acceptance. This article provides the physician who cares for patients with SCI with some concepts to consider when discussing prognosis with patients and their families. PMID:18533406

  6. Spinal Cord Injury—Past, Present, and Future

    PubMed Central

    Donovan, William H

    2007-01-01

    Summary: This special report traces the path of spinal cord injury (SCI) from ancient times through the present and provides an optimistic overview of promising clinical trials and avenues of basic research. The spinal cord injuries of Lord Admiral Sir Horatio Nelson, President James A. Garfield, and General George Patton provide an interesting perspective on the evolution of the standard of care for SCI. The author details the contributions of a wide spectrum of professionals in the United States, Europe, and Australia, as well as the roles of various government and professional organizations, legislation, and overall advances in surgery, anesthesia, trauma care, imaging, pharmacology, and infection control, in the advancement of care for the individual with SCI. PMID:17591221

  7. Magnetic resonance imaging tractography as a diagnostic tool in patients with spinal cord injury treated with human embryonic stem cells.

    PubMed

    Shroff, Geeta

    2017-02-01

    Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.

  8. Use of Flexible Cystoscopy to Insert a Foley Catheter over a Guide Wire in Spinal Cord Injury Patients: Special Precautions to be Observed.

    PubMed

    Vaidyanathan, Subramanian; Soni, Bakul; Singh, Gurpreet; Hughes, Peter; Oo, Tun

    2011-01-01

    When urethral catheterisation is difficult or impossible in spinal cord injury patients, flexible cystoscopy and urethral catheterisation over a guide wire can be performed on the bedside, thus obviating the need for emergency suprapubic cystostomy. Spinal cord injury patients, who undergo flexible cystoscopy and urethral catheterisation over a guide wire, may develop potentially serious complications. (1) Persons with lesion above T-6 are susceptible to develop autonomic dysreflexia during cystoscopy and urethral catheterisation over a guide wire; nifedipine 5-10 milligrams may be administered sublingually just prior to the procedure to prevent autonomic dysreflexia. (2) Spinal cord injury patients are at increased risk for getting urine infections as compared to able-bodied individuals. Therefore, antibiotics should be given to patients who get haematuria or urethral bleeding following urethral catheterisation over a guide wire. (3) Some spinal cord injury patients may have a small capacity bladder; in these patients, the guide wire, which is introduced into the urinary bladder, may fold upon itself with the tip of guide wire entering the urethra. If this complication is not recognised and a catheter is inserted over the guide wire, the Foley catheter will then be misplaced in urethra despite using cystoscopy and guide wire.

  9. Use of Flexible Cystoscopy to Insert a Foley Catheter over a Guide Wire in Spinal Cord Injury Patients: Special Precautions to be Observed

    PubMed Central

    Vaidyanathan, Subramanian; Soni, Bakul; Singh, Gurpreet; Hughes, Peter; Oo, Tun

    2011-01-01

    When urethral catheterisation is difficult or impossible in spinal cord injury patients, flexible cystoscopy and urethral catheterisation over a guide wire can be performed on the bedside, thus obviating the need for emergency suprapubic cystostomy. Spinal cord injury patients, who undergo flexible cystoscopy and urethral catheterisation over a guide wire, may develop potentially serious complications. (1) Persons with lesion above T-6 are susceptible to develop autonomic dysreflexia during cystoscopy and urethral catheterisation over a guide wire; nifedipine 5–10 milligrams may be administered sublingually just prior to the procedure to prevent autonomic dysreflexia. (2) Spinal cord injury patients are at increased risk for getting urine infections as compared to able-bodied individuals. Therefore, antibiotics should be given to patients who get haematuria or urethral bleeding following urethral catheterisation over a guide wire. (3) Some spinal cord injury patients may have a small capacity bladder; in these patients, the guide wire, which is introduced into the urinary bladder, may fold upon itself with the tip of guide wire entering the urethra. If this complication is not recognised and a catheter is inserted over the guide wire, the Foley catheter will then be misplaced in urethra despite using cystoscopy and guide wire. PMID:22110492

  10. Label-free imaging of rat spinal cords based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  11. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury.

    PubMed

    Lee, Jee Y; Choi, Hae Y; Yune, Tae Y

    2016-10-01

    Recently we reported that fluoxetine (10 mg/kg) improves functional recovery by attenuating blood spinal cord barrier (BSCB) disruption after spinal cord injury (SCI). Here we investigated whether a low-dose of fluoxetine (1 mg/kg) and vitamin C (100 mg/kg), separately not possessing any protective effect, prevents BSCB disruption and improves functional recovery when combined. After a moderate contusion injury at T9 in rat, a low-dose of fluoxetine and vitamin C, or the combination of both was administered intraperitoneally immediately after SCI and further treated once a day for 14 d. Co-treatment with fluoxetine and vitamin C significantly attenuated BSCB permeability at 1 d after SCI. When only fluoxetine or vitamin C was treated after injury, however, there was no effect on BSCB disruption. Co-treatment with fluoxetine and vitamin C also significantly inhibited the expression and activation of MMP-9 at 8 h and 1 d after injury, respectively, and the infiltration of neutrophils (at 1 d) and macrophages (at 5 d) and the expression of inflammatory mediators (at 2 h, 6 h, 8 h or 24 h after injury) were significantly inhibited by co-treatment with fluoxetine and vitamin C. Furthermore, the combination of fluoxetine and vitamin C attenuated apoptotic cell death at 1 d and 5 d and improved locomotor function at 5 weeks after SCI. These results demonstrate the synergistic effect combination of low-dose fluoxetine and vitamin C on BSCB disruption after SCI and furthermore support the effectiveness of the combination treatment regimen for the management of acute SCI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ecto-domain phosphorylation promotes functional recovery from spinal cord injury

    PubMed Central

    Suehiro, Kenji; Nakamura, Yuka; Xu, Shuai; Uda, Youichi; Matsumura, Takafumi; Yamaguchi, Yoshiaki; Okamura, Hitoshi; Yamashita, Toshihide; Takei, Yoshinori

    2014-01-01

    Inhibition of Nogo-66 receptor (NgR) can promote recovery following spinal cord injury. The ecto-domain of NgR can be phosphorylated by protein kinase A (PKA), which blocks activation of the receptor. Here, we found that infusion of PKA plus ATP into the damaged spinal cord can promote recovery of locomotor function. While significant elongation of cortical-spinal axons was not detectable even in the rats showing enhanced recovery, neuronal precursor cells were observed in the region where PKA plus ATP were directly applied. NgR1 was expressed in neural stem/progenitor cells (NSPs) derived from the adult spinal cord. Both an NgR1 antagonist NEP1-40 and ecto-domain phosphorylation of NgR1 promote neuronal cell production of the NSPs, in vitro. Thus, inhibition of NgR1 in NSPs can promote neuronal cell production, which could contribute to the enhanced recovery of locomotor function following infusion of PKA and ATP. PMID:24826969

  13. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity

    PubMed Central

    Messina, J. A.; St. Paul, Alison; Hargis, Sarah; Thompson, Wengora E.; McClellan, Andrew D.

    2017-01-01

    The contribution of left-right reciprocal coupling between spinal locomotor networks to the generation of locomotor activity was tested in adult lampreys. Muscle recordings were made from normal animals as well as from experimental animals with rostral midline (ML) spinal lesions (~13%→35% body length, BL), before and after spinal transections (T) at 35% BL. Importantly, in the present study actual locomotor movements and muscle burst activity, as well as other motor activity, were initiated in whole animals by descending brain-spinal pathways in response to sensory stimulation of the anterior head. For experimental animals with ML spinal lesions, sensory stimulation could elicit well-coordinated locomotor muscle burst activity, but with some significant differences in the parameters of locomotor activity compared to those for normal animals. Computer models representing normal animals or experimental animals with ML spinal lesions could mimic many of the differences in locomotor activity. For experimental animals with ML and T spinal lesions, right and left rostral hemi-spinal cords, disconnected from intact caudal cord, usually produced tonic or unpatterned muscle activity. Hemi-spinal cords sometimes generated spontaneous or sensory-evoked relatively high frequency “burstlet” activity that probably is analogous to the previously described in vitro “fast rhythm”, which is thought to represent lamprey locomotor activity. However, “burstlet” activity in the present study had parameters and features that were very different than those for lamprey locomotor activity: average frequencies were ~25 Hz, but individual frequencies could be >50 Hz; burst proportions (BPs) often varied with cycled time; “burstlet” activity usually was not accompanied by a rostrocaudal phase lag; and following ML spinal lesions alone, “burstlet” activity could occur in the presence or absence of swimming burst activity, suggesting the two were generated by different

  14. Spinal dural arteriovenous fistulas: the most frequent vascular malformations of the spinal cord.

    PubMed

    Iglesias Gordo, J; Martínez García, R

    Spinal dural arteriovenous fistulas are produced by direct communication between the arterial and venous systems of the spinal cord, causing hypertension in the latter with spinal cord dysfunction. It is a rare pathology with unknown etiology and non-specific clinical symptoms that usually results in a delayed diagnosis. Often radiologists are the first to guide the disease towards an adequate diagnosis. Characteristic findings can be seen through MR or MR angiography, and may even locate the fistula in a high percentage of cases, although the pathology must be confirmed by spinal angiography. There are two treatment modalities: endovascular and surgical therapy. Endovascular treatment has improved in recent years with the advantages of a less invasive approach and is therefore usually chosen as primary therapy. In this article we review the main clinical manifestations, imaging findings and treatment of this pathology. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Necrosulfonamide Attenuates Spinal Cord Injury via Necroptosis Inhibition.

    PubMed

    Wang, Yongxiang; Wang, Jingcheng; Wang, Hua; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; Cai, Jun

    2018-06-01

    Spinal cord injury (SCI) is a serious trauma without efficient treatment currently. Necroptosis can be blocked post injury by special inhibitors. This study is to investigate the effects, mechanism, and potential benefit of necrosulfonamide (NSA) for SCI therapy. Pathologic condition was detected using hematoxylin-eosin staining on injured spinal cord and other major organs. Necroptosis-related factors-RIP1, RIP3, and MLKL-were detected using Western blot. Detections on mitochondrial functions such as adenosine triphosphate generation and activities of superoxide dismutase and caspase-3 were also performed. Finally, ethologic performance was detected using a 21-point open-field locomotion test. Reduced lesions and protected neurons were found in the injured spinal cord after treatment with NSA using hematoxylin-eosin staining for pathologic detection. No obvious toxicity on rat liver, kidney, heart, and spleen was detected. Rather than RIP1 and RIP3, MLKL was significantly inhibited by the NSA using Western blot detection. Adenosine triphosphate generation was obviously decreased post injury but slightly increased after the NSA treatment, especially 24 hours post injury. No significant changes were found on activities of superoxide dismutase and caspase-3 after the treatment of NSA. Ethologic performance was significantly improved using a 21-point, open-field locomotion test. Our research indicates NSA attenuates the spinal cord injury via necroptosis inhibition. It might be a potential and safe chemical benefit for SCI therapy. To our knowledge, this is the first study on the effects of NSA as treatment of traumatic SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  17. International spinal cord injury pulmonary function basic data set.

    PubMed

    Biering-Sørensen, F; Krassioukov, A; Alexander, M S; Donovan, W; Karlsson, A-K; Mueller, G; Perkash, I; Sheel, A William; Wecht, J; Schilero, G J

    2012-06-01

    To develop the International Spinal Cord Injury (SCI) Pulmonary Function Basic Data Set within the framework of the International SCI Data Sets in order to facilitate consistent collection and reporting of basic bronchopulmonary findings in the SCI population. International. The SCI Pulmonary Function Data Set was developed by an international working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Pulmonary Function Data Set contains questions on the pulmonary conditions diagnosed before spinal cord lesion,if available, to be obtained only once; smoking history; pulmonary complications and conditions after the spinal cord lesion, which may be collected at any time. These data include information on pneumonia, asthma, chronic obstructive pulmonary disease and sleep apnea. Current utilization of ventilator assistance including mechanical ventilation, diaphragmatic pacing, phrenic nerve stimulation and Bi-level positive airway pressure can be reported, as well as results from pulmonary function testing includes: forced vital capacity, forced expiratory volume in one second and peak expiratory flow. The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk).

  18. Managing the stigma: Exploring body image experiences and self-presentation among people with spinal cord injury.

    PubMed

    Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S

    2016-01-01

    Using modified constructivist grounded theory, the purpose of this study was to explore body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21-63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4-36 years) took part in semi-structured in-depth interviews. The following main categories were found: appearance, weight concerns, negative functional features, impact of others, body disconnection, hygiene and incontinence, and self-presentation. Findings have implications for the health and well-being of those living with a spinal cord injury.

  19. Hodgkin Lymphoma revealed by epidural spinal cord compression.

    PubMed

    Ghedira, Khalil; Matar, Nidhal; Bouali, Sofiene; Zehani, Alia; Boubaker, Adnen; Jemel, Hafedh

    2018-01-30

    Hodgkin Lymphoma is rarely diagnosed as spinal cord compression syndrome. Caused by an epidural mass, this complication is often encountered in a late stage of the disease. We report the case of a 40-year-old man presenting with symptoms of low thoracic spinal cord compression due to an epidural tumor on the MRI. Emergent surgery was undertaken on this patient, consisting in laminectomy and tumor resection. After surgery, pain relief and mild neurological improvement were noticed. The histological study revealed a Hodgkin Lymphoma and the patient was referred to chemotherapy and radiotherapy. Though chemotherapy is the gold standard treatment for Hodgkin Lymphoma, surgical spinal decompression may be required in epidural involvement of the disease. Diagnosis may be suspected in the presence of lymphadenopathy and general health decay.

  20. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level

    PubMed Central

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A.; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J.; Finkenstaedt, Felix W.; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas

    2016-01-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient’s environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS (‘immune paralysis’), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788

  1. Breaking bad news in spinal cord injury; a qualitative study assessing the perspective of spinal cord injury survivors in Turkey.

    PubMed

    Ozyemisci-Taskiran, Ozden; Coskun, Ozlem; Budakoglu, Isil Irem; Demirsoy, Nesrin

    2018-05-01

    Prior abstract publication: 2 nd Medical Rehabilitation Congress; Nov 4-7, 2010; Ankara, Turkey Objective: This study aims to investigate the process of breaking bad news from the perspective of spinal cord injury survivors. A cross sectional, qualitative study. Community. Fourteen spinal cord injury survivors. Subjects participated in a semi-structured interview about 'when', 'where' 'by whom' and 'how' they received and 'would' prefer to receive bad news. Answers to 'how' questions were coded according to SPIKES protocol (Setting, Perception, Invitation, Knowledge, Empathizing, Summary). Eight participants (57%) reported that they received bad news from a physician, mostly during rehabilitation. All would prefer to be informed by a physician and majority preferred to be gradually informed during rehabilitation. Half were not satisfied with the content of information. Only half felt that his/her physiatrist understood his/her emotional distress. Majority of participants who received bad news from physicians reported that the setting was private and their family members accompanied them. Most spinal cord injury survivors were unsatisfied with knowledge and emotional support provided by rehabilitation physicians. Participants would prefer to receive bad news by a senior physiatrist in a planned meeting during rehabilitation.

  2. DORSAL LAMINECTOMY TO RELIEVE SPINAL CORD COMPRESSION IN A CAPTIVE SYRIAN BEAR (URSUS ARCTOS SYRIACUS).

    PubMed

    Büeler, Ariela Rosenzweig; Merbl, Yael; Kushnir, Yishai; Chai, Orit; Aizenberg, Itzhak; Horowitz, Igal; Matalon, Einat; Tam, Doron; Shamir, Merav H

    2016-12-01

    A 19-yr-old captive male Syrian bear ( Ursus arctos syriacus) presented with a right hind limb lameness that progressed to nonambulatory paraparesis over the course of 2 wk. When night enclosure confinement and a short course of glucocorticoids and antibiotics did not lead to improvement, radiographs were performed, followed by cerebrospinal fluid analysis and myelography, revealing a dynamic spinal cord compression at the level of T2-T3. Dorsal laminectomy of both T2 and T3 was performed to allow decompression. The bear recovered uneventfully with first sign of neurological improvement apparent at 10 days postoperatively. Following 6 mo of rehabilitation the bear was walking and using his hind limbs normally.

