Sample records for t2-weighted mri scans

  1. Comparison of qualitative and quantitative analysis of T2-weighted MRI scans in chronic-progressive multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Adams, Hans-Peter; Wagner, Simone; Koziol, James A.

    1998-06-01

    Magnetic resonance imaging (MRI) is routinely used for the diagnosis of multiple sclerosis (MS), and for objective assessment of the extent of disease as a marker of treatment efficacy in MS clinical trials. The purpose of this study is to compare the evaluation of T2-weighted MRI scans in MS patients using a semi-automated quantitative technique with an independent assessment by a neurologist. Baseline, 6- month, and 12-month T2-weighted MRI scans from 41 chronic progressive MS patients were examined. The lesion volume ranged from 0.50 to 51.56 cm2 (mean: 8.08 cm2). Reproducibility of the quantitative technique was assessed by the re-evaluation of a random subset of 20 scans, the coefficient of variation of the replicate determinations was 8.2%. The reproducibility of the neurologist evaluations was assessed by the re-evaluation of a random subset of 10 patients. The rank correlation between the results of the two methods was 0.097, which did not significantly differ from zero. Disease-related activity in T2-weighted MRI scans is a multi-dimensional construct, and is not adequately summarized solely by determination of lesion volume. In this setting, image analysis software should not only support storage and retrieval as sets of pixels, but should also support links to an anatomical dictionary.

  2. SU-F-I-16: Short Breast MRI with High-Resolution T2-Weighted and Dynamic Contrast Enhanced T1-Weighted Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Son, J; Arun, B

    Purpose: To develop and demonstrate a short breast (sb) MRI protocol that acquires both T2-weighted and dynamic contrast-enhanced T1-weighted images in approximately ten minutes. Methods: The sb-MRI protocol consists of two novel pulse sequences. The first is a flexible fast spin-echo triple-echo Dixon (FTED) sequence for high-resolution fat-suppressed T2-weighted imaging, and the second is a 3D fast dual-echo spoiled gradient sequence (FLEX) for volumetric fat-suppressed T1-weighted imaging before and post contrast agent injection. The flexible FTED sequence replaces each single readout during every echo-spacing period of FSE with three fast-switching bipolar readouts to produce three raw images in a singlemore » acquisition. These three raw images are then post-processed using a Dixon algorithm to generate separate water-only and fat-only images. The FLEX sequence acquires two echoes using dual-echo readout after each RF excitation and the corresponding images are post-processed using a similar Dixon algorithm to yield water-only and fat-only images. The sb-MRI protocol was implemented on a 3T MRI scanner and used for patients who had undergone concurrent clinical MRI for breast cancer screening. Results: With the same scan parameters (eg, spatial coverage, field of view, spatial and temporal resolution) as the clinical protocol, the total scan-time of the sb-MRI protocol (including the localizer, bilateral T2-weighted, and dynamic contrast-enhanced T1-weighted images) was 11 minutes. In comparison, the clinical breast MRI protocol took 43 minutes. Uniform fat suppression and high image quality were consistently achieved by sb-MRI. Conclusion: We demonstrated a sb-MRI protocol comprising both T2-weighted and dynamic contrast-enhanced T1-weighted images can be performed in approximately ten minutes. The spatial and temporal resolution of the images easily satisfies the current breast MRI accreditation guidelines by the American College of Radiology. The protocol

  3. T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T2-weighted sequences including PROPELLER (BLADE) technique.

    PubMed

    Bayramoglu, Sibel; Kilickesmez, Ozgür; Cimilli, Tan; Kayhan, Arda; Yirik, Gülseren; Islim, Filiz; Alibek, Sedat

    2010-03-01

    The aim of this study was to compare four different fat-suppressed T2-weighted sequences with different techniques with regard to image quality and lesion detection in upper abdominal magnetic resonance imaging (MRI) scans. Thirty-two consecutive patients referred for upper abdominal MRI for the evaluation of various suspected pathologies were included in this study. Different T2-weighted sequences (free-breathing navigator-triggered turbo spin-echo [TSE], free-breathing navigator-triggered TSE with restore pulse (RP), breath-hold TSE with RP, and free-breathing navigator-triggered TSE with RP using the periodically rotated overlapping parallel lines with enhanced reconstruction technique [using BLADE, a Siemens implementation of this technique]) were used on all patients. All images were assessed independently by two radiologists. Assessments of motion artifacts; the edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were performed qualitatively. Quantitative analysis was performed by calculation of the signal-to-noise ratios for liver tissue and gallbladder as well as contrast-to-noise ratios of liver to spleen. Liver and gallbladder signal-to-noise ratios as well as liver to spleen contrast-to-noise ratios were significantly higher (P < .05) for the BLADE technique compared to all other sequences. In qualitative analysis, the severity of motion artifacts was significantly lower with T2-weighted free-breathing navigator-triggered BLADE sequences compared to other sequences (P < .01). The edge sharpness of the liver, pancreas, and intrahepatic vessels; depictions of the intrahepatic vessels; and overall image quality were significantly better with the BLADE sequence (P < .05). The T2-weighted free-breathing navigator-triggered TSE sequence with the BLADE technique is a promising approach for reducing motion artifacts and improving image quality in upper abdominal MRI scans.

  4. Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C

    2017-07-01

    To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American

  5. Fast T2*-weighted MRI of the prostate at 3 Tesla.

    PubMed

    Hardman, Rulon L; El-Merhi, Fadi; Jung, Adam J; Ware, Steve; Thompson, Ian M; Friel, Harry T; Peng, Qi

    2011-04-01

    To describe a rapid T2*-weighted (T2*W), three-dimensional (3D) echo planar imaging (EPI) sequence and its application in mapping local magnetic susceptibility variations in 3 Tesla (T) prostate MRI. To compare the sensitivity of T2*W EPI with routinely used T1-weighted turbo-spin echo sequence (T1W TSE) in detecting hemorrhage and the implications on sequences sensitive to field inhomogeneities such as MR spectroscopy (MRS). B(0) susceptibility weighted mapping was performed using a 3D EPI sequence featuring a 2D spatial excitation pulse with gradients of spiral k-space trajectory. A series of 11 subjects were imaged using 3T MRI and combination endorectal (ER) and six-channel phased array cardiac coils. T1W TSE and T2*W EPI sequences were analyzed quantitatively for hemorrhage contrast. Point resolved spectroscopy (PRESS MRS) was performed and data quality was analyzed. Two types of susceptibility variation were identified: hemorrhagic and nonhemorrhagic T2*W-positive areas. Post-biopsy hemorrhage lesions showed on average five times greater contrast on the T2*W images than T1W TSE images. Six nonhemorrhage regions of severe susceptibility artifact were apparent on the T2*W images that were not seen on standard T1W or T2W images. All nonhemorrhagic susceptibility artifact regions demonstrated compromised spectral quality on 3D MRS. The fast T2*W EPI sequence identifies hemorrhagic and nonhemorrhagic areas of susceptibility variation that may be helpful in prostate MRI planning at 3.0T. Copyright © 2011 Wiley-Liss, Inc.

  6. Detailed T1-Weighted Profiles from the Human Cortex Measured in Vivo at 3 Tesla MRI.

    PubMed

    Ferguson, Bart; Petridou, Natalia; Fracasso, Alessio; van den Heuvel, Martijn P; Brouwer, Rachel M; Hulshoff Pol, Hilleke E; Kahn, René S; Mandl, René C W

    2018-04-01

    Studies into cortical thickness in psychiatric diseases based on T1-weighted MRI frequently report on aberrations in the cerebral cortex. Due to limitations in image resolution for studies conducted at conventional MRI field strengths (e.g. 3 Tesla (T)) this information cannot be used to establish which of the cortical layers may be implicated. Here we propose a new analysis method that computes one high-resolution average cortical profile per brain region extracting myeloarchitectural information from T1-weighted MRI scans that are routinely acquired at a conventional field strength. To assess this new method, we acquired standard T1-weighted scans at 3 T and compared them with state-of-the-art ultra-high resolution T1-weighted scans optimised for intracortical myelin contrast acquired at 7 T. Average cortical profiles were computed for seven different brain regions. Besides a qualitative comparison between the 3 T scans, 7 T scans, and results from literature, we tested if the results from dynamic time warping-based clustering are similar for the cortical profiles computed from 7 T and 3 T data. In addition, we quantitatively compared cortical profiles computed for V1, V2 and V7 for both 7 T and 3 T data using a priori information on their relative myelin concentration. Although qualitative comparisons show that at an individual level average profiles computed for 7 T have more pronounced features than 3 T profiles the results from the quantitative analyses suggest that average cortical profiles computed from T1-weighted scans acquired at 3 T indeed contain myeloarchitectural information similar to profiles computed from the scans acquired at 7 T. The proposed method therefore provides a step forward to study cortical myeloarchitecture in vivo at conventional magnetic field strength both in health and disease.

  7. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  8. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results.

    PubMed

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M

    2017-07-01

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.

  9. Child dermoid cyst mimicking a craniopharyngioma: the benefit of MRI T2-weighted diffusion sequence.

    PubMed

    Amelot, Aymeric; Borha, Alin; Calmon, Raphael; Barbet, Patrick; Puget, Stephanie

    2018-02-01

    Brain dermoid cysts are very rare lesions. Although benign, these cysts may be associated with devastating complications due to mass effect or meningitis. The discovery of completely asymptomatic dermoid cysts in the pediatric population is exceedingly rare. Despite the advances in imaging modalities, it sometimes remains difficult to exclude the differential diagnosis of craniopharyngioma. We describe a 12-year-old boy addressed for suspicion of craniopharyngioma diagnosed by decreased visual acuity, bitemporal hemianopia and a CT scan showing a large hypodense suprasellar lesion with intralesional calcifications. Despite the unusual localization and size of this lesion, the absence of dermal sinus commonly found, and before visualizing a hyperintense mass on MRI-diffusion, the diagnosis of craniopharyngioma was ruled out in favor of a dermoid cyst. Radical excision was performed. In the suprasellar area, craniopharyngioma and dermoid cyst may have very similar radiological aspects: low density masses on CT scan and a hyperintense signal on T1-weighted MRI sequences with a variable signal on T2-weighted sequences. Hitherto, only two cases in literature have described suprasellar dermoid cyst. Their initial diagnosis was facilitated by the presence of a dermal sinus.

  10. Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    PubMed Central

    Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernández, Maria C.

    2015-01-01

    Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469

  11. T2-Weighted Liver MRI Using the MultiVane Technique at 3T: Comparison with Conventional T2-Weighted MRI

    PubMed Central

    Kang, Kyung A; Kim, EunJu; Jeong, Woo Kyoung; Choi, Dongil; Lee, Won Jae; Jung, Sin-Ho; Baek, Sun-Young

    2015-01-01

    Objective To assess the value of applying MultiVane to liver T2-weighted imaging (T2WI) compared with conventional T2WIs with emphasis on detection of focal liver lesions. Materials and Methods Seventy-eight patients (43 men and 35 women) with 86 hepatic lesions and 20 pancreatico-biliary diseases underwent MRI including T2WIs acquired using breath-hold (BH), respiratory-triggered (RT), and MultiVane technique at 3T. Two reviewers evaluated each T2WI with respect to artefacts, organ sharpness, and conspicuity of intrahepatic vessels, hilar duct, and main lesion using five-point scales, and made pairwise comparisons between T2WI sequences for these categories. Diagnostic accuracy (Az) and sensitivity for hepatic lesion detection were evaluated using alternative free-response receiver operating characteristic analysis. Results MultiVane T2WI was significantly better than BH-T2WI or RT-T2WI for organ sharpness and conspicuity of intrahepatic vessels and main lesion in both separate reviews and pairwise comparisons (p < 0.001). With regard to motion artefacts, MultiVane T2WI or BH-T2WI was better than RT-T2WI (p < 0.001). Conspicuity of hilar duct was better with BH-T2WI than with MultiVane T2WI (p = 0.030) or RT-T2WI (p < 0.001). For detection of 86 hepatic lesions, sensitivity (mean, 97.7%) of MultiVane T2WI was significantly higher than that of BH-T2WI (mean, 89.5%) (p = 0.008) or RT-T2WI (mean, 84.9%) (p = 0.001). Conclusion Applying the MultiVane technique to T2WI of the liver is a promising approach to improving image quality that results in increased detection of focal liver lesions compared with conventional T2WI. PMID:26357498

  12. High-resolution T2-weighted cervical cancer imaging: a feasibility study on ultra-high-field 7.0-T MRI with an endorectal monopole antenna.

    PubMed

    Hoogendam, Jacob P; Kalleveen, Irene M L; de Castro, Catalina S Arteaga; Raaijmakers, Alexander J E; Verheijen, René H M; van den Bosch, Maurice A A J; Klomp, Dennis W J; Zweemer, Ronald P; Veldhuis, Wouter B

    2017-03-01

    We studied the feasibility of high-resolution T 2 -weighted cervical cancer imaging on an ultra-high-field 7.0-T magnetic resonance imaging (MRI) system using an endorectal antenna of 4.7-mm thickness. A feasibility study on 20 stage IB1-IIB cervical cancer patients was conducted. All underwent pre-treatment 1.5-T MRI. At 7.0-T MRI, an external transmit/receive array with seven dipole antennae and a single endorectal monopole receive antenna were used. Discomfort levels were assessed. Following individualised phase-based B 1 + shimming, T 2 -weighted turbo spin echo sequences were completed. Patients had stage IB1 (n = 9), IB2 (n = 4), IIA1 (n = 1) or IIB (n = 6) cervical cancer. Discomfort (ten-point scale) was minimal at placement and removal of the endorectal antenna with a median score of 1 (range, 0-5) and 0 (range, 0-2) respectively. Its use did not result in adverse events or pre-term session discontinuation. To demonstrate feasibility, T 2 -weighted acquisitions from 7.0-T MRI are presented in comparison to 1.5-T MRI. Artefacts on 7.0-T MRI were due to motion, locally destructive B 1 interference, excessive B 1 under the external antennae and SENSE reconstruction. High-resolution T 2 -weighted 7.0-T MRI of stage IB1-IIB cervical cancer is feasible. The addition of an endorectal antenna is well tolerated by patients. • High resolution T 2 -weighted 7.0-T MRI of the inner female pelvis is challenging • We demonstrate a feasible approach for T 2 -weighted 7.0-T MRI of cervical cancer • An endorectal monopole receive antenna is well tolerated by participants • The endorectal antenna did not lead to adverse events or session discontinuation.

  13. GRE T2∗-Weighted MRI: Principles and Clinical Applications

    PubMed Central

    Tang, Meng Yue; Chen, Tian Wu; Zhang, Xiao Ming; Huang, Xiao Hua

    2014-01-01

    The sequence of a multiecho gradient recalled echo (GRE) T2*-weighted imaging (T2*WI) is a relatively new magnetic resonance imaging (MRI) technique. In contrast to T2 relaxation, which acquires a spin echo signal, T2* relaxation acquires a gradient echo signal. The sequence of a GRE T2*WI requires high uniformity of the magnetic field. GRE T2*WI can detect the smallest changes in uniformity in the magnetic field and can improve the rate of small lesion detection. In addition, the T2* value can indirectly reflect changes in tissue biochemical components. Moreover, it can be used for the early diagnosis and quantitative diagnosis of some diseases. This paper reviews the principles and clinical applications as well as the advantages and disadvantages of GRE T2*WI. PMID:24987676

  14. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans.

    PubMed

    Griffis, Joseph C; Allendorfer, Jane B; Szaflarski, Jerzy P

    2016-01-15

    Manual lesion delineation by an expert is the standard for lesion identification in MRI scans, but it is time-consuming and can introduce subjective bias. Alternative methods often require multi-modal MRI data, user interaction, scans from a control population, and/or arbitrary statistical thresholding. We present an approach for automatically identifying stroke lesions in individual T1-weighted MRI scans using naïve Bayes classification. Probabilistic tissue segmentation and image algebra were used to create feature maps encoding information about missing and abnormal tissue. Leave-one-case-out training and cross-validation was used to obtain out-of-sample predictions for each of 30 cases with left hemisphere stroke lesions. Our method correctly predicted lesion locations for 30/30 un-trained cases. Post-processing with smoothing (8mm FWHM) and cluster-extent thresholding (100 voxels) was found to improve performance. Quantitative evaluations of post-processed out-of-sample predictions on 30 cases revealed high spatial overlap (mean Dice similarity coefficient=0.66) and volume agreement (mean percent volume difference=28.91; Pearson's r=0.97) with manual lesion delineations. Our automated approach agrees with manual tracing. It provides an alternative to automated methods that require multi-modal MRI data, additional control scans, or user interaction to achieve optimal performance. Our fully trained classifier has applications in neuroimaging and clinical contexts. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR, and diffusion-weighted imaging: a proof of concept study.

    PubMed

    Trimboli, Rubina M; Verardi, Nicola; Cartia, Francesco; Carbonaro, Luca A; Sardanelli, Francesco

    2014-09-01

    The purpose of this study was to investigate the diagnostic performance of unenhanced MRI in detecting breast cancer and to assess the impact of double reading. A total of 116 breasts of 67 women who were 36-89 years old were studied at 1.5 T using an unenhanced protocol including axial T1-weighted gradient-echo, T2-weighted STIR, and echo-planar diffusion-weighted imaging (DWI). Two blinded readers (R1 and R2) independently evaluated unenhanced images using the BIRADS scale. A combination of pathology and negative follow-up served as the reference standard. McNemar and kappa statistics were used. Per-breast cancer prevalence was 37 of 116 (32%): 30 of 37 (81%) invasive ductal carcinoma, five of 37 (13%) ductal carcinoma in situ, and two of 37 (6%) invasive lobular carcinoma. Per-breast sensitivity of unenhanced MRI was 29 of 37 (78%) for R1, 28 of 37 (76%) for R2, and 29 of 37 (78%) for double reading. Specificity was 71 of 79 (90%) for both R1 and R2 and 69 of 79 (87%) for double reading. Double reading did not provide a significant increase in sensitivity. Interobserver agreement was almost perfect (Cohen κ = 0.873). An unenhanced breast MRI protocol composed of T1-weighted gradient echo, T2-weighted STIR, and echo-planar DWI enabled breast cancer detection with sensitivity of 76-78% and specificity of 90% without a gain in sensitivity from double reading.

  16. Comparative study of microelectrode recording-based STN location and MRI-based STN location in low to ultra-high field (7.0 T) T2-weighted MRI images

    NASA Astrophysics Data System (ADS)

    Verhagen, Rens; Schuurman, P. Richard; van den Munckhof, Pepijn; Fiorella Contarino, M.; de Bie, Rob M. A.; Bour, Lo J.

    2016-12-01

    Objective. The correspondence between the anatomical STN and the STN observed in T2-weighted MRI images used for deep brain stimulation (DBS) targeting remains unclear. Using a new method, we compared the STN borders seen on MRI images with those estimated by intraoperative microelectrode recordings (MER). Approach. We developed a method to automatically generate a detailed estimation of STN shape and the location of its borders, based on multiple-channel MER measurements. In 33 STNs of 19 Parkinson patients, we quantitatively compared the dorsal and lateral borders of this MER-based STN model with the STN borders visualized by 1.5 T (n = 14), 3.0 T (n = 10) and 7.0 T (n = 9) T2-weighted MRI. Main results. The dorsal border was identified more dorsally on coronal T2 MRI than by the MER-based STN model, with a significant difference in the 3.0 T (range 0.97-1.19 mm) and 7.0 T (range 1.23-1.25 mm) groups. The lateral border was significantly more medial on 1.5 T (mean: 1.97 mm) and 3.0 T (mean: 2.49 mm) MRI than in the MER-based STN; a difference that was not found in the 7.0 T group. Significance. The STN extends further in the dorsal direction on coronal T2 MRI images than is measured by MER. Increasing MRI field strength to 3.0 T or 7.0 T yields similar discrepancies between MER and MRI at the dorsal STN border. In contrast, increasing MRI field strength to 7.0 T may be useful for identification of the lateral STN border and thereby improve DBS targeting.

  17. Unenhanced breast MRI (STIR, T2-weighted TSE, DWIBS): An accurate and alternative strategy for detecting and differentiating breast lesions.

    PubMed

    Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco

    2015-10-01

    To assess the role of STIR, T2-weighted TSE and DWIBS sequences for detecting and characterizing breast lesions and to compare unenhanced (UE)-MRI results with contrast-enhanced (CE)-MRI and histological findings, having the latter as the reference standard. Two hundred eighty consecutive patients (age range, 27-73 years; mean age±standard deviation (SD), 48.8±9.8years) underwent MR examination with a diagnostic protocol including STIR, T2-weighted TSE, THRIVE and DWIBS sequences. Two radiologists blinded to both dynamic sequences and histological findings evaluated in consensus STIR, T2-weighted TSE and DWIBS sequences and after two weeks CE-MRI images searching for breast lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for UE-MRI and CE-MRI were calculated. UE-MRI results were also compared with CE- MRI. UE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 94%, 79%, 86%, 79% and 94%, respectively. CE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively. No statistically significant difference between UE-MRI and CE-MRI was found. Breast UE-MRI could represent an accurate diagnostic tool and a valid alternative to CE-MRI for evaluating breast lesions. STIR and DWIBS sequences allow to detect breast lesions while T2-weighted TSE sequences and ADC values could be useful for lesion characterization. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. SU-G-JeP2-07: Fusion Optimization of Multi-Contrast MRI Scans for MR-Based Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L; Yin, F; Liang, X

    Purpose: To develop an image fusion method using multiple contrast MRI scans for MR-based treatment planning. Methods: T1 weighted (T1-w), T2 weighted (T2-w) and diffusion weighted images (DWI) were acquired from liver cancer patient with breath-holding. Image fade correction and deformable image registration were performed using VelocityAI (Varian Medical Systems, CA). Registered images were normalized to mean voxel intensity for each image dataset. Contrast to noise ratio (CNR) between tumor and liver was quantified. Tumor area was defined as the GTV contoured by physicians. Normal liver area with equivalent dimension was used as background. Noise was defined by the standardmore » deviation of voxel intensities in the same liver area. Linear weightings were applied to T1-w, T2-w and DWI images to generate composite image and CNR was calculated for each composite image. Optimization process were performed to achieve different clinical goals. Results: With a goal of maximizing tumor contrast, the composite image achieved a 7–12 fold increase in tumor CNR (142.8 vs. −2.3, 11.4 and 20.6 for T1-w, T2-w and DWI only, respectively), while anatomical details were largely invisible. With a weighting combination of 100%, −10% and −10%, respectively, tumor contrast was enhanced from −2.3 to −5.4, while the anatomical details were clear. With a weighting combination of 25%, 20% and 55%, balanced tumor contrast and anatomy was achieved. Conclusion: We have investigated the feasibility of performing image fusion optimization on multiple contrast MRI images. This mechanism could help utilize multiple contrast MRI scans to potentially facilitate future MR-based treatment planning.« less

  19. Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine.

    PubMed

    Sayah, Anousheh; Jay, Ann K; Toaff, Jacob S; Makariou, Erini V; Berkowitz, Frank

    2016-09-01

    Reducing lumbar spine MRI scanning time while retaining diagnostic accuracy can benefit patients and reduce health care costs. This study compares the effectiveness of a rapid lumbar MRI protocol using 3D T2-weighted sampling perfection with application-optimized contrast with different flip-angle evolutions (SPACE) sequences with a standard MRI protocol for evaluation of lumbar spondylosis. Two hundred fifty consecutive unenhanced lumbar MRI examinations performed at 1.5 T were retrospectively reviewed. Full, rapid, and complete versions of each examination were interpreted for spondylotic changes at each lumbar level, including herniations and neural compromise. The full examination consisted of sagittal T1-weighted, T2-weighted turbo spin-echo (TSE), and STIR sequences; and axial T1- and T2-weighted TSE sequences (time, 18 minutes 40 seconds). The rapid examination consisted of sagittal T1- and T2-weighted SPACE sequences, with axial SPACE reformations (time, 8 minutes 46 seconds). The complete examination consisted of the full examination plus the T2-weighted SPACE sequence. Sensitivities and specificities of the full and rapid examinations were calculated using the complete study as the reference standard. The rapid and full studies had sensitivities of 76.0% and 69.3%, with specificities of 97.2% and 97.9%, respectively, for all degenerative processes. Rapid and full sensitivities were 68.7% and 66.3% for disk herniation, 85.2% and 81.5% for canal compromise, 82.9% and 69.1% for lateral recess compromise, and 76.9% and 69.7% for foraminal compromise, respectively. Isotropic SPACE T2-weighted imaging provides high-quality imaging of lumbar spondylosis, with multiplanar reformatting capability. Our SPACE-based rapid protocol had sensitivities and specificities for herniations and neural compromise comparable to those of the protocol without SPACE. This protocol fits within a 15-minute slot, potentially reducing costs and discomfort for a large subgroup of

  20. Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects☆

    PubMed Central

    Glatz, Andreas; Valdés Hernández, Maria C.; Kiker, Alexander J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Multifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3 ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12 mm3 and median in-plane area of 4 mm2. Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the

  1. Voxel-based automated detection of focal cortical dysplasia lesions using diffusion tensor imaging and T2-weighted MRI data.

    PubMed

    Wang, Yanming; Zhou, Yawen; Wang, Huijuan; Cui, Jin; Nguchu, Benedictor Alexander; Zhang, Xufei; Qiu, Bensheng; Wang, Xiaoxiao; Zhu, Mingwang

    2018-05-21

    The aim of this study was to automatically detect focal cortical dysplasia (FCD) lesions in patients with extratemporal lobe epilepsy by relying on diffusion tensor imaging (DTI) and T2-weighted magnetic resonance imaging (MRI) data. We implemented an automated classifier using voxel-based multimodal features to identify gray and white matter abnormalities of FCD in patient cohorts. In addition to the commonly used T2-weighted image intensity feature, DTI-based features were also utilized. A Gaussian processes for machine learning (GPML) classifier was tested on 12 patients with FCD (8 with histologically confirmed FCD) scanned at 1.5 T and cross-validated using a leave-one-out strategy. Moreover, we compared the multimodal GPML paradigm's performance with that of single modal GPML and classical support vector machine (SVM). Our results demonstrated that the GPML performance on DTI-based features (mean AUC = 0.63) matches with the GPML performance on T2-weighted image intensity feature (mean AUC = 0.64). More promisingly, GPML yielded significantly improved performance (mean AUC = 0.76) when applying DTI-based features to multimodal paradigm. Based on the results, it can also be clearly stated that the proposed GPML strategy performed better and is robust to unbalanced dataset contrary to SVM that performed poorly (AUC = 0.69). Therefore, the GPML paradigm using multimodal MRI data containing DTI modality has promising result towards detection of the FCD lesions and provides an effective direction for future researches. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Evaluation of neonatal brain myelination using the T1- and T2-weighted MRI ratio.

