Sample records for t2 nmr relaxation

  1. Local NMR relaxation rates T1-1 and T2-1 depending on the d -vector symmetry in the vortex state of chiral and helical p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenta K.; Ichioka, Masanori; Onari, Seiichiro

    2018-04-01

    Local NMR relaxation rates in the vortex state of chiral and helical p -wave superconductors are investigated by the quasiclassical Eilenberger theory. We calculate the spatial and resonance frequency dependences of the local NMR spin-lattice relaxation rate T1-1 and spin-spin relaxation rate T2-1. Depending on the relation between the NMR relaxation direction and the d -vector symmetry, the local T1-1 and T2-1 in the vortex core region show different behaviors. When the NMR relaxation direction is parallel to the d -vector component, the local NMR relaxation rate is anomalously suppressed by the negative coherence effect due to the spin dependence of the odd-frequency s -wave spin-triplet Cooper pairs. The difference between the local T1-1 and T2-1 in the site-selective NMR measurement is expected to be a method to examine the d -vector symmetry of candidate materials for spin-triplet superconductors.

  2. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  3. Simultaneous acquisition for T2 -T2 Exchange and T1 -T2 correlation NMR experiments

    NASA Astrophysics Data System (ADS)

    Montrazi, Elton T.; Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Barsi-Andreeta, Mariane; Bonagamba, Tito J.

    2018-04-01

    The NMR measurements of longitudinal and transverse relaxation times and its multidimensional correlations provide useful information about molecular dynamics. However, these experiments are very time-consuming, and many researchers proposed faster experiments to reduce this issue. This paper presents a new way to simultaneously perform T2 -T2 Exchange and T1 -T2 correlation experiments by taking the advantage of the storage time and the two steps phase cycling used for running the relaxation exchange experiment. The data corresponding to each step is either summed or subtracted to produce the T2 -T2 and T1 -T2 data, enhancing the information obtained while maintaining the experiment duration. Comparing the results from this technique with traditional NMR experiments it was possible to validate the method.

  4. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  5. A Comparative Study of T1 and T2 Relaxation in Shale

    NASA Astrophysics Data System (ADS)

    Keating, K.; Obasi, C. C.; Pashin, J. C.

    2015-12-01

    Nuclear magnetic resonance (NMR) relaxation measurement have been used extensively in petroleum and, more recently, in groundwater resource evaluation to estimate the porosity, pore-size distributions, permeability, fluid saturation, and fluid mobility. In shale, the transverse decay rate of NMR signal is sensitive to the microporosity, but is also affected by the paramagnetic contributions of clay and other iron-bearing minerals. Furthermore, contrasts in the magnetic susceptibility of the mineral matrix and pore fluids that result in an inhomogeneous magnetic field within the pore space results in an extra term in transverse relaxation. These issues can cause errors in NMR-based estimates of pore-size distribution and permeability. In this study we compare T1 and T2 relaxation time distributions in order to study the molecular mechanism of relaxation in brine-saturated mixtures of clay and other common minerals. We collected measurements on a range of mixtures of clay minerals common in shale (illite, glauconite, celadonite, chamosite, montmorillonite and kaolinite) and pyrite. To constrain the interpretation of the NMR data, we measured the magnetic susceptibility and surface area of all samples. We are confident that by accounting for the presence and variations of clay and pyrite in shale, we can substantially improve both the NMR estimate of pore-size distribution and permeability.

  6. An investigation into the effects of pore connectivity on T2 NMR relaxation

    NASA Astrophysics Data System (ADS)

    Ghomeshi, Shahin; Kryuchkov, Sergey; Kantzas, Apostolos

    2018-04-01

    Nuclear Magnetic Resonance (NMR) is a powerful technique used to characterize fluids and flow in porous media. The NMR relaxation curves are closely related to pore geometry, and the inversion of the NMR relaxometry data is known to give useful information with regards to pore size distribution (PSD) through the relative amplitudes of the fluids stored in the small and large pores. While this information is crucial, the main challenge for the successful use of the NMR measurements is the proper interpretation of the measured signals. Natural porous media patterns consist of complex pore structures with many interconnected or "coupled" regions, as well as isolated pores. This connectivity along the throats changes the relaxation distribution and in order to properly interpret this data, a thorough understanding of the effects of pore connectivity on the NMR relaxation distribution is warranted. In this paper we address two main points. The first pertains to the fact that there is a discrepancy between the relaxation distribution obtained from experiments, and the ones obtained from solving the mathematical models of diffusion process in the digitized images of the pore space. There are several reasons that may attribute to this such as the lack of a proper incorporation of surface roughness into the model. However, here we are more interested in the effects of pore connectivity and to understand why the typical NMR relaxation distribution obtained from experiments are wider, while the numerical simulations predict that a wider NMR relaxation distribution may indicate poor connectivity. Secondly, by not taking into account the pore coupling effects, from our experience in interpreting the data, we tend to underestimate the pore volume of small pores and overestimate the amplitudes in the large pores. The role of pore coupling becomes even more prominent in rocks with small pore sizes such as for example in shales, clay in sandstones, and in the microstructures of

  7. NMR relaxation studies in doped poly-3-methylthiophene

    NASA Astrophysics Data System (ADS)

    Singh, K. Jugeshwar; Clark, W. G.; Gaidos, G.; Reyes, A. P.; Kuhns, P.; Thompson, J. D.; Menon, R.; Ramesh, K. P.

    2015-05-01

    NMR relaxation rates (1 /T1 ), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T1 is classified into three regimes: (a) For T <(g μBB /2 kB ) , the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. 1H - T1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g μBB /2 kB ) <T T1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the P F6 reorientation. The cross relaxation among the 1H and 19F nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra- and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T1-1 on temperature shows that at low temperature [T <(g μBB /2 kB ) ] the system shows three dimensions and changes to quasi one dimension at

  8. Gaining insight into the T _2^*-T2 relationship in surface NMR free-induction decay measurements

    NASA Astrophysics Data System (ADS)

    Grombacher, Denys; Auken, Esben

    2018-05-01

    One of the primary shortcomings of the surface nuclear magnetic resonance (NMR) free-induction decay (FID) measurement is the uncertainty surrounding which mechanism controls the signal's time dependence. Ideally, the FID-estimated relaxation time T_2^* that describes the signal's decay carries an intimate link to the geometry of the pore space. In this limit the parameter T_2^* is closely linked to a related parameter T2, which is more closely linked to pore-geometry. If T_2^* ˜eq {T_2} the FID can provide valuable insight into relative pore-size and can be used to make quantitative permeability estimates. However, given only FID measurements it is difficult to determine whether T_2^* is linked to pore geometry or whether it has been strongly influenced by background magnetic field inhomogeneity. If the link between an observed T_2^* and the underlying T2 could be further constrained the utility of the standard surface NMR FID measurement would be greatly improved. We hypothesize that an approach employing an updated surface NMR forward model that solves the full Bloch equations with appropriately weighted relaxation terms can be used to help constrain the T_2^*-T2 relationship. Weighting the relaxation terms requires estimating the poorly constrained parameters T2 and T1; to deal with this uncertainty we propose to conduct a parameter search involving multiple inversions that employ a suite of forward models each describing a distinct but plausible T_2^*-T2 relationship. We hypothesize that forward models given poor T2 estimates will produce poor data fits when using the complex-inversion, while forward models given reliable T2 estimates will produce satisfactory data fits. By examining the data fits produced by the suite of plausible forward models, the likely T_2^*-T2 can be constrained by identifying the range of T2 estimates that produce reliable data fits. Synthetic and field results are presented to investigate the feasibility of the proposed technique.

  9. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    NASA Astrophysics Data System (ADS)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  10. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  11. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis

    NASA Astrophysics Data System (ADS)

    Mailhiot, Sarah E.; Zong, Fangrong; Maneval, James E.; June, Ronald K.; Galvosas, Petrik; Seymour, Joseph D.

    2018-02-01

    Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.

  12. High resolution NMR study of T{sub 1} magnetic relaxation dispersion. IV. Proton relaxation in amino acids and Met-enkephalin pentapeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru

    2014-10-21

    Nuclear Magnetic Relaxation Dispersion (NMRD) of protons was studied in the pentapeptide Met-enkephalin and the amino acids, which constitute it. Experiments were run by using high-resolution Nuclear Magnetic Resonance (NMR) in combination with fast field-cycling, thus enabling measuring NMRD curves for all individual protons. As in earlier works, Papers I–III, pronounced effects of intramolecular scalar spin-spin interactions, J-couplings, on spin relaxation were found. Notably, at low fields J-couplings tend to equalize the apparent relaxation rates within networks of coupled protons. In Met-enkephalin, in contrast to the free amino acids, there is a sharp increase in the proton T{sub 1}-relaxation timesmore » at high fields due to the changes in the regime of molecular motion. The experimental data are in good agreement with theory. From modelling the relaxation experiments we were able to determine motional correlation times of different residues in Met-enkephalin with atomic resolution. This allows us to draw conclusions about preferential conformation of the pentapeptide in solution, which is also in agreement with data from two-dimensional NMR experiments (rotating frame Overhauser effect spectroscopy). Altogether, our study demonstrates that high-resolution NMR studies of magnetic field-dependent relaxation allow one to probe molecular mobility in biomolecules with atomic resolution.« less

  13. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    PubMed Central

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  14. Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Li, Weiguo; Pilar Velasco, M.; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-06-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena ( T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter ( α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues.

  15. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  16. Osmotic and aging effects in caviar oocytes throughout water and lipid changes assessed by 1H NMR T1 and T2 relaxation and MRI.

    PubMed

    Gussoni, Maristella; Greco, Fulvia; Vezzoli, Alessandra; Paleari, Maria Antonietta; Moretti, Vittorio Maria; Lanza, Barbara; Zetta, Lucia

    2007-01-01

    By combining NMR relaxation spectroscopy and magnetic resonance imaging techniques, unsalted (us) and salted (s) caviar (Acipenser transmontanus) oocytes were characterized over a storage period of up to 90 days. The aging and the salting effects on the two major cell constituents, water and lipids, were separately assessed. T1 and T2 decays were interpreted by assuming a two-site exchange model. At Day 0, two water compartments that were not in fast exchange were identified by the T1 relaxation measurements on the us oocytes. In the s samples, T1 decay was monoexponential. During the time of storage, an increment of the free water amount was found for the us oocytes, ascribed to an increased metabolism. T1 and T2 of the s oocytes shortened as a consequence of the osmotic stress produced by salting. Selective images showed the presence of water endowed with different regional mobility that severely changed during the storage. Lipid T1 relaxation decays collected on us and s samples were found to be biexponential, and the T1 values lengthened during storage. In us and s oocytes, the increased lipid mobility with the storage was ascribed to lipolysis. Selective images of us samples showed lipids that were confined to the cytoplasm for up to 60 days of storage.

  17. Gint2D-T2 correlation NMR of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  18. Multi-field C-13 NMR Relaxation Study of the Tripeptide Glycine-Proline-Glycine-NH2

    NASA Astrophysics Data System (ADS)

    Shibata, John; Forrester, Mary

    2010-03-01

    T1 and T2 C-13 NMR relaxation measurements were performed on the tripeptide Gly-Pro-Gly-NH2 on 300 MHz, 500 MHz, and 800 MHz NMR instruments (1). T1 and T2 data at different field strengths were analyzed to reveal the internal dynamics of this tripeptide. The results are compared to the classification scheme of rigidity by Anishetty, et al. (2). The dynamics of the tripeptide at different carbons in the molecule probe the site-specificity of the motions. We compare the dynamics revealed at the glycines with the dynamics in the proline ring. These motions are also being studied by molecular dynamics using the molecular modeling program Tinker (3). (1) Measurements at 500 MHz and 800 MHz were performed at the Alabama High Field NMR Center, University of Alabama at Huntsville, Huntsville, AL. (2) Anishetty, S., Pennathur, G., Anishetty, R. BMC Structural Biology 2:9 (2002). http://www.biomedcentral.com/1472-6807/2/9. (3) Dudek, M. J., Ramnarayan, K., Ponder, J. W. J. Comput. Chem. 19, 548 (1996). http://dasher.wustl.edu/tinker.

  19. The SPORT-NMR Software: A Tool for Determining Relaxation Times in Unresolved NMR Spectra

    NASA Astrophysics Data System (ADS)

    Geppi, Marco; Forte, Claudia

    1999-03-01

    A software package which allows the correct determination of individual relaxation times for all the nonequivalent nuclei in poorly resolved NMR spectra is described. The procedure used, based on the fitting of each spectrum in the series recorded in the relaxation experiment, should improve the analysis of relaxation data in terms of quantitative dynamic information, especially in anisotropic phases. Tests on simulated data and experimental examples concerning1H and13CT1ρmeasurement in a solid copolymer and2HT1ZandT1Qmeasurement in a liquid crystal are shown and discussed.

  20. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  1. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Muller D.; Dao, Phuong; Jeong, Keunhong

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of amore » biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T 2 is reduced by a factor of 4.« less

  2. NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.

  3. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over

  4. Retaining both discrete and smooth features in 1D and 2D NMR relaxation and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Reci, A.; Sederman, A. J.; Gladden, L. F.

    2017-11-01

    A new method of regularization of 1D and 2D NMR relaxation and diffusion experiments is proposed and a robust algorithm for its implementation is introduced. The new form of regularization, termed the Modified Total Generalized Variation (MTGV) regularization, offers a compromise between distinguishing discrete and smooth features in the reconstructed distributions. The method is compared to the conventional method of Tikhonov regularization and the recently proposed method of L1 regularization, when applied to simulated data of 1D spin-lattice relaxation, T1, 1D spin-spin relaxation, T2, and 2D T1-T2 NMR experiments. A range of simulated distributions composed of two lognormally distributed peaks were studied. The distributions differed with regard to the variance of the peaks, which were designed to investigate a range of distributions containing only discrete, only smooth or both features in the same distribution. Three different signal-to-noise ratios were studied: 2000, 200 and 20. A new metric is proposed to compare the distributions reconstructed from the different regularization methods with the true distributions. The metric is designed to penalise reconstructed distributions which show artefact peaks. Based on this metric, MTGV regularization performs better than Tikhonov and L1 regularization in all cases except when the distribution is known to only comprise of discrete peaks, in which case L1 regularization is slightly more accurate than MTGV regularization.

  5. A study of spin-lattice relaxation rates of glucose, fructose, sucrose and cherries using high-T c SQUID-based NMR in ultralow magnetic fields

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hsien; Wu, Pei-Che

    2017-08-01

    We study the concentration dependence of spin-lattice relaxation rates, T 1 -1, of glucose, fructose, sucrose and cherries by using high-T c SQUID-based NMR at magnetic fields of ˜97 μT. The detected NMR signal, Sy (T Bp), is fitted to [1 - exp(-T Bp/T 1)] to derive T 1 -1, where Sy (T Bp) is the strength of the NMR signal, T Bp is the duration of pre-polarization and T 1 -1 is the spin-lattice relaxation rate. It was found that T 1 -1 increases as the sugar concentrations increase. The increased T 1 -1 is due to the presence of more molecules in the surroundings, which increases the spin-lattice interaction and in turn enhances T 1 -1. The T 1 -1 versus degrees Brix curve provides a basis for determining unknown Brix values for cherries as well as other fruits.

  6. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    NASA Astrophysics Data System (ADS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15<T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T⩽15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  7. NMR permeability estimators in 'chalk' carbonate rocks obtained under different relaxation times and MICP size scalings

    NASA Astrophysics Data System (ADS)

    Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Guedes Domingues, Ana Beatriz; Bagueira de Vasconcellos Azeredo, Rodrigo

    2016-07-01

    The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.

  8. Nanosized solvent superstructures in ultramolecular aqueous dilutions: twenty years' research using water proton NMR relaxation.

    PubMed

    Demangeat, Jean-Louis

    2013-04-01

    proton nuclear magnetic resonance (NMR) relaxation times T1, T2, T1/T2 are sensitive to motion and organization of water molecules. Especially, increase in T1/T2 reflects a higher degree of structuring. My purpose was to look at physical changes in water in ultrahigh aqueous dilutions. Samples were prepared by iterative centesimal (c) dilution with vigorous agitation, ranging between 3c and 24c (Avogadro limit 12c). Solutes were silica-lactose, histamine, manganese-lactose. Solvents were water, NaCl 0.15 M or LiCl 0.15 M. Solvents underwent strictly similar, simultaneous dilution/agitation, for each level of dilution, as controls. NMR relaxation was studied within 0.02-20 MHz. No changes were observed in controls. Increasing T1 and T1/T2 were found in dilutions, which persisted beyond 9c (manganese-lactose), 10c (histamine) and 12c (silica-lactose). For silica-lactose in LiCl, continuous decrease in T2 with increase in T1/T2 within the 12c-24c range indicated growing structuring of water despite absence of the initial solute. All changes vanished after heating/cooling. These findings were interpreted in terms of nanosized (>4-nm) supramolecular structures involving water, nanobubbles and ions, if any. Additional study of low dilutions of silica-lactose revealed increased T2 and decreased T1/T2 compared to solvent, within the 10(-3)-10(-6) range, reflecting transient solvent destructuring. This could explain findings at high dilution. Proton NMR relaxation demonstrated modifications of the solvent throughout the low to ultramolecular range of dilution. The findings suggested the existence of superstructures that originate stereospecifically around the solute after an initial destructuring of the solvent, developing more upon dilution and persisting beyond 12c. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  9. Effect of fluctuations on the NMR relaxation beyond the Abrikosov vortex state

    DOE PAGES

    Glatz, A.; Galda, A.; Varlamov, A. A.

    2015-08-25

    Here, the effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate W = T –1 1 is studied in a complete phase diagram of a two-dimensional superconductor above the upper critical field line H c2(T). In the region of relatively high temperatures and low magnetic fields, the relaxation rate W is determined by two competing effects. The first one is its decrease in the result of suppression of the quasiparticle density of states (DOS) due to formation of fluctuation Cooper pairs (FCPs). The second one is a specific, purely quantum relaxation process of the Maki-Thompson (MT) type, whichmore » for low field leads to an increase of the relaxation rate. The latter describes particular fluctuation processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to phase-breaking length ℓ Φ which becomes possible due to an electron spin-flip scattering event at a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation rate are possible upon approaching the normal-metal–type-II superconductor transition. The character of fluctuations changes along the line H c2(T) from the thermal long-wavelength type in weak magnetic fields to the clusters of rotating FCPs in fields comparable to Hc2(0). We find that below the well-defined temperature T* 0 ≈ 0.6T c0, the MT process becomes ineffective even in the absence of intrinsic pair breaking. The small scale of the FCP rotations ξ xy in such high fields impedes formation of long (≲ℓ Φ) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields and low temperatures to just the suppression of quasiparticle DOS, analogous to the Abrikosov vortex phase below the H c2(T) line.« less

  10. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe 2 O 6 : NMR and muon spin relaxation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khuntia, P.; Bert, F.; Mendels, P.

    In this study, PbCuTe 2O 6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu 2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointingmore » to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T 1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  11. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe 2 O 6 : NMR and muon spin relaxation studies

    DOE PAGES

    Khuntia, P.; Bert, F.; Mendels, P.; ...

    2016-03-11

    In this study, PbCuTe 2O 6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu 2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointingmore » to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T 1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  12. [Evaluation of NMR relaxation method as a diagnostic tool for donor blood analysis and patients with hematologic diseases and burns].

    PubMed

    Gangardt, M G; Popova, O V; Shmarov, D A; Kariakina, N F; Papish, E A; Kozinets, G I

    2002-08-01

    Diagnostic value of the NMR-relaxation method in the blood plasma was estimated in the patients with different pathologies. The time of hydrogen nuclei longitudinal relaxation (T1) in the health donors of the blood, in the patients with oncopathology (hemoblastoses) and in the cases with anemia and burning disease were investigated. The time of the longitudinal relaxation (T1) was measured by automated NMR-relaxometer "Palma" (Russia). The working frequency was equal to 35 MHz, the temperature was 45 +/- 0.1 degrees C. For the single measurement 0.2 ml of blood obtained from heparinized venous blood 1.5 hours after its taking was used. The time of the longitudinal relaxation (T1) was shown to be 1.78 +/- 0.02 in the health donors, 1.70 +/- 0.06 s in cases with anemia, 1.97 +/- 0.48 c in patients with leucosis, 2.40 +/- 0.12 s in patients with burns. The sensitivity and the specificity of diagnostics of leucosis based upon the results of the only single T1 measurement in blood plasma were concluded to be 75%. It proves the significant T1 change both in patients with anemia and burning disease of the II-III degree. However it is evidently insufficient for selective use of NMR-relaxation blood plasma (serum) in the diagnostics of anemia and leucosis. The data obtained prove also the possibility of use of NMR-relaxation blood plasma (serum) for control of the hemostasis state during treatment or remission.

  13. Temperature dependence of proton NMR relaxation times at earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd

    The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.

  14. The effects of bone on proton NMR relaxation times of surrounding liquids

    NASA Technical Reports Server (NTRS)

    Davis, C. A.; Genant, H. K.; Dunham, J. S.

    1986-01-01

    Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.

  15. Assigning uncertainties in the inversion of NMR relaxation data.

    PubMed

    Parker, Robert L; Song, Yi-Qaio

    2005-06-01

    Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace transform based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solutions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory. Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T(2) log-mean, and bound fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density models. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and elsewhere.

  16. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T1 - and T2 -relaxations in MRI

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt

    2018-03-01

    Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.

  17. High-resolution diffusion and relaxation-edited magic angle spinning 1H NMR spectroscopy of intact liver tissue.

    PubMed

    Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L

    2003-11-01

    High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.

  18. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  19. Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  20. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  1. NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments.

    PubMed

    Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel; Lasič, Samo

    2017-01-01

    Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins.

  2. NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments

    PubMed Central

    Eriksson, Stefanie; Elbing, Karin; Söderman, Olle; Lindkvist-Petersson, Karin; Topgaard, Daniel

    2017-01-01

    Water transport across cell membranes can be measured non-invasively with diffusion NMR. We present a method to quantify the intracellular lifetime of water in cell suspensions with short transverse relaxation times, T2, and also circumvent the confounding effect of different T2 values in the intra- and extracellular compartments. Filter exchange spectroscopy (FEXSY) is specifically sensitive to exchange between compartments with different apparent diffusivities. Our investigation shows that FEXSY could yield significantly biased results if differences in T2 are not accounted for. To mitigate this problem, we propose combining FEXSY with diffusion-relaxation correlation experiment, which can quantify differences in T2 values in compartments with different diffusivities. Our analysis uses a joint constrained fitting of the two datasets and considers the effects of diffusion, relaxation and exchange in both experiments. The method is demonstrated on yeast cells with and without human aquaporins. PMID:28493928

  3. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide.

    PubMed

    Oktaviani, Nur Alia; Risør, Michael W; Lee, Young-Ho; Megens, Rik P; de Jong, Djurre H; Otten, Renee; Scheek, Ruud M; Enghild, Jan J; Nielsen, Niels Chr; Ikegami, Takahisa; Mulder, Frans A A

    2015-06-01

    Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in 'proton-less' NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.

  4. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer.

    PubMed

    Zhukov, Ivan V; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Grishin, Yuri A; Vieth, Hans-Martin; Ivanov, Konstantin L

    2018-05-09

    An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.

  5. Speeding up NMR by in Situ Photo-Induced Reversible Acceleration of T1 -Relaxation (PIRAT).

    PubMed

    Stadler, Eduard; Dommaschk, Marcel; Frühwirt, Philipp; Herges, Rainer; Gescheidt, Georg

    2018-03-05

    Increasing the signal-to-noise ratio is one of the major goals in the field of NMR spectroscopy. In this proof of concept, we accelerate relaxation during an NMR pulse sequence using photo-generated paramagnetic states of an inert sensitizer. For the follow-up acquisition period, the system is converted to a diamagnetic state. The reversibility of the photo-induced switching allows extensive repetition required for multidimensional NMR. We thus eliminate the obstacle of line-broadening by the presence of paramagnetic species. In this contribution, we show how cycling of synchronized light/pulse sequences leads to an enhanced efficiency in multidimensional NMR. Our approach utilizes a molecular spin switch reversibly altering between a paramagnetic and diamagnetic state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin, E-mail: benjamin.rotenberg@upmc.fr

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFGmore » tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.« less

  7. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J.; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement.

  8. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancementmore » is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.« less

  9. Changes in NMR relaxation times of adjacent muscle after implantation of malignant and normal tissue.

    PubMed Central

    Ling, C. R.; Foster, M. A.; Mallard, J. R.

    1979-01-01

    In separate experiments, normal foreign tissue and malignant tumour were implanted s.c. into the rat thigh. NMR T1 values of the adjacent normal muscle, resulting from local inflammatory reactions or from malignant invasion, were measured. Elevations in T1 of the underlying muscle occurred within 24 h in both experiments, and it is believed these were caused by rapid inflammatory and immunological reactions to the implants. However the T1 values of muscle samples adjacent to the non-malignant implants decreased during the 11 days after implantation, dropping to values within the normal range. In the second experiment there was progressive malignant invasion into the normal adjacent tissue and the elevated T1 values were maintained throughout the 12-day period. The effects of the implantation on tissue water content are discussed in relation to NMR T1 relaxation times, and the relevance to whole-body NMR imaging of elevated T1 values due to nonmalignant pathological states is considered. PMID:526431

  10. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements.

    PubMed

    Yasaka, Yoshiro; Klein, Michael L; Nakahara, Masaru; Matubayasi, Nobuyuki

    2012-02-21

    The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T(1) measurements. MD trajectories based on an effective potential are used to calculate the (2)H NMR relaxation time, T(1) via Fourier transform of the relevant rotational time correlation function, C(2R)(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T(1) when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C(2R)(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C(2R)(t) is most important to understand frequency and temperature dependencies of T(1) in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T(1) by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T(1) analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in

  11. Rotational dynamics of benzene and water in an ionic liquid explored via molecular dynamics simulations and NMR T1 measurements

    NASA Astrophysics Data System (ADS)

    Yasaka, Yoshiro; Klein, Michael L.; Nakahara, Masaru; Matubayasi, Nobuyuki

    2012-02-01

    The rotational dynamics of benzene and water in the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride are studied using molecular dynamics (MD) simulation and NMR T1 measurements. MD trajectories based on an effective potential are used to calculate the 2H NMR relaxation time, T1 via Fourier transform of the relevant rotational time correlation function, C2R(t). To compensate for the lack of polarization in the standard fixed-charge modeling of the IL, an effective ionic charge, which is smaller than the elementary charge is employed. The simulation results are in closest agreement with NMR experiments with respect to the temperature and Larmor frequency dependencies of T1 when an effective charge of ±0.5e is used for the anion and the cation, respectively. The computed C2R(t) of both solutes shows a bi-modal nature, comprised of an initial non-diffusive ps relaxation plus a long-time ns tail extending to the diffusive regime. Due to the latter component, the solute dynamics is not under the motional narrowing condition with respect to the prevalent Larmor frequency. It is shown that the diffusive tail of the C2R(t) is most important to understand frequency and temperature dependencies of T1 in ILs. On the other hand, the effect of the initial ps relaxation is an increase of T1 by a constant factor. This is equivalent to an "effective" reduction of the quadrupolar coupling constant (QCC). Thus, in the NMR T1 analysis, the rotational time correlation function can be modeled analytically in the form of aexp (-t/τ) (Lipari-Szabo model), where the constant a, the Lipari-Szabo factor, contains the integrated contribution of the short-time relaxation and τ represents the relaxation time of the exponential (diffusive) tail. The Debye model is a special case of the Lipari-Szabo model with a = 1, and turns out to be inappropriate to represent benzene and water dynamics in ILs since a is as small as 0.1. The use of the Debye model would result in an underestimation

  12. In vivo1H NMR spectroscopy of the human brain at 9.4 T: Initial results

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh Kumar; Moortele, Pierre-François Van de; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Thomas Vaughan, J.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-09-01

    In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

  13. NMR diffusion and relaxation studies of 2-nitroimidazole and albumin interactions

    NASA Astrophysics Data System (ADS)

    Wijesekera, Dj; Willis, Scott A.; Gupta, Abhishek; Torres, Allan M.; Zheng, Gang; Price, William S.

    2018-03-01

    Nitroimidazole derivatives are of current interest in the development of hypoxia targeting agents and show potential in the establishment of quantitative measures of tumor hypoxia. In this study, the binding of 2-nitroimidazole to albumin was probed using NMR diffusion and relaxation measurements. Binding studies were conducted at three different protein concentrations (0.23, 0.30 and 0.38 mM) with drug concentrations ranging from 0.005-0.16 M at 298 K. Quantitative assessments of the binding model were made by evaluating the number of binding sites, n, and association constant, K. These were determined to be 21 ± 3 and 53 ± 4 M- 1, respectively.

  14. NMR study of heavy fermion compound EuNi2P2

    NASA Astrophysics Data System (ADS)

    Magishi, K.; Watanabe, R.; Hisada, A.; Saito, T.; Koyama, K.; Fujiwara, T.

    2015-03-01

    We report the results of 31P-nuclear magnetic resonance (NMR) measurements on heavy fermion compound EuNi2P2 in order to investigate the magnetic properties at low temperatures from a microscopic view point. The Knight shift has a negative value in an entire temperature range, and the absolute value increases with decreasing temperature but exhibits a broad maximum around 40 K, which is similar to the behavior of the magnetic susceptibility. Also, the nuclear spin-lattice relaxation rate 1/T1 is almost constant at high temperatures above 200 K, which is reminiscent of the relaxation mechanism dominated by the interaction of the 31P nucleus with fluctuating Eu-4f moments. Below 200 K, 1/T1 gradually decreases on cooling due to the change of the valence in the Eu ion. At low temperatures, 1/T1 does not obey the Korringa relation, in contrast to typical heavy fermion compounds. The nuclear spin-spin relaxation rate 1/T2 shows the similar behavior as 1/T1 at high temperatures. But, below 50 K, 1/T2 increases upon cooling due to the development of the magnetic excitation.

  15. Artificial local magnetic field inhomogeneity enhances T2 relaxivity

    PubMed Central

    Zhou, Zijian; Tian, Rui; Wang, Zhenyu; Yang, Zhen; Liu, Yijing; Liu, Gang; Wang, Ruifang; Song, Jibin; Nie, Liming; Chen, Xiaoyuan

    2017-01-01

    Clustering of magnetic nanoparticles (MNPs) is perhaps the most effective, yet intriguing strategy to enhance T2 relaxivity in magnetic resonance imaging (MRI). However, the underlying mechanism is still not fully understood and the attempts to generalize the classic outersphere theory from single particles to clusters have been found to be inadequate. Here we show that clustering of MNPs enhances local field inhomogeneity due to reduced field symmetry, which can be further elevated by artificially involving iron oxide NPs with heterogeneous geometries in terms of size and shape. The r2 values of iron oxide clusters and Landau–Lifshitz–Gilbert simulations confirmed our hypothesis, indicating that solving magnetic field inhomogeneity may become a powerful way to build correlation between magnetization and T2 relaxivity of MNPs, especially magnetic clusters. This study provides a simple yet distinct mechanism to interpret T2 relaxivity of MNPs, which is crucial to the design of high-performance MRI contrast agents. PMID:28516947

  16. Interfaces in polymer nanocomposites – An NMR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Böhme, Ute; Scheler, Ulrich, E-mail: scheler@ipfdd.de

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. {sup 1}H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T{sub 2} is most suited. In this presentation we report on two applications of T{sub 2} measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of themore » polymer dynamics in the melt under shear flow.« less

  17. Effective rotational correlation times of proteins from NMR relaxation interference

    NASA Astrophysics Data System (ADS)

    Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt

    2006-01-01

    Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.

  18. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  19. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  20. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-01

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure.

  1. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation.

    PubMed

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-28

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure.

  2. 53Cr NMR study of CuCrO2 multiferroic

    NASA Astrophysics Data System (ADS)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.

    2015-11-01

    The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

  3. 1H NMR Detection of superparamagnetic nanoparticles at 1 T using a microcoil and novel tuning circuit

    NASA Astrophysics Data System (ADS)

    Sillerud, Laurel O.; McDowell, Andrew F.; Adolphi, Natalie L.; Serda, Rita E.; Adams, David P.; Vasile, Michael J.; Alam, Todd M.

    2006-08-01

    Magnetic beads containing superparamagnetic iron oxide nanoparticles (SPIONs) have been shown to measurably change the nuclear magnetic resonance (NMR) relaxation properties of nearby protons in aqueous solution at distances up to ˜50 μm. Therefore, the NMR sensitivity for the in vitro detection of single cells or biomolecules labeled with magnetic beads will be maximized with microcoils of this dimension. We have constructed a prototype 550 μm diameter solenoidal microcoil using focused gallium ion milling of a gold/chromium layer. The NMR coil was brought to resonance by means of a novel auxiliary tuning circuit, and used to detect water with a spectral resolution of 2.5 Hz in a 1.04 T (44.2 MHz) permanent magnet. The single-scan SNR for water was 137, for a 200 μs π/2 pulse produced with an RF power of 0.25 mW. The nutation performance of the microcoil was sufficiently good so that the effects of magnetic beads on the relaxation characteristics of the surrounding water could be accurately measured. A solution of magnetic beads (Dynabeads MyOne Streptavidin) in deionized water at a concentration of 1000 beads per nL lowered the T1 from 1.0 to 0.64 s and the T2∗ from 110 to 0.91 ms. Lower concentrations (100 and 10 beads/nL) also resulted in measurable reductions in T2∗, suggesting that low-field, microcoil NMR detection using permanent magnets can serve as a high-sensitivity, miniaturizable detection mechanism for very low concentrations of magnetic beads in biological fluids.

  4. Resolving biomolecular motion and interactions by R2 and R1ρ relaxation dispersion NMR.

    PubMed

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji

    2018-04-26

    Among the tools of structural biology, NMR spectroscopy is unique in that it not only derives a static three-dimensional structure, but also provides an atomic-level description of the local fluctuations and global dynamics around this static structure. A battery of NMR experiments is now available to probe the motions of proteins and nucleic acids over the whole biologically relevant timescale from picoseconds to hours. Here we focus on one of these methods, relaxation dispersion, which resolves dynamics on the micro- to millisecond timescale. Key biological processes that occur on this timescale include enzymatic catalysis, ligand binding, and local folding. In other words, relaxation-dispersion-resolved dynamics are often closely related to the function of the molecule and therefore highly interesting to the structural biochemist. With an astounding sensitivity of ∼0.5%, the method detects low-population excited states that are invisible to any other biophysical method. The kinetics of the exchange between the ground state and excited states are quantified in the form of the underlying exchange rate, while structural information about the invisible excited state is obtained in the form of its chemical shift. Lastly, the population of the excited state can be derived. This diversity in the information that can be obtained makes relaxation dispersion an excellent method to study the detailed mechanisms of conformational transitions and molecular interactions. Here we describe the two branches of relaxation dispersion, R 2 and R 1ρ , discussing their applicability, similarities, and differences, as well as recent developments in pulse sequence design and data processing. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing; Shi, Chaowei; Yu, Lu

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in amore » defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.« less

  6. ^17O NMR Study of Sr_2CuO_2Cl_2, a Single-Layer Parent Compound of a High Tc Superconductor

    NASA Astrophysics Data System (ADS)

    Thurber, Kent; Hunt, Allen; Imai, Takashi; Chou, Fang-Cheng; Lee, Young

    1997-03-01

    We report NMR measurements of the ^17O nuclear spin-lattice relaxation rate 1/T_1, and the ^17O Knight shift of Sr_2CuO_2Cl2 (TN = 257 K) in the paramagnetic state from the Néel temperature up to 700 K. This establishes, for the first time, the temperature and frequency dependence of ^17O NMR in the paramagnetic state of a clean, single-layer, undoped parent compound of a high Tc superconductor. The ^17O NMR results test the nature of elementary spin excitations around q = 0 and give insight into the spin wave damping, Γ. The observation, ^17 1/T1 ~ a T^3 [ 1 + O(T/J) ], agrees semi-quantitatively with theoretical predictions based on spin waves in the spin S=1/2 2D Heisenberg model. electronically.

  7. 73Ge-NMR study on magnetic fluctuations of ferromagnetic superconductor UGe2

    NASA Astrophysics Data System (ADS)

    Noma, Y.; Kotegawa, H.; Kubo, T.; Tou, H.; Harima, H.; Haga, Y.; Yamamoto, E.; Ōnuki, Y.; Itoh, K. M.; Haller, E. E.; Nakamura, A.; Homma, Y.; Honda, F.; Aoki, D.

    2018-05-01

    We report 73Ge-NMR measurement on the ferromagnetic superconductor UGe2 at ambient pressure. The observed NMR spectrum supports that the electric field gradient at three inequivalent Ge sites is correctly deduced by a LDA calculation. The temperature dependences of the nuclear spin lattice relaxation rate 1 /T1 for H0 ⊥ a (easy axis) and H0 ∥ a were obtained for the oriented sample. The contrasting behavior in 1 /T1 for H0 ⊥ a and H0 ∥ a reveals that the magnetic fluctuation of UGe2 is highly anisotropic.

  8. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation

    PubMed Central

    Sun, Xiaoxiao; Yao, Yanbin; Liu, Dameng; Elsworth, Derek; Pan, Zhejun

    2016-01-01

    The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure. PMID:26817784

  9. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments

    NASA Astrophysics Data System (ADS)

    Kiryutin, Alexey S.; Pravdivtsev, Andrey N.; Ivanov, Konstantin L.; Grishin, Yuri A.; Vieth, Hans-Martin; Yurkovskaya, Alexandra V.

    2016-02-01

    A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100 μT up to 7 T) within less than 0.3 s; progress in NMR probe design provides NMR linewidths of about 10-3 ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.

  10. Multicomponent T2 relaxation studies of the avian egg.

    PubMed

    Mitsouras, Dimitris; Mulkern, Robert V; Maier, Stephan E

    2016-05-01

    To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a three-dimensional Carr-Purcell-Meiboom-Gill imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multicomponent signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. © 2015 Wiley Periodicals, Inc.

  11. La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)

    DOE PAGES

    Imai, T.; Lee, Y. S.

    2018-03-14

    Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less

  12. La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imai, T.; Lee, Y. S.

    Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less

  13. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    NASA Astrophysics Data System (ADS)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  14. Ultra-Low Field SQUID-NMR using LN2 Cooled Cu Polarizing Field coil

    NASA Astrophysics Data System (ADS)

    Demachi, K.; Kawagoe, S.; Ariyoshi, S.; Tanaka, S.

    2017-07-01

    We are developing an Ultra-Low Field (ULF) Magnetic Resonance Imaging (MRI) system using a High-Temperature Superconductor superconducting quantum interference device (HTS rf-SQUID) for food inspection. The advantages of the ULF-NMR (Nuclear Magnetic Resonance) / MRI as compared with a conventional high field MRI are that they are compact and of low cost. In this study, we developed a ULF SQUID-NMR system using a polarizing coil to measure fat of which relaxation time T1 is shorter. The handmade polarizing coil was cooled by liquid nitrogen to reduce the resistance and accordingly increase the allowable current. The measured decay time of the polarizing field was 40 ms. The measurement system consisted of the liquid nitrogen cooled polarizing coil, a SQUID, a Cu wound flux transformer, a measurement field coil for the field of 47 μT, and an AC pulse coil for a 90°pulse field. The NMR measurements were performed in a magnetically shielded room to reduce the environmental magnetic field. The size of the sample was ϕ35 mm × L80 mm. After applying a polarizing field and a 90°pulse, an NMR signal was detected by the SQUID through the flux transformer. As a result, the NMR spectra of fat samples were obtained at 2.0 kHz corresponding to the measurement field Bm of 47 μT. The T1 relaxation time of the mineral oil measured in Bm was 45 ms. These results suggested that the ULF-NMR/MRI system has potential for food inspection.

  15. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  16. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    NASA Astrophysics Data System (ADS)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  17. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA.

    PubMed

    Mroue, Kamal H; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA=Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the (1)H T1 values were calculated from data collected by (1)H spin-inversion recovery method detected in natural-abundance (13)C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the (1)H T1 values can be successfully reduced by a factor of 3.5 using as low as 10mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the (13)C CPMAS spectra. These results obtained from (13)C-detected CPMAS experiments were further confirmed using (1)H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    PubMed

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  19. Comparison of T1 and T2 metabolite relaxation times in glioma and normal brain at 3 T

    PubMed Central

    Li, Yan; Srinivasan, Radhika; Ratiney, Helene; Lu, Ying; Chang, Susan M.; Nelson, Sarah J.

    2011-01-01

    Purpose To measure T1 and T2 relaxation times of metabolites in glioma patients at 3T and to investigate how these values influence the observed metabolite levels. Materials and Methods Twenty-three patients with gliomas and ten volunteers were studied with single voxel 2D J-resolved PRESS using a 3T MR scanner. Voxels were chosen in normal appearing white matter and in regions of tumor. The T1 and T2 of choline containing compounds (Cho), creatine (Cr) and N-acetyl aspartate (NAA) were estimated. Results Metabolite T1 relaxation values in gliomas were not significantly different from values in normal white matter. The T2 of Cho and Cr were statistically significantly longer for Grade 4 gliomas than for normal white matter but the T2 of NAA was similar. These differences were large enough to impact the corrections of metabolite levels for relaxation times with tumor grade in terms of metabolite ratios (P<0.001). Conclusion The differential increase in T2 for Cho and Cr relative to NAA means that the ratios of Cho/NAA and Cr/NAA are higher in tumor at longer echo times relative to values in normal appearing brain. Having this information may be useful in defining the acquisition parameters for optimizing contrast between tumor and normal tissue in MRSI data, where limited time is available and only one echo time can be used. PMID:18666155

  20. Extracting Diffusion Constants from Echo-Time-Dependent PFG NMR Data Using Relaxation-Time Information

    NASA Astrophysics Data System (ADS)

    Vandusschoten, D.; Dejager, P. A.; Vanas, H.

    Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.

  1. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions.

    PubMed

    Pendrill, Robert; Engström, Olof; Volpato, Andrea; Zerbetto, Mirco; Polimeno, Antonino; Widmalm, Göran

    2016-01-28

    The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-(13)C]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)JCH and (3)JCC coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the ψ torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The (13)C NMR spin relaxation parameters T1, T2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d6 at two magnetic field strengths, with standard deviations ≤1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed (13)C relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of (13)C relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less.

  2. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR.

    PubMed

    Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S

    2017-03-01

    The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and

  3. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  4. Relaxivity of Ferumoxytol at 1.5 T and 3.0 T.

    PubMed

    Knobloch, Gesine; Colgan, Timothy; Wiens, Curtis N; Wang, Xiaoke; Schubert, Tilman; Hernando, Diego; Sharma, Samir D; Reeder, Scott B

    2018-05-01

    The aim of this study was to determine the relaxation properties of ferumoxytol, an off-label alternative to gadolinium-based contrast agents, under physiological conditions at 1.5 T and 3.0 T. Ferumoxytol was diluted in gradually increasing concentrations (0.26-4.2 mM) in saline, human plasma, and human whole blood. Magnetic resonance relaxometry was performed at 37°C at 1.5 T and 3.0 T. Longitudinal and transverse relaxation rate constants (R1, R2, R2*) were measured as a function of ferumoxytol concentration, and relaxivities (r1, r2, r2*) were calculated. A linear dependence of R1, R2, and R2* on ferumoxytol concentration was found in saline and plasma with lower R1 values at 3.0 T and similar R2 and R2* values at 1.5 T and 3.0 T (1.5 T: r1saline = 19.9 ± 2.3 smM; r1plasma = 19.0 ± 1.7 smM; r2saline = 60.8 ± 3.8 smM; r2plasma = 64.9 ± 1.8 smM; r2*saline = 60.4 ± 4.7 smM; r2*plasma = 64.4 ± 2.5 smM; 3.0 T: r1saline = 10.0 ± 0.3 smM; r1plasma = 9.5 ± 0.2 smM; r2saline = 62.3 ± 3.7 smM; r2plasma = 65.2 ± 1.8 smM; r2*saline = 57.0 ± 4.7 smM; r2*plasma = 55.7 ± 4.4 smM). The dependence of relaxation rates on concentration in blood was nonlinear. Formulas from second-order polynomial fittings of the relaxation rates were calculated to characterize the relationship between R1blood and R2 blood with ferumoxytol. Ferumoxytol demonstrates strong longitudinal and transverse relaxivities. Awareness of the nonlinear relaxation behavior of ferumoxytol in blood is important for ferumoxytol-enhanced magnetic resonance imaging applications and for protocol optimization.

  5. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    PubMed Central

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, Trelaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased Trelaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  6. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  7. Multi-Component T2 Relaxation Studies of the Avian Egg

    PubMed Central

    Mitsouras, Dimitris; Mulkern, Robert V.; Maier, Stephan E.

    2015-01-01

    Purpose To investigate the tissue-like multiexponential T2 signal decays in avian eggs. Methods Transverse relaxation studies of raw, soft-boiled and hard-boiled eggs were performed at 3 Tesla using a 3D Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence. Signal decays over a TE range of 11 to 354 ms were fitted assuming single- and multi-component signal decays with up to three separately decaying components. Fat saturation was used to facilitate spectral assignment of observed decay components. Results Egg white, yolk and the centrally located latebra all demonstrate nonmonoexponential T2 decays. Specifically, egg white exhibits two-component decays with intermediate and long T2 times. Meanwhile, yolk and latebra are generally best characterized with triexponential decays, with short, intermediate and very long T2 decay times. Fat saturation revealed that the intermediate component of yolk could be attributed to lipids. Cooking of the egg profoundly altered the decay curves. Conclusion Avian egg T2 decay curves cover a wide range of decay times. Observed T2 components in yolk and latebra as short as 10 ms, may prove valuable for testing clinical sequences designed to measure short T2 components, such as myelin-associated water in the brain. Thus we propose that the egg can be a versatile and widely available MR transverse relaxation phantom. PMID:26037128

  8. NMR relaxation rate in quasi one-dimensional antiferromagnets

    NASA Astrophysics Data System (ADS)

    Capponi, Sylvain; Dupont, Maxime; Laflorencie, Nicolas; Sengupta, Pinaki; Shao, Hui; Sandvik, Anders W.

    We compare results of different numerical approaches to compute the NMR relaxation rate 1 /T1 in quasi one-dimensional (1d) antiferromagnets. In the purely 1d regime, recent numerical simulations using DMRG have provided the full crossover behavior from classical regime at high temperature to universal Tomonaga-Luttinger liquid at low-energy (in the gapless case) or activated behavior (in the gapped case). For quasi 1d models, we can use mean-field approaches to reduce the problem to a 1d one that can be studied using DMRG. But in some cases, we can also simulate the full microscopic model using quantum Monte-Carlo techniques. This allows to compute dynamical correlations in imaginary time and we will discuss recent advances to perform stochastic analytic continuation to get real frequency spectra. Finally, we connect our results to experiments on various quasi 1d materials.

  9. T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.

    PubMed

    Wiener, Edzard; Settles, Marcus; Diederichs, Gerd

    2010-01-01

    The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p < 0.001) were measurable for all three contrast agents. T(2) values were 58 +/- 2 and 62 +/- 3 ms for gadopentetate dimeglumine, 46 +/- 2 and 57 +/- 2 ms for gadobenate dimeglumine, and 38 +/- 2 and 42 +/- 2 ms for gadoteridol at 1 and 3 mm depths, respectively. The r(2)/r(1) relaxivity ratios across cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John

  10. Estimation of T2* Relaxation Time of Breast Cancer: Correlation with Clinical, Imaging and Pathological Features

    PubMed Central

    Seo, Mirinae; Jahng, Geon-Ho; Sohn, Yu-Mee; Rhee, Sun Jung; Oh, Jang-Hoon; Won, Kyu-Yeoun

    2017-01-01

    Objective The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Materials and Methods Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Results Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). Conclusion The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer. PMID:28096732

  11. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically

  12. NMR evidence of charge fluctuations in multiferroic CuBr2

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qi; Zheng, Jia-Cheng; Chen, Tao; Wang, Peng-Shuai; Zhang, Jin-Shan; Cui, Yi; Wang, Chao; Li, Yuan; Xu, Sheng; Yuan, Feng; Yu, Wei-Qiang

    2018-03-01

    We report combined magnetic susceptibility, dielectric constant, nuclear quadruple resonance (NQR), and zero-field nuclear magnetic resonance (NMR) measurements on single crystals of multiferroics CuBr2. High quality of the sample is demonstrated by the sharp magnetic and magnetic-driven ferroelectric transition at {T}{{N}}={T}{{C}}≈ 74 K. The zero-field 79Br and 81Br NMR are resolved below T N. The spin-lattice relaxation rates reveal charge fluctuations when cooled below 60 K. Evidences of an increase of NMR linewidth, a reduction of dielectric constant, and an increase of magnetic susceptibility are also seen at low temperatures. These data suggest an emergent instability which competes with the spiral magnetic ordering and the ferroelectricity. Candidate mechanisms are discussed based on the quasi-one-dimensional nature of the magnetic system. Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0300504), the National Natural Science Foundation of China (Grant No. 11374364), the Fundamental Research Funds for the Central Universities of China, and the Research Funds of Renmin University, China (Grant No. 14XNLF08).