  3. Age Related Changes in Metabolite Concentrations in the Normal Spinal Cord

    PubMed Central

    Abdel-Aziz, Khaled; Solanky, Bhavana S.; Yiannakas, Marios C.; Altmann, Daniel R.; Wheeler-Kingshott, Claudia A. M.; Thompson, Alan J.; Ciccarelli, Olga

    2014-01-01

    Magnetic resonance spectroscopy (MRS) studies have previously described metabolite changes associated with aging of the healthy brain and provided insights into normal brain aging that can assist us in differentiating age-related changes from those associated with neurological disease. The present study investigates whether age-related changes in metabolite concentrations occur in the healthy cervical spinal cord. 25 healthy volunteers, aged 23–65 years, underwent conventional imaging and single-voxel MRS of the upper cervical cord using an optimised point resolved spectroscopy sequence on a 3T Achieva system. Metabolite concentrations normalised to unsuppressed water were quantified using LCModel and associations between age and spinal cord metabolite concentrations were examined using multiple regressions. A linear decline in total N-Acetyl-aspartate concentration (0.049 mmol/L lower per additional year of age, p = 0.010) and Glutamate-Glutamine concentration (0.054 mmol/L lower per additional year of age, p = 0.002) was seen within our sample age range, starting in the early twenties. The findings suggest that neuroaxonal loss and/or metabolic neuronal dysfunction, and decline in glutamate-glutamine neurotransmitter pool progress with aging. PMID:25310093

  4. Muscle activity and mood state during simulated plant factory work in individuals with cervical spinal cord injury

    PubMed Central

    Okahara, Satoshi; Kataoka, Masataka; Okuda, Kuniharu; Shima, Masato; Miyagaki, Keiko; Ohara, Hitoshi

    2016-01-01

    [Purpose] The present study investigated the physical and mental effects of plant factory work in individuals with cervical spinal cord injury and the use of a newly developed agricultural working environment. [Subjects] Six males with C5–C8 spinal cord injuries and 10 healthy volunteers participated. [Methods] Plant factory work involved three simulated repetitive tasks: sowing, transplantation, and harvesting. Surface electromyography was performed in the dominant upper arm, upper trapezius, anterior deltoid, and biceps brachii muscles. Subjects’ moods were monitored using the Profile of Mood States. [Results] Five males with C6–C8 injuries performed the same tasks as healthy persons; a male with a C5 injury performed fewer repetitions of tasks because it took longer. Regarding muscle activity during transplantation and harvesting, subjects with spinal cord injury had higher values for the upper trapezius and anterior deltoid muscles compared with healthy persons. The Profile of Mood States vigor scores were significantly higher after tasks in subjects with spinal cord injury. [Conclusion] Individuals with cervical spinal cord injury completed the plant factory work, though it required increased time and muscle activity. For individuals with C5–C8 injuries, it is necessary to develop an appropriate environment and assistive devices to facilitate their work. PMID:27134377

  5. Combined Effects of Acrobatic Exercise and Magnetic Stimulation on the Functional Recovery after Spinal Cord Lesions

    PubMed Central

    Wieraszko, Andrzej

    2008-01-01

    Abstract The objective of the study was to determine whether physical exercise combined with epidural spinal cord magnetic stimulation could improve recovery after injury of the spinal cord. Spinal cord lesioning in mice resulted in reduced locomotor function and negatively affected the muscle strength tested in vitro. Acrobatic exercise attenuated the behavioral effects of spinal cord injury. The exposure to magnetic fields facilitated further this improvement. The progress in behavioral recovery was correlated with reduced muscle degeneration and enhanced muscle contraction. The acrobatic exercise combined with stimulation with magnetic fields significantly facilitates behavioral recovery and muscle physiology in mice following spinal cord injury. PMID:18986227

  6. Neuroprotective effect of curcumin on spinal cord in rabbit model with ischemia/reperfusion.

    PubMed

    Liu, Zhi-Qiang; Xing, Shan-Shan; Zhang, Wei

    2013-03-01

    Ischemic/reperfusion (I/R) injury of the spinal cord is a serious complication that can result from thoracoabdominal aortic surgery. To investigate the neuroprotective effect of curcumin against I/R injury in a rabbit model. A total of 36 rabbits were randomly divided into three groups: sham, I/R, and curcumin-treated group. Rabbits were subject to 30-min aortic occlusion to induce transient spinal cord ischemia. Neurological function was observed after reperfusion and spinal cord segment (L3-L5) was collected for histopathological evaluation. Malondialdehyde (MDA) and total superoxide dismutase (SOD) activity were also assayed. Rabbits in I/R group were induced to paraplegia. While after 48-hour treatment, compared with I/R group, curcumin significantly improved neurological function, reduced cell apoptosis and MDA levels as well as increased SOD activity (P < 0.05). The results suggest that curcumin, at least in an animal model, can attenuate transient spinal cord ischemic injury potentially via reducing oxidative damage, which may provide a novel approach in the treatment of spinal cord ischemic injury.

  7. Comparing patients with spinal cord infarction and cerebral infarction: clinical characteristics, and short-term outcome.

    PubMed

    Naess, Halvor; Romi, Fredrik

    2011-01-01

    To compare the clinical characteristics, and short-term outcome of spinal cord infarction and cerebral infarction. Risk factors, concomitant diseases, neurological deficits on admission, and short-term outcome were registered among 28 patients with spinal cord infarction and 1075 patients with cerebral infarction admitted to the Department of Neurology, Haukeland University Hospital, Bergen, Norway. Multivariate analyses were performed with location of stroke (cord or brain), neurological deficits on admission, and short-term outcome (both Barthel Index [BI] 1 week after symptom onset and discharge home or to other institution) as dependent variables. Multivariate analysis showed that patients with spinal cord infarction were younger, more often female, and less afflicted by hypertension and cardiac disease than patients with cerebral infarction. Functional score (BI) was lower among patients with spinal cord infarctions 1 week after onset of symptoms (P < 0.001). Odds ratio for being discharged home was 5.5 for patients with spinal cord infarction compared to cerebral infarction after adjusting for BI scored 1 week after onset (P = 0.019). Patients with spinal cord infarction have a risk factor profile that differs significantly from that of patients with cerebral infarction, although there are some parallels to cerebral infarction caused by atherosclerosis. Patients with spinal cord infarction were more likely to be discharged home when adjusting for early functional level on multivariate analysis.

  8. Comparing patients with spinal cord infarction and cerebral infarction: clinical characteristics, and short-term outcome

    PubMed Central

    Naess, Halvor; Romi, Fredrik

    2011-01-01

    Background: To compare the clinical characteristics, and short-term outcome of spinal cord infarction and cerebral infarction. Methods: Risk factors, concomitant diseases, neurological deficits on admission, and short-term outcome were registered among 28 patients with spinal cord infarction and 1075 patients with cerebral infarction admitted to the Department of Neurology, Haukeland University Hospital, Bergen, Norway. Multivariate analyses were performed with location of stroke (cord or brain), neurological deficits on admission, and short-term outcome (both Barthel Index [BI] 1 week after symptom onset and discharge home or to other institution) as dependent variables. Results: Multivariate analysis showed that patients with spinal cord infarction were younger, more often female, and less afflicted by hypertension and cardiac disease than patients with cerebral infarction. Functional score (BI) was lower among patients with spinal cord infarctions 1 week after onset of symptoms (P < 0.001). Odds ratio for being discharged home was 5.5 for patients with spinal cord infarction compared to cerebral infarction after adjusting for BI scored 1 week after onset (P = 0.019). Conclusion: Patients with spinal cord infarction have a risk factor profile that differs significantly from that of patients with cerebral infarction, although there are some parallels to cerebral infarction caused by atherosclerosis. Patients with spinal cord infarction were more likely to be discharged home when adjusting for early functional level on multivariate analysis. PMID:21915166

  9. Metastatic Alveolar Soft Part Sarcoma of the Spinal Cord: A Case Report and Review of Literature.

    PubMed

    Randazzo, Michael J; Thawani, Jayesh P; Manur, Rashmi; Brooks, John S; Ozturk, Ali K

    2017-07-01

    Alveolar soft part sarcoma (ASPS) is a rare, malignant soft-tissue neoplasm typically seen in young adults that possesses an unusual tendency to metastasize. Metastases to the intramedullary compartment of the spinal cord, however, are exceptionally rare and have not been described in the literature. We report the case of a 23-year-old woman with disseminated ASPS to the lung and brain who presented with progressive lower-extremity weakness and loss of sensation after radiation and chemotherapy. Magnetic resonance imaging revealed a 1.3-cm avidly enhancing lesion within the central thoracic spinal cord at T3. A T2-T4 laminectomy was undertaken and resulted in a gross total resection. Histopathologically, the mass was composed of organoid nests containing epithelioid cells with eosinophilic, granular cytoplasm separated by sinusoidal spaces. Immunohistochemistry demonstrated convincing positive TFE3 staining. Postoperative imaging confirmed the complete resection of the mass, and her examination was notable for intact sensation and impaired motor function that gradually improved. A review of the literature found that the reported case represents the first instance of primary or metastatic ASPS in the spinal cord. Metastatic ASPS should thus be included in the differential diagnosis in patients with known disease and neurologic impairment or back pain. Imaging of the spine should then be considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Spinal cord ischemia after simultaneous and sequential treatment of multilevel aortic disease.

    PubMed

    Piffaretti, Gabriele; Bonardelli, Stefano; Bellosta, Raffaello; Mariscalco, Giovanni; Lomazzi, Chiara; Tolenaar, Jip L; Zanotti, Camilla; Guadrini, Cristina; Sarcina, Antonio; Castelli, Patrizio; Trimarchi, Santi

    2014-10-01

    The aim of the present study is to report a risk analysis for spinal cord injury in a recent cohort of patients with simultaneous and sequential treatment of multilevel aortic disease. We performed a multicenter study with a retrospective data analysis. Simultaneous treatment refers to descending thoracic and infrarenal aortic lesions treated during the same operation, and sequential treatment refers to separate operations. All descending replacements were managed with endovascular repair. Of 4320 patients, multilevel aortic disease was detected in 77 (1.8%). Simultaneous repair was performed in 32 patients (41.5%), and a sequential repair was performed in 45 patients (58.4%). Postoperative spinal cord injury developed in 6 patients (7.8%). At multivariable analysis, the distance of the distal aortic neck from the celiac trunk was the only independent predictor of postoperative spinal cord injury (odds ratio, 0.75; 95% confidence interval, 0.56-0.99; P=.046); open surgical repair of the abdominal aortic disease was associated with a higher risk of spinal cord injury but did not reach statistical significance (odds ratio, 0.16; 95% confidence interval, 0.02-1.06; P=.057). Actuarial survival estimates at 1, 2, and 5 years after the procedure were 80%±5%, 68%±6%, and 63%±7%, respectively. Spinal cord injury did not impair survival (P=.885). In our experience, the risk of spinal cord injury is still substantial at 8% in patients with multilevel aortic disease. The distance of the distal landing zone from the celiac trunk is a significant predictor of spinal cord ischemia. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  11. Release and repair of a ventral thoracic spinal cord herniation.

    PubMed

    McCormick, Paul C

    2014-09-01

    Ventral thoracic spinal cord herniation is a rare but increasingly recognized cause of progressive myelopathy. This video demonstrates the imaging characteristics and surgical techniques for release and reduction of the spinal cord herniation as well as primary repair and reinforcement of the ventral dural hernia defect through an extended posterior approach. An instrumented fusion was concomitantly performed. The video can be found here: http://youtu.be/6Pcokep6Tug.

  12. Characterization of DTI Indices in the Cervical, Thoracic, and Lumbar Spinal Cord in Healthy Humans

    PubMed Central

    Bosma, Rachael L.; Stroman, Patrick W.

    2012-01-01

    The aim of this study was to characterize in vivo measurements of diffusion along the length of the entire healthy spinal cord and to compare DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), between cord regions. The objective is to determine whether or not there are significant differences in DTI indices along the cord that must be considered for future applications of characterizing the effects of injury or disease. A cardiac gated, single-shot EPI sequence was used to acquire diffusion-weighted images of the cervical, thoracic, and lumbar regions of the spinal cord in nine neurologically intact subjects (19 to 22 years). For each cord section, FA versus MD values were plotted, and a k-means clustering method was applied to partition the data according to tissue properties. FA and MD values from both white matter (average FA = 0.69, average MD = 0.93 × 10−3 mm2/s) and grey matter (average FA = 0.44, average MD = 1.8 × 10−3 mm2/s) were relatively consistent along the length of the cord. PMID:22295179

  13. [The changes of monocarboxylate transporter-2 in spinal cord horn in a rat model of chronic inflammatory pain].

    PubMed

    He, Jian-hua; Xu, Li; Shen, Yu; Kong, Ming-jian; Shi, Lin-yu; Ma, Zheng-liang

    2015-01-01

    To investigate the changes in the levels of monocarboxylate transporter-2 in spinal cord horn in a rat model of chronic inflammatory pain. Male SD rats weighting 180 - 220 g were randomly divided into two groups(n = 48): normal saline group (NS group), complete Freund's adjuvant group (CFA group). Rats were given injections of CFA 100 µl in left hind paw in group CFA, and an equal volume of saline was given injection in group NS. Mechanical withdraw threshold(MWT) and thermal withdraw latency(TWL) were measured at before injection(T0 and 3 h, 1 d, 3 d, 7 d, 14 d, and 21 d after injection(T1-7). Four rats were chosen from each group at T0-7 and sacrificed, and L4-5 segments of the spinal cord horn were removed for measurement of the expression of monocarboxylate transporter-2 by Western blot analysis. In CFA group, mechanical hyperalgesia and allodynia appeared on the 3 h after CFA injection, then until the day 14. The expression of monocarboxylate transporter-2 in the spinal dorsal horn of rats in CFA group was significantly higher than that in normal control group at T1-6(P <0.05). The protein level of monocarboxylate transporter-2 was apparently correlated with MWT and TWL(P <0.01 and P <0.05) in CFA group. The level of monocarboxylate transporter-2 in spinal dorsal horn is significantly increased in a rat model of chronic inflammatory pain and the change may involve in the formation and maintenance of central sensitization in spinal cord of chronic inflammatory uain.

  14. Full Tensor Diffusion Imaging Is Not Required To Assess the White-Matter Integrity in Mouse Contusion Spinal Cord Injury

    PubMed Central

    Tu, Tsang-Wei; Kim, Joong H.; Wang, Jian

    2010-01-01

    Abstract In vivo diffusion tensor imaging (DTI) derived indices have been demonstrated to quantify accurately white-matter injury after contusion spinal cord injury (SCI) in rodents. In general, a full diffusion tensor analysis requires the acquisition of diffusion-weighted images (DWI) along at least six independent directions of diffusion-sensitizing gradients. Thus, DTI measurements of the rodent central nervous system are time consuming. In this study, diffusion indices derived using the two-direction DWI (parallel and perpendicular to axonal tracts) were compared with those obtained using six-direction DTI in a mouse model of SCI. It was hypothesized that the mouse spinal cord ventral-lateral white-matter (VLWM) tracts, T8–T10 in this study, aligned with the main magnet axis (z) allowing the apparent diffusion coefficient parallel and perpendicular to the axis of the spine to be derived with diffusion-weighting gradients in the z and y axes of the magnet coordinate respectively. Compared with six-direction full tensor DTI, two-direction DWI provided comparable diffusion indices in mouse spinal cords. The measured extent of spared white matter after injury, estimated by anisotropy indices, using both six-direction DTI and two-direction DWI were in close agreement and correlated well with histological staining and behavioral assessment. The results suggest that the two-direction DWI derived indices may be used, with significantly reduced imaging time, to estimate accurately spared white matter in mouse SCI. PMID:19715399

  15. Spinal Cord Lesions in Congenital Toxoplasmosis Demonstrated with Neuroimaging, Including Their Successful Treatment in an Adult.

    PubMed

    Burrowes, Delilah; Boyer, Kenneth; Swisher, Charles N; Noble, A Gwendolyn; Sautter, Mari; Heydemann, Peter; Rabiah, Peter; Lee, Daniel; McLeod, Rima

    2012-03-01

    Neuroimaging studies for persons in the National Collaborative Chicago-Based Congenital Toxoplasmosis Study (NCCCTS) with symptoms and signs referable to the spinal cord were reviewed. Three infants had symptomatic spinal cord lesions, another infant a Chiari malformation, and another infant a symptomatic peri-spinal cord lipoma. One patient had an unusual history of prolonged spinal cord symptoms presenting in middle age. Neuroimaging was used to establish her diagnosis and response to treatment. This 43 year-old woman with congenital toxoplasmosis developed progressive leg spasticity, weakness, numbness, difficulty walking, and decreased visual acuity and color vision without documented re-activation of her chorioretinal disease. At 52 years of age, spinal cord lesions in locations correlating with her symptoms and optic atrophy were diagnosed with 3 Tesla MRI scan. Treatment with pyrimethamine and sulfadiazine decreased her neurologic symptoms, improved her neurologic examination, and resolved her enhancing spinal cord lesions seen on MRI.

  16. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only

    PubMed Central

    Alluin, Olivier; Delivet-Mongrain, Hugo

    2015-01-01

    Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical stimulation of the cord while a robot sustains the animals in an upright posture. In the present study we daily trained a group of adult spinal (T7) rats to walk with the hindlimbs for 10 wk (10 min/day for 5 days/wk), using only perineal stimulation. Kinematic analysis and terminal electromyographic recordings revealed a strong effect of training on the reexpression of hindlimb locomotion. Indeed, trained animals gradually improved their locomotion while untrained animals worsened throughout the post-SCI period. Kinematic parameters such as averaged and instant swing phase velocity, step cycle variability, foot drag duration, off period duration, and relationship between the swing features returned to normal values only in trained animals. The present results clearly demonstrate that treadmill training alone, in a normal horizontal posture, elicited by noninvasive perineal stimulation is sufficient to induce a persistent hindlimb locomotor recovery without the need for more complex strategies. This provides a baseline level that should be clearly surpassed if additional locomotor-enabling procedures are added. Moreover, it has a clinical value since intrinsic spinal reorganization induced by training should contribute to improve locomotor recovery together with afferent feedback and supraspinal modifications in patients with incomplete SCI. PMID:26203108

  17. Nanog interact with CDK6 to regulates astrocyte cells proliferation following spinal cord injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jun; Department of Orthopaedics, Xishan People's Hospital, Wuxi, Jiangsu; Ni, Yingjie

    2016-01-22

    Previous research had reported transcription factors Nanog expressed in pluripotent embryonic stem cells (ESCS) that played an important role in regulating the cell proliferation. Nanog levels are frequently elevated in ESCS, but the role in the spinal cord was not clear. To examine the biological relevance of Nanog, we studied its properties in spinal cord injury model. The expression of Nanog and PCNA was gradually increased and reached a peak at 3 day by western blot analysis. The expression of Nanog was further analyzed by immunohistochemistry. Double immunofluorescent staining uncovered that Nanog can co-labeled with PCNA and GFAP in themore » spinal cord tissue. In vitro, Nanog can promote the proliferation of astrocyte cell by Fluorescence Activating Cell Sorter (FACS) and CCK8. Meanwhile, the cell-cycle protein CDK6 could interact with Nanog in the spinal cord tissue. Taken together, these data suggested that both Nanog may play important roles in spinal cord pathophysiology via interact with CDK6.« less

  18. [Spinal cord injuries caused by aviation accidents].