    PubMed

    Soun, Jennifer E; Liu, Michael Z; Cauley, Keith A; Grinband, Jack

    2017-09-01

    To validate the T1- and T2-weighted (T1w/T2w) MRI ratio technique in evaluating myelin in the neonatal brain. T1w and T2w MR images of 10 term neonates with normal-appearing brain parenchyma were obtained from a single 1.5 Tesla MRI and retrospectively analyzed. T1w/T2w ratio images were created with a postprocessing pipeline and qualitatively compared with standard clinical sequences (T1w, T2w, and apparent diffusion coefficient [ADC]). Quantitative assessment was also performed to assess the ratio technique in detecting areas of known myelination (e.g., posterior limb of the internal capsule) and very low myelination (e.g., optic radiations) using linear regression analysis and the Michelson Contrast equation, a measure of luminance contrast intensity. The ratio image provided qualitative improvements in the ability to visualize regional variation in myelin content of neonates. Linear regression analysis demonstrated a significant inverse relationship between the ratio intensity values and ADC values in the posterior limb of the internal capsule and the optic radiations (R 2  = 0.96 and P < 0.001). The Michelson Contrast equation showed that contrast differences between these two regions for the ratio images were 1.6 times higher than T1w, 2.6 times higher than T2w, and 1.8 times higher than ADC (all P < 0.001). Finally, the ratio improved visualization of the corticospinal tract, one of the earliest myelinated pathways. The T1w/T2w ratio accentuates contrast between myelinated and less myelinated structures and may enhance our diagnostic ability to detect myelination patterns in the neonatal brain. 2 Technical Efficacy: Stage2 J. MAGN. RESON. IMAGING 2017;46:690-696. © 2016 International Society for Magnetic Resonance in Medicine.

  3. 3D T2-weighted imaging to shorten multiparametric prostate MRI protocols.

    PubMed

    Polanec, Stephan H; Lazar, Mathias; Wengert, Georg J; Bickel, Hubert; Spick, Claudio; Susani, Martin; Shariat, Shahrokh; Clauser, Paola; Baltzer, Pascal A T

    2018-04-01

    To determine whether 3D acquisitions provide equivalent image quality, lesion delineation quality and PI-RADS v2 performance compared to 2D acquisitions in T2-weighted imaging of the prostate at 3 T. This IRB-approved, prospective study included 150 consecutive patients (mean age 63.7 years, 35-84 years; mean PSA 7.2 ng/ml, 0.4-31.1 ng/ml). Two uroradiologists (R1, R2) independently rated image quality and lesion delineation quality using a five-point ordinal scale and assigned a PI-RADS score for 2D and 3D T2-weighted image data sets. Data were compared using visual grading characteristics (VGC) and receiver operating characteristics (ROC)/area under the curve (AUC) analysis. Image quality was similarly good to excellent for 2D T2w (mean score R1, 4.3 ± 0.81; R2, 4.7 ± 0.83) and 3D T2w (mean score R1, 4.3 ± 0.82; R2, 4.7 ± 0.69), p = 0.269. Lesion delineation was rated good to excellent for 2D (mean score R1, 4.16 ± 0.81; R2, 4.19 ± 0.92) and 3D T2w (R1, 4.19 ± 0.94; R2, 4.27 ± 0.94) without significant differences (p = 0.785). ROC analysis showed an equivalent performance for 2D (AUC 0.580-0.623) and 3D (AUC 0.576-0.629) T2w (p > 0.05, respectively). Three-dimensional acquisitions demonstrated equivalent image and lesion delineation quality, and PI-RADS v2 performance, compared to 2D in T2-weighted imaging of the prostate. Three-dimensional T2-weighted imaging could be used to considerably shorten prostate MRI protocols in clinical practice. • 3D shows equivalent image quality and lesion delineation compared to 2D T2w. • 3D T2w and 2D T2w image acquisition demonstrated comparable diagnostic performance. • Using a single 3D T2w acquisition may shorten the protocol by 40%. • Combined with short DCE, multiparametric protocols of 10 min are feasible.

  4. Slowly resolving global myocardial inflammation/oedema in Tako-Tsubo cardiomyopathy: evidence from T2-weighted cardiac MRI.

    PubMed

    Neil, Christopher; Nguyen, Thanh Ha; Kucia, Angela; Crouch, Benjamin; Sverdlov, Aaron; Chirkov, Yuliy; Mahadavan, Gnanadevan; Selvanayagam, Joseph; Dawson, Dana; Beltrame, John; Zeitz, Christopher; Unger, Steven; Redpath, Thomas; Frenneaux, Michael; Horowitz, John

    2012-09-01

    Tako-Tsubo cardiomyopathy (TTC) is associated with regional left ventricular dysfunction, independent of the presence of fixed coronary artery disease. Previous studies have used T2-weighted cardiac MRI to demonstrate the presence of periapical oedema. The authors sought to determine the distribution, resolution and correlates of oedema in TTC. 32 patients with TTC were evaluated at a median of 2 days after presentation, along with 10 age-matched female controls. Extent of oedema was quantified both regionally and globally; scanning was repeated in patients with TTC after 3 months. Correlations were sought between oedema and the extent of hypokinesis, catecholamine release, release of N-terminal prohormone of B-type natriuretic peptide (NT-proBNP), and markers of systemic inflammatory activation (high-sensitivity C-reactive protein and platelet response to nitric oxide). In the acute phase of TTC, T2-weighted signal intensity was greater at the apex than at the base (p<0.0001) but was nevertheless significantly elevated at the base (p<0.0001), relative to control values. Over 3 months, T2-weighted signal decreased substantially, but remained abnormally elevated (p<0.02). The regional extent of oedema correlated inversely with radial myocardial strain (except at the apex). There were also direct correlations between global T2-weighted signal and (1) plasma normetanephrine (r=0.39, p=0.04) and (2) peak NT-proBNP (r=0.39, p=0.03), but not with systemic inflammatory markers. TTC is associated with slowly resolving global myocardial oedema, the acute extent of which correlates with regional contractile disturbance and acute release of both catecholamines and NT-proBNP.

  5. Individual T1-weighted/T2-weighted ratio brain networks: Small-worldness, hubs and modular organization

    NASA Astrophysics Data System (ADS)

    Wu, Huijun; Wang, Hao; Lü, Linyuan

    Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.

  6. Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone

    NASA Astrophysics Data System (ADS)

    Rampun, Andrik; Zheng, Ling; Malcolm, Paul; Tiddeman, Bernie; Zwiggelaar, Reyer

    2016-07-01

    In this paper we propose a prostate cancer computer-aided diagnosis (CAD) system and suggest a set of discriminant texture descriptors extracted from T2-weighted MRI data which can be used as a good basis for a multimodality system. For this purpose, 215 texture descriptors were extracted and eleven different classifiers were employed to achieve the best possible results. The proposed method was tested based on 418 T2-weighted MR images taken from 45 patients and evaluated using 9-fold cross validation with five patients in each fold. The results demonstrated comparable results to existing CAD systems using multimodality MRI. We achieved an area under the receiver operating curve (A z ) values equal to 90.0%+/- 7.6% , 89.5%+/- 8.9% , 87.9%+/- 9.3% and 87.4%+/- 9.2% for Bayesian networks, ADTree, random forest and multilayer perceptron classifiers, respectively, while a meta-voting classifier using average probability as a combination rule achieved 92.7%+/- 7.4% .

  7. Hybrid nanotrimers for dual T 1 and T 2-weighted magnetic resonance imaging

    DOE PAGES

    Cheng, Kai; Yang, Meng; Zhang, Ruiping; ...

    2014-10-04

    Development of multifunctional nanoparticle-based probes for dual T 1- and T 2-weighted magnetic resonance imaging (MRI) could allow us to image and diagnose the tumors or other abnormalities in an exceptionally accurate and reliable manner. In this study, by fusing distinct nanocrystals via solid-state interfaces, we built hybrid heteronanostructures to combine both T 1 and T 2- weighted contrast agents together for MRI with high accuracy and reliability. The resultant hybrid heterotrimers showed high stability in physiological conditions and could induce both simultaneous positive and negative contrast enhancements in MR images. Small animal positron emission tomography imaging study revealed thatmore » the hybrid heterostructures displayed favorable biodistribution and were suitable for in vivo imaging. Furthermore, their potential as dual contrast agents for T 1 and T 2-weighted MRI was further demonstrated by in vitro and in vivo imaging and relaxivity measurements.« less

  8. Pre-treatment functional MRI of breast cancer: T2* evaluation at 3 T and relationship to dynamic contrast-enhanced and diffusion-weighted imaging.

    PubMed

    Kousi, Evanthia; O'Flynn, Elizabeth A M; Borri, Marco; Morgan, Veronica A; deSouza, Nandita M; Schmidt, Maria A

    2018-05-31

    Baseline T2* relaxation time has been proposed as an imaging biomarker in cancer, in addition to Dynamic Contrast-Enhanced (DCE) MRI and diffusion-weighted imaging (DWI) parameters. The purpose of the current work is to investigate sources of error in T2* measurements and the relationship between T2* and DCE and DWI functional parameters in breast cancer. Five female volunteers and thirty-two women with biopsy proven breast cancer were scanned at 3 T, with Research Ethics Committee approval. T2* values of the normal breast were acquired from high-resolution, low-resolution and fat-suppressed gradient-echo sequences in volunteers, and compared. In breast cancer patients, pre-treatment T2*, DCE MRI and DWI were performed at baseline. Pathologically complete responders at surgery and non-responders were identified and compared. Principal component analysis (PCA) and cluster analysis (CA) were performed. There were no significant differences between T2* values from high-resolution, low-resolution and fat-suppressed datasets (p > 0.05). There were not significant differences between baseline functional parameters in responders and non-responders (p > 0.05). However, there were differences in the relationship between T2* and contrast-agent uptake in responders and non-responders. Voxels of similar characteristics were grouped in 5 clusters, and large intra-tumoural variations of all parameters were demonstrated. Breast T2* measurements at 3 T are robust, but spatial resolution should be carefully considered. T2* of breast tumours at baseline is unrelated to DCE and DWI parameters and contribute towards describing functional heterogeneity of breast tumours. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. [Optimization of diagnosis indicator selection and inspection plan by 3.0T MRI in breast cancer].

    PubMed

    Jiang, Zhongbiao; Wang, Yunhua; He, Zhong; Zhang, Lejun; Zheng, Kai

    2013-08-01

    To optimize 3.0T MRI diagnosis indicator in breast cancer and to select the best MRI scan program. Totally 45 patients with breast cancers were collected, and another 35 patients with benign breast tumor served as the control group. All patients underwent 3.0T MRI, including T1- weighted imaging (T1WI), fat suppression of the T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), 1H magnetic resonance spectroscopy (1H-MRS) and dynamic contrast enhanced (DCE) sequence. With operation pathology results as the gold standard in the diagnosis of breast diseases, the pathological results of benign and malignant served as dependent variables, and the diagnostic indicators of MRI were taken as independent variables. We put all the indicators of MRI examination under Logistic regression analysis, established the Logistic model, and optimized the diagnosis indicators of MRI examination to further improve MRI scan of breast cancer. By Logistic regression analysis, some indicators were selected in the equation, including the edge feature of the tumor, the time-signal intensity curve (TIC) type and the apparent diffusion coefficient (ADC) value when b=500 s/mm2. The regression equation was Logit (P)=-21.936+20.478X6+3.267X7+ 21.488X3. Valuable indicators in the diagnosis of breast cancer are the edge feature of the tumor, the TIC type and the ADC value when b=500 s/mm2. Combining conventional MRI scan, DWI and dynamic enhanced MRI is a better examination program, while MRS is the complementary program when diagnosis is difficult.

  10. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT.

    PubMed

    Meier-Schroers, Michael; Sprinkart, Alois Martin; Becker, Manuel; Homsi, Rami; Thomas, Daniel

    2018-03-07

     To determine the suitability of T2-weighted PROPELLER MRI for the assessment of pulmonary emphysema.  60 participants in a lung cancer screening program (30 subjects with pulmonary emphysema, and 30 control subjects without emphysema) were included for this retrospective study. All subjects were examined with low-dose CT (LDCT) and MRI within the screening program. The use of a T2-weighted PROPELLER sequence for the assessment of emphysema was analyzed and correlated with the results of LDCT. The presence and the extent of pulmonary emphysema were first assessed qualitatively using a three-point score, and then quantitatively with a semi-automated software program to obtain emphysema indices.  All 30 cases with pulmonary emphysema were accurately detected by MRI. There were 3 cases with emphysema according to MRI without emphysematous changes on LDCT (false-positive results). The qualitative scores as well as the emphysema indices were significantly higher in the emphysema group compared to the control group for MRI and LDCT (p < 0.001). Both the scores and the indices correlated significantly between MRI and LDCT (qualitative score of severity: r = 0.912/p < 0.001 in the emphysema group and r = 0.668/p < 0.001 in the control group; emphysema index: r = 0.960/p < 0.001 in the emphysema group and r = 0.746/p < 0.001 in the control group).  The presence and the extent of pulmonary emphysema may be assessed qualitatively and quantitatively by T2-weighted PROPELLER MRI with very good correlation to LDCT.   · T2-weighted PROPELLER MRI may be suitable for the assessment of pulmonary emphysema.. · There was significant correlation between MRI and LDCT regarding qualitative scores and quantitative emphysema indices in our study with correlation coefficients for different subgroups ranging from r = 0.668 to r = 0.960.. · T2-weighted PROPELLER MRI may have the potential to be used for follow-up examinations in

  11. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences.

    PubMed

    Bruegel, Melanie; Gaa, Jochen; Waldt, Simone; Woertler, Klaus; Holzapfel, Konstantin; Kiefer, Berthold; Rummeny, Ernst J

    2008-11-01

    The purpose of this study was to compare the value of respiration-triggered diffusion-weighted (DW) single-shot echo-planar MRI (EPI) and five variants of T2-weighted turbo spin-echo (TSE) sequences in the diagnosis of hepatic metastasis. Fifty-two patients with extrahepatic primary malignant tumors underwent 1.5-T MRI that included DW EPI and the following variants of T2-weighted TSE techniques: breath-hold fat-suppressed HASTE, breath-hold fat-supressed TSE, respiration-triggered fat-suppressed TSE, breath-hold STIR, and respiration-triggered STIR. Images were reviewed independently by two blinded observers who used a 5-point confidence scale to identify lesions. Results were correlated with surgical and histopathologic findings and follow-up imaging findings. The accuracy of each technique was measured with free-response receiver operating characteristic analysis. A total of 118 hepatic metastatic lesions (mean diameter, 12.8 mm; range, 3-84 mm) were evaluated. Accuracy values were higher (p < 0.001) with DW EPI (0.91-0.92) than with the T2-weighted TSE techniques (0.47-0.67). Imaging with the HASTE sequence (0.47-0.52) was less accurate (p < 0.05) than imaging with the breath-hold TSE, breath-hold STIR, respiration-triggered TSE, and respiration-triggered STIR sequences (0.59-0.67). Sensitivity was higher (p < 0.001) with DW EPI (0.88-0.91) than with T2-weighted TSE techniques (0.45-0.62). For small (< or = 10 mm) metastatic lesions only, the differences in sensitivity between DW EPI (0.85) and T2-weighted TSE techniques (0.26-0.44) were even more pronounced. DW EPI was more sensitive and more accurate than imaging with T2-weighted TSE techniques. Because of the black-blood effect on vessels and low susceptibility to motion artifacts, DW EPI was particularly useful for the detection of small (< or = 10 mm) metastatic lesions.

  12. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    PubMed

    Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder

    2003-06-01

    To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003

  13. Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents.

    PubMed

    Liu, Yue; Hughes, Timothy C; Muir, Benjamin W; Waddington, Lynne J; Gengenbach, Thomas R; Easton, Christopher D; Hinton, Tracey M; Moffat, Bradford A; Hao, Xiaojuan; Qiu, Jieshan

    2014-01-01

    An efficient MRI T2-weighted contrast agent incorporating a potential liver targeting functionality was synthesized via the combination of superparamagnetic iron oxide (SPIO) nanoparticles with multiwalled carbon nanotubes (MWCNTs). Poly(diallyldimethylammonium chloride) (PDDA) was coated on the surface of acid treated MWCNTs via electrostatic interactions and SPIO nanoparticles modified with a potential targeting agent, lactose-glycine adduct (Lac-Gly), were subsequently immobilized on the surface of the PDDA-MWCNTs. A narrow magnetic hysteresis loop indicated that the product displayed superparamagnetism at room temperature which was further confirmed by ZFC (zero field cooling)/FC (field cooling) curves measured by SQUID. The multifunctional MWCNT-based magnetic nanocomposites showed low cytotoxicity in vitro to HEK293 and Huh7 cell lines. Enhanced T2 relaxivities were observed for the hybrid material (186 mM(-1) s(-1)) in comparison with the pure magnetic nanoparticles (92 mM(-1) s(-1)) due to the capacity of the MWCNTs to "carry" more nanoparticles as clusters. More importantly, after administration of the composite material to an in vivo liver cancer model in mice, a significant increase in tumor to liver contrast ratio (277%) was observed in T2 weighted magnetic resonance images. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. SU-F-R-35: Repeatability of Texture Features in T1- and T2-Weighted MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahon, R; Weiss, E; Karki, K

    Purpose: To evaluate repeatability of lung tumor texture features from inspiration/expiration MR image pairs for potential use in patient specific care models and applications. Repeatability is a desirable and necessary characteristic of features included in such models. Methods: T1-weighted Volumetric Interpolation Breath-Hold Examination (VIBE) and/or T2-weighted MRI scans were acquired for 15 patients with non-small cell lung cancer before and during radiotherapy for a total of 32 and 34 same session inspiration-expiration breath-hold image pairs respectively. Bias correction was applied to the VIBE (VIBE-BC) and T2-weighted (T2-BC) images. Fifty-nine texture features at five wavelet decomposition ratios were extracted from themore » delineated primary tumor including: histogram(HIST), gray level co-occurrence matrix(GLCM), gray level run length matrix(GLRLM), gray level size zone matrix(GLSZM), and neighborhood gray tone different matrix (NGTDM) based features. Repeatability of the texture features for VIBE, VIBE-BC, T2-weighted, and T2-BC image pairs was evaluated by the concordance correlation coefficient (CCC) between corresponding image pairs, with a value greater than 0.90 indicating repeatability. Results: For the VIBE image pairs, the percentage of repeatable texture features by wavelet ratio was between 20% and 24% of the 59 extracted features; the T2-weighted image pairs exhibited repeatability in the range of 44–49%. The percentage dropped to 10–20% for the VIBE-BC images, and 12–14% for the T2-BC images. In addition, five texture features were found to be repeatable in all four image sets including two GLRLM, two GLZSM, and one NGTDN features. No single texture feature category was repeatable among all three image types; however, certain categories performed more consistently on a per image type basis. Conclusion: We identified repeatable texture features on T1- and T2-weighted MRI scans. These texture features should be further investigated

  15. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone.

    PubMed

    Rud, Erik; Klotz, Dagmar; Rennesund, Kristin; Baco, Eduard; Berge, Viktor; Lien, Diep; Svindland, Aud; Lundeby, Eskild; Berg, Rolf E; Eri, Lars M; Eggesbø, Heidi B

    2014-12-01

    To examine the performance of T2-weighted (T2W) and diffusion-weighted (DW) magnetic resonance imaging (MRI) for detecting the index tumour in patients with prostate cancer and to examine the agreement between MRI and histology when assessing tumour volume (TV) and overall tumour burden. The study included 199 consecutive patients with biopsy confirmed prostate cancer randomised to MRI before radical prostatectomy from December 2009 to July 2012. MRI-detected tumours (MRTs) were ranked from 1 to 3 according to decreasing volume and were compared with histologically detected tumours (HTs) ranked from 1 to 3, with HT 1 = index tumour. Whole-mount section histology was used as a reference standard. The TVs of true-positive MRTs (MRTVs 1-3) were compared with the TVs found by histology (HTVs 1-3). All tumours were registered on a 30-sector map and by classifying each sector as positive/negative, the rate of true-positive and -negative sectors was calculated. The detection rate for the HT 1 (index tumour) was 92%; HT 2, 45%; and HT 3, 37%. The MRTV 1-3 vs the HTV 1-3 were 2.8 mL vs 4.0 mL (index tumour, P < 0.001), 1.0 mL vs 0.9 mL (tumour 2, P = 0.413), and 0.6 mL vs 0.5 mL (tumour 3, P = 0.492). The rate of true-positive and -negative sectors was 50% and 88%, κ = 0.39. A combination of T2W and DW MRI detects the index tumour in 92% of cases, although MRI underestimates both TV and tumour burden compared with histology. © 2014 The Authors. BJU International © 2014 BJU International.

  16. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI.

    PubMed

    Clavijo Jordan, M Veronica; Beeman, Scott C; Baldelomar, Edwin J; Bennett, Kevin M

    2014-01-01

    Inorganic doping was used to create flexible, paramagnetic nanoparticle contrast agents for in vivo molecular magnetic resonance imaging (MRI) with low transverse relaxivity (r2). Most nanoparticle contrast agents formed from superparamagnetic metal oxides are developed with high r2. While sensitive, they can have limited in vivo detection due to a number of constraints with T2 or T2*-weighted imaging. T1-weighted imaging is often preferred for molecular MRI, but most T1-shortening agents are small chelates with low metal payload or are nanoparticles that also shorten T2 and limit the range of concentrations detectable with T1-weighting. Here we used tungsten and iron deposition to form doped iron oxide crystals inside the apoferritin cavity to form a WFe nanoparticle with a disordered crystal and un-coupled atomic magnetic moments. The atomic magnetic moments were thus localized, resulting in a principally paramagnetic nanoparticle. The WFe nanoparticles had no coercivity or saturation magnetization at 5 K and sweeping up to ± 20,000 Oe, while native ferritin had a coercivity of 3000 Oe and saturation at ± 20,000 Oe. This tungsten-iron crystal paramagnetism resulted in an increased WFe particle longitudinal relaxivity (r1) of 4870 mm(-1) s(-1) and a reduced transverse relaxivity (r2) of 9076 mm(-1) s(-1) compared with native ferritin. The accumulation of the particles was detected with T1-weighted MRI in concentrations from 20 to 400 nm in vivo, both injected in the rat brain and targeted to the rat kidney glomerulus. The WFe apoferritin nanoparticles were not cytotoxic up to 700 nm particle concentrations, making them potentially important for targeted molecular MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Boosting the SNR by adding a receive-only endorectal monopole to an external antenna array for high-resolution, T2 -weighted imaging of early-stage cervical cancer with 7-T MRI.

    PubMed

    van Kalleveen, I M L; Hoogendam, J P; Raaijmakers, A J E; Visser, F; Arteaga de Castro, C S; Verheijen, R H M; Luijten, P R; Zweemer, R P; Veldhuis, W B; Klomp, D W J

    2017-09-01

    The aim of this study was to investigate the signal-to-noise ratio (SNR) gain in early-stage cervical cancer at ultrahigh-field MRI (e.g. 7 T) using a combination of multiple external antennas and a single endorectal antenna. In particular, we used an endorectal monopole antenna to increase the SNR in cervical magnetic resonance imaging (MRI). This should allow high-resolution, T 2 -weighted imaging and magnetic resonance spectroscopy (MRS) for metabolic staging, which could facilitate the local tumor status assessment. In a prospective feasibility study, five healthy female volunteers and six patients with histologically proven stage IB1-IIB cervical cancer were scanned at 7 T. We used seven external fractionated dipole antennas for transmit-receive (transceive) and an endorectally placed monopole antenna for reception only. A region of interest, containing both normal cervix and tumor tissue, was selected for the SNR measurement. Separated signal and noise measurements were obtained in the region of the cervix for each element and in the near field of the monopole antenna (radius < 30 mm) to calculate the SNR gain of the endorectal antenna in each patient. We obtained high-resolution, T 2 -weighted images with a voxel size of 0.7 × 0.8 × 3.0 mm 3 . In four cases with optimal placement of the endorectal antenna (verified on the T 2 -weighted images), a mean gain of 2.2 in SNR was obtained at the overall cervix and tumor tissue area. Within a radius of 30 mm from the monopole antenna, a mean SNR gain of 3.7 was achieved in the four optimal cases. Overlap between the two different regions of the SNR calculations was around 24%. We have demonstrated that the use of an endorectal monopole antenna substantially increases the SNR of 7-T MRI at the cervical anatomy. Combined with the intrinsically high SNR of ultrahigh-field MRI, this gain may be employed to obtain metabolic information using MRS and to enhance spatial resolutions to assess tumor invasion

  18. Body weight lower limits of fetal postmortem MRI at 1.5 T.

    PubMed

    Jawad, N; Sebire, N J; Wade, A; Taylor, A M; Chitty, L S; Arthurs, O J

    2016-07-01

    To evaluate the diagnostic yield of postmortem magnetic resonance imaging (PM-MRI) compared with conventional autopsy in fetuses of early gestational age and low body weight. Fetuses of < 31 weeks' gestation that underwent 1.5-T PM-MRI and conventional autopsy were included. The findings of PM-MRI and conventional autopsy were reported blinded to each other. The reports of conventional autopsy and PM-MRI for each organ system (cardiovascular, neurological, abdominal, non-cardiac thoracic and musculoskeletal) were classified as either diagnostic or non-diagnostic. The likelihood of a non-diagnostic examination by PM-MRI was calculated according to fetal gestational age and body weight. Full datasets were examined of 204 fetuses, with mean gestational age of 20.95 ± 3.82 weeks (range, 12.0-30.7 weeks) and body-weight range of 15.9-1872 g. Body weight was the most significant predictor of diagnostic yield of PM-MRI. There was 95% confidence that 90% of fetuses will show diagnostic images by PM-MRI for all five organ systems when fetal body weight is ≥ 535 g, but < 50% of fetuses will have all five systems diagnostic on PM-MRI when body weight is < 122 g. PM-MRI is highly likely to provide adequate diagnostic images for fetuses with a body weight > 500 g. Below this weight, the diagnostic yield of standard 1.5-T PM-MRI decreases significantly. These data should help inform parents and clinicians on the suitability of performing PM-MRI in fetuses with low body weight. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  19. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis

    PubMed Central

    Helluy, Xavier; Sauter, Martina; Ye, Yu-Xiang; Lykowsky, Gunthard; Kreutner, Jakob; Yilmaz, Ali; Jahns, Roland; Boivin, Valerie; Kandolf, Reinhard; Jakob, Peter M.; Hiller, Karl-Heinz; Klingel, Karin

    2017-01-01

    Objective Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis. Results Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast. Conclusion This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise

  20. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    PubMed

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  1. Preoperative detection of malignant liver tumors: Comparison of 3D-T2-weighted sequences with T2-weighted turbo spin-echo and single shot T2 at 1.5 T.