  13. Spatially resolved D-T(2) correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2014-05-01

    Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    PubMed

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  16. NMR studies of spin excitations in superconducting Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Takigawa, M.; Mitzi, D. B.

    1994-08-01

    The oxygen NMR shift and the Cu nuclear spin-lattice relaxation rate (1/T1) were measured in Bi2.1Sr1.9Ca0.9Cu2.1O8+δ single crystals. While both the shift and 1/(T1T) decrease sharply near Tc, 1/(T1T) becomes nearly constant at low temperatures, indicating a gapless superconducting state with finite density of states at the Fermi level. From the oxygen shift data, the residual spin susceptibility at T=0 is estimated to be 10% of the value at room temperature. Our results are most consistent with a d-wave pairing model with strong (resonant) impurity scattering.

  17. High-field 1H T1 and T2 NMR relaxation time measurements of H2O in homeopathic preparations of quartz, sulfur, and copper sulfate

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stephan; Wolf, Martin; Skrabal, Peter; Bangerter, Felix; Heusser, Peter; Thurneysen, André; Wolf, Ursula

    2009-09-01

    Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10 c-30 c, n = 21, corresponding to iterative dilutions of 100-10-100-30), sulfur (13 x-30 x, n = 18, 10-13-10-30), and copper sulfate (11 c-30 c, n = 20, 100-11-100-30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations

  18. Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia.

    PubMed

    Menelaou, M; Georgoula, K; Simeonidis, K; Dendrinou-Samara, C

    2014-03-07

    Nickel ferrite nanoparticles were synthesized via a facile solvothermal approach. Oleylamine (OAm) was used in all synthetic procedures as a stabilizing agent and solvent. By varying the polarity of the solvents, hydrophobic NiFe2O4 nanoparticles coated with OAm of relatively similar sizes (9-11.7 nm) and in a range of magnetization values (32.0-53.5 emu g(-1)) were obtained. The as-prepared hydrophobic nanoparticles were characterized by XRD, TEM, SEM, TGA and VSM and converted to hydrophilic by two different approaches. The addition of a positively charged ligand (cetyltrimethyl ammonium bromide, CTAB) and the ligand exchange procedure (2,3-dimercaptosuccinic acid, DMSA) have been successfully applied. The aqueous suspensions of NiFe2O4@CTAB and NiFe2O4@DMSA showed good colloidal stability after a long period of time. The different surface modification affected both the NMR relaxometric measurements and the hyperthermia effects. In both techniques CTAB modification demonstrated higher r2 relaxivity (278.9 s(-1) mM(-1) in an NMR spectrometer at 11.7 T) and SAR values (423.4 W g(-1) at an applied AC field with a particle concentration of 0.5 mg mL(-1)). The results indicate that a coating with a larger molecule as CTAB under the same size, shape and magnetization of NiFe2O4 NPs gave rise to NMR relaxometric properties and heating efficacy.

  19. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures

    PubMed Central

    Baum, T.; Joseph, G.B.; Karampinos, D.C.; Jungmann, P.M.; Link, T.M.; Bauer, J.S.

    2014-01-01

    SUMMARY Objective The purpose of this work was to review the current literature on cartilage and meniscal T2 relaxation time. Methods Electronic searches in PubMed were performed to identify relevant studies about T2 relaxation time measurements as non-invasive biomarker for knee osteoarthritis (OA) and cartilage repair procedures. Results Initial osteoarthritic changes include proteoglycan loss, deterioration of the collagen network, and increased water content within the articular cartilage and menisci. T2 relaxation time measurements are affected by these pathophysiological processes. It was demonstrated that cartilage and meniscal T2 relaxation time values were significantly increased in subjects with compared to those without radiographic OA and focal knee lesions, respectively. Subjects with OA risk factors such as overweight/obesity showed significantly greater cartilage T2 values than normal controls. Elevated cartilage and meniscal T2 relaxation times were found in subjects with vs without knee pain. Increased cartilage T2 at baseline predicted morphologic degeneration in the cartilage, meniscus, and bone marrow over 3 years. Furthermore, cartilage repair tissue could be non-invasively assessed by using T2 mapping. Reproducibility errors for T2 measurements were reported to be smaller than the T2 differences in healthy and diseased cartilage indicating that T2 relaxation time may be a reliable discriminatory biomarker. Conclusions Cartilage and meniscal T2 mapping may be suitable as non-invasive biomarker to diagnose early stages of knee OA and to monitor therapy of OA. PMID:23896316

  20. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging

    PubMed Central

    Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-01-01

    Objective: To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. Methods: 30 healthy male adults (18–31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7–154.6 ms] and T2* weighted (24 TEs: 4.6–53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product–moment correlation coefficients and confidence intervals were computed. Results: Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. Conclusion: A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. Advances in knowledge: This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults. PMID:27336705

  1. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging.

    PubMed

    Behzadi, Cyrus; Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-08-01

    To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. 30 healthy male adults (18-31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7-154.6 ms] and T2* weighted (24 TEs: 4.6-53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product-moment correlation coefficients and confidence intervals were computed. Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults.

  2. Sucrose in Aqueous Solution Revisited: 2. Adaptively Biased Molecular Dynamics Simulations and Computational Analysis of NMR Relaxation

    PubMed Central

    Xia, Junchao; Case, David A.

    2012-01-01

    We report 100 ns molecular dynamics simulations, at various temperatures, of sucrose in water (with concentrations of sucrose ranging from 0.02 to 4 M), and in a 7:3 water-DMSO mixture. Convergence of the resulting conformational ensembles was checked using adaptive-biased simulations along the glycosidic φ and ψ torsion angles. NMR relaxation parameters, including longitudinal (R1) and transverse (R2) relaxation rates, nuclear Overhauser enhancements (NOE), and generalized order parameter (S2) were computed from the resulting time-correlation functions. The amplitude and time scales of molecular motions change with temperature and concentration in ways that track closely with experimental results, and are consistent with a model in which sucrose conformational fluctuations are limited (with 80–90% of the conformations having φ – ψ values within 20° of an average conformation), but with some important differences in conformation between pure water and DMSO-water mixtures. PMID:22058066

  3. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. NMR relaxation dispersion of Miglyol molecules confined inside polymeric micro-capsules.

    PubMed

    Nechifor, Ruben; Ardelean, Ioan; Mattea, Carlos; Stapf, Siegfried; Bogdan, Mircea

    2011-11-01

    Frequency dependent NMR relaxation studies have been carried out on Miglyol molecules confined inside core shell polymeric capsules to obtain a correlation between capsule dimension and the measurable parameters. The polymeric capsules were prepared using an interfacial polymerization technique for three different concentrations of Miglyol. It was shown that the variation of Miglyol concentration influences the capsule dimension. Their average size was estimated using the pulsed field gradient diffusometry technique. The relaxation dispersion curves were obtained at room temperature by a combined use of a fast field cycling instrument and a high-field instrument. The frequency dependence of relaxation rate shows a transition from a diffusion-limited to a surface-limited relaxation regime. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Primary and secondary relaxation process in plastically crystalline cyanocyclohexane studied by 2H nuclear magnetic resonance. II. Quantitative analysis.

    PubMed

    Micko, B; Kruk, D; Rössler, E A

    2013-02-21

    We analyze the results of our previously reported 2H nuclear magnetic resonance (NMR) experiments in the plastically crystalline (PC) phase of cyanocyclohexane (Part I of this work) to study the fast secondary relaxation (or β-process) in detail. Both, the occurrence of an additional minimum in the spin-lattice relaxation T1 and the pronounced effects arising in the solid-echo spectrum above the glass transition temperature T(g) = 134 K, allow for a direct determination of the restricting geometry of the β-process in terms of the "wobbling-in-a-cone" model. Whereas at temperatures below T(g) the reorientation is confined to rather small solid angles (below 10°), the spatial restriction decreases strongly with temperature above T(g), i.e., the distribution of cone angles shifts continuously towards higher values. The β-process in the PC phase of cyanocyclohexane proceeds via the same mechanism as found in structural glass formers. This is substantiated by demonstrating the very similar behavior (for T < T(g)) of spin-lattice relaxation, stimulated echo decays, and spectral parameters when plotted as a function of (taken from dielectric spectroscopy). We do, however, not observe a clear-cut relation between the relaxation strength of the β-process observed by NMR (calculated within the wobbling-in-a-cone model) and dielectric spectroscopy.

  6. NMR relaxation induced by iron oxide particles: testing theoretical models.

    PubMed

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  7. Sub-millisecond 125Te NMR spin-lattice relaxation times and large Knight shifts in complex tellurides: Validation of a quadratic relation across the spectrum

    DOE PAGES

    Levin, E. M.; Iowa State Univ., Ames, IA; Cui, J. -F.; ...

    2016-07-16

    125Te NMR spectra and spin-lattice relaxation times, T 1, have been measured for several GeTe-based materials with Te excess. In this paper, the spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T 1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T 1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T 1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excessmore » of Te, about 15% of the material exhibits a Knight shift of ≥4500 ppm and a T 1 of only 0.3 ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Lastly, our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.« less

  8. Incommensurate to commensurate antiferromagnetism in CeRhAl 4 Si 2 : An Al 27 NMR study

    DOE PAGES

    Sakai, Hironori; Hattori, T.; Tokunaga, Y.; ...

    2016-01-04

    27Al nuclear magnetic resonance (NMR) experiments have been performed on a single crystal of CeRhAl 4Si 2, which is an antiferromagnetic Kondo-lattice compound with successive antiferromagnetic transitions of T N1 = 14 K and T N2 = 9 K at zero external field. In the paramagnetic state, the Knight shifts, quadrupolar frequency, and asymmetric parameter of electrical field gradient on the Al sites have been determined, which have local orthorhombic symmetry. The transferred hyperfine coupling constants are also determined. Here, analysis of the NMR spectra indicates that a commensurate antiferromagnetic structure exists below T N2, but an incommensurate modulation ofmore » antiferromagnetic moments is present in the antiferromagnetic state between T N1 and T N2. The spin-lattice relaxation rate suggests that the 4f electrons behave as local moments at temperatures above T N1.« less

  9. B11 NMR in the layered diborides OsB2 and RuB2

    NASA Astrophysics Data System (ADS)

    Suh, B. J.; Zong, X.; Singh, Y.; Niazi, A.; Johnston, D. C.

    2007-10-01

    B11 nuclear magnetic resonance (NMR) measurements have been performed on B11 enriched OsB2 and RuB2 polycrystalline powder samples in an external field of 4.7T and in the temperature range, 4.2K<T<300K . The spectra for both samples show similar quadrupole powder patterns that are typical for a nonaxial symmetry. The Knight shifts K in both samples are very small and constant in temperature. The nuclear spin-lattice relaxation rate T1-1 follows a Korringa law in the whole temperature range investigated with T1T=600 and 680sK for OsB2 and RuB2 , respectively. The experimental results indicate that a p character dominates the conduction electron wave function at the B site with a negligibly small s character in both compounds.

  10. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    PubMed

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  11. Observation of exchange of micropore water in cement pastes by two-dimensional T(2)-T(2) nuclear magnetic resonance relaxometry.

    PubMed

    Monteilhet, L; Korb, J-P; Mitchell, J; McDonald, P J

    2006-12-01

    The first detailed analysis of the two-dimensional (2D) NMR T(2)-T(2) exchange experiment with a period of magnetization storage between the two T(2) relaxation encoding periods (T(2)-store-T(2)) is presented. It is shown that this experiment has certain advantages over the T(1)-T(2) variant for the quantization of chemical exchange. New T(2)-store-T(2) 2D 1H NMR spectra of the pore water within white cement paste are presented. Based on these spectra, the exchange rate of water between the two smallest porosity reservoirs is estimated for the first time. It is found to be of the order of 5 ms{-1}. Further, a careful estimate of the pore sizes of these reservoirs is made. They are found to be of the order of 1.4 nm and 10-30 nm , respectively. A discussion of the results is developed in terms of possible calcium silicate hydrate products. A water diffusion coefficient inferred from the exchange rate and the cement particle size is found to compare favorably with the results of molecular-dynamics simulations to be found in the literature.

  12. Direct 1H NMR evidence of spin-rotation coupling as a source of para → ortho-H2 conversion in diamagnetic solvents

    NASA Astrophysics Data System (ADS)

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2017-04-01

    At ambient temperature, conversion from 100% enriched para-hydrogen (p-H2; singlet state) to ortho-hydrogen (o-H2; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H2 and 25% of p-H2. When p-H2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the p a r a →o r t h o conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the p a r a →o r t h o conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H2 (p-H2 is NMR-silent), one has to account for H2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d6 and carbon disulfide. The observed temperature dependence of the p a r a →o r t h o conversion rate shows that spin-rotation can be the dominant contribution to the p-H2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the p a r a →o r t h o conversion which has been searched for several decades.

  13. Primary and secondary relaxation process in plastically crystalline cyanocyclohexane studied by 2H nuclear magnetic resonance. I.

    PubMed

    Micko, B; Lusceac, S A; Zimmermann, H; Rössler, E A

    2013-02-21

    We study the main (α-) and secondary (β-) relaxation in the plastically crystalline (PC) phase of cyanocyclohexane by various 2H nuclear magnetic resonance (NMR) methods (line-shape, spin-lattice relaxation, stimulated echo, and two-dimensional spectra) above and below the glass transition temperature T(g) = 134 K. Our results regarding the α-process demonstrate that molecular motion is not governed by the symmetry of the lattice. Rather it is similar to the one reported for structural glass formers and can be modeled by a reorientation proceeding via a distribution of small and large angular jumps. A solid-echo line-shape analysis regarding the β-process below T(g) yields again very similar results when compared to those of the structural glass formers ethanol and toluene. Hence we cannot confirm an intramolecular origin for the β-process in cyanocyclohexane. The fast β-process in the PC phase allows for the first time a detailed 2H NMR study of the process also at T > T(g): an additional minimum in the spin-lattice relaxation time reflecting the β-process is found. Furthermore the solid-echo spectra show a distinct deviation from the rigid limit Pake pattern, which allows a direct determination of the temperature dependent spatial restriction of the process. In Part II of this work, a quantitative analysis is carried out, where we demonstrate that within the model of a "wobbling in a cone" the mean cone angle increases above T(g) and the corresponding relaxation strength is compared to dielectric results.

  14. Spatial Distribution and Relationship of T1ρ and T2 Relaxation Times in Knee Cartilage With Osteoarthritis

    PubMed Central

    Li, Xiaojuan; Pai, Alex; Blumenkrantz, Gabrielle; Carballido-Gamio, Julio; Link, Thomas; Ma, Benjamin; Ries, Michael; Majumdar, Sharmila

    2009-01-01

    T1ρ and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T1ρ and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T1ρ and T2 values was investigated using Z-scores. The spatial variation of T1ρ and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray-level co-occurrence matrices (GLCM). The mean Z-scores for T1ρ and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T1ρ and T2 Z-scores showed a large range in both controls and OA patients (0.2– 0.7). OA patients had significantly greater GLCM contrast and entropy of T1ρ values than controls (P < 0.05). In summary, T1ρ and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T1ρ and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. PMID:19319904

  15. Modeling T1 and T2 relaxation in bovine white matter

    NASA Astrophysics Data System (ADS)

    Barta, R.; Kalantari, S.; Laule, C.; Vavasour, I. M.; MacKay, A. L.; Michal, C. A.

    2015-10-01

    The fundamental basis of T1 and T2 contrast in brain MRI is not well understood; recent literature contains conflicting views on the nature of relaxation in white matter (WM). We investigated the effects of inversion pulse bandwidth on measurements of T1 and T2 in WM. Hybrid inversion-recovery/Carr-Purcell-Meiboom-Gill experiments with broad or narrow bandwidth inversion pulses were applied to bovine WM in vitro. Data were analysed with the commonly used 1D-non-negative least squares (NNLS) algorithm, a 2D-NNLS algorithm, and a four-pool model which was based upon microscopically distinguishable WM compartments (myelin non-aqueous protons, myelin water, non-myelin non-aqueous protons and intra/extracellular water) and incorporated magnetization exchange between adjacent compartments. 1D-NNLS showed that different T2 components had different T1 behaviours and yielded dissimilar results for the two inversion conditions. 2D-NNLS revealed significantly more complicated T1/T2 distributions for narrow bandwidth than for broad bandwidth inversion pulses. The four-pool model fits allow physical interpretation of the parameters, fit better than the NNLS techniques, and fits results from both inversion conditions using the same parameters. The results demonstrate that exchange cannot be neglected when analysing experimental inversion recovery data from WM, in part because it can introduce exponential components having negative amplitude coefficients that cannot be correctly modeled with nonnegative fitting techniques. While assignment of an individual T1 to one particular pool is not possible, the results suggest that under carefully controlled experimental conditions the amplitude of an apparent short T1 component might be used to quantify myelin water.

  16. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs.

    PubMed

    Szymanski, Eric S; Kimsey, Isaac J; Al-Hashimi, Hashim M

    2017-03-29

    The replicative and translational machinery utilizes the unique geometry of canonical G·C and A·T/U Watson-Crick base pairs to discriminate against DNA and RNA mismatches in order to ensure high fidelity replication, transcription, and translation. There is growing evidence that spontaneous errors occur when mismatches adopt a Watson-Crick-like geometry through tautomerization and/or ionization of the bases. Studies employing NMR relaxation dispersion recently showed that wobble dG·dT and rG·rU mismatches in DNA and RNA duplexes transiently form tautomeric and anionic species with probabilities (≈0.01-0.40%) that are in concordance with replicative and translational errors. Although computational studies indicate that these exceptionally short-lived and low-abundance species form Watson-Crick-like base pairs, their conformation could not be directly deduced from the experimental data, and alternative pairing geometries could not be ruled out. Here, we report direct NMR evidence that the transient tautomeric and anionic species form hydrogen-bonded Watson-Crick-like base pairs. A guanine-to-inosine substitution, which selectively knocks out a Watson-Crick-type (G)N2H 2 ···O2(T) hydrogen bond, significantly destabilized the transient tautomeric and anionic species, as assessed by lack of any detectable chemical exchange by imino nitrogen rotating frame spin relaxation (R 1ρ ) experiments. An 15 N R 1ρ NMR experiment targeting the amino nitrogen of guanine (dG-N2) provides direct evidence for Watson-Crick (G)N2H 2 ···O2(T) hydrogen bonding in the transient tautomeric state. The strategy presented in this work can be generally applied to examine hydrogen-bonding patterns in nucleic acid transient states including in other tautomeric and anionic species that are postulated to play roles in replication and translational errors.

  17. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Improved Characterization of Healthy and Malignant Tissue by NMR Line-Shape Relaxation Correlations

    PubMed Central

    Peemoeller, H.; Shenoy, R.K.; Pintar, M.M.; Kydon, D.W.; Inch, W.R.

    1982-01-01

    We performed a relaxation-line-shape correlation NMR experiment on muscle, liver, kidney, and spleen tissues of healthy mice and of mouse tumor tissue. In each tissue studied, five spin groups were resolved and characterized by their relaxation parameters. We report a previously uncharacterized semi-solid spin group and discuss briefly the value of this method for the identification of malignant tissues. PMID:7104438

  19. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  20. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Guobin; Li, Xiaofeng; Sun, Xianping; Feng, Jiwen; Ye, Chaohui; Zhou, Xin

    2013-12-01

    We present a Cs atomic magnetometer with a sensitivity of 150 fT/Hz1/2 operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125 μL tap water was detected at an ultralow magnetic field down to 47 nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.

  1. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  2. In vivo estimation of transverse relaxation time constant (T2 ) of 17 human brain metabolites at 3T.

    PubMed

    Wyss, Patrik O; Bianchini, Claudio; Scheidegger, Milan; Giapitzakis, Ioannis A; Hock, Andreas; Fuchs, Alexander; Henning, Anke

    2018-08-01

    The transverse relaxation times T 2 of 17 metabolites in vivo at 3T is reported and region specific differences are addressed. An echo-time series protocol was applied to one, two, or three volumes of interest with different fraction of white and gray matter including a total number of 106 healthy volunteers and acquiring a total number of 128 spectra. The data were fitted with the 2D fitting tool ProFit2, which included individual line shape modeling for all metabolites and allowed the T 2 calculation of 28 moieties of 17 metabolites. The T 2 of 10 metabolites and their moieties have been reported for the first time. Region specific T 2 differences in white and gray matter enriched tissue occur in 16 of 17 metabolites examined including single resonance lines and coupled spin systems. The relaxation time T 2 is regions specific and has to be considered when applying tissue composition correction for internal water referencing. Magn Reson Med 80:452-461, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Fluid-Rock Characterization and Interactions in NMR Well Logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silicamore » sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.« less

  4. Effect of clathrate hydrate formation and decomposition on NMR parameters in THF-D2O solution.

    PubMed

    Rousina-Webb, Alexander; Leek, Donald M; Ripmeester, John

    2012-06-28

    The NMR spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)) and the diffusion coefficient D were measured for (1)H in a 1:17 mol % solution of tetrahydrofuran (THF) in D(2)O. The aim of the work was to clarify some earlier points raised regarding the utility of these measurements to convey structural information on hydrate formation and reformation. A number of irregularities in T(1) and T(2) measurements during hydrate processes reported earlier are explained in terms of the presence of interfaces and possible temperature gradients. We observe that T(1) and T(2) in solution are exactly the same before and after hydrate formation, thus confirming that the solution is isotropic. This is inconsistent with the presence of memory effects, at least those that may affect the dynamics to which T(1) and T(2) are sensitive. The measurement of the diffusion coefficient for a number of hours in the subcooled solution before nucleation proved invariant with time, again suggesting that the solution remains isotropic without affecting the guest dynamics and diffusion.

  5. Dynamics of an integral membrane peptide: a deuterium NMR relaxation study of gramicidin.

    PubMed Central

    Prosser, R S; Davis, J H

    1994-01-01

    Solid state deuterium (2H) NMR inversion-recovery and Jeener-Broekaert relaxation experiments were performed on oriented multilamellar dispersions consisting of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine and 2H exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamics of the channel conformation of the peptide in a liquid crystalline phase. Our dynamic model for the whole body motions of the peptide includes diffusion of the peptide around its helix axis and a wobbling diffusion around a second axis perpendicular to the local bilayer normal in a simple Maier-Saupe mean field potential. This anisotropic diffusion is characterized by the correlation times, tau R parallel and tau R perpendicular. Aligning the bilayer normal perpendicular to the magnetic field and graphing the relaxation rate, 1/T1Z, as a function of (1-S2N-2H), where S2N-2H represents the orientational order parameter, wer were able to estimate the correlation time, tau R parallel, for rotational diffusion. Although in the quadrupolar splitting, which varies as (3 cos2 theta D-1), has in general two possible solutions to theta D in the range 0 < or = theta D < or = 90 degrees, the 1/T1Z vs. (1-S2N-2H) curve can be used to determine a single value of theta D in this range. Thus, the 1/T1Z vs. (1-S2N-2H) profile can be used both to define the axial diffusion rate and to remove potential structural ambiguities in the splittings. The T1Z anisotropy permits us to solve for the two correlation times (tau R parallel = 6.8 x 10(-9) s and tau R perpendicular = 6 x 10(-6) s). The simulated parameters were corroborated by a Jeener-Broekaert experiment where the bilayer normal was parallel to the principal magnetic field. At this orientation the ratio, J2(2 omega 0)/J1(omega 0) was obtained in order to estimate the strength of the restoring potential in a model-independent fashion. This measurement yields the rms angle, 2>1/2 (= 16 +/- 2 degrees at

  6. Direct correlation between adsorption energetics and nuclear spin relaxation in liquid-saturated catalyst material.

    PubMed

    Robinson, Neil; Robertson, Christopher; Gladden, Lynn F; Jenkins, Stephen J; D'Agostino, Carmine

    2018-06-20

    The ratio of NMR relaxation time constants T1/T2 provides a non-destructive indication of the relative surface affinities exhibited by adsorbates within liquid-saturated mesoporous catalysts. In the present work we provide supporting evidence for the existence of a quantitative relationship between such measurements and adsorption energetics. As a prototypical example with relevance to green chemical processes we examine and contrast the relaxation characteristics of primary alcohols and cyclohexane within an industrial silica catalyst support. T1/T2 values obtained at intermediate magnetic field strength are in good agreement with DFT adsorption energy calculations performed on single molecules interacting with an idealised silica surface. Our results demonstrate the remarkable ability of this metric to quantify surface affinities within systems of relevance to liquid-phase heterogeneous catalysis, and highlight NMR relaxation as a powerful method for the determination of adsorption phenomena within mesoporous solids. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. NMR T1 relaxation time measurements and calculations with translational and rotational components for liquid electrolytes containing LiBF4 and propylene carbonate.

    PubMed

    Richardson, P M; Voice, A M; Ward, I M

    2013-12-07

    Longitudinal relaxation (T1) measurements of (19)F, (7)Li, and (1)H in propylene carbonate/LiBF4 liquid electrolytes are reported. Comparison of T1 values with those for the transverse relaxation time (T2) confirm that the measurements are in the high temperature (low correlation time) limit of the T1 minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T1 from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.

  8. TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemen, L.

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm.more » MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other

  9. Study of the ferroelastic phase transition in the tetraethylammonium compound [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}ZnBr{sub 4} by magic-angle spinning and static NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Ae Ran, E-mail: aeranlim@hanmail.net, E-mail: arlim@jj.ac.kr

    The ferroelastic phase transition of tetraethylammonium compound [N(C{sub 2}H{sub 5}){sub 4}]{sub 2}ZnBr{sub 4} at the phase transition temperature (T{sub C}) = 283 K was characterized by magic-angle spinning (MAS) and static nuclear magnetic resonance (NMR), and confirmed by optical polarizing spectroscopy. The structural geometry near T{sub C} was studied in terms of the chemical shifts and the spin-lattice relaxation times T{sub 1ρ} in the rotating frame for {sup 1}H MAS NMR and {sup 13}C cross-polarization (CP)/MAS NMR. The two inequivalent ethyl groups were distinguishable in the {sup 13}C NMR spectrum, and the T{sub 1ρ} results indicate that they undergo tumblingmore » motion above T{sub C} in a coupled manner. From the {sup 14}N NMR results, the two nitrogen nuclei in the N(C{sub 2}H{sub 5}){sub 4}{sup +} ions were distinguishable above T{sub C}, and the splitting in the spectra below T{sub C} was related to the ferroelastic domains with different orientations.« less

  10. Detecting Microbially Induced Calcite Precipitation in a Model Well-Bore Using Downhole Low-Field NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkland, Catherine M.; Zanetti, Sam; Grunewald, Elliot

    Microbially induced calcite precipitation (MICP) has been widely researched recently due to its relevance for subsurface engineering applications including sealing leakage pathways and permeability modification. These applications of MICP are inherently difficult to monitor nondestructively in time and space. Nuclear magnetic resonance (NMR) can characterize the pore size distributions, porosity, and permeability of subsurface formations. This investigation used a low-field NMR well-logging probe to monitor MICP in a sand-filled bioreactor, measuring NMR signal amplitude and T 2 relaxation over an 8 day experimental period. Following inoculation with the ureolytic bacteria, Sporosarcina pasteurii, and pulsed injections of urea and calcium substrate,more » the NMR measured water content in the reactor decreased to 76% of its initial value. T 2 relaxation distributions bifurcated from a single mode centered about approximately 650 ms into a fast decaying population ( T 2 less than 10 ms) and a larger population with T 2 greater than 1000 ms. The combination of changes in pore volume and surface minerology accounts for the changes in the T 2 distributions. Destructive sampling confirmed final porosity was approximately 88% of the original value. Here, these results indicate the low-field NMR well-logging probe is sensitive to the physical and chemical changes caused by MICP in a laboratory bioreactor.« less

  11. Detecting Microbially Induced Calcite Precipitation in a Model Well-Bore Using Downhole Low-Field NMR

    DOE PAGES

    Kirkland, Catherine M.; Zanetti, Sam; Grunewald, Elliot; ...

    2016-12-20

    Microbially induced calcite precipitation (MICP) has been widely researched recently due to its relevance for subsurface engineering applications including sealing leakage pathways and permeability modification. These applications of MICP are inherently difficult to monitor nondestructively in time and space. Nuclear magnetic resonance (NMR) can characterize the pore size distributions, porosity, and permeability of subsurface formations. This investigation used a low-field NMR well-logging probe to monitor MICP in a sand-filled bioreactor, measuring NMR signal amplitude and T 2 relaxation over an 8 day experimental period. Following inoculation with the ureolytic bacteria, Sporosarcina pasteurii, and pulsed injections of urea and calcium substrate,more » the NMR measured water content in the reactor decreased to 76% of its initial value. T 2 relaxation distributions bifurcated from a single mode centered about approximately 650 ms into a fast decaying population ( T 2 less than 10 ms) and a larger population with T 2 greater than 1000 ms. The combination of changes in pore volume and surface minerology accounts for the changes in the T 2 distributions. Destructive sampling confirmed final porosity was approximately 88% of the original value. Here, these results indicate the low-field NMR well-logging probe is sensitive to the physical and chemical changes caused by MICP in a laboratory bioreactor.« less

  12. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Yuji; Roy, Beas; Ran, Sheng

    2014-03-20

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magneticmore » susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.« less

  13. Structure of the two-dimensional relaxation spectra seen within the eigenmode perturbation theory and the two-site exchange model.

    PubMed

    Bytchenkoff, Dimitri; Rodts, Stéphane

    2011-01-01

    The form of the two-dimensional (2D) NMR-relaxation spectra--which allow to study interstitial fluid dynamics in diffusive systems by correlating spin-lattice (T(1)) and spin-spin (T(2)) relaxation times--has given rise to numerous conjectures. Herein we find analytically a number of fundamental structural properties of the spectra: within the eigen-modes formalism, we establish relationships between the signs and intensities of the diagonal and cross-peaks in spectra obtained by various 1 and 2D NMR-relaxation techniques, reveal symmetries of the spectra and uncover interdependence between them. We investigate more specifically a practically important case of porous system that has sets of T(1)- and T(2)-eigenmodes and eigentimes similar to each other by applying the perturbation theory. Furthermore we provide a comparative analysis of the application of the, mathematically more rigorous, eigen-modes formalism and the, rather more phenomenological, first-order two-site exchange model to diffusive systems. Finally we put the results that we could formulate analytically to the test by comparing them with computer-simulations for 2D porous model systems. The structural properties, in general, are to provide useful clues for assignment and analysis of relaxation spectra. The most striking of them--the presence of negative peaks--underlines an urgent need for improvement of the current 2D Inverse Laplace Transform (ILT) algorithm used for calculation of relaxation spectra from NMR raw data. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Understanding Unimer Exchange Processes in Block Copolymer Micelles using NMR Diffusometry, Time-Resolved NMR, and SANS

    NASA Astrophysics Data System (ADS)

    Madsen, Louis; Kidd, Bryce; Li, Xiuli; Miller, Katherine; Cooksey, Tyler; Robertson, Megan

    Our team seeks to understand dynamic behaviors of block copolymer micelles and their interplay with encapsulated cargo molecules. Quantifying unimer and cargo exchange rates micelles can provide critical information for determining mechanisms of unimer exchange as well as designing systems for specific cargo release dynamics. We are exploring the utility of NMR spectroscopy and diffusometry techniques as complements to existing SANS and fluorescence methods. One promising new method involves time-resolved NMR spin relaxation measurements, wherein mixing of fully protonated and 2H-labeled PEO-b-PCL micelles solutions shows an increase in spin-lattice relaxation time (T1) with time after mixing. This is due to a weakening in magnetic environment surrounding 1H spins as 2H-bearing unimers join fully protonated micelles. We are measuring time constants for unimer exchange of minutes to hours, and we expect to resolve times of <1 min. This method can work on any solution NMR spectrometer and with minimal perturbation to chemical structure (as in dye-labelled fluorescence methods). Multimodal NMR can complement existing characterization tools, expanding and accelerating dynamics measurements for polymer micelle, nanogel, and nanoparticle developers.

  15. Effect of hydrocarbon to nuclear magnetic resonance (NMR) logging in tight sandstone reservoirs and method for hydrocarbon correction

    NASA Astrophysics Data System (ADS)

    Xiao, Liang; Mao, Zhi-qiang; Xie, Xiu-hong

    2017-04-01

    It is crucial to understand the behavior of the T2 distribution in the presence of hydrocarbon to properly interpret pore size distribution from NMR logging. The NMR T2 spectrum is associated with pore throat radius distribution under fully brine saturated. However, when the pore space occupied by hydrocarbon, the shape of NMR spectrum is changed due to the bulk relaxation of hydrocarbon. In this study, to understand the effect of hydrocarbon to NMR logging, the kerosene and transformer oil are used to simulate borehole crude oils with different viscosity. 20 core samples, which were separately drilled from conventional, medium porosity and permeability and tight sands are saturated with four conditions of irreducible water saturation, fully saturated with brine, hydrocarbon-bearing condition and residual oil saturation, and the corresponding NMR experiments are applied to acquire NMR measurements. The residual oil saturation is used to simulate field NMR logging due to the shallow investigation depth of NMR logging. The NMR spectra with these conditions are compared, the results illustrate that for core samples drilled from tight sandstone reservoirs, the shape of NMR spectra have much change once they pore space occupied by hydrocarbon. The T2 distributions are wide, and they are bimodal due to the effect of bulk relaxation of hydrocarbon, even though the NMR spectra are unimodal under fully brine saturated. The location of the first peaks are similar with those of the irreducible water, and the second peaks are close to the bulk relaxation of viscosity oils. While for core samples drilled from conventional formations, the shape of T2 spectra have little changes. The T2 distributions overlap with each other under these three conditions of fully brine saturated, hydrocarbon-bearing and residual oil. Hence, in tight sandstone reservoirs, the shape of NMR logging should be corrected. In this study, based on the lab experiments, seven T2 times of 1ms, 3ms, 10ms, 33ms

  16. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.

    PubMed

    Hannila, I; Nieminen, M T; Rauvala, E; Tervonen, O; Ojala, R

    2007-05-01

    To evaluate the detection and the size of focal patellar cartilage lesions in T2 mapping as compared to standard clinical magnetic resonance imaging (MRI) at 1.5T. Fifty-five consecutive clinical patients referred to knee MRI were imaged both with a standard knee MRI protocol (proton-density-weighted sagittal and axial series, T2-weighted sagittal and coronal series, and T1-weighted coronal series) and with an axial multislice multi-echo spin-echo measurement to determine the T2 relaxation time of the patellar cartilage. MR images and T2 maps of patellar cartilage were evaluated for focal lesions. The lesions were evaluated for lesion width (mm), lesion depth (1/3, 2/3, or 3/3 of cartilage thickness), and T2 value (20-40 ms, 40-60 ms, or 60-80 ms) based on visual evaluation. Altogether, 36 focal patellar cartilage lesions were detected from 20 human subjects (11 male, nine female, mean age 40+/-15 years). Twenty-eight lesions were detected both on MRI and T2 maps, while eight lesions were only visible on T2 maps. Cartilage lesions were significantly wider (P = 0.001) and thicker (P<0.001) on T2 maps as compared to standard knee MRI. Most lesions 27 had moderately (T2 40-60 ms) increased T2 values, while two lesions had slightly (T2 20-40 ms) and seven lesions remarkably (T2 60-80 ms) increased T2 relaxation times. T2 mapping of articular cartilage is feasible in the clinical setting and may reveal early cartilage lesions not visible with standard clinical MRI.

  17. Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.

    2016-10-01

    We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.

  18. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  19. Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.

    PubMed

    Allnér, Olof; Foloppe, Nicolas; Nilsson, Lennart

    2015-01-22

    Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the

  20. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.

    PubMed

    Grgac, Ksenija; Li, Wenbo; Huang, Alan; Qin, Qin; van Zijl, Peter C M

    2017-05-01

    Blood is a physiological substance with multiple water compartments, which contain water-binding proteins such as hemoglobin in erythrocytes and albumin in plasma. Knowing the water transverse (R 2 ) relaxation rates from these different blood compartments is a prerequisite for quantifying the blood oxygenation level-dependent (BOLD) effect. Here, we report the Carr-Purcell-Meiboom-Gill (CPMG) based transverse (R 2CPMG ) relaxation rates of water in bovine blood samples circulated in a perfusion system at physiological temperature in order to mimic blood perfusion in humans. R 2CPMG values of blood plasma, lysed packed erythrocytes, lysed plasma/erythrocyte mixtures, and whole blood at 3 T, 7 T, 9.4 T, 11.7 T and 16.4 T were measured as a function of hematocrit or hemoglobin concentration, oxygenation, and CPMG inter-echo spacing (τ cp ). R 2CPMG in lysed cells showed a small τ cp dependence, attributed to the water exchange rate between free and hemoglobin-bound water to be much faster than τ cp . This was contrary to the tangential dependence in whole blood, where a much slower exchange between cells and blood plasma applies. Whole blood data were fitted as a function of τ cp using a general tangential correlation time model applicable for exchange as well as diffusion contributions to R 2CPMG , and the intercept R 20blood at infinitely short τ cp was determined. The R 20blood values at different hematocrit and the R 2CPMG values of lysed erythrocyte/plasma mixtures at different hemoglobin concentration were used to determine the relaxivity of hemoglobin inside the erythrocyte (r 2Hb ) and albumin (r 2Alb ) in plasma. The r 2Hb values obtained from lysed erythrocytes and whole blood were comparable at full oxygenation. However, while r 2Hb determined from lysed cells showed a linear dependence on oxygenation, this dependence became quadratic in whole blood. This possibly suggests an additional relaxation effect inside intact cells, perhaps due to hemoglobin

  1. Magnetic order and spin dynamics in La2O2Fe2OSe2 probed by 57Fe Mössbauer, 139La NMR, and muon-spin relaxation spectroscopy

    NASA Astrophysics Data System (ADS)

    Günther, M.; Kamusella, S.; Sarkar, R.; Goltz, T.; Luetkens, H.; Pascua, G.; Do, S.-H.; Choi, K.-Y.; Zhou, H. D.; Blum, C. G. F.; Wurmehl, S.; Büchner, B.; Klauss, H.-H.

    2014-11-01

    We present a detailed local probe study of the magnetic order in the oxychalcogenide La2O2Fe2OSe2 utilizing 57Fe Mössbauer, 139La NMR, and muon-spin relaxation spectroscopy. This system can be regarded as an insulating reference system of the Fe arsenide and chalcogenide superconductors. From the combination of the local probe techniques we identify a noncollinear magnetic structure similar to Sr2F2Fe2OS2 . The analysis of the magnetic order parameter yields an ordering temperature TN=90.1 K and a critical exponent of β =0.133 , which is close to the two-dimensional Ising universality class as reported in the related oxychalcogenide family.

  2. Fluid Transport in Porous Media probed by Relaxation-Exchange NMR

    NASA Astrophysics Data System (ADS)

    Olaru, A. M.; Kowalski, J.; Sethi, V.; Blümich, B.

    2011-12-01

    The characterization of fluid transport in porous media represents a matter of high interest in fields like the construction industry, oil exploitation, and soil science. Moisture migration or flow at low rates, such as those occurring in soil during rain are difficult to characterize by classical high-field NMR velocimetry due to the dedicated hardware and elaborate techniques required for adequate signal encoding. The necessity of field studies raises additional technical problems, which can be solved only by the use of portable low-field NMR instruments. In this work we extend the use of low-field relaxation exchange experiments from the study of diffusive transport to that of advection. Relaxation exchange experiments were performed using a home-built Halbach magnet on model porous systems with controlled pore-size distributions and on natural porous systems (quartz sand with a broad pore-size distribution) exposed to unidirectional flow. Different flow rates leave distinctive marks on the exchange maps obtained by inverse Laplace transformation of the time domain results, due to the superposition of exchange, diffusion and inflow/outflow in multiple relaxation sites of the liquids in the porous media. In the case of slow velocities there is no loss of signal due to outflow, and the relaxation-exchange effects prevail, leading to a tilt of the diagonal distribution around a pivot point with increasing mixing time. The tilt suggests an asymmetry in the exchange between relaxation sites of large and small decay rates. Another observed phenomenon is the presence of a bigger number of exchange cross-peaks compared to the exchange maps obtained for the same systems in zero-flow conditions. We assume that this is due to enhanced exchange caused by the superposition of flow. For high velocities the outflow effects dominate and the relaxation-time distribution collapses towards lower values of the average relaxation times. In both cases the pore-size distribution has a

  3. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  4. Tuning the relaxation rates of dual-mode T1/T2 nanoparticle contrast agents: a study into the ideal system

    NASA Astrophysics Data System (ADS)

    Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.

    2015-09-01

    Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in

  5. Diagnostic value of T1 and T2 * relaxation times and off-resonance saturation effects in the evaluation of Achilles tendinopathy by MRI at 3T.

    PubMed

    Grosse, Ulrich; Syha, Roland; Hein, Tobias; Gatidis, Sergios; Grözinger, Gerd; Schabel, Christoph; Martirosian, Petros; Schick, Fritz; Springer, Fabian

    2015-04-01

    To evaluate and compare the diagnostic value of T1 , T2 * relaxation times and off-resonance saturation ratios (OSR) in healthy controls and patients with different clinical and morphological stages of Achilles tendinopathy. Forty-two healthy Achilles tendons and 34 tendons of 17 patients with symptomatic and asymptomatic tendinopathy were investigated clinically with conventional magnetic resonance imaging (MRI) sequences on a 3T whole-body MR scanner and a dynamic ultrasound examination. In addition, T1 and T2 * relaxation times were assessed using an ultrashort echo time (UTE) imaging sequence with flip angle and echo time variation. For the calculation of OSR values a Gaussian off-resonance saturation pulse (frequency offset: 750-5000 Hz) was used. The diagnostic value of the derived MR values was assessed and compared using receiver operating characteristic (ROC) curves. ROC curves demonstrate the highest overall test performance for OSR values at 2000 Hz off-resonance in differentiating slightly (OSR-2000 [AUC: 0.930] > T2 * [AUC: 0.884] > T1 [AUC: 0.737]) and more severe pathologically altered tendon areas (OSR-2000 [AUC: 0.964] > T2 * [AUC: 0.917] > T1 [AUC: 0.819]) from healthy ones. OSR values at a frequency offset of 2000 Hz demonstrated a better sensitivity and specificity for detecting mild and severe stages of tendinopathy compared to T2 * and particularly when compared to T1 relaxation times. © 2014 Wiley Periodicals, Inc.

  6. Experimental validation of a T2 ρ transverse relaxation model using LASER and CPMG acquisitions

    NASA Astrophysics Data System (ADS)

    Nikolova, Simona; Bowen, Chris V.; Bartha, Robert

    2006-07-01

    The transverse relaxation rate (R2 = 1/T2) of many biological tissues are altered by endogenous magnetized particles (i.e., ferritin, deoxyhemoglobin), and may be sensitive to the pathological progression of neurodegenerative disorders associated with altered brain-iron stores. R2 measurements using Carr-Purcell-Meiboom-Gill (CPMG) acquisitions are sensitive to the refocusing pulse interval (2τcp), and have been modeled as a chemical exchange (CE) process, while R2 measurements using a localization by adiabatic selective refocusing (LASER) sequence have an additional relaxation rate contribution that has been modeled as a R2ρ process. However, no direct comparison of the R2 measured using these two sequences has been described for a controlled phantom model of magnetized particles. The three main objectives of this study were: (1) to compare the accuracy of R2 relaxation rate predictions from the CE model with experimental data acquired using a conventional CPMG sequence, (2) to compare R2 estimates obtained using LASER and CPMG acquisitions, and (3) to determine whether the CE model, modified to account for R2ρ relaxation, adequately describes the R2 measured by LASER for a full range of τcp values. In all cases, our analysis was confined to spherical magnetic particles that satisfied the weak field regime. Three phantoms were produced that contained spherical magnetic particles (10 μm diameter polyamide powders) suspended in Gd-DTPA (1.0, 1.5, and 2.0 mmol/L) doped gel. Mono-exponential R2 measurements were made at 4 T as a function of refocusing pulse interval. CPMG measurements of R2 agreed with CE model predictions while significant differences in R2 estimates were observed between LASER and CPMG measurements for short τcp acquisitions. The discrepancy between R2 estimates is shown to be attributable to contrast enhancement in LASER due to T2ρ relaxation.

  7. Noninvasive monitoring of moisture uptake in Ca(NO3)2 -polluted calcareous stones by 1H-NMR relaxometry.

    PubMed

    Casieri, Cinzia; Terenzi, Camilla; De Luca, Francesco

    2015-01-01

    NMR transverse relaxation time (T(2)) distribution of (1)H nuclei of water has been used to monitor the moisture condensation kinetics in Ca(NO(3))(2)  · (4)H(2)O-polluted Lecce stone, a calcareous stone with highly regular porous structure often utilized as basic material in Baroque buildings. Polluted samples have been exposed to water vapor adsorption at controlled relative humidity to mimic environmental conditions. In presence of pollutants, the T(2) distributions of water in stone exhibit a range of relaxation time values and amplitudes not observed in the unpolluted case. These characteristics could be exploited for in situ noninvasive detection of salt pollution in Lecce stone or as damage precursors in architectural buildings of cultural heritage interest. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Conformation switching of AIM2 PYD domain revealed by NMR relaxation and MD simulation.

    PubMed

    Wang, Haobo; Yang, Lijiang; Niu, Xiaogang

    2016-04-29

    Protein absent in melanoma 2 (AIM2) is a double-strand DNA (ds DNA) sensor mainly located in cytoplasm of cell. It includes one N terminal PYD domain and one C terminal HIN domain. When the ds DNA such as DNA viruses and bacteria entered cytoplasm, the HIN domain of AIM2 will recognize and bind to DNA, and the PYD domain will bind to ASC protein which will result in the formation of AIM2 inflammasome. Three AIM2 PYD domain structures have been solved, but every structure yields a unique conformation around the α3 helix region. To understand why different AIM2 PYD structures show different conformations in this region, we use NMR relaxation techniques to study the backbone dynamics of mouse AIM2 PYD domain and perform molecular dynamics (MD) simulations on both mouse and human AIM2 PYD structures. Our results indicate that this region is highly flexible in both mouse and human AIM2 PYD domains, and the PYD domain may exist as a conformation ensemble in solution. Different environment makes the population vary among pre-existing conformational substrates of the ensemble, which may be the reason why different AIM2 PYD structures were observed under different conditions. Further docking analysis reveals that the conformation switching may be important for the autoinhibition of the AIM2 protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Undoped high-Tc superconductivity in T'-La1.8Eu0.2CuO4+δ revealed by 63,65Cu and 139La NMR: Bulk superconductivity and antiferromagnetic fluctuations

    NASA Astrophysics Data System (ADS)

    Fukazawa, Hideto; Ishiyama, Seiya; Goto, Masato; Kanamaru, Shuhei; Ohashi, Kohki; Kawamata, Takayuki; Adachi, Tadashi; Hirata, Michihiro; Sasaki, Takahiko; Koike, Yoji; Kohori, Yoh

    2017-10-01

    We performed 63,65Cu and 139La NMR measurements of T'-La1.8Eu0.2CuO4+δ (T'-LECO) with the Nd2CuO4-type structure (so-called T'-structure). As a result, we detected the 63,65Cu NMR signal under finite magnetic fields and found superconductivity without antiferromagnetic (AF) order only in the reduced T'-LECO, where excess apical oxygen atoms are properly removed. This indicates that the intrinsic ground state of the ideal T'-LECO is a paramagnetic and superconducting (SC) state. Below Tc, the Knight shift was found to rapidly decrease, which indicates the emergence of bulk superconductivity due to spin-singlet Cooper pairs in the reduced T'-LECO. In the SC state of the reduced T'-LECO, moreover, a characteristic temperature dependence of the spin-lattice relaxation rate 1/T1 was observed, which implies the existence of nodal lines in the SC gap. These findings suggest that the superconductivity in the reduced T'-LECO probably has d-wave symmetry. In the normal state of the reduced T'-LECO, on the other hand, AF fluctuations were found to exist from the temperature dependence of 1/T1T, though no clear pseudogap behavior was observed. This suggests that the AF correlation plays a key role in the superconductivity of undoped high-Tc cuprate superconductors with the T'-structure.

  10. NMR Water Self–Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions

    PubMed Central

    Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc

    2013-01-01

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  11. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  12. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

    PubMed

    Yanagisawa, Y; Nakagome, H; Tennmei, K; Hamada, M; Yoshikawa, M; Otsuka, A; Hosono, M; Kiyoshi, T; Takahashi, M; Yamazaki, T; Maeda, H

    2010-04-01

    We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system. 2010 Elsevier Inc. All rights reserved.