    PubMed

    Heim, M; Ohry, A; Zeilig, G; Gur, S

    1992-05-15

    During the past 15 years fewer than 1% of those treated in the National Spinal Cord Injury Center were injured as a result of aviation accidents. In addition to 9 such patients treated at the center since 1973, another 6 were found among the many hundreds receiving ambulatory care in our clinics. 3 patients had survived a helicopter crash, 2 were injured while ejecting from combat aircraft, 3 were injured in crashes of light aircraft, 1 fell from a hand glider and 6 were injured in parachute drops. Of the 15 reviewed, 6 use wheelchairs, 3 walk assisted by orthopedic devices, while 6 ambulate freely. Although initial hospitalization was not substantially longer than in other patients with spinal cord injuries, extended ambulatory psychological intervention was necessary.

  19. Microsurgical anatomy of the posterior median septum of the human spinal cord.

    PubMed

    Turkoglu, Erhan; Kertmen, Hayri; Uluc, Kutluay; Akture, Erinc; Gurer, Bora; Cikla, Ulaş; Salamat, Shahriar; Başkaya, Mustafa K

    2015-01-01

    The aim of this study was to analyze the topographical anatomy of the dorsal spinal cord (SC) in relation to the posterior median septum (PMS). This included the course and variations in the PMS, and its relationship to and distance from other dorsal spinal landmarks. Microsurgical anatomy of the PMS was examined in 12 formalin-fixed adult cadaveric SCs. Surface landmarks such as the dorsal root entry zone (DREZ), the denticulate ligament, the architecture of the leptomeninges and pial vascular distribution were noted. The PMS was examined histologically in all spinal segments. The PMS extended most deeply at spinal segments C7 and S4. This was statistically significant for all spinal segments except C5. The PMS was shallowest at segments T4 and T6, where it was statistically significantly thinner than at any other segment. In 80% of the SCs, small blood vessels were identified that traveled in a rostrocaudal direction in the PMS. The longest distance between the PMS and the DREZ was at the C1-C4 vertebral levels and the shortest distance was at the S5 level. Prevention of deficits following a dorsal midline neurosurgical approach to deep-seated SC lesions requires careful identification of the midline of the cord. The PMS and septum define the midline on the dorsum of the SC and their accurate identification is essential for a safe midline surgical approach. In this anatomical study, we describe the surface anatomy of the dorsal SC and its relationship with the PMS, which can be used to determine a safe entry zone into the SC. © 2014 Wiley Periodicals, Inc.

  20. Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals.

    PubMed

    Savikj, Mladen; Ruby, Maxwell A; Kostovski, Emil; Iversen, Per O; Zierath, Juleen R; Krook, Anna; Widegren, Ulrika

    2018-06-01

    Despite the well-known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord-injured and six able-bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer-based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able-bodied and spinal cord-injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord-injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord-injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt-mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord-injured individuals was unchanged (P > 0.05) compared to able-bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American

  1. Refractory orthostatic hypotension in a patient with a spinal cord injury: Treatment with droxidopa.

    PubMed

    Canosa-Hermida, Eva; Mondelo-García, Cristina; Ferreiro-Velasco, María Elena; Salvador-de la Barrera, Sebastián; Montoto-Marqués, Antonio; Rodríguez-Sotillo, Antonio; Vizoso-Hermida, José Ramón

    2018-01-01

    Orthostatic hypotension (OH) is a common complication in patients with a spinal cord injury, mainly affecting complete injuries above neurological level T6. It is generally more severe during the acute phase but can remain symptomatic for several years. A 65-year-old male with a grade ASIA A post-traumatic cervical spinal cord injury, at neurological level C4, presenting with symptomatic refractory OH. Increased blood pressure (BP) levels and an overall clinical improvement was observed after administering an increasing dose of droxidopa. Treatment was started at a dose of 100 mg twice daily (bid), one to be taken upon rising in the morning and another one in the afternoon, at least three hours before bedtime. According to the patient's symptomatic response, each individual dose was increased by 100 mg at 48-hour intervals. Both increased mean BP levels and a subjective symptomatic improvement were evidenced at a dose of 300 mg bid. Treatment with droxidopa increases BP levels and improves symptoms related to refractory OH using all physical and pharmacological measures available. It could therefore constitute an effective alternative treatment for OH in patients with a spinal cord injury.

  2. Spinal cord stimulation for chronic pain.

    PubMed

    Mailis-Gagnon, A; Furlan, A D; Sandoval, J A; Taylor, R

    2004-01-01

    Spinal cord stimulation (SCS) is a form of therapy used to treat certain types of chronic pain. It involves an electrical generator that delivers pulses to a targeted spinal cord area. The leads can be implanted by laminectomy or percutaneously and the source of power is supplied by an implanted battery or by an external radio-frequency transmitter. The exact mechanism of action of SCS is poorly understood. To assess the efficacy and effectiveness of spinal cord stimulation in relieving certain kinds of pain, as well as the complications and adverse effects of this procedure. We searched MEDLINE and EMBASE to September 2003; the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 3, 2003); textbooks and reference lists in retrieved articles. We also contacted experts in the field of pain and the main manufacturer of the stimulators. We included trials with a control group, either randomized controlled trials (RCTs) or non-randomized controlled clinical trials (CCTs), that assessed spinal cord stimulation for chronic pain. Two independent reviewers selected the studies, assessed study quality and extracted the data. One of the assessors of methodological quality was blinded to authors, dates and journals. The data were analysed using qualitative methods (best evidence synthesis). Two RCTs (81 patients in total) met our inclusion criteria. One was judged as being of high quality (score of 3 on Jadad scale) and the other of low quality (score of 1 on Jadad scale). One trial included patients with Complex Regional Pain Syndrome Type I (reflex sympathetic dystrophy) and the other patients with Failed Back Surgery Syndrome. The follow-up periods varied from 6 to 12 months. Both studies reported that SCS was effective, however, meta-analysis was not undertaken because of the small number of patients and the heterogeneity of the study population. Although there is limited evidence in favour of SCS for Failed Back Surgery Syndrome and Complex Regional Pain

  3. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia

    PubMed Central

    Laird, A S; Carrive, P; Waite, P M E

    2006-01-01

    In patients with high spinal cord injuries autonomic dysfunction can be dangerous, leading to medical complications such as postural hypotension, autonomic dysreflexia and temperature disturbance. While animal models have been developed to study autonomic dysreflexia, associated temperature changes have not been documented. Our aim here was to use radiotelemetry and infrared thermography in rodents to record the development of cardiovascular and skin temperature changes following complete T4 transection. In adult male Wistar rats (n = 5), responses were assessed prior to spinal cord injury (intact) and for 6 weeks following injury. Statistical analysis by a repeated-measure ANOVA revealed that following spinal cord injury (SCI), rats exhibited decreased mean arterial pressure (MAP, average decrease of 26 mmHg; P < 0.035) and elevated heart rate (HR, average increase of 65 bpm, P < 0.035) at rest. The basal core body temperature following SCI was also significantly lower than intact levels (−0.9°C; P < 0.0035). Associated with this decreased basal core temperature following SCI was an increased skin temperature of the mid-tail and hindpaw (+5.6 and +4.0°C, respectively; P < 0.0003) consistent with decreased cutaneous vasoconstrictor tone. Autonomic dysreflexia, in response to a 1 min colorectal distension (25 mmHg), was fully developed by 4 weeks after spinal cord transection, producing increases in MAP greater than 25 mmHg (P < 0.0003). In contrast to the tachycardia seen in intact animals in response to colorectal distension, SCI animals exhibited bradycardia (P < 0.0023). During episodes of autonomic dysreflexia mid-tail surface temperature decreased (approx. −1.7°C, P < 0.012), consistent with cutaneous vasoconstriction. This is the first study to compare cardiovascular dysfunction with temperature changes following spinal cord transection in rats. PMID:16973703

  4. Phosphoproteomics and Bioinformatics Analyses of Spinal Cord Proteins in Rats with Morphine Tolerance

    PubMed Central

    Liaw, Wen-Jinn; Tsao, Cheng-Ming; Huang, Go-Shine; Wu, Chin-Chen; Ho, Shung-Tai; Wang, Jhi-Joung; Tao, Yuan-Xiang; Shui, Hao-Ai

    2014-01-01

    Introduction Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. Methods To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. Results Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. Conclusions Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance. PMID:24392096

  5. Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)—Patient Version

    Cancer.gov

    Brain and spinal cord tumors may be benign (not cancer) or malignant (cancer). Both types cause signs or symptoms and need treatment. Get information about the many kinds of brain and spinal cord tumors, signs and symptoms, tests to diagnose, and treatment in this expert-reviewed summary.

  6. Long-Term Extensive Ectopic Hair Growth on the Spinal Cord of Mice from Transplanted Whisker Follicles.

    PubMed

    Cao, Wenluo; Li, Lingna; Mii, Sumiyuki; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.

  7. Phantom sensations in people with complete spinal cord lesions: a grounded theory perspective.

    PubMed

    Drysdale, Daren G; Shem, Kazuko; Walbom, Agnes; Miner, Maureen D; Maclachlan, Malcolm

    2009-01-01

    Phantom sensations are somatic phenomena arising from denervated parts of the body. There is very little research, and much diagnostic confusion, regarding such experiences in people with spinal cord injuries. In the case of 'complete' spinal cord lesions, phantom experiences may challenge, and indeed, contradict, the understanding that both clinicians and patients have of such injuries. This paper seeks to provide a better understanding of such 'phantom' sensations in spinal cord injury. We used grounded theory methods to explore 'phantom' sensations as experienced by individuals with complete (ASIA A) spinal lesions. Eight people with complete lesions, who were selected through theoretical sampling, participated in a semi-structured interview. Emergent themes included injury context, sensations experienced, the meaning of sensations, body connectivity, attitude and communication about sensations. Our results provide an enhanced understanding of the embodied experience of phantom sensations, and important insights regarding self-construction and rehabilitative processes in people with spinal cord injury who experience such anomalous sensations.

  8. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons.

    PubMed

    Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E

    2017-09-01

    A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.

  9. MRI and MRA of spinal cord arteriovenous shunts.

    PubMed

    Condette-Auliac, Stéphanie; Boulin, Anne; Roccatagliata, Luca; Coskun, Oguzhan; Guieu, Stéphanie; Guedin, Pierre; Rodesch, Georges

    2014-12-01

    The purpose of this review is to describe the diagnostic criteria for spinal cord arteriovenous shunts (SCAVSs) when using magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), and to discuss the extent to which the different MRI and MRA sequences and technical parameters provide the information that is required to diagnose these lesions properly. SCAVSs are divided into four groups according to location (paraspinal, epidural, dural, or intradural) and type (fistula or nidus); each type of lesion is described. SCAVSs are responsible for neurological symptoms due to spinal cord or nerve root involvement. MRI is usually the first examination performed when a spinal cord lesion is suspected. Recognition of the image characteristics of vascular lesions is mandatory if useful sequences are to be performed-especially MRA sequences. Because the treatment of SCAVSs relies mainly on endovascular therapies, MRI and MRA help with the planning of the angiographic procedure. We explain the choice of MRA sequences and parameters, the advantages and pitfalls to be aware of in order to obtain the best visualization, and the analysis of each lesion. © 2014 Wiley Periodicals, Inc.

  10. Gene Delivery Strategies to Promote Spinal Cord Repair

    PubMed Central

    Walthers, Christopher M; Seidlits, Stephanie K

    2015-01-01

    Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed. PMID:25922572

  11. Homing of the Stem Cells from the Acupoint ST-36 to the Site of a Spinal Cord Injury: A Preliminary Study.

    PubMed

    Jung, Sharon Jiyoon; Kook, Myung Geun; Kim, Sungchul; Kang, Kyung-Sun; Soh, Kwang-Sup

    2018-06-04

    Homing of stem cells (SCs) to desired targets such as injured tissues remains a lingering problem in cell-based therapeutics. Studies on the biodistribution of intravenously administered SCs have shown the inefficacy of blood vessels as the homing path because most of the injected SCs are captured in the capillary beds of the lungs. We considered an alternative administration method utilizing the acupuncture meridians or the primo vascular system (PVS). We injected SCs at the acupoint Zusanli (ST-36) below the knee of a nude mouse with a spinal cord injured at the thoracic T9-10 vertebrae. The SCs migrated from the ST-36, along the sciatic nerve, the lumbar 4-5, and then the spinal cord to the injury point T9-10. The SCs were not randomly scattered but were rather well aligned like marathon race runners, along the PVS route toward the injury point. We observed the SCs at 1, 3, 6, 9, 12, and 15 hours after injection. The fast runners among the injected SCs took about 6 hours to reach the sciatic nerve, about 9 hours to reach the lumbar 4-5 and about 15 hours to reach the injury point T9-10. Copyright © 2018. Published by Elsevier B.V.

  12. Emotional Intelligence in Patients with Spinal Cord Injury (SCI)

    PubMed Central

    SABERI, Hooshang; GHAJARZADEH, Mahsa

    2017-01-01

    Background: Spinal Cord Injury (SCI) is a devastating situation. Spinal Cord Injury affects functional, psychological and socioeconomic aspects of patients’ lives. The ability to accomplish and explicate the one’s own and other’s feelings and emotions to spread over appropriate information for confirming thoughts and actions is defined as emotional intelligence (EI). The goal of this study was to evaluate depression and EI in SCI patients in comparison with healthy subjects. Methods: One-hundred-ten patients with SCI and 80 healthy subjects between Aug 2014 and Aug 2015 were enrolled. The study was conducted in Imam Hospital, Tehran, Iran. All participants were asked to fill valid and reliable Persian version Emotional Quotient inventory (EQ-i) and Beck Depression Inventory (BDI). All data were analyzed using SPSS. Data were presented as Mean±SD for continuous or frequencies for categorical variables. Continuous variables compared by means of independent sample t-test. P-values less than 0.05 were considered as significant. Results: Mean age of patients was 28.7 and mean age of controls was 30.2 yr. Spinal cord injury in 20 (18.3%) were at cervical level, in 83 (75.4%) were thoracic and in 7 (6.3%) were lumbar. Mean values of independence, stress tolerance, self-actualization, emotional Self-Awareness, reality testing, Impulse Control, flexibility, responsibility, and assertiveness were significantly different between cases and controls. Mean values of stress tolerance, optimism, self-regard, and responsibility were significantly different between three groups with different injury level. Most scales were not significantly different between male and female cases. Conclusion: Emotional intelligence should be considered in SCI cases as their physical and psychological health is affected by their illness. PMID:28560199

  13. Pharmacodynamic evaluation of Lys5, MeLeu9, Nle10-NKA(4–10) prokinetic effects on bladder and colon activity in acute spinal cord transected and spinally intact rats

    PubMed Central

    Kullmann, F. Aura; Katofiasc, M.; Thor, K.B.; Marson, L.

    2017-01-01

    Purpose To determine feasibility of a novel therapeutic approach to drug-induced voiding after spinal cord injury (SCI) using a well-characterized, peptide, neurokinin 2 receptor (NK2 receptor) agonist, Lys5, MeLeu9, Nle10-NKA(4–10) (LMN-NKA). Methods Cystometry and colorectal pressure measurements were performed in urethane anesthetized, intact and acutely spinalized, female rats. Bladder pressure and voiding were monitored in response to intravenous LMN-NKA given with the bladder filled to 70% capacity. Results LMN-NKA (0.1–300 µg/kg) produced dose dependent, rapid (< 60 s), short duration (< 15 min) increases in bladder pressure. In intact rats, doses above 0.3–1 µg/kg induced urine release (voiding efficiency of ~ 70% at ≥ 1 µg/kg). In spinalized rats, urine release required higher doses (≥ 10 µg/kg) and was less efficient (30–50%). LMN-NKA (0.1–100 µg/kg) also produced dose dependent increases in colorectal pressure. No tachyphylaxis was observed, and the responses were blocked by an NK2 receptor antagonist (GR159897, 1 mg/kg i.v.). No obvious cardiorespiratory effects were noted. Conclusions These results suggest that rapid-onset, short duration, drug-induced voiding is possible in acute spinal and intact rats with intravenous administration of an NK2 receptor agonist. Future challenges remain in regards to finding alternative routes of administration that produce clinically significant voiding, multiple times per day, in animal models of chronic SCI. PMID:27889808

  14. A cellular spinal cord scaffold seeded with rat adipose-derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats

    PubMed Central

    Yin, Hong; Jiang, Tao; Deng, Xi; Yu, Miao; Xing, Hui; Ren, Xianjun

    2018-01-01

    Spinal cord injury (SCI), usually resulting in severe sensory and motor deficits, is a major public health concern. Adipose-derived stem cells (ADSCs), one type of adult stem cell, are free from ethical restriction, easily isolated and enriched. Therefore, ADSCs may provide a feasible cell source for cell-based therapies in treatment of SCI. The present study successfully isolated rat ADSCs (rADSCs) from Sprague-Dawley male rats and co-cultured them with acellular spinal cord scaffolds (ASCs). Then, a rat spinal cord hemisection model was built and rats were randomly divided into 3 groups: SCI only, ASC only, and ASC + ADSCs. Furthermore, behavioral tests were conducted to evaluate functional recovery. Hematoxylin & Eosin staining and immunofluorence were carried out to assess histopathological remodeling. In addition, biotinylated dextran amines anterograde tracing was employed to visualize axon regeneration. The data demonstrated that harvested cells, which were positive for cell surface antigen cluster of differentiation (CD) 29, CD44 and CD90 and negative for CD4, detected by flow cytometry analysis, held the potential to differentiate into osteocytes and adipocytes. Rats that received transplantation of ASCs seeded with rADSCs benefited greatly in functional recovery through facilitation of histopathological rehabilitation, axon regeneration and reduction of reactive gliosis. rADSCs co-cultured with ASCs may survive and integrate into the host spinal cord on day 14 post-SCI. PMID:29257299

  15. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion.