    PubMed

    Barat, Maxime; Soyer, Philippe; Dautry, Raphael; Pocard, Marc; Lo-Dico, Rea; Najah, Haythem; Eveno, Clarisse; Cassinotto, Christophe; Dohan, Anthony

    2018-03-01

    To assess the performances of three-dimensional (3D)-T2-weighted sequences compared to standard T2-weighted turbo spin echo (T2-TSE), T2-half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE), diffusion weighted imaging (DWI) and 3D-T1-weighted VIBE sequences in the preoperative detection of malignant liver tumors. From 2012 to 2015, all patients of our institution undergoing magnetic resonance imaging (MRI) examination for suspected malignant liver tumors were prospectively included. Patients had contrast-enhanced 3D-T1-weighted, DWI, 3D-T2-SPACE, T2-HASTE and T2-TSE sequences. Imaging findings were compared with those obtained at follow-up, surgery and histopathological analysis. Sensitivities for the detection of malignant liver tumors were compared for each sequence using McNemar test. A subgroup analysis was conducted for HCCs. Image artifacts were analyzed and compared using Wilcoxon paired signed rank-test. Thirty-three patients were included: 13 patients had 40 hepatocellular carcinomas (HCC) and 20 had 54 liver metastases. 3D-T2-weighted sequences had a higher sensitivity than T2-weighted TSE sequences for the detection of malignant liver tumors (79.8% versus 68.1%; P < 0.001). The difference did not reach significance for HCC. T1-weighted VIBE and DWI had a higher sensitivity than T2-weighted sequences. 3D-T2-weighted-SPACE sequences showed significantly less artifacts than T2-weitghted TSE. 3D-T2-weighted sequences show very promising performances for the detection of liver malignant tumors compared to T2-weighted TSE sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T.

    PubMed

    Prakkamakul, Supada; Witzel, Thomas; Huang, Susie; Boulter, Daniel; Borja, Maria J; Schaefer, Pamela; Rosen, Bruce; Heberlein, Keith; Ratai, Eva; Gonzalez, Gilberto; Rapalino, Otto

    2016-09-01

    To compare an ultrafast brain magnetic resonance imaging (MRI) protocol to the conventional protocol in motion-prone inpatient clinical settings. This retrospective study was HIPAA compliant and approved by the Institutional Review Board with waived inform consent. Fifty-nine inpatients (30 males, 29 females; mean age 55.1, range 23-93 years)who underwent 3-Tesla brain MRI using ultrafast and conventional protocols, both including five sequences, were included in the study. The total scan time for five ultrafast sequences was 4 minutes 59 seconds. The ideal conventional acquisition time was 10 minutes 32 seconds but the actual acquisition took 15-20 minutes. The average scan times for ultrafast localizers, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, T2*-weighted sequences were 14, 41, 62, 96, 80, 6 seconds, respectively. Two blinded neuroradiologists independently assessed three aspects: (1) image quality, (2) gray-white matter (GM-WM) differentiation, and (3) diagnostic concordance for the detection of six clinically relevant imaging findings. Wilcoxon signed-rank test was used to compare image quality and GM-WM scores. Interobserver reproducibility was calculated. The ultrafast T1-weighted sequence demonstrated significantly better image quality (P = .005) and GM-WM differentiation (P < .001) compared to the conventional sequence. There was high agreement (>85%) between both protocols for the detection of mass-like lesion, hemorrhage, diffusion restriction, WM FLAIR hyperintensities, subarachnoid FLAIR hyperintensities, and hydrocephalus. The ultrafast protocol achieved at least comparable image quality and high diagnostic concordance compared to the conventional protocol. This fast protocol can be a viable option to replace the conventional protocol in motion-prone inpatient clinical settings. Copyright © 2016 by the American Society of Neuroimaging.

  3. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer.

    PubMed

    Henderson, Shelley; Purdie, Colin; Michie, Caroline; Evans, Andrew; Lerski, Richard; Johnston, Marilyn; Vinnicombe, Sarah; Thompson, Alastair M

    2017-11-01

    To investigate whether interim changes in hetereogeneity (measured using entropy features) on MRI were associated with pathological residual cancer burden (RCB) at final surgery in patients receiving neoadjuvant chemotherapy (NAC) for primary breast cancer. This was a retrospective study of 88 consenting women (age: 30-79 years). Scanning was performed on a 3.0 T MRI scanner prior to NAC (baseline) and after 2-3 cycles of treatment (interim). Entropy was derived from the grey-level co-occurrence matrix, on slice-matched baseline/interim T2-weighted images. Response, assessed using RCB score on surgically resected specimens, was compared statistically with entropy/heterogeneity changes and ROC analysis performed. Association of pCR within each tumour immunophenotype was evaluated. Mean entropy percent differences between examinations, by response category, were: pCR: 32.8%, RCB-I: 10.5%, RCB-II: 9.7% and RCB-III: 3.0%. Association of ultimate pCR with coarse entropy changes between baseline/interim MRI across all lesions yielded 85.2% accuracy (area under ROC curve: 0.845). Excellent sensitivity/specificity was obtained for pCR prediction within each immunophenotype: ER+: 100%/100%; HER2+: 83.3%/95.7%, TNBC: 87.5%/80.0%. Lesion T2 heterogeneity changes are associated with response to NAC using RCB scores, particularly for pCR, and can be useful across all immunophenotypes with good diagnostic accuracy. • Texture analysis provides a means of measuring lesion heterogeneity on MRI images. • Heterogeneity changes between baseline/interim MRI can be linked with ultimate pathological response. • Heterogeneity changes give good diagnostic accuracy of pCR response across all immunophenotypes. • Percentage reduction in heterogeneity is associated with pCR with good accuracy and NPV.

  4. Comparison of 7T and 3T MRI in patients with moyamoya disease.

    PubMed

    Oh, Byeong Ho; Moon, Hyeong Cheol; Baek, Hyeon Man; Lee, Youn Joo; Kim, Sang Woo; Jeon, Young Jai; Lee, Gun Seok; Kim, Hong Rae; Choi, Jai Ho; Min, Kyung Soo; Lee, Mou Seop; Kim, Young Gyu; Kim, Dong Ho; Kim, Won Seop; Park, Young Seok

    2017-04-01

    Magnetic resonance imaging and magnetic resonance angiography (MRI/MRA) are widely used for evaluating the moyamoya disease (MMD). This study compared the diagnostic accuracy of 7Tesla (T) and 3T MRI/MRA in MMD. In this case control study, 12 patients [median age: 34years; range (10-66years)] with MMD and 12 healthy controls [median age: 25years; range (22-59years)] underwent both 7T and 3T MRI/MRA. To evaluate the accuracy of MRI/MRA in MMD, five criteria were compared between imaging systems of 7T and 3T: Suzuki grading system, internal carotid artery (ICA) diameter, ivy sign, flow void of the basal ganglia on T2-weighted images, and high signal intensity areas of the basal ganglia on time-of-flight (TOF) source images. No difference was observed between 7T and 3T MRI/MRA in Suzuki stage, ICA diameter, and ivy sign score; while, 7T MRI/MRA showed a higher detection rate in the flow void on T2-weighted images and TOF source images (p<0.001). Receiver operating characteristic curves of both T2 and TOF criteria showed that 7T MRI/MRA had higher sensitivity and specificity than 3T MRI/MRA. Our findings indicate that 7T MRI/MRA is superior to 3T MRI/MRA for the diagnosis of MMD in point of detecting the flow void in basal ganglia by T2-weighted and TOF images. Copyright © 2016. Published by Elsevier Inc.

  5. SU-E-P-33: Critical Role of T2-Weighted Imaging Combined with Diffusion-Weighted Imaging of MRI in Diagnosis of Loco-Regional Recurrent Esophageal Cancer After Radical Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, G; Qiao, L; Liang, N

    Purpose: We perform this study to investigate the diagnostic efficacy of T2-weighted MRI (T2WI) and diffusion-weighted MRI (DWI) in confirming local relapses of esophageal cancer in patients highly suspected of recurrence after eradicating surgery. Methods: Forty-two postoperative esophageal cancer patients with clinical suspicions of cancer recurrence underwent 3.0T MRI applying axial, coronal, sagittal T2WI and axial DWI sequences. Two experienced radiologists (R1 and R2) both used two methods (T2WI, T2WI+DWI) to observe the images, and graded the patients ranging from 1 to 5 to represent severity of the disease based on visual signal intensity (patients equal to or more thanmore » grade 3 was confirmed as recurrent disease) Results: 27/42patients were verified of recurrent disease by pathologic findings and/or imaging findings during follow-up. The sensitivity, specificity and accuracy of R1 applying T2WI+DWI are 96%, 87% and 93% versus 81%, 80% and 77% on T2WI, these figures by R2 were 96%, 93% and 95% versus 89%, 93% and 90%. The receiver operating curve (ROC) analyses suggest that both of the two readers can obtain better accuracy when adding DWI to T2WI compared with T2WI alone. Kappa test between R1 and R2 indicates excellent inter-observer agreement on T2WI+DWI. Conclusion: Standard T2WI in combination DWI can achieve better accuracy than T2WI alone in diagnosing local recurrence of esophageal cancer, and improve consistency between different readers.« less

  6. Determination of the Association Between T2-weighted MRI and Gleason Sub-pattern: A Proof of Principle Study.

    PubMed

    Downes, Michelle R; Gibson, Eli; Sykes, Jenna; Haider, Masoom; van der Kwast, Theo H; Ward, Aaron

    2016-11-01

    The study aimed to determine the relationship between T2-weighted magnetic resonance imaging (MRI) signal and histologic sub-patterns in prostate cancer areas with different Gleason grades. MR images of prostates (n = 25) were obtained prior to radical prostatectomy. These were processed as whole-mount specimens with tumors and the peripheral zone was annotated digitally by two pathologists. Gleason grade 3 was the most prevalent grade and was subdivided into packed, intermediate, and sparse based on gland-to-stroma ratio. Large cribriform, intraductal carcinoma, and small cribriform glands (grade 4 group) were separately annotated but grouped together for statistical analysis. The log MRI signal intensity for each contoured region (n = 809) was measured, and pairwise comparisons were performed using the open-source software R version 3.0.1. Packed grade 3 sub-pattern has a significantly lower MRI intensity than the grade 4 group (P < 0.00001). Sparse grade 3 has a significantly higher MRI intensity than the packed grade 3 sub-pattern (P < 0.0001). No significant difference in MRI intensity was observed between the Gleason grade 4 group and the sparse sub-pattern grade 3 group (P = 0.54). In multivariable analysis adjusting for peripheral zone, the P values maintained significance (packed grade 3 group vs grade 4 group, P < 0.001; and sparse grade 3 sub-pattern vs packed grade 3 sub-pattern, P < 0.001). This study demonstrated that T2-weighted MRI signal is dependent on histologic sub-patterns within Gleason grades 3 and 4 cancers, which may have implications for directed biopsy sampling and patient management. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Haralick textural features on T2 -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer.

    PubMed

    Gnep, Khémara; Fargeas, Auréline; Gutiérrez-Carvajal, Ricardo E; Commandeur, Frédéric; Mathieu, Romain; Ospina, Juan D; Rolland, Yan; Rohou, Tanguy; Vincendeau, Sébastien; Hatt, Mathieu; Acosta, Oscar; de Crevoisier, Renaud

    2017-01-01

    To explore the association between magnetic resonance imaging (MRI), including Haralick textural features, and biochemical recurrence following prostate cancer radiotherapy. In all, 74 patients with peripheral zone localized prostate adenocarcinoma underwent pretreatment 3.0T MRI before external beam radiotherapy. Median follow-up of 47 months revealed 11 patients with biochemical recurrence. Prostate tumors were segmented on T 2 -weighted sequences (T 2 -w) and contours were propagated onto the coregistered apparent diffusion coefficient (ADC) images. We extracted 140 image features from normalized T 2 -w and ADC images corresponding to first-order (n = 6), gradient-based (n = 4), and second-order Haralick textural features (n = 130). Four geometrical features (tumor diameter, perimeter, area, and volume) were also computed. Correlations between Gleason score and MRI features were assessed. Cox regression analysis and random survival forests (RSF) were performed to assess the association between MRI features and biochemical recurrence. Three T 2 -w and one ADC Haralick textural features were significantly correlated with Gleason score (P < 0.05). Twenty-eight T 2 -w Haralick features and all four geometrical features were significantly associated with biochemical recurrence (P < 0.05). The most relevant features were Haralick features T 2 -w contrast, T 2 -w difference variance, ADC median, along with tumor volume and tumor area (C-index from 0.76 to 0.82; P < 0.05). By combining these most powerful features in an RSF model, the obtained C-index was 0.90. T 2 -w Haralick features appear to be strongly associated with biochemical recurrence following prostate cancer radiotherapy. 3 J. Magn. Reson. Imaging 2017;45:103-117. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Characterization of D-maltose as a T2 -exchange contrast agent for dynamic contrast-enhanced MRI.

    PubMed

    Goldenberg, Joshua M; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2018-09-01

    We sought to investigate the potential of D-maltose, D-sorbitol, and D-mannitol as T 2 exchange magnetic resonance imaging (MRI) contrast agents. We also sought to compare the in vivo pharmacokinetics of D-maltose with D-glucose with dynamic contrast enhancement (DCE) MRI. T 1 and T 2 relaxation time constants of the saccharides were measured using eight pH values and nine concentrations. The effect of echo spacing in a multiecho acquisition sequence used for the T 2 measurement was evaluated for all samples. Finally, performances of D-maltose and D-glucose during T 2 -weighted DCE-MRI were compared in vivo. Estimated T 2 relaxivities (r 2 ) of D-glucose and D-maltose were highly and nonlinearly dependent on pH and echo spacing, reaching their maximum at pH = 7.0 (∼0.08 mM -1 s -1 ). The r 2 values of D-sorbitol and D-mannitol were estimated to be ∼0.02 mM -1 s -1 and were invariant to pH and echo spacing for pH ≤7.0. The change in T 2 in tumor and muscle tissues remained constant after administration of D-maltose, whereas the change in T 2 decreased in tumor and muscle after administration of D-glucose. Therefore, D-maltose has a longer time window for T 2 -weighted DCE-MRI in tumors. We have demonstrated that D-maltose can be used as a T 2 exchange MRI contrast agent. The larger, sustained T 2 -weighted contrast from D-maltose relative to D-glucose has practical advantages for tumor diagnoses during T 2 -weighted DCE-MRI. Magn Reson Med 80:1158-1164, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    NASA Astrophysics Data System (ADS)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  10. T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu

    2015-08-15

    Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundantmore » images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were

  11. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings.

    PubMed

    Talbott, Jason F; Whetstone, William D; Readdy, William J; Ferguson, Adam R; Bresnahan, Jacqueline C; Saigal, Rajiv; Hawryluk, Gregory W J; Beattie, Michael S; Mabray, Marc C; Pan, Jonathan Z; Manley, Geoffrey T; Dhall, Sanjay S

    2015-10-01

    Previous studies that have evaluated the prognostic value of abnormal changes in signals on T2-weighted MRI scans of an injured spinal cord have focused on the longitudinal extent of this signal abnormality in the sagittal plane. Although the transverse extent of injury and the degree of spared spinal cord white matter have been shown to be important for predicting outcomes in preclinical animal models of spinal cord injury (SCI), surprisingly little is known about the prognostic value of altered T2 relaxivity in humans in the axial plane. The authors undertook a retrospective chart review of 60 patients who met the inclusion criteria of this study and presented to the authors' Level I trauma center with an acute blunt traumatic cervical SCI. Within 48 hours of admission, all patients underwent MRI examination, which included axial and sagittal T2 images. Neurological symptoms, evaluated with the grades according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS), at the time of admission and at hospital discharge were correlated with MRI findings. Five distinct patterns of intramedullary spinal cord T2 signal abnormality were defined in the axial plane at the injury epicenter. These patterns were assigned ordinal values ranging from 0 to 4, referred to as the Brain and Spinal Injury Center (BASIC) scores, which encompassed the spectrum of SCI severity. The BASIC score strongly correlated with neurological symptoms at the time of both hospital admission and discharge. It also distinguished patients initially presenting with complete injury who improved by at least one AIS grade by the time of discharge from those whose injury did not improve. The authors' proposed score was rapid to apply and showed excellent interrater reliability. The authors describe a novel 5-point ordinal MRI score for classifying acute SCIs on the basis of axial T2-weighted imaging. The proposed BASIC score stratifies the SCIs according to the extent of transverse T2

  12. A Comparison of Ultrasonography, Computerised Tomography, and Conventional MRI Findings for Splenic Nodules Associated with Type 1 Gaucher’s Disease with Diffusion-Weighted MRI Findings

    PubMed Central

    Albayrak, Eda; Sonmezgoz, Fitnet; Ozmen, Zafer; Aktas, Fatma; Altunkas, Aysegul

    2017-01-01

    A 26-year-old female patient with Type 1 Gaucher’s disease (GD) was admitted to our clinic with complaints of stomachache and signs of anemia. The patient underwent ultrasonography (US), computerised tomography (CT), and magnetic resonance imaging (MRI) scan. Imaging studies revealed massive hepatosplenomegaly, choledocolithiasis, and six nodules in the spleen with a mean size of 14 mm. The nodules appeared hyperechoic, hypoechoic, and of mixed echogenicity on the US and hypodense on the CT. While the nodules were observed to be iso-hypointense in T1-weighted (T1WI) images, they appeared to be hyperintense in the T2-weighted (T2WI) images. There were no diffusion restrictions in these nodules that appeared on the diffusion-weighted magnetic resonance imaging (DWI). A nodule located at the lower pole was observed to be hypointense in the T2WI images. The nodule located at the lower pole, which appeared hypointense in T2WI series, had restricted diffusion upon DWI. In this study, we aimed to present the properties of splenic GD nodules using US, CT, and conventional MRI, together with DWI. This case report is the first to apply US, CT, and conventional MRI, together with DWI, to the splenic nodules associated with Gaucher’s disease. PMID:29386979

  13. [MRI and CT-scan in presumed benign ovarian tumors].

    PubMed

    Thomassin-Naggara, I; Bazot, M

    2013-12-01

    Radiological examinations are required for the assessment of complex or indeterminate ovarian masses, mainly using MRI and CT-scan. MRI provides better tissue characterization than Doppler ultrasound or CT-scan (LE2). Pelvic MRI is recommended in case of an indeterminate or complex ovarian ultrasonographic mass (grade B). The protocol of a pelvic MRI should include morphological T1 and T2 sequences (grade B). In case of solid portion, perfusion and diffusion sequences are recommended (grade C). In case of doubt about the diagnosis of ovarian origin, pelvic MRI is preferred over the CT-scan (grade C). MRI is the technique of choice for the difference between functional and organic ovarian lesion diagnosis (grade C). It can be useful in case of clinical diagnostic uncertainty between polycystic ovary syndrome and ovarian hyperstimulation and multilocular ovarian tumor syndrome (grade C). No MRI classification for ovarian masses is currently validated. The establishment of a presumption of risk of malignancy is required in a MRI report of adnexal mass with if possible a guidance on the histological diagnosis. In the absence of clinical or sonographic diagnosis, pelvic CT-scan is recommended in the context of acute painful pelvic mass in non-pregnant patients (grade C). It specifies the anomalies and allows the differential diagnosis with digestive and urinary diseases (LE4). Given the lack of data in the literature, the precautionary principle must be applied to the realization of a pelvic MRI in a pregnant patient. A risk-benefit balance should be evaluated case by case by the clinician and the radiologist and information should be given to the patient. In an emergency situation during pregnancy, pelvic MRI is an alternative to CT-scan for the exploration of acute pelvic pain in case of uncertain sonographic diagnosis (grade C). Copyright © 2013. Published by Elsevier Masson SAS.

  14. Independent value of image fusion in unenhanced breast MRI using diffusion-weighted and morphological T2-weighted images for lesion characterization in patients with recently detected BI-RADS 4/5 x-ray mammography findings.

    PubMed

    Bickelhaupt, Sebastian; Tesdorff, Jana; Laun, Frederik Bernd; Kuder, Tristan Anselm; Lederer, Wolfgang; Teiner, Susanne; Maier-Hein, Klaus; Daniel, Heidi; Stieber, Anne; Delorme, Stefan; Schlemmer, Heinz-Peter

    2017-02-01

    The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm 2 ). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. • Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. • Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. • Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.

  15. MR of Toxoplasma encephalitis: Signal characteristics on T2-weighted images and pathologic correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brightbill, T.C.; Hensley, G.T.; Ruiz, A.

    1996-05-01

    Our goal was to determine if there are any T2-weighted MR signal characteristics of Toxoplasma encephalitis that might be useful in diagnosis and/or in gauging the effectiveness of medical therapy. We retrospectively analyzed the MR, CT, thallium-201 SPECT brain scans, and medical records of 27 patients with medically proven (26) and biopsy proven (1) Toxoplasma encephalitis, supplemented by autopsy findings in 4 additional patients, 2 of whom had postmortem MR correlation. The neuropathologic literature was also reviewed. Among the 27 patients, we discovered three distinct imaging patterns. Ten (37%) patients had predominantly T2-weighted hyperintense lesions and had been on medicalmore » therapy an average of 3 days (excluding one outlier). Ten (37%) patients had T2-weighted isointense lesions and had received medical therapy an average of 61 days. Seven (26%) patients had lesions with mixed signal on T2-weighted images and bad been on treatment an average of 6 days. Analysis of autopsy material from the four additional patients revealed the presence of organizing abscesses in three and necrotizing encephalitis in one, while the patient who had a brain biopsy demonstrated both types of pathologic lesions. In both cases having postmortem MRI, organizing abscesses appeared isointense to hypointense on T2-weighted images. There is a definite variation in the appearance of lesions of Toxoplasma encephalitis on T2-weighted images that precludes a definitive diagnosis based on signal characteristics alone. Pathologically, our data suggest that T2-weighted hyperintensity correlates with necrotizing encephalitis and T2-weighted isointensity with organizing abscesses. Furthermore, in patients on medical therapy the T2-weighted MR appearance may be a transition from hyperintensity to isointensity as a function of a positive response to antibiotic treatment, indicating that the signal change might be used to gauge the effectiveness of medical therapy. 15 refs., 6 figs.« less

  16. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods.

    PubMed

    van der Kleij, Lisa A; de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C W; Petersen, Esben T; De Vis, Jill B

    2018-01-01

    In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson's correlation coefficients >0.83, R2 .67-.97). The results from the downsampled data and the high-resolution data were similar. Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed.

  17. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    PubMed

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.

  18. Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture.

    PubMed

    Esses, Steven J; Lu, Xiaoguang; Zhao, Tiejun; Shanbhogue, Krishna; Dane, Bari; Bruno, Mary; Chandarana, Hersh

    2018-03-01

    To develop and test a deep learning approach named Convolutional Neural Network (CNN) for automated screening of T 2 -weighted (T 2 WI) liver acquisitions for nondiagnostic images, and compare this automated approach to evaluation by two radiologists. We evaluated 522 liver magnetic resonance imaging (MRI) exams performed at 1.5T and 3T at our institution between November 2014 and May 2016 for CNN training and validation. The CNN consisted of an input layer, convolutional layer, fully connected layer, and output layer. 351 T 2 WI were anonymized for training. Each case was annotated with a label of being diagnostic or nondiagnostic for detecting lesions and assessing liver morphology. Another independently collected 171 cases were sequestered for a blind test. These 171 T 2 WI were assessed independently by two radiologists and annotated as being diagnostic or nondiagnostic. These 171 T 2 WI were presented to the CNN algorithm and image quality (IQ) output of the algorithm was compared to that of two radiologists. There was concordance in IQ label between Reader 1 and CNN in 79% of cases and between Reader 2 and CNN in 73%. The sensitivity and the specificity of the CNN algorithm in identifying nondiagnostic IQ was 67% and 81% with respect to Reader 1 and 47% and 80% with respect to Reader 2. The negative predictive value of the algorithm for identifying nondiagnostic IQ was 94% and 86% (relative to Readers 1 and 2). We demonstrate a CNN algorithm that yields a high negative predictive value when screening for nondiagnostic T 2 WI of the liver. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:723-728. © 2017 International Society for Magnetic Resonance in Medicine.

  19. 3D Fast Spin Echo T2-weighted Contrast for Imaging the Female Cervix

    NASA Astrophysics Data System (ADS)

    Vargas Sanchez, Andrea Fernanda

    Magnetic Resonance Imaging (MRI) with T2-weighted contrast is the preferred modality for treatment planning and monitoring of cervical cancer. Current clinical protocols image the volume of interest multiple times with two dimensional (2D) T2-weighted MRI techniques. It is of interest to replace these multiple 2D acquisitions with a single three dimensional (3D) MRI acquisition to save time. However, at present the image contrast of standard 3D MRI does not distinguish cervical healthy tissue from cancerous tissue. The purpose of this thesis is to better understand the underlying factors that govern the contrast of 3D MRI and exploit this understanding via sequence modifications to improve the contrast. Numerical simulations are developed to predict observed contrast alterations and to propose an improvement. Improvements of image contrast are shown in simulation and with healthy volunteers. Reported results are only preliminary but a promising start to establish definitively 3D MRI for cervical cancer applications.

  20. Assessment of cerebral venous sinus thrombosis using T2*-weighted gradient echo magnetic resonance imaging sequences

    PubMed Central

    Bidar, Fatemeh; Faeghi, Fariborz; Ghorbani, Askar

    2016-01-01

    Background: The purpose of this study is to demonstrate the advantages of gradient echo (GRE) sequences in the detection and characterization of cerebral venous sinus thrombosis compared to conventional magnetic resonance sequences. Methods: A total of 17 patients with cerebral venous thrombosis (CVT) were evaluated using different magnetic resonance imaging (MRI) sequences. The MRI sequences included T1-weighted spin echo (SE) imaging, T*2-weighted turbo SE (TSE), fluid attenuated inversion recovery (FLAIR), T*2-weighted conventional GRE, and diffusion weighted imaging (DWI). MR venography (MRV) images were obtained as the golden standard. Results: Venous sinus thrombosis was best detectable in T*2-weighted conventional GRE sequences in all patients except in one case. Venous thrombosis was undetectable in DWI. T*2-weighted GRE sequences were superior to T*2-weighted TSE, T1-weighted SE, and FLAIR. Enhanced MRV was successful in displaying the location of thrombosis. Conclusion: T*2-weighted conventional GRE sequences are probably the best method for the assessment of cerebral venous sinus thrombosis. The mentioned method is non-invasive; therefore, it can be employed in the clinical evaluation of cerebral venous sinus thrombosis. PMID:27326365

  1. [Microinjection Monitoring System Design Applied to MRI Scanning].