  13. Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil

    NASA Astrophysics Data System (ADS)

    Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen

    2017-04-01

    Mucilage is mainly produced at the root tips and has a high water holding capacity derived from highly hydrophilic gel-forming substances. The objective of the MUCILAGE project is to understand the mechanistic role of mucilage for the regulation of water supply for plants. Our subproject investigates the chemical and physical properties of mucilage as pure gel and mixed with soil. 1H-NMR Relaxometry and PFG NMR represent non-intrusive powerful methods for soil scientific research by allowing quantification of the water distribution as well as monitoring of the water mobility in soil pores and gel phases.Relaxation of gel water differs from the one of pure water due to additional interactions with the gel matrix. Mucilage in soil leads to a hierarchical pore structure, consisting of the polymeric biohydrogel network surrounded by the surface of soil particles. The two types of relaxation rates 1/T1 and 1/T2 measured with 1H-NMR relaxometry refer to different relaxation mechanisms of water, while PFG-NMR measures the water self-diffusion coefficient. The objective of our study is to distinguish in situ water in gel from pore water in a simplified soil system, and to determine how the "gel effect" affects both relaxation rates and the water self-diffusion coefficient in porous systems. We demonstrate how the mucilage concentration and the soil solution alter the properties of water in the respective gel phases and pore systems in model soils. To distinguish gel-inherent processes from classical processes, we investigated the variations of the water mobility in pure chia mucilage under different conditions by using 1H-NMR relaxometry and PFG NMR. Using model soils, the signals coming from pore water and gel water were differentiated. We combined the equations describing 1H-NMR relaxation in porous systems and our experimental results, to explain how the presence of gel in soil affects 1H-NMR relaxation. Out of this knowledge we propose a method, which determines in

  14. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    PubMed

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. UTE bi-component analysis of T2* relaxation in articular cartilage

    PubMed Central

    Shao, H.; Chang, E.Y.; Pauli, C.; Zanganeh, S.; Bae, W.; Chung, C.B.; Tang, G.; Du, J.

    2015-01-01

    SUMMARY Objectives To determine T2* relaxation in articular cartilage using ultrashort echo time (UTE) imaging and bi-component analysis, with an emphasis on the deep radial and calcified cartilage. Methods Ten patellar samples were imaged using two-dimensional (2D) UTE and Car-Purcell-Meiboom-Gill (CPMG) sequences. UTE images were fitted with a bi-component model to calculate T2* and relative fractions. CPMG images were fitted with a single-component model to calculate T2. The high signal line above the subchondral bone was regarded as the deep radial and calcified cartilage. Depth and orientation dependence of T2*, fraction and T2 were analyzed with histopathology and polarized light microscopy (PLM), confirming normal regions of articular cartilage. An interleaved multi-echo UTE acquisition scheme was proposed for in vivo applications (n = 5). Results The short T2* values remained relatively constant across the cartilage depth while the long T2* values and long T2* fractions tended to increase from subchondral bone to the superficial cartilage. Long T2*s and T2s showed significant magic angle effect for all layers of cartilage from the medial to lateral facets, while the short T2* values and T2* fractions are insensitive to the magic angle effect. The deep radial and calcified cartilage showed a mean short T2* of 0.80 ± 0.05 ms and short T2* fraction of 39.93 ± 3.05% in vitro, and a mean short T2* of 0.93 ± 0.58 ms and short T2* fraction of 35.03 ± 4.09% in vivo. Conclusion UTE bi-component analysis can characterize the short and long T2* values and fractions across the cartilage depth, including the deep radial and calcified cartilage. The short T2* values and T2* fractions are magic angle insensitive. PMID:26382110

  16. Estimation of the EEG power spectrum using MRI T(2) relaxation time in traumatic brain injury.

    PubMed

    Thatcher, R W; Biver, C; Gomez, J F; North, D; Curtin, R; Walker, R A; Salazar, A

    2001-09-01

    To study the relationship between magnetic resonance imaging (MRI) T(2) relaxation time and the power spectrum of the electroencephalogram (EEG) in long-term follow up of traumatic brain injury. Nineteen channel quantitative electroencephalograms or qEEG, tests of cognitive function and quantitative MRI T(2) relaxation times (qMRI) were measured in 18 mild to severe closed head injured outpatients 2 months to 4.6 years after injury and 11 normal controls. MRI T(2) and the Laplacian of T(2) were then correlated with the power spectrum of the scalp electrical potentials and current source densities of the qEEG. qEEG and qMRI T(2) were related by a frequency tuning with maxima in the alpha (8-12Hz) and the lower EEG frequencies (0.5-5Hz), which varied as a function of spatial location. The Laplacian of T(2) acted like a spatial-temporal "lens" by increasing the spatial-temporal resolution of correlation between 3-dimensional T(2) and the ear referenced alert but resting spontaneous qEEG. The severity of traumatic brain injury can be modeled by a linear transfer function that relates the molecular qMRI to qEEG resonant frequencies.

  17. NMR spectroscopy up to 35.2T using a series-connected hybrid magnet.

    PubMed

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M; Gor'kov, Peter L; Brey, William W; Lendi, Pietro; Schiano, Jeffrey L; Bird, Mark D; Dixon, Iain R; Toth, Jack; Boebinger, Gregory S; Cross, Timothy A

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7 Li lock sample doped with paramagnetic MnCl 2 . The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1 H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet

    NASA Astrophysics Data System (ADS)

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M.; Gor'kov, Peter L.; Brey, William W.; Lendi, Pietro; Schiano, Jeffrey L.; Bird, Mark D.; Dixon, Iain R.; Toth, Jack; Boebinger, Gregory S.; Cross, Timothy A.

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1 T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48 mm magnet bore and 42 mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1 ppm homogeneity over a cylindrical volume of 1 cm diameter and height. The magnetic field is regulated within 0.2 ppm using an external 7Li lock sample doped with paramagnetic MnCl2. The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1H frequencies of 1.0, 1.2 and 1.5 GHz. NMR at 1.5 GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields.

  19. Role of internal motions and molecular geometry on the NMR relaxation of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chen, Z.; Valiya Parambathu, A.; Hirasaki, G. J.; Chapman, W. G.

    2018-04-01

    The role of internal motions and molecular geometry on 1H NMR relaxation rates in liquid-state hydrocarbons is investigated using MD (molecular dynamics) simulations of the autocorrelation functions for intramolecular and intermolecular 1H-1H dipole-dipole interactions. The effects of molecular geometry and internal motions on the functional form of the autocorrelation functions are studied by comparing symmetric molecules such as neopentane and benzene to corresponding straight-chain alkanes n-pentane and n-hexane, respectively. Comparison of rigid versus flexible molecules shows that internal motions cause the intramolecular and intermolecular correlation-times to get significantly shorter, and the corresponding relaxation rates to get significantly smaller, especially for longer-chain n-alkanes. Site-by-site simulations of 1H's across the chains indicate significant variations in correlation times and relaxation rates across the molecule, and comparison with measurements reveals insights into cross-relaxation effects. Furthermore, the simulations reveal new insights into the relative strength of intramolecular versus intermolecular relaxation as a function of internal motions, as a function of molecular geometry, and on a site-by-site basis across the chain.

  20. Assessment of chemical exchange in tryptophan-albumin solution through (19)F multicomponent transverse relaxation dispersion analysis.

    PubMed

    Lin, Ping-Chang

    2015-06-01

    A number of NMR methods possess the capability of probing chemical exchange dynamics in solution. However, certain drawbacks limit the applications of these NMR approaches, particularly, to a complex system. Here, we propose a procedure that integrates the regularized nonnegative least squares (NNLS) analysis of multiexponential T2 relaxation into Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments to probe chemical exchange in a multicompartmental system. The proposed procedure was validated through analysis of (19)F T2 relaxation data of 6-fluoro-DL-tryptophan in a two-compartment solution with and without bovine serum albumin. Given the regularized NNLS analysis of a T2 relaxation curve acquired, for example, at the CPMG frequency υ CPMG  = 125, the nature of two distinct peaks in the associated T2 distribution spectrum indicated 6-fluoro-DL-tryptophan either retaining the free state, with geometric mean */multiplicative standard deviation (MSD) = 1851.2 ms */1.51, or undergoing free/albumin-bound interconversion, with geometric mean */MSD = 236.8 ms */1.54, in the two-compartment system. Quantities of the individual tryptophan species were accurately reflected by the associated T2 peak areas, with an interconversion state-to-free state ratio of 0.45 ± 0.11. Furthermore, the CPMG relaxation dispersion analysis estimated the exchange rate between the free and albumin-bound states in this fluorinated tryptophan analog and the corresponding dissociation constant of the fluorinated tryptophan-albumin complex in the chemical-exchanging, two-compartment system.

  1. NMR signal analysis to characterize solid, aqueous, and lipid phases in baked cakes.

    PubMed

    Le Grand, F; Cambert, M; Mariette, F

    2007-12-26

    Proton mobility was studied in molecular fractions of some model systems and of cake using a 1H nuclear magnetic resonance (NMR) relaxation technique. For cake, five spin-spin relaxation times (T2) were obtained from transverse relaxation curves: T2 (1) approximately 20 micros, T2 (2) approximately 0.2 ms, T2 (3) approximately 3 ms, T2 (4) approximately 50 ms, and T2 (2) approximately 165 ms. The faster component was attributed to the solid phase, components 2 and 3 were associated with the aqueous phase, and the two slowest components were linked to the lipid phase. After cooking, the crust contained more fat but less water than the center part of the cake. The amount of gelatinized starch was lower in the crust, and water was more mobile due to less interaction with macromolecules. This preliminary study revealed different effects of storage on the center and crust.

  2. Changes in porosity and organic matter phase distribution monitored by NMR relaxometry following hydrous pyrolysis under uniaxial confinement

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Lewan, Michael D.; Miller, Michael; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Artificial maturation methods are used to induce changes in source rock thermal maturity without the uncertainties that arise when comparing natural samples from a particular basin that often represent different levels of maturation and different lithofacies. A novel uniaxial confinement clamp was used on Woodford Shale cores in hydrous pyrolysis experiments to limit sample expansion by simulating the effect of overburden present during thermal maturation in natural systems. These samples were then subjected to X-ray computed tomography (X-CT) imaging and low-field nuclear magnetic resonance (LF-NMR) relaxometry measurements. LF-NMR relaxometry is a noninvasive technique commonly used to measure porosity and pore-size distributions in fluid-filled porous media, but may also measure hydrogen present in hydrogen-bearing organic solids. Standard T1 and T2 relaxation distributions were determined and two dimensional T1-T2 correlation measurements were performed on the Woodford Shale cores. The T1-T2 correlations facilitate resolution of organic phases in the system. The changes observed in NMR-relaxation times correspond to bitumen and lighter hydrocarbon production that occur as source rock organic matter matures. The LF-NMR porosities of the core samples at maximum oil generation are significantly higher than porosities measured by other methods. This discrepancy likely arises from the measurement of highly viscous organic constituents in addition to fluid-filled porosity. An unconfined sample showed shorter relaxation times and lower porosity. This difference is attributed to the lack of fractures observed in the unconfined sample by X-CT.

  3. Spectroscopic techniques (Mössbauer spectrometry, NMR, ESR,…) as tools to resolve doubtful NMR images: Study of the craniopharyngioma tumor

    NASA Astrophysics Data System (ADS)

    Rimbert, J. N.; Dumas, F.; Lafargue, C.; Kellershohn, C.; Brunelle, F.; Lallemand, D.

    1990-07-01

    Craniopharyngioma, an intracranial tumor, exhibits hyperintensity in the Spin-Echo-T2-NMR image and a hyposignal in the SE-T1-image. However, in some cases (15-20% cases), hypersignals are seen in both SE-T1 and T2-MRI. Using spectroscopic techniques, Mössbauer spectrometry in particular, we have demonstrated that the T1 hypersignal is due to ferritin, dissolved in the cystic liquid, after tumor cell lysis, in the course of time. Other possible reasons inducing a shortening of the T1 relaxation time (presence of lipids, intratumoral hemorrhage) have been rejected.

  4. NMR measurement of bitumen at different temperatures.

    PubMed

    Yang, Zheng; Hirasaki, George J

    2008-06-01

    Heavy oil (bitumen) is characterized by its high viscosity and density, which is a major obstacle to both well logging and recovery. Due to the lost information of T2 relaxation time shorter than echo spacing (TE) and interference of water signal, estimation of heavy oil properties from NMR T2 measurements is usually problematic. In this work, a new method has been developed to overcome the echo spacing restriction of NMR spectrometer during the application to heavy oil (bitumen). A FID measurement supplemented the start of CPMG. Constrained by its initial magnetization (M0) estimated from the FID and assuming log normal distribution for bitumen, the corrected T2 relaxation time of bitumen sample can be obtained from the interpretation of CPMG data. This new method successfully overcomes the TE restriction of the NMR spectrometer and is nearly independent on the TE applied in the measurement. This method was applied to the measurement at elevated temperatures (8-90 degrees C). Due to the significant signal-loss within the dead time of FID, the directly extrapolated M0 of bitumen at relatively lower temperatures (<60 degrees C) was found to be underestimated. However, resulting from the remarkably lowered viscosity, the extrapolated M0 of bitumen at over 60 degrees C can be reasonably assumed to be the real value. In this manner, based on the extrapolation at higher temperatures (> or = 60 degrees C), the M0 value of bitumen at lower temperatures (<60 degrees C) can be corrected by Curie's Law. Consequently, some important petrophysical properties of bitumen, such as hydrogen index (HI), fluid content and viscosity were evaluated by using corrected T2.

  5. T2 relaxation time is related to liver fibrosis severity

    PubMed Central

    Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter

    2016-01-01

    Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi

  6. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage.

    PubMed

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T(2) maps from the diffusion-weighted CPMG decays of apparent relaxation rates. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  8. NMR investigations of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  9. NMR Microscopy - Micron-Level Resolution.

    NASA Astrophysics Data System (ADS)

    Kwok, Wing-Chi Edmund

    1990-01-01

    to implement a higher static magnetic field which will increase signal strength. In the future, NMR microscopy should prove to be useful in the studies of cell linings, T1 & T2 relaxation mechanisms and NMR contrast agents.

  10. Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI

    NASA Astrophysics Data System (ADS)

    Jiang, Xu

    Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance

  11. Computational approach to integrate 3D X-ray microtomography and NMR data.

    PubMed

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G; Trevizan, Willian A; Fortulan, Carlos A; Bonagamba, Tito J

    2018-05-04

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T 1 and T 2 , respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the

  12. Computational approach to integrate 3D X-ray microtomography and NMR data

    NASA Astrophysics Data System (ADS)

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.

    2018-07-01

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the

  13. Integrated NMR Core and Log Investigations With Respect to ODP LEG 204

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Pechnig, R.; Clauser, C.; Anferova, S.; Blümich, B.

    2005-12-01

    NMR techniques are widely used in the oil industry and are one of the most suitable methods to evaluate in-situ formation porosity and permeability. Recently, efforts are directed towards adapting NMR methods also to the Ocean Drilling Program (ODP) and the upcoming Integrated Ocean Drilling Program (IODP). We apply a newly developed light-weight, mobile NMR core scanner as a non-destructive instrument to determine routinely rock porosity and to estimate the pore size distribution. The NMR core scanner is used for transverse relaxation measurements on water-saturated core sections using a CPMG sequence with a short echo time. A regularized Laplace-transform analysis yields the distribution of transverse relaxation times T2. In homogeneous magnetic fields, T2 is proportional to the pore diameter of rocks. Hence, the T2 signal maps the pore-size distribution of the studied rock samples. For fully saturated samples the integral of the distribution curve and the CPMG echo amplitude extrapolated to zero echo time are proportional to porosity. Preliminary results show that the NMR core scanner is a suitable tool to determine rock porosity and to estimate pore size distribution of limestones and sandstones. Presently our investigations focus on Leg 204, where NMR Logging-While-Drilling (LWD) was performed for the first time in ODP. Leg 204 was drilled into Hydrate Ridge on the Cascadia accretionary margin, offshore Oregon. All drilling and logging operations were highly successful, providing excellent core, wireline, and LWD data from adjacent boreholes. Cores recovered during Leg 204 consist mainly of clay and claystone. As the NMR core scanner operates at frequencies higher than that of the well-logging sensor it has a shorter dead time. This advantage makes the NMR core scanner sensitive to signals with T2 values down to 0.1 ms as compared to 3 ms in NMR logging. Hence, we can study even rocks with small pores, such as the mudcores recovered during Leg 204. We present

  14. Superstatistics model for T₂ distribution in NMR experiments on porous media.

    PubMed

    Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S

    2014-07-01

    We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachleben, Joseph Robert

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10 -8 s -1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O 2 and ultraviolet. A method formore » measuring 14N- 1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T 1 and T 2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.« less

  16. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  17. Characterization of brain tumours with spin-spin relaxation: pilot case study reveals unique T 2 distribution profiles of glioblastoma, oligodendroglioma and meningioma.

    PubMed

    Laule, Cornelia; Bjarnason, Thorarin A; Vavasour, Irene M; Traboulsee, Anthony L; Wayne Moore, G R; Li, David K B; MacKay, Alex L

    2017-11-01

    Prolonged spin-spin relaxation times in tumour tissue have been observed since some of the earliest nuclear magnetic resonance investigations of the brain. Over the last three decades, numerous studies have sought to characterize tumour morphology and malignancy using quantitative assessment of T 2 relaxation times, although attempts to categorize and differentiate tumours have had limited success. However, previous work must be interpreted with caution as relaxation data were typically acquired using a variety of multiple echo sequences with a range of echoes and T 2 decay curves and were frequently fit with monoexponential analysis. We defined the distribution of T 2 components in three different human brain tumours (glioblastoma, oligodendroglioma, meningioma) using a multi-echo sequence with a greater number of echoes and a longer acquisition window than previously used (48 echoes, data collection out to 1120 ms) with no a priori assumptions about the number of exponential components contributing to the T 2 decay. T 2 relaxation times were increased in tumour tissue and each tumour showed a distinct T 2 distribution profile. Tumours have complex and unique compartmentalization characteristics. Quantitative assessment of T 2 relaxation in brain cancer may be useful in evaluating different grades of brain tumours on the basis of their T 2 distribution profile, and has the potential to be a non-invasive diagnostic tool which may also be useful in monitoring therapy. Further study with a larger sample size and varying grades of tumours is warranted.

  18. Using 2H labelling to improve the NMR detectability of pyridine and its derivatives by SABRE

    PubMed Central

    Norcott, Philip; Burns, Michael J.; Rayner, Peter J.; Mewis, Ryan E.

    2018-01-01

    By introducing a range of 2H labels into pyridine and the para‐substituted agents, methyl isonicotinate and isonicotinamide, we significantly improve their NMR detectability in conjunction with the signal amplification by reversible exchange process. We describe how the rates of T 1 relaxation for the remaining 1H nuclei are increased and show how this leads to a concomitant increase in the level of 1H and 13C hyperpolarization that can ultimately be detected. PMID:29274294

  19. Molecular motions of [Beta]-carotene and a carotenoporphyrin dyad in solution. A carbon-13 NMR spin-lattice relaxation time study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Swindle, S.L.; Smith, S.K.

    1995-03-09

    Analysis of [sup 13]C NMR spin-lattice relaxation times (T[sub 1]) yields information concerning both overall tumbling of molecules in solution and internal rotations about single bonds. Relaxation time and nuclear Overhauser effect data have been obtained for [Beta]-carotene and two related molecules, squalane and squalene, for zinc meso-tetraphenylporphyrin, and for a dyad consisting of a porphyrin covalently linked to a carotenoid polyene through a trimethylene bridge. Squalane and squalene, which lack conjugated double bonds, behave essentially as limp string, with internal rotations at least as rapid as overall isotropic tumbling motions. In contrast, [Beta]-carotene reorients as a rigid rod, withmore » internal motions which are too slow to affect relaxation times. Modeling it as an anisotropic rotor yields a rotational diffusion coefficient for motion about the major axis which is 14 times larger than that for rotation about axes perpendicular to that axis. The porphyrin reorients more nearly isotropically and features internal librational motions about the single bonds to the phenyl groups. The relaxation time data for the carotenoporphyrin are consistent with internal motions similar to those of a medieval military flail. 31 refs., 3 figs., 5 tabs.« less

  20. Synthesis of compact patterns for NMR relaxation decay in intelligent "electronic tongue" for analyzing heavy oil composition

    NASA Astrophysics Data System (ADS)

    Lapshenkov, E. M.; Volkov, V. Y.; Kulagin, V. P.

    2018-05-01

    The article is devoted to the problem of pattern creation of the NMR sensor signal for subsequent recognition by the artificial neural network in the intelligent device "the electronic tongue". The specific problem of removing redundant data from the spin-spin relaxation signal pattern that is used as a source of information in analyzing the composition of oil and petroleum products is considered. The method is proposed that makes it possible to remove redundant data of the relaxation decay pattern but without introducing additional distortion. This method is based on combining some relaxation decay curve intervals that increment below the noise level such that the increment of the combined intervals is above the noise level. In this case, the relaxation decay curve samples that are located inside the combined intervals are removed from the pattern. This method was tested on the heavy-oil NMR signal patterns that were created by using the Carr-Purcell-Meibum-Gill (CPMG) sequence for recording the relaxation process. Parameters of CPMG sequence are: 100 μs - time interval between 180° pulses, 0.4s - duration of measurement. As a result, it was revealed that the proposed method allowed one to reduce the number of samples 15 times (from 4000 to 270), and the maximum detected root mean square error (RMS error) equals 0.00239 (equivalent to signal-to-noise ratio 418).

  1. Measuring diffusion-relaxation correlation maps using non-uniform field gradients of single-sided NMR devices.

    PubMed

    Nogueira d'Eurydice, Marcel; Galvosas, Petrik

    2014-11-01

    Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes.

    PubMed

    Siminovitch, D J; Ruocco, M J; Olejniczak, E T; Das Gupta, S K; Griffin, R G

    1988-09-01

    The axially symmetric powder pattern 2H-nuclear magnetic resonance (NMR) lineshapes observed in the liquid crystalline phase of pure lipid or lipid/cholesterol bilayers are essentially invariant to temperature, or, equivalently, to variations in the correlation times characterizing C-2H bond reorientations. In either of these melted phases, where correlation times for C-2H bond motions are shorter than 10(-7) s, information on the molecular dynamics of the saturated hydrocarbon chain would be difficult to obtain using lineshape analyses alone, and one must resort to other methods, such as the measurement of 2H spin-lattice relaxation rates, in order to obtain dynamic information. In pure lipid bilayers, the full power of the spin-lattice relaxation technique has yet to be realized, since an important piece of information, namely the orientation dependence of the 2H spin-lattice relaxation rates is usually lost due to orientational averaging of T1 by rapid lateral diffusion. Under more favorable circumstances, such as those encountered in the lipid/cholesterol mixtures of this study, the effects of orientational averaging by lateral diffusion are nullified, due to either a marked reduction (by at least an order of magnitude) in the diffusion rate, or a marked increase in the radii of curvature of the liposomes. In either case, the angular dependence of 2H spin-lattice relaxation is accessible to experimental study, and can be used to test models of molecular dynamics in these systems. Simulations of the partially recovered lineshapes indicate that the observed T1 anisotropies are consistent with large amplitude molecular reorientation of the C-2H bond among a finite number of sites. Furthermore, from the observed orientation dependence of the 2H spin-lattice relaxation rates, we conclude that order director fluctuations cannot provide the dominant relaxation pathway for acyl chain deuterons.

  3. NMR characterization of sulphur substitution effects in the K xFe 2-ySe 2-xS z high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchetti, D. A.; Imai, T.; Lei, H. C.

    2012-04-17

    We present a 77Se NMR study of the effect of S substitution in the high-T c superconductor K xFe 2-ySe 2-zS z in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (T c~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K xFe 2Se 2 sample due to local disorder in the Se environment. Our Knight shift 77K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition,more » S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1/T 1T, as seen in FeSe.« less

  4. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    PubMed

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  5. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te 125 NMR measurements in complex tellurides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n 2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T 1, depends on both n and m* as 1/T 1~(m*) 3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*) 2n 2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown thatmore » the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study Ag xSb xGe 50–2xTe 50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  6. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te 125 NMR measurements in complex tellurides

    DOE PAGES

    Levin, E. M.

    2016-06-27

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n 2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T 1, depends on both n and m* as 1/T 1~(m*) 3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*) 2n 2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown thatmore » the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study Ag xSb xGe 50–2xTe 50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  7. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    PubMed Central

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  8. An NMR database for simulations of membrane dynamics.

    PubMed

    Leftin, Avigdor; Brown, Michael F

    2011-03-01

    Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations. Copyright © 2010 Elsevier B.V. All

  9. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).

    PubMed

    Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A A

    2010-12-01

    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl

  10. Pressure dependence of coherence-incoherence crossover behavior in KFe2As2 observed by resistivity and 75As-NMR/NQR

    NASA Astrophysics Data System (ADS)

    Wiecki, P.; Taufour, V.; Chung, D. Y.; Kanatzidis, M. G.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.

    2018-02-01

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe2As2 under pressure (p ). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3 d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure pc=1.8 GPa where a change of slope of the superconducting (SC) transition temperature Tc(p ) has been observed. In contrast, Tc(p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1 /T1 data, although such a correlation cannot be seen in the replacement effects of A in the A Fe2As2 (A =K , Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1 s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1 /T1 L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe2As2 under pressure.

  11. Pressure Dependence of Coherence-Incoherence Crossover Behavior in KFe 2As 2 Observed by Resistivity and 75As-NMR/NQR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Taufour, V.; Chung, D. Y.

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe 2As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T *). T * is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbitalderived bands with the itinerant electron bands. No anomaly in T * is seen at the critical pressure pc = 1.8 GPa where a change ofmore » slope of the superconducting (SC) transition temperature Tc(p) has been observed. In contrast, Tc(p) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T1 data, although such a correlation cannot be seen in the replacement effects of A in the KFe 2As 2 (A = K, Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1/T1L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less

  12. Short-term stability of T1 and T2 relaxation measures in multiple sclerosis normal appearing white matter.

    PubMed

    Liang, Alice L W; Vavasour, Irene M; Mädler, Burkhard; Traboulsee, Anthony L; Lang, Donna J; Li, David K B; MacKay, Alex L; Laule, Cornelia

    2012-06-01

    The presence of diffuse and widespread abnormalities within the 'normal appearing' white matter (NAWM) of multiple sclerosis (MS) brain has been established. T(1) histogram analysis has revealed increased T(1) (related to water content) in segmented NAWM, while quantitative assessment of T(2) relaxation measures has demonstrated decreased myelin water fraction (MWF, related to myelin content) and increased geometric mean T(2) (GMT(2)) of the intra/extracellular water pool. Previous studies with follow-up periods of 1-5 years have demonstrated longitudinal changes in T(1) histogram metrics over time; however, longitudinal changes in MWF and GMT(2) of segmented NAWM have not been examined. We examined the short-term evolution of MWF, GMT(2) and T(1) in MS NAWM based on monthly scanning over 6 months in 18 relapsing remitting (RR) MS subjects. Histogram metrics demonstrated short-term stability of T(1), MWF and remitting (RR) MS subjects. We observed no change in MWF, GMT(2) or T(1) histogram metrics in NAWM in RRMS over the course of 6 months. Longer follow-up periods may be required to establish demonstrable changes in NAWM based on of MWF, GMT(2) and T(1) metrics.

  13. Ex vivo T2 relaxation: Associations with age-related neuropathology and cognition

    PubMed Central

    Dawe, Robert J.; Bennett, David A.; Schneider, Julie A.; Leurgans, Sue E.; Kotrotsou, Aikaterini; Boyle, Patricia A.; Arfanakis, Konstantinos

    2014-01-01

    The transverse relaxation time constant, T2, is sensitive to brain tissue’s free water content and the presence of paramagnetic materials such as iron. In this study, ex vivo MRI was employed to investigate alterations in T2 related to Alzheimer’s disease (AD) pathology and other types of neuropathology common in old age, as well as the relationship between T2 alterations and cognition. Cerebral hemispheres were obtained from 371 deceased older adults. Using fast spin-echo imaging with multiple echo times, T2 maps were produced and warped to a study-specific template. Hemispheres underwent neuropathologic examination for identification of AD pathology and other common age-related neuropathologies. Voxelwise linear regression was carried out to detect regions of pathology-related T2 alterations and, in separate analyses, regions in which T2 alterations were linked to antemortem cognitive performance. AD pathology was associated with T2 prolongation in white matter of all lobes and T2 shortening in the basal ganglia and insula. Gross infarcts were associated with T2 prolongation in white matter of all lobes, and in the thalamus and basal ganglia. Hippocampal sclerosis was associated with T2 prolongation in the hippocampus and white matter of the temporal lobe. After controlling for neuropathology, T2 prolongation in the frontal lobe white matter was associated with lower performance in the episodic, semantic, and working memory domains. In addition, voxelwise analysis of in vivo and ex vivo T2 values indicated a positive relationship between the two, though further investigation is necessary to accurately translate findings of the current study to the in vivo case. PMID:24582637

  14. NMR relaxometry study of plaster mortar with polymer additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumate, E.; Manea, D.; Moldovan, D.

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can bemore » associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.« less

  15. NMR relaxometry study of plaster mortar with polymer additives

    NASA Astrophysics Data System (ADS)

    Jumate, E.; Moldovan, D.; Fechete, R.; Manea, D.

    2013-11-01

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T2 relaxation rates corresponding to the bound water.

  16. Correlations of low-field NMR and variable-field NMR parameters with osteoarthritis in human articular cartilage under load.

    PubMed

    Rössler, Erik; Mattea, Carlos; Saarakkala, Simo; Lehenkari, Petri; Finnilä, Mikko; Rieppo, Lassi; Karhula, Sakari; Nieminen, Miika T; Stapf, Siegfried

    2017-08-01

    NMR experiments carried out at magnetic fields below 1 T provide new relaxation parameters unavailable with conventional clinical scanners. Contrast of T 1 generally becomes larger towards low fields, as slow molecular reorientation processes dominate relaxation at the corresponding Larmor frequencies. This advantage has to be considered in the context of lower sensitivity and frequently reduced spatial resolution. The layered structure of cartilage is one example where a particularly strong variation of T 1 across the tissue occurs, being affected by degenerative diseases such as osteoarthritis (OA). Furthermore, the presence of 1 H- 14  N cross-relaxation, leading to so-called quadrupolar dips in the 1 H relaxation time dispersion, provide insight into the concentration and mobility of proteoglycans and collagen in cartilage, both being affected by OA. In this study, low-field imaging and variable-field NMR relaxometry were combined for the first time for tissue samples, employing unidirectional load to probe the mechanical properties. 20 human knee cartilage samples were placed in a compression cell, and studied by determining relaxation profiles without and with applied pressure (0.6 MPa) at 50 μm in-plane resolution, and comparing with volume-averaged T 1 dispersion. Samples were subsequently stored in formalin, prepared for histology and graded according to the Mankin score system. Quadrupolar dips and thickness change under load showed the strongest correlation with Mankin grade. Average T 1 and change of maximum T 1 under load, as well as its position, correlate with thickness and thickness change. Furthermore, T 1 (ω) above 25 mT was found to correlate with thickness change. While volume-averaged T 1 is not a suitable indicator for OA, its change due to mechanical load and its extreme values are suggested as biomarkers available in low-field MRI systems. The shape of the dispersion T 1 (ω) represents a promising access to understanding and

  17. Fast, accurate 2D-MR relaxation exchange spectroscopy (REXSY): Beyond compressed sensing

    PubMed Central

    Bai, Ruiliang; Benjamini, Dan; Cheng, Jian; Basser, Peter J.

    2016-01-01

    Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr–Purcell–Meiboom–Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2T2 experimental data. This method, which can be called “informed compressed sensing,” is extendable to other 2D- and even ND-MR exchange spectroscopy. PMID:27782473

  18. Pressure dependence of coherence-incoherence crossover behavior in KFe 2 As 2 observed by resistivity and As 75 -NMR/NQR

    DOE PAGES

    Wiecki, P.; Taufour, V.; Chung, D. Y.; ...

    2018-02-13

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KF e2 As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T 1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure p c= 1.8 GPa where a change of slopemore » of the superconducting (SC) transition temperature T c( p ) has been observed. In contrast, T c( p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T 1 data, although such a correlation cannot be seen in the replacement effects of A in the AFe 2As 2 (A=K,Rb,Cs) family. In the superconducting state, two T 1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T 1s indicates a nearly gapless state below T c. On the other hand, the temperature dependence of the long component 1/T 1Limplies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less

  19. Pressure dependence of coherence-incoherence crossover behavior in KFe 2 As 2 observed by resistivity and As 75 -NMR/NQR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Taufour, V.; Chung, D. Y.

    We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KF e2 As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T 1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure p c= 1.8 GPa where a change of slopemore » of the superconducting (SC) transition temperature T c( p ) has been observed. In contrast, T c( p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T 1 data, although such a correlation cannot be seen in the replacement effects of A in the AFe 2As 2 (A=K,Rb,Cs) family. In the superconducting state, two T 1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T 1s indicates a nearly gapless state below T c. On the other hand, the temperature dependence of the long component 1/T 1Limplies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less

  20. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    NASA Astrophysics Data System (ADS)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (<100 Hz), long pulse durations at low RF power levels are necessary, and relaxation during these pulses may no longer be negligible. A numerical, discrete recursive combination of the Bloch equations for longitudinal and transverse relaxation with the optimized equation for adiabatic angular motion of magnetization is used to calculate the trajectory of magnetization including its relaxation during adiabatic hyperbolic secant pulses. The agreement of computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  1. Experiments in NMR Force Microscopy

    NASA Astrophysics Data System (ADS)

    Manzanera, Isaac; Cardenas, Rosa; Paster, Jeremy; Turbyfill, Amanda; Markert, John

    2012-02-01

    We report details of the construction and use of three nuclear magnetic resonance force microscopy (NMRFM) probes, as well as the development of control systems for three-dimensional nanoscale imaging and spectroscopy. Our variable temperature probe performed position-dependent ^1H NMR force measurements on a 25x15x7 μm^3 single crystal of ammonium sulfate (NH4)2SO4 at room temperature in a sample-on-oscillator geometry. Force signals were detected with a signal-to-noise ratio of 6, and 12 μm resolution, in a one-dimensional scan. Measurements of NMR relaxation times T2^*=1.5±0.2 μs, T2= 44±2 μs, and T1=5.6±0.7 s were obtained. We describe the upgrade of our ^3He NMRFM probe for measurements towards the base temperature of 0.3K for investigation of nanoscale structures and metal oxide interfaces using the iOSCAR technique and perpendicular-cantilever geometry. Force-detected ^11B NMR signals in a 30 μm crystal of superconductor MgB2 have also been achieved using this probe. Efforts in the development of our NMRFM probe for the study of biological samples in liquid media are reported. Magnetic field effects on micromagnet films on cantilevers are being studied for the characterization of the mechanical sensors to be used in these liquid experiments.

  2. Measurement of the relaxation rate of the magnetization in Mn12O12-acetate using proton NMR echo

    PubMed

    Jang; Lascialfari; Borsa; Gatteschi

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

  3. Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Livo, K.

    2017-12-01

    Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.

  4. The GNAT: A new tool for processing NMR data.

    PubMed

    Castañar, Laura; Poggetto, Guilherme Dal; Colbourne, Adam A; Morris, Gareth A; Nilsson, Mathias

    2018-06-01

    The GNAT (General NMR Analysis Toolbox) is a free and open-source software package for processing, visualising, and analysing NMR data. It supersedes the popular DOSY Toolbox, which has a narrower focus on diffusion NMR. Data import of most common formats from the major NMR platforms is supported, as well as a GNAT generic format. Key basic processing of NMR data (e.g., Fourier transformation, baseline correction, and phasing) is catered for within the program, as well as more advanced techniques (e.g., reference deconvolution and pure shift FID reconstruction). Analysis tools include DOSY and SCORE for diffusion data, ROSY T 1 /T 2 estimation for relaxation data, and PARAFAC for multilinear analysis. The GNAT is written for the MATLAB® language and comes with a user-friendly graphical user interface. The standard version is intended to run with a MATLAB installation, but completely free-standing compiled versions for Windows, Mac, and Linux are also freely available. © 2018 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  5. Can enzyme engineering benefit from the modulation of protein motions? Lessons learned from NMR relaxation dispersion experiments.

    PubMed

    Doucet, Nicolas

    2011-04-01

    Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed evolution and computational methods have paved the way to exciting engineering examples and are now offering a new perspective on the structural requirements of enzyme activity. However, these structure-function analyses are usually guided by the time-averaged static models offered by enzyme crystal structures, which often fail to describe the functionally relevant 'invisible states' adopted by proteins in space and time. To alleviate such limitations, NMR relaxation dispersion experiments coupled to mutagenesis studies have recently been applied to the study of enzyme catalysis, effectively complementing 'structure-function' analyses with 'flexibility-function' investigations. In addition to offering quantitative, site-specific information to help characterize residue motion, these NMR methods are now being applied to enzyme engineering purposes, providing a powerful tool to help characterize the effects of controlling long-range networks of flexible residues affecting enzyme function. Recent advancements in this emerging field are presented here, with particular attention to mutagenesis reports highlighting the relevance of NMR relaxation dispersion tools in enzyme engineering.

  6. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.

    PubMed

    Blicharska, Barbara; Peemoeller, Hartwig; Witek, Magdalena

    2010-12-01

    Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10(-5)s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R(1)(ρ)=1/T(1)(ρ) appears over a range of easily accessible B(1) values. Measurements of T(1)(ρ) at constant temperature and different B(1) values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R(1)=1/T(1). The T(1)(ρ) dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme). Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Volovik effect and Fermi-liquid behavior in the s -wave superconductor CaPd 2 As 2 :   As 75 NMR-NQR measurements

    DOE PAGES

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; ...

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd 2As 2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T 1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T 1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below T c and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known asmore » the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  8. Volovik effect and Fermi-liquid behavior in the s -wave superconductor CaPd 2 As 2 :   As 75 NMR-NQR measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.

    The electronic and magnetic properties of the collapsed-tetragonal CaPd 2As 2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T 1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T 1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below T c and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known asmore » the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  9. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    NASA Astrophysics Data System (ADS)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  10. 17O Relaxation Times in the Rat Brain at 16.4T

    PubMed Central

    Wiesner, Hannes M.; Balla, Dávid Z.; Shajan, G.; Scheffler, Klaus; Uğurbil, Kâmil; Chen, Wei; Uludağ, Kâmil; Pohmann, Rolf

    2015-01-01

    Purpose Measurement of the cerebral metabolic rate of oxygen (CMRO2) via direct imaging of the 17O signal can be a valuable tool in neuroscientific research. However, knowledge of the longitudinal and transverse relaxation times of different brain tissue types is required, which is difficult to obtain because of the low sensitivity of natural abundance H217O measurements. Methods Using the improved sensitivity at a field strength of 16.4 T, relaxation time measurements in the rat brain were performed in vivo and postmortem with relatively high spatial resolutions, using a chemical shift imaging sequence. Results In vivo relaxation times of rat brain were found to be T1 = 6.84 ± 0.67 ms and T2* = 1.77 ± 0.04 ms. Postmortem H217O relaxometry at enriched concentrations after inhalation of 17O2 showed similar T2* values for gray (1.87 ± 0.04 ms) and white matter, significantly longer than muscle (1.27 ± 0.05 ms) and shorter than CSF (2.30 ± 0.16 ms). Conclusion Relaxation times of brain H217O were measured for the first time in vivo in different types of tissues with high spatial resolution. Since the relaxation times of H217O are expected to be independent of field strength, our results should help in optimizing the acquisition parameters for experiments also at other MRI field strengths. PMID:26098931

  11. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  12. 77Se NMR Investigation of the KxFe2−ySe2 high-Tc Superconductor (Tc = 33 K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, C.; Torchetti, D.A. Fu, M.; Christensen, D.C.

    2011-03-18

    We report comprehensive {sup 77}Se NMR measurements on a single crystalline sample of the recently discovered FeSe-based high-temperature superconductor K{sub x}Fe{sub 2-y}Se{sub 2} (T{sub c} = 33 K) in a broad temperature range up to 290 K. Despite deviations from the stoichiometric KFe{sub 2}Se{sub 2} composition, we observed {sup 77}Se NMR line shapes as narrow as 4.5 kHz under a magnetic field applied along the crystal c axis, and found no evidence for co-existence of magnetic order with superconductivity. On the other hand, the {sup 77}Se NMR line shape splits into two peaks with equal intensities at all temperatures whenmore » we apply the magnetic field along the ab plane. This suggests that K vacancies may have a superstructure and that the local symmetry of the Se sites is lower than the tetragonal fourfold symmetry of the average structure. This effect might be a prerequisite for stabilizing the s{sub {+-}} symmetry of superconductivity in the absence of the hole bands at the Brillouin zone center. From the increase of NMR linewidth below T{sub c} induced by the Abrikosov lattice of superconducting vortices, we estimate the in-plane penetration depth {lambda}{sub ab} {approx} 290 nm and the carrier concentration n{sub e} {approx} 1 x 10{sup +21} cm{sup -3}. Our Knight shift {sup 77}K data indicate that the uniform spin susceptibility decreases progressively with temperature, in analogy with the case of FeSe (T{sub c} {approx} 9 K) as well as other FeAs high-T{sub c} systems. The strong suppression of {sup 77}K observed immediately below T{sub c} for all crystal orientations is consistent with a singlet pairing of Cooper pairs. We do not however observe the Hebel-Slichter coherence peak of the nuclear spin-lattice relaxation rate 1/T1 immediately below T{sub c}, expected for conventional BCS s-wave superconductors. In contrast with the case of FeSe, we do not observe evidence for an enhancement of low-frequency antiferromagnetic spin fluctuations near T

  13. A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR

    NASA Astrophysics Data System (ADS)

    Chou, Ching-Yu; Chu, Minglee; Chang, Chi-Fon; Huang, Tai-huang

    2012-01-01

    Analysis of NMR relaxation data has provided significant insight on molecular dynamic, leading to a more comprehensive understanding of macromolecular functions. However, traditional methodology allows relaxation measurements performed only at a few fixed high fields, thus severely restricting their potential for extracting more complete dynamic information. Here we report the design and performance of a compact high-speed servo-mechanical shuttle assembly adapted to a commercial 600 MHz high-field superconducting magnet. The assembly is capable of shuttling the sample in a regular NMR tube from the center of the magnet to the top (fringe field ˜0.01 T) in 100 ms with no loss of sensitivity other than that due to intrinsic relaxation. The shuttle device can be installed by a single experienced user in 30 min. Excellent 2D- 15N-HSQC spectra of (u- 13C, 15N)-ubiquitin with relaxation at low fields (3.77 T) and detection at 14.1 T were obtained to illustrate its utility in R 1 measurements of macromolecules at low fields. Field-dependent 13C-R 1 data of (3,3,3-d)-alanine at various field strengths were determined and analyzed to assess CSA and 1H- 13C dipolar contributions to the carboxyl 13C-R 1.

  14. Myelin water and T(2) relaxation measurements in the healthy cervical spinal cord at 3.0T: repeatability and changes with age.

    PubMed

    MacMillan, Erin L; Mädler, Burkhard; Fichtner, Nicole; Dvorak, Marcel F; Li, David K B; Curt, Armin; MacKay, Alex L

    2011-01-15

    Multiecho T(2) relaxation measurements offer specific information about myelin content through the myelin water fraction (MWF), as well as about the water environments through the intra- and extra-cellular (IE), and global, geometric mean T(2) (GMT(2)) times. While these measurements have yielded new insights into brain development and pathologies, they have yet to be thoroughly investigated in the spinal cord. The goals of this study were: (1) to apply a new 3D multiecho T(2) relaxation measurement in the cervical spine with sufficient axial resolution to distinguish grey and white matter; (2) to perform a pilot reliability assessment of the resulting MWF and GMT(2) measures in a target population; and (3) to detect differences in these measures between a younger cohort (20-30 years of age) and an older cohort (50-75 years of age) of healthy adults. The results demonstrated that the MWF in younger healthy adults follows the known pattern of lower myelin content in grey matter (mean (95% confidence interval)) (0.049 (0.030-0.067)) as compared to white matter (0.296 (0.275-0.317), p<0.001). The reliability coefficients were 0.65 and 0.82 for the MWF in the dorsal (DC) and lateral column (LC) white matter, respectively; 0.79 and 0.52 for the IE GMT(2); and 0.74 and 0.73 for the global GMT(2). Significantly lower MWF were found in the older adults than in the younger adults (DC p=0.014; LC p=0.012), as well as lower IE GMT(2) times (DC p=0.008; LC p=0.042), however, the global GMT(2) times did not show any differences. These changes in MWF and IE GMT(2) times, but not in global GMT(2) times, indicate that multiecho T(2) relaxation measures are sensitive to changes in myelin integrity and cell morphology that may not be apparent on conventional T(2) weighted images. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. 119Sn-NMR investigations on superconducting Ca 3Ir 4Sn 13: Evidence for multigap superconductivity

    DOE PAGES

    Sarkar, R.; Petrovic, C.; Bruckner, F.; ...

    2015-09-25

    In this study, we report bulk superconductivity (SC) in Ca 3Ir 4Sn 13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T 1), namely the Hebel–Slichter coherence peak just below the T c, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below T c indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T 1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  16. My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water.

    PubMed

    Thulborn, Keith R

    2012-08-15

    This invited personal story, covering the period from 1979 to 2010, describes the discovery of the dependence of the transverse relaxation time of water in blood on the oxygenation state of hemoglobin in the erythrocytes. The underlying mechanism of the compartmentation of the different magnetic susceptibilities of hemoglobin in its different oxygenation states also explains the mechanism that underlies blood oxygenation level dependent contrast used in fMRI. The story begins with the initial observation of line broadening during ischemia in small rodents detected by in vivo 31P NMR spectroscopy at high field. This spectroscopic line broadening or T2* relaxation effect was demonstrated to be related to the oxygenation state of blood. The effect was quantified more accurately using T2 values measured by the Carr-Purcell-Meiboom-Gill method. The effect was dependent on the integrity of the erythrocytes to compartmentalize the different magnetic susceptibilities produced by the changing spin state of the ferrous iron of hemoglobin in its different oxygenation states between the erythrocytes and the suspending solution. The hematocrit and magnetic field dependence, the requirement for erythrocyte integrity and lack of T1 dependence confirmed that the magnetic susceptibility effect explained the oxygenation state dependence of T2* and T2. This T2/T2* effect was combined with T1 based measurements of blood flow to measure oxygen consumption in animals. This blood oxygenation assay and its underlying magnetic susceptibility gradient mechanism was published in the biochemistry literature in 1982 and largely forgotten. The observation was revived to explain evolving imaging features of cerebral hematoma as MR imaging of humans increased in field strength to 1.5 T by the mid 1980s. Although the imaging version of this assay was used to measure a global metabolic rate of cerebral oxygen consumption in humans at 1.5-T by 1991, the global measurement had little clinical value

  17. Lithotype characterizations by Nuclear Magnetic Resonance (NMR): A case study on limestone and associated rocks from the eastern Dahomey Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Olatinsu, O. B.; Olorode, D. O.; Clennell, B.; Esteban, L.; Josh, M.

    2017-05-01

    Three representative rock types (limestone, sandstone, and shale) and glauconite samples collected from Ewekoro Quarry, eastern Dahomey Basin in Nigeria were characterized using low field 2 MHz and 20 MHz Nuclear Magnetic Resonance (NMR) techniques. NMR T2 relaxation time decay measurement was conducted on disc samples under partial water-saturation and full water-saturation conditions using CPMG spin-echo routine. The T2 relaxation decay was converted into T2 distribution in the time domain to assess and evaluate the pore size distribution of the samples. Good agreement exists between water content from T2 NMR distributions and water imbibition porosity (WIP) technique. Results show that the most useful characteristics to discriminate the different facies come from full saturation NMR 2 MHz pore size distribution (PSD). Shale facies depict a quasi-unimodal distribution with greater than 90% contribution from clay bound water component (T2s) coupled to capillary bound water component (T2i) centred on 2 ms. The other facies with well connected pore structure show either bimodal or trimodal T2 distribution composed of the similar clay bound water component centred on 0.3 ms and quasi-capillary bound water component centred on 10 ms. But their difference depends on the movable water T2 component (T2l) that does not exist in the glauconite facies (bimodal distribution) while it exists in both the sandstone and limestone facies. The basic difference between the limestone and sandstone facies is related to the longer T2 coupling: T2i and T2l populations are coupled in sandstone generating a single population which convolves both populations (bimodal distribution). Limestone with a trimodal distribution attests to the fact that carbonate rocks have more complex pore system than siliclastic rocks. The degree of pore connectivity is highest in sandstone, followed by limestone and least in glauconite. Therefore a basic/quick NMR log run on samples along a geological

  18. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  19. Temperature Dependence of NMR Relaxation Times of Nucleoside Triphosphates and Inorganic Phosphate in the Isolated Perfused Rat Liver. Effect on Pi Compartmentation

    NASA Astrophysics Data System (ADS)

    Dufour, Sylvie; Thiaudière, Eric; Vidal, Giovanni; Gallis, Jean-Louis; Rousse, Nicole; Canioni, Paul

    1996-11-01

    The effect of temperature on31P NMR spectra from isolated perfused rat livers was studied at 9.4 T. Relaxation times (T1andT2) of nucleoside triphosphates (NTP) and inorganic phosphate (Pi) were determined at 37, 25, 15, and 4°C. Under hypothermic conditions, an unexpected apparent line sharpening in the Pi spectral region and a clear emergence of an additional Pi resonance were observed. This additional signal was assigned to mitochondrial Pi.T1values obtained for cytosolic and mitochondrial Pi at 4°C were 1.14 ± 0.24 s (n= 5) and 0.71 ± 0.18 s (n= 5), respectively. No significant mitochondrial contribution to the Pi resonance was observed at 37°C. Quantification of Pi and NTP liver contents at 37 and 4°C was performed by comparing the perfused liver spectrum and the corresponding perchloric acid extract spectrum. Under experimental conditions of low external Pi (0.12 mM), it was concluded that intracellular Pi was completely NMR-visible at 4 and 37°C. The observation of the mitochondrial Pi signal at 4°C was well explained by an increase in the Pi level within the matrix, in response to the mitochondrial swelling induced by hypothermia, as observed by electron microscopy.T2values for the cytosolic Pi at 37 and 4°C were 17 ± 4 ms (n= 8) and 22 ± 4 ms (n= 10), respectively. Comparison with measured linewidths indicated that line broadening for the main phosphorylated metabolites-including matrix Pi-was the result ofB0field inhomogeneity. The additional broadening of the cytosolic Pi resonance at 4 and 37°C was attributed to pH heterogeneity within the liver.