    PubMed

    Barbour, Helen R; Plant, Christine D; Harvey, Alan R; Plant, Giles W

    2013-09-27

    It has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss. OEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was

  16. Exploring Spinal Cord Protection by Remote Ischemic Preconditioning: An Experimental Study.

    PubMed

    Herajärvi, Johanna; Anttila, Tuomas; Sarja, Henna; Mustonen, Caius; Haapanen, Henri; Mäkelä, Tuomas; Yannopoulos, Fredrik; Starck, Tuomo; Kallio, Mika; Tuominen, Hannu; Puistola, Ulla; Karihtala, Peeter; Kiviluoma, Kai; Anttila, Vesa; Juvonen, Tatu

    2017-03-01

    Paraplegia is one of the most severe complications occurring after the repair of thoracic and thoracoabdominal aortic aneurysms. Remote ischemic preconditioning (RIPC) has been shown to mitigate neurologic damage, and this study assessed its efficacy in preventing spinal cord ischemia. The study randomized 16 female pigs into an RIPC group (n = 8) and a control group (n = 8). The RIPC group underwent four cycles of 5-minute ischemia-reperfusion episodes by intermittent occlusion of the left iliac artery. All animals underwent systematic closure of the left subclavian artery and segmental arteries of the descending thoracic aorta to the level of diaphragm. Motor-evoked potential monitoring was performed in both hind limbs. Continuous electrocardiogram and hemodynamics were monitored, and pulmonary artery blood samples were collected. A neurologic assessment was performed 6 hours after the procedure. The thoracic and lumbar portions of the spinal cord were collected for histologic and immunohistochemical analysis. The bilateral motor-evoked potential amplitude responses were higher in the RIPC group (p < 0.05) than in the control group; the difference was detected already before spinal cord ischemia. Paraplegia occurred in 1 control animal. Immunohistochemical total scores of antioxidant response regulator nuclear factor erythroid 2-related factor 2 were better in the RIPC group (11.0; range, 8.5 to 14.0) than in the control group (5.2; range, 1.0 to 9.0; p = 0.023). RIPC induces electrophysiologic changes in the central nervous system that may confer spinal cord protection extending the resistance to ischemia. The significantly higher nuclear factor erythroid 2-related factor 2 scores suggest better neuronal cell protection against oxidative stress in the RIPC group. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    PubMed

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Expression of the repulsive guidance molecule RGM and it receptor Neogenin after spinal cord injury in sea lamprey

    PubMed Central

    Shifman, Michael I.; Yumul, Rae Eden; Laramore, Cindy; Selzer, Michael E.

    2009-01-01

    The sea lamprey recovers normal-appearing locomotion after spinal cord transection and its spinal axons regenerate selectively in their correct paths. However, among identified reticulospinal neurons some are consistently bad regenerators and only about 50% of severed reticulospinal axons regenerate through the site of injury. We previously suggested (Shifman and Selzer, 2000) that selective chemorepulsion might explain why some neurons are bad regenerators and others not. To explore the role of additional chemorepulsive axonal guidance molecules during regeneration, we examined the expression of the repulsive guidance molecule (RGM) and its receptor neogenin by in situ hybridization and quantitative PCR. RGM mRNA was expressed in the spinal cord, primarily in neurons of the lateral gray matter and in dorsal cells. Following spinal cord transection, RGM message was downregulated in neurons close (within 10 mm) to the transection at 2 and 4 weeks, although it was upregulated in reactive microglia at 2 weeks post-transection. Neogenin mRNA expression was unchanged in the brainstem after spinal cord transection, and among the identified reticulospinal neurons, was detected only in “bad regenerators, Neurons that are known to regenerate well never expressed neogenin. The downregulation of RGM expression in neurons near the transection may increase the probability that regenerating axons will regenerate through the site of injury and entered caudal spinal cord. PMID:19268666

  19. Sexuality and sexual life in women with spinal cord injury: a controlled study.

    PubMed

    Kreuter, Margareta; Siösteen, Agneta; Biering-Sørensen, Fin

    2008-01-01

    To describe sexual life in women with spinal cord injury. Controlled cross-sectional, questionnaire. Women, 18-65 years, treated at spinal cord centres in Sweden, Denmark, Norway, Finland and Iceland. 545 women (57%) completed the questionnaires. The age-matched control group consisted of 507 women. The 104-item Spinal Cord Injury Women Questionnaire, was designed to assess different dimensions of sexuality. 80% of the women with spinal cord injury had engaged in sex after the injury. Reasons for not wanting or not having the courage to be intimate and sexual were physical problems, low sexual desire, low self-esteem and feelings of being unattractive. The motivations of both the women with spinal cord injury and controls to engage in sexual activity were intimacy-based rather than primarily sexual. Being in the right mood both before and during sex to become receptive to sexual stimulation was important. For women who are able to overcome the physical restrictions and mental obstacles due to injury, it is possible to regain an active and positive sexual life together with a partner. Sexual information and counselling should be available both during initial rehabilitation and later when the women have returned to their homes.

  20. Design and performance test of NIRS-based spinal cord lesion detector

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Li, Ting

    2018-02-01

    Spinal cord lesions can cause a series of severe complications, which can even lead to paralysis with high mortality. However, the traditional diagnosis of spinal cord lesion relies on complicated imaging modalities and other invasive and dangerous methods. Here, we have designed a small monitor based on NIRS technology for noninvasive monitoring for spinal cord lesions. The development of the instrument system includes the design of hardware circuits and the program of software. In terms of hardware, OPT1011 is selected as the light detector, and the appropriate probe distribution structure is selected according to the simulation result of Monte Carlo Simulation. At the same time, the powerful controller is selected as our system's central processing chip for the circuit design, and the data is transmitted by serial port to the host computer for post processing. Finally, we verify the stability and feasibility of the instrument system. It is found that the spinal signal could be obviously detected in the system, which indicates that our monitor based on NIRS technology has the potential to monitor the spinal lesion.

  1. Glioneuronal tumor with neuropil-like islands of the spinal cord with diffuse leptomeningeal neuraxis dissemination.

    PubMed

    Ruppert, Bree; Welsh, Cynthia T; Hannah, Jessica; Giglio, Pierre; Rumboldt, Zoran; Johnson, Ian; Fortney, John; Jenrette, Joseph M; Patel, Sunil; Scheithauer, Bernd W

    2011-09-01

    A 54-year-old Caucasian female presented with a 1 year history of intermittent numbness of the left leg progressing to bilateral, lower extremity sensory loss that advanced to include impaired vibration and proprioception. The subsequent thoracic spine magnetic resonance imaging (MRI) scan revealed a heterogeneous, avidly enhancing, centrally situated spinal cord mass involving T7 through T10 in association with thick linear enhancement of the anterior and posterior cord surfaces extending both superiorly and inferiorly. Both the cervical and lumbar spine MRI demonstrated diffuse leptomeningeal disease as well. A brain MRI revealed focal leptomeningeal enhancement in the left and right sylvian fissures, the suprasellar cistern, and the posterior fossa; a pattern consistent with metastatic disease. The patient underwent a T6-T10 laminectomy for tumor biopsy and debulking. Histology revealed a WHO grade III glioneuronal tumor with rosetted neuropil-like islands. Synaptophysin and neurofilament (NF) positive staining was noted within the neural appearing component, whereas, glial fibrillary acidic protein (GFAP) immunopositivity was evident in the fibrillary astrocytoma component of the tumor. The Ki-67 labeling index was 7%. This tumor pattern, now included in the 2007 World Health Organization (WHO) classification of central nervous system tumours as a pattern variation of anaplastic astrocytoma (Kleihues et al. In: Louis et al. (eds) WHO classification of tumours of the central nervous system, 2007), was first described in a four-case series by Teo et al. in 1999. The majority of subsequently reported cases described them as primary tumors of the cerebrum. Herein, we report a unique example of a spinal glioneuronal tumor with neuropil-like islands with associated leptomeningeal dissemination involving the entire craniospinal axis.

  2. Managing the stigma: Exploring body image experiences and self-presentation among people with spinal cord injury

    PubMed Central

    Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S

    2016-01-01

    Using modified constructivist grounded theory, the purpose of this study was to explore body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21–63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4–36 years) took part in semi-structured in-depth interviews. The following main categories were found: appearance, weight concerns, negative functional features, impact of others, body disconnection, hygiene and incontinence, and self-presentation. Findings have implications for the health and well-being of those living with a spinal cord injury. PMID:28070405

  3. Spinal cord lesions of progressive multifocal leukoencephalopathy in an acquired immunodeficiency syndrome patient.

    PubMed

    Bernal-Cano, F; Joseph, J T; Koralnik, I J

    2007-10-01

    Progressive multifocal leukoencephalopathy (PML) is a deadly demyelinating disease of the central nervous system, which occurs in immunosuppressed individuals. This disease is caused by a reactivation of the polyomavirus JC (JCV). Clinical presentation can be variable from patient to patient as lesions can occur anywhere in the CNS white matter; however, they appear to spare the optic nerves and the spinal cord. The authors present a case of PML in the setting of acquired immunodeficiency syndrome (AIDS) who developed PML lesions in the spinal cord, discovered during the postmortem examination. This finding is significant because PML has recently been diagnosed in patients with multiple sclerosis (MS) treated with the novel immunomodulatory medication natalizumab. Indeed, spinal cord lesions are frequent in MS. Therefore clinicians should be aware that in addition to the brain, PML may also affect the spinal cord white matter.

  4. Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord

    PubMed Central

    Yang, Pai-Feng; Wang, Feng

    2015-01-01

    Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and

  5. Spinal Cord Infarction in Clinical Neurology: A Review of Characteristics and Long-Term Prognosis in Comparison to Cerebral Infarction.

    PubMed

    Romi, Fredrik; Naess, Halvor

    2016-01-01

    Spinal cord stroke is rare accounting for 0.3-1% of all strokes and is classified into upper (cervical) and lower (thoracolumbar) strokes. Patients present with severe deficits but later often show good functional improvement. On admission, younger age, male gender, hypertension, diabetes mellitus and elevated blood glucose indicate more severe spinal cord strokes. Treatment of these risk factors is essential in the acute phase. Biphasic spinal cord strokes are seen in one-fifth of the patients. These present with acute or transient sensory spinal cord deficits often preceded by radiating pain between the shoulders, and should be considered and treated as imminent spinal cord strokes. Spinal cord infarction patients are younger and more often women compared to cerebral infarction patients. Traditional cerebrovascular risk factors are less relevant in spinal cord infarction. Spinal cord infarction patients are more likely to be discharged home and show better improvement after initial treatment compared to cerebral infarction patients. On long-term follow-up, spinal cord infarction patients have lower mortality and higher emotional well-being scores than cerebral infarction patients. Despite more chronic pain, the frequency of re-employment is higher among spinal cord infarction patients compared to cerebral infarction patients who are more often afflicted with cognitive function deficits. © 2016 S. Karger AG, Basel.

  6. Positive and negative affect in individuals with spinal cord injuries.

    PubMed

    Salter, J E; Smith, S D; Ethans, K D

    2013-03-01

    Participants with spinal cord injuries (SCIs) and healthy controls completed standardized questionnaires assessing depression level, positive and negative affect, and personality traits. To identify the specific characteristics of emotional experiences affected by spinal cord injury. A Canadian rehabilitation center. Individuals with SCIs were recruited from a list of patients who had volunteered to participate in studies being conducted by the SCI clinic. Healthy controls were recruited from the community, but tested in the SCI clinic. Thirty-six individuals with complete (ASIA A) SCIs and 36 age-, gender- and education-matched controls participated in this study. SCI participants were classified as cervical (C1-C7), upper thoracic (T1-T5) or lower thoracic/upper lumbar (T6-L2). All participants completed the Beck Depression Inventory, the Positive and Negative Affect Schedules, the NEO Neuroticism Questionnaire, and the harm avoidance scale of the Tridimensional Personality Questionnaire. Data were analyzed using independent-samples t-tests (when contrasting SCI and controls) and analysis of variance (when comparing across SCI groups). Participants with SCIs experienced significantly less positive affect than controls. The two groups did not differ in their experience of negative affect. Participants with SCIs also reported greater levels of depression. Depression scores improved with an increasing number of years post injury. Individuals with SCIs are characterized by specific emotional dysfunction related to the experience of positive emotions, rather than a tendency to ruminate on negative emotions. The results suggest that these individuals would benefit from rehabilitation programs that include training in positive psychology.

  7. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover.

    PubMed

    Norrsell, H; Eliasson, T; Mannheimer, C; Augustinsson, L E; Bergh, C H; Andersson, B; Waagstein, F; Friberg, P

    1997-12-01

    Spinal cord stimulation has been used in the treatment of intractable angina pectoris since the beginning of the 1980s. This study was designed to investigate whether the documented anti-ischaemic effects of spinal cord stimulation are mediated through a decrease in sympathetic activity. Ten patients with a spinal cord stimulator implanted as anti-anginal treatment were included in the study. Atrial pacing until the patient experienced moderate angina was performed and after 50 min rest the procedure was repeated during spinal cord stimulation. Total body and cardiac norepinephrine spillover was calculated and the former was found to have increased during pacing (47%, P = 0.02). When spinal cord stimulation was applied, total body norepinephrine spillover decreased at a comparable pacing rate (18%, P = 0.02). Cardiac norepinephrine spillover was not affected during the procedure. The results of this study indicate that the anti-ischaemic effect of spinal cord stimulation is not due to reduced cardiac sympathetic activity. However, spinal cord stimulation decreases overall sympathetic activity which may benefit the heart, possibly by reducing oxygen demand.

  8. Provider Adherence to Implementation of Clinical Practice Guidelines for Neurogenic Bowel in Adults With Spinal Cord Injury

    PubMed Central

    Goetz, Lance L; Nelson, Audrey L; Guihan, Marylou; Bosshart, Helen T; Harrow, Jeffrey J; Gerhart, Kevin D; Krasnicka, Barbara; Burns, Stephen P

    2005-01-01

    Background/Objectives: Clinical Practice Guidelines (CPGs) have been published on a number of topics in spinal cord injury (SCI) medicine. Research in the general medical literature shows that the distribution of CPGs has a minimal effect on physician practice without targeted implementation strategies. The purpose of this study was to determine (a) whether dissemination of an SCI CPG improved the likelihood that patients would receive CPG recommended care and (b) whether adherence to CPG recommendations could be improved through a targeted implementation strategy. Specifically, this study addressed the “Neurogenic Bowel Management in Adults with Spinal Cord Injury” Clinical Practice Guideline published in March 1998 by the Consortium for Spinal Cord Medicine Methods: CPG adherence was determined from medical record review at 6 Veterans Affairs SCI centers for 3 time periods: before guideline publication (T1), after guideline publication but before CPG implementation (T2), and after targeted CPG implementation (T3). Specific implementation strategies to enhance guideline adherence were chosen to address the barriers identified by SCI providers in focus groups before the intervention. Results: Overall adherence to recommendations related to neurogenic bowel did not change between T1 and T2 (P = not significant) but increased significantly between T2 and T3 (P < 0.001) for 3 of 6 guideline recommendations. For the other 3 guideline recommendations, adherence rates were noted to be high at T1. Conclusions: While publication of the CPG alone did not alter rates of provider adherence, the use of a targeted implementation plan resulted in increases in adherence rates with some (3 of 6) CPG recommendations for neurogenic bowel management. PMID:16869086

  9. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.

    PubMed

    Chen, Qin; Shine, H David

    2013-10-01

    Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord. Copyright © 2013 Wiley Periodicals, Inc.

  10. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity

    PubMed Central

    D'Amico, Jessica M.; Condliffe, Elizabeth G.; Martins, Karen J. B.; Bennett, David J.; Gorassini, Monica A.

    2014-01-01

    The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI. PMID:24860447

  11. Diabetes-induced microvascular complications at the level of the spinal cord; a contributing factor in diabetic neuropathic pain.

    PubMed

    Ved, N; Da Vitoria Lobo, M E; Bestall, S M; L Vidueira, C; Beazley-Long, N; Ballmer-Hofer, K; Hirashima, M; Bates, D O; Donaldson, L F; Hulse, R P

    2018-05-17

    Abnormalities of neurovascular interactions within the central nervous system of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of VEGF-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A 165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, as well as a concurrent reduction of VEGF-A 165 b expression. In diabetic animals, VEGF-A 165 b treatment (biweekly intraperitoneal, 20 ng g -1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreER T2 -vegfr2 flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All

  12. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    PubMed

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury

  13. Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury

    PubMed Central

    Ellis, Amanda; Grace, Peter M.; Wieseler, Julie; Favret, Jacob; Springer, Kendra; Skarda, Bryce; Hutchinson, Mark R.; Falci, Scott; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.