    PubMed

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.

  2. Non-contrast magnetic resonance imaging for bladder cancer: fused high b value diffusion-weighted imaging and T2-weighted imaging helps evaluate depth of invasion.

    PubMed

    Lee, Minsu; Shin, Su-Jin; Oh, Young Taik; Jung, Dae Chul; Cho, Nam Hoon; Choi, Young Deuk; Park, Sung Yoon

    2017-09-01

    To investigate the utility of fused high b value diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) for evaluating depth of invasion in bladder cancer. We included 62 patients with magnetic resonance imaging (MRI) and surgically confirmed urothelial carcinoma in the urinary bladder. An experienced genitourinary radiologist analysed the depth of invasion (T stage <2 or ≥2) using T2WI, DWI, T2WI plus DWI, and fused DWI and T2WI (fusion MRI). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were investigated. Area under the curve (AUC) was analysed to identify T stage ≥2. The rate of patients with surgically confirmed T stage ≥2 was 41.9% (26/62). Sensitivity, specificity, PPV, NPV and accuracy were 50.0%, 55.6%, 44.8%, 60.6% and 53.2%, respectively, with T2WI; 57.7%, 77.8%, 65.2%, 71.8% and 69.4%, respectively, with DWI; 65.4%, 80.6%, 70.8%, 76.3% and 74.2%, respectively, with T2WI plus DWI and 80.8%, 77.8%, 72.4%, 84.9% and 79.0%, respectively, with fusion MRI. AUC was 0.528 with T2WI, 0.677 with DWI, 0.730 with T2WI plus DWI and 0.793 with fusion MRI for T stage ≥2. Fused high b value DWI and T2WI may be a promising non-contrast MRI technique for assessing depth of invasion in bladder cancer. • Accuracy of fusion MRI was 79.0% for T stage ≥2 in bladder cancer. • AUC of fusion MRI was 0.793 for T stage ≥2 in bladder cancer. • Diagnostic performance of fusion MRI was comparable with T2WI plus DWI. • As a non-contrast MRI technique, fusion MRI is useful for bladder cancer.

  3. Assessment of alveolar bone marrow fat content using 15 T MRI.

    PubMed

    Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L

    2018-03-01

    Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner–the Diabetes Research in Children Network (DirecNet) experience

    PubMed Central

    Barnea-Goraly, Naama; Weinzimer, Stuart A.; Mauras, Nelly; Beck, Roy W.; Marzelli, Matt J.; Mazaika, Paul K.; Aye, Tandy; White, Neil H.; Tsalikian, Eva; Fox, Larry; Kollman, Craig; Cheng, Peiyao; Reiss, Allan L.

    2013-01-01

    Background The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. Objective We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. Materials and methods 222 children (4–9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. Results 205 children (92.3%), mean age 7±1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. Conclusion Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation. PMID:24096802

  5. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    PubMed

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  6. Mapping Human Cortical Areas in vivo Based on Myelin Content as Revealed by T1- and T2-weighted MRI

    PubMed Central

    Glasser, Matthew F.; Van Essen, David C.

    2011-01-01

    Non-invasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is generalizable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject was mapped to the cortical surface and aligned across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-independent measure of sharp transitions in myelin content across the surface—i.e. putative cortical areal borders. We found excellent agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal association cortices are heavily myelinated and higher, multi-modal, association cortices are more lightly myelinated, but there are notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans compared to macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates. PMID:21832190

  7. Evaluation of MRI sequences for quantitative T1 brain mapping

    NASA Astrophysics Data System (ADS)

    Tsialios, P.; Thrippleton, M.; Glatz, A.; Pernet, C.

    2017-11-01

    T1 mapping constitutes a quantitative MRI technique finding significant application in brain imaging. It allows evaluation of contrast uptake, blood perfusion, volume, providing a more specific biomarker of disease progression compared to conventional T1-weighted images. While there are many techniques for T1-mapping there is a wide range of reported T1-values in tissues, raising the issue of protocols reproducibility and standardization. The gold standard for obtaining T1-maps is based on acquiring IR-SE sequence. Widely used alternative sequences are IR-SE-EPI, VFA (DESPOT), DESPOT-HIFI and MP2RAGE that speed up scanning and fitting procedures. A custom MRI phantom was used to assess the reproducibility and accuracy of the different methods. All scans were performed using a 3T Siemens Prisma scanner. The acquired data processed using two different codes. The main difference was observed for VFA (DESPOT) which grossly overestimated T1 relaxation time by 214 ms [126 270] compared to the IR-SE sequence. MP2RAGE and DESPOT-HIFI sequences gave slightly shorter time than IR-SE (~20 to 30ms) and can be considered as alternative and time-efficient methods for acquiring accurate T1 maps of the human brain, while IR-SE-EPI gave identical result, at a cost of a lower image quality.

  8. Optimization of T2-weighted imaging for shoulder magnetic resonance arthrography by synthetic magnetic resonance imaging.

    PubMed

    Lee, Seung Hyun; Lee, Young Han; Hahn, Seok; Yang, Jaemoon; Song, Ho-Taek; Suh, Jin-Suck

    2017-01-01

    Background Synthetic magnetic resonance imaging (MRI) allows reformatting of various synthetic images by adjustment of scanning parameters such as repetition time (TR) and echo time (TE). Optimized MR images can be reformatted from T1, T2, and proton density (PD) values to achieve maximum tissue contrast between joint fluid and adjacent soft tissue. Purpose To demonstrate the method for optimization of TR and TE by synthetic MRI and to validate the optimized images by comparison with conventional shoulder MR arthrography (MRA) images. Material and Methods Thirty-seven shoulder MRA images acquired by synthetic MRI were retrospectively evaluated for PD, T1, and T2 values at the joint fluid and glenoid labrum. Differences in signal intensity between the fluid and labrum were observed between TR of 500-6000 ms and TE of 80-300 ms in T2-weighted (T2W) images. Conventional T2W and synthetic images were analyzed for diagnostic agreement of supraspinatus tendon abnormalities (kappa statistics) and image quality scores (one-way analysis of variance with post-hoc analysis). Results Optimized mean values of TR and TE were 2724.7 ± 1634.7 and 80.1 ± 0.4, respectively. Diagnostic agreement for supraspinatus tendon abnormalities between conventional and synthetic MR images was excellent (κ = 0.882). The mean image quality score of the joint space in optimized synthetic images was significantly higher compared with those in conventional and synthetic images (2.861 ± 0.351 vs. 2.556 ± 0.607 vs. 2.750 ± 0.439; P < 0.05). Conclusion Synthetic MRI with optimized TR and TE for shoulder MRA enables optimization of soft-tissue contrast.

  9. SU-E-J-157: Improving the Quality of T2-Weighted 4D Magnetic Resonance Imaging for Clinical Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, D; Mutic, S; Hu, Y

    2014-06-01

    Purpose: To develop an imaging technique that enables us to acquire T2- weighted 4D Magnetic Resonance Imaging (4DMRI) with sufficient spatial coverage, temporal resolution and spatial resolution for clinical evaluation. Methods: T2-weighed 4DMRI images were acquired from a healthy volunteer using a respiratory amplitude triggered T2-weighted Turbo Spin Echo sequence. 10 respiratory states were used to equally sample the respiratory range based on amplitude (0%, 20%i, 40%i, 60%i, 80%i, 100%, 80%e, 60%e, 40%e and 20%e). To avoid frequent scanning halts, a methodology was devised that split 10 respiratory states into two packages in an interleaved manner and packages were acquiredmore » separately. Sixty 3mm sagittal slices at 1.5mm in-plane spatial resolution were acquired to offer good spatial coverage and reasonable spatial resolution. The in-plane field of view was 375mm × 260mm with nominal scan time of 3 minutes 42 seconds. Acquired 2D images at the same respiratory state were combined to form the 3D image set corresponding to that respiratory state and reconstructed in the coronal view to evaluate whether all slices were at the same respiratory state. 3D image sets of 10 respiratory states represented a complete 4D MRI image set. Results: T2-weighted 4DMRI image were acquired in 10 minutes which was within clinical acceptable range. Qualitatively, the acquired MRI images had good image quality for delineation purposes. There were no abrupt position changes in reconstructed coronal images which confirmed that all sagittal slices were in the same respiratory state. Conclusion: We demonstrated it was feasible to acquire T2-weighted 4DMRI image set within a practical amount of time (10 minutes) that had good temporal resolution (10 respiratory states), spatial resolution (1.5mm × 1.5mm × 3.0mm) and spatial coverage (60 slices) for future clinical evaluation.« less

  10. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods

    PubMed Central

    de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C. W.; Petersen, Esben T.; De Vis, Jill B.

    2018-01-01

    Objective In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Materials and methods Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). Results The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson’s correlation coefficients >0.83, R2 .67–.97). The results from the downsampled data and the high-resolution data were similar. Conclusion Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which

  11. Early postnatal myelin content estimate of white matter via T1w/T2w ratio

    NASA Astrophysics Data System (ADS)

    Lee, Kevin; Cherel, Marie; Budin, Francois; Gilmore, John; Zaldarriaga Consing, Kirsten; Rasmussen, Jerod; Wadhwa, Pathik D.; Entringer, Sonja; Glasser, Matthew F.; Van Essen, David C.; Buss, Claudia; Styner, Martin

    2015-03-01

    To develop and evaluate a novel processing framework for the relative quantification of myelin content in cerebral white matter (WM) regions from brain MRI data via a computed ratio of T1 to T2 weighted intensity values. We employed high resolution (1mm3 isotropic) T1 and T2 weighted MRI from 46 (28 male, 18 female) neonate subjects (typically developing controls) scanned on a Siemens Tim Trio 3T at UC Irvine. We developed a novel, yet relatively straightforward image processing framework for WM myelin content estimation based on earlier work by Glasser, et al. We first co-register the structural MRI data to correct for motion. Then, background areas are masked out via a joint T1w and T2 foreground mask computed. Raw T1w/T2w-ratios images are computed next. For purpose of calibration across subjects, we first coarsely segment the fat-rich facial regions via an atlas co-registration. Linear intensity rescaling based on median T1w/T2w-ratio values in those facial regions yields calibrated T1w/T2wratio images. Mean values in lobar regions are evaluated using standard statistical analysis to investigate their interaction with age at scan. Several lobes have strongly positive significant interactions of age at scan with the computed T1w/T2w-ratio. Most regions do not show sex effects. A few regions show no measurable effects of change in myelin content change within the first few weeks of postnatal development, such as cingulate and CC areas, which we attribute to sample size and measurement variability. We developed and evaluated a novel way to estimate white matter myelin content for use in studies of brain white matter development.

  12. MRI texture analysis (MRTA) of T2-weighted images in Crohn's disease may provide information on histological and MRI disease activity in patients undergoing ileal resection.

    PubMed

    Makanyanga, Jesica; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Bhatnagar, Gauraang; Groves, Ashley; Halligan, Steve; Miles, Ken; Taylor, Stuart A

    2017-02-01

    To associate MRI textural analysis (MRTA) with MRI and histological Crohn's disease (CD) activity. Sixteen patients (mean age 39.5 years, 9 male) undergoing MR enterography before ileal resection were retrospectively analysed. Thirty-six small (≤3 mm) ROIs were placed on T2-weighted images and location-matched histological acute inflammatory scores (AIS) measured. MRI activity (mural thickness, T2 signal, T1 enhancement) (CDA) was scored in large ROIs. MRTA features (mean, standard deviation, mean of positive pixels (MPP), entropy, kurtosis, skewness) were extracted using a filtration histogram technique. Spatial scale filtration (SSF) ranged from 2 to 5 mm. Regression (linear/logistic) tested associations between MRTA and AIS (small ROIs), and CDA/constituent parameters (large ROIs). Skewness (SSF = 2 mm) was associated with AIS [regression coefficient (rc) 4.27, p = 0.02]. Of 120 large ROI analyses (for each MRI, MRTA feature and SSF), 15 were significant. Entropy (SSF = 2, 3 mm) and kurtosis (SSF = 3 mm) were associated with CDA (rc 0.9, 1.0, -0.45, p = 0.006-0.01). Entropy and mean (SSF = 2-4 mm) were associated with T2 signal [odds ratio (OR) 2.32-3.16, p = 0.02-0.004], [OR 1.22-1.28, p = 0.03-0.04]. MPP (SSF = 2 mm) was associated with mural thickness (OR 0.91, p = 0.04). Kurtosis (SSF = 3 mm), standard deviation (SSF = 5 mm) were associated with decreased T1 enhancement (OR 0.59, 0.42, p = 0.004, 0.007). MRTA features may be associated with CD activity. • MR texture analysis features may be associated with Crohn's disease histological activity. • Texture analysis features may correlate with MR-dependent Crohn's disease activity scores. • The utility of MR texture analysis in Crohn's disease merits further investigation.

  13. Diagnostic performance and reproducibility of T2w based and diffusion weighted imaging (DWI) based PI-RADSv2 lexicon descriptors for prostate MRI.

    PubMed

    Benndorf, Matthias; Hahn, Felix; Krönig, Malte; Jilg, Cordula Annette; Krauss, Tobias; Langer, Mathias; Dovi-Akué, Philippe

    2017-08-01

    To examine the diagnostic performance of PI-RADSv2 T2w and diffusion weighted imaging (DWI) based lexicon descriptors, inter-observer agreement for descriptor assignment and diagnostic accuracy of the PI-RADSv2 assessment categories for multiparametric prostate MRI. 176 lesions in 79 consecutive patients are analyzed, lesions are histopathologically verified by MRI-ultrasound fusion biopsy. All lesions are rated according to the PI-RADSv2 lexicon, descriptors for T2w and DWI sequences and resulting assessment categories are assigned by two independent blinded radiologists. We perform receiver-operating-characteristic analysis using the assessment categories. To analyze inter-observer agreement, we calculate weighted kappa values for assessment category assignment and unweighted kappa values for descriptor assignment. PI-RADSv2 assessment categories yield an area under the curve of 0.76/0.74 (radiologist 1/radiologist 2), P >0.05. Weighted kappa for agreement is 0.601 in the peripheral zone and 0.580 in the transition zone. We detect a difference in the cancer rate for PI-RADSv2 category 3 between peripheral zone (32%) and transition zone (12%), P <0.05. We obtain moderate agreement at most for descriptor assignment with kappa values ranging from 0.082 (T2w shape in the transition zone) to 0.407 (T2w signal intensity in the peripheral zone) and 0.493 (ADC pattern in the peripheral zone). Our analysis corroborates typical descriptors for benign/malignant lesions, but also reveals insights into potential pitfalls - T2w wedge shaped lesions in the peripheral zone have a considerable cancer rate, despite being labelled category 2 in the lexicon. Agreement for descriptor assignment in the PI-RADSv2 lexicon is at most moderate in our study. Typical descriptors for benign and malignant lesions are validated, whereas the discriminatory power of some descriptors is challenged. The difference in the cancer rate for PI-RADSv2 category 3 between peripheral zone and transition

  14. Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids.

    PubMed

    Akima, Hiroshi; Hioki, Maya; Yoshiko, Akito; Koike, Teruhiko; Sakakibara, Hisataka; Takahashi, Hideyuki; Oshida, Yoshiharu

    2016-05-01

    The purpose of this study was to assess relationships between intramuscular adipose tissue (IntraMAT) content determined by MRI and intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) determined by (1)H magnetic resonance spectroscopy ((1)H MRS) or echo intensity determined by B-mode ultrasonography of human skeletal muscles. Thirty young and elderly men and women were included. T1-weighted MRI was taken from the right mid-thigh to measure IntraMAT content of the vastus lateralis (VL) and biceps femoris (BF) using a histogram shape-based thresholding technique. IMCL and EMCL were measured from the VL and BF at the right mid-thigh using (1)H MRS. Ultrasonographic images were taken from the VL and BF of the right mid-thigh to measure echo intensity based on gray-scale level for quantitative analysis. There was a significant correlation between IntraMAT content by MRI and EMCL of the VL and BF (VL, r=0.506, P<0.01; BF, r=0.591, P<0.001) and between echo intensity and EMCL of the VL and BF (VL, r=0.485, P<0.05; BF, r=0.648, P<0.01). IntraMAT content was also significantly correlated with echo intensity of the VL and BF (VL, r=0.404, P<0.05; BF, r=0.493, P<0.01). Our study suggests that IntraMAT content determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids, not intramyocellular lipids, in human skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Diffusion Weighted MRI and MRS to Differentiate Radiation Necrosis and Recurrent Disease in Gliomas

    NASA Astrophysics Data System (ADS)

    Ewell, Lars

    2006-03-01

    A difficulty encountered in the diagnosis of patients with gliomas is the differentiation between recurrent disease and Radiation Induced Necrosis (RIN). Both can appear as ‘enhancing lesions’ on a typical T2 weighted MRI scan. Magnetic Resonance Spectroscopy (MRS) and Diffusion Weighted MRI (DWMRI) have the potential to be helpful regarding this differentiation. MRS has the ability to measure the concentration of brain metabolites, such as Choline, Creatin and N- Acetyl Aspartate, the ratios of which have been shown to discriminate between RIN and recurrent disease. DWMRI has been linked via a rise in the Apparent Diffusion Coefficient (ADC) to successful treatment of disease. Using both of these complimentary non-invasive imaging modalities, we intend to initiate an imaging protocol whereby we will study how best to combine metabolite ratios and ADC values to obtain the most useful information in the least amount of scan time. We will look for correlations over time between ADC values, and MRS, among different sized voxels.

  16. Correlation of the near-infrared spectroscopy signals with signal intensity in T(2)-weighted magnetic resonance imaging of the human masseter muscle.

    PubMed

    Kuboki, T; Suzuki, K; Maekawa, K; Inoue-Minakuchi, M; Acero, C O; Yanagi, Y; Wakasa, T; Kishi, K; Yatani, H; Clark, G T

    2001-08-01

    The purpose of this study was to compare and contrast blood volume changes transcutaneously measured using near-infrared (NIR) spectroscopy against water signal intensity changes taken from a transverse T(2)-weighted MR image of the masseter muscle in healthy human subjects before, during and after contraction. Eight healthy non-smoking males with no history of chronic muscle pain or vascular headaches participated (mean age: 23.9+/-0.6 years). The MRI data were gathered using a turbo spin echo sequence (TR: 2300 ms; TE: 90 ms; FOV: 188x300 mm; scanning time: 30 s; slice thickness: 10 mm) and the slice level was set at the mid-point between the origin and insertion of the masseter. Intramuscular haemoglobin (Hb) levels and water content of the right masseter muscle were continuously monitored for 2 min before, 30 s during and 15 min after a maximum voluntary clenching (MVC) task. Both the near-infrared and MRI data were baseline-corrected and normalized and mean levels were established and plotted. Plots of the data showed that both near-infrared-based total Hb and T(2)-weighted MRI-based signal-intensity levels clearly decreased during contraction and a clear post-contraction rebound response was evident after the contraction. The near-infrared data were found to be highly correlated with MRI-based signal-intensity data (Pearson's r=0.909, P<0.0001). In conclusion, these data provide powerful evidence that near-infrared data (total Hb), transcutaneously taken from the masseter muscle in humans, will reflect the intramuscular water signal intensity changes seen using a T(2)-weighted MRI imaging method.

  17. Gadolinium embedded iron oxide nanoclusters as T1-T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Zhou, Zijian; Wang, Zhiyong; Xue, Yunxin; Zeng, Yun; Gao, Jinhao; Zhu, Lei; Zhang, Xianzhong; Liu, Gang; Chen, Xiaoyuan

    2013-08-01

    This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability.This report illustrates a new strategy of designing a T1-T2 dual-modal magnetic resonance imaging (MRI)-visible vector for siRNA delivery and MRI. Hydrophobic gadolinium embedded iron oxide (GdIO) nanocrystals are self-assembled into nanoclusters in the water phase with the help of stearic acid modified low molecular weight polyethylenimine (stPEI). The resulting water-dispersible GdIO-stPEI nanoclusters possess good stability, monodispersity with narrow size distribution and competitive T1-T2 dual-modal MR imaging properties. The nanocomposite system is capable of binding and delivering siRNA for knockdown of a gene of interest while maintaining its magnetic properties and biocompatibility. This new gadolinium embedded iron oxide nanocluster provides an important platform for safe and efficient gene delivery with non-invasive T1-T2 dual-modal MRI monitoring capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02797j

  18. Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences.

    PubMed

    Lucas, Rita; Lopes Dias, João; Cunha, Teresa Margarida

    2015-01-01

    We aimed to evaluate the added value of diffusion-weighted imaging (DWI) to standard magnetic resonance imaging (MRI) for detecting post-treatment cervical cancer recurrence. The detection accuracy of T2-weighted (T2W) images was compared with that of T2W MRI combined with either dynamic contrast-enhanced (DCE) MRI or DWI. Thirty-eight women with clinically suspected uterine cervical cancer recurrence more than six months after treatment completion were examined with 1.5 Tesla MRI including T2W, DCE, and DWI sequences. Disease was confirmed histologically and correlated with MRI findings. The diagnostic performance of T2W imaging and its combination with either DCE or DWI were analyzed. Sensitivity, positive predictive value, and accuracy were calculated. Thirty-six women had histologically proven recurrence. The accuracy for recurrence detection was 80% with T2W/DCE MRI and 92.1% with T2W/DWI. The addition of DCE sequences did not significantly improve the diagnostic ability of T2W imaging, and this sequence combination misclassified two patients as falsely positive and seven as falsely negative. The T2W/DWI combination revealed a positive predictive value of 100% and only three false negatives. The addition of DWI to T2W sequences considerably improved the diagnostic ability of MRI. Our results support the inclusion of DWI in the initial MRI protocol for the detection of cervical cancer recurrence, leaving DCE sequences as an option for uncertain cases.

  19. Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.

    PubMed

    Dias, Sílvia Costa; Ølsen, Oystein E

    2012-11-01

    MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.

  20. On the fallacy of quantitative segmentation for T1-weighted MRI

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; Harrigan, Robert L.; Newton, Allen T.; Rane, Swati; Pallavaram, Srivatsan; D'Haese, Pierre F.; Dawant, Benoit M.; Claassen, Daniel O.; Landman, Bennett A.

    2016-03-01

    T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is determined by these local properties and the sequence parameters of the acquisition. In common practice, a range of acceptable parameters is used to ensure "similar" contrast across scanners used for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use different ranges of parameters and report the derived data as simply "T1-weighted". Physics and imaging authors pay strong heed to the specifics of the imaging sequences, but image processing authors have historically been more lax. Herein, we consider three T1-weighted sequences acquired the same underlying protocol (MPRAGE) and vendor (Philips), but "normal study-to-study variation" in parameters. We show that the gray matter/white matter/cerebrospinal fluid contrast is subtly but systemically different between these images and yields systemically different measurements of brain volume. The problem derives from the visually apparent boundary shifts, which would also be seen by a human rater. We present and evaluate two solutions to produce consistent segmentation results across imaging protocols. First, we propose to acquire multiple sequences on a subset of the data and use the multi-modal imaging as atlases to segment target images any of the available sequences. Second (if additional imaging is not available), we propose to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of atlas imaging data. Both approaches significantly improve consistency of target labeling.

  1. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.

    PubMed

    Bhattacharyya, Pallab K; Mullin, Jeffery; Lee, Bryan S; Gonzalez-Martinez, Jorge A; Jones, Stephen E

    2017-05-01

    Surgical resection of the epileptogenic zone (EZ) is a potential cure for medically refractory focal epilepsy. Proper identification of the EZ is essential for such resection. Synergistic application of functional magnetic resonance imaging (fMRI) simultaneously with stimulation of a single externalized intracranial stereotactic EEG (SEEG) electrode has the potential to improve identification of the EZ. While most EEG-fMRI studies use the electrodes passively to record electrical activity, it is possible to stimulate the brain using the electrodes by connecting them with conducting cables to the stimulation hardware. In this study, we investigated the effect of MRI-induced heating on a single SEEG electrode and its sensitivity to geometry, configuration, and associated connections required for the stimulation. The temperature increase of a single electrode embedded within a gel phantom and connected to an external stimulation system was measured during 1.5T MRI scans using adjacent fluoroptic temperature sensors. A receive-only split-array head coil and a transmit-receive head coil were used for testing. Sequences included a standard localizer, T1-weighted axial fast low-angle shot (FLASH), gradient echo-planar imaging (GE-EPI) axial fMRI, and a high specific absorption rate T2-weighted turbo spin-echo (TSE) axial scan. Variations of the electrode location and connecting cable configuration were tested. No unacceptable heating was observed with the standard sequences used for evaluation of the EZ. Considerable heating (up to 14°C) was observed with the TSE sequence, which is not used clinically. The temperature increase was insignificant (<0.05°C) for electrode contacts closest to the isocenter and connecting cables lying along the isocenter, and varied with configurations of the connecting cable assembly. Simultaneous intracranial electrode stimulation during fMRI using an externalized stimulation system may be safe with strict adherence to settings tested prior

  2. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  3. Is There an Additional Value of {sup 11}C-Choline PET-CT to T2-weighted MRI Images in the Localization of Intraprostatic Tumor Nodules?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Bergh, Laura, E-mail: laura.vandenbergh@uzleuven.be; Koole, Michel; Isebaert, Sofie

    2012-08-01

    Purpose: To investigate the additional value of {sup 11}C-choline positron emission tomography (PET)-computed tomography (CT) to T2-weighted (T2w) magnetic resonance imaging (MRI) for localization of intraprostatic tumor nodules. Methods and Materials: Forty-nine prostate cancer patients underwent T2w MRI and {sup 11}C-choline PET-CT before radical prostatectomy and extended lymphadenectomy. Tumor regions were outlined on the whole-mount histopathology sections and on the T2w MR images. Tumor localization was recorded in the basal, middle, and apical part of the prostate by means of an octant grid. To analyze {sup 11}C-choline PET-CT images, the same grid was used to calculate the standardized uptake valuesmore » (SUV) per octant, after rigid registration with the T2w MR images for anatomic reference. Results: In total, 1,176 octants were analyzed. Sensitivity, specificity, and accuracy of T2w MRI were 33.5%, 94.6%, and 70.2%, respectively. For {sup 11}C-choline PET-CT, the mean SUV{sub max} of malignant octants was significantly higher than the mean SUV{sub max} of benign octants (3.69 {+-} 1.29 vs. 3.06 {+-} 0.97, p < 0.0001) which was also true for mean SUV{sub mean} values (2.39 {+-} 0.77 vs. 1.94 {+-} 0.61, p < 0.0001). A positive correlation was observed between SUV{sub mean} and absolute tumor volume (Spearman r = 0.3003, p = 0.0362). No correlation was found between SUVs and prostate-specific antigen, T-stage or Gleason score. The highest accuracy (61.1%) was obtained with a SUV{sub max} cutoff of 2.70, resulting in a sensitivity of 77.4% and a specificity of 44.9%. When both modalities were combined (PET-CT or MRI positive), sensitivity levels increased as a function of SUV{sub max} but at the cost of specificity. When only considering suspect octants on {sup 11}C-choline PET-CT (SUV{sub max} {>=} 2.70) and T2w MRI, 84.7% of these segments were in agreement with the gold standard, compared with 80.5% for T2w MRI alone. Conclusions: The additional value

  4. 7T MRI-Histologic Correlation Study of Low Specific Absorption Rate T2-Weighted GRASE Sequences in the Detection of White Matter Involvement in Multiple Sclerosis.