  20. Using 2 H labelling to improve the NMR detectability of pyridine and its derivatives by SABRE.

    PubMed

    Norcott, Philip; Burns, Michael J; Rayner, Peter J; Mewis, Ryan E; Duckett, Simon B

    2018-07-01

    By introducing a range of 2 H labels into pyridine and the para-substituted agents, methyl isonicotinate and isonicotinamide, we significantly improve their NMR detectability in conjunction with the signal amplification by reversible exchange process. We describe how the rates of T 1 relaxation for the remaining 1 H nuclei are increased and show how this leads to a concomitant increase in the level of 1 H and 13 C hyperpolarization that can ultimately be detected. © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  1. NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins.

    PubMed

    Bokor, Mónika; Csizmók, Veronika; Kovács, Dénes; Bánki, Péter; Friedrich, Peter; Tompa, Peter; Tompa, Kálmán

    2005-03-01

    Intrinsically unstructured/disordered proteins (IUPs) exist in a disordered and largely solvent-exposed, still functional, structural state under physiological conditions. As their function is often directly linked with structural disorder, understanding their structure-function relationship in detail is a great challenge to structural biology. In particular, their hydration and residual structure, both closely linked with their mechanism of action, require close attention. Here we demonstrate that the hydration of IUPs can be adequately approached by a technique so far unexplored with respect to IUPs, solid-state NMR relaxation measurements. This technique provides quantitative information on various features of hydrate water bound to these proteins. By freezing nonhydrate (bulk) water out, we have been able to measure free induction decays pertaining to protons of bound water from which the amount of hydrate water, its activation energy, and correlation times could be calculated. Thus, for three IUPs, the first inhibitory domain of calpastatin, microtubule-associated protein 2c, and plant dehydrin early responsive to dehydration 10, we demonstrate that they bind a significantly larger amount of water than globular proteins, whereas their suboptimal hydration and relaxation parameters are correlated with their differing modes of function. The theoretical treatment and experimental approach presented in this article may have general utility in characterizing proteins that belong to this novel structural class.

  2. T2 relaxation mapping MRI of healthy and inflamed gingival tissue

    PubMed Central

    Bishop, Courtney A; Janiczek, Robert L; Parkinson, Charles; Hughes, Francis J

    2017-01-01

    Objectives: To investigate the use and reproducibility of MRI transverse relaxation time (T2) mapping in healthy and inflamed gingivae. Methods: 21 subjects were recruited into 2 groups: those without evidence of gingivitis (“healthy”; n = 11, age 24.0 ± 3.66 years) by visual assessment and those with moderate to severe gingivitis (“gingivitis”; n = 10, age 28.9 ± 6.03 years) exhibited across the second mandibular premolar and first mandibular molar buccal gingivae. Subjects were imaged by MRI twice in a single day. Three T2 weighted turbo spin-echo volumes with 0.25 × 0.25 × 0.8-mm3 resolution were acquired at echo times of 16, 32 and 48 ms for T2 decay fitting. Image analysis was fully blinded; the two imaging sessions were not identifiable as coming from the same subject. Each imaging session had independent regions of interest drawn on the first echo image and applied to the calculated T2 decay maps. Results: The coefficient of variation was low and similar in healthy and gingivitis populations: 6.10 and 5.25% populations, respectively, with 5.65% populations across both groups. Bland–Altman analysis revealed no bias (mean −2.93%; 95% confidence intervals −22.20 to 16.34%) between sessions. The intersession agreement was good (r = 0.744, ρ = 0.568, intraclass correlation coefficient = 0.68). T2 mapping did not differentiate healthy from gingivitis groups. The mean T2 value in the healthy group (63.7 ms) was similar to that of the gingivitis group (65.23 ms) (p = 0.30). Conclusions: Mapping of the T2 decay in the gingivae was a repeatable process; however, T2 value alone did not differentiate those with clinical examination-determined gingivitis from those without signs of gingivitis. PMID:27936919

  3. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  4. Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Zhang, Chi

    2018-03-01

    There are growing interests in using geophysical tools to characterize the microstructure of geomaterials because of the non-invasive nature and the applicability in field. In these applications, multiple types of geophysical data sets are usually processed separately, which may be inadequate to constrain the key feature of target variables. Therefore, simultaneous processing of multiple data sets could potentially improve the resolution. In this study, we propose a method to estimate pore size distribution by joint inversion of nuclear magnetic resonance (NMR) T2 relaxation and spectral induced polarization (SIP) spectra. The petrophysical relation between NMR T2 relaxation time and SIP relaxation time is incorporated in a nonlinear least squares problem formulation, which is solved using Gauss-Newton method. The joint inversion scheme is applied to a synthetic sample and a Berea sandstone sample. The jointly estimated pore size distributions are very close to the true model and results from other experimental method. Even when the knowledge of the petrophysical models of the sample is incomplete, the joint inversion can still capture the main features of the pore size distribution of the samples, including the general shape and relative peak positions of the distribution curves. It is also found from the numerical example that the surface relaxivity of the sample could be extracted with the joint inversion of NMR and SIP data if the diffusion coefficient of the ions in the electrical double layer is known. Comparing to individual inversions, the joint inversion could improve the resolution of the estimated pore size distribution because of the addition of extra data sets. The proposed approach might constitute a first step towards a comprehensive joint inversion that can extract the full pore geometry information of a geomaterial from NMR and SIP data.

  5. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    USGS Publications Warehouse

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  6. NMR proton spin dynamics in thermotropic liquid crystals subject to multipulse excitation.

    PubMed

    Acosta, R H; Zamar, R C; Monti, G A

    2003-10-01

    Previous experiments of NMR spin-lattice relaxation times as a function of the Larmor frequency, as measured with the field-cycling technique (FC), were shown to be very useful to disentangle the various molecular motions, both local and collective, that dominate the relaxation in different time scales in liquid crystals. However, there are many examples where the known theoretical models that represent the molecular relaxation mechanisms cannot be fitted to the experimental trend in the region of low fields, making it difficult to obtain reliable values for the spectral densities involved, especially for the cooperative motions which dominate at low frequencies. In some cases, these anomalies are loosely ascribed to "local-field" effects but, to our knowledge, there is not a detailed explanation about the origin of these problems nor the range of frequencies where they should be expected. With the aim of isolating the dipolar effects from the influence of molecular dynamics, and taking into account the previous results in solids, in this work we investigate the response of the proton spin system of thermotropic liquid crystals 4-pentyl-4'-cyanobiphenyl (5CB) and 4-octyl-4'-cyanobiphenyl (8CB) in nematic and smectic A phases, due to the NMR multipulse sequence 90( composite function )y-(tau-thetax-tau)N. The nuclear magnetization presents an early transient period characterized by strong oscillations, after which a quasistationary state is attained. Subsequently, this state relaxes towards internal equilibrium over a time much longer than the transverse relaxation time T2. As occurs in solids, the decay time of the quasistationary state T2e presents a minimum when the pulse width thetax and the offset of the radiofrequency are set to satisfy resonance conditions (spin-lock). When measured as a function of the pulse spacing tau in "on-resonance" experiments, T2e shows the behavior expected for cross relaxation between the effective Zeeman and dipolar reservoirs, in

  7. Quantitative assessment of the T2 relaxation time of the gluteus muscles in children with Duchenne muscular dystrophy: a comparative study before and after steroid treatment.

    PubMed

    Kim, Hee Kyung; Laor, Tal; Horn, Paul S; Wong, Brenda

    2010-01-01

    To determine the feasibility of using T2 mapping as a quantitative method to longitudinally follow the disease activity in children with Duchenne muscular dystrophy (DMD) who are treated with steroids. ELEVEN BOYS WITH DMD (AGE RANGE: 5-14 years) underwent evaluation with the clinical functional score (CFS), and conventional pelvic MRI and T2 mapping before and during steroid therapy. The gluteus muscle inflammation and fatty infiltration were evaluated on conventional MRI. The histograms and mean T2 relaxation times were obtained from the T2 maps. The CFS, the conventional MRI findings and the T2 values were compared before and during steroid therapy. None of the patients showed interval change of their CFSs. On conventional MRI, none of the images showed muscle inflammation. During steroid treatment, two boys showed increased fatty infiltration on conventional MRI, and both had an increase of the mean T2 relaxation time (p < 0.05). The remaining nine boys had no increase in fatty infiltration. Of these, three showed an increased mean T2 relaxation time (p < 0.05), two showed no change and four showed a decreased mean T2 relaxation time (p < 0.05). T2 mapping is a feasible technique to evaluate the longitudinal muscle changes in those children who receive steroid therapy for DMD. The differences of the mean T2 relaxation time may reflect alterations in disease activity, and even when the conventional MRI and CFS remain stable.

  8. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    PubMed

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  9. NMR characterization of sulphur substitution effects in the K xFe 2-ySe 2-zS z high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torchetti, D. A.; Imai, T.; Lei, H. C.

    2012-04-17

    We present a⁷⁷ Se NMR study of the effect of S substitution in the high-T c superconductor K xFe 2-ySe 2-zS z in a temperature range up to 250 K. We examine two S concentrations, with z=0.8 (Tc~ 26 K) and z=1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K xFe₂Se₂ sample due to local disorder in the Se environment. Our Knight shift ⁷⁷K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itself decreases with increased S concentration. In addition, S substitution progressivelymore » suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T c in 1/T₁T, as seen in FeSe.« less

  10. Cluster analysis of quantitative MRI T2 and Trelaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T.

    PubMed

    Monu, U D; Jordan, C D; Samuelson, B L; Hargreaves, B A; Gold, G E; McWalter, E J

    2017-04-01

    To identify focal lesions of elevated MRI T 2 and Trelaxation times in articular cartilage of an ACL-injured group using a novel cluster analysis technique. Eighteen ACL-injured patients underwent 3T MRI T 2 and T 1ρ relaxometry at baseline, 6 months and 1 year and six healthy volunteers at baseline, 1 day and 1 year. Clusters of contiguous pixels above or below T 2 and T 1ρ intensity and area thresholds were identified on a projection map of the 3D femoral cartilage surface. The total area of femoral cartilage plate covered by clusters (%CA) was split into areas above (%CA+) and below (%CA-) the thresholds and the differences in %CA(+ or -) over time in the ACL-injured group were determined using the Wilcoxon signed rank test. %CA+ was greater in the ACL-injured patients than the healthy volunteers at 6 months and 1 year with average %CA+ of 5.2 ± 4.0% (p = 0.0054) and 6.6 ± 3.7% (p = 0.0041) for T 2 and 6.2 ± 7.1% (p = 0.063) and 8.2 ± 6.9% (p = 0.042) for T 1ρ , respectively. %CA- at 6 months and 1 year was 3.0 ± 1.8% (p > 0.1) and 5.9 ± 5.0% (p > 0.1) for T 2 and 4.4 ± 4.9% (p > 0.1) and 4.5 ± 4.6% (p > 0.1) for T 1ρ , respectively. With the proposed cluster analysis technique, we have quantified cartilage lesion coverage and demonstrated that the ACL-injured group had greater areas of elevated T 2 and Trelaxation times as compared to healthy volunteers. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Myocardial effective transverse relaxation time T2* Correlates with left ventricular wall thickness: A 7.0 T MRI study.

    PubMed

    Huelnhagen, Till; Hezel, Fabian; Serradas Duarte, Teresa; Pohlmann, Andreas; Oezerdem, Celal; Flemming, Bert; Seeliger, Erdmann; Prothmann, Marcel; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2017-06-01

    Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo. Magn Reson Med 77:2381-2389, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Urea Dependent (15)N NMR-Relaxation Studies on PfP2 Multimers Reveal that the C-Terminal Behaves like an Independent Intrinsically Disordered Peptide.

    PubMed

    Mishra, Pushpa; Hosur, Ramakrishna V

    2015-01-01

    Intrinsically disordered proteins or such domains in globular proteins are believed to be playing important roles in protein functions by virtue of their ability to adapt themselves to requirements of different binding partners and thereby accord high specificity to the interaction. Eukaryotic ribosomal stalk is made up of a supramolecular assembly of P0, P1 and P2 proteins. In Plasmodium falciparum, homo-oligomers of P2 are also seen which seem to be involved in many non-ribosomal functions of the protein in the parasite, and in all of these the protein interacts with different interactors. Here we show by extensive (15)N NMR relaxation studies that the C-terminal stretch of about 45 residues of the protein always remains as a flexible disordered domain, regardless of the state of association of the protein. The relaxation behaviors and the derived rotational correlation times for this portion of the protein are essentially the same in the presence of different concentrations of urea which produce different mixtures of PfP2 oligomers in rapid exchange, whereas the rest of the protein shows substantial variations with urea concentration in the relaxation behaviors. In other words, the C-terminal domain behaves as if it were an independent intrinsically disordered peptide. This would augment the notion that the C-terminal domain of PfP2 would be acting as a scavenger for different interactors depending upon the different functions of the protein inside the parasite.

  13. A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR.

    PubMed

    Chou, Ching-Yu; Chu, Minglee; Chang, Chi-Fon; Huang, Tai-Huang

    2012-01-01

    Analysis of NMR relaxation data has provided significant insight on molecular dynamic, leading to a more comprehensive understanding of macromolecular functions. However, traditional methodology allows relaxation measurements performed only at a few fixed high fields, thus severely restricting their potential for extracting more complete dynamic information. Here we report the design and performance of a compact high-speed servo-mechanical shuttle assembly adapted to a commercial 600 MHz high-field superconducting magnet. The assembly is capable of shuttling the sample in a regular NMR tube from the center of the magnet to the top (fringe field ∼0.01 T) in 100 ms with no loss of sensitivity other than that due to intrinsic relaxation. The shuttle device can be installed by a single experienced user in 30 min. Excellent 2D-(15)N-HSQC spectra of (u-(13)C, (15)N)-ubiquitin with relaxation at low fields (3.77 T) and detection at 14.1T were obtained to illustrate its utility in R(1) measurements of macromolecules at low fields. Field-dependent (13)C-R(1) data of (3,3,3-d)-alanine at various field strengths were determined and analyzed to assess CSA and (1)H-(13)C dipolar contributions to the carboxyl (13)C-R(1). Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Nuclear magnetic resonance relaxation and diffusion measurements as a proxy for soil properties

    NASA Astrophysics Data System (ADS)

    Duschl, Markus; Pohlmeier, Andreas; Galvosas, Petrik; Vereecken, Harry

    2013-04-01

    Nuclear Magnetic Resonance (NMR) relaxation and NMR diffusion measurements are two of a series of fast and non-invasive NMR applications widely used e.g. as well logging tools in petroleum exploration [1]. For experiments with water, NMR relaxation measures the relaxation behaviour of former excited water molecules, and NMR diffusion evaluates the self-diffusion of water. Applied in porous media, both relaxation and diffusion measurements depend on intrinsic properties of the media like pore size distribution, connectivity and tortuosity of the pores, and water saturation [2, 3]. Thus, NMR can be used to characterise the pore space of porous media not only in consolidated sediments but also in soil. The physical principle behind is the relaxation of water molecules in an external magnetic field after excitation. In porous media water molecules in a surface layer of the pores relax faster than the molecules in bulk water because of interactions with the pore wall. Thus, the relaxation in smaller pores is generally faster than in bigger pores resulting in a relaxation time distribution for porous media with a range of pore sizes like soil [4]. In NMR diffusion experiments, there is an additional encoding of water molecules by application of a magnetic field gradient. Subsequent storage of the magnetization and decoding enables the determination of the mean square displacement and therefore of the self-diffusion of the water molecules [5]. Employing various relaxation and diffusion experiments, we get a measure of the surface to volume ratio of the pores and the tortuosity of the media. In this work, we show the characterisation of a set of sand and soil samples covering a wide range of textural classes by NMR methods. Relaxation times were monitored by the Carr-Purcell-Meiboom-Gill sequence and analysed using inverse Laplace transformation. Apparent self-diffusion constants were detected by a 13-intervall pulse sequence and variation of the storage time. We

  15. Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy.

    PubMed

    Peixoto-Santos, Jose Eduardo; Kandratavicius, Ludmyla; Velasco, Tonicarlo Rodrigues; Assirati, Joao Alberto; Carlotti, Carlos Gilberto; Scandiuzzi, Renata Caldo; Salmon, Carlos Ernesto Garrido; Santos, Antonio Carlos Dos; Leite, Joao Pereira

    2017-01-01

    Increased T2 relaxation time is often seen in temporal lobe epilepsy (TLE) with hippocampal sclerosis. Water content directly affects the effective T2 in a voxel. Our aim was to evaluate the relation between T2 values and two molecules associated with brain water homeostasis aquaporin 4 (AQP4) and chondroitin sulfate proteoglycan (CSPG), as well as cellular populations in the hippocampal region of patients with TLE. Hippocampal T2 imaging and diffusion tensor imaging (DTI) were obtained from 42 drug-resistant patients with TLE and 20 healthy volunteers (radiologic controls, RCs). A similar protocol (ex vivo) was applied to hippocampal sections from the same TLE cases and 14 autopsy control hippocampi (histologic and radiologic controls, HRCs), and each hippocampal subfield was evaluated. Hippocampal sections from TLE cases and HRC controls were submitted to immunohistochemistry for neurons (neuron nuclei [NeuN]), reactive astrocytes (glial fibrillary acidic protein [GFAP]), activated microglia (human leukocyte antigen-D-related [HLA-DR]), polarized AQP4, and CSPG. Patients with TLE had higher in vivo and ex vivo hippocampal T2 relaxation time. Hippocampi from epilepsy cases had lower neuron density, higher gliosis, decreased AQP4 polarization, and increased CSPG immunoreactive area. In vivo relaxation correlated with astrogliosis in the subiculum and extracellular CSPG in the hilus. Ex vivo T2 relaxation time correlated with astrogliosis in the hilus, CA4, and subiculum, and with microgliosis in CA1. The difference between in vivo and ex vivo relaxation ratio correlated with mean diffusivity and with the immunopositive area for CSPG in the hilus. Our data indicate that astrogliosis, microgliosis, and CSPG expression correlate with the increased T2 relaxation time seen in the hippocampi of patients with TLE. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  16. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  17. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2relaxation times.

    PubMed

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, N.; Ding, Q. -P.; Johnston, D. C.

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  19. NMR studies of the helical antiferromagnetic compound EuCo 2P 2

    DOE PAGES

    Higa, N.; Ding, Q. -P.; Johnston, D. C.; ...

    2017-09-18

    In EuCo 2P 2, 4 f electron spins of Eu 2+ ions order antiferromagnetically below a Neel temperature T N = 66.5K. The magnetic structure below T N was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo 2P 2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicatemore » homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. In conclusion, we have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.« less

  20. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast.

    PubMed

    Jordan, Caroline D; Saranathan, Manojkumar; Bangerter, Neal K; Hargreaves, Brian A; Gold, Garry E

    2013-05-01

    The purpose of this study was to measure and compare the relaxation times of musculoskeletal tissues at 3.0 T and 7.0 T, and to use these measurements to select appropriate parameters for musculoskeletal protocols at 7.0 T. We measured the T₁ and T₂ relaxation times of cartilage, muscle, synovial fluid, bone marrow and subcutaneous fat at both 3.0 T and 7.0 T in the knees of five healthy volunteers. The T₁ relaxation times were measured using a spin-echo inversion recovery sequence with six inversion times. The T₂ relaxation times were measured using a spin-echo sequence with seven echo times. The accuracy of both the T₁ and T₂ measurement techniques was verified in phantoms at both magnetic field strengths. We used the measured relaxation times to help design 7.0 T musculoskeletal protocols that preserve the favorable contrast characteristics of our 3.0 T protocols, while achieving significantly higher resolution at higher SNR efficiency. The T₁ relaxation times in all tissues at 7.0 T were consistently higher than those measured at 3.0 T, while the T₂ relaxation times at 7.0 T were consistently lower than those measured at 3.0 T. The measured relaxation times were used to help develop high resolution 7.0 T protocols that had similar fluid-to-cartilage contrast to that of the standard clinical 3.0 T protocols for the following sequences: proton-density-weighted fast spin-echo (FSE), T₂-weighted FSE, and 3D-FSE-Cube. The T₁ and T₂ changes were within the expected ranges. Parameters for musculoskeletal protocols at 7.0 T can be optimized based on these values, yielding improved resolution in musculoskeletal imaging with similar contrast to that of standard 3.0 T clinical protocols. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  2. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pan; School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026; Xi, Zhaoyong

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at threemore » different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.« less

  3. Motion corrected DWI with integrated T2-mapping for simultaneous estimation of ADC, T2-relaxation and perfusion in prostate cancer.

    PubMed

    Skorpil, M; Brynolfsson, P; Engström, M

    2017-06-01

    Multiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging - Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need. We here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200s/mm 2 and 600s/mm 2 were chosen, and for T2-estimation 6 echo times between 64.9ms and 114.9ms were used. Three patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation. This sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. T2 Relaxation Values of the Talar Trochlear Articular Cartilage: Comparison Between Patients With Lateral Instability of the Ankle Joint and Healthy Volunteers.

    PubMed

    Park, So Yoon; Yoon, Young Cheol; Cha, Jang Gyu; Sung, Ki Sun

    2016-01-01

    The purpose of this study was to evaluate the difference between the T2 relaxation values of the talar trochlear cartilage in patients with lateral instability of the ankle joint and the values in healthy volunteers. A retrospective assessment was conducted of images from 13 MRI examinations of the ankles of 12 patients who underwent lateral ankle ligament repair with an arthroscopically proven normal talar trochlear cartilage. Thirteen ankle MRI examinations of 12 healthy age- and sex-matched volunteers were prospectively performed. Two radiologists independently measured the T2 relaxation values of the talar trochlear cartilage in two layers (superficial and deep) in the following six compartments: medial anterior (M1), medial middle (M2), medial posterior (M3), lateral anterior (L1), lateral middle (L2), and lateral posterior (L3). The T2 relaxation values of patients were compared with those of healthy volunteers. Both readers found that the mean T2 relaxation values of all six compartments of the superficial layer were significantly higher in patients than in control subjects. For reader 1, the M1 findings were 46.2 for patients and 39.6 for healthy volunteers; M2, 50.4 and 41.1; M3, 52.1 and 46.2; L1, 43.1 and 37.9; L2, 47.8 and 41.8; and L3, 53.8 and 49.8. For reader 2, the M1 findings were 45.0 and 40.2; M2, 48.8 and 41.1; M3, 53.2 and 45.6; L1, 42.8 and 38.5; L2, 48.0 and 42.1; and L3, 55.0 and 49.0 (p < 0.05). For the deep layer, the mean T2 relaxation values of M2 (patients, 32.6; volunteers, 27.8 [p = 0.004]) and M3 (patients, 38.3; volunteers, 35.0 [p = 0.046]) for reader 1 and M2 (patients, 31.6; volunteers, 28.7 [p = 0.041]) for reader 2 were significantly higher in patients than in control subjects. Intraobserver and interobserver variability were excellent, except for interobserver variability for M1 deep (0.79) and L1 deep (0.75). The T2 relaxation values of arthroscopically proven normal talar trochlear cartilage of patients with lateral

  5. NMR Investigation of Chloromethane Complexes of Cryptophane-A and Its Analogue with Butoxy Groups

    PubMed Central

    2014-01-01

    Host–guest complexes between cryptophane-A as host and dichloromethane and chloroform as guests are investigated using 1H and 13C NMR spectroscopy. Moreover, a related cryptophane, with the methoxy groups replaced by butoxy units (cryptophane-But), and its complexes with the same guests were also studied. Variable temperature spectra showed effects of chemical exchange between the free and bound guests, as well as of conformational exchange of the host. The guest exchange was studied quantitatively by exchange spectroscopy or line shape analysis. Extraction of kinetic and thermodynamic parameters led to the characterization of the affinity between guests and hosts. On the other hand, the host exchange was investigated by means of 13C Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion which aims at the determination of the transverse relaxation rate R2, the inverse of the transverse relaxation time T2, as a function of the repetition of the π pulses in a CPMG train. The variation of the measured transverse relaxation rate with the repetition rate νCPMG indicated conformational exchange occurring on the microsecond–millisecond time scale. Structural information was obtained through measurements of cross-relaxation rates, both within the host and between the host and the guest protons. The NMR results were supported by DFT calculations. PMID:24472055

  6. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  8. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    NASA Astrophysics Data System (ADS)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  9. Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Strate, Anne; Neumann, Jan; Overbeck, Viviane; Bonsa, Anne-Marie; Michalik, Dirk; Paschek, Dietmar; Ludwig, Ralf

    2018-05-01

    We report a concerted theoretical and experimental effort to determine the reorientational dynamics as well as hydrogen bond lifetimes for the doubly ionic hydrogen bond +OH⋯O- in the ionic liquid (2-hydroxyethyl)trimethylammonium bis(trifluoromethylsulfonyl)imide [Ch][NTf2] by using a combination of NMR relaxation time experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. Due to fast proton exchange, the determination of rotational correlation times is challenging. For molecular liquids, 17O-enhanced proton relaxation time experiments have been used to determine the rotational correlation times for the OH vectors in water or alcohols. As an alternative to those expensive isotopic substitution experiments, we employed a recently introduced approach which is providing access to the rotational dynamics from a single NMR deuteron quadrupolar relaxation time experiment. Here, the deuteron quadrupole coupling constants (DQCCs) are obtained from a relation between the DQCC and the δ1H proton chemical shifts determined from a set of DFT calculated clusters in combination with experimentally determined proton chemical shifts. The NMR-obtained rotational correlation times were compared to those obtained from MD simulations and then related to viscosities for testing the applicability of popular hydrodynamic models. In addition, hydrogen bond lifetimes were derived, using hydrogen bond population correlation functions computed from MD simulations. Here, two different time domains were observed: The short-time contributions to the hydrogen lifetimes and the reorientational correlation times have roughly the same size and are located in the picosecond range, whereas the long-time contributions decay with relaxation times in the nanosecond regime and are related to rather slow diffusion processes. The computed average hydrogen bond lifetime is dominated by the long-time process, highlighting the importance and longevity of

  10. Selective modification of NMR relaxation time in human colorectal carcinoma by using gadolinium-diethylenetriaminepentaacetic acid conjugated with monoclonal antibody 19-9.

    PubMed Central

    Curtet, C; Tellier, C; Bohy, J; Conti, M L; Saccavini, J C; Thedrez, P; Douillard, J Y; Chatal, J F; Koprowski, H

    1986-01-01

    Monoclonal antibody 19-9 (mAb 19-9) against human colon adenocarcinoma was conjugated with gadolinium X diethylenetriaminepentaacetic acid (Gd X DTPA) and used as a contrast agent in nuclear magnetic resonance (NMR) in an effort to improve tumor target selectivity in nude mice. The data indicate that Gd X DTPA-mAb 19-9 in solution decreased the T1 relaxation of water protons at 90 MHz in direct proportion to the gadolinium concentration, and this effect was greater than in Gd X DTPA solutions. T1 relaxation time at 90 MHz, measured in tumors removed from nude mice 24 hr after injection of Gd X DTPA-mAb 19-9 (Gd, 20 mumol/kg; 16 DTPA molecules per mAb molecule), was significantly decreased (by 15%) as compared with the control group. Similar results were obtained in tumors from mice injected with Gd X DTPA-mAb 19-9 solutions in which Gd was used at 2, 6, or 10 mumol/kg (16 DTPA molecules per mAb molecule). These doses are lower than those commonly used for Gd X DTPA (10-100 mumol/kg) as contrast agent. Tumor localization by the Gd X DTPA-mAb 19-9 complex containing radioactive Gd (0.3 microCi/microgram of 153Gd) to confirm scintigraphy revealed significant concentrations of the complex (5% of the injected dose per gram of tissue) in the tumor. Scan images recorded in planar scintigraphy at day 5 showed good visualization of tumors. Images PMID:3459174

  11. Nuclear magnetic moment of {sup 69}As from on-line {beta}-NMR on oriented nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovko, V.V.; Kraev, I.S.; Phalet, T.

    2005-12-15

    A precise value for the magnetic moment of the {sup 69}As 5/2{sup -} ground state has been obtained from nuclear magnetic resonance on oriented nuclei (NMR/ON) using the NICOLE {sup 3}He-{sup 4}He dilution refrigerator setup at ISOLDE/CERN. The NMR/ON signal was observed by monitoring the anisotropy of the {sup 69}As {beta} particles. The center frequency {nu}[B{sub ext}=0.0994(10)T]=169.98(9) MHz corresponds to {mu}[{sup 69}As]=+1.6229(16){mu}{sub N}. This result differs considerably from the {pi}f{sub 5/2} single-particle value obtained with g factors for a free proton but is in reasonable agreement with the value obtained with effective g factors and with values from a coremore » polarization calculation and from calculations in the framework of the interacting boson-fermion model. Assuming a single exponential spin-lattice relaxation behavior a relaxation time T{sub 1}{sup '}=10(25) s was observed for {sup 69}AsFe{sub -bar} at a temperature of about 20 mK in a magnetic field B=0.1 T.« less

  12. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE PAGES

    Wiecki, P.; Nandi, M.; Bohmer, Anna; ...

    2017-11-13

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  13. NMR evidence for static local nematicity and its cooperative interplay with low-energy magnetic fluctuations in FeSe under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiecki, P.; Nandi, M.; Bohmer, Anna

    Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.

  14. Interactions between cations and peat organic matter monitored with NMR wideline, static and FFC NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Schaumann, Gabriele E.; Conte, Pellegrino; Jäger, Alexander; Alonzo, Giuseppe; Bertmer, Marko

    2010-05-01

    The molecular size of humic substances is still under debate and is believed to range up to several hundred thousands Dalton, although a number of recent studies suggest much lower molecular weights. Nowadays an increasing number of authors suggest a model of molecular aggregates. One explanation why results on the molecular mass of humic materials are contradictory, may be that individual OM molecules are linked via intermolecular interactions, by bridges of water molecules or by cations bridging cation exchange sites (Schaumann, 2006a, b). Properties of such cross-linked systems can be similar to macromolecular systems revealing covalent cross-links. In this context, multivalent cations play an important ecological role, serving as reversible cross-linking agent. Formation and disruption of such cation bridges may close or open sorption sites in soil organic matter. Although cross-linking by multivalent cations has been proposed in many studies, the cross-linking effect has not yet been demonstrated on the molecular scale. The objective of this study was to investigate the interactions between cations and peat organic matter using NMR wideline techniques as well as static and fast field cycling (FFC) NMR relaxometry. Peat treated with solutions containing either Na+, Ca2+ or Al3+ was investigated in air-dried state for longitudinal relaxation times (T1) and NMR wideline characteristics. T1 distributions were separated into two Gaussian functions which were interpreted to represent two proton populations belonging to two environments of differing mobility. The relaxation rates (R1 = T1-1) in the cation treated samples spread over a range of 87-123 s-1 (R1a: fast component) and 32-42 s-1 (R1b: slow component). The rates in all treatments are significantly different from each other. and decrease in the order conditioned sample > desalinated sample > Na-treated sample. The treatment with multivalent cations affects R1a and R1b in different ways and needs more

  15. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits.

    PubMed

    Liu, Jiuyang; Gao, Jia; Li, Fudong; Ma, Rongsheng; Wei, Qingtao; Wang, Aidong; Wu, Jihui; Ruan, Ke

    2017-01-01

    The delineation of intrinsically weak interactions between novel targets and fragment screening hits has long limited the pace of hit-to-lead evolution. Rho guanine-nucleotide dissociation inhibitor 2 (RhoGDI2) is a novel target that lacks any chemical probes for the treatment of tumor metastasis. Protein-observed and ligand-observed NMR spectroscopy was used to characterize the weak interactions between RhoGDI2 and fragment screening hits. We identified three hits of RhoGDI2 using streamlined NMR fragment-based screening. The binding site residues were assigned using non-uniformly sampled C α - and H α -based three dimensional NMR spectra. The molecular docking to the proposed geranylgeranyl binding pocket of RhoGDI2 was guided by NMR restraints of chemical shift perturbations and ligand-observed transferred paramagnetic relaxation enhancement. We further validated the weak RhoGDI2-hit interactions using mutagenesis and structure-affinity analysis. Weak interactions between RhoGDI2 and fragment screening hits were delineated using an integrated NMR approach. Binders to RhoGDI2 as a potential anti-cancer target have been first reported, and their weak interactions were depicted using NMR spectroscopy. Our work highlights the powerfulness and the versatility of the integrative NMR techniques to provide valuable structural insight into the intrinsically weak interactions between RhoGDI2 and the fragment screening hits, which could hardly be conceived using other biochemical techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dynamics and conformations of PEO chains chemically bonded on silica: comparison between 1H and 2H NMR.

    PubMed

    Tajouri, T; Hommel, H

    2007-06-01

    1H NMR was used to study the motion of monomer units in a layer of poly(ethylene oxide) chains grafted on silica. First, the dependence of the relaxation times on the grafting ratios is discussed qualitatively from a phenomenological point of view. Next, the NMR line narrowing effect by high-speed rotation is observed in the same samples with different grafting ratios. The magic angle spinning technique permits determination of two correlation times for each grafting ratio: tau(c) characteristic of an environment with a fast motion and tau(l) characteristic of an environment with a slow motion. In addition, the dynamics of these grafted chains are investigated by deuterium NMR (2H NMR), which is sensitive to the anisotropy of molecular motion. The evolution has been studied for two extreme grafting ratios and each time as a function of temperature. The anisotropy is more marked at low temperatures and for a low grafting ratio. The results are consistent with the 1H NMR relaxation times measured as a function of temperature. Copyright 2007 John Wiley & Sons, Ltd.

  17. An introduction to NMR-based approaches for measuring protein dynamics

    PubMed Central

    Kleckner, Ian R; Foster, Mark P

    2010-01-01

    Proteins are inherently flexible at ambient temperature. At equilibrium, they are characterized by a set of conformations that undergo continuous exchange within a hierarchy of spatial and temporal scales ranging from nanometers to micrometers and femtoseconds to hours. Dynamic properties of proteins are essential for describing the structural bases of their biological functions including catalysis, binding, regulation and cellular structure. Nuclear magnetic resonance (NMR) spectroscopy represents a powerful technique for measuring these essential features of proteins. Here we provide an introduction to NMR-based approaches for studying protein dynamics, highlighting eight distinct methods with recent examples, contextualized within a common experimental and analytical framework. The selected methods are (1) Real-time NMR, (2) Exchange spectroscopy, (3) Lineshape analysis, (4) CPMG relaxation dispersion, (5) Rotating frame relaxation dispersion, (6) Nuclear spin relaxation, (7) Residual dipolar coupling, (8) Paramagnetic relaxation enhancement. PMID:21059410

  18. Application of the double relaxation oscillation superconducting quantum interference device sensor to micro-tesla 1H nuclear magnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Kang, Chan Seok; Kim, Kiwoong; Lee, Seong-Joo; Hwang, Seong-min; Kim, Jin-Mok; Yu, Kwon Kyu; Kwon, Hyukchan; Lee, Sang Kil; Lee, Yong-Ho

    2011-09-01

    We developed an ultra-low field (ULF)-nuclear magnetic resonance (NMR) measurement system capable of working with a measurement field (Bm) of several micro-tesla and performed basic NMR studies with a double relaxation oscillation superconducting quantum interference device (DROS) instead of conventional dc-SQUIDs. DROS is a SQUID sensor utilizing a relaxation oscillation between a dc-SQUID and a relaxation circuit; the new unit consists of an inductor and a resistor, and is connected in parallel with the SQUID. DROS has a 10 times larger flux-to-voltage transfer coefficient (˜mV/ϕ0) than that of the dc-SQUID, and this large transfer coefficient enables the acquisition of the SQUID signal with a simple flux-locked-loop (FLL) circuit using room temperature pre-amplifiers. The DROS second-order gradiometer showed average field noise of 9.2 μϕ0/√Hz in a magnetically shielded room (MSR). In addition, a current limiter formed of a Josephson junction array was put in a flux-transformer of DROS to prevent excessive currents that can be generated from the high pre-polarization field (Bp). Using this system, we measured an 1H NMR signal in water under 2.8 μT Bm field and reconstructed a one-dimensional MR image from the 1H NMR signal under a gradient field BG of 4.09 nT/mm. In addition, we confirmed that the ULF-NMR system can measure the NMR signal in the presence of metal without any distortion by measuring the NMR signal of a sample wrapped with metal. Lastly, we have measured the scalar J-coupling of trimethylphosphate and were able to confirm a clear doublet NMR signal with the coupling strength J3[P,H] = 10.4 ± 0.8 Hz. Finally, because the existing ULF-NMR/MRI studies were almost all performed with dc-SQUID based systems, we constructed a dc-SQUID-based ULF-NMR system in addition to the DROS based system and compared the characteristics of the two different systems by operating the two systems under identical experimental conditions.

  19. In vivo proton magnetic resonance spectroscopy of liver metabolites in non-alcoholic fatty liver disease in rats: T2 relaxation times in methylene protons.

    PubMed

    Song, Kyu-Ho; Baek, Hyeon-Man; Lee, Do-Wan; Choe, Bo-Young

    2015-10-01

    The aim of this study was to evaluate the transverse relaxation time of methylene resonance as compared to other lipid resonances. The examinations were performed using a 3.0 T scanner with a point-resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated with a repetition time (TR) of 6000ms and echo time (TE) of 40-550ms. For in vivo proton magnetic resonance spectroscopy ((1)H-MRS), eight male Sprague-Dawley rats were given free access to a normal-chow (NC) and another eight male Sprague-Dawley rats were given free access to a high-fat (HF) diet. Both groups drank water ad libitum. T2 measurements in the rats' livers were conducted at a fixed TR of 6000ms and TE of 40-220ms. Exponential curve fitting quality was calculated through the coefficients of determination (R(2)). Chemical analyses of the phantom and livers were not performed, but T2 decay curves were acquired. The T2 relaxation time of methylene resonance was estimated as follows: NC rats, 37.1±4.3ms; HF rats, 31.4±1.8ms (p<0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p<0.005). This study of (1)H MRS led to sufficient spectral resolution and signal-to-noise ratio differences to characterize the T2 relaxation times of methylene resonance. (1)H MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Yuji

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K 6[V 15As 6O 42(H 2O)]·8H 2O (in short V15), (2) the spin ball [Mo 72Fe 30O 252(Mo 2O 7(H 2O)) 2(Mo 2O 8H 2(H 2O)) (CH 3COO) 12(H 2O) 91]·150H 2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl 2tachH) 3Cl]Cl 2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determinedmore » in both the nonfrustrated total spin S T = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate S T = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T 1) measurements. In the S T = 3/2 state, 1/T 1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T 1 at very low temperatures is observed in the frustrated S T = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T 1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe 3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T 1 measurements. From the temperature dependence of 1/T 1, the fluctuation frequency of the Fe 3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T 1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  1. Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles

    DOE PAGES

    Furukawa, Yuji

    2016-10-01

    This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K 6[V 15As 6O 42(H 2O)]·8H 2O (in short V15), (2) the spin ball [Mo 72Fe 30O 252(Mo 2O 7(H 2O)) 2(Mo 2O 8H 2(H 2O)) (CH 3COO) 12(H 2O) 91]·150H 2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl 2tachH) 3Cl]Cl 2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determinedmore » in both the nonfrustrated total spin S T = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate S T = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T 1) measurements. In the S T = 3/2 state, 1/T 1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T 1 at very low temperatures is observed in the frustrated S T = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T 1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe 3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T 1 measurements. From the temperature dependence of 1/T 1, the fluctuation frequency of the Fe 3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T 1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less

  2. Dynamics of glass-forming di-n-butyl phthalate as studied by NMR.

    PubMed

    Szcześniak, E; Głowinkowski, S; Suchański, W; Jurga, S

    1997-04-01

    Spin-lattice relaxation times T1 and nuclear Overhauser effect (NOE) enhancement factors for the individual ring carbons in di-n-butyl phthalate (DBF) show that the reorientational correlation function corresponding to the global dynamics in supercooled liquid can be described by a Davidson-Cole distribution. Measurements of proton spin-lattice relaxation times T1 and T1p, as well as 1H NMR spectra at temperatures below the glass transition temperature, Tg, reveal that the same distribution holds also for description of local dynamics in glassy DBF. The activation parameters of the motions detected are derived.

  3. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method.

    PubMed

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13 C NMR spectrometry (irm- 13 C NMR) provides the complete 13 C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13 C natural abundance values (50‰), irm- 13 C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13 C NMR. Until now, the conventional strategy to determine the position-specific abundance x i relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13 C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13 C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1 H NMR pulse sequence (named DWET) with a 13 C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T 1 , which forms a serious limitation for irm- 13 C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T 1 variations. Their performance is evaluated on the determination of the 13 C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm- 13 C NMR since it is now possible to perform

  4. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    NASA Astrophysics Data System (ADS)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  5. Towards Using NMR to Screen for Spoiled Tomatoes Stored in 1,000 L, Aseptically Sealed, Metal-Lined Totes

    PubMed Central

    Pinter, Michael D.; Harter, Tod; McCarthy, Michael J.; Augustine, Matthew P.

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments. PMID:24594611

  6. Towards using NMR to screen for spoiled tomatoes stored in 1,000 L, aseptically sealed, metal-lined totes.

    PubMed

    Pinter, Michael D; Harter, Tod; McCarthy, Michael J; Augustine, Matthew P

    2014-03-03

    Nuclear magnetic resonance (NMR) spectroscopy is used to track factory relevant tomato paste spoilage. It was found that spoilage in tomato paste test samples leads to longer spin lattice relaxation times T1 using a conventional low magnetic field NMR system. The increase in T1 value for contaminated samples over a five day room temperature exposure period prompted the work to be extended to the study of industry standard, 1,000 L, non-ferrous, metal-lined totes. NMR signals and T1 values were recovered from a large format container with a single-sided NMR sensor. The results of this work suggest that a handheld NMR device can be used to study tomato paste spoilage in factory process environments.

  7. Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses.

    PubMed

    Soleilhavoup, Anne; Delaye, Jean-Marc; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2010-12-01

    Boron-11 and silicon-29 NMR spectra of xSiO(2)-(1-x)B(2)O(3) glasses (x=0.40, 0.80 and 0.83) have been calculated using a combination of molecular dynamics (MD) simulations with density functional theory (DFT) calculations of NMR parameters. Structure models of 200 atoms have been generated using classical force fields and subsequently relaxed at the PBE-GGAlevel of DFT theory. The gauge including projector augmented wave (GIPAW) method is then employed for computing the shielding and electric field gradient tensors for each silicon and boron atom. Silicon-29 MAS and boron-11 MQMAS NMR spectra of two glasses (x=0.40 and 0.80) have been acquired and theoretical spectra are found to well agree with the experimental data. For boron-11, the NMR parameter distributions have been analysed using a Kernel density estimation (KDE) approach which is shown to highlight its main features. Accordingly, a new analytical model that incorporates the observed correlations between the NMR parameters is introduced. It significantly improves the fit of the (11)B MQMAS spectra and yields, therefore, more reliable NMR parameter distributions. A new analytical model for a quantitative description of the dependence of the silicon-29 and boron-11 isotropic chemical shift upon the bond angles is proposed, which incorporates possibly the effect of SiO(2)-B(2)O(3) intermixing. Combining all the above procedures, we show how distributions of Si-O-T and B-O-T (T=Si, B) bond angles can be estimated from the distribution of isotropic chemical shift of silicon-29 and boron-11, respectively. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR.

    PubMed

    Apperley, David C; Forster, Angus H; Fournier, Romain; Harris, Robin K; Hodgkinson, Paul; Lancaster, Robert W; Rades, Thomas

    2005-11-01

    We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by 13C CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature 1H relaxation measurements of static samples have revealed a T1rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature 13C and 1H NMR. There is a change in slope for T1H and T1rhoH at the glass transition temperature (Tg) for indomethacin, but this occurs a few degrees below Tg for nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by 13C NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements. Copyright (c) 2005 John Wiley & Sons, Ltd.

  9. 125Te NMR and Seebeck Effect in Bi 2Te 3 Synthesized from Stoichiometric and Te-Rich Melts

    DOE PAGES

    Levin, E. M.; Iowa State Univ., Ames, IA; Riedemann, T. M.; ...

    2016-10-14

    Bi 2Te 3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by 125Te nuclear magnetic resonance (NMR). Here we report on 125Te NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown frommore » stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. 125Te NMR spectra and spin–lattice relaxation measurements demonstrate that both Bi 2Te 3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. In conclusion, correlations between 125Te NMR spectra, spin–lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that 125Te NMR is an effective probe to study antisite defects in Bi 2Te 3.« less

  10. 125Te NMR and Seebeck Effect in Bi 2Te 3 Synthesized from Stoichiometric and Te-Rich Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, E. M.; Iowa State Univ., Ames, IA; Riedemann, T. M.

    Bi 2Te 3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by 125Te nuclear magnetic resonance (NMR). Here we report on 125Te NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown frommore » stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. 125Te NMR spectra and spin–lattice relaxation measurements demonstrate that both Bi 2Te 3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. In conclusion, correlations between 125Te NMR spectra, spin–lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that 125Te NMR is an effective probe to study antisite defects in Bi 2Te 3.« less

  11. 1H and 13C NMR studies of molecular dynamics in the biocopolymer of glycolide and epsilon-caprolactone.

    PubMed

    Nozirov, Farhod; Szczesniak, Eugeniusz; Fojud, Zbigniew; Dobrzynski, Piotr; Klinowski, Jacek; Jurga, Stefan

    2002-08-01

    Copolymers of glycolide and epsilon-caprolactone were studied using differential scanning calorimetry and solid-state NMR. The variation of the T1 relaxation time with temperature reflects local disorder and can be quantified in terms of the distribution of correlation times predicted by the Davidson-Cole model. T, relaxation is dominated by trans-gauche isomerisation, with an activation energy of 34-35 kJ mol(-1).

  12. Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR

    DOE PAGES

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  13. Nitroxide paramagnet-induced para-ortho conversion and nuclear spin relaxation of H2 in organic solvents.

    PubMed

    Sartori, Elena; Ruzzi, Marco; Lawler, Ronald G; Turro, Nicholas J

    2008-09-24

    The kinetics of para-ortho conversion and nuclear spin relaxation of H 2 in chloroform- d 1 were investigated in the presence of nitroxides as paramagnetic catalysts. The back conversion from para-hydrogen ( p-H 2) to ortho-hydrogen ( o-H 2) was followed by NMR by recording the increase in the intensity of the signal of o-H 2 at regular intervals of time. The nitroxides proved to be hundreds of times more effective at inducing relaxation among the spin levels of o-H 2 than they are in bringing about transitions between p-H 2 and the levels of o-H 2. The value of the encounter distance d between H 2 and the paramagnetic molecule, calculated from the experimental bimolecular conversion rate constant k 0, using the Wigner theory of para-ortho conversion, agrees perfectly with that calculated from the experimental relaxivity R 1 using the force free diffusion theory of spin-lattice relaxation.

  14. MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique

    PubMed Central

    Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.

    2016-01-01

    Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639

  15. Experimental NMR spin-lattice relaxometry study in the liquid crystalline nematic phase of propylcyano-phenylcyclohexane.

    PubMed

    Acosta, R H; Pusiol, D J

    2001-01-01

    The NMR spin-lattice proton relaxation dispersion T1(nu(L)) of the liquid crystal propylcyano-phenylcyclohexane is studied over several decades of Larmor frequencies and at different temperatures in the nematic mesophase. The results show that the order fluctuation of the local nematic director contribution to T1(nu(L)) undergoes a transition between two power regimes: from T1(nu(L)) protional to nu(1/2)L to nu(alpha)L (alpha approximately 1/3) on going from low to high Larmor frequencies.