    2016-01-01

    Central neuropathic pain (CNP) is a pervasive, debilitating problem that impacts thousands of people living with central nervous system disorders, including spinal cord injury (SCI). Current therapies for treating this type of pain are ineffective and often have dose-limiting side effects. Although opioids are one of the most commonly used CNP treatments, recent animal literature has indicated that administering opioids shortly after a traumatic injury can actually have deleterious effects on long-term health and recovery. In order to study the deleterious effects of administering morphine shortly after trauma, we employed our low thoracic (T13) dorsal root avulsion model (Spinal Neuropathic Avulsion Pain, SNAP). Administering a weeklong course of 10 mg/kg/day morphine beginning 24 hr after SNAP resulted in amplified mechanical allodynia. Co-administering the non-opioid toll-like receptor 4 (TLR4) antagonist (+)-naltrexone throughout the morphine regimen prevented morphine-induced amplification of SNAP. Exploration of changes induced by early post-trauma morphine revealed that this elevated gene expression of TLR4, TNF, IL-1β, and NLRP3, as well as IL-1β protein at the site of spinal cord injury. These data suggest that a short course of morphine administered early after spinal trauma can exacerbate CNP in the long term. TLR4 initiates this phenomenon and, as such, may be potential therapeutic targets for preventing the deleterious effects of administering opioids after traumatic injury. PMID:27519154

  14. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury

    DTIC Science & Technology

    2012-09-01

    pp 74–85. Austin: Landes Biosciences. 3. Abstracts o Mechanisms of Pain Relief Following Motor Cortex Stimulation: An fMRI Study. Society for...Neuroscience Meeting. Washington, DC. 2012. o Resting State fMRI in a Rat Model of Spinal Cord Injury Neuropathic Pain: A Longitudinal Study. Society...2601–2610. 16. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex. Neuron 1998;20:1051

  16. Management of Pediatric Spinal Cord Astrocytomas: Outcomes With Adjuvant Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guss, Zachary D.; Moningi, Shalini; Jallo, George I.

    2013-04-01

    Purpose: Pediatric intramedullary spinal cord tumors are exceedingly rare; in the United States, 100 to 200 cases are recognized annually, of these, most are astrocytomas. The purpose of this study is to report the outcomes in pediatric patients with spinal cord astrocytomas treated at a tertiary care center. Methods and Materials: An institutional review board-approved retrospective single-institution study was performed for pediatric patients with spinal cord astrocytomas treated at our hospital from 1990 to 2010. The patients were evaluated on the extent of resection, progression-free survival (PFS), and development of radiation-related toxicities. Kaplan-Meier curves and multivariate regression model methods weremore » used for analysis. Results: Twenty-nine patients were included in the study, 24 with grade 1 or 2 (low-grade) tumors and 5 with grade 3 or 4 (high-grade) tumors. The median follow-up time was 55 months (range, 1-215 months) for patients with low-grade tumors and 17 months (range, 10-52 months) for those with high-grade tumors. Thirteen patients in the cohort received chemotherapy. All patients underwent at least 1 surgical resection. Twelve patients received radiation therapy to a median radiation dose of 47.5 Gy (range, 28.6-54.0 Gy). Fifteen patients with low-grade tumors and 1 patient with a high-grade tumor exhibited stable disease at the last follow-up visit. Acute toxicities of radiation therapy were low grade, whereas long-term sequelae were infrequent and manageable when they arose. All patients with low-grade tumors were alive at the last follow-up visit, compared with 1 patient with a high-grade tumor. Conclusion: Primary pediatric spinal cord astrocytomas vary widely in presentation and clinical course. Histopathologic grade remains a major prognostic factor. Patients with low-grade tumors tend to have excellent disease control and long-term survival compared to those with high-grade tumors. This experience suggests that radiation

  17. [Posttraumatic syringomyelia in 2 patients with thoracic spinal cord lesions].

    PubMed

    Bollen, A E; Hoving, E W; Kuks, J B

    2000-04-29

    Two patients, men aged 42 and 40 years, developed new neurological symptoms 3 months and 22 years, respectively, after a traumatic high thoracic spinal cord injury. The MRI scan showed a cavity in the central part of the spinal cord, on which the diagnosis of 'posttraumatic syringomyelia' could be based. In one of the patients a syringo-subarachnoidal shunt was created, the other was treated conservatively because of a severe concomitant thoracic kyphosis. Posttraumatic syringomyelia is a potentially life-threathening late complication of spinal cord injury and is characterized by development of new neurological symptoms after a variable time interval. The most typical symptom of non-traumatic syringomyelia, viz. diminution of vital sensitivity without loss of gnostic sensitivity, is not necessarily present in posttraumatic syringomyelia. Surgical treatment of posttraumatic syringomyelia is advocated if there is progressive neurological deterioration, and consists of drainage of the syrinx.

  18. Lifestyle and health conditions of adults with spinal cord injury.

    PubMed

    Xavier de França, Inacia Sátiro; Cruz Enders, Bertha; Silva Coura, Alexsandro; Pereira Cruz, Giovanna Karinny; da Silva Aragão, Jamilly; Carvalho de Oliveira, Déborah Raquel

    2014-01-01

    . To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. The group under study was predominantly male (92%), under 40 years of age (47%), and had low educational level (76%). The most frequent risk factors related to the lifestyle were: smoking (28%), alcohol consumption (36%), coffee consumption (92%) and being physically inactive (64%). Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. . The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  19. Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice

    PubMed Central

    Samantaray, Supriti; Knaryan, Varduhi H.; Shields, Donald C.; Cox, April A.; Haque, Azizul; Banik, Naren L.

    2015-01-01

    Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, resulting in dopaminergic (DA) neuronal loss in the substantia nigra pars compacta (SNpc) and damage to extranigral spinal cord neurons. Current therapies do not prevent the disease progression. Hence, developing efficacious therapeutic strategies for treatment of PD is of utmost importance. The goal of this study is to delineate the involvement of calpain-mediated inflammation and neurodegeneration in SN and spinal cord in MPTP-induced parkinsonian mice (C57BL/6N), thereby elucidating potential therapeutic target(s). Increased calpain expression was found localized to tyrosine hydroxylase (TH+) neurons in SN alongside with significantly increased TUNEL positive neurons in SN and spinal cord neurons in MPTP mice. Inflammatory markers Cox-2, caspase-1, and NOS-2 were significantly up-regulated in MPTP mice spinal cord as compared to control. These parameters correlated with the activation of astrocytes, microglia, infiltration of CD4+ / CD8+ T cells and macrophages. We found that subpopulations of CD4+ cells (Th1 & Tregs) were differentially expanded in MPTP mice, which could be regulated by inhibition of calpain with the potent inhibitor calpeptin. Pre-treatment with calpeptin (25 μg/kg, i.p.) attenuated glial activation, T cell infiltration, nigral dopaminergic degeneration in SN, and neuronal death in spinal cord. Importantly, calpeptin ameliorated MPTP-induced altered gait parameters (e.g. reduced stride length and increased stride frequency) as demonstrated by analyses of spatio-temporal gait indices using ventral plane videography. These findings suggest that calpain plays a pivotal role in MPTP-induced nigral and extranigral neurodegenerative processes, and may be a valid therapeutic target in PD. PMID:26108182

  20. Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS

    DTIC Science & Technology

    2015-12-01

    Nashold BS, Jr. History of spinal cord stereotaxy. (1996) J Neurosurg. 85(4): 725- 31. 11 11. Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T...minimizing pressure on the abdomen and chest and consequent epidural venous bleeding (Figure 1). The frame also provides external immobilization of the... catheterized for fluid administration and any necessary drug delivery during surgery. Finally, the surgical field is prepped with alcohol and

  1. The role of spinal cord transmission in the ventilatory response to electrically induced exercise in the anaesthetized dog

    PubMed Central

    Cross, Brenda A.; Davey, A.; Guz, A.; Katona, P. G.; Maclean, M.; Murphy, K.; Semple, S. J. G.; Stidwill, R.

    1982-01-01

    1. The ventilatory response to electrically induced `exercise' was studied in six chloralose-anaesthetized dogs. The on-transient and steady-state responses to `exercise' were compared in the same dogs before and after spinal cord transection at T8/9 (dermatome level T6/7) on fifteen occasions. 2. Phasic hind limb `exercise' was induced for periods of 4 min by passing current (2 Hz modulated 50 Hz sine wave) between two needles inserted through the hamstring muscles. The maximum current used was 30 mA. This was below the level previously found to produce an artifactual stimulation of breathing with the cord intact. 3. Cord transection produced no significant change in either the resting values of ventilation (˙VI) and CO2 production (˙VCO2) or the ventilatory equivalent for CO2 during `exercise' (△ ˙VI/ △ ˙VCO2). 4. During the steady state of exercise Pa, CO2 was on average significantly lower than at rest with the cord intact (mean △Pa, CO2, - 2·1 mmHg; range - 5·7 to + 1), and higher, though not significantly, with the cord cut (mean Pa, CO2, + 1·2 mmHg; range - 1·5 to + 4·3). However, even in the absence of spinal cord transmission, the ventilatory response to exercise could not be accounted for on the basis of CO2 sensitivity; the △ ˙VI/ △Pa,CO2 obtained with exercise (apparent sensitivity) was significantly greater than that obtained with CO2 inhalation (true sensitivity) both before and after cord section. 5. ˙VI and ˙VCO2 increased more slowly with the cord cut than with the cord intact. This was thought to be due to a slower increase in venous return in the absence of sympathetic innervation of the lower half of the body following cord transection. 6. Similar experiments were performed during muscle paralysis (following gallamine triethiodide). Ventilation was maintained with a respirator controlled by phrenic nerve activity. These experiments showed an increase in ventilation, independent of muscle contraction, which was only present

  2. Microsurgical Resection of Spinal Cord Hemangioblastoma: 2-Dimensional Operative Video.

    PubMed

    Pojskic, Mirza; Arnautovic, Kenan I

    2018-05-18

    This video demonstrates microsurgical resection of spinal cord hemangioblastoma. Hemangioblastomas are rare, benign, highly vascularized tumors classified as grade I according to World Health Organization classification systems. About 3% of all intramedullary tumors are hemangioblastomas.1,2 Spinal cord hemangioblastomas are either sporadic3,4 or manifestations of von Hippel-Lindau (VHL) disease in 20% to 45% of patients.5,6 A 30-year-old male presented with sudden onset urinary incontinence. Magnetic resonance imaging showed contrast enhancing intramedullary tumor with adjacent cyst in T11, and syringomyelia extending to C1. Surgical resection followed rules that apply to resection of arteriovascular malformations: coagulation of arterial feeders precedes the coagulation of the draining vein, which is preserved until the end of surgery.2,4,5,7,8 First, posterior midline myelotomy was performed and the tumor cyst was drained in order to develop a dissection plane. Following this, we continuously separated dorsal nerve roots from the tumor nodule using microsurgical technique. The key step in tumor resection is devascularization of the tumor, achievable in 2 ways.2,7,9-13 The circumferential detachment of the normal pia from the tumor pia is crucial in developing a plane of dissection. The coagulation and division of arterial feeders while preserving the drainage vein further devascularizes the tumor. Once the tumor mural nodule was detached from the spinal cord, the drainage vein was coagulated last and the tumor was removed. The patient fully recovered from his incontinence and was neurologically intact. Screening for VHL disease was negative. Written consent was obtained directly from the patient.

  3. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion.

    PubMed

    Bambakidis, Nicholas C; Miller, Robert H

    2004-01-01

    A substantial cause of neurological disability in spinal cord injury is oligodendrocyte death leading to demyelination and axonal degeneration. Rescuing oligodendrocytes and preserving myelin is expected to result in significant improvement in functional outcome after spinal cord injury. Although previous investigators have used cellular transplantation of xenografted pluripotent embryonic stem cells and observed improved functional outcome, these transplants have required steroid administration and only a minority of these cells develop into oligodendrocytes. The objective of the present study was to determine whether allografts of oligodendrocyte precursors transplanted into an area of incomplete spinal cord contusion would improve behavioral and electrophysiological measures of spinal cord function. Additional treatment incorporated the use of the glycoprotein molecule Sonic hedgehog (Shh), which has been shown to play a critical role in oligodendroglial development and induce proliferation of endogenous neural precursors after spinal cord injury. Laboratory study. Moderate spinal cord contusion injury was produced in 39 adult rats at T9-T10. Ten animals died during the course of the study. Nine rats served as contusion controls (Group 1). Six rats were treated with oligodendrocyte precursor transplantation 5 days after injury (Group 2). The transplanted cells were isolated from newborn rat pups using immunopanning techniques. Another eight rats received an injection of recombinant Shh along with the oligodendrocyte precursors (Group 3), while six more rats were treated with Shh alone (Group 4). Eight additional rats received only T9 laminectomies to serve as noninjured controls (Group 0). Animals were followed for 28 days. After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, rats in Groups 2 and 3 scored 4.7 and 5.8 points better on the Basso, Beattie, Bresnahan

  4. Effects of Enhanced Oxygen Delivery by Perfluorocarbons in Spinal Cord Injury

    DTIC Science & Technology

    2013-10-01

    been established, linking post- traumatic ischemia to axonal dysfunction.8 Decreased oxygen level in severe traumatic injuries appears to be implicated...rodent weight drop traumatic spinal cord injury model; ( 2 ) determine if enhanced oxygen delivery in spinal cord injury spares cellular elements, white...shown that ischemia /hypoxia play crucial role in the devastating effects of the secondary injury following SCI which translates into worse neurological

  5. Worklife After Traumatic Spinal Cord Injury

    PubMed Central

    Pflaum, Christopher; McCollister, George; Strauss, David J; Shavelle, Robert M; DeVivo, Michael J

    2006-01-01

    Objective: To develop predictive models to estimate worklife expectancy after spinal cord injury (SCI). Design: Inception cohort study. Setting: Model SCI Care Systems throughout the United States. Participants: 20,143 persons enrolled in the National Spinal Cord Injury Statistical Center database since 1973. Intervention: Not applicable. Main Outcome Measure: Postinjury employment rates and worklife expectancy. Results: Using logistic regression, we found a greater likelihood of being employed in any given year to be significantly associated with younger age, white race, higher education level, being married, having a nonviolent cause of injury, paraplegia, ASIA D injury, longer time postinjury, being employed at injury and during the previous postinjury year, higher general population employment rate, lower level of Social Security Disability Insurance benefits, and calendar years after the passage of the Americans with Disabilities Act. Conclusions: The likelihood of postinjury employment varies substantially among persons with SCI. Given favorable patient characteristics, worklife should be considerably higher than previous estimates. PMID:17044388

  6. The association between preoperative spinal cord rotation and postoperative C5 nerve palsy.

    PubMed

    Eskander, Mark S; Balsis, Steve M; Balinger, Chris; Howard, Caitlin M; Lewing, Nicholas W; Eskander, Jonathan P; Aubin, Michelle E; Lange, Jeffrey; Eck, Jason; Connolly, Patrick J; Jenis, Louis G

    2012-09-05

    C5 nerve palsy is a known complication of cervical spine surgery. The development and etiology of this complication are not completely understood. The purpose of the present study was to determine whether rotation of the cervical spinal cord predicts the development of a C5 palsy. We performed a retrospective review of prospectively collected spine registry data as well as magnetic resonance images. We reviewed the records for 176 patients with degenerative disorders of the cervical spine who underwent anterior cervical decompression or corpectomy within the C4 to C6 levels. Our measurements included area for the spinal cord, space available for the cord, and rotation of the cord with respect to the vertebral body. There was a 6.8% prevalence of postoperative C5 nerve palsy as defined by deltoid motor strength of ≤ 3 of 5. The average rotation of the spinal cord (and standard deviation) was 2.8° ± 3.0°. A significant association was detected between the degree of rotation (0° to 5° versus 6° to 10° versus ≥ 11°) and palsy (point-biserial correlation = 0.94; p < 0.001). A diagnostic criterion of 6° of rotation could identify patients who had a C5 palsy (sensitivity = 1.00 [95% confidence interval, 0.70 to 1.00], specificity = 0.97 [95% confidence interval, 0.93 to 0.99], positive predictive value = 0.71 [95% confidence interval, 0.44 to 0.89], negative predictive value = 1.00 [95% confidence interval, 0.97 to 1.00]). Our evidence suggests that spinal cord rotation is a strong and significant predictor of C5 palsy postoperatively. Patients can be classified into three types, with Type 1 representing mild rotation (0° to 5°), Type 2 representing moderate rotation (6° to 10°), and Type 3 representing severe rotation (≥ 11°). The rate of C5 palsy was zero of 159 in the Type-1 group, eight of thirteen in the Type-2 group, and four of four in the Type-3 group. This information may be valuable for surgeons and patients considering anterior surgery in

  7. Resilience and the rehabilitation of adult spinal cord injury survivors: A qualitative systematic review.

    PubMed

    Kornhaber, Rachel; Mclean, Loyola; Betihavas, Vasiliki; Cleary, Michelle

    2018-01-01

    To synthesize the qualitative research evidence that explored how survivors of adult spinal cord injury experience and make sense of resilience. Spinal cord injury is often a sudden and unexpected life-changing event requiring complex and long-term rehabilitation. The development of resilience is essential in determining how spinal cord injury survivors negotiate this injury and rehabilitation. A qualitative systematic review and thematic synthesis of the research evidence. CINAHL, PubMed, Embase, Scopus and PsycINFO were searched, no restriction dates were used. Methodological quality was assessed using the Critical Appraisal Skills Programme checklist. Thematic synthesis focused on how survivors of adult spinal cord injury experience and make sense of resilience. Six qualitative research articles reported the experiences of 84 spinal cord injury survivors. Themes identified were: uncertainty and regaining independence; prior experiences of resilience; adopting resilient thinking; and strengthening resilience through supports. Recovery and rehabilitation following spinal cord survivors is influenced by the individual's capacity for resilience. Resilience may be influenced by previous life experiences and enhanced by supportive nursing staff encouraging self-efficacy. Survivors identified the need for active involvement in decision-making about their care to enable a sense of regaining control of their lives. This has the potential to have a significant impact on their self-efficacy and in turn health outcomes. © 2017 John Wiley & Sons Ltd.