    PubMed

    Bagnato, Francesca; Hametner, Simon; Pennell, David; Dortch, Richard; Dula, Adrienne N; Pawate, Siddharama; Smith, Seth A; Lassmann, Hans; Gore, John C; Welch, Edward B

    2015-01-01

    The high value of the specific absorption rate (SAR) of radio-frequency (RF) energy arising from the series of RF refocusing pulses in T2-weighted (T2-w) turbo spin echo (TSE) MRI hampers its clinical application at 7.0 Tesla (7T). T2-w gradient and spin echo (GRASE) uses the speed from gradient refocusing in combination with the chemical-shift/static magnetic field (B0) inhomogeneity insensitivity from spin-echo refocusing to acquire T2-w images with a limited number of refocusing RF pulses, thus reducing SAR. To investigate whether low SAR T2-w GRASE could replace T2-w TSE in detecting white matter (WM) disease in MS patients imaged at 7T. The .7 mm3 isotropic T2-w TSE and T2-w GRASE images with variable echo times (TEs) and echo planar imaging (EPI) factors were obtained on a 7T scanner from postmortem samples of MS brains. These samples were derived from brains of 3 female MS patients. WM lesions (WM-Ls) and normal-appearing WM (NAWM) signal intensity, WM-Ls/NAWM contrast-to-noise ratio (CNR) and MRI/myelin staining sections comparisons were obtained. GRASE sequences with EPI factor/TE = 3/50 and 3/75 ms were comparable to the SE technique for measures of CNR in WM-Ls and NAWM and for detection of WM-Ls. In all sequences, however, identification of areas with remyelination, Wallerian degeneration, and gray matter demyelination, as depicted by myelin staining, was not possible. T2-w GRASE images may replace T2-w TSE for clinical use. However, even at 7T, both sequences fail in detecting and characterizing MS disease beyond visible WM-Ls. Copyright © 2015 by the American Society of Neuroimaging.

  5. Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases.

    PubMed

    Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M

    2012-07-01

    To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.

  6. TMRI Quantification of Arthroscopically-Confirmed Cartilage Degeneration

    PubMed Central

    Witschey, Walter RT; Borthakur, Arijitt; Fenty, Matt; Kneeland, J Bruce; Lonner, Jess H; McArdle, Erin L.; Sochor, Matt; Reddy, Ravinder

    2010-01-01

    9 asymptomatic subjects and 6 patients underwent TMRI to determine whether Outerbridge grade 1 or 2 cartilage degeneration observed during arthroscopy could be detected noninvasively. MRI was performed 2–3 months post-arthroscopy using sagittal T1-weighted and axial and coronal TMRI from which spatial T1ρ relaxation maps were calculated from segmented T1-weighted images. Median T1ρ relaxation times of patients with arthroscopically documented cartilage degeneration and asymptomatic subjects were significantly different (p < 0.001) and median T1ρ exceeded asymptomatic articular cartilage median T1ρ by 2.5 to 9.2 ms. In 8 observations of mild cartilage degeneration at arthroscopy (Outerbridge grades 1 and 2), mean compartment T1ρ was elevated in 5, but in all observations, large foci of increased T1ρ were observed. It was determined that T1ρ could detect some, but not all, Outerbridge grade 1 and 2 cartilage degeneration but that a larger patient population is needed to determine the sensitivity to these changes. PMID:20432308

  7. Role of diffusion-weighted MRI in differentiation of hepatic abscesses from non-infected fluid collections.

    PubMed

    Schmid-Tannwald, C; Schmid-Tannwald, C M; Morelli, J N; Neumann, R; Reiser, M F; Nikolaou, K; Rist, C

    2014-07-01

    To evaluate the role of diffusion-weighted magnetic resonance imaging (DW-MRI) in the differentiation of hepatic abscesses from non-infected fluid collections. In this retrospective study, 22 hepatic abscesses and 27 non-infected hepatic fluid collections were examined in 27 patients who underwent abdominal MRI including DW-MRI. Two independent observers reviewed T2-weighted + DW-MRI and T2-weighted + contrast-enhanced T1-weighted (CET1W) images in two sessions. Detection rates and confidence levels were calculated and compared using McNemar's and Wilcoxon's signed rank tests, respectively. Apparent diffusion coefficient (ADC) values of abscesses and non-infected fluid collections were compared using the t-test. Receiver operating characteristic (ROC) curves were constructed. There was no statistically significant difference in the accuracy of detecting abscesses using T2-weighted + DW-MRI (both observers: 21/22, 95.5%) versus T2-weighted + CET1W images (observer 1: 21/22, 95.5%; observer 2: 22/22, 100%; p < 0.01). Mean ADC values were significantly lower with abscesses versus non-infected fluid collections (0.83 ± 0.24 versus 2.25 ± 0.61 × 10(-3) mm(2)/s; p < 0.001). With ROC analysis there was good discrimination of abscess from non-infected fluid collections at a threshold ADC value of 1.36 × 10(-3) mm(2)/s. DW-MRI allows qualitative and quantitative differentiation of abscesses from non-infected fluid collections in the liver. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Mitochondria‐targeted antioxidant MitoQ reduced renal damage caused by ischemia‐reperfusion injury in rodent kidneys: Longitudinal observations of T 2weighted imaging and dynamic contrast‐enhanced MRI

    PubMed Central

    Liu, Xiaoge; Murphy, Michael P.; Xing, Wei; Wu, Huanhuan; Zhang, Rui

    2017-01-01

    Purpose To investigate the effect of mitochondria‐targeted antioxidant MitoQ in reducing the severity of renal ischemia‐reperfusion injury (IRI) in rats using T2weighted imaging and dynamic contrast‐enhanced MRI (DCE‐MRI). Methods Ischemia‐reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T2weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate kcl was derived from DCE‐MRI. Histopathology was evaluated after the final MRI examination. Results The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). Kcl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). Conclusions These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T2weighted imaging and DCE‐MRI. Magn Reson Med 79:1559–1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28608403

  9. A comparison study between 3D T2-weighted SPACE and conventional 2D T2-weighted turbo spin echo in assessment of carotid plaque.

    PubMed

    Lv, Peng; Dai, Yuanyuan; Lin, Jiang; Zhang, Weisheng; Liu, Hao; Liu, Hui; Tang, Xiao

    2017-03-01

    The aim of this study was to compare 3D T2-weighted sampling perfection with application optimized contrast using different flip angle evolutions (T2w SPACE) with conventional 2D T2w turbo-spin echo (TSE) in plaque imaging of carotid artery. 45 patients underwent 3.0-T MRI for carotid arteries imaging. MR sequences included T2w SPACE, T2w TSE, Time of flight (TOF) and T1-weighted (T1w) TSE. The signal intensity of intra-plaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), and loose matrix (LM) were measured and their contrast ratios (CRs) against adjacent muscle were calculated. CRs from T2w SPACE and T2w TSE were compared to each other. CRs of LM, LRNC, and IPH measured on T2w SPACE were 1.74-3.04 (2.44), 0.98-1.66 (1.39), and 1.91-2.93 (2.51), respectively. CRs of LM, LRNC, and IPH on T2w TSE were 1.97-3.41 (2.44), 1.18-1.73 (1.43), and 2.26-3.75 (2.26), respectively. There was no significant difference of CR of the carotid plaques between T2w SPACE and T2w TSE (p = 0.455). Markedly significant differences of CRs were found between LM and LRNC (p < 0.001), and between LRNC and IPH (p < 0.001) on T2w SPACE and T2w TSE. T2w SPACE was comparable with conventional T2w TSE in characterization of carotid plaque.

  10. Au Nanocage Functionalized with Ultra-small Fe3O4 Nanoparticles for Targeting T1-T2Dual MRI and CT Imaging of Tumor

    NASA Astrophysics Data System (ADS)

    Wang, Guannan; Gao, Wei; Zhang, Xuanjun; Mei, Xifan

    2016-06-01

    Diagnostic approaches based on multimodal imaging of clinical noninvasive imaging (eg. MRI/CT scanner) are highly developed in recent years for accurate selection of the therapeutic regimens in critical diseases. Therefore, it is highly demanded in the development of appropriate all-in-one multimodal contrast agents (MCAs) for the MRI/CT multimodal imaging. Here a novel ideal MCAs (F-AuNC@Fe3O4) were engineered by assemble Au nanocages (Au NC) and ultra-small iron oxide nanoparticles (Fe3O4) for simultaneous T1-T2dual MRI and CT contrast imaging. In this system, the Au nanocages offer facile thiol modification and strong X-ray attenuation property for CT imaging. The ultra-small Fe3O4 nanoparticles, as excellent contrast agent, is able to provide great enhanced signal of T1- and T2-weighted MRI (r1 = 6.263 mM-1 s-1, r2 = 28.117 mM-1 s-1) due to their ultra-refined size. After functionalization, the present MCAs nanoparticles exhibited small average size, low aggregation and excellent biocompatible. In vitro and In vivo studies revealed that the MCAs show long-term circulation time, renal clearance properties and outstanding capability of selective accumulation in tumor tissues for simultaneous CT imaging and T1- and T2-weighted MRI. Taken together, these results show that as-prepared MCAs are excellent candidates as MRI/CT multimodal imaging contrast agents.

  11. [Imaging characteristics of PROPELLER T2-weighted imaging].

    PubMed

    Goto, Masami; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Watanabe, Yasushi; Ino, Kenji; Satake, Yoshirou; Nishida, Katuji; Sato, Haruo; Iida, Kyouhito; Mima, Kazuo; Ohtomo, Kuni

    2004-11-01

    As the PROPELLER sequence is a combination of the radial scan and fast-spin-echo (FSE) sequence, it can be considered an FSE sequence with a motion correlation. However, there are some differences between PROPELLER and FSE owing to differences in k-space trajectory. We clarified the imaging characteristics of PROPELLER T2-weighted imaging (T2WI) for different parameters in comparison with usual FSE T2WI. When the same parameters were used, PROPELLER T2WI showed a higher signal-to-noise ratio (SNR) and lower spatial resolution than usual FSE. Effective echo time (TE) changed with different echo train lengths (ETL) or different bandwidths on PROPELLER, and imaging contrast changed accordingly to be more effective.

  12. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    PubMed

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (p<0.05). There were no significant differences in diagnostic performance between the two sequences when diagnoses were classified as normal or abnormal. Although the image quality of 3D VISTA MRI of the CFL view is not equal to that of 2D T2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Mitochondria-targeted antioxidant MitoQ reduced renal damage caused by ischemia-reperfusion injury in rodent kidneys: Longitudinal observations of T2 -weighted imaging and dynamic contrast-enhanced MRI.

    PubMed

    Liu, Xiaoge; Murphy, Michael P; Xing, Wei; Wu, Huanhuan; Zhang, Rui; Sun, Haoran

    2018-03-01

    To investigate the effect of mitochondria-targeted antioxidant MitoQ in reducing the severity of renal ischemia-reperfusion injury (IRI) in rats using T 2 -weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI). Ischemia-reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performed before and after IRI (days 2, 5, 7, and 14). The T 2 -weighted standardized signal intensity of the outer stripe of the outer medulla (OSOM) was measured. The unilateral renal clearance rate k cl was derived from DCE-MRI. Histopathology was evaluated after the final MRI examination. The standardized signal intensity of the OSOM on IRI kidneys with MitoQ were lower than those with saline on days 5 and 7 (P = 0.004, P < 0.001, respectively). K cl values of IRI kidneys with MitoQ were higher than those with saline at all time points (P = 0.002, P < 0.001, P = 0.001, P < 0.001). Histopathology showed that renal damage was the most predominant on the OSOM of IRI kidneys with saline, which was less obvious with MitoQ (P < 0.001). These findings demonstrate that MitoQ can reduce the severity of renal damage in rodent IRI models using T 2 -weighted imaging and DCE-MRI. Magn Reson Med 79:1559-1667, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  14. The image evaluation of iterative motion correction reconstruction algorithm PROPELLER T2-weighted imaging compared with MultiVane T2-weighted imaging

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Jun; Yu, Seung-Man

    2017-08-01

    The purpose of this study was to evaluate the usefulness and clinical applications of MultiVaneXD which was applying iterative motion correction reconstruction algorithm T2-weighted images compared with MultiVane images taken with a 3T MRI. A total of 20 patients with suspected pathologies of the liver and pancreatic-biliary system based on clinical and laboratory findings underwent upper abdominal MRI, acquired using the MultiVane and MultiVaneXD techniques. Two reviewers analyzed the MultiVane and MultiVaneXD T2-weighted images qualitatively and quantitatively. Each reviewer evaluated vessel conspicuity by observing motion artifacts and the sharpness of the portal vein, hepatic vein, and upper organs. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by one reviewer for quantitative analysis. The interclass correlation coefficient was evaluated to measure inter-observer reliability. There were significant differences between MultiVane and MultiVaneXD in motion artifact evaluation. Furthermore, MultiVane was given a better score than MultiVaneXD in abdominal organ sharpness and vessel conspicuity, but the difference was insignificant. The reliability coefficient values were over 0.8 in every evaluation. MultiVaneXD (2.12) showed a higher value than did MultiVane (1.98), but the difference was insignificant ( p = 0.135). MultiVaneXD is a motion correction method that is more advanced than MultiVane, and it produced an increased SNR, resulting in a greater ability to detect focal abdominal lesions.

  15. T2-weighted prostate MRI at 7 Tesla using a simplified external transmit-receive coil array: correlation with radical prostatectomy findings in two prostate cancer patients.

    PubMed

    Rosenkrantz, Andrew B; Zhang, Bei; Ben-Eliezer, Noam; Le Nobin, Julien; Melamed, Jonathan; Deng, Fang-Ming; Taneja, Samir S; Wiggins, Graham C

    2015-01-01

    To report design of a simplified external transmit-receive coil array for 7 Tesla (T) prostate MRI, including demonstration of the array for tumor localization using T2-weighted imaging (T2WI) at 7T before prostatectomy. Following simulations of transmitter designs not requiring parallel transmission or radiofrequency-shimming, a coil array was constructed using loop elements, with anterior and posterior rows comprising one transmit-receive element and three receive-only elements. This coil structure was optimized using a whole-body phantom. In vivo sequence optimization was performed to optimize achieved flip angle (FA) and signal to noise ratio (SNR) in prostate. The system was evaluated in a healthy volunteer at 3T and 7T. The 7T T2WI was performed in two prostate cancer patients before prostatectomy, and localization of dominant tumors was subjectively compared with histopathological findings. Image quality was compared between 3T and 7T in these patients. Simulations of the B1(+) field in prostate using two-loop design showed good magnitude (B1(+) of 0.245 A/m/w(1/2)) and uniformity (nonuniformity [SD/mean] of 10.4%). In the volunteer, 90° FA was achieved in prostate using 225 v 1 ms hard-pulse (indicating good efficiency), FA maps confirmed good uniformity (14.1% nonuniformity), and SNR maps showed SNR gain of 2.1 at 7T versus 3T. In patients, 7T T2WI showed excellent visual correspondence with prostatectomy findings. 7T images demonstrated higher estimated SNR (eSNR) in benign peripheral zone (PZ) and tumor compared with 3T, but lower eSNR in fat and slight decreases in tumor-to-PZ contrast and PZ-homogeneity. We have demonstrated feasibility of a simplified external coil array for high-resolution T2-weighted prostate MRI at 7T. © 2013 Wiley Periodicals, Inc.

  16. Comparison of [{sup 11}C]choline Positron Emission Tomography With T2- and Diffusion-Weighted Magnetic Resonance Imaging for Delineating Malignant Intraprostatic Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Joe H.; University of Melbourne, Victoria; Lim Joon, Daryl

    2015-06-01

    Purpose: The purpose of this study was to compare the accuracy of [{sup 11}C]choline positron emission tomography (CHOL-PET) with that of the combination of T2-weighted and diffusion-weighted (T2W/DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W/DW MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified onmore » prostatectomy specimens defined reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), and sensitivity and specificity values. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, 60% of the maximum SUV (SUV{sub 60}) , had similar correlations (DSC: 0.59) with the manual PET contours (DSC: 0.52, P=.127) and significantly better correlations than the manual MRI contours (DSC: 0.37, P<.001). The sensitivity and specificity values were 72% and 71% for SUV{sub 60}; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W/DW MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies but may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict how well CHOL-PET delineates IPLs.« less

  17. MRI change metrics of facioscapulohumeral muscular dystrophy: Stir and T1.

    PubMed

    Ferguson, Mark R; Poliachik, Sandra L; Budech, Christopher B; Gove, Nancy E; Carter, Gregory T; Wang, Leo H; Miller, Daniel G; Shaw, Dennis W W; Friedman, Seth D

    2018-06-01

    MRI evaluation in facioscapulohumeral muscular dystrophy (FSHD) demonstrates fatty replacement and inflammation/edema in muscle. Our previous work demonstrated short T1 inversion recovery (STIR)-hyperintense (STIR+) signal in muscle 2 years before fatty replacement. We evaluated leg muscle STIR changes and fatty replacement within 14 months. FSHD subjects received 2 MRI scans of thigh and calf over a 6.9- to 13.8-month interval. Quality of life measures were collected. One Radiologist rated muscle changes on a semi-quantitative scale. Fifteen subjects completed longitudinal imaging. Four STIR + muscles and 3 STIR-normal (STIR-) muscles were rated as progressing to fatty tissue over the study period. STIR + muscles with confluent regions of fat at baseline increased more in fat, while STIR- muscles had increases in septal-fat over the study period. These changes may reflect two phases of FSHD, demonstrating MRI sensitivity is weighted toward gross pathological phases of the disease. Muscle Nerve 57: 905-912, 2018. © 2017 Wiley Periodicals, Inc.

  18. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    PubMed

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  19. T2 Mapping of the Sacroiliac Joints With 3-T MRI: A Preliminary Study.

    PubMed

    Lefebvre, Guillaume; Bergère, Antonin; Rafei, Mazen El; Duhamel, Alain; Teixeira, Pedro; Cotten, Anne

    2017-08-01

    The objective of this study was to assess the feasibility of T2 relaxation time measurements of the sacroiliac joints. The sacroiliac joints of 40 patients were imaged by 3-T MRI using an oblique axial multislice multiecho spin-echo T2-weighted sequence. Manual plotting and automatic subdivision of ROIs allowed us to obtain T2 values for up to 48 different areas per patient (posterior and anterior parts, sacral, intermediate, and iliac parts). Intraand interobserver reproducibility of T2 values were calculated after independent assessment by two musculoskeletal radiologists. A total of 1656 measurement sites could be analyzed. Mean (± SD) T2 values were 40.6 ± 6.7 ms and 41.2 ± 6.3 ms for observer 1 and 39.9 ± 6.6 ms for observer 2. The intraobserver intraclass correlation coefficient was 0.72 (95% CI, 0.70-0.74), and the interobserver intraclass correlation coefficient was 0.71 (95% CI, 0.68-0.72). Our study shows the feasibility of T2 relaxation time measurements at the sacroiliac joints.

  20. Susceptibility-Weighted Phase Imaging and Oxygen Extraction Fraction Measurement during Sedation and Sedation Recovery using 7T MRI.

    PubMed

    Goodwin, Jonathan A; Kudo, Kohsuke; Shinohe, Yutaka; Higuchi, Satomi; Uwano, Ikuko; Yamashita, Fumio; Sasaki, Makoto

    2015-01-01

    In this work, we demonstrate oxygen extraction fraction (OEF) measurement using 7T MRI with susceptibility-weighted imaging (SWI), in sedated and nonsedated adults. Ten healthy subjects (30.3 ± 4.5 years, 9 men, 1 woman) formed control (n = 5) and sedation groups (n = 5). Midazolam and propofol injection was administered to the same sedation group subjects during 2 different scanning sessions. Two-dimensional SPGR imaging was performed before, during, and twice after (propofol, +10, +30 minutes; midazolam, +10, +40 minutes) conscious sedation. The equivalent procedure was performed with the control group without sedation. After SWI analysis, change in OEF between scans was quantified, and parcelated ΔOEF maps were generated with 77 gray matter (GM)-containing volumes-of-interest (VOIs). Significant decreases in OEF were shown in 14 GM VOIs during sedation relative to the control group, most notably during midazolam sedation (P < .05). In contrast, no significant decrease was observed after 10 minutes and in only 4 VOIs after 40 minutes recovery. Significant change in ΔOEF during conscious sedation using midazolam and propofol could be measured using SWI at 7T in vivo. This may be a potentially useful approach for the noninvasive assessment of OEF in the brain on a clinical basis. Copyright © 2014 by the American Society of Neuroimaging.

  1. T(2)-weighted microMRI and evoked potential of the visual system measurements during the development of hypomyelinated transgenic mice.

    PubMed

    Martin, Melanie; Reyes, Samuel D; Hiltner, Timothy D; Givogri, M Irene; Tyszka, J Michael; Fisher, Robin; Campagnoni, Anthony T; Fraser, Scott E; Jacobs, Russell E; Readhead, Carol

    2007-02-01

    Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.

  2. Comparison among T1-weighted magnetic resonance imaging, modified dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat.

    PubMed

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods.

  3. Comparison among T1-Weighted Magnetic Resonance Imaging, Modified Dixon Method, and Magnetic Resonance Spectroscopy in Measuring Bone Marrow Fat

    PubMed Central

    Shen, Wei; Gong, Xiuqun; Weiss, Jessica; Jin, Ye

    2013-01-01

    Introduction. An increasing number of studies are utilizing different magnetic resonance (MR) methods to quantify bone marrow fat due to its potential role in osteoporosis. Our aim is to compare the measurements of bone marrow fat among T1-weighted magnetic resonance imaging (MRI), modified Dixon method (also called fat fraction MRI (FFMRI)), and magnetic resonance spectroscopy (MRS). Methods. Contiguous MRI scans were acquired in 27 Caucasian postmenopausal women with a modified Dixon method (i.e., FFMRI). Bone marrow adipose tissue (BMAT) of T1-weighted MRI and bone marrow fat fraction of the L3 vertebra and femoral necks were quantified using SliceOmatic and Matlab. MRS was also acquired at the L3 vertebra. Results. Correlation among the three MR methods measured bone marrow fat fraction and BMAT ranges from 0.78 to 0.88 (P < 0.001) in the L3 vertebra. Correlation between BMAT measured by T1-weighted MRI and bone marrow fat fraction measured by modified FFMRI is 0.86 (P < 0.001) in femoral necks. Conclusion. There are good correlations among T1-weighted MRI, FFMRI, and MRS for bone marrow fat quantification. The inhomogeneous distribution of bone marrow fat, the threshold segmentation of the T1-weighted MRI, and the ambiguity of the FFMRI may partially explain the difference among the three methods. PMID:23606951

  4. Magnetic resonance measurement of muscle T2, fat-corrected T2 and fat fraction in the assessment of idiopathic inflammatory myopathies

    PubMed Central

    Yao, Lawrence; Yip, Adrienne L.; Shrader, Joseph A.; Mesdaghinia, Sepehr; Volochayev, Rita; Jansen, Anna V.; Miller, Frederick W.

    2016-01-01

    Objective. This study examines the utility of MRI, including T2 maps and T2 maps corrected for muscle fat content, in evaluating patients with idiopathic inflammatory myopathy. Methods. A total of 44 patients with idiopathic inflammatory myopathy, 18 of whom were evaluated after treatment with rituximab, underwent MRI of the thighs and detailed clinical assessment. T2, fat fraction (FF) and fat corrected T2 (fc-T2) maps were generated from standardized MRI scans, and compared with semi-quantitative scoring of short tau inversion recovery (STIR) and T1-weighted sequences, as well as various myositis disease metrics, including the Physician Global Activity, the modified Childhood Myositis Assessment Scale and the muscle domain of the Myositis Disease Activity Assessment Tool-muscle (MDAAT-muscle). Results. Mean T2 and mean fc-T2 correlated similarly with STIR scores (Spearman rs = 0.64 and 0.64, P < 0.01), while mean FF correlated with T1 damage scores (rs = 0.69, P < 0.001). Baseline T2, fc-T2 and STIR scores correlated significantly with the Physician Global Activity, modified Childhood Myositis Assessment Scale and MDAAT-muscle (rs range = 0.41–0.74, P < 0.01). The response of MRI measures to rituximab was variable, and did not significantly agree with a standardized clinical definition of improvement. Standardized response means for the MRI measures were similar. Conclusion. Muscle T2, fc-T2 and FF measurements exhibit content validity with reference to semi-quantitative scoring of STIR and T1 MRI, and also exhibit construct validity with reference to several myositis activity and damage measures. T2 was as responsive as fc-T2 and STIR scoring, although progression of muscle damage was negligible during the study. PMID:26412808

  5. Repeatability of magnetic resonance fingerprinting T1 and T2 estimates assessed using the ISMRM/NIST MRI system phantom.