  16. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.

    PubMed

    Dittrich, K; Gu, J; Tinder, R; Hogan, M; Gao, X

    1994-04-12

    The antiparallel purine.purine.pyrimidine DNA triplex, RRY6, which contains a T.C.G inverted triplet in the center of the sequence, was examined by proton and phosphorous two-dimensional NMR spectroscopy. The local conformation of the T.C.G triplet (T4.C11.G18) and the effect of this triplet on the global helical structure were analyzed in detail. The formation of the T.C.G triplet is confirmed by a set of cross-strand NOEs, including unusual cross-strand NOEs between the third strand and the pyrimidine strand as opposed to the purine strand of the duplex. NMR data suggest that the T.C.G triplet may be present in an equilibrium between a non-hydrogen-bonded form and a T(O4)-C(NH2) hydrogen-bonded form and that there is a distortion of the in-plane alignment of the three bases. The flanking G.G.C base triplets are well-defined on the 5'-side of T4, but somewhat interrupted on the 3'-side of T4. The effect of the third strand binding on the Watson-Crick duplex was probed by an NMR study of the free duplex RY6. NMR parameters are affected mostly around the T.C.G inversion site. The perturbations extend to at least two adjacent base triplets on either side. The binding of the third purine strand and the accommodation of a central T.C.G inversion in RRY6 does not require a readjustment in sugar pucker, which remains in the range of C2'-endo. 31P resonances of RRY6 distribute over a range of 2.2 ppm. The H-P coupling patterns of the third strand differ from those of the duplex. General spectral patterns defined by the marker protons of the RRY and YRY triplexes are compared.

  17. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  18. Cerebral white matter maturation patterns in preterm infants: an MRI T2 relaxation anisotropy and diffusion tensor imaging study

    PubMed Central

    Knight, Michael J.; Smith-Collins, Adam; Newell, Sarah; Denbow, Mark; Kauppinen, Risto A.

    2017-01-01

    Background and Purpose Preterm birth is associated with worse neurodevelopmental outcome, but brain maturation in preterm infants is poorly characterised with standard methods. We evaluated white matter (WM) of infant brains at term-equivalent age, as a function of gestational age at birth, using multi-modal MRI. Methods Infants born very pre-term (< 32 weeks gestation) and late pre-term (33-36 weeks gestation) were scanned at 3T at term-equivalent age using diffusion tensor imaging (DTI) and T2 relaxometry. MRI data were analysed using tract-based spatial statistics, and anisotropy of T2 relaxation was also determined. Principal component analysis and linear discriminant analysis were applied to seek the variables best distinguishing very pre-term and late pre-term groups. Results Across widespread regions of WM, T2 is longer in very pre-term infants than in late pre-term ones. These effects are more prevalent in regions of WM which myelinate earlier and faster. Similar effects are obtained from DTI, showing that fractional anisotropy (FA) is lower and radial diffusivity higher in the very pre-term group, with a bias towards earlier myelinating regions. Discriminant analysis shows high sensitivity and specificity of combined T2 relaxometry and DTI for the detection of a distinct WM development pathway in very preterm infants. T2 relaxation is anisotropic, depending on the angle between WM fibre and magnetic field, and this effect is modulated by FA. Conclusions Combined T2 relaxometry and DTI characterises specific patterns of retarded WM maturation, at term equivalent age, in infants born very pre-term relative to late pre-term. PMID:29205635

  19. NMR studies of excluded volume interactions in peptide dendrimers.

    PubMed

    Sheveleva, Nadezhda N; Markelov, Denis A; Vovk, Mikhail A; Mikhailova, Maria E; Tarasenko, Irina I; Neelov, Igor M; Lähderanta, Erkki

    2018-06-11

    Peptide dendrimers are good candidates for diverse biomedical applications due to their biocompatibility and low toxicity. The local orientational mobility of groups with different radial localization inside dendrimers is important characteristic for drug and gene delivery, synthesis of nanoparticles, and other specific purposes. In this paper we focus on the validation of two theoretical assumptions for dendrimers: (i) independence of NMR relaxations on excluded volume effects and (ii) similarity of mobilities of side and terminal segments of dendrimers. For this purpose we study 1 H NMR spin-lattice relaxation time, T 1H , of two similar peptide dendrimers of the second generation, with and without side fragments in their inner segments. Temperature dependences of 1/T 1H in the temperature range from 283 to 343 K were measured for inner and terminal groups of the dendrimers dissolved in deuterated water. We have shown that the 1/T 1H temperature dependences of inner groups for both dendrimers (with and without side fragments) practically coincide despite different densities of atoms inside these dendrimers. This result confirms the first theoretical assumption. The second assumption is confirmed by the 1/T 1H temperature dependences of terminal groups which are similar for both dendrimers.

  20. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    PubMed

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P < .01) and the MR group (P < .05) compared with that of the MI group, while there was no significant difference in articular cartilage T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values

  1. Dynamic solvophobic effect and its cooperativity in the hydrogen-bonding liquids studied by dielectric and nuclear magnetic resonance relaxation.

    PubMed

    Yamaguchi, Tsuyoshi; Furuhashi, Hiroki; Matsuoka, Tatsuro; Koda, Shinobu

    2008-12-25

    The reorientational relaxation of solvent molecules in the mixture of nonpolar solutes and hydrogen-bonding liquids including water, alcohols, and amides are studied by dielectric and 2H-nuclear magnetic resonance (NMR) spin-lattice relaxations. The retardation of the reorientational motion of the solvent by weak solute-solvent interaction is observed in all the solvent systems. On the other hand, no clear correlation between the strength of the solute-solvent interaction and the slowing down of the solvent motion is found in N,N-dimethylacetamide, which suggests the importance of the hydrogen bonding in the dynamic solvophobic effect. The cooperativity of the reorientational relaxation is investigated by the comparison between the collective relaxation measured by the dielectric spectroscopy and the single-molecular reorientation determined by NMR. The modification of the dielectric relaxation time caused by the dissolution of the solute is larger than that of the single-molecular reorientational relaxation time in all the solvents studied here. The effect of the static correlation between the dipole moments of different molecules is calculated from the static dielectric constant, and the effect of the dynamic correlation is estimated. The difference in the effects of the solutes on the collective and single-molecular reorientational relaxation is mainly ascribed to the dynamic cooperativity in the cases of water and alcohols, which is consistent with the picture on the dynamic solvophobicity derived by our previous theoretical analysis (Yamaguchi, T.; Matsuoka, T.; Koda, S. J. Chem. Phys. 2004, 120, 7590). On the other hand, the static correlation plays the principal role in the case of N-methylformamide.

  2. Hydration-Dependent Dynamical Modes in Xyloglucan from Molecular Dynamics Simulation of 13C NMR Relaxation Times and Their Distributions.

    PubMed

    Chen, Pan; Terenzi, Camilla; Furó, István; Berglund, Lars A; Wohlert, Jakob

    2018-05-15

    Macromolecular dynamics in biological systems, which play a crucial role for biomolecular function and activity at ambient temperature, depend strongly on moisture content. Yet, a generally accepted quantitative model of hydration-dependent phenomena based on local relaxation and diffusive dynamics of both polymer and its adsorbed water is still missing. In this work, atomistic-scale spatial distributions of motional modes are calculated using molecular dynamics simulations of hydrated xyloglucan (XG). These are shown to reproduce experimental hydration-dependent 13 C NMR longitudinal relaxation times ( T 1 ) at room temperature, and relevant features of their broad distributions, which are indicative of locally heterogeneous polymer reorientational dynamics. At low hydration, the self-diffusion behavior of water shows that water molecules are confined to particular locations in the randomly aggregated XG network while the average polymer segmental mobility remains low. Upon increasing water content, the hydration network becomes mobile and fully accessible for individual water molecules, and the motion of hydrated XG segments becomes faster. Yet, the polymer network retains a heterogeneous gel-like structure even at the highest level of hydration. We show that the observed distribution of relaxations times arises from the spatial heterogeneity of chain mobility that in turn is a result of heterogeneous distribution of water-chain and chain-chain interactions. Our findings contribute to the picture of hydration-dependent dynamics in other macromolecules such as proteins, DNA, and synthetic polymers, and hold important implications for the mechanical properties of polysaccharide matrixes in plants and plant-based materials.

  3. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    NASA Astrophysics Data System (ADS)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  4. 133Cs-NMR study on aligned powder of competing spin chain compound Cs2Cu2Mo3O12

    NASA Astrophysics Data System (ADS)

    Yagi, A.; Matsui, K.; Goto, T.; Hase, M.; Sasaki, T.

    2018-03-01

    S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J 1 = 93 K and the second nearest neighbouring antiferromagnetic J 2 = +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A an = +770 Oe/μB.

  5. Magnetic Resonance T1 Relaxation Time of Venous Thrombus Is Determined by Iron Processing and Predicts Susceptibility to Lysis

    PubMed Central

    Modarai, Bijan; Blume, Ulrike; Humphries, Julia; Patel, Ashish S.; Phinikaridou, Alkystis; Evans, Colin E.; Mattock, Katherine; Grover, Steven P.; Ahmad, Anwar; Lyons, Oliver T.; Attia, Rizwan Q.; Renné, Thomas; Premaratne, Sobath; Wiethoff, Andrea J.; Botnar, René M.; Schaeffter, Tobias; Waltham, Matthew; Smith, Alberto

    2014-01-01

    Background The magnetic resonance longitudinal relaxation time (T1) changes with thrombus age in humans. In this study, we investigate the possible mechanisms that give rise to the T1 signal in venous thrombi and whether changes in T1 relaxation time are informative of the susceptibility to lysis. Methods and Results Venous thrombosis was induced in the vena cava of BALB/C mice, and temporal changes in T1 relaxation time correlated with thrombus composition. The mean T1 relaxation time of thrombus was shortest at 7days following thrombus induction and returned to that of blood as the thrombus resolved. T1 relaxation time was related to thrombus methemoglobin formation and further processing. Studies in inducible nitric oxide synthase (iNOS−/−)–deficient mice revealed that inducible nitric oxide synthase mediates oxidation of erythrocyte lysis–derived iron to paramagnetic Fe3+, which causes thrombus T1 relaxation time shortening. Studies using chemokine receptor-2–deficient mice (Ccr2−/−) revealed that the return of the T1 signal to that of blood is regulated by removal of Fe3+ by macrophages that accumulate in the thrombus during its resolution. Quantification of T1 relaxation time was a good predictor of successful thrombolysis with a cutoff point of <747 ms having a sensitivity and specificity to predict successful lysis of 83% and 94%, respectively. Conclusions The source of the T1 signal in the thrombus results from the oxidation of iron (released from the lysis of trapped erythrocytes in the thrombus) to its paramagnetic Fe3+ form. Quantification of T1 relaxation time appears to be a good predictor of the success of thrombolysis. PMID:23820077

  6. Long-range Li+ dynamics in the lithium argyrodite Li7PSe6 as probed by rotating-frame spin-lattice relaxation NMR.

    PubMed

    Epp, V; Gün, O; Deiseroth, H-J; Wilkening, M

    2013-05-21

    Lithium-rich argyrodites belong to a relatively new group of fast ion conducting solids. They might serve as powerful electrolytes in all-solid-state lithium-ion batteries being, from a medium-term point of view, the key technology when safe energy storage systems have to be developed. Spin-lattice relaxation (SLR) nuclear magnetic resonance (NMR) measurements carried out in the rotating frame of reference turned out to be the method of choice to study Li dynamics in argyrodites. When plotted as a function of the inverse temperature, the SLR rates log10(R1ρ) reveal an asymmetric diffusion-induced rate peak. The rate peak contains information on the Li jump rate, the activation energy of the hopping process as well as correlation effects. In particular, considering the high-temperature flank of the SLR NMR rate peak recorded in the rotating frame of reference, an activation energy of approximately 0.49 eV is found. This value represents long-range lithium jump diffusion in crystalline Li7PSe6. As an example, at 325 K the Li jump rate determined from SLR NMR is in the order of 1.4 × 10(5) s(-1). The pronounced asymmetry of the rate peak R1ρ(1/T) points to correlated Li motion. It is comparable to that which is typically found for structurally disordered materials showing a broad range of correlation times.

  7. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study.

    PubMed

    Balamoody, Sharon; Williams, Tomos G; Wolstenholme, Chris; Waterton, John C; Bowes, Michael; Hodgson, Richard; Zhao, Sha; Scott, Marietta; Taylor, Chris J; Hutchinson, Charles E

    2013-04-01

    The transverse relaxation time (T2) in MR imaging has been identified as a potential biomarker of hyaline cartilage pathology. This study investigates whether MR assessments of T2 are comparable between 3-T scanners from three different vendors. Twelve subjects with symptoms of knee osteoarthritis and one or more risk factors had their knee scanned on each of the three vendors' scanners located in three sites in the U.K. MR data acquisition was based on the United States National Institutes of Health Osteoarthritis Initiative protocol. Measures of cartilage T2 and R2 (inverse of T2) were computed for precision error assessment. Intrascanner reproducibility was also assessed with a phantom (all three scanners) and a cohort of 5 subjects (one scanner only). Whole-organ magnetic resonance (WORM) semiquantitative cartilage scores ranged from minimal to advanced degradation. Intrascanner R2 root-mean-square coefficients of variation (RMSCOV) were low, within the range 2.6 to 6.3% for femoral and tibial regions. For one scanner pair, mean T2 differences ranged from -1.2 to 2.8 ms, with no significant difference observed for the medial tibia and patella regions (p < 0.05). T2 values from the third scanner were systematically lower, producing interscanner mean T2 differences within the range 5.4 to 10.0 ms. Significant interscanner cartilage T2 differences were found and should be accounted for before data from scanners of different vendors are compared.

  8. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2.

    PubMed

    Vaskivskyi, Igor; Gospodaric, Jan; Brazovskii, Serguei; Svetin, Damjan; Sutar, Petra; Goreshnik, Evgeny; Mihailovic, Ian A; Mertelj, Tomaz; Mihailovic, Dragan

    2015-07-01

    Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a "hidden" (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a "Devil's staircase." In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance.

  9. Harsh Corporal Punishment Is Associated With Increased T2 Relaxation Time in Dopamine-Rich Regions

    PubMed Central

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M.; Teicher, Martin H.

    2010-01-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. PMID:20600981

  10. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.

    PubMed

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2010-11-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. Copyright 2010 Elsevier Inc. All rights reserved.

  11. T2 relaxation time measurements are limited in monitoring progression, once advanced cartilage defects at the knee occur

    PubMed Central

    Jungmann, P.M.; Kraus, M.S.; Nardo, L.; Liebl, H.; Alizai, H.; Joseph, G.B.; Liu, F.; Lynch, J.; McCulloch, C.E.; Nevitt, M.C.; Link, T.M.

    2014-01-01

    Purpose To study the natural evolution of cartilage T2 relaxation times in knees with various extents of morphological cartilage abnormalities, assessed with 3T MRI from the Osteoarthritis Initiative. Materials and Methods Right knee MRIs of 245, 45–60 year old individuals without radiographic OA were included. Cartilage was segmented and T2 maps were generated in five compartments (patella, medial and lateral femoral condyle, medial and lateral tibia) at baseline and two-year follow-up. We examined the association of T2 values and two-year change of T2 values with various Whole-Organ MR Imaging Scores (WORMS). Statistical analysis was performed with ANOVA and Students t-tests. Results Higher baseline T2 was associated with more severe cartilage defects at baseline and subsequent cartilage loss (P<0.001). However, longitudinal T2 change was inversely associated with both baseline (P=0.038) and follow-up (P=0.002) severity of cartilage defects. Knees that developed new cartilage defects had smaller increases in T2 than subjects without defects (P=0.045). Individuals with higher baseline T2 showed smaller T2 increases over time (P<0.001). Conclusion An inverse correlation of longitudinal T2 changes versus baseline T2 values and morphological cartilage abnormalities suggests that once morphological cartilage defects occur, T2 values may be limited for evaluating further cartilage degradation. PMID:24038491

  12. 17O solid-state NMR spectroscopy of A2B2O7 oxides: quantitative isotopic enrichment and spectral acquisition?

    PubMed

    Fernandes, Arantxa; Moran, Robert F; Sneddon, Scott; Dawson, Daniel M; McKay, David; Bignami, Giulia P M; Blanc, Frédéric; Whittle, Karl R; Ashbrook, Sharon E

    2018-02-13

    The potential of 17 O NMR spectroscopy for the investigation of A 2 B 2 O 7 ceramic oxides important in the encapsulation of radioactive waste is demonstrated, with post-synthetic enrichment by exchange with 17 O 2 gas. For Y 2 Sn 2 O 7 , Y 2 Ti 2 O 7 and La 2 Sn 2 O 7 pyrochlores, enrichment of the two distinct O species is clearly non quantitative at lower temperatures (∼700 °C and below) and at shorter times, despite these being used in prior work, with preferential enrichment of OA 2 B 2 favoured over that of OA 4 . At higher temperatures, the 17 O NMR spectra suggest that quantitative enrichment has been achieved, but the integrated signal intensities do not reflect the crystallographic 1 : 6 (O1 : O2) ratio until corrected for differences in T 1 relaxation rates and, more importantly, the contribution of the satellite transitions. 17 O NMR spectra of Y 2 Zr 2 O 7 and Y 2 Hf 2 O 7 defect fluorites showed little difference with any variation in enrichment temperature or time, although an increase in the absolute level of enrichment (up to ∼7.5%) was observed at higher temperature. DFT calculations show that the six distinct resonances observed cannot be assigned unambiguously, as each has contributions from more than one of the five possible next nearest neighbour environments. For La 2 Ti 2 O 7 , which adopts a layered perovskite-like structure, little difference in the spectral intensities is observed with enrichment time or temperature, although the highest absolute levels of enrichment (∼13%) were obtained at higher temperature. This work demonstrates that 17 O NMR has the potential to be a powerful probe of local structure and disorder in oxides, but that considerable care must be taken both in choosing the conditions for 17 O enrichment and the experimental acquisition parameters if the necessary quantitative measurements are to be obtained for more complex systems.

  13. Dynamics and intramolecular ligand binding of DtxR studied by MD simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi; Bhattacharya, Nilakshee; Zhou, Huan-Xiang

    2005-11-01

    Diphtheria toxin repressor (DtxR) regulates the expression of the diphtheria toxin gene through intramolecular ligand binding (Wylie et al., Biochemistry 2005, 44:40-51). Protein dynamics is essential to the binding process of the Pro-rich (Pr) ligand to the C-terminal SH3 domain. We present MD and NMR results on the dynamics and ligand interactions of a Pr-SH3 construct of DtxR. NMR relaxation data (T1, T2, and NOE) showed that the Pr ligand is very flexible, suggesting that it undergoes binding/unbinding transitions. A 50-ns MD trajectory of the protein was used to calculate T1, T2, and NOE, reproducing the NMR results for the SH3 domain but not for the Pr segment. During the MD simulation, the ligand stayed bound to the SH3 domain; thus the simulation represented the bound state. The NMR data for the Pr-segment could be explained by assuming that they represented the average behavior of a fast binding/unbinding exchange. Though unbinding was not observed in the MD simulation, the simulation did show large fluctuations of a loop which forms part of the wall of the binding pocket. The fluctuations led to opening up of the binding pocket, thus weakening the interaction with the Pr segment and perhaps ultimately leading to ligand unbinding.

  14. Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses

    NASA Astrophysics Data System (ADS)

    Korb, J.-P.; Xu, Shu; Jonas, J.

    1993-02-01

    A theory of dipolar relaxation by translational diffusion of a nonwetting liquid confined in model porous media is presented. We obtain expressions of the rates of spin-lattice relaxation 1/T1, spin-spin relaxation 1/T2, and spin-lattice relaxation in the rotating frame 1/T1ρ, which depend on the average pore size d. The frequency variations of these rates are intermediate between the two-dimensional and three-dimensional results. At small frequency they vary logarithmically for small d and tend progressively to a constant with increasing d. For small pore sizes we obtain quadratic confinement dependences of these rates (∝1/d2), at variance with the linear (∝1/d) relation coming from the biphasic fast exchange model usually applied for a wetting liquid in porous media. We apply such a theory to the 1H NMR relaxation of methylcyclohexane liquid in sol-gel porous silica glasses with a narrow pore-size distribution. The experiments confirm the theoretical predictions for very weak interacting solvent in porous silica glasses of pore sizes varying in the range of 18.4-87.2 Å and in the bulk. At the limit of small pores, the logarithmic frequency dependencies of 1/T1ρ and 1/T1 observed over several decades of frequency are interpreted with a model of unbounded two-dimensional diffusion in a layered geometry. The leveling off of the 1/T1ρ low-frequency dependence is interpreted in terms of the bounded two-dimensional diffusion due to the finite length L of the pores. An estimate of a finite size of L=100 Å is in excellent agreement with the experimental results of the transmission electron microscopy study of platinium-carbon replicated xerogels.

  15. Pulsed NMRON relaxation measurements and thermometric NMR in the quasi-2 dimensional femomagnet: Mn(COOCH 3) 2·4H 2O

    NASA Astrophysics Data System (ADS)

    Le Gros, M.; Kotlicld, A.; Turrell, B. G.

    1990-08-01

    The measurement of the field dependence of the nuclear spin-lattice relaxation time of 54Mn in the two manganese sites in the quasi-2 dimensional ferromagnet Mn(COOCH 3) 2·4H 20 obtained by the pulsed NMRON technique is reported. This technique allows the observation in low fields of the higher frequency resonance which previously could not be measured by CW methods. The anomaly in the 54Mn relaxation time observed in the 55Mn level crossing regime is discussed, and the thermometric observation of the field dependence and lice width of the resonance lines from the abundant 55Mn spin systems is reported and related to the 54Mn spin-lattice relaxation behavior.

  16. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  17. NMR determination of an incommensurate helical antiferromagnetic structure in EuCo 2 As 2

    DOE PAGES

    Ding, Q. -P.; Higa, N.; Sangeetha, N. S.; ...

    2017-05-05

    In this paper, we report 153Eu, 75As, and 59Co nuclear magnetic resonance (NMR) results on EuCo 2As 2 single crystal. Observations of 153Eu and 75As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature T N = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo 2As 2. Furthermore, based on 59Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73 ± 0.07)2π/c, where c is the c lattice parameter.more » Finally, the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.« less

  18. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation

    NASA Astrophysics Data System (ADS)

    Stupic, K. F.; Elkins, N. D.; Pavlovskaya, G. E.; Repine, J. E.; Meersmann, T.

    2011-07-01

    The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function.

  19. Testing signal enhancement mechanisms in the dissolution NMR of acetone

    NASA Astrophysics Data System (ADS)

    Alonso-Valdesueiro, Javier; Elliott, Stuart J.; Bengs, Christian; Meier, Benno; Levitt, Malcolm H.

    2018-01-01

    In cryogenic dissolution NMR experiments, a substance of interest is allowed to rest in a strong magnetic field at cryogenic temperature, before dissolving the substance in a warm solvent, transferring it to a high-resolution NMR spectrometer, and observing the solution-state NMR spectrum. In some cases, negative enhancements of the 13C NMR signals are observed, which have been attributed to quantum-rotor-induced polarization. We show that in the case of acetone (propan-2-one) the negative signal enhancements of the methyl 13C sites may be understood by invoking conventional cross-relaxation within the methyl groups. The 1H nuclei acquire a relative large net polarization through thermal equilibration in a magnetic field at low temperature, facilitated by the methyl rotation which acts as a relaxation sink; after dissolution, the 1H magnetization slowly returns to thermal equilibrium at high temperature, in part by cross-relaxation processes, which induce a transient negative polarization of nearby 13C nuclei. We provide evidence for this mechanism experimentally and theoretically by saturating the 1H magnetization using a radiofrequency field pulse sequence before dissolution and comparing the 13 C magnetization evolution after dissolution with the results obtained from a conventional 1 H-13 C cross relaxation model of the CH3 moieties in acetone.

  20. NMR studies of spin dynamics in cuprates

    NASA Astrophysics Data System (ADS)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  1. MR fingerprinting using the quick echo splitting NMR imaging technique.

    PubMed

    Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A

    2017-03-01

    The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage.

    PubMed

    Schooler, J; Kumar, D; Nardo, L; McCulloch, C; Li, X; Link, T M; Majumdar, S

    2014-01-01

    To investigate longitudinal changes in laminar and spatial distribution of knee articular cartilage magnetic resonance imaging (MRI) T1ρ and T2 relaxation times, in individuals with and without medial compartment cartilage defects. All subjects (at baseline n = 88, >18 years old) underwent 3-Tesla knee MRI at baseline and annually thereafter for 3 years. The MR studies were evaluated for presence of cartilage defects (modified Whole-Organ Magnetic Resonance Imaging Scoring - mWORMS), and quantitative T1ρ and T2 relaxation time maps. Subjects were segregated into those with (mWORMS ≥2) and without (mWORMS ≤1) cartilage lesions at the medial tibia (MT) or medial femur (MF) at each time point. Laminar (bone and articular layer) and spatial (gray level co-occurrence matrix - GLCM) distribution of the T1ρ and T2 relaxation time maps were calculated. Linear regression models (cross-sectional) and Generalized Estimating Equations (GEEs) (longitudinal) were used. Global T1ρ, global T2 and articular layer T2 relaxation times at the MF, and global and articular layer T2 relaxation times at the MT, were higher in subjects with cartilage lesions compared to those without lesions. At the MT global Trelaxation times were higher at each time point in subjects with lesions. MT T1ρ and T2 became progressively more heterogeneous than control compartments over the course of the study. Spatial distribution of T1ρ and T2 relaxation time maps in medial knee OA using GLCM technique may be a sensitive indicator of cartilage deterioration, in addition to whole-compartment relaxation time data. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.

    PubMed

    Liu, Y H; Hawk, R M; Ramaprasad, S

    1995-01-01

    RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.

  4. Development of an 19F NMR method for the analysis of fluorinated acids in environmental water samples.

    PubMed

    Ellis, D A; Martin, J W; Muir, D C; Mabury, S A

    2000-02-15

    This investigation was carried out to evaluate 19F NMR as an analytical tool for the measurement of trifluoroacetic acid (TFA) and other fluorinated acids in the aquatic environment. A method based upon strong anionic exchange (SAX) chromatography was also optimized for the concentration of the fluoro acids prior to NMR analysis. Extraction of the analyte from the SAX column was carried out directly in the NMR solvent in the presence of the strong organic base, DBU. The method allowed the analysis of the acid without any prior cleanup steps being involved. Optimal NMR sensitivity based upon T1 relaxation times was investigated for seven fluorinated compounds in four different NMR solvents. The use of the relaxation agent chromium acetylacetonate, Cr(acac)3, within these solvent systems was also evaluated. Results show that the optimal NMR solvent differs for each fluorinated analyte. Cr(acac)3 was shown to have pronounced effects on the limits of detection of the analyte. Generally, the optimal sensitivity condition appears to be methanol-d4/2M DBU in the presence of 4 mg/mL of Cr-(acac)3. The method was validated through spike and recovery for five fluoro acids from environmentally relevant waters. Results are presented for the analysis of TFA in Toronto rainwater, which ranged from < 16 to 850 ng/L. The NMR results were confirmed by GC-MS selected-ion monitoring of the fluoroanalide derivative.

  5. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2

    PubMed Central

    Vaskivskyi, Igor; Gospodaric, Jan; Brazovskii, Serguei; Svetin, Damjan; Sutar, Petra; Goreshnik, Evgeny; Mihailovic, Ian A.; Mertelj, Tomaz; Mihailovic, Dragan

    2015-01-01

    Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a “hidden” (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a “Devil’s staircase.” In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance. PMID:26601218

  6. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    PubMed

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P < 0.05 at cluster level, false discovery rate). ROI analysis revealed that T 1 values in the nucleus accumbens linearly decreased with aging (P = 0.0016), supporting the VBA result. T 1 values in the thalamus (P < 0.0001), substantia nigra (P = 0.0003), and globus pallidus (P < 0.0001) had a best fit to quadratic curves, with the minimum T 1 values observed between 30 and 50 years of age. Age-related changes in T 1 relaxation time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  7. The Application of Stress-Relaxation Test to Life Assessment of T911/T22 Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, Tieshan; Zhao, Jie; Cheng, Congqian; Li, Huifang

    2016-03-01

    A dissimilar weld metal was obtained through submerged arc welding of a T911 steel to a T22 steel, and its creep property was explored by stress-relaxation test assisted by some conventional creep tests. The creep rate information of the stress-relaxation test was compared to the minimum and the average creep rates of the conventional creep test. Log-log graph showed that the creep rate of the stress-relaxation test was in a linear relationship with the minimum creep rate of the conventional creep test. Thus, the creep rate of stress-relaxation test could be used in the Monkman-Grant relation to calculate the rupture life. The creep rate of the stress-relaxation test was similar to the average creep rate, and thereby the rupture life could be evaluated by a method of "time to rupture strain." The results also showed that rupture life which was assessed by the Monkman-Grant relation was more accurate than that obtained through the method of "time to rupture strain."

  8. H2BC: a new technique for NMR analysis of complex carbohydrates.

    PubMed

    Petersen, Bent O; Vinogradov, Evguenii; Kay, William; Würtz, Peter; Nyberg, Nils T; Duus, Jens Ø; Sørensen, Ole W

    2006-03-20

    It is demonstrated that the H2BC NMR pulse sequence (J. Am. Chem. Soc.2005, 127, 6154, Magn. Reson. Chem.2005, 43, 971-974) offers unambiguous assignments and significant simplification of NMR spectra of large and complex carbohydrates compared to other techniques for the establishment of correlations over more than one bond. H2BC almost exclusively correlates protons and proton-bearing carbon spins separated by two covalent bonds and is independent of occasionally vanishing (2)J(CH) coupling constants, which alleviates the problem of missing two-bond correlations in HMBC spectra. H2BC also solves the problem of distinguishing two- and three-bond correlations in HSQC-TOCSY or HMBC. It is a further asset of H2BC that the experiment is significantly shorter than HMBC and HSQC-TOCSY, and hence less sensitive to transverse relaxation. The H2BC experiment is demonstrated on an approximately 30-residue oligosaccharide from Francisella victoria.

  9. Spin dynamics in the single-ion magnet [Er(W5O18) 2 ] 9 -

    NASA Astrophysics Data System (ADS)

    Mariani, M.; Borsa, F.; Graf, M. J.; Sanna, S.; Filibian, M.; Orlando, T.; Sabareesh, K. P. V.; Cardona-Serra, S.; Coronado, E.; Lascialfari, A.

    2018-04-01

    In this work we present a detailed NMR and μ+SR investigation of the spin dynamics in the new hydrated sodium salt containing the single-ion magnet [Er(W5O18) 2 ] 9 -. The 1HNMR absorption spectra at various applied magnetic fields present a line broadening on decreasing temperature which indicates a progressive spin freezing of the single-molecule magnetic moments. The onset of quasistatic local magnetic fields, due to spin freezing, is observed also in the muon relaxation curves at low temperature. Both techniques yield a local field distribution of the order of 0.1-0.2 T, which appears to be of dipolar origin. On decreasing the temperature, a gradual loss of the 1HNMR signal intensity is observed, a phenomenon known as wipe-out effect. The effect is analyzed quantitatively on the basis of a simple model which relies on the enhancement of the NMR spin-spin, T2-1, relaxation rate due to the slowing down of the magnetic fluctuations. Measurements of spin-lattice relaxation rate T1-1 for 1HNMR and of the muon longitudinal relaxation rate λ show an increase as the temperature is lowered. However, while for the NMR case the signal is lost before reaching the very slow fluctuation region, the muon spin-lattice relaxation λ can be followed until very low temperatures and the characteristic maximum, reached when the electronic spin fluctuation frequency becomes of the order of the muon Larmor frequency, can be observed. At high temperatures, the data can be well reproduced with a simple model based on a single correlation time τ =τ0exp (Δ /T ) for the magnetic fluctuations. However, to fit the relaxation data for both NMR and μ+SR over the whole temperature and magnetic field range, one has to use a more detailed model that takes into account spin-phonon transitions among the E r3 + magnetic sublevels. A good agreement for both proton NMR and μ+SR relaxation is obtained, which confirms the validity of the energy level scheme previously calculated from an

  10. Direct 1H NMR evidence of spin-rotation coupling as a source of para → ortho-H2 conversion in diamagnetic solvents.

    PubMed

    Terenzi, Camilla; Bouguet-Bonnet, Sabine; Canet, Daniel

    2017-04-21

    At ambient temperature, conversion from 100% enriched para-hydrogen (p-H 2 ; singlet state) to ortho-hydrogen (o-H 2 ; triplet state) leads necessarily to the thermodynamic equilibrium proportions: 75% of o-H 2 and 25% of p-H 2 . When p-H 2 is dissolved in a diamagnetic organic solvent, conversion is very slow and can be considered as arising from nuclear spin relaxation phenomena. A first relaxation mechanism, specific to the singlet state and involving a combination of auto-correlation and cross correlation spectral densities, can be retained: randomly fluctuating magnetic fields due to inter-molecular dipolar interactions. We demonstrate here that (i) this dipolar mechanism is not sufficient for accounting for the para→ortho conversion rate, (ii) spin-rotation interaction, an intra-molecular mechanism, behaves similarly to random-field interaction and, thus, may be involved in the singlet relaxation rate. Also, as the para→ortho conversion is monitored by proton nuclear magnetic resonance (NMR) of dissolved o-H 2 (p-H 2 is NMR-silent), one has to account for H 2 exchange between the liquid phase and the gas phase within the NMR tube, as well as for dissolution effects. Experimental evidence of the above statements is brought here in the case of two organic solvents: acetone-d 6 and carbon disulfide. The observed temperature dependence of the para→ortho conversion rate shows that spin-rotation can be the dominant contribution to the p-H 2 relaxation rate in the absence of tangible dipolar interactions. Our findings shed new light on the "mysterious" mechanism of the para→ortho conversion which has been searched for several decades.

  11. Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR.

    PubMed

    Aihara, Yuichi; Sonai, Atsuo; Hattori, Mineyuki; Hayamizu, Kikuko

    2006-12-14

    To understand the behaviors of phosphoric acids in fuel cells, the ion conduction mechanisms of phosphoric acids in condensed states without free water and in a monomer state with water were studied by measuring the ionic conductivity (sigma) using AC impedance, thermal properties, and self-diffusion coefficients (D) and spin-lattice relaxation times (T1) with multinuclear NMR. The self-diffusion coefficient of the protons (H+ or H3O+), H2O, and H located around the phosphate were always larger than the diffusion coefficients of the phosphates and the disparity increased with increasing phosphate concentration. The diffusion coefficients of the samples containing D2O paralleled those in the protonated samples. Since the 1H NMR T1 values exhibited a minimum with temperature, it was possible to determine the correlation times and they were found to be of nanosecond order for a distance of nanometer order for a flip. The agreement of the ionic conductivities measured directly and those calculated from the diffusion coefficients indicates that the ion conduction obeys the Nernst-Einstein equation in the condensed phosphoric acids. The proton diffusion plays a dominant role in the ion conduction, especially in the condensed phosphoric acids.

  12. Meat quality and cooking attributes of thawed pork with different low field NMR T(21).

    PubMed

    Li, Chunbao; Liu, Dengyong; Zhou, Guanghong; Xu, Xinglian; Qi, Jun; Shi, Peilei; Xia, Tianlan

    2012-10-01

    A relationship of low field NMR T(2) components to meat quality and cooking attributes of pork was investigated. Longissimus muscle was removed from 23 pig carcasses at 24h postmortem for meat quality measurements and cooking test. Frozen samples were classified into three groups by LF-NMR T(21) of thawed samples: A (<40ms), B (40-44ms) and C (>44ms). There were significant differences (P<0.05) in pH, lightness (L* value) and pressing loss among the three groups. Cooking time to attain 70°C was slightly lower in group C than the other groups. Shear force value of cooked samples was not affected by T(21). The component T(21) correlated (P<0.05) with L* value, muscle pH and pressing loss, while L* value correlated (P<0.05) with thawing loss and muscle pH. Therefore, combined LF-NMR and color measurements could be a good way to differentiate water holding capacity of pork. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Desktop NMR spectroscopy for real-time monitoring of an acetalization reaction in comparison with gas chromatography and NMR at 9.4 T.

    PubMed

    Singh, Kawarpal; Danieli, Ernesto; Blümich, Bernhard

    2017-12-01

    Monitoring of chemical reactions in real-time is in demand for process control. Different methods such as gas chromatography (GC), mass spectroscopy, infrared spectroscopy, and nuclear magnetic resonance (NMR) are used for that purpose. The current state-of-the-art compact NMR systems provide a useful method to employ with various reaction conditions for studying chemical reactions inside the fume hood at the chemical workplace. In the present study, an acetalization reaction was investigated with compact NMR spectroscopy in real-time. Acetalization is used for multistep synthesis of the variety of organic compounds to protect particular chemical groups. A compact 1 T NMR spectrometer with a permanent magnet was employed to monitor the acid catalyzed acetalization of the p-nitrobenzaldehyde with ethylene glycol. The concentrations of both reactant and product were followed by peak integrals in single-scan 1 H NMR spectra as a function of time. The reaction conditions were varied in terms of temperature, agitation speed, catalyst loading, and feed concentrations in order to determine the activation energy with the help of a pseudo-homogeneous kinetic model. For low molar ratios of aldehyde and glycol, the equilibrium conversions were lower than for the stoichiometric ratio. Increasing catalyst concentration leads to faster conversion. The data obtained with low-field NMR spectroscopy were compared with data from GC and NMR spectroscopy at 9.4 T acquired in batch mode by extracting samples at regular time intervals. The reaction kinetics followed by either method agreed well. The activation energies for forward and backward reactions were determined by real-time monitoring with compact NMR at 1 T were 48 ± 5 and 60 ± 4 kJ/mol, respectively. The activation energies obtained with gas chromatography for forward and backward reactions were 48 ± 4 and 51 ± 4 kJ/mol. The equilibrium constant decreases with increasing temperature as expected for an

  14. Low-field nuclear magnetic resonance characterization of organic content in shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Seymour, Joseph D.; Kirkland, Catherine; Vogt, Sarah J.

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Longitudinal T1 and transverse T2 relaxation time measurements made using LF-NMR on conventional reservoir systems provides information on rock porosity, pore size distributions, and fluid types and saturations in some cases. Recent improvements in LF-SNMR instrument electronics have made it possible to apply these methods to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids, therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus some types of T2 relaxation during correlation measurements allows for improved resolution of solid phase photons. LF-NMR measurements of T1 and T2 relaxation time correlations were carried out on raw oil shale samples from resources around the world. These shales vary widely in mineralogy, total organic carbon (TOC) content and kerogen type. NMR results were correlcated with Leco TOC and geochemical data obtained from Rock-Eval. There is excellent correlation between NMR data and programmed pyrolysis parameters, particularly TOC and S2, and predictive capability is also good. To better understand the NMR response, the 2D NMR spectra were compared to similar NMR measurements made using high-field (HF) NMR equipment.

  15. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  16. Structural and Nutritional Properties of Pasta from Triticum monococcum and Triticum durum Species. A Combined ¹H NMR, MRI, and Digestibility Study.

    PubMed

    Pasini, Gabriella; Greco, Fulvia; Cremonini, Mauro A; Brandolini, Andrea; Consonni, Roberto; Gussoni, Maristella

    2015-05-27

    The aim of the present study was to characterize the structure of two different types of pasta, namely Triticum turgidum ssp. durum (cv. Saragolla) and Triticum monococcum ssp. monococcum (cv. Monlis), under different processing conditions. MRI analysis and NMR spectroscopy (i.e., T1 and T2 NMR relaxation times and diffusion parameters) were conducted on pasta, and (1)H NMR spectroscopic analysis of the chemical compounds released by pasta samples during the cooking process was performed. In addition, starch digestibility (enzimatically determined) was also investigated. The NMR results indicated that Saragolla pasta has a more compact structure, ascribed to pasta network and in particular to different technological gluten properties, that mainly determine the lower ability of Monlis pasta in binding water. These results correlate well with the lower rate of starch hydrolysis measured for Monlis pasta compared to Saragolla when both are dried at high temperature.

  17. Anomalous T2 relaxation in normal and degraded cartilage.

    PubMed

    Reiter, David A; Magin, Richard L; Li, Weiguo; Trujillo, Juan J; Pilar Velasco, M; Spencer, Richard G

    2016-09-01

    To compare the ordinary monoexponential model with three anomalous relaxation models-the stretched Mittag-Leffler, stretched exponential, and biexponential functions-using both simulated and experimental cartilage relaxation data. Monte Carlo simulations were used to examine both the ability of identifying a given model under high signal-to-noise ratio (SNR) conditions and the accuracy and precision of parameter estimates under more modest SNR as would be encountered clinically. Experimental transverse relaxation data were analyzed from normal and enzymatically degraded cartilage samples under high SNR and rapid echo sampling to compare each model. Both simulation and experimental results showed improvement in signal representation with the anomalous relaxation models. The stretched exponential model consistently showed the lowest mean squared error in experimental data and closely represents the signal decay over multiple decades of the decay time (e.g., 1-10 ms, 10-100 ms, and >100 ms). The stretched exponential parameter αse showed an inverse correlation with biochemically derived cartilage proteoglycan content. Experimental results obtained at high field suggest potential application of αse as a measure of matrix integrity. Simulation reflecting more clinical imaging conditions, indicate the ability to robustly estimate αse and distinguish between normal and degraded tissue, highlighting its potential as a biomarker for human studies. Magn Reson Med 76:953-962, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.

    PubMed

    Yuwen, Tairan; Skrynnikov, Nikolai R

    2014-04-01

    (15)N R2 relaxation is one of the most informative experiments for characterization of intrinsically disordered proteins (IDPs). Small changes in nitrogen R2 rates are often used to determine how IDPs respond to various biologically relevant perturbations such as point mutations, posttranslational modifications and weak ligand interactions. However collecting high-quality (15)N relaxation data can be difficult. Of necessity, the samples of IDPs are often prepared with low protein concentration and the measurement time can be limited because of rapid sample degradation. Furthermore, due to hardware limitations standard experiments such as (15)N spin-lock and CPMG can sample the relaxation decay only to ca. 150ms. This is much shorter than (15)N T2 times in disordered proteins at or near physiological temperature. As a result, the sampling of relaxation decay profiles in these experiments is suboptimal, which further lowers the precision of the measurements. Here we report a new implementation of the proton-decoupled (PD) CPMG experiment which allows one to sample (15)N R2 relaxation decay up to ca. 0.5-1s. The new experiment has been validated through comparison with the well-established spin-lock measurement. Using dilute samples of denatured ubiquitin, we have demonstrated that PD-CPMG produces up to 3-fold improvement in the precision of the data. It is expected that for intrinsically disordered proteins the gains may be even more substantial. We have also shown that this sequence has a number of favorable properties: (i) the spectra are recorded with narrow linewidth in nitrogen dimension; (ii) (15)N offset correction is small and easy to calculate; (iii) the experiment is immune to various spurious effects arising from solvent exchange; (iv) the results are stable with respect to pulse miscalibration and rf field inhomogeneity; (v) with minimal change, the pulse sequence can also be used to measure R2 relaxation of (15)N(ε) spins in arginine side chains. We

  19. Unilateral NMR applied to the conservation of works of art.

    PubMed

    Del Federico, Eleonora; Centeno, Silvia A; Kehlet, Cindie; Currier, Penelope; Stockman, Denise; Jerschow, Alexej

    2010-01-01

    In conventional NMR, samples from works of art in sizes above those considered acceptable in the field of art conservation would have to be removed to place them into the bore of large superconducting magnets. The portable permanent-magnet-based systems, by contrast, can be used in situ to study works of art, in a noninvasive manner. One of these portable NMR systems, NMR-MOUSE(R), measures the information contained in one pixel in an NMR image from a region of about 1 cm(2), which can be as thin as 2-3 microm. With such a high depth resolution, profiles through the structures of art objects can be measured to characterize the materials, the artists' techniques, and the deterioration processes. A novel application of the technique to study a deterioration process and to follow up a conservation treatment is presented in which micrometer-thick oil stains on paper are differentiated and characterized. In this example, the spin-spin relaxation T (2) of the stain is correlated to the iodine number and to the degree of cross-linking of the oil, parameters that are crucial in choosing an appropriate conservation treatment to remove them. It is also shown that the variation of T (2) over the course of treatments with organic solvents can be used to monitor the progress of the conservation interventions. It is expected that unilateral NMR in combination with multivariate data analysis will fill a gap within the set of high-spatial-resolution techniques currently available for the noninvasive analysis of materials in works of art, where procedures to study the inorganic components are currently far more developed than those suitable for the study of the organic components.

  20. Producing >60,000-fold room-temperature 89Y NMR signal enhancement

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Jindal, Ashish; Merritt, Matthew; Malloy, Craig; Sherry, A. Dean; Kovacs, Zoltan

    2011-03-01

    89 Y in chelated form is potentially valuable in medical imaging because its chemical shift is sensitive to local factors in tumors such as pH. However, 89 Y has a low gyromagnetic ratio γn thus its NMR signal is hampered by low thermal polarization. Here we show that we can enhance the room-temperature NMR signal of 89 Y up to 65,000 times the thermal signal, which corresponds to 10 % nuclear polarization, via fast dissolution dynamic nuclear polarization (DNP). The relatively long spin-lattice relaxation time T1 (~ 500 s) of 89 Y translates to a long polarization lifetime. The 89 Y NMR enhancement is optimized by varying the glassing matrices and paramagnetic agents as well as doping the samples with a gadolinium relaxation agent. Co-polarization of 89 Y-DOTA with a 13 C sample shows that both nuclear spin species acquire the same spin temperature Ts , consistent with thermal mixing mechanism of DNP. The high room-temperature NMR signal enhancement places 89 Y, one of the most challenging nuclei to detect by NMR, in the list of viable magnetic resonance imaging (MRI) agents when hyperpolarized under optimized conditions. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.

  1. Sensitivity enhancement and contrasting information provided by free radicals in oriented-sample NMR of bicelle-reconstituted membrane proteins.

    PubMed

    Tesch, Deanna M; Nevzorov, Alexander A

    2014-02-01

    Elucidating structure and topology of membrane proteins (MPs) is essential for unveiling functionality of these important biological constituents. Oriented-sample solid-state NMR (OS-NMR) is capable of providing such information on MPs under nearly physiological conditions. However, two dimensional OS-NMR experiments can take several days to complete due to long longitudinal relaxation times combined with the large number of scans to achieve sufficient signal sensitivity in biological samples. Here, free radicals 5-DOXYL stearic acid, TEMPOL, and CAT-1 were added to uniformly (15)N-labeled Pf1 coat protein reconstituted in DMPC/DHPC bicelles, and their effect on the longitudinal relaxation times (T1Z) was investigated. The dramatically shortened T1Z's allowed for the signal gain per unit time to be used for either: (i) up to a threefold reduction of the total experimental time at 99% magnetization recovery or (ii) obtaining up to 74% signal enhancement between the control and radical samples during constant experimental time at "optimal" relaxation delays. In addition, through OS-NMR and high-field EPR studies, free radicals were able to provide positional constraints in the bicelle system, which provide a description of the location of each residue in Pf1 coat protein within the bicellar membranes. This information can be useful in the determination of oligomerization states and immersion depths of larger membrane proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. 1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution.

    PubMed

    Aksnes, D W; Kimtys, L

    2004-01-01

    The pore size distributions of four controlled pore glasses and three silica gels with nominal diameters in the range 4-24 nm were determined by measuring the 1H and 2H NMR signals from the non-frozen fraction of confined benzene and perdeuterated benzene as a function of temperature, in steps of ca. 0.1-1 K. The liquid and solid components of the adsorbate were distinguished, on the basis of the spin-spin relaxation time T2, by employing a spin-echo sequence. The experimental intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of benzene and perdeuterated benzene confined in the four controlled pore glasses, with pore radius R, follows the simplified Gibbs-Thompson equation DeltaT=kp/R with a kp value of 44 K nm. As expected, the kp value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius, while the transition width determines the shape of the pore size distribution curve. The excellent agreement between the results from the 1H and 2H measurements shows that the effect of the background absorption from protons in physisorbed water and silanol groups is negligible under the experimental conditions used. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us using the N2 sorption technique. The NMR method, which is complementary to the conventional gas sorption method, is particularly appropriate for studying pore sizes in the mesoporous range.

  3. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    PubMed

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  4. A system for NMR stark spectroscopy of quadrupolar nuclei.