  8. Electroencephalographic evoked pain response is suppressed by spinal cord stimulation in complex regional pain syndrome: a case report.

    PubMed

    Hylands-White, Nicholas; Duarte, Rui V; Beeson, Paul; Mayhew, Stephen D; Raphael, Jon H

    2016-12-01

    Pain is a subjective response that limits assessment. The purpose of this case report was to explore how the objectivity of the electroencephalographic response to thermal stimuli would be affected by concurrent spinal cord stimulation. A patient had been implanted with a spinal cord stimulator for the management of complex regional pain syndrome of both hands for 8 years. Following ethical approval and written informed consent we induced thermal stimuli using the Medoc PATHWAY Pain & Sensory Evaluation System on the right hand of the patient with the spinal cord stimulator switched off and with the spinal cord stimulator switched on. The patient reported a clinically significant reduction in thermal induced pain using the numerical rating scale (71.4 % reduction) with spinal cord stimulator switched on. Analysis of electroencephalogram recordings indicated the occurrence of contact heat evoked potentials (N2-P2) with spinal cord stimulator off, but not with spinal cord stimulator on. This case report suggests that thermal pain can be reduced in complex regional pain syndrome patients with the use of spinal cord stimulation and offers objective validation of the reported outcomes with this treatment.

  9. Preoperative spinal cord damage affects the characteristics and prognosis of segmental motor paralysis after cervical decompression surgery.

    PubMed

    Ikegami, Shota; Tsutsumimoto, Takahiro; Ohta, Hiroshi; Yui, Mutsuki; Kosaku, Hidemi; Uehara, Masashi; Misawa, Hiromichi

    2014-03-15

    Retrospective analysis. To test the hypothesis that preoperative spinal cord damage affects postoperative segmental motor paralysis (SMP). SMP is an enigmatic complication after cervical decompression surgery. The cause of this complication remains controversial. We particularly focused on preoperative T2-weighted high signal change (T2HSC) on magnetic resonance imaging in the spinal cord, and assessed the influence of preoperative T2HSC on SMP after cervical decompression surgery. A retrospective review of 181 consecutive patients (130 males and 51 females) who underwent cervical decompression surgery was conducted. SMP was defined as development of postoperative motor palsy of the upper extremities by at least 1 grade in manual muscle testing without impairment of the lower extremities. The relationship between the locations of T2HSC in preoperative magnetic resonance imaging and SMP and Japanese Orthopedic Association score was investigated. Preoperative T2HSC was detected in 78% (142/181) of the patients. SMP occurred in 9% (17/181) of the patients. Preoperative T2HSC was not a significant risk factor for the occurrence of SMP (P = 0.682). However, T2HSC significantly influenced the severity of SMP: the number of paralyzed segments increased with an incidence rate ratio of 2.2 (P = 0.026), the manual muscle score deteriorated with an odds ratio of 8.4 (P = 0.032), and the recovery period was extended with a hazard ratio of 4.0 (P = 0.035). In patients with preoperative T2HSC, Japanese Orthopaedic Association scores remained lower than those in patients without T2HSC throughout the entire period including pre- and postoperative periods (P < 0.001). Preoperative T2HSC was associated with worse severity of SMP in patients who underwent cervical decompression surgery, suggesting that preoperative spinal cord damage is one of the pathomechanisms of SMP after cervical decompression surgery. 3.

  10. Axonal loss in the multiple sclerosis spinal cord revisited.

    PubMed

    Petrova, Natalia; Carassiti, Daniele; Altmann, Daniel R; Baker, David; Schmierer, Klaus

    2018-05-01

    Preventing chronic disease deterioration is an unmet need in people with multiple sclerosis, where axonal loss is considered a key substrate of disability. Clinically, chronic multiple sclerosis often presents as progressive myelopathy. Spinal cord cross-sectional area (CSA) assessed using MRI predicts increasing disability and has, by inference, been proposed as an indirect index of axonal degeneration. However, the association between CSA and axonal loss, and their correlation with demyelination, have never been systematically investigated using human post mortem tissue. We extensively sampled spinal cords of seven women and six men with multiple sclerosis (mean disease duration= 29 years) and five healthy controls to quantify axonal density and its association with demyelination and CSA. 396 tissue blocks were embedded in paraffin and immuno-stained for myelin basic protein and phosphorylated neurofilaments. Measurements included total CSA, areas of (i) lateral cortico-spinal tracts, (ii) gray matter, (iii) white matter, (iv) demyelination, and the number of axons within the lateral cortico-spinal tracts. Linear mixed models were used to analyze relationships. In multiple sclerosis CSA reduction at cervical, thoracic and lumbar levels ranged between 19 and 24% with white (19-24%) and gray (17-21%) matter atrophy contributing equally across levels. Axonal density in multiple sclerosis was lower by 57-62% across all levels and affected all fibers regardless of diameter. Demyelination affected 24-48% of the gray matter, most extensively at the thoracic level, and 11-13% of the white matter, with no significant differences across levels. Disease duration was associated with reduced axonal density, however not with any area index. Significant association was detected between focal demyelination and decreased axonal density. In conclusion, over nearly 30 years multiple sclerosis reduces axonal density by 60% throughout the spinal cord. Spinal cord cross sectional area

  11. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    PubMed Central

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  12. Back pain: a real target for spinal cord stimulation?

    PubMed

    Rigoard, Philippe; Delmotte, Alexandre; D'Houtaud, Samuel; Misbert, Lorraine; Diallo, Bakari; Roy-Moreau, Aline; Durand, Sylvain; Royoux, Solène; Giot, Jean-Philippe; Bataille, Benoit

    2012-03-01

    Failed back surgery syndrome represents one of the most frequent etiologies of chronic back pain and is a major public health issue. Neurostimulation has currently not been validated in the treatment of back pain because of technological limitations in implantable spinal cord stimulation (SCS) systems. New-generation leads using several columns of stimulation can generate longitudinal and/or transverse stimulation fields into the spinal cord. To investigate, through extensive stimulation testing, the capacity of multicolumn tripolar leads to achieve back territory paresthesia coverage in refractory failed back surgery syndrome patients. Eleven patients implanted with a 16-contact spinal cord stimulation lead (Specify 5-6-5, Medtronic Inc) were assessed with a systematic exploration of 43 selected stimulation configurations to generate bilateral back paresthesia in addition to leg territory coverage. The tripolar lead successfully generated paresthesia in both bilateral back and leg territories in 9 patients (81.8%). Success rates of multicolumn stimulation patterns were significantly higher than for longitudinal configurations for lombodorsal paresthesia coverage. Six months after implantation, significant pain relief was obtained compared with preoperative evaluation for global pain (Visual Analog Scale, 2.25 vs 8.2 preoperatively; P < .05), leg pain (Visual Analog Scale, 0.5 vs 7.6 preoperatively; P < .05), and back pain (Visual Analog Scale, 1.5 vs 7.8 preoperatively; P < .05). These results suggest that multicolumn leads can reliably generate back pain coverage and favor pain relief outcomes. This may lead physicians to reconsider new indications for spinal cord stimulation. Expanding neurostimulation perspectives to intractable back pain syndromes could become realistic in the near future.

  13. Magnetic Resonance Characterization of Axonal Response to Spinal Cord Injury

    DTIC Science & Technology

    2014-12-01

    73(2):614-22. doi: 10.1002/ mrm .25174. Epub 2014 Mar 6) and in generating spinal cord myelin maps (Magnetization transfer from inhomogeneously...Rangwala N, Alsop DC, Duhamel G. Magn Reson Med. 2016 Mar 9. doi: 10.1002/ mrm .26134. [Epub ahead of print]) The third aim, to extend quantitative...resolution and gradient stability that off the shelf alternatives. However, the incompatibility of the coil and software with the new instrument introduced

  14. Anti-inflammatory effect of simvastatin in an experimental model of spinal cord trauma: involvement of PPAR-α

    PubMed Central

    2012-01-01

    Background Statins such as simvastatin are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase used in the prevention of cardiovascular disease. In addition to their cholesterol-lowering activities, statins exert pleiotropic anti-inflammatory effects, which might contribute to their beneficial effects on lipid-unrelated inflammatory diseases. Recently it has been demonstrated that the peroxisome proliferator-activated receptor (PPAR)-α mediates anti-inflammatory effects of simvastatin in vivo models of acute inflammation. Moreover, previous results suggest that PPAR-α plays a role in control of secondary inflammatory process associated with spinal cord injury (SCI). Methods With the aim to characterize the role of PPAR-α in simvastatin activity, we tested the efficacy of simvastatin (10 mg/kg dissolved in saline i.p. 1 h and 6 h after the trauma) in an experimental model of SCI induced in mice by extradural compression of the spinal cord (T6-T7 level) using an aneurysm clip with a closing force of 24 g via a four-level T5-T8 laminectomy, and comparing mice lacking PPAR-α (PPAR-α KO) with wild type (WT) mice. In order to elucidate whether the effects of simvastatin are due to activation of the PPAR-α, we also investigated the effect of a PPAR-α antagonist, GW6471 (1 mg/kg administered i.p. 30 min prior treatment with simvastatin) on the protective effects of on simvastatin. Results Results indicate that simvastatin activity is weakened in PPAR-α KO mice, as compared to WT controls. In particular, simvastatin was less effective in PPAR-α KO, compared to WT mice, as evaluated by inhibition of the degree of spinal cord inflammation, neutrophil infiltration, nitrotyrosine formation, pro-inflammmatory cytokine expression, nuclear factor (NF)-κB activation, inducible nitric-oxide synthase (iNOS) expression, and apoptosis. In addition we demonstrated that GW6471 significantly antagonized the effect of the statin and thus abolished the

  15. Primary Malignant Lymphoma in a Spinal Cord Presenting as an Epidural Mass with Myelopathy: A Case Report

    PubMed Central

    Cho, Jae-Hoon; Cho, Dae-Chul; Sung, Joo-Kyung

    2012-01-01

    We report the case of a 47-year-old man who presented with progressive paraparesis and sphincter changes over 2 weeks. Magnetic resonance imaging revealed a spinal epidural mass from T9 to L2. We performed a decompressive laminectomy and mass removal. The histopathology was consistent with a small lymphocytic lymphoma. No metastatic lesion was noted in the chest and abdomen-pelvic computerized tomography (CT) and positron emission tomography computerized tomography (PET-CT) scan. The final diagnosis was primary spinal lymphoma, so we performed chemotherapy combined with radiotherapy. At one year follow-up, he had no neurological deficit and no recurrence on neurologic and radiologic exams. Primary spinal cord lymphomas should be considered in the differential diagnosis of spinal cord tumors. Early surgical management is mandatory to achieve a recovery of neurologic function, especially if the patient has a neurological deficit. PMID:25983828

  16. Heterogeneity of Opioid Binding Sites in Guinea Pig Spinal Cord

    DTIC Science & Technology

    1984-11-30

    the release of substance P from spinal cord. Substance P is one of the putative transmitters of y nociceptive i m p u l ^ (Lembeck et al., 1981), and...is located in primary afferents of spinal cord (Jessel et al., 1978). Demonstration of morphine’s abil it/ to inhibit the relea^ of substance P ...demonstrate enkephalin’s ability to inhibit substance P relea^ from senajry neurons in culture as well as to cteirease the action potential of these

  17. Autonomic cardiovascular control and sports classification in Paralympic athletes with spinal cord injury.

    PubMed

    West, Christopher R; Krassioukov, Andrei V

    2017-01-01

    Purpose To investigate the relationship between the classification systems used in wheelchair sports and cardiovascular function in Paralympic athletes with spinal cord injury (SCI). Methods 26 wheelchair rugby (C3-C8) and 14 wheelchair basketball (T3-L1) were assessed for their International Wheelchair Rugby and Basketball Federation sports classification. Next, athletes were assessed for resting and reflex cardiovascular and autonomic function via the change (delta) in systolic blood pressure (SBP) and heart rate (HR) in response to sit-up, and sympathetic skin responses (SSRs), respectively. Results There were no differences in supine, seated, or delta SBP and HR between different sport classes in rugby or basketball (all p > 0.23). Athletes with autonomically complete injuries (SSR score 0-1) exhibited a lower supine SBP, seated SBP and delta SBP compared to those with autonomically incomplete injuries (SSR score >1; all p < 0.010), independent of sport played. There was no association between self-report OH and measured OH (χ 2  =   1.63, p = 0.20). Conclusion We provide definitive evidence that sports specific classification is not related to the degree of remaining autonomic cardiovascular control in Paralympic athletes with SCI. We suggest that testing for remaining autonomic function, which is closely related to the degree of cardiovascular control, should be incorporated into sporting classification. Implications for Rehabilitation Spinal cord injury is a debilitating condition that affects the function of almost every physiological system. It is becoming increasingly apparent that spinal cord injury induced changes in autonomic and cardiovascular function are important determinants of sports performance in athletes with spinal cord injury. This study shows that the current sports classification systems used in wheelchair rugby and basketball do not accurately reflect autonomic and cardiovascular function and thus are placing some

  18. Fractionated radiation facilitates repair and functional motor recovery after spinal cord transection in rat.

    PubMed

    Kalderon, N; Xu, S; Koutcher, J A; Fuks, Z

    2001-06-22

    Previous studies suggest that motor recovery does not occur after spinal cord injury because reactive glia abort the natural repair processes. A permanent wound gap is left in the cord and the brain-cord circuitry consequently remains broken. Single-dose x-irradiation destroys reactive glia at the damage site in transected adult rat spinal cord. The wound then heals naturally, and a partially functional brain-cord circuitry is reconstructed. Timing is crucial; cell ablation is beneficial only within the third week after injury. Data presented here point to the possibility of translating these observations into a clinical therapy for preventing the paralysis following spinal cord injury in the human. The lesion site (at low thoracic level) in severed adult rat spinal cord was treated daily, over the third week postinjury, with protocols of fractionated radiation similar to those for treating human spinal cord tumors. This resulted, as with the single-dose protocol, in wound healing and restoration of some hindquarter motor function; in addition, the beneficial outcome was augmented. Of the restored hindlimb motor functions, weight-support and posture in stance was the only obvious one. Recovery of this motor function was partial to substantial and its incidence was 100% instead of about 50% obtained with the single-dose treatment. None of the hindlimbs, however, regained frequent stepping or any weight-bearing locomotion. These data indicate that the therapeutic outcome may be further augmented by tuning the radiation parameters within the critical time-window after injury. These data also indicate that dose-fractionation is an effective strategy and better than the single-dose treatment for targeting of reactive cells that abort the natural repair, suggesting that radiation therapy could be developed into a therapeutic procedure for repairing injured spinal cord.

  19. Subarachnoid Hemorrhage due to Spinal Cord Schwannoma Presenting Findings Mimicking Meningitis.

    PubMed

    Zhang, Hong-Mei; Zhang, Yin-Xi; Zhang, Qing; Song, Shui-Jiang; Liu, Zhi-Rong

    2016-08-01

    Subarachnoid hemorrhage (SAH) of spinal origin is uncommon in clinical practice, and spinal schwannomas associated with SAH are even more rarely reported. We report an unusual case of spinal SAH mimicking meningitis with normal brain computed tomography (CT)/magnetic resonance imaging (MRI) and negative CT angiography. Cerebrospinal fluid examination results were consistent with the manifestation of SAH. Spinal MRI performed subsequently showed an intradural extramedullary mass. The patient received surgery and was finally diagnosed with spinal cord schwannoma. A retrospective chart review of the patient was performed. We describe a case of SAH due to spinal cord schwannoma. Our case highlights the importance of careful history taking and complete evaluation. We emphasize that spinal causes should always be ruled out in patients with angionegative SAH and that schwannoma should be considered in the differential diagnosis of SAH etiologies even though rare. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff

  1. Measurement properties of the Spinal Cord Injury-Functional Index (SCI-FI) short forms.

    PubMed

    Heinemann, Allen W; Dijkers, Marcel P; Ni, Pengsheng; Tulsky, David S; Jette, Alan

    2014-07-01

    To evaluate the psychometric properties of the Spinal Cord Injury-Functional Index (SCI-FI) short forms (basic mobility, self-care, fine motor, ambulation, manual wheelchair, and power wheelchair) based on internal consistency; correlations between short forms banks, full item bank forms, and a 10-item computer adaptive test version; magnitude of ceiling and floor effects; and test information functions. Cross-sectional cohort study. Six rehabilitation hospitals in the United States. Individuals with traumatic spinal cord injury (N=855) recruited from 6 national Spinal Cord Injury Model Systems facilities. Not applicable. SCI-FI full item bank, 10-item computer adaptive test, and parallel short form scores. The SCI-FI short forms (with separate versions for individuals with paraplegia and tetraplegia) demonstrate very good internal consistency, group-level reliability, excellent correlations between short forms and scores based on the total item bank, and minimal ceiling and floor effects (except ceiling effects for persons with paraplegia on self-care, fine motor, and power wheelchair ability and floor effects for persons with tetraplegia on self-care, fine motor, and manual wheelchair ability). The test information functions are acceptable across the range of scores where most persons in the sample performed. Clinicians and researchers should consider the SCI-FI short forms when computer adaptive testing is not feasible. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair

    PubMed Central

    Grulova, I.; Slovinska, L.; Blaško, J.; Devaux, S.; Wisztorski, M.; Salzet, M.; Fournier, I.; Kryukov, O.; Cohen, S.; Cizkova, D.

    2015-01-01

    Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment. PMID:26348665

  3. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    PubMed Central

    Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.

    2018-01-01

    Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503

  4. Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity.