    PubMed

    Jiang, Yun; Ma, Dan; Keenan, Kathryn E; Stupic, Karl F; Gulani, Vikas; Griswold, Mark A

    2017-10-01

    The purpose of this study was to evaluate accuracy and repeatability of T 1 and T 2 estimates of a MR fingerprinting (MRF) method using the ISMRM/NIST MRI system phantom. The ISMRM/NIST MRI system phantom contains multiple compartments with standardized T 1 , T 2 , and proton density values. Conventional inversion-recovery spin echo and spin echo methods were used to characterize the T 1 and T 2 values in the phantom. The phantom was scanned using the MRF-FISP method over 34 consecutive days. The mean T 1 and T 2 values were compared with the values from the spin echo methods. The repeatability was characterized as the coefficient of variation of the measurements over 34 days. T 1 and T 2 values from MRF-FISP over 34 days showed a strong linear correlation with the measurements from the spin echo methods (R 2  = 0.999 for T 1 ; R 2  = 0.996 for T 2 ). The MRF estimates over the wide ranges of T 1 and T 2 values have less than 5% variation, except for the shortest T 2 relaxation times where the method still maintains less than 8% variation. MRF measurements of T 1 and T 2 are highly repeatable over time and across wide ranges of T 1 and T 2 values. Magn Reson Med 78:1452-1457, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.

    PubMed

    Xiao, Ning; Gu, Wei; Wang, Hao; Deng, Yunlong; Shi, Xin; Ye, Ling

    2014-03-01

    To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, C; Horton, J

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b =more » 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.« less

  8. Comparison of gadolinium-EOB-DTPA-enhanced and diffusion-weighted liver MRI for detection of small hepatic metastases.

    PubMed

    Shimada, Kotaro; Isoda, Hiroyoshi; Hirokawa, Yuusuke; Arizono, Shigeki; Shibata, Toshiya; Togashi, Kaori

    2010-11-01

    To compare the accuracy of gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI with that of diffusion-weighted MRI (DWI) in the detection of small hepatic metastases (2 cm or smaller). Forty-five patients underwent abdominal MRI at 3 T, including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), heavily T2WI (HASTE), DWI with a b-value of 500 s/mm(2) and contrast-enhanced MRI with Gd-EOB-DTPA. Two groups were assigned and compared: group A (T1WI, T2WI, HASTE and contrast-enhanced study with Gd-EOB-DTPA), and group B (T1WI, T2WI, HASTE and DWI). Two observers independently interpreted the images obtained in a random order. For all hepatic metastases, the diagnostic performance using each imaging set was evaluated by receiver-operating characteristic (ROC) curve analysis. A total of 51 hepatic metastases were confirmed. The area under the ROC curve (Az) of group A was larger than that of group B, and the difference in the mean Az values between the two image sets was statistically significant, whereas, there were three metastases that lay near thin vessels or among multiple cysts and were better visualised in group B than in group A. Gd-EOB-DTPA-enhanced MRI showed higher accuracy in the detection of small metastases than DWI.

  9. Comparing consistency of R2* and T2*-weighted BOLD analysis of resting state fetal fMRI

    NASA Astrophysics Data System (ADS)

    Seshamani, Sharmishtaa; Blazejewska, Anna I.; Gatenby, Christopher; Mckown, Susan; Caucutt, Jason; Dighe, Manjiri; Studholme, Colin

    2015-03-01

    Understanding when and how resting state brain functional activity begins in the human brain is an increasing area of interest in both basic neuroscience and in the clinical evaluation of the brain during pregnancy and after premature birth. Although fMRI studies have been carried out on pregnant women since the 1990's, reliable mapping of brain function in utero is an extremely challenging problem due to the unconstrained fetal head motion. Recent studies have employed scrubbing to exclude parts of the time series and whole subjects from studies in order to control the confounds of motion. Fundamentally, even after correction of the location of signals due to motion, signal intensity variations are a fundamental limitation, due to coil sensitivity and spin history effects. An alternative technique is to use a more parametric MRI signal derived from multiple echoes that provides a level of independence from basic MRI signal variation. Here we examine the use of R2* mapping combined with slice based multi echo geometric distortion correction for in-utero studies. The challenges for R2* mapping arise from the relatively low signal strength of in-utero data. In this paper we focus on comparing activation detection in-utero using T2W and R2* approaches. We make use a subset of studies with relatively limited motion to compare the activation patterns without the additional confound of significant motion. Results at different gestational ages indicate comparable agreement in many activation patterns when limited motion is present, and the detection of some additional networks in the R2* data, not seen in the T2W results.

  10. SU-G-JeP2-14: MRI-Based HDR Prostate Brachytherapy: A Phantom Study for Interstitial Catheter Reconstruction with 0.35T MRI Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Kamrava, M; Yang, Y

    Purpose: To evaluate the accuracy of interstitial catheter reconstruction with 0.35T MRI images for MRI-based HDR prostate brachytherapy. Methods: Recently, a real-time MRI-guided radiotherapy system combining a 0.35T MRI system and three cobalt 60 heads (MRIdian System, ViewRay, Cleveland, OH, USA) was installed in our department. A TrueFISP sequence for MRI acquisition at lower field on Viewray was chosen due to its fast speed and high signal-to-noise efficiency. Interstitial FlexiGuide needles were implanted into a tissue equivalent ultrasound prostate phantom (CIRS, Norfolk, Virginia, USA). After an initial 15s pilot MRI to confirm the location of the phantom, planning MRI wasmore » acquired with a 172s TrueFISP sequence. The pulse sequence parameters included: flip angle = 60 degree, echo time (TE) =1.45 ms, repetition time (TR) = 3.37 ms, slice thickness = 1.5 mm, field of view (FOV) =500 × 450mm. For a reference image, a CT scan was followed. The CT and MR scans were then fused with the MIM Maestro (MIM software Inc., Cleveland, OH, USA) and sent to the Oncentra Brachy planning system (Elekta, Veenendaal, Netherlands). Automatic catheter reconstruction using CT and MR image intensities followed by manual reconstruction was used to digitize catheters. The accuracy of catheter reconstruction was evaluated from the catheter tip location. Results: The average difference between the catheter tip locations reconstructed from the CT and MR in the transverse, anteroposterior, and craniocaudal directions was −0.1 ± 0.1 mm (left), 0.2 ± 0.2 mm (anterior), and −2.3 ± 0.5 mm (cranio). The average distance in 3D was 2.3 mm ± 0.5 mm. Conclusion: This feasibility study proved that interstitial catheters can be reconstructed with 0.35T MRI images. For more accurate catheter reconstruction which can affect final dose distribution, a systematic shift should be applied to the MR based catheter reconstruction in HDR prostate brachytherapy.« less

  11. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study.

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Uslu, Lebriz; Khurana, Aman; Qiu, Deqiang; Quon, Andrew; Donig, Jessica; Rosenberg, Jarrett; Luna-Fineman, Sandra; Moseley, Michael; Daldrup-Link, Heike E

    2014-03-01

    Imaging tests are essential for staging of children with cancer. However, CT and radiotracer-based imaging procedures are associated with substantial exposure to ionising radiation and risk of secondary cancer development later in life. Our aim was to create a highly effective, clinically feasible, ionising radiation-free staging method based on whole-body diffusion-weighted MRI and the iron supplement ferumoxytol, used off-label as a contrast agent. We compared whole-body diffusion-weighted MRI with standard clinical (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT scans in children and young adults with malignant lymphomas and sarcomas. Whole-body diffusion-weighted magnetic resonance images were generated by coregistration of colour-encoded ferumoxytol-enhanced whole-body diffusion-weighted MRI scans for tumour detection with ferumoxytol-enhanced T1-weighted MRI scans for anatomical orientation, similar to the concept of integrated (18)F-FDG PET/CT scans. Tumour staging results were compared using Cohen's κ statistics. Histopathology and follow-up imaging served as the standard of reference. Data was assessed in the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01542879. 22 of 23 recruited patients were analysed because one patient discontinued before completion of the whole-body scan. Mean exposure to ionising radiation was 12·5 mSv (SD 4·1) for (18)F-FDG PET/CT compared with zero for whole-body diffusion-weighted MRI. (18)F-FDG PET/CT detected 163 of 174 malignant lesions at 1325 anatomical regions and whole-body diffusion-weighted MRI detected 158. Comparing (18)F-FDG PET/CT to whole-body diffusion-weighted MRI, sensitivities were 93·7% (95% CI 89·0-96·8) versus 90·8% (85·5-94·7); specificities 97·7% (95% CI 96·7-98·5) versus 99·5% (98·9-99·8); and diagnostic accuracies 97·2% (93·6-99·4) versus 98·3% (97·4-99·2). Tumour staging results showed very good agreement between both imaging modalities with a κ

  12. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia?

    PubMed

    Baudelet, Christine; Ansiaux, Réginald; Jordan, Bénédicte F; Havaux, Xavier; Macq, Benoit; Gallez, Bernard

    2004-08-07

    T2*-weighted gradient-echo magnetic resonance imaging (T2*-weighted GRE MRI) was used to investigate spontaneous fluctuations in tumour vasculature non-invasively. FSa fibrosarcomas, implanted intramuscularly (i.m.) in the legs of mice, were imaged at 4.7 T, over a 30 min or 1 h sampling period. On a voxel-by-voxel basis, time courses of signal intensity were analysed using a power spectrum density (PSD) analysis to isolate voxels for which signal changes did not originate from Gaussian white noise or linear drift. Under baseline conditions, the tumours exhibited spontaneous signal fluctuations showing spatial and temporal heterogeneity over the tumour. Statistically significant fluctuations occurred at frequencies ranging from 1 cycle/3 min to 1 cycle/h. The fluctuations were independent of the scanner instabilities. Two categories of signal fluctuations were reported: (i) true fluctuations (TFV), i.e., sequential signal increase and decrease, and (ii) profound drop in signal intensity with no apparent signal recovery (SDV). No temporal correlation between tumour and contralateral muscle fluctuations was observed. Furthermore, treatments aimed at decreasing perfusion-limited hypoxia, such as carbogen combined with nicotinamide and flunarizine, decreased the incidence of tumour T2*-weighted GRE fluctuations. We also tracked dynamic changes in T2* using multiple GRE imaging. Fluctuations of T2* were observed; however, fluctuation maps using PSD analysis could not be generated reliably. An echo-time dependency of the signal fluctuations was observed, which is typical to physiological noise. Finally, at the end of T2*-weighted GRE MRI acquisition, a dynamic contrast-enhanced MRI was performed to characterize the microenvironment in which tumour signal fluctuations occurred in terms of vessel functionality, vascularity and microvascular permeability. Our data showed that TFV were predominantly located in regions with functional vessels, whereas SDV occurred in regions

  13. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging.

    PubMed

    Zeng, Leyong; Ren, Wenzhi; Zheng, Jianjun; Cui, Ping; Wu, Aiguo

    2012-02-28

    Using an improved hydrolysis method of inorganic salts assisted with water-bath incubation, ultrasmall water-soluble metal-iron oxide nanoparticles (including Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles) were synthesized in aqueous solutions, which were used as T(1)-weighted contrast agents for magnetic resonance imaging (MRI). The morphology, structure, MRI relaxation properties and cytotoxicity of the as-prepared metal-iron oxide nanoparticles were characterized, respectively. The results showed that the average sizes of nanoparticles were about 4 nm, 4 nm and 5 nm for Fe(3)O(4), ZnFe(2)O(4) and NiFe(2)O(4) nanoparticles, respectively. Moreover, the nanoparticles have good water dispersibility and low cytotoxicity. The MRI test showed the strong T(1)-weighted, but the weak T(2)-weighted MRI performance of metal-iron oxide nanoparticles. The high T(1)-weighted MRI performance can be attributed to the ultrasmall size of metal-iron oxide nanoparticles. Therefore, the as-prepared metal-iron oxide nanoparticles with good water dispersibility and ultrasmall size can have potential applications as T(1)-weighted contrast agent materials for MRI.

  14. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    PubMed

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T

  15. Aiming for a shorter rheumatoid arthritis MRI protocol: can contrast-enhanced MRI replace T2 for the detection of bone marrow oedema?

    PubMed

    Stomp, Wouter; Krabben, Annemarie; van der Heijde, Désirée; Huizinga, Tom W J; Bloem, Johan L; van der Helm-van Mil, Annette H M; Reijnierse, Monique

    2014-10-01

    To determine whether T1 post-gadolinium chelate images (T1Gd) can replace T2-weighted images (T2) for evaluating bone marrow oedema (BME), thereby allowing a shorter magnetic resonance imaging (MRI) protocol in rheumatoid arthritis (RA). In 179 early arthritis patients and 43 advanced RA patients, wrist and metacarpophalangeal joints were examined on a 1.5-T extremity MRI system with a standard protocol (coronal T1, T2 fat-saturated and coronal and axial T1 fat-saturated after Gd). BME was scored according to OMERACT RAMRIS by two observers with and without T2 images available. Agreement was assessed using intraclass correlation coefficients (ICCs) for semi-quantitative scores and test characteristics with T2 images as reference. Agreement between scores based on T2 and T1Gd images was excellent ICC (0.80-0.99). At bone level, sensitivity and specificity of BME on T1Gd compared to T2 were high for both patient groups and both readers (all ≥80 %). T1Gd and T2 images are equally suitable for evaluating BME. Because contrast is usually administered to assess (teno)synovitis, a short MRI protocol of T1 and T1Gd is sufficient in RA. • Bone marrow oedema scores are equal on T2 and T1-Gd-chelate enhanced sequences. • Agreement between scores based on T2 and T1-Gd-chelate images was excellent. • Sensitivity and specificity for presence of bone marrow oedema were high. • A short protocol without T2 images suffices in rheumatoid arthritis patients.

  16. T2-weighted signal intensity-selected volumetry for prediction of pathological complete response after preoperative chemoradiotherapy in locally advanced rectal cancer.

    PubMed

    Kim, Sungwon; Han, Kyunghwa; Seo, Nieun; Kim, Hye Jin; Kim, Myeong-Jin; Koom, Woong Sub; Ahn, Joong Bae; Lim, Joon Seok

    2018-06-01

    To evaluate the diagnostic value of signal intensity (SI)-selected volumetry findings in T2-weighted magnetic resonance imaging (MRI) as a potential biomarker for predicting pathological complete response (pCR) to preoperative chemoradiotherapy (CRT) in patients with rectal cancer. Forty consecutive patients with pCR after preoperative CRT were compared with 80 age- and sex-matched non-pCR patients in a case-control study. SI-selected tumor volume was measured on post-CRT T2-weighted MRI, which included voxels of the treated tumor exceeding the SI (obturator internus muscle SI + [ischiorectal fossa fat SI - obturator internus muscle SI] × 0.2). Three blinded readers independently rated five-point pCR confidence scores and compared the diagnostic outcome with SI-selected volumetry findings. The SI-selected volumetry protocol was validated in 30 additional rectal cancer patients. The area under the receiver-operating characteristic curve (AUC) of SI-selected volumetry for pCR prediction was 0.831, with an optimal cutoff value of 649.6 mm 3 (sensitivity 0.850, specificity 0.725). The AUC of the SI-selected tumor volume was significantly greater than the pooled AUC of readers (0.707, p < 0.001). At this cutoff, the validation trial yielded an accuracy of 0.87. SI-selected volumetry in post-CRT T2-weighted MRI can help predict pCR after preoperative CRT in patients with rectal cancer. • Fibrosis and viable tumor MRI signal intensities (SIs) are difficult to distinguish. • T2 SI-selected volumetry yields high diagnostic performance for assessing pathological complete response. • T2 SI-selected volumetry is significantly more accurate than readers and non-SI-selected volumetry. • Post-chemoradiation therapy T2-weighted MRI SI-selected volumetry facilitates prediction of pathological complete response.

  17. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion.

    PubMed

    Zhang, Xiaodong; Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-04-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.

  18. WE-G-BRD-01: Diffusion Weighted MRI for Response Assessment of Inoperable Lung Tumors for Patients Undergoing SBRT Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, N; Wengler, K; Yorke, E

    2014-06-15

    Purpose: To investigate early changes in tumor Apparent Diffusion Coefficients derived from diffusion weighted (DW)-MRI of lung cancer patients undergoing SBRT, as a possible early predictor of treatment response. Methods: DW-MRI scans were performed in this prospective phase I IRB-approved study of inoperable lung tumors at various time-points during the course of SBRT treatments. Axial DW scan using multi b-values ranging from 0–1000 s/mm{sup 2} were acquired in treatment position on a 3T Philips MR scanner during simulation, one hour after the first fraction (8 Gy), after a total of 5 fractions (40 Gy) and 4 weeks after SBRT delivery.more » A monoexponential model based on a least square fit from all b values was performed on a pixel-by-pixel basis and ADC was calculated. GTVs drawn on 4DCT for planning were mapped on the T2w MRI (acquired at exhale) after deformable registration. These volumes were then mapped on DWI scan for ADC calculation after rigid registration between the anatomical scan and diffusion scan. T2w scan on followup time points were deformably registered to the pretreatment T2 scan. Results: The first two patients in this study were analyzed. Median ADC values were 1.48, 1.48, 1.62 and 1.83 (10{sup −3}×) mm{sup 2}/s at pretreatment, after 8 Gy, after 40 Gy and 4 weeks posttreatment for the first patient and 1.57, 1.53, 1.66 and 1.72 (10{sup −3}×) mm{sup 2}/s for the second patient. ADC increased more significantly after 4 weeks of treatment rather than immediately post treatment, implying that late ADC value may be a better predictor of tumor response for SBRT treatment. The fraction of tumor pixels at high ADC values increased at 4 weeks post treatment. Conclusion: The observed increase in ADC values before the end of radiotherapy may be a surrogate for tumor response, but further patient accrual will be necessary to determine its value.« less

  19. Reconstruction of 7T-Like Images From 3T MRI

    PubMed Central

    Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu

    2016-01-01

    In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous

  20. Does hydration status affect MRI measures of brain volume or water content?

    PubMed

    Meyers, Sandra M; Tam, Roger; Lee, Jimmy S; Kolind, Shannon H; Vavasour, Irene M; Mackie, Emilie; Zhao, Yinshan; Laule, Cornelia; Mädler, Burkhard; Li, David K B; MacKay, Alex L; Traboulsee, Anthony L

    2016-08-01

    To determine whether differences in hydration state, which could arise from routine clinical procedures such as overnight fasting, affect brain total water content (TWC) and brain volume measured with magnetic resonance imaging (MRI). Twenty healthy volunteers were scanned with a 3T MR scanner four times: day 1, baseline scan; day 2, hydrated scan after consuming 3L of water over 12 hours; day 3, dehydrated scan after overnight fasting of 9 hours, followed by another scan 1 hour later for reproducibility. The following MRI data were collected: T2 relaxation (for TWC measurement), inversion recovery (for T1 measurement), and 3D T1 -weighted (for brain volumes). Body weight and urine specific gravity were also measured. TWC was calculated by fitting the T2 relaxation data with a nonnegative least-squares algorithm, with corrections for T1 relaxation and image signal inhomogeneity and normalization to ventricular cerebrospinal fluid. Brain volume changes were measured using SIENA. TWC means were calculated within 14 tissue regions. Despite indications of dehydration as demonstrated by increases in urine specific gravity (P = 0.03) and decreases in body weight (P = 0.001) between hydrated and dehydrated scans, there was no measurable change in TWC (within any brain region) or brain volume between hydration states. We demonstrate that within a range of physiologic conditions commonly encountered in routine clinical scans (no pretreatment with hydration, well hydrated before MRI, and overnight fasting), brain TWC and brain volumes are not substantially affected in a healthy control cohort. J. Magn. Reson. Imaging 2016;44:296-304. © 2016 Wiley Periodicals, Inc.

  1. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  2. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans.

    PubMed

    Mendrik, Adriënne M; Vincken, Koen L; Kuijf, Hugo J; Breeuwer, Marcel; Bouvy, Willem H; de Bresser, Jeroen; Alansary, Amir; de Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R; van der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Persson, Mikael; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A; Vrooman, Henri A; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A

    2015-01-01

    Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65-80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand.

  3. MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans

    PubMed Central

    Mendrik, Adriënne M.; Vincken, Koen L.; Kuijf, Hugo J.; Breeuwer, Marcel; Bouvy, Willem H.; de Bresser, Jeroen; Alansary, Amir; de Bruijne, Marleen; Carass, Aaron; El-Baz, Ayman; Jog, Amod; Katyal, Ranveer; Khan, Ali R.; van der Lijn, Fedde; Mahmood, Qaiser; Mukherjee, Ryan; van Opbroek, Annegreet; Paneri, Sahil; Pereira, Sérgio; Rajchl, Martin; Sarikaya, Duygu; Smedby, Örjan; Silva, Carlos A.; Vrooman, Henri A.; Vyas, Saurabh; Wang, Chunliang; Zhao, Liang; Biessels, Geert Jan; Viergever, Max A.

    2015-01-01

    Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI scans of elderly subjects (65–80 y). Participants apply their algorithms to the provided data, after which their results are evaluated and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and SPM. The MRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in selecting the best performing method for the segmentation goal at hand. PMID:26759553

  4. SU-F-I-27: Measurement of SAR and Temperature Elevation During MRI Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Y

    Purpose: The poor reliability and repeatability of the manufacturer-reported SAR values on clinical MRI systems have been acknowledged. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation at 1.5 and 3T MRI systems. Methods: SAR measurement experiment was performed at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T1w inversion recovery, and T2w TSE) with imaging parameters were selected. A hydroxyl-ethylcelluose (HEC) gelled saline phantom mimicking human body tissue was made. Human torso phantom were constructed, based on Korean adult standard anthropometric reference data (Fig.1). FDTD method was utilized to calculatemore » the SAR distribution using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located inside the phantom. 55 Fiber Bragg Grating (FBG) temperature sensors (27 sensors in upper and lower cover lids, and one sensor located in the center as a reference) were located inside the phantom to measure temperature change during MRI scan (Fig.2). Results: Simulation shows that SAR value is 0.4 W/kg in the periphery and 0.001 W/kg in the center (Fig.2). One 1.5T and one of two 3T MRI systems represent that the measured SAR values were lower than MRI scanner-reported SAR values. However, the other 3T MRI scanner shows that the averaged SAR values measured by probe 2, 3, and 4 are 6.83, 7.59, and 6.01 W/kg, compared to MRI scanner-reported whole body SAR value (<1.5 W/kg) for T2w TSE (Table 1). The temperature elevation measured by FBG sensors is 5.2°C in the lateral shoulder, 5.1°C in the underarm, 4.7°C in the anterior axilla, 4.8°C in the posterior axilla, and 4.8°C in the lateral waist for T2w TSE (Fig.3). Conclusion: It is essential to assess the safety of MRI system for patient by measuring accurate SAR deposited in the body during clinical MRI.« less

  5. Interobserver variability in the radiological assessment of magnetic resonance imaging (MRI) including perfusion MRI in glioblastoma multiforme.

    PubMed

    Kerkhof, M; Hagenbeek, R E; van der Kallen, B F W; Lycklama À Nijeholt, G J; Dirven, L; Taphoorn, M J B; Vos, M J

    2016-10-01

    Conventional magnetic resonance imaging (MRI) has limited value for differentiation of true tumor progression and pseudoprogression in treated glioblastoma multiforme (GBM). Perfusion weighted imaging (PWI) may be helpful in the differentiation of these two phenomena. Here interobserver variability in routine radiological evaluation of GBM patients is assessed using MRI, including PWI. Three experienced neuroradiologists evaluated MR scans of 28 GBM patients during temozolomide chemoradiotherapy at three time points: preoperative (MR1) and postoperative (MR2) MR scan and the follow-up MR scan after three cycles of adjuvant temozolomide (MR3). Tumor size was measured both on T1 post-contrast and T2 weighted images according to the Response Assessment in Neuro-Oncology criteria. PW images of MR3 were evaluated by visual inspection of relative cerebral blood volume (rCBV) color maps and by quantitative rCBV measurements of enhancing areas with highest rCBV. Image interpretability of PW images was also scored. Finally, the neuroradiologists gave a conclusion on tumor status, based on the interpretation of both T1 and T2 weighted images (MR1, MR2 and MR3) in combination with PWI (MR3). Interobserver agreement on visual interpretation of rCBV maps was good (κ = 0.63) but poor on quantitative rCBV measurements and on interpretability of perfusion images (intraclass correlation coefficient 0.37 and κ = 0.23, respectively). Interobserver agreement on the overall conclusion of tumor status was moderate (κ = 0.48). Interobserver agreement on the visual interpretation of PWI color maps was good. However, overall interpretation of MR scans (using both conventional and PW images) showed considerable interobserver variability. Therefore, caution should be applied when interpreting MRI results during chemoradiation therapy. © 2016 EAN.

  6. Differentiation of Central Lung Cancer from Atelectasis: Comparison of Diffusion-Weighted MRI with PET/CT

    PubMed Central

    Yang, Rui-Meng; Li, Long; Wei, Xin-Hua; Guo, Yong-Mei; Huang, Yun-Hai; Lai, Li-Sha; Chen, A-Mei; Liu, Guo-Shun; Xiong, Wei-Feng; Luo, Liang-Ping; Jiang, Xin-Qing

    2013-01-01

    Objective Prospectively assess the performance of diffusion-weighted magnetic resonance imaging (DW-MRI) for differentiation of central lung cancer from atelectasis. Materials and Methods 38 consecutive lung cancer patients (26 males, 12 females; age range: 28–71 years; mean age: 49 years) who were referred for thoracic MR imaging examinations were enrolled. MR examinations were performed using a 1.5-T clinical scanner and scanning sequences of T1WI, T2WI, and DWI. Cancers and atelectasis were measured by mapping of the apparent diffusion coefficients (ADCs) obtained with a b-value of 500 s/mm2. Results PET/CT and DW-MR allowed differentiation of tumor and atelectasis in all 38 cases, but T2WI did not allow differentiation in 9 cases. Comparison of conventional T2WI and DW-MRI indicated a higher contrast noise ratio of the central lung carcinoma than the atelectasis by DW-MRI. ADC maps indicated significantly lower mean ADC in the central lung carcinoma than in the atelectasis (1.83±0.58 vs. 2.90±0.26 mm2/s, p<0.0001). ADC values of small cell lung carcinoma were significantly greater than those from squamous cell carcinoma and adenocarcinoma (p<0.0001 for both). Conclusions DW-MR imaging provides valuable information not obtained by conventional MR and may be useful for differentiation of central lung carcinoma from atelectasis. Future developments may allow DW-MR imaging to be used as an alternative to PET-CT in imaging of patients with lung cancer. PMID:23593186

  7. Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.