    PubMed

    Tarasek, Matthew R; Kempf, James G

    2010-05-13

    Electrostatic influences on NMR parameters are well accepted. Experimental and computational routes have been long pursued to understand and utilize such Stark effects. However, existing approaches are largely indirect informants on electric fields, and/or are complicated by multiple causal factors in spectroscopic change. We present a system to directly measure quadrupolar Stark effects from an applied electric (E) field. Our apparatus and applications are relevant in two contexts. Each uses a radiofrequency (rf) E field at twice the nuclear Larmor frequency (2omega(0)). The mechanism is a distortion of the E-field gradient tensor that is linear in the amplitude (E(0)) of the rf E field. The first uses 2omega(0) excitation of double-quantum transitions for times similar to T(1) (the longitudinal spin relaxation time). This perturbs the steady state distribution of spin population. Nonlinear analysis versus E(0) can be used to determine the Stark response rate. The second context uses POWER (perturbations observed with enhanced resolution) NMR. Here, coherent, short-time (<T(2), the transverse relaxation rate) excitation at 2omega(0) is synchronized with an NMR multiple-pulse line-narrowing sequence. Linear analysis of the Stark response is then possible: a quadrupolar multiplet with splitting proportional to E(0). The POWER sequence converts the 2omega(0) interaction from off-diagonal/nonsecular to the familiar diagonal form (I(z)(2)) of static quadrupole interactions. Meanwhile, background contributions to line width are averaged to zero, providing orders-of-magnitude resolution enhancement for correspondingly high sensitivity to the Stark effect. Using GaAs as a test case with well-defined Stark response, we provide the first demonstration of the 2omega(0) effect at high-field (14.1 T) and room temperature. This, along with the simplicity of our apparatus and spectral approach, may facilitate extensions to a wider array of material and molecular systems. The

  5. A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil

    PubMed Central

    2015-01-01

    Accurate excited-state quantum chemical calculations on 2-thiouracil, employing large active spaces and up to quadruple-ζ quality basis sets in multistate complete active space perturbation theory calculations, are reported. The results suggest that the main relaxation path for 2-thiouracil after photoexcitation should be S2 → S1 → T2T1, and that this relaxation occurs on a subpicosecond time scale. There are two deactivation pathways from the initially excited bright S2 state to S1, one of which is nearly barrierless and should promote ultrafast internal conversion. After relaxation to the S1 minimum, small singlet–triplet energy gaps and spin–orbit couplings of about 130 cm–1 are expected to facilitate intersystem crossing to T2, from where very fast internal conversion to T1 occurs. An important finding is that 2-thiouracil shows strong pyramidalization at the carbon atom of the thiocarbonyl group in several excited states. PMID:26284285

  6. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    PubMed

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Measurement and Visualization of Tight Rock Exposed to CO2 Using NMR Relaxometry and MRI

    PubMed Central

    Wang, Haitao; Lun, Zengmin; Lv, Chengyuan; Lang, Dongjiang; Ji, Bingyu; Luo, Ming; Pan, Weiyi; Wang, Rui; Gong, Kai

    2017-01-01

    Understanding mechanisms of oil mobilization of tight matrix during CO2 injection is crucial for CO2 enhanced oil recovery (EOR) and sequestration engineering design. In this study exposure behavior between CO2 and tight rock of the Ordos Basin has been studied experimentally by using nuclear magnetic resonance transverse relaxation time (NMR T2) spectrum and magnetic resonance imaging (MRI) under the reservoir pressure and temperature. Quantitative analysis of recovery at the pore scale and visualization of oil mobilization are achieved. Effects of CO2 injection, exposure times and pressure on recovery performance have been investigated. The experimental results indicate that oil in all pores can be gradually mobilized to the surface of rock by CO2 injection. Oil mobilization in tight rock is time-consuming while oil on the surface of tight rock can be mobilized easily. CO2 injection can effectively mobilize oil in all pores of tight rock, especially big size pores. This understanding of process of matrix exposed to CO2 could support the CO2 EOR in tight reservoirs. PMID:28281697

  8. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  9. What is the most suitable MR signal index for quantitative evaluation of placental function using Half-Fourier acquisition single-shot turbo spin-echo compared with T2-relaxation time?

    PubMed

    Kameyama, Kyoko Nakao; Kido, Aki; Himoto, Yuki; Moribata, Yusaku; Minamiguchi, Sachiko; Konishi, Ikuo; Togashi, Kaori

    2018-06-01

    Background Half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging is now widely used for placental and fetal imaging because of its rapidity and low sensitivity to fetal movement. If placental dysfunction is also predicted by quantitative value obtained from HASTE image, then it might be beneficial for evaluating placental wellbeing. Purpose To ascertain the most suitable magnetic resonance (MR) signal indexes reflecting placental function using HASTE imaging. Material and Methods This retrospective study included 37 consequent patients who had given informed consent to MR imaging (MRI) examinations. All had undergone MRI examinations between February 2014 and June 2015. First, the correlation between T2-relaxation time of normal placenta and gestational age (GA) was examined. Second, correlation between signal intensity ratios (SIRs) using HASTE imaging and placental T2-relaxation time were assessed. The SIRs were calculated using placental signal intensity (SI) relative to the SI of the amniotic fluid, fetal ocular globes, gastric fluid, bladder, maternal psoas major muscles, and abdominal subcutaneous adipose tissue. Results Among the 37 patients, the correlation between T2-relaxation time of the 25 normal placentas and GA showed a moderately strong correlation (Spearman rho = -0.447, P = 0.0250). The most significant correlation with placental T2-relaxation time was observed with the placental SIR relative to the maternal psoas major muscles (SIR pl./psoas muscle ) (Spearman rho = -0.531, P = 0.0007). Conclusion This study revealed that SIR pl./psoas muscle showed the best correlation to placental T2-relaxation time. Results show that SIR pl./psoas muscle might be optimal as a clinically available quantitative index of placental function.

  10. Two-dimensional NMR spectroscopy of 13C methanol at less than 5 μT

    NASA Astrophysics Data System (ADS)

    Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon-Kyu; Kim, Kiwoong

    2014-09-01

    Two-dimensional (2D) spectroscopy is one of the most significant applications of nuclear magnetic resonance (NMR). Here, we demonstrate that the 2D NMR can be performed even at a low magnetic field of less than 5 μT, which is ten times less than the Earth’s magnetic field. The pulses used in the experiment were composed of circularly polarized fields for coherent as well as wideband excitations. Since the excitation band covers the entire spectral range, the simplest two-pulse sequence delivered the full 2D spectrum. At 5 μT, methanol with 13C enriched up to 99% belongs to a strongly coupled regime, and thus its 2D spectrum exhibits complicated spectral correlations, which can be exploited as a fingerprint in chemical analysis. In addition, we show that, with compressive sensing, the acquisition of the 2D spectrum can be accelerated to take only 45% of the overall duration.

  11. NMR investigation of gaseous SF6 confinement into EPDM rubber.

    PubMed

    Neutzler, Sven; Terekhov, Maxim; Hoepfel, Dieter; Oellrich, Lothar Rainer

    2005-02-01

    The confinement process of gaseous sulphurhexafluoride (SF6) in ethylene-propylene-diene (EPDM) rubber was investigated by spectroscopic and spatially resolved NMR techniques. A strong elongation of T1 relaxation time of SF6 and a decrease of the diffusion coefficient were found. A possible explanation may be the strong restriction of molecular mobility due to interactions between SF6 and active centers of the EPDM.

  12. Magnetic resonance imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels.

    PubMed

    Oztop, Mecit H; Rosenberg, Moshe; Rosenberg, Yael; McCarthy, Kathryn L; McCarthy, Michael J

    2010-10-01

    Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.

  13. NMR study of B-2p Fermi-level density of states in the transition metal diborides

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Lai, W. J.

    2005-04-01

    We present a systematic study of the AlB2-type transition metal diborides by measuring the 11B NMR spin-lattice relaxation rate on TiB2, VB2, ZrB2, NbB2, HfB2, as well as TaB2. For all studied materials, the observed relaxation at B nuclei is mainly due to the p-electrons. The comparison with theoretical calculations allows the experimental determination of the partial B-2p Fermi-level density of states (DOS). In addition, the extracted B-2p Fermi-level DOS values in TiB2, ZrB2, and HfB are consistently smaller than in VB2, NbB2, and TaB2. We connect this trend to the rigid-band scenario raised by band structure calculations.

  14. Dielectric relaxation in Li2SO4 in the intermedia-temperature regime

    NASA Astrophysics Data System (ADS)

    Diosa, J. E.; Vargas, R. A.; Fernández, M. E.; Albinsson, I.; Mellander, B.-E.

    2005-08-01

    The dielectric permittivity of polycrystalline Li2SO4 was measured from 5 Hz to 13 MHz and over the temperature range 235-460 °C. The corrected imaginary part of permittivity, , and its real part vs. frequency clearly show a new dielectric relaxation around fmax = 2 × 104 Hz at T = 256 °C, which shifts to higher frequencies (1 MHz) as the temperatures increases. The relaxation frequency (calculated from the peak position of ) vs. reciprocal T shows an activated relaxation process with activation energy Ea= 0.9 eV, which is very close to that derived from the dc conductivity, E (0.87 eV). We suggest that this dielectric relaxation could be due to the Li+ jump and SO4- reorientation that cause distortion and change of the local lattice polarizability inducing dipoles like LiSO4-.

  15. Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Chemometrics for Determination of Fat Content in Commercial Products of Milk Powder.

    PubMed

    Nascimento, Paloma Andrade Martins; Barsanelli, Paulo Lopes; Rebellato, Ana Paula; Pallone, Juliana Azevedo Lima; Colnago, Luiz Alberto; Pereira, Fabíola Manhas Verbi

    2017-03-01

    This study shows the use of time-domain (TD)-NMR transverse relaxation (T2) data and chemometrics in the nondestructive determination of fat content for powdered food samples such as commercial dried milk products. Most proposed NMR spectroscopy methods for measuring fat content correlate free induction decay or echo intensities with the sample's mass. The need for the sample's mass limits the analytical frequency of NMR determination, because weighing the samples is an additional step in this procedure. Therefore, the method proposed here is based on a multivariate model of T2 decay, measured with Carr-Purcell-Meiboom-Gill pulse sequence and reference values of fat content. The TD-NMR spectroscopy method shows high correlation (r = 0.95) with the lipid content, determined by the standard extraction method of Bligh and Dyer. For comparison, fat content determination was also performed using a multivariate model with near-IR (NIR) spectroscopy, which is also a nondestructive method. The advantages of the proposed TD-NMR method are that it (1) minimizes toxic residue generation, (2) performs measurements with high analytical frequency (a few seconds per analysis), and (3) does not require sample preparation (such as pelleting, needed for NIR spectroscopy analyses) or weighing the samples.

  16. Non-invasive evaluation of blood oxygen saturation and hematocrit from T1 and T2 relaxation times: In-vitro validation in fetal blood.

    PubMed

    Portnoy, Sharon; Seed, Mike; Sled, John G; Macgowan, Christopher K

    2017-12-01

    We propose an analytical method for calculating blood hematocrit (Hct) and oxygen saturation (sO 2 ) from measurements of its T 1 and T 2 relaxation times. Through algebraic substitution, established two-compartment relationships describing R1=T1-1 and R2=T2-1 as a function of hematocrit and oxygen saturation were rearranged to solve for Hct and sO 2 in terms of R 1 and R 2 . Resulting solutions for Hct and sO 2 are the roots of cubic polynomials. Feasibility of the method was established by comparison of Hct and sO 2 estimates obtained from relaxometry measurements (at 1.5 Tesla) in cord blood specimens to ground-truth values obtained by blood gas analysis. Monte Carlo simulations were also conducted to assess the effect of T 1 , T 2 measurement uncertainty on precision of Hct and sO 2 estimates. Good agreement was observed between estimated and ground-truth blood properties (bias = 0.01; 95% limits of agreement = ±0.13 for Hct and sO 2 ). Considering the combined effects of biological variability and random measurement noise, we estimate a typical uncertainty of ±0.1 for Hct, sO 2 estimates. Results demonstrate accurate quantification of Hct and sO 2 from T 1 and T 2 . This method is applicable to noninvasive fetal vessel oximetry-an application where existing oximetry devices are unusable or require risky blood-sampling procedures. Magn Reson Med 78:2352-2359, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Plaster mortars with polymer fibers and additives investigated by 1H NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Mustea, Andrei; Manea, Daniela L.; Jumate, Elena; Orbán, Yvette A.; Fechete, Radu

    2017-12-01

    Plaster mortars with polypropylene (pp) fibers and/or additives were investigated by 1H NMR relaxometry. Two recipes are proposed and are based on a commercially available mortar or are self-prepared and have different content of polypropylene fibers, which play the role of reinforcement agent, and/or Sika additive which is a waterproofing agent. The distributions of transverse relaxation times, T2 were obtained at 1, 3, 7 and 28 days after preparation. For the majority of T2-distributions four peaks are observed and, are associated with the hydration water (to the mineralogical components) and water in small, medium and large pores. The evolution in time, from 1 to 28 days, of the T2-distributions indicates the effects of pp fibers and Sika additive in the formation of pore microstructure. The degree of homogeneity of prepared receipts was evaluated from the relative peak-width and compared with mechanical measurements. Finally, we shown that the inverse of the transverse relaxation time values, T2-1, characteristic to the hydration water depends linearly on the resistance at compression measured for the 1÷28 days period, proving the important role of hydrations to the mechanical properties of the final product.

  18. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less

  19. Novel electrolytes for use in new and improved batteries: An NMR study

    NASA Astrophysics Data System (ADS)

    Berman, Marc B.

    This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.

  20. Monte Carlo based NMR simulations of open fractures in porous media

    NASA Astrophysics Data System (ADS)

    Lukács, Tamás; Balázs, László

    2014-05-01

    According to the basic principles of nuclear magnetic resonance (NMR), a measurement's free induction decay curve has an exponential characteristic and its parameter is the transversal relaxation time, T2, given by the Bloch equations in rotating frame. In our simulations we are observing that particular case when the bulk's volume is neglectable to the whole system, the vertical movement is basically zero, hence the diffusion part of the T2 relation can be editted out. This small-apertured situations are common in sedimentary layers, and the smallness of the observed volume enable us to calculate with just the bulk relaxation and the surface relaxation. The simulation uses the Monte-Carlo method, so it is based on a random-walk generator which provides the brownian motions of the particles by uniformly distributed, pseudorandom generated numbers. An attached differential equation assures the bulk relaxation, the initial and the iterated conditions guarantee the simulation's replicability and enable having consistent estimations. We generate an initial geometry of a plain segment with known height, with given number of particles, the spatial distribution is set to equal to each simulation, and the surface-volume ratio remains at a constant value. It follows that to the given thickness of the open fracture, from the fitted curve's parameter, the surface relaxivity is determinable. The calculated T2 distribution curves are also indicating the inconstancy in the observed fracture situations. The effect of varying the height of the lamina at a constant diffusion coefficient also produces characteristic anomaly and for comparison we have run the simulation with the same initial volume, number of particles and conditions in spherical bulks, their profiles are clear and easily to understand. The surface relaxation enables us to estimate the interaction beetwen the materials of boundary with this two geometrically well-defined bulks, therefore the distribution takes as a

  1. T2 mapping in patellar chondromalacia.

    PubMed

    Ruiz Santiago, Fernando; Pozuelo Calvo, Rocío; Almansa López, Julio; Guzmán Álvarez, Luis; Castellano García, María Del Mar

    2014-06-01

    To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia. This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16-45 years). MRI of 97 knees were performed in these patients at 1.5T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet-proximal-lateral (EPL), external facet-proximal-central (EPC), internal facet-proximal-central (IPC), internal facet-proximal-medial (IPM), 4 in the middle section (external facet-middle-lateral (EML), external facet-middle-central (EMC), internal facet-middle-central (IMC), internal facet-middle-medial (IMM) and 4 distal (external facet-distal-lateral (EDL), external facet-distal-central (EDC), internal facet-distal-central (IDC), internal facet-distal-medial (IDM). T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (p<0.05), except in the internal distal facet (IDC and IDM), EPC, EDL, and IMM. Severe chondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (p<0.05). Steepest increase in T2 values of patellar cartilage occurs in early stages of patellar cartilage degeneration. Progression of morphologic changes of chondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the central area of the middle section, where T2 values remain increased. Copyright © 2014 Elsevier

  2. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  3. An NMR thermometer for cryogenic magic-angle spinning NMR: The spin-lattice relaxation of 127I in cesium iodide

    NASA Astrophysics Data System (ADS)

    Sarkar, Riddhiman; Concistrè, Maria; Johannessen, Ole G.; Beckett, Peter; Denning, Mark; Carravetta, Marina; al-Mosawi, Maitham; Beduz, Carlo; Yang, Yifeng; Levitt, Malcolm H.

    2011-10-01

    The accurate temperature measurement of solid samples under magic-angle spinning (MAS) is difficult in the cryogenic regime. It has been demonstrated by Thurber et al. (J. Magn. Reson., 196 (2009) 84-87) [10] that the temperature dependent spin-lattice relaxation time constant of 79Br in KBr powder can be useful for measuring sample temperature under MAS over a wide temperature range (20-296 K). However the value of T1 exceeds 3 min at temperatures below 20 K, which is inconveniently long. In this communication, we show that the spin-lattice relaxation time constant of 127I in CsI powder can be used to accurately measure sample temperature under MAS within a reasonable experimental time down to 10 K.

  4. The eigenmode perspective of NMR spin relaxation in proteins

    NASA Astrophysics Data System (ADS)

    Shapiro, Yury E.; Meirovitch, Eva

    2013-12-01

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D1, the local (probe-related) diffusion tensor, D2, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the 15N-1H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D2 ≫ D1), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the global motion. The effects of local

  5. Conformational Entropy from NMR Relaxation in Proteins: The SRLS Perspective.

    PubMed

    Tchaicheeyan, Oren; Meirovitch, Eva

    2017-02-02

    Conformational entropy changes associated with bond-vector motions in proteins contribute to the free energy of ligand-binding. To derive such contributions, we apply the slowly relaxing local structure (SRLS) approach to NMR relaxation from 15 N-H bonds or C-CDH 2 moieties of several proteins in free and ligand-bound form. The spatial restraints on probe motion, which determine the extent of local order, are expressed in SRLS by a well-defined potential, u(θ). The latter yields the orientational probability density, P eq  = exp(-u(θ)), and hence the related conformational entropy, Ŝ = -∫P eq (θ) ln[P eq (θ)] sin θ dθ (Ŝ is "entropy" in units of k B T, and θ represents the bond-vector orientation in the protein). SRLS is applied to 4-oxalocrotonate tautomerase (4-OT), the acyl-coenzyme A binding protein (ACBP), the C-terminal SH2 domain of phospholipase C γ 1 (PLC γ 1C SH2), the construct dihydrofolate reductase-E:folate (DHFR-E:folate), and their complexes with appropriate ligands, to determine ΔŜ. Eglin C and its V18A and V34A mutants are also studied. Finally, SRLS is applied to the structurally homologous proteins TNfn3 and FNfn10 to characterize within its scope the unusual "dynamics" of the TNfn3 core. Upon ligand-binding, the backbones of 4-OT, ACBP, and PLC γ 1C SH2 show limited, increased, and decreased order, respectively; the cores of DHFR-E:folate and PLC γ 1C SH2 become more ordered. The V18A (V34A) mutation increases (decreases) the order within the eglin C core. The core of TNfn3 is less ordered structurally and more mobile kinetically. Secondary structure versus loops, surface-binding versus core insertion, and ligand size emerged as being important in rationalizing ΔŜ. The consistent and general tool developed herein is expected to provide further insights in future work.

  6. Low-field NMR logging sensor for measuring hydraulic parameters of model soils

    NASA Astrophysics Data System (ADS)

    Sucre, Oscar; Pohlmeier, Andreas; Minière, Adrien; Blümich, Bernhard

    2011-08-01

    SummaryKnowing the exact hydraulic parameters of soils is very important for improving water management in agriculture and for the refinement of climate models. Up to now, however, the investigation of such parameters has required applying two techniques simultaneously which is time-consuming and invasive. Thus, the objective of this current study is to present only one technique, i.e., a new non-invasive method to measure hydraulic parameters of model soils by using low-field nuclear magnetic resonance (NMR). Hereby, two model clay or sandy soils were respectively filled in a 2 m-long acetate column having an integrated PVC tube. After the soils were completely saturated with water, a low-field NMR sensor was moved up and down in the PVC tube to quantitatively measure along the whole column the initial water content of each soil sample. Thereafter, both columns were allowed to drain. Meanwhile, the NMR sensor was set at a certain depth to measure the water content of that soil slice. Once the hydraulic equilibrium was reached in each of the two columns, a final moisture profile was taken along the whole column. Three curves were subsequently generated accordingly: (1) the initial moisture profile, (2) the evolution curve of the moisture depletion at that particular depth, and (3) the final moisture profile. All three curves were then inverse analyzed using a MATLAB code over numerical data produced with the van Genuchten-Mualem model. Hereby, a set of values ( α, n, θr and θs) was found for the hydraulic parameters for the soils under research. Additionally, the complete decaying NMR signal could be analyzed through Inverse Laplace Transformation and averaged on the 1/ T2 space. Through measurement of the decay in pure water, the effect on the relaxation caused by the sample could be estimated from the obtained spectra. The migration of the sample-related average <1/ T2, Sample> with decreasing saturation speaks for a enhancement of the surface relaxation as

  7. The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T)

    PubMed Central

    2015-01-01

    1H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective 1H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process. PMID:24528143

  8. The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T).

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-03-05

    (1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective (1)H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.

  9. Plastering mortar with antibacterial and antifungal properties studied by 1H NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Jumate, E.; Aciu, C.; Manea, D. L.; Moldovan, D.; Chelcea, R.; Fechete, R.

    2017-12-01

    The Plastering mortars, with good antibacterial (in particular Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Penicillium chrysogenum) properties, were studied by 1D NMR relaxometry and internal humidity measurements. Three recipes based on plastering mortar with variable content (0, 5 and 10 %) of Ag/ZnO nanopowders and with adequate physical characteristics regarding the mechanical strengths (CS IV), good adhesion to the substrate and low water absorption by capillarity (W2) were considered. The distributions of transverse relaxation times T2 were measured at 2 h after preparation (for mortar pasta) and then for the same samples at 2, 7, and 28 days during the hydration of mineralogical components. The T2 distributions are characterized by four components associated with hydration water and water in three types of pores of different dimension. The dimension of pores formed during hydration process are strongly dependent on the Ag/ZnO nanopowders content but finally at 28 days the pores distributions, as resulted from the T2 distributions, looks similar. Finally, the transverse relaxation ratio was linearly correlated to the compressive strength and the hydration behaviour during 132 days measured with a dedicated humidity sensor embedded inside sampled was discussed.

  10. Proton NMR study of α-MnH 0.06

    NASA Astrophysics Data System (ADS)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  11. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  12. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  13. Capillary trapping quantification in sandstones using NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Connolly, Paul R. J.; Vogt, Sarah J.; Iglauer, Stefan; May, Eric F.; Johns, Michael L.

    2017-09-01

    Capillary trapping of a non-wetting phase arising from two-phase immiscible flow in sedimentary rocks is critical to many geoscience scenarios, including oil and gas recovery, aquifer recharge and, with increasing interest, carbon sequestration. Here we demonstrate the successful use of low field 1H Nuclear Magnetic Resonance [NMR] to quantify capillary trapping; specifically we use transverse relaxation time [T2] time measurements to measure both residual water [wetting phase] content and the surface-to-volume ratio distribution (which is proportional to pore size] of the void space occupied by this residual water. Critically we systematically confirm this relationship between T2 and pore size by quantifying inter-pore magnetic field gradients due to magnetic susceptibility contrast, and demonstrate that our measurements at all water saturations are unaffected. Diffusion in such field gradients can potentially severely distort the T2-pore size relationship, rendering it unusable. Measurements are performed for nitrogen injection into a range of water-saturated sandstone plugs at reservoir conditions. Consistent with a water-wet system, water was preferentially displaced from larger pores while relatively little change was observed in the water occupying smaller pore spaces. The impact of cyclic wetting/non-wetting fluid injection was explored and indicated that such a regime increased non-wetting trapping efficiency by the sequential occupation of the most available larger pores by nitrogen. Finally the replacement of nitrogen by CO2 was considered; this revealed that dissolution of paramagnetic minerals from the sandstone caused by its exposure to carbonic acid reduced the in situ bulk fluid T2 relaxation time on a timescale comparable to our core flooding experiments. The implications of this for the T2-pore size relationship are discussed.

  14. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    PubMed

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and Trelaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  15. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  16. NMR spectroscopic properties (1H at 500 MHz) of deuterated* ribonucleotide-dimers ApU*, GpC*, partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*), d(ApT*), d(GpC*) and their comparison with natural counterparts (1H-NMR window).

    PubMed

    Földesi, A; Nilson, F P; Glemarec, C; Gioeli, C; Chattopadhyaya, J

    1993-02-01

    Pure 1'#,2',3',4'#,5',5''-2H6-ribonucleoside derivatives 10-14, 1'#,2',2'',3',4'#,5',5''-2H7-2'-deoxynucleoside blocks 15-18 and their natural-abundance counterparts were used to assemble partially deuterated ribonucleotide-dimers (* indicates deuteration at 1'#,2',3',4'#,5',5''(2H6)): ApU* 21, GpC* 22 and partially deuterated 2'-deoxyribonucleotide-dimers d(TpA*) 23, d(ApT*) 25, d(GpC*) 26 (* indicates deuteration at 1'#,2',2'',3',4'#,5',5''(2H7)) according to the procedure described by Földesi et al. (Tetrahedron, in press). These five partially deuterated oligonucleotides were subsequently compared with their corresponding natural-abundance counterparts by 500 MHz 1H-NMR spectroscopy to evaluate the actual NMR simplifications achieved in the non-deuterated part (1H-NMR window) as a result of specific deuterium incorporation. Detailed one-dimensional 1H-NMR (500 MHz), two-dimensional correlation spectra (DQF-COSY and TOCSY) and deuterium isotope effect on the chemical shifts of oligonucleotides have been presented.

  17. Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.

    2014-01-01

    Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.

  18. Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd L.; Merritt, Matthew E.; Malloy, Craig R.; Sherry, A. Dean; van Tol, Johan; Song, Likai; Kovacs, Zoltan

    2013-02-01

    The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio γ such as 13C and 15N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest 13C nuclear polarization (approximately 6% for [1-13C]ethyl acetate) at 3.35 T and 1.4 K was found to be around 40 mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of 13C and 15N compounds with long spin-lattice relaxation time T1. In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.

  19. Relaxation-compensated CEST-MRI at 7 T for mapping of creatine content and pH--preliminary application in human muscle tissue in vivo.

    PubMed

    Rerich, Eugenia; Zaiss, Moritz; Korzowski, Andreas; Ladd, Mark E; Bachert, Peter

    2015-11-01

    The small biomolecule creatine is involved in energy metabolism. Mapping of the total creatine (mostly PCr and Cr) in vivo has been done with chemical shift imaging. Chemical exchange saturation transfer (CEST) allows an alternative detection of creatine via water MRI. Living tissue exhibits CEST effects from different small metabolites, including creatine, with four exchanging protons of its guanidinium group resonating about 2 ppm from the water peak and hence contributing to the amine proton CEST peak. The intermediate exchange rate (≈ 1000 Hz) of the guanidinium protons requires high RF saturation amplitude B1. However, strong B1 fields also label semi-solid magnetization transfer (MT) effects originating from immobile protons with broad linewidths (~kHz) in the tissue. Recently, it was shown that endogenous CEST contrasts are strongly affected by the MT background as well as by T1 relaxation of the water protons. We show that this influence can be corrected in the acquired CEST data by an inverse metric that yields the apparent exchange-dependent relaxation (AREX). AREX has some useful linearity features that enable preparation of both concentration, and--by using the AREX-ratio of two RF irradiation amplitudes B1--purely exchange-rate-weighted CEST contrasts. These two methods could be verified in phantom experiments with different concentration and pH values, but also varying water relaxation properties. Finally, results from a preliminary application to in vivo CEST imaging data of the human calf muscle before and after exercise are presented. The creatine concentration increases during exercise as expected and as confirmed by (31)P NMR spectroscopic imaging. However, the estimated concentrations obtained by our method were higher than the literature values: cCr,rest=24.5±3.74mM to cCr,ex=38.32±13.05mM. The CEST-based pH method shows a pH decrease during exercise, whereas a slight increase was observed by (31)P NMR spectroscopy. Copyright © 2015

  20. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion

    PubMed Central

    Meinhold, Derrick W.; Wright, Peter E.

    2011-01-01

    Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use 15N, , and 13CO NMR R2 relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which is invisible in NMR spectra. Measurements of R2 dispersion for residues contacted by the F-helix region in the native (N) structure reveal a transient state formed by local unfolding of helix F and undocking from the protein core. A similar state was detected at pH 4.75–4.95 and determined to be an on-pathway intermediate (I1) in a linear three-state unfolding scheme (N⇆I1⇆MG) leading to a transiently populated molten globule (MG) state. The slowest steps in unfolding and refolding are N → I1 (36 s-1) and MG → I1 (26 s-1), respectively. Differences in chemical shift between N and I1 are very small, except in regions adjacent to helix F, showing that their core structures are similar. Chemical shift changes between the N and MG states, obtained from R2 dispersion, reveal that the transient MG state is structurally similar to the equilibrium MG observed previously at high temperature and low pH. Analysis of MG state chemical shifts shows the location of residual helical structure in the transient intermediate and identifies regions that unfold or rearrange into nonnative structure during the N → MG transition. The experiments also identify regions of energetic frustration that “crack” during unfolding and impede the refolding process. PMID:21562212

  1. In vivo PO2 imaging in the porcine model with perfluorocarbon F-19 NMR at low field.

    PubMed

    Thomas, S R; Pratt, R G; Millard, R W; Samaratunga, R C; Shiferaw, Y; McGoron, A J; Tan, K K

    1996-01-01

    Quantitative pO2 imaging in vivo has been evaluated utilizing F-19 NMR in the porcine model at 0.14 T for the lungs, liver, and spleen following i.p. administration of the commercial perfluorotributylamine (FC-43)-based perfluorocarbon (PFC) emulsion, Oxypherol-ET. Calculated T1 maps obtained from a two spin-echo saturation recovery/inversion recovery (SR/IR) pulse protocol are converted into quantitative pO2 images through a temperature-dependent calibration curve relating longitudinal relaxation rate (1/T1) to pO2. The uncertainty in pO2 for a T1 measurement error of +/- 5% as encountered in establishing the calibration curves ranges from +/- 10 torr (+/- 40%) at 25 torr to +/- 16 torr (+/- 11%) at 150 torr for FC-43 (37 degrees C). However, additional uncertainties in T1 dependent upon the signal-to-noise ratio may be introduced through the SR/IR calculated T1 pulse protocol, which might severely degrade the pO2 accuracy. Correlation of the organ image calculated pO2 with directly measured pO2 in airway or blood pools in six pigs indicate that the PFC resident in lung is in near equilibrium with arterialized blood and not with airway pO2, suggesting a location distal to the alveolar epithelium. For the liver, the strongest correlation implying equilibrium was evident for venous blood (hepatic vein). For the spleen, arterial blood pO2 (aorta) was an unreliable predictor of pO2 for PFC resident in splenic tissue. The results have demonstrated the utility and defined the limiting aspects quantitative pO2 imaging in vivo using F-19 MRI of sequestered PFC materials.

  2. The effect of a broad activation energy distribution on deuteron spin-lattice relaxation.

    PubMed

    Ylinen, E E; Punkkinen, M; Birczyński, A; Lalowicz, Z T

    2015-10-01

    Deuteron NMR spectra and spin-lattice relaxation were studied experimentally in zeolite NaY(2.4) samples containing 100% or 200% of CD3OH or CD3OD molecules of the total coverage of Na atoms in the temperature range 20-150K. The activation energies describing the methyl and hydroxyl motions show broad distributions. The relaxation data were interpreted by improving a recent model (Stoch et al., 2013 [16]) in which the nonexponential relaxation curves are at first described by a sum of three exponentials with adjustable relaxation rates and weights. Then a broad distribution of activation energies (the mean activation energy A0 and the width σ) was assumed for each essentially different methyl and hydroxyl position. The correlation times were calculated from the Arrhenius equation (containing the pre-exponential factor τ0), individual relaxation rates computed and classified into three classes, and finally initial relaxation rates and weights for each class formed. These were compared with experimental data, motional parameters changed slightly and new improved rates and weights for each class calculated, etc. This method was improved by deriving for the deuterons of the A and E species methyl groups relaxation rates, which depend explicitly on the tunnel frequency ωt. The temperature dependence of ωt and of the low-temperature correlation time were obtained by using the solutions of the Mathieu equation for a threefold potential. These dependencies were included in the simulations and as the result sets of A0, σ and τ0 obtained, which describe the methyl and hydroxyl motions in different positions in zeolite. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Relationship between pore geometric characteristics and SIP/NMR parameters observed for mudstones

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Robinson, T.

    2017-12-01

    The reliable estimation of permeability remains one of the most challenging problems in hydrogeological characterization. Cost effective, non-invasive geophysical methods such as spectral induced polarization (SIP) and nuclear magnetic resonance (NMR) offer an alternative to traditional sampling methods as they are sensitive to the mineral surfaces and pore spaces that control permeability. We performed extensive physical characterization, SIP and NMR geophysical measurements on fractured rock cores extracted from a mudstone site in an effort to compare 1) the pore size characterization determined from traditional and geophysical methods and 2) the performance of permeability models based on these methods. We focus on two physical characterizations that are well-correlated with hydraulic properties: the pore volume normalized surface area (Spor) and an interconnected pore diameter (Λ). We find the SIP polarization magnitude and relaxation time are better correlated with Spor than Λ, the best correlation of these SIP measures for our sample dataset was found with Spor divided by the electrical formation factor (F). NMR parameters are, similarly, better correlated with Spor than Λ. We implement previously proposed mechanistic and empirical permeability models using SIP and NMR parameters. A sandstone-calibrated SIP model using a polarization magnitude does not perform well while a SIP model using a mean relaxation time performs better in part by more sufficiently accounting for the effects of fluid chemistry. A sandstone-calibrated NMR permeability model using an average measure of the relaxation time does not perform well, presumably due to small pore sizes which are either not connected or contain water of limited mobility. An NMR model based on the laboratory determined portions of the bound versus mobile portions of the relaxation distribution performed reasonably well. While limitations exist, there are many opportunities to use geophysical data to predict

  4. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  5. Proton spin-lattice relaxation in low-dimensional ferromagnetic copper halides (abstract)

    NASA Astrophysics Data System (ADS)

    Marzke, R. F.; Haines, D. N.; Raffaelle, D. P.; Chamberlin, R. V.; Ramakrishna, B. L.

    1991-04-01

    1H spin-lattice relaxation times have been measured as functions of temperature and frequency in powder samples of the two-dimensional ferromagnetic compound (CH3NH3)2CuCl4 and in single crystals of the one-dimensional ferromagnets (C6H11NH3)CuB3 (CHAB), (C6H11NH3)CuCl3 (CHAC), and (C4H12N)CuCl3 (TMCuC). Sample temperatures were varied between 4.2 and 298 K, and NMR frequencies ranging from 12.6 to 54.0 MHz were used. Widths and shapes of the lines, typically several hundred Gauss broad at low temperatures, were recorded. The dependence of T1 upon magnetic field orientation was measured for the one-dimensional (1D) single crystal samples. Each compound showed basically two temperature regimes of different spin-lattice relaxation behavior, separated by a narrow transition temperature region. From 4.2 K, T1 in the compounds decreased strongly as the temperature was raised, a behavior expected for second-order Raman processes [K. M. Kopinga, A. M. C. Tinus, W. J. M. de Jonge, and G. C. de Vries, Phys. Rev. B 36, 5398 (1987)]. At the transition temperature region the decrease of T1 ceased, and T1 began to increase weakly and quasilinearly to 300 K. In the three 1D compounds, the transition regions occurred well below temperatures corresponding to 1D exchange interaction strengths in CHAC (˜70 K), CHAB (˜55 K), and TMCuC (˜30 K), and also above the compounds' 3D ordering temperatures (˜1.5 K and below). We noted a correlation between the T1 transition temperatures and temperatures at which spin dimensionality ``crossovers'' are observed in magnetic susceptibilities, going from Heisenberg to non-Heisenberg behavior as the temperature is decreased. The latter occur at approximately 10 K in CHAC. TMCuC, which has the most isotropic J tensor of these compounds and also the lowest weak-strong T1 transition, does not show a spin dimensionality crossover in susceptibility down to 2 K, but based on our NMR results one would be expected at or below this temperature. Further

  6. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  7. Slow magnetic relaxation in a dimeric Mn2Ca2 complex enabled by the large Mn(iii) rhombicity.

    PubMed

    Arauzo, Ana; Bartolomé, Elena; Benniston, Andrew C; Melnic, Silvia; Shova, Sergiu; Luzón, Javier; Alonso, Pablo J; Barra, Anne-Laure; Bartolomé, Juan

    2017-01-17

    In this paper we present the characterization of a complex with the formula [Mn 2 Ca 2 (hmp) 6 (H 2 O) 4 (CH 3 CN) 2 ](ClO 4 ) 4 (1), where hmp-H = 2-(hydroxymethyl)pyridine. Compound 1 crystallizes in the monoclinic space group C2/c with the cation lying on an inversion centre. Static magnetic susceptibility, magnetization and heat capacity measurements reflect a unique Mn(iii) valence state, and single-ion ligand field parameters with remarkable large rhombic distortion (D/k B = -6.4 K, E/k B = -2.1 K), in good agreement with the high-field electron paramagnetic resonance experiments. At low temperature Mn 2 Ca 2 cluster behaves as a system of ferromagnetically coupled (J/k B = 1.1 K) Mn dimers with a S T = 4 and m T = ±4 ground state doublet. Frequency dependent ac susceptibility measurements reveal the slow magnetic relaxation characteristic of a single molecule magnet (SMM) below T = 4 K. At zero magnetic field, an Orbach-type spin relaxation process (τ ∼ 10 -5 s) with an activation energy E a = 5.6 K is observed, enabled by the large E/D rhombicity of the Mn(iii) ions. Upon the application of a magnetic field, a second, very slow process (τ ∼ 0.2 s) is observed, attributed to a direct relaxation mechanism with enhanced relaxation time owing to the phonon bottleneck effect.

  8. Molecular motions in glassy crystal cyanoadamantane : a proton spin-lattice relaxation study

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Decressain, R.; Sahour, M.; Cochon, E.

    1992-02-01

    Cyanoadamantane C{10}H{15}CN exhibits four different solid phases : two cubic plastic (I and I'), one cubic glassy (Ig) and one monoclinic ordered (II). In cubic plastic phases (I, I') three types of motion coexist : a uniaxial rotation of the molecule around its C—CequivN axis, a tumbling reorientation of this dipolar axis between the <~ngle 001rangle directions and a vacancy self-diffusion. In the cubic glassy state (Ig) the tumbling motion is frozen and therefore only the uniaxial rotation survives. In the ordered phase (II), the molecules only perform a 3-fold uniaxial rotation among identical positions. These different molecular motions in the four solid phases have been studied by the analysis of the T_{1 z} and T_{1 ρ} spin-lattice relaxation times in ^1H-NMR. The derived residence time are compared, when possible, to values previously deduced from quasi-elastic neutron scattering, dielectric relaxation and second moment of the ^1H-NMR lineshape. Le cyanoadamantane C{10}H{15}CN possède quatre phases solides différentes : deux plastiques cubiques (I et I'), une vitreuse cubique (Ig) et une ordonnée monoclinique (II). Dans les phases plastiques cubiques (I, I') trois types de mouvements coexistent : une rotation uniaxiale de la molécule autour de son axe C—CequivN, un basculement de cet axe dipolaire entre les directions <~ngle 001rangle et une diffusion moléculaire. Dans l'état vitreux cubique (Ig), le mouvement de basculement est gelé et seule la rotation uniaxiale subsiste. Enfin dans la phase ordonnée (II), les molécules effectuent une rotation uniaxiale d'ordre 3 entre positions indiscernables. Ces différents mouvements dans les quatre phases solides ont été évalués par l'analyse des temps de relaxation spin-réseau T_{1 z} et T_{1 ρ} en ^1H-RMN. Les temps de résidence qui en sont déduits sont comparés (lorsque cela est possible) aux valeurs correspondantes déduites précédemment par diffusion quasi-élastique des neutrons, par

  9. A biomarker-responsive T2ex MRI contrast agent.

    PubMed

    Daryaei, Iman; Randtke, Edward A; Pagel, Mark D

    2017-04-01

    This study investigated a fundamentally new type of responsive MRI contrast agent for molecular imaging that alters T 2 exchange (T 2ex ) properties after interacting with a molecular biomarker. The contrast agent Tm-DO3A-oAA was treated with nitric oxide (NO) and O 2 . The R 1 and R 2 relaxation rates of the reactant and product were measured with respect to concentration, temperature, and pH. Chemical exchange saturation transfer (CEST) spectra of the reactant and product were acquired using a 7 Tesla (T) MRI scanner and analyzed to estimate the chemical exchange rates and r 2ex relaxivities. The reaction of Tm-DO3A-oAA with NO and O 2 caused a 6.4-fold increase in the r 2 relaxivity of the agent, whereas r 1 relaxivity remained unchanged, which demonstrated that Tm-DO3A-oAA is a responsive T 2ex agent. The effects of pH and temperature on the r 2 relaxivities of the reactant and product supported the conclusion that the product's benzimidazole ligand caused the agent to have a fast chemical exchange rate relative to the slow exchange rate of the reactant's ortho-aminoanilide ligand. T 2ex MRI contrast agents are a new type of responsive agent that have good detection sensitivity and specificity for detecting a biomarker, which can serve as a new tool for molecular imaging. Magn Reson Med 77:1665-1670, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. 13C-NMR spectra and contact time experiment for Skjervatjern fulvic and humic acids

    USGS Publications Warehouse

    Malcolm, R.L.

    1992-01-01

    The T(CP) and T(1p) time constants for Skjervatjern fulvic and humic acids were determined to be short with T(CP) values ranging from 0.14 ms to 0.53 ms and T(1p) values ranging from 3.3 ms to 5.9 ms. T(CP) or T(1p) time constants at a contact time of 1 ms are favorable for quantification of 13C-NMR spectra. Because of the short T(CP) values, correction factors for signal intensity for various regions of the 13C-NMR spectra would be necessary at contact times greater than 1.1 ms or less than 0.9 ms. T(CP) and T(1p) values have a limited non-homogeneity within Skjervatjern fulvic and humic acids. A pulse delay or repeat time of 700 ms is more than adequate for quantification of these 13C-NMR spectra. Paramagnetic effects in these humic substances are precluded due to low inorganic ash contents, low contents of Fe, Mn, and Co, and low organic free-radical contents. The observed T(CP) values suggest that all the carbon types in Skjervatjern fulvic and humic acids are fully cross-polarized before significant proton relaxation occurs. The 13C-NMR spectra for Skjervatjern fulvic acid is similar to most aquatic fulvic acids as it is predominantly aliphatic, low in aromaticity (fa1 = 24), low in phenolic content, high in carboxyl content, and has no resolution of a methoxyl peak. The 13C-NMR spectra for Skjervatjern humic acid is also similar to most other aquatic humic acids in that it is also predominantly aliphatic, high in aromaticity (fa1 = 38), moderate in phenolic content, moderate in carboxyl content, and has a clear resolution of a methoxyl carbon region. After the consideration of the necessary 13C-NMR experimental conditions, these spectra are considered to be quantitative. With careful consideration of the previously determined 13C-NMR experimental conditions, quantitative spectra can be obtained for humic substances in the future from the HUMEX site. Possible changes in humic substances due to acidification should be determined from 13C-NMR data.

  11. Assessing the effects of subject motion on T2 relaxation under spin tagging (TRUST) cerebral oxygenation measurements using volume navigators.

    PubMed

    Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar

    2017-12-01

    Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high T1-weighted MR imaging capability.

    PubMed

    Fedorenko, Svetlana V; Grechkina, Svetlana L; Mustafina, Asiya R; Kholin, Kirill V; Stepanov, Alexey S; Nizameev, Irek R; Ismaev, Ildus E; Kadirov, Marsil K; Zairov, Rustem R; Fattakhova, Alfia N; Amirov, Rustem R; Soloveva, Svetlana E

    2017-01-01

    The present work introduces deliberate synthesis of Gd(III)-doped silica nanoparticles with high relaxivity at magnetic field strengths below 1.5T. Modified microemulsion water-in-oil procedure was used in order to achieve superficial localization of Gd(III) complexes within 40-55nm sized silica spheres. The relaxivities of the prepared nanoparticles were measured at 0.47, 1.41 and 1.5T with the use of both NMR analyzer and whole body NMR scanner. Longitudinal relaxivities of the obtained silica nanoparticles reveal significant dependence on the confinement mode, changing from 4.1 to 49.6mM -1 s -1 at 0.47T when the localization of Gd(III) complexes changes from core to superficial zones of the silica spheres. The results highlight predominant contribution of the complexes located close to silica/water interface to the relaxivity of the nanoparticles. Low effect of blood proteins on the relaxivity in the aqueous colloids of the nanoparticles was exemplified by serum bovine albumin. T 1 - weighted MRI data indicate that the nanoparticles provide strong positive contrast at 1.5T, which along with low cytotoxicity effect make a good basis for their application as contrast agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.

    2011-03-01

    Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.

  14. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  15. NMR studies of the incommensurate helical antiferromagnet EuCo 2 P 2 : Determination of antiferromagnetic propagation vector

    DOE PAGES

    Higa, Nonoka; Ding, Qing -Ping; Yogi, Mamoru; ...

    2017-07-06

    Recently, Q.-P. Ding et al. reported that their nuclear magnetic resonance (NMR) study on EuCo 2As 2 successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out 153Eu, 31P, and 59Co NMR measurements on the helical antiferromagnet EuCo 2P 2 with an AFM ordering temperature T N = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by 153Eu and 31P NMR spectra on single-crystalline EuCo 2P 2 in zero magneticmore » field at 1.6 K and its external magnetic field dependence. Furthermore, based on 59Co NMR data in both the paramagnetic and incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0,0,0.73±0.09)2π/c, where c is the c-axis lattice parameter. As a result, the temperature dependence of k is also discussed.« less

  16. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.

    PubMed

    Zapp, Jascha; Domsch, Sebastian; Weingärtner, Sebastian; Schad, Lothar R

    2017-05-01

    To characterize the reversible transverse relaxation in pulmonary tissue and to study the benefit of a quadratic exponential (Gaussian) model over the commonly used linear exponential model for increased quantification precision. A point-resolved spectroscopy sequence was used for comprehensive sampling of the relaxation around spin echoes. Measurements were performed in an ex vivo tissue sample and in healthy volunteers at 1.5 Tesla (T) and 3 T. The goodness of fit using χred2 and the precision of the fitted relaxation time by means of its confidence interval were compared between the two relaxation models. The Gaussian model provides enhanced descriptions of pulmonary relaxation with lower χred2 by average factors of 4 ex vivo and 3 in volunteers. The Gaussian model indicates higher sensitivity to tissue structure alteration with increased precision of reversible transverse relaxation time measurements also by average factors of 4 ex vivo and 3 in volunteers. The mean relaxation times of the Gaussian model in volunteers are T2,G' = (1.97 ± 0.27) msec at 1.5 T and T2,G' = (0.83 ± 0.21) msec at 3 T. Pulmonary signal relaxation was found to be accurately modeled as Gaussian, providing a potential biomarker T2,G' with high sensitivity. Magn Reson Med 77:1938-1945, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Multi-Phonon Relaxation of H^- Local Modes in CaF_2

    NASA Astrophysics Data System (ADS)

    Davison, C. P.; Happek, U.; Campbell, J. A.; Engholm, J. R.; Schwettman, H. A.

    1998-03-01

    Local modes play an important role in the relaxation of vibrational modes of small molecules in solids (J.R. Engholm, C.W. Rella, H.A. Schwettman, and U. Happek; Phys. Rev. Lett. 77), 1302 (1996)., but only few attempts have been reported to study the relaxation of these local modes. Here we report on experiments to investigate the non-radiative relaxation of H^- local modes in CaF_2. Using a pump-probe technique, saturation experiments on the H^- local modes, both interstitial and substitutional, were performed at the Stanford Free Electron Laser Center. At low temperature we find a relaxation time T1 of 45 psec for the substitutional H^- local mode, and a more rapid relaxation for the interstitial H^- local modes next to La^3+ and Lu^3+ impurities. Information on the decay channels of the local modes are obtained from the characteristic temperature dependence of the relaxation rates. This work is supported in part by the ONR, Grant No. N00014-94-1024.