    PubMed

    Liu, Dongfei; Chen, Jian; Jiang, Tao; Li, Wei; Huang, Yao; Lu, Xiyi; Liu, Zehua; Zhang, Weixia; Zhou, Zheng; Ding, Qirui; Santos, Hélder A; Yin, Guoyong; Fan, Jin

    2018-04-01

    New treatment strategies for spinal cord injury with good therapeutic efficacy are actively pursued. Here, acetalated dextran (AcDX), a biodegradable polymer obtained by modifying vicinal diols of dextran, is demonstrated to protect the traumatically injured spinal cord. To facilitate its administration, AcDX is formulated into microspheres (≈7.2 µm in diameter) by the droplet microfluidic technique. Intrathecally injected AcDX microspheres effectively reduce the traumatic lesion volume and inflammatory response in the injured spinal cord, protect the spinal cord neurons from apoptosis, and ultimately, recover the locomotor function of injured rats. The neuroprotective feature of AcDX microspheres is achieved by sequestering glutamate and calcium ions in cerebrospinal fluid. The scavenging of glutamate and calcium ion reduces the influx of calcium ions into neurons and inhibits the formation of reactive oxygen species. Consequently, AcDX microspheres attenuate the expression of proapoptotic proteins, Calpain, and Bax, and enhance the expression of antiapoptotic protein Bcl-2. Overall, AcDX microspheres protect traumatically injured spinal cord by alleviating the glutamate-induced excitotoxicity. This study opens an exciting perspective toward the application of neuroprotective AcDX for the treatment of severe neurological diseases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preexisting severe cervical spinal cord compression is a significant risk factor for severe paralysis development in patients with traumatic cervical spinal cord injury without bone injury: a retrospective cohort study.

    PubMed

    Oichi, Takeshi; Oshima, Yasushi; Okazaki, Rentaro; Azuma, Seiichi

    2016-01-01

    The objective of this study is to investigate whether preexisting severe cervical spinal cord compression affects the severity of paralysis once patients develop traumatic cervical spinal cord injury (CSCI) without bone injury. We retrospectively investigated 122 consecutive patients with traumatic CSCI without bone injury. The severity of paralysis on admission was assessed by the American Spinal Injury Association impairment scale (AIS). The degree of preexisting cervical spinal cord compression was evaluated by the maximum spinal cord compression (MSCC) and was divided into three categories: minor compression (MSCC ≤ 20 %), moderate compression (20 % < MSCC ≤ 40 %), and severe compression (40 % < MSCC). We investigated soft-tissue damage on magnetic resonance imaging to estimate the external force applied. Other potential risk factors, including age, sex, fused vertebra, and ossification of longitudinal ligament, were also reviewed. A multivariate logistic regression analysis was performed to investigate the risk factors for developing severe paralysis (AIS A-C) on admission. Our study included 103 males and 19 females with mean age of 65 years. Sixty-one patients showed severe paralysis (AIS A-C) on admission. The average MSCC was 22 %. Moderate compression was observed in 41, and severe in 20. Soft-tissue damage was observed in 91. A multivariate analysis showed that severe cervical spinal cord compression significantly affected the severity of paralysis at the time of injury, whereas both mild and moderate compression did not affect it. Soft-tissue damage was also significantly associated with severe paralysis on admission. Preexisting severe cervical cord compression is an independent risk factor for severe paralysis once patients develop traumatic CSCI without bone injury.

  6. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.

    PubMed

    Takeda, Akihito; Okada, Soichiro; Funakoshi, Kengo

    2017-10-15

    Chondroitin sulfate proteoglycans produced in glial scar tissue are a major inhibitory factor for axonal regeneration after central nervous system injury in mammals. The inhibition is largely due to chondroitin sulfates, whose effects differ according to the sulfation pattern. In contrast to mammals, fish nerves spontaneously regenerate beyond the scar tissue after spinal cord injury, although the mechanisms that allow for axons to pass through the scar are unclear. Here, we used immunohistochemistry to examine the expression of two chondroitin sulfates with different sulfation variants at the lesion site in goldfish spinal cord. The intact spinal cord was immunoreactive for both chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), and CS-A immunoreactivity overlapped extensively with glial processes positive for glial fibrillary acidic protein. At 1week after inducing the spinal lesion, CS-A immunoreactivity was observed in the cell bodies and extracellular matrix, as well as in glial processes surrounding the lesion center. At 2weeks after the spinal lesion, regenerating axons entering the lesion center overtook the CS-A abundant area. In contrast, at 1week after lesion induction, CS-C immunoreactivity was significantly decreased, and at 2weeks after lesion induction, CS-C immunoreactivity was observed along the regenerating axons entering the lesion center. The present findings suggest that after spinal cord injury in goldfish, chondroitin sulfate proteoglycans are deposited in the extracellular matrix at the lesion site but do not form an impenetrable barrier to the growth of regenerating axons. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Peripheral Inflammation Undermines the Plasticity of the Isolated Spinal Cord

    PubMed Central

    Huie, John R.; Grau, James W.

    2009-01-01

    Peripheral capsaicin treatment induces molecular changes that sensitize the responses of nociceptive neurons in the spinal dorsal horn. The current studies demonstrate that capsaicin also undermines the adaptive plasticity of the spinal cord, rendering the system incapable of learning a simple instrumental task. In these studies, male rats are transected at the second thoracic vertebra and are tested 24 to 48 hours later. During testing, subjects receive shock to one hindleg when it is extended (controllable stimulation). Rats quickly learn to maintain the leg in a flexed position. Rats that have been injected with capsaicin (1% or 3%) in the hindpaw fail to learn, even when tested on the leg contralateral to the injection. This learning deficit lasts at least 24 hours. Interestingly, training with controllable electrical stimulation prior to capsaicin administration protects the spinal cord against the maladaptive effects. Rats pretrained with controllable stimulation do not display a learning deficit or tactile allodynia. Moreover, controllable stimulation, combined with naltrexone, reverses the capsaicin-induced deficit. These data suggest that peripheral inflammation, accompanying spinal cord injuries, might have an adverse effect on recovery. PMID:18298266

  8. A THREE-DIMENSIONAL MAP OF THE HINDLIMB MOTOR REPRESENTATION IN THE LUMBAR SPINAL CORD IN SPRAGUE DAWLEY RATS

    PubMed Central

    Borrell, Jordan A.; Frost, Shawn; Peterson, Jeremy; Nudo, Randolph J.

    2016-01-01

    Objective Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282,000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a three-dimensional (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and EMG activity. Via fine wire electromyographic (EMG) electrodes, Stimulus-Triggered Averaging (StTA) was used on rectified EMG data to determine response latency. Main results Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance The derived motor map provides insight into the parameters needed for future neuromodulatory devices. PMID:27934789

  9. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats

    NASA Astrophysics Data System (ADS)

    Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.

    2017-02-01

    Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.

  10. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    PubMed

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  11. Therapeutic horse back riding of a spinal cord injured veteran: a case study.

    PubMed

    Asselin, Glennys; Penning, Julius H; Ramanujam, Savithri; Neri, Rebecca; Ward, Constance

    2012-01-01

    To determine an incomplete spinal cord injured veteran's experience following participation in a therapeutic horseback riding program. Following the establishment of a nationwide therapeutic riding program for America's wounded service veterans in 2007, a Certified Rehabilitation Registered Nurse from the Michael E. DeBakey Veteran Affairs Medical Center worked with an incomplete spinal cord injured veteran who participated in the Horses for Heroes program. This program resulted in many benefits for the veteran, including an increase in balance, muscle strength, and self-esteem. A physical, psychological, and psychosocial benefit of therapeutic horseback riding is shown to have positive results for the spinal cord injured. Therapeutic riding is an emerging field where the horse is used as a tool for physical therapy, emotional growth, and learning. Veterans returning from the Iraq/Afghanistan war with traumatic brain injuries, blast injuries, depression, traumatic amputations, and spinal cord injuries may benefit from this nurse-assisted therapy involving the horse. © 2012 Association of Rehabilitation Nurses.

  12. Anaplastic astrocytoma in the spinal cord of an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Gibson, C J; Parry, N M A; Jakowski, R M; Eshar, D

    2008-11-01

    A 2-year-old, female hedgehog presented with an 8-month history of progressive, ascending paresis/paralysis and was tentatively diagnosed with wobbly hedgehog syndrome. She died awaiting further diagnostic tests, and the owners consented to postmortem examination. Grossly, the bladder was large and flaccid and the cervical and lumbar spinal cord were regionally enlarged, light grey, and friable with multifocal hemorrhages. The thoracic spinal cord was grossly normal. Microscopically all regions of the spinal cord had similar changes, although the cervical and lumbar sections were most severely affected. These regions were completely effaced by a moderately cellular infiltration of highly pleomorphic polygonal to spindle shaped cells, mineralization, and necrosis, which were most consistent with anaplastic astrocytoma. The thoracic spinal cord white matter was similarly infiltrated by the neoplastic cells, with perivascular extension into the otherwise normal grey matter. A diagnosis of anaplastic astrocytoma was confirmed using immunohistochemical stains that were positive for glial fibrillary acidic protein and S100.

  13. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    PubMed Central

    Budde, Matthew D.; Skinner, Nathan P.; Muftuler, L. Tugan; Schmit, Brian D.; Kurpad, Shekar N.

    2017-01-01

    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the

  14. [Robotic systems for gait re-education in cases of spinal cord injury: a systematic review].

    PubMed

    Gandara-Sambade, T; Fernandez-Pereira, M; Rodriguez-Sotillo, A

    2017-03-01

    The evidence underlying robotic body weight supported treadmill training in patients with spinal cord injury remains poorly characterized. To perform a qualitative systematic review on the efficacy of this therapy. A search on PubMed, CINAHL, Cochrane Library and PEDro was performed from January 2005 to April 2016. The references in these articles were also reviewed to find papers not identified with the initial search strategy. The methodological level of the articles was evaluated with PEDro and Downs and Black scales. A total of 129 potentially interesting articles were found, of which 10 fulfilled the inclusion criteria. Those studies included 286 patients, who were predominantly young and male. Most of them had an incomplete spinal cord injury and were classified as C or D in ASIA scale. Robotic devices employed in these studies were Lokomat, Gait Trainer and LOPES. Improvement in walking parameters evaluated was more evident in young patients, those with subacute spinal cord injury, and those with high ASIA or LEMS scores. Conversely, factors such as etiology, level of injury or sex were less predictive of improvement. The methodological level of these studies was fair according to PEDro and Downs and Black scales. The evidence of gait training with robotic devices in patients with spinal cord injury is positive, although limited and with fair methodological quality.

  15. Raman spectroscopic investigation of spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  16. Association of Deep Gray Matter Damage With Cortical and Spinal Cord Degeneration in Primary Progressive Multiple Sclerosis.

    PubMed

    Ruggieri, Serena; Petracca, Maria; Miller, Aaron; Krieger, Stephen; Ghassemi, Rezwan; Bencosme, Yadira; Riley, Claire; Howard, Jonathan; Lublin, Fred; Inglese, Matilde

    2015-12-01

    The investigation of cortical gray matter (GM), deep GM nuclei, and spinal cord damage in patients with primary progressive multiple sclerosis (PP-MS) provides insights into the neurodegenerative process responsible for clinical progression of MS. To investigate the association of magnetic resonance imaging measures of cortical, deep GM, and spinal cord damage and their effect on clinical disability. Cross-sectional analysis of 26 patients with PP-MS (mean age, 50.9 years; range, 31-65 years; including 14 women) and 20 healthy control participants (mean age, 51.1 years; range, 34-63 years; including 11 women) enrolled at a single US institution. Clinical disability was measured with the Expanded Disability Status Scale, 9-Hole Peg Test, and 25-Foot Walking Test. We collected data from January 1, 2012, through December 31, 2013. Data analysis was performed from January 21 to April 10, 2015. Cortical lesion burden, brain and deep GM volumes, spinal cord area and volume, and scores on the Expanded Disability Status Scale (score range, 0 to 10; higher scores indicate greater disability), 9-Hole Peg Test (measured in seconds; longer performance time indicates greater disability), and 25-Foot Walking Test (test covers 7.5 m; measured in seconds; longer performance time indicates greater disability). The 26 patients with PP-MS showed significantly smaller mean (SD) brain and spinal cord volumes than the 20 control group patients (normalized brain volume, 1377.81 [65.48] vs 1434.06 [53.67] cm3 [P = .003]; normalized white matter volume, 650.61 [46.38] vs 676.75 [37.02] cm3 [P = .045]; normalized gray matter volume, 727.20 [40.74] vs 757.31 [38.95] cm3 [P = .02]; normalized neocortical volume, 567.88 [85.55] vs 645.00 [42.84] cm3 [P = .001]; normalized spinal cord volume for C2-C5, 72.71 [7.89] vs 82.70 [7.83] mm3 [P < .001]; and normalized spinal cord volume for C2-C3, 64.86 [7.78] vs 72.26 [7.79] mm3 [P =.002]). The amount of damage in deep GM structures, especially

  17. [Research progress in the role of aquaproin-4 and inward rectifying potassium channel 4.1 in spinal cord edema].

    PubMed

    Chen, Tiege; Dang, Yuexiu; Wang, Ming; Zhang, Dongliang; Guo, Yongqiang; Zhang, Haihong

    2018-05-28

    Spinal edema is a very important pathophysiological basis for secondary spinal cord injury, which affects the repair and prognosis of spinal cord injury. Aquaporin-4 is widely distributed in various organs of the body, and is highly expressed in the brain and spinal cord. Inward rectifying potassium channel 4.1 is a protein found in astrocytes of central nervous system. It interacts with aquaporins in function. Aquaporin-4 and inward rectifying potassium channel 4.1 play an important role in the formation and elimination of spinal cord edema, inhibition of glial scar formation and promotion of excitotoxic agents exclusion. The distribution and function of aquaporin-4 and inward rectifying potassium channel 4.1 in the central nervous system and their expression after spinal cord injury have multiple effects on spinal edema. Studies of aquaporin-4 and inward rectifying potassium channel 4.1 in the spinal cord may provide new ideas for the elimination and treatment of spinal edema.

  18. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat.

    PubMed

    Jou, I M

    2000-08-01

    spinal cord produced a degree of effect on the amplitude of spinal somatosensory-evoked potential in normothermic conditions that differed from the effect in moderately hypothermic conditions. Using the same electromonitoring criteria,moderately hypothermic groups showed a significantly higher false-negative rate statistically (35%) than normothermic groups (10%). Systemic cooling may protect against the detrimental effects of aggressive spinal surgical procedures. There is still not enough published information available to establish statistically and ethically acceptable intraoperative neuromonitoring warning and intervention criteria conclusively. Therefore, an urgent need exists for further investigation. Although a reduction of more than 50% in evoked potential still seems acceptable as an indicator of impending neural function loss, maintenance of more than 50% of baseline evoked potential is no guarantee of normal postoperative neural function, especially at lower than normal temperatures.

  19. Aquaporin-4 in brain and spinal cord oedema.

    PubMed

    Saadoun, S; Papadopoulos, M C

    2010-07-28

    Brain oedema is a major clinical problem produced by CNS diseases (e.g. stroke, brain tumour, brain abscess) and systemic diseases that secondarily affect the CNS (e.g. hyponatraemia, liver failure). The swollen brain is compressed against the surrounding dura and skull, which causes the intracranial pressure to rise, leading to brain ischaemia, herniation, and ultimately death. A water channel protein, aquaporin-4 (AQP4), is found in astrocyte foot processes (blood-brain border), the glia limitans (subarachnoid cerebrospinal fluid-brain border) and ependyma (ventricular cerebrospinal fluid-brain border). Experiments using mice lacking AQP4 or alpha syntrophin (which secondarily downregulate AQP4) showed that AQP4 facilitates oedema formation in diseases causing cytotoxic (cell swelling) oedema such as cerebral ischaemia, hyponatraemia and meningitis. In contrast, AQP4 facilitates oedema elimination in diseases causing vasogenic (vessel leak) oedema and therefore AQP4 deletion aggravates brain oedema produced by brain tumour and brain abscess. AQP4 is also important in spinal cord oedema. AQP4 deletion was associated with less cord oedema and improved outcome after compression spinal cord injury in mice. Here we consider the possible routes of oedema formation and elimination in the injured cord and speculate about the role of AQP4. Finally we discuss the role of AQP4 in neuromyelitis optica (NMO), an inflammatory demyelinating disease that produces oedema in the spinal cord and optic nerves. NMO patients have circulating AQP4 IgG autoantibody, which is now used for diagnosing NMO. We speculate how NMO-IgG might produce CNS inflammation, demyelination and oedema. Since AQP4 plays a key role in the pathogenesis of CNS oedema, we conclude that AQP4 inhibitors and activators may reduce CNS oedema in many diseases. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes.

    PubMed

    Lawrence, Jane M; Stroman, Patrick W; Kollias, Spyros S

    2008-03-01

    We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements.

  1. Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury.