    PubMed

    Wu, Yixiao; Yang, Ran; Jia, Sen; Li, Zhanjun; Zhou, Zhiyang; Lou, Ting

    2014-01-01

    This work was aimed at studying the method of computer-aided diagnosis of early knee OA (OA: osteoarthritis). Based on the technique of MRI (MRI: Magnetic Resonance Imaging) T2 Mapping, through computer image processing, feature extraction, calculation and analysis via constructing a classifier, an effective computer-aided diagnosis method for knee OA was created to assist doctors in their accurate, timely and convenient detection of potential risk of OA. In order to evaluate this method, a total of 1380 data from the MRI images of 46 samples of knee joints were collected. These data were then modeled through linear regression on an offline general platform by the use of the ImageJ software, and a map of the physical parameter T2 was reconstructed. After the image processing, the T2 values of ten regions in the WORMS (WORMS: Whole-organ Magnetic Resonance Imaging Score) areas of the articular cartilage were extracted to be used as the eigenvalues in data mining. Then,a RBF (RBF: Radical Basis Function) network classifier was built to classify and identify the collected data. The classifier exhibited a final identification accuracy of 75%, indicating a good result of assisting diagnosis. Since the knee OA classifier constituted by a weights-directly-determined RBF neural network didn't require any iteration, our results demonstrated that the optimal weights, appropriate center and variance could be yielded through simple procedures. Furthermore, the accuracy for both the training samples and the testing samples from the normal group could reach 100%. Finally, the classifier was superior both in time efficiency and classification performance to the frequently used classifiers based on iterative learning. Thus it was suitable to be used as an aid to computer-aided diagnosis of early knee OA.

  8. Preoperative localization of intracranial lesions with MRI using marking pills.

    PubMed

    Shibata, Sumiya; Kunieda, Takeharu; Adachi, Hidemitsu; Ueno, Yasushi; Kohara, Nobuo; Sakai, Nobuyuki

    2011-12-01

    To describe a simple technique for preoperative surface localization of intracranial lesions. 11 pills in total, including Alfarol (alfacalcidol) capsules, were affixed to a phantom with adhesive tape and a MRI scan was performed. The visibility of the pills and any spatial errors in determining their locations were evaluated. Between June 2006 and April 2009, we employed Alfarol capsules as a skin marker in MRI in clinical surgical cases. Alfarol capsules, whose actual size is 5.6 mm in diameter, were identified as a hyperintense spot at a size of 4.2, 4.2, and 4.5mm in diameter in T1-weighted, T2-weighted, and FLAIR (fluid attenuated inversion recovery) sequence images, respectively. The size discrepancies were within 1.4 mm. The average spatial errors were 0.7, 0.6, and 0.7 mm in T1-weighted, T2-weighted, and FLAIR sequence images, respectively. Other pills were not identified in the MRI scans. During this 35-month period, 8 patients underwent preoperative MRI-guided localization at our institution. There were 5 men and 3 women in whom 8 biopsies were performed. In all cases, the result of the biopsy was positive and useful for the treatment that followed. No perioperative complications were encountered. Alfarol capsule can be used as an external skin marker. Our simple and inexpensive method is a useful addition to preoperative evaluation of superficial intracranial lesions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Prostate segmentation in MRI using fused T2-weighted and elastography images

    NASA Astrophysics Data System (ADS)

    Nir, Guy; Sahebjavaher, Ramin S.; Baghani, Ali; Sinkus, Ralph; Salcudean, Septimiu E.

    2014-03-01

    Segmentation of the prostate in medical imaging is a challenging and important task for surgical planning and delivery of prostate cancer treatment. Automatic prostate segmentation can improve speed, reproducibility and consistency of the process. In this work, we propose a method for automatic segmentation of the prostate in magnetic resonance elastography (MRE) images. The method utilizes the complementary property of the elastogram and the corresponding T2-weighted image, which are obtained from the phase and magnitude components of the imaging signal, respectively. It follows a variational approach to propagate an active contour model based on the combination of region statistics in the elastogram and the edge map of the T2-weighted image. The method is fast and does not require prior shape information. The proposed algorithm is tested on 35 clinical image pairs from five MRE data sets, and is evaluated in comparison with manual contouring. The mean absolute distance between the automatic and manual contours is 1.8mm, with a maximum distance of 5.6mm. The relative area error is 7.6%, and the duration of the segmentation process is 2s per slice.

  10. Advantages of T2 Weighted Three Dimensional and T1 Weighted Three Dimensional Contrast Medium Enhanced Magnetic Resonance Urography in Examination of the Child Population.

    PubMed

    Sehic, Adnan; Julardzija, Fuad; Vegar-Zubovic, Sandra; Sefic-Pasic, Irmina

    2017-03-01

    The aim of this study is to prove the advantages of combined use of T2 weighted three dimensional (T2 W 3D) and T1 weighted three dimensional contrast medium enhanced (T1 W 3D CE) magnetic resonance (MR) urography in displaying urinary tract in child population. Total of 120 patients were included in the study, 71 (59%) male patients and 49 (41%) female patients. The study was conducted on the Radiology clinic, University of Sarajevo Clinical Center, during the period from February to November 2016. Patients were examined on the 1.5T and 3T MRI, with standard protocol which includes T2 W 3D and T1 W 3D contrast medium enhanced MR urography. In the post procesing quantitative measurement of signal intensity and evaluation of the display quality in the area of renal pelvis, middle of ureter and the mouth of the ureter were done. Measurement was concluded on Syngo software B13. Analyzing the acquired data and statistically processing them we got results which have shown higher signal intensity of measured structures on T1 W 3D contrast medium enhanced MR urography on the level p<0.01 and p<0.05 compared to T2 W 3D MR urography in patients that had normal dynamics of contrast medium secretion. However, in kidneys with decreased function, T2 W 3D MR urography provided higher signal intensity and better display compared to T1 W 3D contrast medium enhanced MR urography on the level p<0.05 and p<0.01. T2 W3D MR urography is useful in imaging nonfunctional kidney as well as in patients prone to allergic reactions, where as T1 W3D CE MR urography is at an advantage over T2 W 3D MR urography in imaging the kidney functionality, kidney dynamics measurement, it provides higher MRI signal intensity required for clear 3D reconstructions.

  11. SU-G-JeP2-12: Quantification of 3D Geometric Distortion for 1.5T and 3T MRI Scanners Used for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stowe, M; Gupta, N; Raterman, B

    Purpose: To quantify the magnitude of geometric distortion for MRI scanners and provide recommendations for MRI imaging for radiation therapy Methods: A novel phantom, QUASAR MRID3D [Modus Medical Devices Inc.], was scanned to evaluate the level of 3D geometric distortion present in five MRI scanners used for radiation therapy in our department. The phantom was scanned using the body coil with 1mm image slice thickness to acquire 3D images of the phantom body. The phantom was aligned to its geometric center for each scan, and the field of view was set to visualize the entire phantom. The dependence of distortionmore » magnitude with distance from imaging isocenter and with magnetic field strength (1.5T and 3T) was investigated. Additionally, the characteristics of distortion for Siemens and GE machines were compared. The image distortion for each scanner was quantified in terms of mean, standard deviation (STD), maximum distortion, and skewness. Results: The 3T and 1.5T scans show a similar absolute distortion with a mean of 1.38mm (0.33mm STD) for 3T and 1.39mm (0.34mm STD) for 1.5T for a 100mm radius distance from isocenter. Some machines can have a distortion larger than 10mm at a distance of 200mm from the isocenter. The distortions are presented with plots of the x, y, and z directional components. Conclusion: The results indicate that quantification of MRI image distortion is crucial in radiation oncology for target and organ delineation and treatment planning. The magnitude of geometric distortion determines the margin needed for target contouring which is usually neglected in treatment planning process, especially for SRS/SBRT treatments. Understanding the 3D distribution of the MRI image distortion will improve the accuracy of target delineation and, hence, treatment efficacy. MRI imaging with proper patient alignment to the isocenter is vital to reducing the effects of MRI distortion in treatment planning.« less

  12. Contrast-enhanced Magnetic Resonance Imaging of Pelvic Bone Metastases at 3.0 T: Comparison Between 3-dimensional T1-weighted CAIPIRINHA-VIBE Sequence and 2-dimensional T1-weighted Turbo Spin-Echo Sequence.

    PubMed

    Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee

    2018-06-12

    This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.

  13. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS).

    PubMed

    Kretzschmar, M; Bieri, O; Miska, M; Wiewiorski, M; Hainc, N; Valderrabano, V; Studler, U

    2015-04-01

    The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm(2)/ms) was significantly higher compared to normal cartilage (1.46 μm(2)/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. • MRI is used to assess morphology of the repair tissue during follow-up. • Quantitative MRI allows an estimation of biochemical properties of the repair tissue. • Differences between repair tissue and cartilage were more significant with dwDESS than T2 mapping.

  14. Diffusion-weighted magnetic resonance imaging combined with T2-weighted images in the detection of small breast cancer: a single-center multi-observer study.

    PubMed

    Wu, Lian-Ming; Chen, Jie; Hu, Jiani; Gu, Hai-Yan; Xu, Jian-Rong; Hua, Jia

    2014-02-01

    Breast cancer is the most common cancer in women worldwide. However, it remains a difficult diagnosis problem to differentiate between benign and malignant breast lesions, especially in small early breast lesions. To assess the diagnostic value of diffusion-weighted imaging (DWI) combined with T2-weighted imaging (T2WI) for small breast cancer characterization. Fifty-eight patients (65 lesions) with a lesion <2 cm in diameter underwent 3.0 Tesla breast magnetic resonance imaging (MRI) including DWI and histological analysis. Three observers with varying experience levels reviewed MRI. The probability of breast cancer in each lesion on MR images was recorded with a 5-point scale. Areas under the receiver-operating characteristic curve (AUCs) were compared by using the Z test; sensitivity and specificity were determined with the Z test after adjusting for data clustering. AUC of T2WI and DWI (Observer 1, 0.95; Observer 2, 0.91; Observer 3, 0.83) was greater than that of T2WI (Observer 1, 0.80; Observer 2, 0.74; Observer 3, 0.70) for all observers (P < 0.0001 in all comparisons). Sensitivity of T2WI and DWI (Observer 1, 90%; Observer 2, 93%; and Observer 3, 86%) was greater than that of T2WI alone (Observer 1, 76%; Observer 2, 83%; Observer 3, 79%) for all observers (P < 0.0001 in all comparisons). Specificity of T2WI and DWI was greater than that of T2WI alone for observer 1 (89% vs. 72%, P < 0.01) and observer 2 (94% vs. 78%, P < 0.001). DWI combined with T2WI can improve the diagnostic performance of MRI in small breast cancer characterization. It should be considered selectively in the preoperative evaluation of patients with small lesions of the breast.

  15. Early Detection of Hypothermic Neuroprotection Using T2-Weighted Magnetic Resonance Imaging in a Mouse Model of Hypoxic Ischemic Encephalopathy.

    PubMed

    Doman, Sydney E; Girish, Akanksha; Nemeth, Christina L; Drummond, Gabrielle T; Carr, Patrice; Garcia, Maxine S; Johnston, Michael V; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann

    2018-01-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell

  16. Early Detection of Hypothermic Neuroprotection Using T2-Weighted Magnetic Resonance Imaging in a Mouse Model of Hypoxic Ischemic Encephalopathy

    PubMed Central

    Doman, Sydney E.; Girish, Akanksha; Nemeth, Christina L.; Drummond, Gabrielle T.; Carr, Patrice; Garcia, Maxine S.; Johnston, Michael V.; Kannan, Sujatha; Fatemi, Ali; Zhang, Jiangyang; Wilson, Mary Ann

    2018-01-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) can lead to neurodevelopmental disorders, including cerebral palsy. Standard care for neonatal HIE includes therapeutic hypothermia, which provides partial neuroprotection; magnetic resonance imaging (MRI) is often used to assess injury and predict outcome after HIE. Immature rodent models of HIE are used to evaluate mechanisms of injury and to examine the efficacy and mechanisms of neuroprotective interventions such as hypothermia. In this study, we first confirmed that, in the CD1 mouse model of perinatal HIE used for our research, MRI obtained 3 h after hypoxic ischemia (HI) could reliably assess initial brain injury and predict histopathological outcome. Mice were subjected to HI (unilateral carotid ligation followed by exposure to hypoxia) on postnatal day 7 and were imaged with T2-weighted MRI and diffusion-weighted MRI (DWI), 3 h after HI. Clearly defined regions of increased signal were comparable in T2 MRI and DWI, and we found a strong correlation between T2 MRI injury scores 3 h after HI and histopathological brain injury 7 days after HI, validating this method for evaluating initial injury in this model of HIE. The more efficient, higher resolution T2 MRI was used to score initial brain injury in subsequent studies. In mice treated with hypothermia, we found a significant reduction in T2 MRI injury scores 3 h after HI, compared to normothermic littermates. Early hypothermic neuroprotection was maintained 7 days after HI, in both T2 MRI injury scores and histopathology. In the normothermic group, T2 MRI injury scores 3 h after HI were comparable to those obtained 7 days after HI. However, in the hypothermic group, brain injury was significantly less 7 days after HI than at 3 h. Thus, early neuroprotective effects of hypothermia were enhanced by 7 days, which may reflect the additional 3 h of hypothermia after imaging or effects on later mechanisms of injury, such as delayed cell

  17. Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: A combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis.

    PubMed

    Billiet, Thibo; Mädler, Burkhard; D'Arco, Felice; Peeters, Ronald; Deprez, Sabine; Plasschaert, Ellen; Leemans, Alexander; Zhang, Hui; den Bergh, Bea Van; Vandenbulcke, Mathieu; Legius, Eric; Sunaert, Stefan; Emsell, Louise

    2014-01-01

    The histopathological basis of "unidentified bright objects" (UBOs) (hyperintense regions seen on T2-weighted magnetic resonance (MR) brain scans in neurofibromatosis-1 (NF1)) remains unclear. New in vivo MRI-based techniques (multi-exponential T2 relaxation (MET2) and diffusion MR imaging (dMRI)) provide measures relating to microstructural change. We combined these methods and present previously unreported data on in vivo UBO microstructure in NF1. 3-Tesla dMRI data were acquired on 17 NF1 patients, covering 30 white matter UBOs. Diffusion tensor, kurtosis and neurite orientation and dispersion density imaging parameters were calculated within UBO sites and in contralateral normal appearing white matter (cNAWM). Analysis of MET2 parameters was performed on 24 UBO-cNAWM pairs. No significant alterations in the myelin water fraction and intra- and extracellular (IE) water fraction were found. Mean T2 time of IE water was significantly higher in UBOs. UBOs furthermore showed increased axial, radial and mean diffusivity, and decreased fractional anisotropy, mean kurtosis and neurite density index compared to cNAWM. Neurite orientation dispersion and isotropic fluid fraction were unaltered. Our results suggest that demyelination and axonal degeneration are unlikely to be present in UBOs, which appear to be mainly caused by a shift towards a higher T2-value of the intra- and extracellular water pool. This may arise from altered microstructural compartmentalization, and an increase in 'extracellular-like', intracellular water, possibly due to intramyelinic edema. These findings confirm the added value of combining dMRI and MET2 to characterize the microstructural basis of T2 hyperintensities in vivo.

  18. SU-D-303-03: Impact of Uncertainty in T1 Measurements On Quantification of Dynamic Contrast Enhanced MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, M; Cao, Y

    2015-06-15

    Purpose: Quantification of dynamic contrast enhanced (DCE) MRI requires native longitudinal relaxation time (T1) measurement. This study aimed to assess uncertainty in T1 measurements using two different methods. Methods and Materials: Brain MRI scans were performed on a 3T scanner in 9 patients who had low grade/benign tumors and partial brain radiotherapy without chemotherapy at pre-RT, week-3 during RT (wk-3), end-RT, and 1, 6 and 18 months after RT. T1-weighted images were acquired using gradient echo sequences with 1) 2 different flip angles (50 and 150), and 2) 5 variable TRs (100–2000ms). After creating quantitative T1 maps, average T1 wasmore » calculated in regions of interest (ROI), which were distant from tumors and received a total of accumulated radiation doses < 5 Gy at wk-3. ROIs included left and right normal Putamen and Thalamus (gray matter: GM), and frontal and parietal white matter (WM). Since there were no significant or even a trend of T1 changes from pre-RT to wk-3 in these ROIs, a relative repeatability coefficient (RC) of T1 as a measure of uncertainty was estimated in each ROI using the data pre-RT and at wk-3. The individual T1 changes at later time points were evaluated compared to the estimated RCs. Results: The 2-flip angle method produced small RCs in GM (9.7–11.7%) but large RCs in WM (12.2–13.6%) compared to the saturation-recovery (SR) method (11.0–17.7% for GM and 7.5–11.2% for WM). More than 81% of individual T1 changes were within T1 uncertainty ranges defined by RCs. Conclusion: Our study suggests that the impact of T1 uncertainty on physiological parameters derived from DCE MRI is not negligible. A short scan with 2 flip angles is able to achieve repeatability of T1 estimates similar to a long scan with 5 different TRs, and is desirable to be integrated in the DCE protocol. Present study was supported by National Institute of Health (NIH) under grant numbers; UO1 CA183848 and RO1 NS064973.« less

  19. Reticular Appearance on Gadolinium-enhanced T1- and Diffusion-weighted MRI, and Low Apparent Diffusion Coefficient Values in Microcystic Meningioma Cysts.

    PubMed

    Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi

    2018-03-01

    Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.

  20. T2 relaxation mapping MRI of healthy and inflamed gingival tissue

    PubMed Central

    Bishop, Courtney A; Janiczek, Robert L; Parkinson, Charles; Hughes, Francis J

    2017-01-01

    Objectives: To investigate the use and reproducibility of MRI transverse relaxation time (T2) mapping in healthy and inflamed gingivae. Methods: 21 subjects were recruited into 2 groups: those without evidence of gingivitis (“healthy”; n = 11, age 24.0 ± 3.66 years) by visual assessment and those with moderate to severe gingivitis (“gingivitis”; n = 10, age 28.9 ± 6.03 years) exhibited across the second mandibular premolar and first mandibular molar buccal gingivae. Subjects were imaged by MRI twice in a single day. Three T2 weighted turbo spin-echo volumes with 0.25 × 0.25 × 0.8-mm3 resolution were acquired at echo times of 16, 32 and 48 ms for T2 decay fitting. Image analysis was fully blinded; the two imaging sessions were not identifiable as coming from the same subject. Each imaging session had independent regions of interest drawn on the first echo image and applied to the calculated T2 decay maps. Results: The coefficient of variation was low and similar in healthy and gingivitis populations: 6.10 and 5.25% populations, respectively, with 5.65% populations across both groups. Bland–Altman analysis revealed no bias (mean −2.93%; 95% confidence intervals −22.20 to 16.34%) between sessions. The intersession agreement was good (r = 0.744, ρ = 0.568, intraclass correlation coefficient = 0.68). T2 mapping did not differentiate healthy from gingivitis groups. The mean T2 value in the healthy group (63.7 ms) was similar to that of the gingivitis group (65.23 ms) (p = 0.30). Conclusions: Mapping of the T2 decay in the gingivae was a repeatable process; however, T2 value alone did not differentiate those with clinical examination-determined gingivitis from those without signs of gingivitis. PMID:27936919

  1. Three-Dimensional Isotropic Fat-Suppressed Proton Density-Weighted MRI at 3 Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging.

    PubMed

    Homsi, R; Gieseke, J; Luetkens, J A; Kupczyk, P; Maedler, B; Kukuk, G M; Träber, F; Agha, B; Rauch, M; Rajakaruna, N; Willinek, W; Schild, H H; Hadizadeh, D R

    2016-10-01

    To evaluate whether a 3 D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9 ± 14.5years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40 - 0.63 × 0.44 - 0.89 × 3mm³) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 × 0.68 × 0.63mm³). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p < 0.01 for ACL and PCL; p = 0.07 for MEN). Compared to 2 D images, the OIQ was rated higher in 3D-PDwFS images (p < 0.01) due to fewer artifacts and HFS despite the lower IS (p < 0.01). The sensitivity and specificity of lesion detection in 3D- and 2D-PDwFS were similar. Compared to standard multiplanar 2D-PDwFS knee imaging, isotropic high spatial resolution 3D-PDwFS of the knee at 3.0 T can be acquired with high image quality in a reasonable scan time. Multiplanar reformations in arbitrary planes may serve as an additional benefit of 3D-PDwFS. • 3D-PDwFS of the knee is acquired with high image quality• 3D-PDwFS can be achieved in only one measurement with a reasonable scan time• 3D-PDwFS with the advantage of multiplanar reformation may replace 2D-PD-weighted knee MRI Citation Format: • Homsi R, Gieseke

  2. Automated extraction of subdural electrode grid from post-implant MRI scans for epilepsy surgery

    NASA Astrophysics Data System (ADS)

    Pozdin, Maksym A.; Skrinjar, Oskar

    2005-04-01

    This paper presents an automated algorithm for extraction of Subdural Electrode Grid (SEG) from post-implant MRI scans for epilepsy surgery. Post-implant MRI scans are corrupted by the image artifacts caused by implanted electrodes. The artifacts appear as dark spherical voids and given that the cerebrospinal fluid is also dark in T1-weigthed MRI scans, it is a difficult and time-consuming task to manually locate SEG position relative to brain structures of interest. The proposed algorithm reliably and accurately extracts SEG from post-implant MRI scan, i.e. finds its shape and position relative to brain structures of interest. The algorithm was validated against manually determined electrode locations, and the average error was 1.6mm for the three tested subjects.

  3. T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm.

    PubMed

    Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver

    2017-03-14

    We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T 1 -weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.

  4. T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm

    NASA Astrophysics Data System (ADS)

    Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver

    2017-03-01

    We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T1-weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.

  5. Pulmonary Aspergillus chest wall involvement in chronic granulomatous disease: CT and MRI findings.

    PubMed

    Kawashima, A; Kuhlman, J E; Fishman, E K; Tempany, C M; Magid, D; Lederman, H M; Winkelstein, J A; Zerhouni, E A

    1991-01-01

    Pulmonary Aspergillus infection in patients with chronic granulomatous disease tends to involve the chest wall and consequently carries a high mortality rate. We report the findings of computed tomography (CT) and magnetic resonance imaging (MRI) in three such cases. One patient underwent both CT and MRI, one, CT only, and one, MRI only. In all three, both CT and MRI demonstrated pulmonary consolidations with direct extension to the adjacent chest wall. In both patients who were examined by CT, scans revealed permeative osteolytic changes of adjacent rib or spine compatible with osteomyelitis. In both patients who were examined by MRI, adjacent chest wall involvement was depicted on T1-weighted images and showed increased signal intensity on T2-weighted images. In one of these patients, the chest wall lesion was well defined on T2-weighted images, an appearance compatible with abscess. Epidural extension was demonstrated on MRI in the other patient, who later developed paraparesis. We suggest that CT and MRI have a complementary role in evaluating chest wall invasion by pulmonary Aspergillus infection in chronic granulomatous disease.

  6. Compact Intraoperative MRI: Stereotactic Accuracy and Future Directions.

    PubMed

    Markowitz, Daniel; Lin, Dishen; Salas, Sussan; Kohn, Nina; Schulder, Michael

    2017-01-01

    Intraoperative imaging must supply data that can be used for accurate stereotactic navigation. This information should be at least as accurate as that acquired from diagnostic imagers. The aim of this study was to compare the stereotactic accuracy of an updated compact intraoperative MRI (iMRI) device based on a 0.15-T magnet to standard surgical navigation on a 1.5-T diagnostic scan MRI and to navigation with an earlier model of the same system. The accuracy of each system was assessed using a water-filled phantom model of the brain. Data collected with the new system were compared to those obtained in a previous study assessing the older system. The accuracy of the new iMRI was measured against standard surgical navigation on a 1.5-T MRI using T1-weighted (W) images. The mean error with the iMRI using T1W images was lower than that based on images from the 1.5-T scan (1.24 vs. 2.43 mm). T2W images from the newer iMRI yielded a lower navigation error than those acquired with the prior model (1.28 vs. 3.15 mm). Improvements in magnet design can yield progressive increases in accuracy, validating the concept of compact, low-field iMRI. Avoiding the need for registration between image and surgical space increases navigation accuracy. © 2017 S. Karger AG, Basel.

  7. Carotid plaque characterization using CT and MRI scans for synergistic image analysis

    NASA Astrophysics Data System (ADS)

    Getzin, Matthew; Xu, Yiqin; Rao, Arhant; Madi, Saaussan; Bahadur, Ali; Lennartz, Michelle R.; Wang, Ge

    2014-09-01

    Noninvasive determination of plaque vulnerability has been a holy grail of medical imaging. Despite advances in tomographic technologies , there is currently no effective way to identify vulnerable atherosclerotic plaques with high sensitivity and specificity. Computed tomography (CT) and magnetic resonance imaging (MRI) are widely used, but neither provides sufficient information of plaque properties. Thus, we are motivated to combine CT and MRI imaging to determine if the composite information can better reflect the histological determination of plaque vulnerability. Two human endarterectomy specimens (1 symptomatic carotid and 1 stable femoral) were imaged using Scanco Medical Viva CT40 and Bruker Pharmascan 16cm 7T Horizontal MRI / MRS systems. μCT scans were done at 55 kVp and tube current of 70 mA. Samples underwent RARE-VTR and MSME pulse sequences to measure T1, T2 values, and proton density. The specimens were processed for histology and scored for vulnerability using the American Heart Association criteria. Single modality-based analyses were performed through segmentation of key imaging biomarkers (i.e. calcification and lumen), image registration, measurement of fibrous capsule, and multi-component T1 and T2 decay modeling. Feature differences were analyzed between the unstable and stable controls, symptomatic carotid and femoral plaque, respectively. By building on the techniques used in this study, synergistic CT+MRI analysis may provide a promising solution for plaque characterization in vivo.

  8. Clinical safety of the ProMRI pacemaker system in patients subjected to thoracic spine and cardiac 1.5-T magnetic resonance imaging scanning conditions.