  18. NMR in Pulsed Magnetic Fields on the Orthogonal Shastry-Sutherland spin system SrCu2 (BO3)2

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Kohlrautz, Jonas; Kühne, Hannes; Greene, Liz; Wosnitza, Jochen; Haase, Jügen

    2015-03-01

    SrCu2(BO3)2 is a quasi-two-dimensional spin system consisting of Cu2+ ions which form orthogonal spin singlet dimers, also known as the Shastry-Sutherland lattice, in the ground state. Though this system has been studied extensively using a variety of techniques to probe the spin triplet excitations, including recent magnetization measurements over 100 T, microscopic techniques, such as nuclear magnetic resonance (NMR), could provide further insight into the spin excitations and spin-coupling mechanisms. We demonstrate the feasibility of performing NMR on real physics system in pulsed magnets. We present 11B NMR spectra measured in pulsed magnetic fields up to 53 T, and compare those with prior results obtained in static magnetic fields. Herewith we prove the efficacy of this technique and then extend to higher fields to fully explore the spin structure of the 1/3 plateau. Support by EMFL, DFG, ETAg (EML+ & PUT210).

  19. Analytical solution of the time-dependent Bloch NMR flow equations: a translational mechanical analysis

    NASA Astrophysics Data System (ADS)

    Awojoyogbe, O. B.

    2004-08-01

    Various biological and physiological properties of living tissue can be studied by means of nuclear magnetic resonance techniques. Unfortunately, the basic physics of extracting the relevant information from the solution of Bloch nuclear magnetic resource (NMR) equations to accurately monitor the clinical state of biological systems is still not yet fully understood. Presently, there are no simple closed solutions known to the Bloch equations for a general RF excitation. Therefore the translational mechanical analysis of the Bloch NMR equations presented in this study, which can be taken as definitions of new functions to be studied in detail may reveal very important information from which various NMR flow parameters can be derived. Fortunately, many of the most important but hidden applications of blood flow parameters can be revealed without too much difficulty if appropriate mathematical techniques are used to solve the equations. In this study we are concerned with a mathematical study of the laws of NMR physics from the point of view of translational mechanical theory. The important contribution of this study is that solutions to the Bloch NMR flow equations do always exist and can be found as accurately as desired. We shall restrict our attention to cases where the radio frequency field can be treated by simple analytical methods. First we shall derive a time dependant second-order non-homogeneous linear differential equation from the Bloch NMR equation in term of the equilibrium magnetization M0, RF B1( t) field, T1 and T2 relaxation times. Then, we would develop a general method of solving the differential equation for the cases when RF B1( t)=0, and when RF B1( t)≠0. This allows us to obtain the intrinsic or natural behavior of the NMR system as well as the response of the system under investigation to a specific influence of external force to the system. Specifically, we consider the case where the RF B1 varies harmonically with time. Here the complete

  20. Optimized "detectors" for dynamics analysis in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Ernst, Matthias; Meier, Beat H.

    2018-01-01

    Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.

  1. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    PubMed

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  2. The relationship between reorientational molecular motions and phase transitions in [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2}, studied with the use of {sup 1}H and {sup 19}F NMR and FT-MIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikuli, Edward, E-mail: mikuli@chemia.uj.edu.pl; Hetmańczyk, Joanna; Grad, Bartłomiej

    2015-02-14

    A {sup 1}H and {sup 19}F nuclear magnetic resonance study of [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} has confirmed the existence of two phase transitions at T{sub c1} ≈ 257 K and T{sub c2} ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M{sub 2}{sup H} and M{sub 2}{sup F} and of spin-lattice relaxation times T{sub 1}{sup H} and T{sub 1}{sup F}. The study revealed anisotropic reorientations of whole [Mg(H{sub 2}O){sub 6}]{sup 2+} cations, reorientations by 180° jumps of H{sub 2}O ligands, andmore » aniso- and isotropic reorientations of BF{sub 4}{sup −} anions. The activation parameters for these motions were obtained. It was found that the phase transition at T{sub c1} is associated with the reorientation of the cation as a whole unit around the C{sub 3} axis and that at T{sub c2} with isotropic reorientation of the BF{sub 4}{sup −} anions. The temperature dependence of the full width at half maximum value of the infrared band of ρ{sub t}(H{sub 2}O) mode (at ∼596 cm{sup −1}) indicated that in phases I and II, all H{sub 2}O ligands in [Mg(H{sub 2}O){sub 6}]{sup 2+} perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole{sup −1}, what is fully consistent with NMR results. The phase transition at T{sub c1} is associated with a sudden change of speed of fast (τ{sub R} ≈ 10{sup −12} s) reorientational motions of H{sub 2}O ligands. Below T{sub c2} (in phase III), the reorientations of certain part of the H{sub 2}O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole{sup −1}. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H{sub 2}O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg

  3. Characterization of the Particle Size and Polydispersity of Dicumarol Using Solid-State NMR Spectroscopy.

    PubMed

    Dempah, Kassibla Elodie; Lubach, Joseph W; Munson, Eric J

    2017-03-06

    A variety of particle sizes of a model compound, dicumarol, were prepared and characterized in order to investigate the correlation between particle size and solid-state NMR (SSNMR) proton spin-lattice relaxation ( 1 H T 1 ) times. Conventional laser diffraction and scanning electron microscopy were used as particle size measurement techniques and showed crystalline dicumarol samples with sizes ranging from tens of micrometers to a few micrometers. Dicumarol samples were prepared using both bottom-up and top-down particle size control approaches, via antisolvent microprecipitation and cryogrinding. It was observed that smaller particles of dicumarol generally had shorter 1 H T 1 times than larger ones. Additionally, cryomilled particles had the shortest 1 H T 1 times encountered (8 s). SSNMR 1 H T 1 times of all the samples were measured and showed as-received dicumarol to have a T 1 of 1500 s, whereas the 1 H T 1 times of the precipitated samples ranged from 20 to 80 s, with no apparent change in the physical form of dicumarol. Physical mixtures of different sized particles were also analyzed to determine the effect of sample inhomogeneity on 1 H T 1 values. Mixtures of cryoground and as-received dicumarol were clearly inhomogeneous as they did not fit well to a one-component relaxation model, but could be fit much better to a two-component model with both fast-and slow-relaxing regimes. Results indicate that samples of crystalline dicumarol containing two significantly different particle size populations could be deconvoluted solely based on their differences in 1 H T 1 times. Relative populations of each particle size regime could also be approximated using two-component fitting models. Using NMR theory on spin diffusion as a reference, and taking into account the presence of crystal defects, a model for the correlation between the particle size of dicumarol and its 1 H T 1 time was proposed.

  4. Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.

    PubMed

    Zhao, Congxian; Zhang, Chao; Kang, Hongliang; Xia, Yanzhi; Sui, Kunyan; Liu, Ruigang

    2017-08-01

    Sodium alginate (SA) hydrogels have a wide range of applications including tissue engineering, drug delivery and formulations for preventing gastric reflux. The dynamics of sodium ions during the gelation process of SA solution is critical for clarification of the gelation procedure. In this work, nuclear magnetic resonance (NMR) relaxometry and pulsed-field-gradient (PFG) NMR diffusometry were used to investigate the dynamics of the sodium ions during the gelation of SA alginate. We find that sodium ions are in two different states with the addition of divalent calcium ions, corresponding to Ca 2+ crosslinked and un-crosslinked regions in the hydrogels. The sodium ions within the un-crosslinked regions are those released from the alginate chains without Ca 2+ crosslinking. The relative content of sodium ions within the Ca 2+ crosslinked regions decreased with the increase in the content of calcium ions in the system. The relaxation time T 2 of sodium ions within the Ca 2+ crosslinked and un-crosslinked regions shift to shorter and longer relaxation time with the increase in concentration of calcium ion, which indicates the closer package of SA chains and the larger space for the diffusion of free sodium ions. This work clarifies the dynamics of 23 Na + in a calcium alginate gel at the equilibrium state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    PubMed Central

    Schanda, Paul; Ernst, Matthias

    2016-01-01

    Magic-angle spinning solid-state NMR spectroscopy is an important technique to study molecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecular sciences. Here we provide an overview of experimental approaches to study molecular dynamics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin relaxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Experimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct information about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their application, we close by discussing a small number of recent dynamics studies, where the dynamic properties of proteins in crystals are compared to those in solution. PMID:27110043

  6. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    NASA Astrophysics Data System (ADS)

    Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg

    2018-03-01

    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of

  7. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom.

    PubMed

    Dawsey, Anna C; Hathaway, Kathryn L; Kim, Susie; Williams, Travis J

    2013-07-09

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR.

  8. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy

    PubMed Central

    Pervushin, Konstantin; Ono, Akira; Fernández, César; Szyperski, Thomas; Kainosho, Masatsune; Wüthrich, Kurt

    1998-01-01

    This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids. PMID:9826668

  9. High-sensitivity NMR beyond 200,000 atmospheres of pressure.

    PubMed

    Meier, T; Reichardt, S; Haase, J

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. (1)H NMR of water shows sensitivity and resolution obtained with the cells, and (63)Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. (115)In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High-sensitivity NMR beyond 200,000 atmospheres of pressure

    NASA Astrophysics Data System (ADS)

    Meier, T.; Reichardt, S.; Haase, J.

    2015-08-01

    Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. 1 H NMR of water shows sensitivity and resolution obtained with the cells, and 63 Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. 115 In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry.

  11. Magnetic resonance imaging relaxation time in Alzheimer's disease.

    PubMed

    Tang, Xiang; Cai, Feng; Ding, Dong-Xue; Zhang, Lu-Lu; Cai, Xiu-Ying; Fang, Qi

    2018-05-05

    The magnetic resonance imaging (MRI) relaxation time constants, T1 and T2, are sensitive to changes in brain tissue microstructure integrity. Quantitative T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of Alzheimer's disease (AD), in which alterations are believed to not only reflect AD-related neuropathology but also cognitive impairment. In this review, we summarize the applications and key findings of MRI techniques in the context of both AD subjects and AD transgenic mouse models. Furthermore, the possible mechanisms of relaxation time alterations in AD will be discussed. Future studies could focus on relaxation time alterations in the early stage of AD, and longitudinal studies are needed to further explore relaxation time alterations during disease progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Magnetic fluctuations and superconducting properties of CaKFe 4 As 4 studied by As 75 NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, J.; Ding, Q. -P.; Meier, W. R.

    In this paper, we report 75As nuclear magnetic resonance (NMR) studies on a new iron-based superconductor, CaKFe 4As 4, with T c = 35 K. 75As NMR spectra show two distinct lines corresponding to the As(1) and As(2) sites close to the K and Ca layers, respectively, revealing that K and Ca layers are well ordered without site inversions. We found that nuclear quadrupole frequencies ν Q of the As(1) and As(2) sites show an opposite temperature T dependence. Nearly T independent behavior of the Knight shifts K is observed in the normal state, and a sudden decrease in Kmore » in the superconducting (SC) state suggests spin-singlet Cooper pairs. 75As spin-lattice relaxation rates 1/T 1 show a power-law T dependence with different exponents for the two As sites. The isotropic antiferromagnetic spin fluctuations characterized by the wave vector q = (π, 0) or (0, π) in the single-iron Brillouin zone notation are revealed by 1/T 1T and K measurements. Such magnetic fluctuations are necessary to explain the observed temperature dependence of the 75As quadrupole frequencies, as evidenced by our first-principles calculations. Finally, in the SC state, 1/T 1 shows a rapid decrease below T c without a Hebel-Slichter peak and decreases exponentially at low T, consistent with an s ± nodeless two-gap superconductor.« less

  13. Magnetic fluctuations and superconducting properties of CaKFe 4 As 4 studied by As 75 NMR

    DOE PAGES

    Cui, J.; Ding, Q. -P.; Meier, W. R.; ...

    2017-09-25

    In this paper, we report 75As nuclear magnetic resonance (NMR) studies on a new iron-based superconductor, CaKFe 4As 4, with T c = 35 K. 75As NMR spectra show two distinct lines corresponding to the As(1) and As(2) sites close to the K and Ca layers, respectively, revealing that K and Ca layers are well ordered without site inversions. We found that nuclear quadrupole frequencies ν Q of the As(1) and As(2) sites show an opposite temperature T dependence. Nearly T independent behavior of the Knight shifts K is observed in the normal state, and a sudden decrease in Kmore » in the superconducting (SC) state suggests spin-singlet Cooper pairs. 75As spin-lattice relaxation rates 1/T 1 show a power-law T dependence with different exponents for the two As sites. The isotropic antiferromagnetic spin fluctuations characterized by the wave vector q = (π, 0) or (0, π) in the single-iron Brillouin zone notation are revealed by 1/T 1T and K measurements. Such magnetic fluctuations are necessary to explain the observed temperature dependence of the 75As quadrupole frequencies, as evidenced by our first-principles calculations. Finally, in the SC state, 1/T 1 shows a rapid decrease below T c without a Hebel-Slichter peak and decreases exponentially at low T, consistent with an s ± nodeless two-gap superconductor.« less

  14. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    NASA Astrophysics Data System (ADS)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  15. Effects of salt and nanoparticles on the segmental motion of poly(ethylene oxide) in its crystalline and amorphous phases: 2H and 7Li NMR studies.

    PubMed

    Vogel, M; Herbers, C; Koch, B

    2008-09-11

    We use (2)H NMR to investigate the segmental motion of poly(ethylene oxide) (PEO) in neat and nanocomposite materials that do and do not contain salt. Specifically, in addition to a neat low-molecular-weight PEO, we study mixtures of this polymer with TiO 2 nanoparticles and LiClO 4. To characterize the polymer dynamics over a wide range of time scales, we combine (2)H NMR spin-lattice relaxation, line-shape, and stimulated-echo analyses. The results consistently show that the presence of nanoparticles hardly affects the behavior of the polymer, while addition of salt leads to substantial changes; e.g., it reduces the crystallinity. For neat PEO and a PEO-TiO 2 mixture, stimulated-echo spectroscopy enables measurement of rotational correlation functions for the crystalline phase. Analysis of the decays allows us to determine correlation times, to demonstrate the existence of a nonexponential relaxation, which implies a high complexity of the polymer dynamics in the crystal, and to show that the reorientation can be described as a large-angle jump. For a PEO-TiO 2-LiClO 4 mixture, we use (2)H and (7)Li NMR to study the polymer and the lithium dynamics, respectively. Analysis of the (7)Li spin-lattice relaxation reveals a high lithium ionic mobility in this nanocomposite polymer electrolyte. The (7)Li stimulated-echo decay is well described by a stretched exponential extending over about 6 orders of magnitude, indicating that a broad and continuous distribution of correlation times characterizes the fluctuations of the local lithium ionic environments.

  16. GRE T2∗-Weighted MRI: Principles and Clinical Applications

    PubMed Central

    Tang, Meng Yue; Chen, Tian Wu; Zhang, Xiao Ming; Huang, Xiao Hua

    2014-01-01

    The sequence of a multiecho gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) is a relatively new magnetic resonance imaging (MRI) technique. In contrast to T2 relaxation, which acquires a spin echo signal, T2* relaxation acquires a gradient echo signal. The sequence of a GRE T2*WI requires high uniformity of the magnetic field. GRE T2*WI can detect the smallest changes in uniformity in the magnetic field and can improve the rate of small lesion detection. In addition, the T2* value can indirectly reflect changes in tissue biochemical components. Moreover, it can be used for the early diagnosis and quantitative diagnosis of some diseases. This paper reviews the principles and clinical applications as well as the advantages and disadvantages of GRE T2*WI. PMID:24987676

  17. T2 Mapping of the Sacroiliac Joints With 3-T MRI: A Preliminary Study.

    PubMed

    Lefebvre, Guillaume; Bergère, Antonin; Rafei, Mazen El; Duhamel, Alain; Teixeira, Pedro; Cotten, Anne

    2017-08-01

    The objective of this study was to assess the feasibility of T2 relaxation time measurements of the sacroiliac joints. The sacroiliac joints of 40 patients were imaged by 3-T MRI using an oblique axial multislice multiecho spin-echo T2-weighted sequence. Manual plotting and automatic subdivision of ROIs allowed us to obtain T2 values for up to 48 different areas per patient (posterior and anterior parts, sacral, intermediate, and iliac parts). Intraand interobserver reproducibility of T2 values were calculated after independent assessment by two musculoskeletal radiologists. A total of 1656 measurement sites could be analyzed. Mean (± SD) T2 values were 40.6 ± 6.7 ms and 41.2 ± 6.3 ms for observer 1 and 39.9 ± 6.6 ms for observer 2. The intraobserver intraclass correlation coefficient was 0.72 (95% CI, 0.70-0.74), and the interobserver intraclass correlation coefficient was 0.71 (95% CI, 0.68-0.72). Our study shows the feasibility of T2 relaxation time measurements at the sacroiliac joints.

  18. Magnetism and superconductivity in Sr2VFeAsO3 revealed by 75As- and 51V-NMR under elevated pressures

    NASA Astrophysics Data System (ADS)

    Ueshima, Keiji; Han, Fei; Zhu, Xiyu; Wen, Hai-Hu; Kawasaki, Shinji; Zheng, Guo-qing

    2014-05-01

    We report 75As and 51V nuclear magnetic resonance (NMR) measurements on the iron-based superconductor Sr2VFeAsO3 with alternating stacks structure. We find that the 75As nuclear spin-spin relaxation rate (1/T2) shows a pronounced peak at TN = 165 K, below which the resonance peak shifts to a higher frequency due to the onset of an internal magnetic field. The 51V spectrum does not shift, but is broadened below TN. We conclude that the Fe electrons order antiferromagnetically below TN with a magnetic moment mFe ˜ 0.4 μB. Application of external pressure up to 2.4 GPa reduces TN at a rate of -40 K/GPa, and enhances the superconducting transition temperature Tc at a rate of 2 K/GPa. The pressure-temperature phase diagram for Sr2VFeAsO3 shows that superconductivity coexists with antiferromagnetism over a wide pressure range with an unprecedented high Tc up to 36.5 K.

  19. SU-E-I-84: MRI Relaxation Properties of a Pre-Clinical Hypoxia-Sensitive MRI Contrast Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Wilson, G; Chavez, F

    2014-06-01

    Purpose: A possible hypoxia-sensitive MRI agent, hexamethyldisiloxane (HMDSO), has been tried to image oxygen level in proton-based MRI (Kodibagkar et al, NMR Biomed, 2008). The induced changes of T1 (or R1) value by the HMDSO as the oxygenation level changes are the principle that the hypoxia agent is based on: the R1 increases as the oxygen level increases. However, as reported previously, the range of R1 values (0.1–0.3 s-1, corresponding to 3–10 s of T1) is not in the range where a regular MRI technique can easily detect the change. In order for this agent to be widely applied inmore » an MRI environment, more relaxation properties of this agent, including T1 in the rotating frame (T1rho) and T2, need to be explored. Here, the relaxation properties of this agent are explored. Methods: A phantom was made with HMDSO, water and mineral oil, each of which was prepared with oxygen and nitrogen, and was imaged in a 3T MRI system. The T1 properties were explored by the inversion recovery (TR=3000ms, TE=65ms) while varying the inversion time (TI), and also by the fast-field-echo (TR=2 ms, TE=2.8ms) while varying the flip angle (FA). T1rho was explored with a 5-pulse spin-locking technique (TR=5000ms, TE=10ms, spin-lock field=500Hz) while varying the spin-lock duration. T2 was explored with multi-shot TSE (TR=2500ms) while varying TE. Results: With the variable FA and TI, the signals of HMDSO with oxygen and nitrogen change in a similar way and do not respond well by the change of oxygen level, which confirms the large T1 value of HMDSO. The T1rho and T2, however, have a better sensitivity. Conclusion: For the possible pre-clinical hypoxia MRI agent (HMDSO), the detection of T1 (or R1) changes may be more challenging than the detection of other relaxation properties, particularly T2, as the oxygen level changes.« less

  20. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity

    NASA Astrophysics Data System (ADS)

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd

  1. Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Kimball, Derek F. Jackson; Sushkov, Alexander O.; Aybas, Deniz; Blanchard, John W.; Centers, Gary; Kelley, Sean R. O.'; Wickenbrock, Arne; Fang, Jiancheng; Budker, Dmitry

    2018-03-01

    The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity ≈ 1 fT /√{ Hz } and an effective sensing volume of 0.1 cm3 that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is the SERF's limited dynamic range. Use of a magnetic flux transformer to suppress the leading magnetic field is considered as a potential method to expand the SERF's dynamic range in order to probe higher axion/ALP Compton frequencies.

  2. NMR signal analysis to attribute the components to the solid/liquid phases present in mixes and ice creams.

    PubMed

    Mariette, François; Lucas, Tiphaine

    2005-03-09

    The NMR relaxation signals from complex products such as ice cream are hard to interpret because of the multiexponential behavior of the relaxation signal and the difficulty of attributing the NMR relaxation components to specific molecule fractions. An attribution of the NMR relaxation parameters is proposed, however, based on an approach that combines quantitative analysis of the spin-spin and spin-lattice relaxation times and the signal intensities with characterization of the ice cream components. We have been able to show that NMR can be used to describe the crystallized and liquid phases separately. The first component of the spin-spin and spin-lattice relaxation describes the behavior of the protons of the crystallized fat in the mix. The amount of fat crystals can then be estimated. In the case of ice cream, only the spin-lattice relaxation signal from the crystallized fraction is relevant. However, it enables the ice protons and the protons of the crystallized fat to be distinguished. The spin-lattice relaxation time can be used to describe the mobility of the protons in the different crystallized phases and also to quantify the amount of ice crystals and fat crystals in the ice cream. The NMR relaxation of the liquid phase of the mix has a biexponential behavior. A first component is attributable to the liquid fraction of the fat and to the sugars, while a second component is attributable to the aqueous phase. Overall, the study shows that despite the complexity of the NMR signal from ice cream, a number of relevant parameters can be extracted to study the influence of the formulation and of the process stages on the ice fraction, the crystallized fat fraction, and the liquid aqueous fraction.

  3. μSR and NMR study of the superconducting Heusler compound YPd2Sn

    NASA Astrophysics Data System (ADS)

    Saadaoui, H.; Shiroka, T.; Amato, A.; Baines, C.; Luetkens, H.; Pomjakushina, E.; Pomjakushin, V.; Mesot, J.; Pikulski, M.; Morenzoni, E.

    2013-09-01

    We report on muon-spin rotation and relaxation (μSR) and 119Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature, YPd2Sn (Tc=5.4 K). Measurements in the vortex state provide the temperature dependence of the effective magnetic penetration depth λ(T) and the field dependence of the superconducting gap Δ(0). The results are consistent with a very dirty s-wave BCS superconductor with a gap Δ(0)=0.85(3) meV, λ(0)=212(1) nm, and a Ginzburg-Landau coherence length ξGL(0)≅23 nm. In spite of its very dirty character, the effective density of condensed charge carriers is high compared to that in the normal state. The μSR data in a broad range of applied fields are well reproduced by taking into account a field-related reduction of the effective superconducting gap. Zero-field μSR measurements, sensitive to the possible presence of very small magnetic moments, do not show any indications of magnetism in this compound.

  4. Direct Visualization of Short Transverse Relaxation Time Component (ViSTa)

    PubMed Central

    Oh, Se-Hong; Bilello, Michel; Schindler, Matthew; Markowitz, Clyde E.; Detre, John A.; Lee, Jongho

    2013-01-01

    White matter of the brain has been demonstrated to have multiple relaxation components. Among them, the short transverse relaxation time component (T2 < 40 ms; T2* < 25 ms at 3T) has been suggested to originate from myelin water whereas long transverse relaxation time components have been associated with axonal and/or interstitial water. In myelin water imaging, T2 or T2* signal decay is measured to estimate myelin water fraction based on T2 or T2* differences among the water components. This method has been demonstrated to be sensitive to demyelination in the brain but suffers from low SNR and image artifacts originating from ill-conditioned multi-exponential fitting. In this study, a novel approach that selectively acquires short transverse relaxation time signal is proposed. The method utilizes a double inversion RF pair to suppress a range of long T1 signal. This suppression leaves short T2* signal, which has been suggested to have short T1, as the primary source of the image. The experimental results confirms that after suppression of long T1 signals, the image is dominated by short T2* in the range of myelin water, allowing us to directly visualize the short transverse relaxation time component in the brain. Compared to conventional myelin water imaging, this new method of direct visualization of short relaxation time component (ViSTa) provides high quality images. When applied to multiple sclerosis patients, chronic lesions show significantly reduced signal intensity in ViSTa images suggesting sensitivity to demyelination. PMID:23796545

  5. Self-exchange reaction of [Ni(mnt)2](1-,2-) in nonaqueous solutions.

    PubMed

    Kowert, Bruce A; Fehr, Michael J; Sheaff, Pamela J

    2008-07-07

    The rate constant, k, for the homogeneous electron transfer (self-exchange) reaction between the diamagnetic bis(maleonitriledithiolato)nickel dianion, [Ni(mnt) 2] (2-), and the paramagnetic monoanion, [Ni(mnt) 2] (1-), has been determined in acetone and nitromethane (CH 3NO 2) using (13)C NMR line widths at 22 degrees C (mnt = 1,2-S 2C 2(CN) 2). The values of k (2.91 x 10 (6) M (-1) s (-1) in acetone, 5.78 x 10 (6) M (-1) s (-1) in CH 3NO 2) are faster than those for the electron transfer reactions of other Ni(III,II) couples; the structures of [Ni(mnt) 2] (1-) and [Ni(mnt) 2] (2-) allow for a favorable overlap that lowers the free energy of activation. The values of k are consistent with the predictions of Marcus theory. In addition to k, the spin-lattice relaxation time, T 1e, of [Ni(mnt) 2] (1-) is obtained from the NMR line width analysis; the values are consistent with those predicted by spin relaxation theory.

  6. Fluid-Rock Characterization and Interactions in NMR Well Logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  7. Towards Overhauser DNP in supercritical CO(2).

    PubMed

    van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M

    2016-06-01

    Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  9. Racial differences in biochemical knee cartilage composition between African-American and Caucasian-American women with 3Tesla MR-based T2 relaxation time measurements – Data from the Osteoarthritis Initiative

    PubMed Central

    YU, A.; Heilmeier, U.; Kretzschmar, M.; Joseph, G.B.; Liu, F.; Liebl, H.; McCulloch, C.E.; Nevitt, M.C.; Lane, Nancy E.; Link, T.M.

    2015-01-01

    Objective To determine whether knee cartilage composition differs between African-American and Caucasian-American women at risk for Osteoarthritis using in-vivo 3 Tesla MRI T2 relaxation time measurements. Methods Right knee MRI studies of 200 subjects (100 African-American women, and 100 closely matched Caucasian-American women) were selected from the Osteoarthritis Initiative. Knee cartilage was segmented in the patellar (PAT), medial and lateral femoral (MF/LF), and medial and lateral tibial compartments (MT/LT)). Mean T2 relaxation time values per compartment and per whole joint cartilage were generated and analyzed spatially via laminar and grey-level co-occurrence matrix texture methods. Presence and severity of cartilage lesions per compartment were graded using a modified WORMS grading. Statistical analysis employed paired t- and McNemar testing. Results While African-American women and Caucasian-Americans had similar WORMS cartilage lesion scores (p=0.970), African-Americans showed significantly lower mean T2 values (~1ms difference; ~0.5SD) than Caucasian-Americans in the whole knee cartilage (p<0.001), and in the subcompartments (LF: p=0.001, MF: p<0.001, LT: p=0.019, MT: p=0.001) and particularly in the superficial cartilage layer (whole cartilage: p<0.001, LF: p<0.001, MF: p<0.001, LT: p=0.003, MT: p<0.001). T2 texture parameters were also significantly lower in the whole joint cartilage of African-Americans than in Caucasian-Americans (variance: p=0.001; contrast: p=0.018). In analyses limited to matched pairs with no cartilage lesions in a given compartment, T2 values remained significantly lower in African-Americans. Conclusion Using T2 relaxation time as a biomarker for the cartilage collagen network, our findings suggest racial differences in the biochemical knee cartilage composition between African-American and Caucasian-American women. PMID:25937026

  10. NMR Characterization of Sulphur Substitution Effects in the KxFe2−ySe2−zSz High-Tc Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic C.; Torchetti, D.A.; Imai, T.

    2012-04-17

    We present a {sup 77}Se NMR study of the effect of S substitution in the high-T{sub c} superconductor K{sub x}Fe{sub 2-y}Se{sub 2-z}S{sub z} in a temperature range up to 250 K. We examine two S concentrations, with z = 0.8 (T{sub c} {approx} 26 K) and z = 1.6 (nonsuperconducting). The samples containing sulphur exhibit broader NMR line shapes than the K{sub x}Fe{sub 2}Se{sub 2} sample due to local disorder in the Se environment. Our Knight shift {sup 77}K data indicate that in all samples, uniform spin susceptibility decreases with temperature, and that the magnitude of the Knight shift itselfmore » decreases with increased S concentration. In addition, S substitution progressively suppresses low-frequency spin fluctuations. None of the samples exhibit an enhancement of low-frequency antiferromagnetic spin fluctuations near T{sub c} in 1/T{sub 1}T, as seen in FeSe.« less

  11. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR

    NASA Astrophysics Data System (ADS)

    Ogura, Kenji; Okamura, Hideyasu

    2013-10-01

    Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.

  12. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  13. An ultra-low cost NMR device with arbitrary pulse programming

    NASA Astrophysics Data System (ADS)

    Chen, Hsueh-Ying; Kim, Yaewon; Nath, Pulak; Hilty, Christian

    2015-06-01

    Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53 T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.

  14. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate ofmore » seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.« less

  15. Magnetic excitation and local magnetic susceptibility of the excitonic insulator Ta2NiSe5 investigated by 77Se NMR

    NASA Astrophysics Data System (ADS)

    Li, Shang; Kawai, Shunsuke; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-04-01

    77Se NMR measurements were made on polycrystalline and single-crystalline samples to elucidate local magnetic susceptibility and magnetic excitation of Ta2NiSe5 , which is proposed to undergo an exciton condensation accompanied by a structural transition at Tc=328 K . We determine the 77Se Knight shift tensors for the three Se sites and analyze their anisotropy based on the site symmetry. The temperature dependence of the Knight shift is discussed on the basis of spin and orbital susceptibilities calculated for two-chain and two-dimensional three-band models. The large fraction of the Se 4 p orbital polarization due to the mixing between Ni 3 d and Se 4 p orbitals is estimated from the analysis of the transferred hyperfine coupling constant. Also the nuclear spin-lattice relaxation rate 1 /T1 is found not to show a coherent peak just below Tc and to obey the thermally activated temperature dependence with a spin gap energy of 1770 ±40 K . This behavior of 1 /T1 monitors the exciton condensation as proposed by the theoretical study of 1 /T1 based on the three-chain Hubbard model for the excitonic insulator.

  16. On improving the speed and reliability of T2-Relaxation-Under-Spin-Tagging (TRUST) MRI

    PubMed Central

    Xu, Feng; Uh, Jinsoo; Liu, Peiying; Lu, Hanzhang

    2011-01-01

    A T2-Relaxation-Under-Spin-Tagging (TRUST) technique was recently developed to estimate cerebral blood oxygenation, providing potentials for non-invasive assessment of the brain's oxygen consumption. A limitation of the current sequence is the need for long TR, as shorter TR causes an over-estimation in blood R2. The present study proposes a post-saturation TRUST by placing a non-selective 90° pulse after the signal acquisition to reset magnetization in the whole brain. This scheme was found to eliminate estimation bias at a slight cost of precision. To improve the precision, TE of the sequence was optimized and it was found that a modest TE shortening of 3.4ms can reduce the estimation error by 49%. We recommend the use of post-saturation TRUST sequence with a TR of 3000ms and a TE of 3.6ms, which allows the determination of global venous oxygenation with scan duration of 1 minute 12 seconds and an estimation precision of ±1% (in units of oxygen saturation percentage). PMID:22127845

  17. Quantitative evaluation of hyaline articular cartilage T2 maps of knee and determine the relationship of cartilage T2 values with age, gender, articular changes.

    PubMed

    Cağlar, E; Şahin, G; Oğur, T; Aktaş, E

    2014-11-01

    To identify changes in knee joint cartilage transverse relaxation values depending on the patient's age and gender and to investigate the relationship between knee joint pathologies and the transverse relaxation time. Knee MRI images of 107 symptomatic patients with various pathologic knee conditions were analyzed retrospectively. T2 values were measured at patellar cartilage, posteromedial and posterolateral femoral cartilage adjacent to the central horn of posterior meniscus. 963 measurements were done for 107 knees MRI. Relationship of T2 values with seven features including subarticular bone marrow edema, subarticular cysts, marginal osteophytes, anterior-posterior cruciate and collateral ligament tears, posterior medial and posterior lateral meniscal tears, synovial thickening and effusion were analyzed. T2 values in all three compartments were evaluated according to age and gender. A T2 value increase correlated with age was present in all three compartments measured in the subgroup with no knee joint pathology and in all patient groups. According to the ROC curve, an increase showing a statistically significant difference was present in the patient group aged over 40 compared to the patient group aged 40 and below in all patient groups. There is a statistically difference at T2 values with and without subarticular cysts, marginal osteophytes, synovial thickening and effusion. T2 relaxation time showed a statistically significant increase in the patients with a medial meniscus tear compared to those without a tear and no statistically significant difference was found in T2 relaxation times of patients with and without a posterior lateral meniscus tear. T2 cartilage mapping on MRI provides opportunity to exhibit biochemical and structural changes related with cartilage extracellular matrix without using invasive diagnostic methods.

  18. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    PubMed

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  20. Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma.

    PubMed

    Noebauer-Huhmann, Iris M; Szomolanyi, Pavol; Juras, Vladimír; Kraff, Oliver; Ladd, Mark E; Trattnig, Siegfried

    2010-09-01

    PURPOSE/INTRODUCTION: The aim of this study was to determine the T1 relaxivities (r1) of 8 gadolinium (Gd)-based MR contrast agents in human blood plasma at 7 Tesla, compared with 3 Tesla. Eight commercially available Gd-based MR contrast agents were diluted in human blood plasma to concentrations of 0, 0.25, 0.5, 1, and 2 mmol/L. In vitro measurements were performed at 37 degrees C, on a 7 Tesla and on a 3 Tesla whole-body magnetic resonance imaging scanner. For the determination of T1 relaxation times, Inversion Recovery Sequences with inversion times from 0 to 3500 ms were used. The relaxivities were calculated. The r1 relaxivities of all agents, diluted in human blood plasma at body temperature, were lower at 7 Tesla than at 3 Tesla. The values at 3 Tesla were comparable to those published earlier. Notably, in some agents, a minor negative correlation of r1 with a concentration of up to 2 mmol/L could be observed. This was most pronounced in the agents with the highest protein-binding capacity. At 7 Tesla, the in vitro r1 relaxivities of Gd-based contrast agents in human blood plasma are lower than those at 3 Tesla. This work may serve as a basis for the application of Gd-based MR contrast agents at 7 Tesla. Further studies are required to optimize the contrast agent dose in vivo.

  1. From Strong to Fragile Glass Formers: Secondary Relaxation in Polyalcohols

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-03-01

    We have studied details of the molecular origin of slow secondary relaxation near Tg in a series of neat polyalcohols by means of dielectric spectroscopy and 2H NMR. From glycerol to threitol, xylitol, and sorbitol the appearance of the secondary relaxation changes gradually from a wing-type scenario to a pronounced β peak. It is found that in sorbitol the dynamics of the whole molecule contributes equally to the β process, while in glycerol the hydrogen bond forming OH groups remain rather rigid compared to the hydrogens bonded to the carbon skeleton.

  2. Li dynamics in carbon-rich polymer-derived SiCN ceramics probed by NMR

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Buechner, Bernd; Grafe, Hajo

    2014-03-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei at room temperature, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  3. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time.

    PubMed

    Nasu, Mamiko; Nemoto, Takayuki; Mimura, Hisashi; Sako, Kazuhiro

    2013-01-01

    Most pharmaceutical drug substances and excipients in formulations exist in a crystalline or amorphous form, and an understanding of their state during manufacture and storage is critically important, particularly in formulated products. Carbon 13 solid-state nuclear magnetic resonance (NMR) spectroscopy is useful for studying the chemical and physical state of pharmaceutical solids in a formulated product. We developed two new selective signal excitation methods in (13) C solid-state NMR to extract the spectrum of a target component from such a mixture. These methods were based on equalization of the proton relaxation time in a single domain via rapid intraproton spin diffusion and the difference in proton spin-lattice relaxation time in the rotating frame ((1) H T1rho) of individual components in the mixture. Introduction of simple pulse sequences to one-dimensional experiments reduced data acquisition time and increased flexibility. We then demonstrated these methods in a commercially available drug and in a mixture of two saccharides, in which the (13) C signals of the target components were selectively excited, and showed them to be applicable to the quantitative analysis of individual components in solid mixtures, such as formulated products, polymorphic mixtures, or mixtures of crystalline and amorphous phases. Copyright © 2012 Wiley Periodicals, Inc.

  4. Engineered contrast agents in a single structure for T1-T2 dual magnetic resonance imaging.

    PubMed

    Cabrera-García, Alejandro; Checa-Chavarria, Elisa; Pacheco-Torres, Jesús; Bernabeu-Sanz, Ángela; Vidal-Moya, Alejandro; Rivero-Buceta, Eva; Sastre, Germán; Fernández, Eduardo; Botella, Pablo

    2018-04-05

    The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T1-T2 dual-mode relaxivity requires the accurate assembly of T1 and T2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)4[Fe(CN)6] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)4[Fe(CN)6]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T1- and T2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application.

  5. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  6. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  7. Fully gapped spin-singlet superconductivity in noncentrosymmetric PbTaSe2: 207Pb nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Matano, K.; Zheng, Guo-qing

    2018-05-01

    We report the 207Pb nuclear magnetic resonance (NMR) measurements on polycrystalline sample of PbTaSe2 with noncentrosymmetric crystal structure and topological electronic band. The nuclear spin-lattice relaxation rate 1 /T1 shows a suppressed coherence peak below the superconducting transition temperature Tc=4.05 K and decreases as an exponential function of temperature. The penetration depth derived from the NMR spectrum is almost temperature independent below T =0.7 Tc. The Knight shift K decreases below Tc. These results suggest spin-singlet superconductivity with a fully opened gap 2 Δ =3.5 kBTc in PbTaSe2.

  8. Two-dimensional NMR spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, T.C.

    1987-06-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.

  9. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Xu, C.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y. T.; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-11-01

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13C nuclear spin-lattice relaxation rate 1/T1 by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of 1/T1 below about 10 K can well be described by a thermally activated form, \

  10. Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1995-04-01

    13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2

  11. Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging.

    PubMed

    Davies, S; Hardwick, A; Roberts, D; Spowage, K; Packer, K J

    1994-01-01

    Reservoir rock analysis by proton NMR requires separation of the response into brine and crude oil components. Tests on preserved core from a North Sea chalk reservoir show that spin-lattice relaxation time distributions can be used to distinguish the two fluids. NMR estimates of oil and water saturations for 1.5" diameter core examined in a 10 MHz Bruker Minispec spectrometer closely match fluid contents determined by distillation. The spin-lattice relaxation contrast mechanism developed for core samples can be applied in the quantitative analysis of NMR images. The relaxation data are compared with data from chemical shift imaging on the same core sample. The results indicate that it will be possible to monitor changes in fluid distributions, in this and similar systems, under dynamic conditions such as in a waterflood.

  12. Investigation of Rhodopsin Dynamics in its Signaling State by Solid-State Deuterium NMR Spectroscopy

    PubMed Central

    Struts, Andrey V.; Chawla, Udeep; Perera, Suchithranga M.D.C.; Brown, Michael F.

    2017-01-01

    Site-directed deuterium NMR spectroscopy is a valuable tool to study the structural dynamics of biomolecules in cases where solution NMR is inapplicable. Solid-state 2H NMR spectral studies of aligned membrane samples of rhodopsin with selectively labeled retinal provide information on structural changes of the chromophore in different protein states. In addition, solid-state 2H NMR relaxation time measurements allow one to study the dynamics of the ligand during the transition from the inactive to the active state. Here we describe the methodological aspects of solid-state 2H NMR spectroscopy for functional studies of rhodopsin, with an emphasis on the dynamics of the retinal cofactor. We provide complete protocols for the preparation of NMR samples of rhodopsin with 11-cis-retinal selectively deuterated at the methyl groups in aligned membranes. In addition, we review optimized conditions for trapping the rhodopsin photointermediates; and lastly we address the challenging problem of trapping the signaling state of rhodopsin in aligned membrane films. PMID:25697522

  13. Magnetic flux relaxation in YBa2Cu3)(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, J. D.; Alterovitz, S. A.

    1991-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H is parallel to c was studied in the range 4.2 - 40 K and 0.2 - 1.0 T. Both the normalized flux relaxation rate S and the net flux pinning energy U increase continuously from 1.3 x 10(exp -2) to 3.0 x 10(exp -2) and from 70 to 240 meV respectively, as the temperature T increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  14. Longitudinal change in patellofemoral cartilage thickness, cartilage T2 relaxation times, and subchondral bone plate area in adolescent vs mature athletes.

    PubMed

    Culvenor, Adam G; Wirth, Wolfgang; Maschek, Susanne; Boeth, Heide; Diederichs, Gerd; Duda, Georg; Eckstein, Felix

    2017-07-01

    Patellofemoral cartilage changes have been evaluated in knee trauma and osteoarthritis; however, little is known about changes in patellar and trochlear cartilage thickness, T2 relaxation-time and subchondral bone plate area (tAB) during growth. Our prospective study aimed to explore longitudinal change in patellofemoral cartilage thickness, T2 and tAB in adolescent athletes, and to compare these data with those of mature (i.e., adult) athletes. 20 adolescent (age 16±1years) and 20 mature (46±5years) volleyball players were studied over 2-years (10 men and 10 women each group). 1.5T MRI 3D-VIBE and multi-echo spin-echo sequences were acquired at baseline and 2-year follow-up. Using manual segmentation and 3D reconstruction, longitudinal changes in patellar and trochlear cartilage thickness, patellar cartilage T2 (mono-exponential decay curve with five echoes [9.7-67.9ms]), and patellar and trochlear tAB were determined. The annual increase in both patellar and trochlear cartilage thickness was 0.8% (95% confidence interval [CI] 0.6, 1.0) and 0.6% (0.3, 0.9), for adolescent males and females respectively; the longitudinal gain in patellar and trochlear tAB was 1.3% (1.1, 1.5) and 0.5% (0.2, 0.8), and 1.6% (1.1, 2.2) and 0.8% (0.3, 0.7) for adolescent males and females, respectively (no significant between-sex differences). Mature athletes showed smaller gains in tAB, and loss of <1% of cartilage thickness annually. While no significant sex-differences existed in adolescent patellar T2 changes, mature males gained significantly greater T2 than mature females (p=0.002-0.013). Patellar and trochlear cartilage thickness and tAB were observed to increase in young athletes in late adolescence, without significant differences between sexes. Mature athletes displayed patellar cartilage loss (and T2 increases in mature males), potentially reflecting degenerative changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin).

    PubMed

    Meinerz, Kelsey; Beeman, Scott C; Duan, Chong; Bretthorst, G Larry; Garbow, Joel R; Ackerman, Joseph J H

    2018-01-01

    Recently, a number of MRI protocols have been reported that seek to exploit the effect of dissolved oxygen (O 2 , paramagnetic) on the longitudinal 1 H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms, and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1 H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo . Bayesian-based model selection was applied to a cohort of five competing relaxation models: (i) monoexponential, (ii) stretched-exponential, (iii) biexponential, (iv) Gaussian (normal) R 1 -distribution, and (v) gamma R 1 -distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.

  16. Possible quadrupolar nematic phase in the frustrated spin chain LiCuSbO4: An NMR investigation

    NASA Astrophysics Data System (ADS)

    Bosiočić, M.; Bert, F.; Dutton, S. E.; Cava, R. J.; Baker, P. J.; Požek, M.; Mendels, P.

    2017-12-01

    The frustrated one-dimensional quantum magnet LiCuSbO4 is a rare realization of the J1-J2 spin chain model with an easily accessible saturation field, formerly estimated at 12 T. Exotic multipolar nematic phases were theoretically predicted in such compounds just below the saturation field, but without unambiguous experimental observation so far. In this paper we present extensive experimental research on the compound in a wide temperature (30 mK to 300 K) and field (0-13.3 T) range by muon spin rotation (μ SR ), 7Li nuclear magnetic resonance (NMR), and magnetic susceptibility (SQUID). μ SR experiments in zero magnetic field demonstrate the absence of long-range 3D ordering down to 30 mK. Together with former heat capacity data [Dutton et al., Phys. Rev. Lett. 108, 187206 (2012), 10.1103/PhysRevLett.108.187206], magnetic susceptibility measurements suggest a short-range-correlated vector chiral phase in the field range 0-4 T. At the intermediate-field values (5-12 T), the system enters a 3D-ordered spin density wave phase with 0.75 μB per copper site at lowest temperatures (125 mK), estimated by NMR. At still higher field, the magnetization is found to be saturated above 13 T where the spin lattice T1-1 relaxation reveals a spin gap estimated at 3.2(2) K. We narrow down the possibility of observing a multipolar nematic phase to the range 12.5-13 T.

  17. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: Fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI

    PubMed Central

    Soesbe, Todd C.; Ratnakar, S. James; Milne, Mark; Zhang, Shanrong; Do, Quyen N.; Kovacs, Zoltan; Sherry, A. Dean

    2014-01-01

    Purpose The water molecule exchange rates in a series of DyDOTA-(amide)X chelates were fine-tuned to maximize the effects of T2-exchange line broadening and improve T2 contrast. Methods Four DyDOTA-(amide)X chelates having a variable number of glycinate side-arms were prepared and characterized as T2-exchange agents. The non-exchanging DyTETA chelate was also used to measure the bulk water T2 reduction due solely to T2*. The total transverse relaxivity (r2tot) at 22, 37, and 52 °C for each chelate was measured in vitro at 9.4 T (400 MHz) by fitting plots of total T2−1 versus concentration. The water molecule exchange rates for each complex were measured by fitting 17O line-width versus temperature data taken at 9.4 T (54.3 MHz). Results The measured transverse relaxivities due to water molecule exchange (r2ex) and bound water lifetimes (τM) were in excellent agreement with Swift-Connick theory, with DyDOTA-(gly)3 giving the largest r2ex = 11.8 s−1 mM−1 at 37 °C. Conclusion By fine-tuning the water molecule exchange rate at 37 °C, the transverse relaxivity has been increased by 2 to 30 times compared to previously studied Dy3+-based chelates. Polymerization or dendrimerization of the optimal chelate could yield a highly sensitive, molecule-sized T2 contrast agent for improved molecular imaging applications. PMID:24390729

  18. Transverse relaxation in the rotating frame induced by chemical exchange.

    PubMed

    Michaeli, Shalom; Sorce, Dennis J; Idiyatullin, Djaudat; Ugurbil, Kamil; Garwood, Michael

    2004-08-01

    In the presence of radiofrequency irradiation, relaxation of magnetization aligned with the effective magnetic field is characterized by the time constant T1rho. On the other hand, the time constant T2rho characterizes the relaxation of magnetization that is perpendicular to the effective field. Here, it is shown that T2rho can be measured directly with Carr-Purcell sequences composed of a train of adiabatic full-passage (AFP) pulses. During adiabatic rotation, T2rho characterizes the relaxation of the magnetization, which under adiabatic conditions remains approximately perpendicular to the time-dependent effective field. Theory is derived to describe the influence of chemical exchange on T2rho relaxation in the fast-exchange regime, with time constant defined as T2rho,ex. The derived theory predicts the rate constant R2rho,ex (= 1/T2rho,ex) to be dependent on the choice of amplitude- and frequency-modulation functions used in the AFP pulses. Measurements of R2rho,ex of the water/ethanol exchanging system confirm the predicted dependence on modulation functions. The described theoretical framework and adiabatic methods represent new tools to probe exchanging systems. Copyright 2004 Elsevier Inc.

  19. Magnetocaloric effect and slow magnetic relaxation in CsGd(MoO4)2 induced by crystal-field anisotropy

    NASA Astrophysics Data System (ADS)

    Tkáč, V.; Tarasenko, R.; Orendáčová, A.; Orendáč, M.; Sechovský, V.; Feher, A.

    2018-05-01

    The experimental and theoretical study of magnetocaloric effect and magnetic relaxation of the powder sample of CsGd(MoO4)2 were performed. The large conventional magnetocaloric effect was found around 2 K with - ΔSmax ≈ 26.5 J/(kg K) for B = 7 T. AC susceptibility measurement revealed multiple-time scale magnetic relaxation effects on different time scales. Slowest relaxation effect was attributed to the direct process with a bottleneck effect and two faster relaxation processes are effectively temperature independent, probably as a result of averaging in the powder sample.