    PubMed

    Jirjis, Michael B; Valdez, Chris; Vedantam, Aditya; Schmit, Brian D; Kurpad, Shekar N

    2017-02-01

    OBJECTIVE The aims of this study were to determine if the morphological and functional changes induced by neural stem cell (NSC) grafts after transplantation into the rodent spinal cord can be detected using MR diffusion tensor imaging (DTI) and, furthermore, if the DTI-derived mean diffusivity (MD) metric could be a biomarker for cell transplantation in spinal cord injury (SCI). METHODS A spinal contusion was produced at the T-8 vertebral level in 40 Sprague Dawley rats that were separated into 4 groups, including a sham group (injury without NSC injection), NSC control group (injury with saline injection), co-injection control group (injury with Prograf), and the experimental group (injury with NSC and Prograf injection). The NSC injection was completed 1 week after injury into the site of injury and the rats in the experimental group were compared to the rats from the sham, NSC control, and co-injection groups. The DTI index, MD, was assessed in vivo at 2, 5, and 10 weeks and ex vivo at 10 weeks postinjury on a 9.4-T Bruker scanner using a spin-echo imaging sequence. DTI data of the cervical spinal cord from the sham surgery, injury with saline injection, injury with injection of Prograf only, and injury with C17.2 NSC and Prograf injection were examined to evaluate if cellular proliferation induced by intrathoracic C17.2 engraftment was detectable in a noninvasive manner. RESULTS At 5 weeks after injury, the average fractional anisotropy, longitudinal diffusion (LD) and radial diffusion (RD) coefficients, and MD of water (average of the RD and LD eigenvalues in the stem cell line-treated group) increased to an average of 1.44 × 10 -3 sec/mm 2 in the cervical segments, while the control groups averaged 0.98 × 10 -3 s/mm 2 . Post hoc Tukey's honest significant difference tests demonstrated that the transplanted stem cells had significantly higher MD values than the other groups (p = 0.032 at 5 weeks). In vivo and ex vivo findings at 10 weeks displayed similar

  2. Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS

    DTIC Science & Technology

    2012-10-01

    ABSTRACT: This grant will provide critical data on tolerance and toxicity of cell dosing and numbers of permissible spinal cord injections. Rigorous...Surgical Technique) will provide critical data on tolerance and toxicity of cell dosing and numbers of permissible spinal cord injections. Aim 2 (Graft...connected to a rigid needle of the same gauge as the floating cannula one – Figure 7) using the maximum volume/number of injections could result in

  3. Upregulation of β-1,4-galactosyltransferase I in rat spinal cord with experimental autoimmune encephalomyelitis.

    PubMed

    Zhao, Jianmei; Gao, Ying; Cheng, Chun; Yan, Meijuan; Wang, Jian

    2013-03-01

    Inflammatory infiltration has been recently emphasized in the demyelinating diseases of the central nervous system including multiple sclerosis. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a major galactosyltransferase responsible for selectin-ligand biosynthesis, mediating rolling of the inflammatory lymphocytes. In the present study, Western blot showed that expression of β-1,4-GalT-I was low in normal or complete Freund's adjuvant (CFA) control rats' spinal cords, and it began to increase since early stage and peaked at E4 stage of experimental autoimmune encephalomyelitis (EAE) and restored approximately at normal level in the recovery stage. Immunohistochemisty revealed that upregulation of β-1,4-GalT-I was predominantly distributed in the white matter of spinal cord , while there was also some increased staining of β-1,4-GalT-I in the grey matter. Meanwhile, the expression of E-selectin, the substrate of β-1,4-GalT-I, was significantly increased, with a peak at E4 stage of EAE, and gradually decreased thereafter. Lectin blot showed that the protein bands with molecular weights of 65-25 kDa reacted a remarkable increase at the peak stage of EAE when compared with the normal and CFA control. Ricinus Communis Agglutinin-I (RCA-I) histochemistry revealed that RCA-Ι-positive signals were most intense in white matter of lumbosacral spinal cord at the peak stage of EAE (E4). Immunohistochemistry showed that β-1,4-GalT-I and CD62E, a marker for E-selectin stainings located in a considerable number of ED1 (+) macrophages in perivascular or in the white matter in EAE lesions, and a good co-localization of ED1 (+) cells with CD62E was observed. All these results suggest that β-1,4-GalT-I might serve as an inflammatory mediator regulating adhesion and migration of inflammatory cells in EAE, possibly through influencing the modification of galactosylated carbohydrate chains to modulate selectin-ligand biosynthesis and interaction with E-selectin.

  4. Transvertebral direct current stimulation paired with locomotor training in chronic spinal cord injury: A case study.

    PubMed

    Powell, Elizabeth Salmon; Carrico, Cheryl; Raithatha, Ravi; Salyers, Emily; Ward, Andrea; Sawaki, Lumy

    2016-01-01

    This double-blind, sham-controlled, crossover case study combined transvertebral direct current stimulation (tvDCS) and locomotor training on a robot-assisted gait orthosis (LT-RGO). Determine whether cathodal tvDCS paired with LT-RGO leads to greater changes in function and neuroplasticity than sham tvDCS paired with LT-RGO. University of Kentucky (UK) HealthCare Stroke and Spinal Cord Neurorehabilitation Research at HealthSouth Cardinal Hill Hospital. A single subject with motor incomplete spinal cord injury (SCI) participated in 24 sessions of sham tvDCS paired with LT-RGO before crossover to 24 sessions of cathodal tvDCS paired with LT-RGO. Functional outcomes were measured with 10 Meter Walk Test (10MWT), 6 Minute Walk Test (6MWT), Spinal Cord Independence Measure-III (SCIM-III) mobility component, lower extremity manual muscle test (MMT), and Berg Balance Scale (BBS). Corticospinal changes were assessed using transcranial magnetic stimulation. Improvement in 10MWT speed, SCIM-III mobility component, and BBS occurred with both conditions. 6MWT worsened after sham tvDCS and improved after cathodal tvDCS. MMT scores for both lower extremities improved following sham tvDCS but decreased following cathodal tvDCS. Corticospinal excitability increased following cathodal tvDCS but not sham tvDCS. These results suggest that combining cathodal tvDCS and LT-RGO may improve functional outcomes, increase corticospinal excitability, and possibly decrease spasticity. Randomized controlled trials are needed to confirm these conclusions. This publication was supported by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1TR000117, and the HealthSouth Cardinal Hill Stroke and Spinal Cord Endowment (1215375670).

  5. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  6. Beneficial effects of early hemostasis on spinal cord injury in the rat

    PubMed Central

    Fan, H; Chen, K; Duan, L; Wang, Y-Z; Ju, G

    2016-01-01

    Study design: Experimental study. Objectives: To investigate the effect of early hemostasis on spinal cord injury (SCI). Setting: Fourth Military Medical University, Xi'an, China. Methods: Sprague Dawley rats were used. Hematoxylin and eosin (HE) staining was performed to observe hemorrhage at different time points (2, 6, 12, 24 and 48 h) after SCI to determine the time window of hemostatic drug administration (n=3 per time point). Three different concentrations of Etamsylate (0.025, 0.05 and 0.1 g kg−1) were administered immediately and 5 and 10 h after SCI to evaluate the effective dosage (n=6 per group). Another 82 rats were then randomly divided into two groups, Etamsylate group (0.1 g kg−1, n=41) and glucose control group (n=41). Nissl staining was performed to observe neurons at 10 days post injury. Immunohistochemistry, western blot and quantitative real-time PCR were performed to detect tissue necrosis at 7 d.p.i., the activation of astrocytes and microglia/macrophages and lesion cavity at 10 d.p.i. Basso–Beattie–Bresnahan scoring and rump height index assay were used to examine locomotion recovery. Results: Early hemostasis reduced the lesion area and tissue necrosis, enhanced neuronal survival, alleviated the activation of microglia/macrophages and astrocytes and facilitated functional recovery after spinal cord contusion in rats. Early hemostasis decreased hemorrhage area and lesion area after spinal cord transection in rats. Conclusion: The present study demonstrated that early hemostasis has beneficial effects on SCI in the rat. It has the potential to be translated into clinical practice. PMID:27137123

  7. The spinal cord and its roots according to Galen.

    PubMed

    Viale, Giuseppe L

    2004-06-01

    Galen's methodological approach to medicine anticipated modern rules. His experiments on the spinal cord contributed greatly to our knowledge of this structure by reporting the variegated pattern of neurological impairment after sectioning at different levels. His approach to injuries of the spinal roots and peripheral nerves documents both diagnostic skill and intellectual honesty.

  8. Epidural Spinal Cord Stimulation of Lumbosacral Networks Modulates Arterial Blood Pressure in Individuals With Spinal Cord Injury-Induced Cardiovascular Deficits.

    PubMed

    Aslan, Sevda C; Legg Ditterline, Bonnie E; Park, Michael C; Angeli, Claudia A; Rejc, Enrico; Chen, Yangsheng; Ovechkin, Alexander V; Krassioukov, Andrei; Harkema, Susan J

    2018-01-01

    Disruption of motor and autonomic pathways induced by spinal cord injury (SCI) often leads to persistent low arterial blood pressure and orthostatic intolerance. Spinal cord epidural stimulation (scES) has been shown to enable independent standing and voluntary movement in individuals with clinically motor complete SCI. In this study, we addressed whether scES configured to activate motor lumbosacral networks can also modulate arterial blood pressure by assessing continuous, beat-by-beat blood pressure and lower extremity electromyography during supine and standing in seven individuals with C5-T4 SCI. In three research participants with arterial hypotension, orthostatic intolerance, and low levels of circulating catecholamines (group 1), scES applied while supine and standing resulted in increased arterial blood pressure. In four research participants without evidence of arterial hypotension or orthostatic intolerance and normative circulating catecholamines (group 2), scES did not induce significant increases in arterial blood pressure. During scES, there were no significant differences in electromyographic (EMG) activity between group 1 and group 2. In group 1, during standing assisted by scES, blood pressure was maintained at 119/72 ± 7/14 mmHg (mean ± SD) compared with 70/45 ± 5/7 mmHg without scES. In group 2 there were no arterial blood pressure changes during standing with or without scES. These findings demonstrate that scES configured to facilitate motor function can acutely increase arterial blood pressure in individuals with SCI-induced cardiovascular deficits.

  9. The changing nature of admissions to a spinal cord injury center: violence on the rise.

    PubMed

    Farmer, J C; Vaccaro, A R; Balderston, R A; Albert, T J; Cotler, J

    1998-10-01

    The purpose of this study was to analyze changing etiologies for admission to a spinal cord injury center. This study was designed to retrospectively analyze the etiology of admissions to a spinal cord injury center during a 15-year period, specifically gunshot versus nongunshot wound injuries. Gunshot wounds are a well-recognized cause of spinal cord injury. In some centers, up to 52% of admissions are due to this, and these trends are believed to be increasing. All patients with spinal cord injury admitted to our center between 1979 and 1993 were analyzed. Frequencies of specific etiologies were determined and then comparisons were made between gunshot wound and nongunshot wound groups. Factors analyzed included age, male/female ratio, ethnic make-up, marital status, employment status, level of injury, and neurologic status. One thousand eight hundred seventeen patients were included. Overall, gunshot wound spinal cord injuries compromised 16.9% of injuries. A clear trend of increasing numbers of admissions was seen between 1984 and 1993 because of this. Gunshot wounds and nongunshot wounds differed dramatically in terms of age, ethnic make-up, marital status, employment status, and neurologic status. Cost attributed to treating gunshot wound injuries at our center for 1993 was 5.4 million dollars. Gunshot wounds as a cause of spinal cord injury are increasing at an alarming rate. The demographics of the gunshot wounds and nongunshot wound spine cord injuries differ significantly.

  10. Management of acute traumatic spinal cord injuries.

    PubMed

    Shank, C D; Walters, B C; Hadley, M N

    2017-01-01

    Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. This chapter is an overview of the contemporary management of an acute traumatic SCI patient from the time of injury through the stay in the intensive care unit. We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome. © 2017 Elsevier B.V. All rights reserved.

  11. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  12. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

    PubMed Central

    Chernoff, Ellen A. G.; Sato, Kazuna; Salfity, Hai V. N.; Sarria, Deborah A.; Belecky-Adams, Teri

    2018-01-01

    The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent Xenopus tadpole

  13. Evaluating diagnosis-based risk-adjustment methods in a population with spinal cord dysfunction.

    PubMed

    Warner, Grace; Hoenig, Helen; Montez, Maria; Wang, Fei; Rosen, Amy

    2004-02-01

    To examine performance of models in predicting health care utilization for individuals with spinal cord dysfunction. Regression models compared 2 diagnosis-based risk-adjustment methods, the adjusted clinical groups (ACGs) and diagnostic cost groups (DCGs). To improve prediction, we added to our model: (1) spinal cord dysfunction-specific diagnostic information, (2) limitations in self-care function, and (3) both 1 and 2. Models were replicated in 3 populations. Samples from 3 populations: (1) 40% of veterans using Veterans Health Administration services in fiscal year 1997 (FY97) (N=1,046,803), (2) veteran sample with spinal cord dysfunction identified by codes from the International Statistical Classification of Diseases, 9th Revision, Clinical Modifications (N=7666), and (3) veteran sample identified in Veterans Affairs Spinal Cord Dysfunction Registry (N=5888). Not applicable. Inpatient, outpatient, and total days of care in FY97. The DCG models (R(2) range,.22-.38) performed better than ACG models (R(2) range,.04-.34) for all outcomes. Spinal cord dysfunction-specific diagnostic information improved prediction more in the ACG model than in the DCG model (R(2) range for ACG,.14-.34; R(2) range for DCG,.24-.38). Information on self-care function slightly improved performance (R(2) range increased from 0 to.04). The DCG risk-adjustment models predicted health care utilization better than ACG models. ACG model prediction was improved by adding information.

  14. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    PubMed

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed

  15. Distribution of syringomyelia along the entire spinal cord in clinically affected Cavalier King Charles Spaniels.

    PubMed

    Loderstedt, Shenja; Benigni, Livia; Chandler, Kate; Cardwell, Jacqueline M; Rusbridge, Clare; Lamb, Christopher R; Volk, Holger A

    2011-12-01

    Chiari-like malformation (CM) and syringomyelia (SM) is an important disease complex in the Cavalier King Charles Spaniel (CKCS) but data about the anatomical distribution of SM along the spinal cord are lacking in veterinary medicine. The objective of this study was to define the anatomic distribution of SM in CKCS clinically affected by CM/SM. Magnetic resonance imaging (MRI) of the brain and the entire spinal cord of 49 dogs was performed and different morphological parameters compared. Syrinx formation was present in the C1-C4 region and in other parts of the spinal cord. The maximal dorsoventral syrinx size can occur in any region of the spinal cord and the total syrinx size was positively correlated with age. Seventy-six per cent of CKCS with a cranial cervical syrinx also have a syrinx affecting more caudal spinal cord regions. MRI restricted to the cervical region may underestimate the extent of SM and the severity of the disease process in the majority of dogs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Modules in the brain stem and spinal cord underlying motor behaviors

    PubMed Central

    Cheung, Vincent C. K.; Bizzi, Emilio

    2011-01-01

    Previous studies using intact and spinalized animals have suggested that coordinated movements can be generated by appropriate combinations of muscle synergies controlled by the central nervous system (CNS). However, which CNS regions are responsible for expressing muscle synergies remains an open question. We address whether the brain stem and spinal cord are involved in expressing muscle synergies used for executing a range of natural movements. We analyzed the electromyographic (EMG) data recorded from frog leg muscles before and after transection at different levels of the neuraxis—rostral midbrain (brain stem preparations), rostral medulla (medullary preparations), and the spinal-medullary junction (spinal preparations). Brain stem frogs could jump, swim, kick, and step, while medullary frogs could perform only a partial repertoire of movements. In spinal frogs, cutaneous reflexes could be elicited. Systematic EMG analysis found two different synergy types: 1) synergies shared between pre- and posttransection states and 2) synergies specific to individual states. Almost all synergies found in natural movements persisted after transection at rostral midbrain or medulla but not at the spinal-medullary junction for swim and step. Some pretransection- and posttransection-specific synergies for a certain behavior appeared as shared synergies for other motor behaviors of the same animal. These results suggest that the medulla and spinal cord are sufficient for the expression of most muscle synergies in frog behaviors. Overall, this study provides further evidence supporting the idea that motor behaviors may be constructed by muscle synergies organized within the brain stem and spinal cord and activated by descending commands from supraspinal areas. PMID:21653716

  17. Spinal cord injury triggers an intrinsic growth-promoting state in nociceptors.

    PubMed

    Bedi, Supinder S; Lago, Michael T; Masha, Luke I; Crook, Robyn J; Grill, Raymond J; Walters, Edgar T

    2012-03-20

    Although most investigations of the mechanisms underlying chronic pain after spinal cord injury (SCI) have examined the central nervous system (CNS), recent studies have shown that nociceptive primary afferent neurons display persistent hyperexcitability and spontaneous activity in their peripheral branches and somata in dorsal root ganglia (DRG) after SCI. This suggests that SCI-induced alterations of primary nociceptors contribute to central sensitization and chronic pain after SCI. Does SCI also promote growth of these neurons' fibers, as has been suggested in some reports? The present study tests the hypothesis that SCI induces an intrinsic growth-promoting state in DRG neurons. This was tested by dissociating DRG neurons 3 days or 1 month after spinal contusion injury at thoracic level T10 and measuring neuritic growth 1 day later. Neurons cultured 3 days after SCI exhibited longer neurites without increases in branching ("elongating growth"), compared to neurons from sham-treated or untreated (naïve) rats. Robust promotion of elongating growth was found in small and medium-sized neurons (but not large neurons) from lumbar (L3-L5) and thoracic ganglia immediately above (T9) and below (T10-T11) the contusion site, but not from cervical DRG. Elongating growth was also found in neurons immunoreactive to calcitonin gene-related peptide (CGRP), suggesting that some of the neurons exhibiting enhanced neuritic growth were nociceptors. The same measurements made on neurons dissociated 1 month after SCI revealed no evidence of elongating growth, although evidence for accelerated initiation of neurite outgrowth was found. Under certain conditions this transient growth-promoting state in nociceptors might be important for the development of chronic pain and hyperreflexia after SCI.

  18. Opioid administration following spinal cord injury: Implications for pain and locomotor recovery

    PubMed Central

    Woller, Sarah A.; Hook, Michelle A.

    2013-01-01

    Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries. PMID:23501709

  19. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  20. Extraction of motor activity from the cervical spinal cord of behaving rats

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek; Sahin, Mesut

    2006-12-01

    Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.