  20. Preparation, spectroscopic and high field NMR relaxometry studies of gadolinium(III) complexes with the asymmetric tetraamine 1,4,7,11-tetraazaundecane

    NASA Astrophysics Data System (ADS)

    Hatzipanayioti, Despina; Veneris, Antonis

    2009-10-01

    The reaction of Gd(III) with asymmetric tetramine 1,4,7,11-tetraazaundecane (2,2,3-tet, L1) ligand has been studied via NMR spectroscopy. The ligand proton longitudinal relaxation rates ( R1) have been used to estimate the distances of these protons from the Gd(III) center, in Gd(III)- L1 reaction solutions, in H 2O/D 2O 5/1 mixtures. Two Gd(III) complexes [Gd(III)( L1)(NH 3)(H 2O) 4](CH 3COO) 3·2H 2O ( 1) and [Gd(III)( L1)(NH 3)(H 2O) 2]Cl 3·EtOH ( 2) have been isolated and characterized by elemental analyses, TGA, IR, NMR and relaxometry measurements. The NMR relaxation measurements of 2 in aqueous solutions have been performed, under various temperature or concentration conditions, and compared with those of the commercial contrast agents Gd(III)-DTPA and Gd(III)-DTPA-BMA. It has also been studied the influence of (i) the Gd(III) inner-sphere water molecule number ( q) alteration and (ii) the steric constraint enhancement on the metal site, over the relaxation rate values of the parent aqueous solution of Gd(III)-2,2,3-tet, and of the aqueous solutions of 2.

  1. Investigation of the spin-lattice relaxation of 13CO and 13CO2 adsorbed in the metal-organic frameworks Cu3(btc)2 and Cu(3-x)Zn(x)(btc)2.

    PubMed

    Gul-E-Noor, Farhana; Michel, Dieter; Krautscheid, Harald; Haase, Jürgen; Bertmer, Marko

    2013-07-21

    The (13)C nuclear spin-lattice relaxation time of (13)CO and (13)CO2 molecules adsorbed in the metal-organic frameworks (MOFs) Cu2.97Zn0.03(btc)2 and Cu3(btc)2 is investigated over a wide range of temperatures at resonance frequencies of 75.468 and 188.62 MHz. In all cases a mono-exponential relaxation is observed, and the (13)C spin-lattice relaxation times (T1) reveal minima within the temperature range of the measurements and both frequencies. This allows us to carry out a more detailed analysis of the (13)C spin relaxation data and to consider the influence due to the spectral functions of the thermal motion. In a model-free discussion of the temperature dependence of the ratios T1 (T)∕T1,min we observe a motional mechanism that can be described by a single correlation time. In relation to the discussion of the relaxation mechanisms this can be understood in terms of dominating translational motion with mean jump distance being larger than the minimum distances between neighboring adsorption sites in the MOFs. A more detailed discussion of the jump-like motion observed here might be carried out on the basis of self-diffusion coefficients. From the present spin relaxation measurements activation energies for the local motion of the adsorbed molecules in the MOFs can be estimated to be 3.3 kJ∕mol and 2.2 kJ∕mol, for CO and CO2 molecules, respectively. Finally, our findings are compared with our recent results derived from the (13)C line shape analysis.

  2. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  3. The development of ultrashort acting neuromuscular relaxant tropane derivatives.

    PubMed

    Gyermek, Laszlo; Lee, Chingmuh

    2009-03-01

    There is a need for neuromuscular relaxant (NMR) agents that are of the "nondepolarizing type" and produce rapidly developing and short-lasting skeletal muscle relaxation in anesthesiology. Many efforts have been directed to produce such agents. Our research focused on the design, synthesis, and evaluation of numerous "bisquaternary" derivatives of the cyclic aminoalkanes: tropane and granatane. Through systematic "steric structure-activity relationship" studies, we arrived at some new bisquaternary tropine and granatanol diesters, which in laboratory studies appeared to be the fastest and shortest acting NMRs recognized so far. Their ultrashort duration action-mechanism was, however, linked to the formation of nephrotoxic metabolites, precluding further development. Even so, we believe that the scientific information gained from more than a thousand such agents, will be useful toward developing the "ideal," ultrashort-acting NMR that could be clinically successful without the use of "reversing" agents, at least until "new biotechnology" may solve all problematic aspects of "transient" muscle relaxation.

  4. Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy

    PubMed Central

    Vallurupalli, Pramodh; Hansen, D. Flemming; Kay, Lewis E.

    2008-01-01

    Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)–ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of 15N, 1HN, 13Cα, and 13CO chemical shifts, along with 1HN-15N, 1Hα-13Cα, and 1HN-13CO residual dipolar couplings and 13CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with 1HN-15N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. PMID:18701719

  5. Prediction of carbonate rock type from NMR responses using data mining techniques

    NASA Astrophysics Data System (ADS)

    Gonçalves, Eduardo Corrêa; da Silva, Pablo Nascimento; Silveira, Carla Semiramis; Carneiro, Giovanna; Domingues, Ana Beatriz; Moss, Adam; Pritchard, Tim; Plastino, Alexandre; Azeredo, Rodrigo Bagueira de Vasconcellos

    2017-05-01

    Recent studies have indicated that the accurate identification of carbonate rock types in a reservoir can be employed as a preliminary step to enhance the effectiveness of petrophysical property modeling. Furthermore, rock typing activity has been shown to be of key importance in several steps of formation evaluation, such as the study of sedimentary series, reservoir zonation and well-to-well correlation. In this paper, a methodology based exclusively on the analysis of 1H-NMR (Nuclear Magnetic Resonance) relaxation responses - using data mining algorithms - is evaluated to perform the automatic classification of carbonate samples according to their rock type. We analyze the effectiveness of six different classification algorithms (k-NN, Naïve Bayes, C4.5, Random Forest, SMO and Multilayer Perceptron) and two data preprocessing strategies (discretization and feature selection). The dataset used in this evaluation is formed by 78 1H-NMR T2 distributions of fully brine-saturated rock samples from six different rock type classes. The experiments reveal that the combination of preprocessing strategies with classification algorithms is able to achieve a prediction accuracy of 97.4%.

  6. Molecular ordering and molecular dynamics in isotactic-polypropylene characterized by solid state NMR.

    PubMed

    Miyoshi, Toshikazu; Mamun, Al; Hu, Wei

    2010-01-14

    The order-disorder phenomenon of local packing structures, space heterogeneity, and molecular dynamics and average lamellar thickness, , of the alpha form of isotactic polypropylene (iPP) crystallized at various supercooling temperatures, DeltaT, are investigated by solid-state (SS) NMR and SAXS, respectively. increases with lowering DeltaT, and extrapolations of (-1) versus averaged melting point, <T(m)>, gives an equilibrium melting temperature, T(m)(0) = 457 +/- 4 K. High-power TPPM decoupling with a field strength of 110 kHz extremely improves (13)C high-resolution SS-NMR spectral resolution of the ordered crystalline signals at various DeltaT. A high-resolution (13)C SS-NMR spectrum combined with a conventional spin-lattice relaxation time in the rotating frame (T(1rhoH)) filter easily accesses an order-disorder phenomenon for upward and downward orientations of stems and their packing in the crystalline region. It is found that ordered packing fraction, f(order), increases with lowering DeltaT and reaches a maximum value of 62% at DeltaT = 34 K. The ordering phenomenon of stem packing indicates that chain-folding direction changes from random in the disordered packing to order in the ordered packing along the a sin theta axis under a hypothesis of adjacent re-entry structures. It is also found that f(order) significantly increases prior to enhancement of lamellar thickness. Additionally, annealing experiments indicate that is significantly enhanced after a simultaneous process of partial melting and recrystallization/reorganization into the ordered packing at annealing temperature >/=423 K. Furthermore, the center-bands only detection of exchange (CODEX) NMR method demonstrates that time-kinetic parameters of helical jump motions are highly influenced by DeltaT. These dynamic constraints are interpreted in terms of increment of and packing ordering. Through these new results related to molecular structures and dynamics, roles of polymer

  7. Various ligand-coated ultrasmall gadolinium-oxide nanoparticles: Water proton relaxivity and in-vivo T1 MR image

    NASA Astrophysics Data System (ADS)

    Park, Ja Young; Kim, Sung June; Lee, Gang Ho; Jin, Seonguk; Chang, Yongmin; Bae, Ji Eun; Chae, Kwon Seok

    2015-04-01

    Surface coating of nanoparticles with ligands is essential in magnetic resonance imaging (MRI) because of solubility in water and biocompatibility. In this study, five organic molecules were used for surface coating of ultrasmall gadolinium-oxide (Gd2O3) nanoparticles (d avg = 2.0 nm). All of the samples showed large longitudinal (r1) and transverse (r2) water proton relaxivities with r2/r1 ratios that were close to one, corresponding to ideal conditions for T1 MRI contrast agents. Finally, in-vivo T1 MR images were acquired to prove the effectiveness of the surface-coated ultrasmall Gd2O3 nanoparticles as a T1 MRI contrast agent.

  8. Articular Cartilage of the Human Knee Joint: In Vivo Multicomponent T2 Analysis at 3.0 T

    PubMed Central

    Choi, Kwang Won; Samsonov, Alexey; Spencer, Richard G.; Wilson, John J.; Block, Walter F.; Kijowski, Richard

    2015-01-01

    Purpose To compare multicomponent T2 parameters of the articular cartilage of the knee joint measured by using multicomponent driven equilibrium single-shot observation of T1 and T2 (mcDESPOT) in asymptomatic volunteers and patients with osteoarthritis. Materials and Methods This prospective study was performed with institutional review board approval and with written informed consent from all subjects. The mcDESPOT sequence was performed in the knee joint of 13 asymptomatic volunteers and 14 patients with osteoarthritis of the knee. Single-component T2 (T2Single), T2 of the fast-relaxing water component (T2F) and of the slow-relaxing water component (T2S), and the fraction of the fast-relaxing water component (FF) of cartilage were measured. Wilcoxon rank-sum tests and multivariate linear regression models were used to compare mcDESPOT parameters between volunteers and patients with osteoarthritis. Receiver operating characteristic analysis was used to assess diagnostic performance with mcDESPOT parameters for distinguishing morphologically normal cartilage from morphologically degenerative cartilage identified at magnetic resonance imaging in eight cartilage subsections of the knee joint. Results Higher cartilage T2Single (P < .001), lower cartilage FF (P < .001), and similar cartilage T2F (P = .079) and T2S (P = .124) values were seen in patients with osteoarthritis compared with those in asymptomatic volunteers. Differences in T2Single and FF remained significant (P < .05) after consideration of age differences between groups of subjects. Diagnostic performance was higher with FF than with T2Single for distinguishing between normal and degenerative cartilage (P < .05), with greater areas under the curve at receiver operating characteristic analysis. Conclusion Patients with osteoarthritis of the knee had significantly higher cartilage T2Single and significantly lower cartilage FF than did asymptomatic volunteers, and receiver operating characteristic analysis

  9. Biomolecular solid state NMR with magic-angle spinning at 25K.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2008-12-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.

  10. Paramagnetic NMR Investigation of Dendrimer-Based Host-Guest Interactions

    PubMed Central

    Wang, Fei; Shao, Naimin; Cheng, Yiyun

    2013-01-01

    In this study, the host-guest behavior of poly(amidoamine) (PAMAM) dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the 1H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE) was observed between TEMPO-NH2, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and 1H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems. PMID:23762249

  11. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  12. Relaxation Phenomena in Optically Pumped Mercury Isotopes.

    DTIC Science & Technology

    1981-08-31

    transmitting envelope, containing a small quantity of 1991tg and 2 0 11g in approximately equal amounts. A variety of ultraviolet- transmitting glasses ...is male from a glass , Corning 9741. During the course of this project approximately 300 cells from a number of materials were made and tested in... glass and fused silica surfaces. The general pattern of the dependence of relaxation times as a function of temperature in "stable" NMR cells has

  13. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    PubMed

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters. Copyright © 2013 John Wiley & Sons, Ltd.

  14. T2-mapping of the sacroiliac joints at 1.5 Tesla: a feasibility and reproducibility study.

    PubMed

    Albano, Domenico; Chianca, Vito; Cuocolo, Renato; Bignone, Rodolfo; Ciccia, Francesco; Sconfienza, Luca Maria; Midiri, Massimo; Brunetti, Arturo; Lagalla, Roberto; Galia, Massimo

    2018-04-20

    To evaluate the reproducibility of T2 relaxation time measurements of the sacroiliac joints at 1.5 T. Healthy volunteers underwent an oblique axial multislice multiecho spin-echo sequence of the sacroiliac joints at 1.5 T. Regions of interest were manually drawn using a dedicated software by two musculoskeletal radiologists to include the cartilaginous part of the sacroiliac joints. A senior radiologist performed the measurement twice, while a resident measured once. Intra- and inter-observer reproducibility was tested using the Bland-Altman method. Association between sex and T2 relaxation times was tested using the Mann-Whitney U test. Correlation between T2 relaxation times and body mass index (BMI) was tested using the Spearman's rho. Eighty sacroiliac joints of 40 subjects (mean age: 28 ± 4.8 years, range: 20-43; mean BMI: 23.3 ± 3.1, range: 18.9-30) were imaged. The mean T2 values obtained by the senior radiologist in the first series of measurements were 42 ± 4.4 ms, whereas in the second series were 40.7 ± 4.5 ms. The mean T2 values obtained by the radiology resident were 41.1 ± 4.2 ms. Intra-observer reproducibility was 88% (coefficient of repeatability = 3.8; bias = 1.28; p < .001), while inter-observer reproducibility was 86% (4.7; -.88; p < .001). There was significant association between sex and T2 relaxation times (p = .024) and significant inverse correlation between T2 relaxation times and BMI (r = -.340, p = .002). The assessment of T2 relaxation time measurements of sacroiliac joints seems to be highly reproducible at 1.5 T. Further studies could investigate the potential clinical application of this tool in the sacroiliac joints.

  15. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload.

    PubMed

    Henninger, B; Kremser, C; Rauch, S; Eder, R; Zoller, H; Finkenstedt, A; Michaely, H J; Schocke, M

    2012-11-01

    To evaluate MRI using T1 and T2* mapping sequences in patients with suspected hepatic iron overload (HIO). Twenty-five consecutive patients with clinically suspected HIO were retrospectively studied. All underwent MRI and liver biopsy. For the quantification of liver T2* values we used a fat-saturated multi-echo gradient echo sequence with 12 echoes (TR = 200 ms, TE = 0.99 ms +  n × 1.41 ms, flip angle 20°). T1 values were obtained using a fast T1 mapping sequence based on an inversion recovery snapshot FLASH sequence. Parameter maps were analysed using regions of interest. ROC analysis calculated cut-off points at 10.07 ms and 15.47 ms for T2* in the determination of HIO with accuracy 88 %/88 %, sensitivity 84 %/89.5 % and specificity 100 %/83 %. MRI correctly classified 20 patients (80 %). All patients with HIO only had decreased T1 and T2* relaxation times. There was a significant difference in T1 between patients with HIO only and patients with HIO and steatohepatitis (P = 0.018). MRI-based T2* relaxation diagnoses HIO very accurately, even at low iron concentrations. Important additional information may be obtained by the combination of T1 and T2* mapping. It is a rapid, non-invasive, accurate and reproducible technique for validating the evidence of even low hepatic iron concentrations. • Hepatic iron overload causes fibrosis, cirrhosis and increases hepatocellular carcinoma risk. • MRI detects iron because of the field heterogeneity generated by haemosiderin. • T2* relaxation is very accurate in diagnosing hepatic iron overload. • Additional information may be obtained by T1 and T2* mapping.

  16. Rb-NMR study of the quasi-one-dimensional competing spin-chain compound R b2C u2M o3O12

    NASA Astrophysics Data System (ADS)

    Matsui, Kazuki; Yagi, Ayato; Hoshino, Yukihiro; Atarashi, Sochiro; Hase, Masashi; Sasaki, Takahiko; Goto, Takayuki

    2017-12-01

    A Rb-NMR study has been performed on the quasi-one-dimensional competing spin chain R b2C u2M o3O12 with ferromagnetic and antiferromagnetic exchange interactions on nearest-neighboring and next-nearest neighboring spins, respectively. The system changes from a gapped ground state at zero field to a gapless state at HC≃2 T , where the existence of magnetic order below 1 K was demonstrated by a broadening of the NMR spectrum, associated with a critical divergence of 1 /T1 . In the higher-temperature region, T1-1 showed a power-law-type temperature dependence, from which the field dependence of the Luttinger parameter K was obtained and compared with theoretical calculations based on the spin nematic Tomonaga-Luttinger liquid (TLL) state.

  17. Magnetic flux relaxation in YBa2Cu3O(7-x) thin film: Thermal or athermal

    NASA Technical Reports Server (NTRS)

    Vitta, Satish; Stan, M. A.; Warner, Joseph D.; Alterovitz, Samuel A.

    1992-01-01

    The magnetic flux relaxation behavior of YBa2Cu3O(7-x) thin film on LaAlO3 for H parallel c was studied in the range of 4.2-40 k and 0.2-1.0 T. Both the normalized flux relaxation rate (S) and the net flux pinning energy (U) increase continuously from 1.3 x 10 exp -2 to 3.0 x 10 exp -2 and from 70-240 meV respectively, as the temperature (T) increases from 10 to 40 K. This behavior is consistent with the thermally activated flux motion model. At low temperatures, however, S is found to decrease much more slowly as compared with kT, in contradiction to the thermal activation model. This behavior is discussed in terms of the athermal quantum tunneling of flux lines. The magnetic field dependence of U, however, is not completely understood.

  18. Fast Xe-129 relaxation in solid xenon near its melting point: Cross-over from Raman scattering of phonons to vacancy diffusion.

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.

    2002-03-01

    NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.

  19. La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal

    DOE PAGES

    Arsenault, A.; Takahashi, S. K.; Imai, T.; ...

    2018-02-14

    139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin

  20. La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenault, A.; Takahashi, S. K.; Imai, T.

    139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin

  1. Pseudogap Behavior of the Nuclear Spin-Lattice Relaxation Rate in FeSe Probed by 77Se-NMR

    NASA Astrophysics Data System (ADS)

    Shi, Anlu; Arai, Takeshi; Kitagawa, Shunsaku; Yamanaka, Takayoshi; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas; Hirata, Michihiro; Sasaki, Takahiko

    2018-01-01

    We conducted 77Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature (T1T)-1 increases below the structural transition temperature Ts but starts to be suppressed below T*, well above the superconducting transition temperature Tc(H), resulting in a broad maximum of (T1T)-1 at Tp(H). This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because T* and Tp(H) decrease in the same manner as Tc(H) with increasing H, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above Tc(H).

  2. [Ag115S34(SCH2C6H4 t Bu)47(dpph)6]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M; Roesky, Peter W; Fenske, Dieter

    2017-03-01

    With the aim to synthesize soluble cluster molecules, the silver salt of (4-( tert -butyl)phenyl)methanethiol [AgSCH 2 C 6 H 4 t Bu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag 115 S 34 (SCH 2 C 6 H 4 t Bu) 47 (dpph) 6 ] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31 P/ 109 Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.

  3. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent.

    PubMed

    Santra, Santimukul; Jativa, Samuel D; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J Manuel

    2012-08-28

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.

  4. In Vitro Longitudinal Relaxivity Profile of Gd(ABE-DTTA), an Investigational Magnetic Resonance Imaging Contrast Agent

    PubMed Central

    Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.

    2016-01-01

    Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055

  5. NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide

    PubMed Central

    Wang, Tuo; Cady, Sarah D.; Hong, Mei

    2012-01-01

    The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use 31P and 13C solid-state NMR to examine M2-induced membrane curvature. M2(22–46), which includes only the transmembrane (TM) helix, and M2(21–61), which contains an additional amphipathic helix, are studied. 31P chemical shift lineshapes indicate that M2(21–61) causes a high-curvature isotropic phase to both cholesterol-rich virus-mimetic membranes and 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers, whereas M2(22–46) has minimal effect. The lamellar and isotropic domains have distinct 31P isotropic chemical shifts, indicating perturbation of the lipid headgroup conformation by the amphipathic helix. 31P- and 13C-detected 1H T2 relaxation and two-dimensional peptide-lipid correlation spectra show that M2(21–61) preferentially binds to the high-curvature domain. 31P linewidths indicate that the isotropic vesicles induced by M2(21–61) are 10–35 nm in diameter, and the virus-mimetic vesicles are smaller than the 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles. A strong correlation is found between high membrane curvature and weak drug-binding ability of the TM helix. Thus, the M2 amphipathic helix causes membrane curvature, which in turn perturbs the TM helix conformation, abolishing drug binding. These NMR experiments are applicable to other curvature-inducing membrane proteins such as fusion proteins and antimicrobial peptides. PMID:22385849

  6. EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2.

    PubMed

    Fortner, C N; Breyer, R M; Paul, R J

    2001-08-01

    Substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of constricted mouse tracheal smooth muscle. Relaxation to either SP or ATP is blocked by indomethacin, but the specific eicosanoid(s) involved have not been definitively identified. SP and ATP are reported to release PGE2 from airway epithelium in other species, suggesting PGE2 as a likely mediator in epithelium-dependent airway relaxation. Using mice homozygous for a gene-targeted deletion of the EP2 receptor [EP2(-/-)], one of the PGE2 receptors, we tested the hypothesis that PGE2 is the primary mediator of relaxation to SP or ATP. Relaxation in response to SP or ATP was significantly reduced in tracheas from EP2(-/-) mice. There were no differences between EP2(-/-) and wild-type tracheas in their physical dimensions, contraction to ACh, or relaxation to isoproterenol, thus ruling out any general alterations of smooth muscle function. There were also no differences between EP2(-/-) and wild-type tracheas in basal or stimulated PGE2 production. Exogenous PGE2 produced significantly less relaxation in EP2(-/-) tracheas compared with the wild type. Taken together, this experimental evidence supports the following two conclusions: EP2 receptors are of primary importance in airway relaxation to PGE2 and relaxation to SP or ATP is mediated through PGE2 acting on EP2 receptors.

  7. Hydrogels incorporating GdDOTA: towards highly efficient dual T1/T2 MRI contrast agents.

    PubMed

    Courant, Thomas; Roullin, Valérie Gaëlle; Cadiou, Cyril; Callewaert, Maïté; Andry, Marie Christine; Portefaix, Christophe; Hoeffel, Christine; de Goltstein, Marie Christine; Port, Marc; Laurent, Sophie; Elst, Luce Vander; Muller, Robert; Molinari, Michaël; Chuburu, Françoise

    2012-09-03

    Do not tumble dry: Gadolinium-DOTA encapsulated into polysaccharide nanoparticles (GdDOTA NPs) exhibited high relaxivity (r(1) =101.7 s(-1) mM(-1) per Gd(3+) ion at 37 °C and 20 MHz). This high relaxation rate is due to efficient Gd loading, reduced tumbling of the Gd complex, and the hydrogel nature of the nanoparticles. The efficacy of the nanoparticles as a T(1)/T(2) dual-mode contrast agent was studied in C6 cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  9. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and themore » use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined

  10. Application of 13C NMR cross-polarization inversion recovery experiments for the analysis of solid dosage forms.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz

    2016-11-20

    Solid-state nuclear magnetic resonance (ssNMR) is a powerful and unique method for analyzing solid forms of the active pharmaceutical ingredients (APIs) directly in their original formulations. Unfortunately, despite their wide range of application, the ssNMR experiments often suffer from low sensitivity and peaks overlapping between API and excipients. To overcome these limitations, the crosspolarization inversion recovery method was successfully used. The differences in the spin-lattice relaxation time constants for hydrogen atoms T1(H) between API and excipients were employed in order to separate and discriminate their peaks in ssNMR spectra as well as to increase the intensity of API signals in low-dose formulations. The versatility of this method was demonstrated by different examples, including the excipients mixture and commercial solid dosage forms (e.g. granules and tablets). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. SARA: a software environment for the analysis of relaxation data acquired with accordion spectroscopy

    PubMed Central

    Harden, Bradley J.

    2014-01-01

    We present SARA (Software for Accordion Relaxation Analysis), an interactive and user-friendly MATLAB software environment designed for analyzing relaxation data obtained with accordion spectroscopy. Accordion spectroscopy can be used to measure nuclear magnetic resonance (NMR) relaxation rates in a fraction of the time required by traditional methods, yet data analysis can be intimidating and no unified software packages are available to assist investigators. Hence, the technique has not achieved widespread use within the NMR community. SARA offers users a selection of analysis protocols spanning those presented in the literature thus far, with modifications permitting a more general application to crowded spectra such as those of proteins. We discuss the advantages and limitations of each fitting method and suggest a protocol combining the strengths of each procedure to achieve optimal results. In the end, SARA provides an environment for facile extraction of relaxation rates and should promote routine application of accordion relaxation spectroscopy. PMID:24408364

  12. Synthesis of Tumor-avid Photosensitizer-Gd(III)DTPA conjugates: impact of the number of gadolinium units in T1/T2 relaxivity, intracellular localization, and photosensitizing efficacy.

    PubMed

    Goswami, Lalit N; White, William H; Spernyak, Joseph A; Ethirajan, Manivannan; Chen, Yihui; Missert, Joseph R; Morgan, Janet; Mazurchuk, Richard; Pandey, Ravindra K

    2010-05-19

    To develop novel bifunctional agents for tumor imaging (MR) and photodynamic therapy (PDT), certain tumor-avid photosensitizers derived from chlorophyll-a were conjugated with variable number of Gd(III)aminobenzyl DTPA moieties. All the conjugates containing three or six gadolinium units showed significant T(1) and T(2) relaxivities. However, as a bifunctional agent, the 3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) containing 3Gd(III) aminophenyl DTPA was most promising with possible applications in tumor-imaging and PDT. Compared to HPPH, the corresponding 3- and 6Gd(III)aminobenzyl DTPA conjugates exhibited similar electronic absorption characteristics with a slightly decreased intensity of the absorption band at 660 nm. However, compared to HPPH, the excitation of the broad "Soret" band (near 400 nm) of the corresponding 3Gd(III)aminobenzyl-DTPA analogues showed a significant decrease in the fluorescence intensity at 667 nm.

  13. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival

    PubMed Central

    Hattingen, Elke; Jurcoane, Alina; Daneshvar, Keivan; Pilatus, Ulrich; Mittelbronn, Michel; Steinbach, Joachim P.; Bähr, Oliver

    2013-01-01

    Background Anti-angiogenic treatment in recurrent glioblastoma patients suppresses contrast enhancement and reduces vasogenic edema while non-enhancing tumor progression is common. Thus, the importance of T2-weighted imaging is increasing. We therefore quantified T2 relaxation times, which are the basis for the image contrast on T2-weighted images. Methods Conventional and quantitative MRI procedures were performed on 18 patients with recurrent glioblastoma before treatment with bevacizumab and every 8 weeks thereafter until further tumor progression. We segmented the tumor on conventional MRI into 3 subvolumes: enhancing tumor, non-enhancing tumor, and edema. Using coregistered quantitative maps, we followed changes in T2 relaxation time in each subvolume. Moreover, we generated differential T2 maps by a voxelwise subtraction using the first T2 map under bevacizumab as reference. Results Visually segmented areas of tumor and edema did not differ in T2 relaxation times. Non-enhancing tumor volume did not decrease after commencement of bevacizumab treatment but strikingly increased at progression. Differential T2 maps clearly showed non-enhancing tumor progression in previously normal brain. T2 relaxation times decreased under bevacizumab without re-increasing at tumor progression. A decrease of <26 ms in the enhancing tumor following exposure to bevacizumab was associated with longer overall survival. Conclusions Combining quantitative MRI and tumor segmentation improves monitoring of glioblastoma patients under bevacizumab. The degree of change in T2 relaxation time under bevacizumab may be an early response parameter predictive of overall survival. The sustained decrease in T2 relaxation times toward values of healthy tissue masks progressive tumor on conventional T2-weighted images. Therefore, quantitative T2 relaxation times may detect non-enhancing progression better than conventional T2-weighted imaging. PMID:23925453

  14. Nonlogarithmic magnetization relaxation at the initial time intervals and magnetic field dependence of the flux creep rate in Bi2Sr2Ca(sub I)Cu2Ox single crystals

    NASA Technical Reports Server (NTRS)

    Moshchalcov, V. V.; Zhukov, A. A.; Kuznetzov, V. D.; Metlushko, V. V.; Leonyuk, L. I.

    1990-01-01

    At the initial time intervals, preceding the thermally activated flux creep regime, fast nonlogarithmic relaxation is found. The fully magnetic moment Pm(t) relaxation curve is shown. The magnetic measurements were made using SQUID-magnetometer. Two different relaxation regimes exist. The nonlogarithmic relaxation for the initial time intervals may be related to the viscous Abrikosov vortices flow with j is greater than j(sub c) for high enough temperature T and magnetic field induction B. This assumption correlates with Pm(t) measurements. The characteristic time t(sub O) separating two different relaxation regimes decreases as temperature and magnetic field are lowered. The logarithmic magnetization relaxation curves Pm(t) for fixed temperature and different external magnetic field inductions B are given. The relaxation rate dependence on magnetic field, R(B) = dPm(B, T sub O)/d(1nt) has a sharp maximum which is similar to that found for R(T) temperature dependences. The maximum shifts to lower fields as temperature goes up. The observed sharp maximum is related to a topological transition in shielding critical current distribution and, consequently, in Abrikosov vortices density. The nonlogarithmic magnetization relaxation for the initial time intervals is found. This fast relaxation has almost an exponentional character. The sharp relaxation rate R(B) maximum is observed. This maximum corresponds to a topological transition in Abrikosov vortices distribution.

  15. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.

    PubMed

    Xiao, Ning; Gu, Wei; Wang, Hao; Deng, Yunlong; Shi, Xin; Ye, Ling

    2014-03-01

    To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Tumor segmentation of multi-echo MR T2-weighted images with morphological operators

    NASA Astrophysics Data System (ADS)

    Torres, W.; Martín-Landrove, M.; Paluszny, M.; Figueroa, G.; Padilla, G.

    2009-02-01

    In the present work an automatic brain tumor segmentation procedure based on mathematical morphology is proposed. The approach considers sequences of eight multi-echo MR T2-weighted images. The relaxation time T2 characterizes the relaxation of water protons in the brain tissue: white matter, gray matter, cerebrospinal fluid (CSF) or pathological tissue. Image data is initially regularized by the application of a log-convex filter in order to adjust its geometrical properties to those of noiseless data, which exhibits monotonously decreasing convex behavior. Finally the regularized data is analyzed by means of an 8-dimensional morphological eccentricity filter. In a first stage, the filter was used for the spatial homogenization of the tissues in the image, replacing each pixel by the most representative pixel within its structuring element, i.e. the one which exhibits the minimum total distance to all members in the structuring element. On the filtered images, the relaxation time T2 is estimated by means of least square regression algorithm and the histogram of T2 is determined. The T2 histogram was partitioned using the watershed morphological operator; relaxation time classes were established and used for tissue classification and segmentation of the image. The method was validated on 15 sets of MRI data with excellent results.

  17. Electronic properties of GeTe and Ag- or Sb-substituted GeTe studied by low-temperature Te 125 NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, J.; Levin, E. M.; Lee, Y.

    We have carried out 125Te nuclear magnetic resonance (NMR) in a wide temperature range of 1.5–300 K to investigate the electronic properties of Ge 50 Te 50, Ag 2 Ge 48Te 50 , and Sb 2 Ge 48 Te 50 from a microscopic point of view. From the temperature dependence of the NMR shift (K) and nuclear spin lattice relaxation rate (1/T 1), we found that two bands contribute to the physical properties of the materials. One band overlaps the Fermi level providing the metallic state where no strong electron correlations are revealed by Korringa analysis. The other band ismore » separated from the Fermi level by an energy gap of E g/k B ~67 K, which gives rise to semiconductorlike properties. First-principles calculation reveals that the metallic band originates from the Ge vacancy while the semiconductorlike band is related to the fine structure of the density of states near the Fermi level. We find low-temperature Te125 NMR data for the materials studied here clearly show that Ag substitution increases hole concentration while Sb substitution decreases it.« less

  18. Electronic properties of GeTe and Ag- or Sb-substituted GeTe studied by low-temperature Te 125 NMR

    DOE PAGES

    Cui, J.; Levin, E. M.; Lee, Y.; ...

    2016-08-18

    We have carried out 125Te nuclear magnetic resonance (NMR) in a wide temperature range of 1.5–300 K to investigate the electronic properties of Ge 50 Te 50, Ag 2 Ge 48Te 50 , and Sb 2 Ge 48 Te 50 from a microscopic point of view. From the temperature dependence of the NMR shift (K) and nuclear spin lattice relaxation rate (1/T 1), we found that two bands contribute to the physical properties of the materials. One band overlaps the Fermi level providing the metallic state where no strong electron correlations are revealed by Korringa analysis. The other band ismore » separated from the Fermi level by an energy gap of E g/k B ~67 K, which gives rise to semiconductorlike properties. First-principles calculation reveals that the metallic band originates from the Ge vacancy while the semiconductorlike band is related to the fine structure of the density of states near the Fermi level. We find low-temperature Te125 NMR data for the materials studied here clearly show that Ag substitution increases hole concentration while Sb substitution decreases it.« less

  19. Noninvasive detection of nanoparticle clustering by water proton NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taraban, Marc B.; Truong, Huy C.; Ilavsky, Jan

    It is shown that water proton NMR can detect uncontrolled clustering of inert nanoparticles (NPs) formulated as aqueous suspensions. The clustering of NPs causes the compartmentalization of water molecules, leading to accelerated proton spin de-coherence, and hence, much faster water transverse relaxation rates. The results suggest that water proton NMR can be used to noninvasively inspect NP products by commercial end users and researchers.

  20. Degradation of Phosphate Ester Hydraulic Fluid in Power Station Turbines Investigated by a Three-Magnet Unilateral Magnet Array

    PubMed Central

    Guo, Pan; He, Wei; García-Naranjo, Juan C.

    2014-01-01

    A three-magnet array unilateral NMR sensor with a homogeneous sensitive spot was employed for assessing aging of the turbine oils used in two different power stations. The Carr-Purcell-Meiboom-Gill (CPMG) sequence and Inversion Recovery-prepared CPMG were employed for measuring the 1H-NMR transverse and longitudinal relaxation times of turbine oils with different service status. Two signal components with different lifetimes were obtained by processing the transverse relaxation curves with a numeric program based on the Inverse Laplace Transformation. The long lifetime components of the transverse relaxation time T2eff and longitudinal relaxation time T1 were chosen to monitor the hydraulic fluid aging. The results demonstrate that an increase of the service time of the turbine oils clearly results in a decrease of T2eff,long and T1,long. This indicates that the T2eff,long and T1,long relaxation times, obtained from the unilateral magnetic resonance measurements, can be applied as indices for degradation of the hydraulic fluid in power station turbines. PMID:24736132

  1. New superhindered polydentate polyphosphine ligands P(CH2CH2P(t)Bu2)3, PhP(CH2CH2P(t)Bu2)2, P(CH2CH2CH2P(t)Bu2)3, and their ruthenium(II) chloride complexes.

    PubMed

    Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M

    2012-03-05

    The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.

  2. Characterization of wet aggregate stability of soils by ¹H-NMR relaxometry.

    PubMed

    Buchmann, C; Meyer, M; Schaumann, G E

    2015-09-01

    For the assessment of soil structural stability against hydraulic stress, wet sieving or constant head permeability tests are typically used but rather limited in their intrinsic information value. The multiple applications of several tests is the only possibility to assess important processes and mechanisms during soil aggregate breakdown, e.g. the influences of soil fragment release or differential swelling on the porous systems of soils or soil aggregate columns. Consequently, the development of new techniques for a faster and more detailed wet aggregate stability assessment is required. (1)H nuclear magnetic resonance relaxometry ((1)H-NMR relaxometry) might provide these requirements because it has already been successfully applied on soils. We evaluated the potential of (1)H-NMR relaxometry for the assessment of wet aggregate stability of soils, with more detailed information on occurring mechanisms at the same time. Therefore, we conducted single wet sieving and constant head permeability tests on untreated and 1% polyacrylic acid-treated soil aggregates of different textures and organic matter contents, subsequently measured by (1)H-NMR relaxometry after percolation. The stability of the soil aggregates were mainly depending on their organic matter contents and the type of aggregate stabilization, whereby additional effects of clay swelling on the measured wet aggregate stability were identified by the transverse relaxation time (T2) distributions. Regression analyses showed that only the percentage of water stable aggregates could be determined accurately from percolated soil aggregate columns by (1)H-NMR relaxometry measurements. (1)H-NMR relaxometry seems a promising technique for wet aggregate stability measurements but should be further developed for nonpercolated aggregate columns and real soil samples. Copyright © 2014 John Wiley & Sons, Ltd.

  3. TU-EF-BRA-01: NMR and Proton Density MRI of the 1D Patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolbarst, A.

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm.more » MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other

  4. Dynamic and organizational studies by SH NMR of polyisoprenols (PIs) in model membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy, F.A.; Knudsen, M.J.

    1987-05-01

    The objective of the authors studies seeks to understand the molecular details of how undecaprenol (C55) and dolichol (C95) function as chemical carriers of glycosyl residues in the membrane-directed synthesis of glycoconjugates. SH NMR studies provide information on the organization and dynamics of PIs in model membranes. Incorporation of polar or omega-terminus SH-labeled PIs into multilamellar membranes of phosphatidylcholine (PC) give rise to SH-NMR spectra interpretable in terms of quadrupole splittings ( vq), a measure of the degree of orderness of the SH-labeled site, and spin lattice relaxation times (T1's), revealing rates of motion. The authors results show: 1) vqmore » of the PIs increased with increase concentration of label and with lowering of temperature; 2) little difference in T1 or vq values between tail-group or headgroup SH-labeled geraniol (C10), farnesol (C15) or solanesol (C45) was observed; and 3) T1 measurements revealed correlation times close to the fatty acyl CH3 termini in PC. These data indicate that both ends of the esterified PI molecules see similar environments in the bilayer (BL) interior, and suggest that the esterified PIs studied here do not adopt a conventional head-group-at-interface orientation of lipids within the BL. These data support the authors earlier conclusions based on spin label EPR studies. Headgroup labeled dolichol (C95-CD2-OH) and dolichol phosphate (C94-CD2-O-PO3H2) have been synthesized. Surprisingly, no anisotropic quadrupole splitting in PC vesicles were observed. This may indicate an unusual conformation of the long poly-cis prenyl chains.« less

  5. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.

    PubMed

    Ren, Shuangpo; Parsekian, Andrew D; Zhang, Ye; Carr, Bradley J

    2018-05-15

    In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., K NMR ) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated K NMR are within one order of magnitude of K FLUTe . The empirical parameters obtained from calibrating the NMR data suggest that "intermediate diffusion" and/or "slow diffusion" during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, "intermediate diffusion" dominates the relaxation time, therefore assuming "fast diffusion" in the interpretation of NMR data from fractured rock may lead to inaccurate K NMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable K NMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements. © 2018, National Ground Water Association.

  6. One-dimensional scanning of moisture in heated porous building materials with NMR.

    PubMed

    van der Heijden, G H A; Huinink, H P; Pel, L; Kopinga, K

    2011-02-01

    In this paper we present a new dedicated NMR setup which is capable of measuring one-dimensional moisture profiles in heated porous materials. The setup, which is placed in the bore of a 1.5 T whole-body scanner, is capable of reaching temperatures up to 500 °C. Moisture and temperature profiles can be measured quasi simultaneously with a typical time resolution of 2-5 min. A methodology is introduced for correcting temperature effects on NMR measurements at these elevated temperatures. The corrections are based on the Curie law for paramagnetism and the observed temperature dependence of the relaxation mechanisms occurring in porous materials. Both these corrections are used to obtain a moisture content profile from the raw NMR signal profile. To illustrate the methodology, a one-sided heating experiment of concrete with a moisture content in equilibrium with 97% RH is presented. This kind of heating experiment is of particular interest in the research on fire spalling of concrete, since it directly reveals the moisture and heat transport occurring inside the concrete. The obtained moisture profiles reveal a moisture peak building up behind the boiling front, resulting in a saturated layer. To our knowledge the direct proof of the formation of a moisture peak and subsequent moisture clogging has not been reported before. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite-Natural Organic Matter Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Geoffrey M.; Hoyt, David W.; Burton, Sarah D.

    2014-01-29

    This paper presents an in situ NMR study of clay-natural organic polymer systems (a hectoritehumic acid [HA] composite) under CO2 storage reservoir conditions (90 bars CO2 pressure, 50°C). The 13C and 23Na NMR data show that supercritical CO2 interacts more strongly with the composite than with the base clay and does not react to form other C-containing species over several days at elevated CO2. With and without organic matter, the data suggest that CO2 enters the interlayer space of Na-hectorite equilibrated at 43% relative humidity. The presence of supercritical CO2 also leads to increased 23Na signal intensity, reduced line widthmore » at half height, increased basal width, more rapid 23Na T1 relaxation rates, and a shift to more positive resonance frequencies. Larger changes are observed for the hectorite-HA composite than for the base clay. In light of recently reported MD simulations of other polymer-Na-smectite composites, we interpret the observed changes as an increase in the rate of Na+ site hopping in the presence of supercritical CO2, the presence of potential new Na+ sorption sites when the humic acid is present, and perhaps an accompanying increase in the number of Na+ ions actively involved in site hopping. The results suggest that the presence of organic material either in clay interlayers or on external particle surfaces can significantly affect the behavior of supercritical CO2 and the mobility of metal ions in reservoir rocks.« less

  8. Alignment relaxation of Ne*(2pi [J = 1]) atoms in He-Ne* glow discharges

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro

    2009-11-01

    Alignment relaxation of the Ne*(2p5 3p; 2pi [J = 1]) atoms (where i = 2, 5, 7 or 10) induced by collisions with He atoms in glow discharges at 77 K < T < 1,000 K are reported. Close-coupling many-channel quantum calculations using a model potential for the Ne*(2p5 3p) - He system are compared with measurements of the alignment relaxation using the LIFS technique and the Hanle effect. The addition of the dipole polarization potential of the Ne*(2pi [J = 1]) atoms to the spin-orbit coupling and the electrostatic interaction between Ne* and He atoms leads to good agreement between theory and experiment.

  9. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin

    NASA Astrophysics Data System (ADS)

    Kämpf, Kerstin; Kremmling, Beke; Vogel, Michael

    2014-03-01

    Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.

  10. Experimental evidence for simultaneous relaxation processes in super spin glass γ-Fe2O3 nanoparticle system

    NASA Astrophysics Data System (ADS)

    Nikolic, V.; Perovic, M.; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V.

    2015-03-01

    Spherical γ-Fe2O3 nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe2O3 nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.

  11. N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Kennedy, K.R.; Cox, L.G.; Hayes, C.A.; Porter, B.E.

    2008-01-01

    Large-scale aerobic windrow composting has been used to bioremediate washout lagoon soils contaminated with the explosives TNT (2,4,6- trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) at several sites within the United States. We previously used 15N NMR to investigate the reduction and binding of T15NT in aerobic bench -scale reactors simulating the conditions of windrow composting. These studies have been extended to 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT), which, as impurities in TNT, are usually present wherever soils have been contaminated with TNT. Liquid-state 15N NMR analyses of laboratory reactions between 4-methyl-3-nitroaniline-15N, the major monoamine reduction product of 2,4DNT, and the Elliot soil humic acid, both in the presence and absence of horseradish peroxidase, indicated that the amine underwent covalent binding with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and non-heterocyclic condensation products. Liquid-state 15N NMR analyses of the methanol extracts of 20 day aerobic bench-scale composts of 2,4-di-15N-nitrotoluene and 2,6-di-15N-nitrotoluene revealed the presence of nitrite and monoamine, but not diamine, reduction products, indicating the occurrence of both dioxygenase enzyme and reductive degradation pathways. Solid-state CP/MAS 15N NMR analyses of the whole composts, however, suggested that reduction to monoamines followed by covalent binding of the amines to organic matter was the predominant pathway. ?? 2008 American Chemical Society.

  12. Revisiting Cu 63 NMR evidence for charge order in superconducting La 1.885 Sr 0.115 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imai, T.; Takahashi, S. K.; Arsenault, A.

    Here, the presence of charge and spin stripe order in the La 2CuO 4-based family of superconductors continues to lead to new insight on the unusual ground-state properties of high- T c cuprates. Soon after the discovery of charge stripe order at T charge≃65 K in Nd 3+ co-doped La 1.48Nd 0.4Sr 0.12CuO 4( Tc≃6 K), Hunt et al. demonstrated that La 1.48Nd 0.4Sr 0.12CuO 4 and superconducting La 2–xSr xCuO 4 with x~1/8( Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former. Their inevitable conclusion that La 1.885Sr 0.115CuO 4 also undergoes charge order at amore » comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La 1.885Sr 0.115CuO 4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La 1.885Sr 0.115CuO 4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin I z=–1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90° and 180° radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ≲4μs, while the spectral weight I Normal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.« less

  13. Revisiting Cu 63 NMR evidence for charge order in superconducting La 1.885 Sr 0.115 CuO 4

    DOE PAGES

    Imai, T.; Takahashi, S. K.; Arsenault, A.; ...

    2017-12-26

    Here, the presence of charge and spin stripe order in the La 2CuO 4-based family of superconductors continues to lead to new insight on the unusual ground-state properties of high- T c cuprates. Soon after the discovery of charge stripe order at T charge≃65 K in Nd 3+ co-doped La 1.48Nd 0.4Sr 0.12CuO 4( Tc≃6 K), Hunt et al. demonstrated that La 1.48Nd 0.4Sr 0.12CuO 4 and superconducting La 2–xSr xCuO 4 with x~1/8( Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former. Their inevitable conclusion that La 1.885Sr 0.115CuO 4 also undergoes charge order at amore » comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La 1.885Sr 0.115CuO 4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La 1.885Sr 0.115CuO 4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin I z=–1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90° and 180° radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ≲4μs, while the spectral weight I Normal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.« less

  14. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li 2O/Al 2O 3 ratio

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-01-01

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi 2O-71.7SiO 2-(17.7- x)Al 2O 3-4.9K 2O-3.2B 2O 3-2.5P 2O 5 (5.1≤ x≤12.6) upon heat treatment were studied. 29Si, 27Al, 31P and 11B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO 3 and BO 4 units. 27Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, 11B (high field 18.8 T) and 29Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi 2O 6, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li 2Si 2O 5), lithium metasilicate (Li 2SiO 3) and quartz (SiO 2) were identified in the 29Si NMR spectra of the glass-ceramics. 31P NMR spectra of the glass-ceramics revealed the presence of Li 3PO 4 and a mixed phase (Li,K) 3PO 4 at low alkali concentrations.

  15. Coexistence of charge order and antiferromagnetism in (TMTTF)2SbF6: NMR study

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.

    2015-03-01

    The electronic state of (TMTTF)2SbF6 was investigated by the 1H and 13C NMR measurements. The temperature dependence of T1-1 in 1H NMR shows a sharp peak associated with the antiferromagnetic transition at TAF=6 K. The temperature dependence of T1-1 is described by the power law T2.4 below TAF. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In 13C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μB and 0.24 μB at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μB per dimer are quite different from 0.11 μB of another AF (AFII) state in (TMTTF)2Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF)2SbF6.

  16. Basic physics of nuclear magnetic resonance.

    PubMed

    Patz, S

    1986-01-01

    This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.

  17. Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism

    NASA Astrophysics Data System (ADS)

    Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.

    2007-10-01

    Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.

  18. NMR studies of the helical antiferromagnetic compound EuCo2P2

    NASA Astrophysics Data System (ADS)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  19. T2 Relaxometry MRI Predicts Cerebral Palsy in Preterm Infants.

    PubMed

    Chen, L-W; Wang, S-T; Huang, C-C; Tu, Y-F; Tsai, Y-S

    2018-01-18

    T2-relaxometry brain MR imaging enables objective measurement of brain maturation based on the water-macromolecule ratio in white matter, but the outcome correlation is not established in preterm infants. Our study aimed to predict neurodevelopment with T2-relaxation values of brain MR imaging among preterm infants. From January 1, 2012, to May 31, 2015, preterm infants who underwent both T2-relaxometry brain MR imaging and neurodevelopmental follow-up were retrospectively reviewed. T2-relaxation values were measured over the periventricular white matter, including sections through the frontal horns, midbody of the lateral ventricles, and centrum semiovale. Periventricular T2 relaxometry in relation to corrected age was analyzed with restricted cubic spline regression. Prediction of cerebral palsy was examined with the receiver operating characteristic curve. Thirty-eight preterm infants were enrolled for analysis. Twenty patients (52.6%) had neurodevelopmental abnormalities, including 8 (21%) with developmental delay without cerebral palsy and 12 (31.6%) with cerebral palsy. The periventricular T2-relaxation values in relation to age were curvilinear in preterm infants with normal development, linear in those with developmental delay without cerebral palsy, and flat in those with cerebral palsy. When MR imaging was performed at >1 month corrected age, cerebral palsy could be predicted with T2 relaxometry of the periventricular white matter on sections through the midbody of the lateral ventricles (area under the receiver operating characteristic curve = 0.738; cutoff value of >217.4 with 63.6% sensitivity and 100.0% specificity). T2-relaxometry brain MR imaging could provide prognostic prediction of neurodevelopmental outcomes in premature infants. Age-dependent and area-selective interpretation in preterm brains should be emphasized. © 2018 by American Journal of Neuroradiology.

  20. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.