    PubMed

    Bailey, William M; Mazur, Alexander; McCotter, Craig; Woodard, Pamela K; Rosenthal, Lawrence; Johnson, Whitney; Mela, Theofanie

    2016-02-01

    Permanent cardiac pacemakers have historically been considered a contraindication to magnetic resonance imaging (MRI). The purpose of the ProMRI Phase B Study, a multicenter, prospective, single-arm, nonrandomized study, was to evaluate the clinical safety of the Biotronik ProMRI pacemaker system in patients undergoing thoracic spine and cardiac MRI. The ProMRI Phase B study enrolled 245 patients with stable baseline pacing indices implanted with an Entovis pacemaker (DR-T or SR-T) and Setrox 53-cm and/or 60-cm lead(s). Device interrogation was performed at enrollment, pre- and post-MRI scan, and 1 and 3 months post-MRI. End-points were (1) freedom from MRI- and pacing system-related serious adverse device effects through 1 month post-MRI; (2) freedom from atrial and ventricular MRI-induced pacing threshold increase (>0.5 V); and (3) freedom from P- and R-wave amplitude attenuation (<50%), or P wave <1.5 mV, or R wave <5.0 mV at 1 month post-MRI. In total, 216 patients completed the MRI and 1-month post-MRI follow-up. One adverse event possibly related to the implanted system and the MRI procedure occurred, resulting in a serious adverse device effect-free rate of 99.6% (220/221; P < .0001. Freedom from atrial and ventricular pacing threshold increase was 100% (194/194, P < .001) and 100% (206/206, P < .001) respectively. Freedom from P- and R-wave amplitude attenuation was 98.2% (167/170, P < .001) and 100% (188/188, P < .001) respectively. The results of the ProMRI Phase B study demonstrate the clinical safety and efficacy of the ProMRI pacemaker system in patients subjected to thoracic spine and cardiac MRI conditions. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  9. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    PubMed

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  10. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners

    PubMed Central

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this “Atlas-T1w-DUTE” approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the “silver standard”; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally. PMID:24753982

  11. MRI assessment of whole-brain structural changes in aging.

    PubMed

    Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei

    2017-01-01

    One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P <0.00001). They were associated with age ( r 2 >0.29; P <0.00001) and differed by cognitive status ( χ 2 >26.48, P <0.00001). T2-FLAIR revealed a greater level of periventricular ( χ 2 =29.09) and deep white matter ( χ 2 =26.65, P <0.001) lesions than others, but missed revealing certain dilated perivascular spaces that were seen in T2WI ( P <0.001). Microhemorrhages occurred in 15.3% of the sample examined and were detected using only T2*GRE. The T1WI- and T2WI-based BALI evaluations consistently identified the burden of aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests

  12. MRI as a Translational Tool for the Study of Neonatal Stroke

    PubMed Central

    Dzietko, Mark; Wendland, Michael; Derugin, Nikita; Ferriero, Donna M.; Vexler, Zinaida S.

    2013-01-01

    More than half of neonatal stroke survivors have long-term sequelae, including seizures and neurological deficits. Although the immature brain has tremendous potential for recovery, mechanisms governing repair are essentially unexplored. We explored whether magnetic resonance imaging (MRI) early or late after transient middle cerebral arterial occlusion in 10-day-old (P10) rats can serve as an intermediate endpoint for long-term studies. Injured animals selected by diffusion-weighted MRI during middle cerebral arterial occlusion were scanned using T2-weighted MRI at P18 and P25 (injury volumes on MRI and histology were compared), or were subjected to contrast-enhanced MRI at P13 to characterize cerebral microcirculatory disturbances and blood-brain barrier leakage. Injury volume did not predict histological outcome at 2 weeks. Major reductions occurred by P18, with no further changes by P25. Cerebral perfusion was significantly reduced in the injured caudate but blood-brain barrier leakage was small. Therefore, conventional T2-weighted MRI performed during a subchronic injury phase predicts long-term histological outcome after experimental neonatal focal stroke. PMID:21670390

  13. Knee MRI scan

    MedlinePlus

    ... CT scan of the knee Knee x-ray Alternative Names MRI - knee; Magnetic resonance imaging - knee Patient ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  14. Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

    PubMed Central

    Adin, M.E.; Kleinberg, L.; Vaidya, D.; Zan, E.; Mirbagheri, S.; Yousem, D.M.

    2016-01-01

    BACKGROUND AND PURPOSE A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics. MATERIALS AND METHODS The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers. RESULTS One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers. CONCLUSIONS Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted-MR images. PMID:26294649

  15. A biomarker-responsive T2ex MRI contrast agent.

    PubMed

    Daryaei, Iman; Randtke, Edward A; Pagel, Mark D

    2017-04-01

    This study investigated a fundamentally new type of responsive MRI contrast agent for molecular imaging that alters T 2 exchange (T 2ex ) properties after interacting with a molecular biomarker. The contrast agent Tm-DO3A-oAA was treated with nitric oxide (NO) and O 2 . The R 1 and R 2 relaxation rates of the reactant and product were measured with respect to concentration, temperature, and pH. Chemical exchange saturation transfer (CEST) spectra of the reactant and product were acquired using a 7 Tesla (T) MRI scanner and analyzed to estimate the chemical exchange rates and r 2ex relaxivities. The reaction of Tm-DO3A-oAA with NO and O 2 caused a 6.4-fold increase in the r 2 relaxivity of the agent, whereas r 1 relaxivity remained unchanged, which demonstrated that Tm-DO3A-oAA is a responsive T 2ex agent. The effects of pH and temperature on the r 2 relaxivities of the reactant and product supported the conclusion that the product's benzimidazole ligand caused the agent to have a fast chemical exchange rate relative to the slow exchange rate of the reactant's ortho-aminoanilide ligand. T 2ex MRI contrast agents are a new type of responsive agent that have good detection sensitivity and specificity for detecting a biomarker, which can serve as a new tool for molecular imaging. Magn Reson Med 77:1665-1670, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. T1 vs. T2 weighted magnetic resonance imaging to assess total kidney volume in patients with autosomal dominant polycystic kidney disease.

    PubMed

    van Gastel, Maatje D A; Messchendorp, A Lianne; Kappert, Peter; Kaatee, Merel A; de Jong, Marissa; Renken, Remco J; Ter Horst, Gert J; Mahesh, Shekar V K; Gansevoort, Ron T

    2018-05-01

    In ADPKD patients total kidney volume (TKV) measurement using MRI is performed to predict rate of disease progression. Historically T1 weighted images (T1) were used, but the methodology of T2 weighted imaging (T2) has evolved. We compared the performance of both sequences. 40 ADPKD patients underwent an abdominal MRI at baseline and follow-up. TKV was measured by manual tracing with Analyze Direct 11.0 software. Three readers established intra- and interreader coefficients of variation (CV). T1 and T2 measured kidney volumes and growth rates were compared with ICC and Bland-Altman analyses. Participants were 49.7 ± 7.0 years of age, 55.0% female, with estimated GFR of 50.1 ± 11.5 mL/min/1.73 m 2 . CVs were low and comparable for T2 and T1 (intrareader: 0.83% [0.48-1.79] vs. 1.15% [0.34-1.77], P = 0.9, interreader: 2.18% [1.59-2.61] vs. 1.69% [1.07-3.87], P = 0.9). TKV was clinically similar, but statistically significantly different between T2 and T1: 1867 [1172-2721] vs. 1932 [1180-2551] mL, respectively (P = 0.006), with a bias of only 0.8% and high agreement (ICC 0.997). Percentage kidney growth during 2.2 ± 0.3 years was similar for T2 and T1 (9.3 ± 10.6% vs. 7.8 ± 9.9%, P = 0.1, respectively), with a bias of 1.5% and high agreement (ICC 0.843). T2 was more often of sufficient quality for volume measurement (86.7% vs. 71.1%, P < 0.001). In patients with ADPKD, measurement of kidney volume and growth rate performs similarly when using T2 compared to T1 weighted images, although T2 performs better on secondary outcome parameters; they are more often of sufficient quality for volume measurement and result in slightly lower intra- and interreader variability.

  17. MO-FG-CAMPUS-IeP3-01: Evaluation of Specific Absorption Rate and Temperature Increase Induced by Artificial Medical Implants During MRI Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Y

    Purpose: Heating of patients or burning of biological tissues around medical implants by RF power during MRI scan is a significant patient safety concern. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation due to artificial hip joints during MRI scans. Methods: SAR measurement experiment was performed on three discrete manufacturers at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T2w inversion recovery, and T2w TSE) with imaging parameters were selected. A gelled saline phantom mimicking human body tissue was made (Fig.1). FDTD method was utilized to calculate the SAR distributionmore » using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located around two artificial hip joints inside the phantom. 56 Fiber Bragg Grating (FBG) temperature sensors (28 sensors on each artificial hip joint) were located on both left and right artificial hip joints to measure temperature change during MRI scan (Fig.1). Both E-field and FBG temperature sensors were calibrated with traceability at Korea Research Institute of Standards and Science (KRISS). Results: Simulation shows that high SAR values occur in the head and tail of the implanted artificial hip joints (Fig.1 lower right). 3T MRI scanner shows that the local averaged-SAR values measured by probe 1, 2, and 3 are 2.30, 2.77, and 1.68 W/kg, compared to MRI scanner-reported whole body SAR value (≤1.5 W/kg) for T1w TSE and T2w-IR (Table 1). The maximum temperature elevation measured by FBG sensors is 1.49°C at 1.5 T, 2.0°C at 3 T, and 2.56°C at 3 T for T1w TSE, respectively (Table 2). Conclusion: It is essential to assess the safety of MRI system for patient with medical implant by measuring not only accurate SAR deposited in the body, but also temperature elevation due to the deposited SAR during clinical MRI.« less

  18. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  19. Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI.

    PubMed

    Hong, H S; Yi, B-H; Cha, J-G; Park, S-J; Kim, D H; Lee, H K; Lee, J-D

    2010-02-01

    The purpose of this study was to evaluate the enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. We reviewed the medical records of 20 patients and evaluated 40 clinically normal facial nerves demonstrated by 3.0 T temporal MRI. The grade of enhancement of the facial nerve was visually scaled from 0 to 3. The patients comprised 11 men and 9 women, and the mean age was 39.7 years. The reasons for the MRI were sudden hearing loss (11 patients), Méniàre's disease (6) and tinnitus (7). Temporal MR scans were obtained by fluid-attenuated inversion-recovery (FLAIR) and diffusion-weighted imaging of the brain; three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA) images of the temporal bone with a 0.77 mm thickness, and pre-contrast and contrast-enhanced 3D spoiled gradient record acquisition in the steady state (SPGR) of the temporal bone with a 1 mm thickness, were obtained with 3.0 T MR scanning. 40 nerves (100%) were visibly enhanced along at least one segment of the facial nerve. The enhanced segments included the geniculate ganglion (77.5%), tympanic segment (37.5%) and mastoid segment (100%). Even the facial nerve in the internal auditory canal (15%) and labyrinthine segments (5%) showed mild enhancement. The use of high-resolution, high signal-to-noise ratio (with 3 T MRI), thin-section contrast-enhanced 3D SPGR sequences showed enhancement of the normal facial nerve along the whole course of the nerve; however, only mild enhancement was observed in areas associated with acute neuritis, namely the canalicular and labyrinthine segment.

  20. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au; University of Newcastle, Callaghan, New South Wales; Sun, Jidi

    Purpose: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. Patients and Methods: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1wmore » flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. Results: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). Conclusions: The MR-Sim setup and automatic s

  1. Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology.

    PubMed

    Li, Tao; Li, Xin; Zhao, Xihai; Zhou, Weihua; Cai, Zulong; Yang, Li; Guo, Aitao; Zhao, Shaohong

    2012-05-01

    The objective of our study was to evaluate the feasibility of ex vivo high-resolution multicontrast-weighted MRI to accurately classify human coronary atherosclerotic plaques according to the American Heart Association classification. Thirteen human cadaver heart specimens were imaged using high-resolution multicontrast-weighted MR technique (T1-weighted, proton density-weighted, and T2-weighted). All MR images were matched with histopathologic sections according to the landmark of the bifurcation of the left main coronary artery. The sensitivity and specificity of MRI for the classification of plaques were determined, and Cohen's kappa analysis was applied to evaluate the agreement between MRI and histopathology in the classification of atherosclerotic plaques. One hundred eleven MR cross-sectional images obtained perpendicular to the long axis of the proximal left anterior descending artery were successfully matched with the histopathologic sections. For the classification of plaques, the sensitivity and specificity of MRI were as follows: type I-II (near normal), 60% and 100%; type III (focal lipid pool), 80% and 100%; type IV-V (lipid, necrosis, fibrosis), 96.2% and 88.2%; type VI (hemorrhage), 100% and 99.0%; type VII (calcification), 93% and 100%; and type VIII (fibrosis without lipid core), 100% and 99.1%, respectively. Isointensity, which indicates lipid composition on histopathology, was detected on MRI in 48.8% of calcified plaques. Agreement between MRI and histopathology for plaque classification was 0.86 (p < 0.001). Ex vivo high-resolution multicontrast-weighted MRI can accurately classify advanced atherosclerotic plaques in human coronary arteries.

  2. Diffusion-weighted and T2-weighted MR imaging for colorectal liver metastases detection in a rat model at 7 T: a comparative study using histological examination as reference.

    PubMed

    Wagner, Mathilde; Maggiori, Léon; Ronot, Maxime; Paradis, Valérie; Vilgrain, Valérie; Panis, Yves; Van Beers, Bernard E

    2013-08-01

    To compare diffusion-weighted (DW) and T2-weighted MR imaging in detecting colorectal liver metastases in a rat model, using histological examination as a reference method. Eighteen rats had four liver injections of colon cancer cells. MR examinations at 7 T included FSE-T2-weighted imaging and SE-DW MR imaging (b = 0, 20 and 150 s/mm(2)) and were analysed by two independent readers. Histological examination was performed on 0.4-mm slices. McNemar's test was used to compare the sensitivities and the Wilcoxon matched pairs test to compare the average number of false-positives per rat. One hundred and sixty-six liver metastases were identified on histological examination. The sensitivity in detecting liver metastases was significantly higher on DW MR than on T2-weighted images (99/166 (60 %) (reader 1) and 92/166 (55 %) (reader 2) versus 77/166 (46 %), P ≤ 0.001), without an increase in false-positives per rat (P = 0.773/P = 0.850). After stratification according to metastasis diameter, DW MR imaging had a significantly higher sensitivity than T2-weighted imaging only for metastases with a diameter (0.6-1.2 mm) similar to that of the spatial resolution of MR imaging in the current study. This MR study with histological correlations shows the higher sensitivity of DW relative to T2-weighted imaging at 7 T for detecting liver metastases, especially small ones. • Diffusion weighted (DW) sequences are increasingly used in magnetic resonance imaging (MRI). • DW has higher sensitivity for liver metastases than T2-weighted imaging at 7 T. • This increase in sensitivity is especially marked for small liver metastasis detection. • This higher sensitivity is confirmed in an animal model with histological correlation. • DW imaging has the potential for earlier diagnosis of small liver metastases.

  3. MO-FG-CAMPUS-JeP2-02: Audiovisual Biofeedback Guided Respiratory-Gated MRI: An Investigation of Tumor Definition and Scan Time for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D; Pollock, S; Keall, P

    Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gatedmore » MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.« less

  4. Improve definition of titanium tandems in MR-guided high dose rate brachytherapy for cervical cancer using proton density weighted MRI

    PubMed Central

    2013-01-01

    Background For cervical cancer patients treated with MR-guided high dose rate brachytherapy, the accuracy of radiation delivery depends on accurate localization of both tumors and the applicator, e.g. tandem and ovoid. Standard T2-weighted (T2W) MRI has good tumor-tissue contrast. However, it suffers from poor uterus-tandem contrast, which makes the tandem delineation very challenging. In this study, we evaluated the possibility of using proton density weighted (PDW) MRI to improve the definition of titanium tandems. Methods Both T2W and PDW MRI images were obtained from each cervical cancer patient. Imaging parameters were kept the same between the T2W and PDW sequences for each patient except the echo time (90 ms for T2W and 5.5 ms for PDW) and the slice thickness (0.5 cm for T2W and 0.25 cm for PDW). Uterus-tandem contrast was calculated by the equation C = (Su-St)/Su, where Su and St represented the average signal in the uterus and the tandem, respectively. The diameter of the tandem was measured 1.5 cm away from the tip of the tandem. The tandem was segmented by the histogram thresholding technique. Results PDW MRI could significantly improve the uterus-tandem contrast compared to T2W MRI (0.42±0.24 for T2W MRI, 0.77±0.14 for PDW MRI, p=0.0002). The average difference between the measured and physical diameters of the tandem was reduced from 0.20±0.15 cm by using T2W MRI to 0.10±0.11 cm by using PDW MRI (p=0.0003). The tandem segmented from the PDW image looked more uniform and complete compared to that from the T2W image. Conclusions Compared to the standard T2W MRI, PDW MRI has better uterus-tandem contrast. The information provided by PDW MRI is complementary to those provided by T2W MRI. Therefore, we recommend adding PDW MRI to the simulation protocol to assist tandem delineation process for cervical cancer patients. PMID:23327682

  5. Regression and statistical shape model based substitute CT generation for MRI alone external beam radiation therapy from standard clinical MRI sequences.

    PubMed

    Ghose, Soumya; Greer, Peter B; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A

    2017-10-27

    In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean  ±  standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.

  6. Regression and statistical shape model based substitute CT generation for MRI alone external beam radiation therapy from standard clinical MRI sequences

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Greer, Peter B.; Sun, Jidi; Pichler, Peter; Rivest-Henault, David; Mitra, Jhimli; Richardson, Haylea; Wratten, Chris; Martin, Jarad; Arm, Jameen; Best, Leah; Dowling, Jason A.

    2017-11-01

    In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most ‘similar’ to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be 0.3%+/-0.9% (mean  ±  standard deviation) for 39 patients. The 3D Gamma pass rate was 99.8+/-0.00 (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.

  7. MRI findings in 6 cases of children by inadvertent ingestion of diphenoxylate-atropine.

    PubMed

    Xiao, Lianxiang; Lin, Xiangtao; Cao, Jinfeng; Wang, Xueyu; Wu, Lebin

    2011-09-01

    Compound diphenoxylate (diphenoxylate-atropine) poisoning can cause toxic encephalopathy in children, and magnetic resonance imaging (MRI) of the brain in this condition has not been reported. This study is to analyze brain MRI findings and to investigate the relations between MRI features and possible pathophysiological changes in children. Six children accidentally swallowed compound diphenoxylate, 4 males, 2 females, aged 20-46 months, average 33 months. Quantity of ingested diphenoxylate-atropine was from 6 to 30 tablets, each tablet contains diphenoxylate 2.5mg and atropine 0.025 mg. These patients were referred to our hospital within 24h after diphenoxylate-atropine ingestion, and underwent brain MRI scan within 24-72 h after emergency treatment. The characteristics of conventional MRI were analyzed. These pediatric patients had various symptoms of opioid intoxication and atropine toxicity. Brain MRI showed abnormal low signal intensity on T1-weighted images (T1WI) and abnormal high signal intensity on T2-weighted images (T2WI) and fluid-attenuated inversion recovery (FLAIR) imaging in bilateral in all cases; abnormal high signal intensity on T1WI, T2WI and FLAIR in 4 cases. Encephalomalacia was observed in 3 cases during follow-up. In the early stage of compound diphenoxylate poisoning in children, multiple extensive edema-necrosis and hemorrhagic-necrosis focus were observed in basic nucleus, pallium and cerebellum, these resulted in the corresponding brain dysfunction with encephalomalacia. MRI scan in the early stage in this condition may provide evidences of brain impairment, and is beneficial for the early diagnosis, treatment and prognosis assessment. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Topographic Diagnosis of Craniopharyngiomas: The Accuracy of MRI Findings Observed on Conventional T1 and T2 Images.

    PubMed

    Prieto, R; Pascual, J M; Barrios, L

    2017-11-01

    The topography of craniopharyngiomas has proved fundamental in predicting the involvement of vital brain structures and the possibility of achieving a safe radical resection. Beyond the imprecise term "suprasellar," indiscriminately used for craniopharyngiomas, an accurate definition of craniopharyngioma topography should be assessed by preoperative MR imaging. The objective of this study was to investigate the MRI findings that help define craniopharyngioma topography. This study retrospectively investigated a cohort of 200 surgically treated craniopharyngiomas with their corresponding preoperative midsagittal and coronal conventional T1- and T2-weighted MR images, along with detailed descriptions of the surgical findings. Radiologic variables related to the occupation of the tumor of intracranial compartments and the distortions of anatomic structures along the sella turcica-third ventricle axis were analyzed and correlated with the definitive craniopharyngioma topography observed during the surgical procedures. A predictive model for craniopharyngioma topography was generated by multivariate analysis. Five major craniopharyngioma topographies can be defined according to the degree of hypothalamic distortion caused by the tumor: sellar-suprasellar, pseudointraventricular, secondary intraventricular, not strictly intraventricular, and strictly intraventricular. Seven key radiologic variables identified on preoperative MRI allowed a correct overall prediction of craniopharyngioma topography in 86% of cases: 1) third ventricle occupation, 2) pituitary stalk distortion, 3) relative level of the hypothalamus in relation to the tumor, 4) chiasmatic cistern occupation, 5) mammillary body angle, 6) type of chiasm distortion, and 7) tumor shape. Systematic assessment of these 7 variables on conventional preoperative T1 and T2 MRI is a useful and reliable method to ascertain individual craniopharyngioma topography. © 2017 by American Journal of Neuroradiology.

  9. Assessment of normal perisellar anatomy in 1.5 T T2-weighted MRI and comparison with the anatomic criteria defining cavernous sinus invasion of pituitary adenomas.

    PubMed

    Knappe, U J; Jaursch-Hancke, C; Schönmayr, R; Lörcher, U

    2009-08-01

    The study aimed to evaluate the anatomical relations of sellar and perisellar structures with T2-weighted MRI and to apply criteria for cavernous sinus (CS) invasion by pituitary adenomas to normal sellar anatomy. Thin slice (3 mm) coronal T2-weighted MR-images (1.5 Tesla) were obtained in 117 individuals (234 CS) without pituitary disorders (58 females, 59 males; age 17 months to 87 years). In 99 cases data indicating the presence of arterial hypertension (AH) were available, 25 with AH, 74 without AH. The medial wall of the cavernous sinus was detectable in 33% of cases. The inferior rim of the horizontal part of the ICA was located at the level of the sellar floor in 33%, below in 47%, and above in 20%. The mean distance between the both ICAs was 17.8 mm (range, 7-38 mm). The mean distance between the pituitary and the ICA in AH was significantly shorter than in patients without AH (Chi-square, p=0.01). There was contact between the gland and the ICA in 41.5% of the cases. In 16.7% (39 sides) of all 234 SCs investigated, the area of contact between the ICA and the gland was at least 25% of the vessel's circumference. The medial intercarotid line (ICL) was crossed by the pituitary gland in 9% (21 of 234 CS), the central ICL was touched in another 5% (11 of 234 CS), lateral ICL was never reached. There was a weak correlation with age: a more extensive lateral extension of the gland was seen in individuals older than 40 years compared to younger individuals (Chi-square, p=0.03). There was a marked difference in the anatomical findings between both sides in 41.9% of cases. Inter- and intra-individual variations of the perisellar anatomy and its relation to the pituitary gland exist, which are partly related to age and AH. This must be remembered when the invasiveness of pituitary adenomas is assessed in MRI. Georg Thieme Verlag KG Stuttgart New York.

  10. Prostate cancer: role of pretreatment multiparametric 3-T MRI in predicting biochemical recurrence after radical prostatectomy.

    PubMed

    Park, Jung Jae; Kim, Chan Kyo; Park, Sung Yoon; Park, Byung Kwan; Lee, Hyun Moo; Cho, Seong Whi

    2014-05-01

    The purpose of this study is to retrospectively investigate whether pretreatment multiparametric MRI findings can predict biochemical recurrence in patients who underwent radical prostatectomy (RP) for localized prostate cancer. In this study, 282 patients with biopsy-proven prostate cancer who received RP underwent pretreatment MRI using a phased-array coil at 3 T, including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI (DCE-MRI). MRI variables included apparent tumor presence on combined imaging sequences, extracapsular extension, and tumor size on DWI or DCE-MRI. Clinical variables included baseline prostate-specific antigen (PSA) level, clinical stage, and Gleason score at biopsy. The relationship between clinical and imaging variables and biochemical recurrence was evaluated using Cox regression analysis. After a median follow-up of 26 months, biochemical recurrence developed in 61 patients (22%). Univariate analysis revealed that all the imaging and clinical variables were significantly associated with biochemical recurrence (p < 0.01). On multivariate analysis, however, baseline PSA level (p = 0.002), Gleason score at biopsy (p = 0.024), and apparent tumor presence on combined T2WI, DWI, and DCE-MRI (p = 0.047) were the only significant independent predictors of biochemical recurrence. Of the independent predictors, apparent tumor presence on combined T2WI, DWI, and DCE-MRI showed the highest hazard ratio (2.38) compared with baseline PSA level (hazard ratio, 1.05) and Gleason score at biopsy (hazard ratio, 1.34). The apparent tumor presence on combined T2WI, DWI, and DCE-MRI of pretreatment MRI is an independent predictor of biochemical recurrence after RP. This finding may be used to construct a predictive model for biochemical recurrence after surgery.

  11. Gas-induced susceptibility artefacts on diffusion-weighted MRI of the rectum at 1.5 T - Effect of applying a micro-enema to improve image quality.

    PubMed

    van Griethuysen, Joost J M; Bus, Elyse M; Hauptmann, Michael; Lahaye, Max J; Maas, Monique; Ter Beek, Leon C; Beets, Geerard L; Bakers, Frans C H; Beets-Tan, Regina G H; Lambregts, Doenja M J

    2018-02-01

    Assess whether application of a micro-enema can reduce gas-induced susceptibility artefacts in Single-shot Echo Planar Imaging (EPI) Diffusion-weighted imaging of the rectum at 1.5 T. Retrospective analysis of n = 50 rectal cancer patients who each underwent multiple DWI-MRIs (1.5 T) from 2012 to 2016 as part of routine follow-up during a watch-and-wait approach after chemoradiotherapy. From March 2014 DWI-MRIs were routinely acquired after application of a preparatory micro-enema (Microlax ® ; 5 ml; self-administered shortly before acquisition); before March 2014 no bowel preparation was given. In total, 335 scans were scored by an experienced reader for the presence/severity of gas-artefacts (on b1000 DWI), ranging from 0 (no artefact) to 5 (severe artefact). A score ≥3 (moderate-severe) was considered a clinically relevant artefact. A random sample of 100 scans was re-assessed by a second independent reader to study inter-observer effects. Scores were compared between the scans performed without and with a preparatory micro-enema using univariable and multivariable logistic regression taking into account potential confounding factors (age/gender, acquisition parameters, MRI-hardware, rectoscopy prior to MRI). Clinically relevant gas-artefacts were seen in 24.3% (no micro-enema) vs. 3.7% (micro-enema), odds ratios were 0.118 in univariable and 0.230 in multivariable regression (P = 0.0005 and 0.0291). Mean severity score (±SD) was 1.19 ± 1.71 (no-enema) vs 0.32 ± 0.77 (micro-enema), odds ratios were 0.321 (P < 0.0001) and 0.489 (P = 0.0461) in uni- and multivariable regression, respectively. Inter-observer agreement was excellent (κ0.85). Use of a preparatory micro-enema shortly before rectal EPI-DWI examinations performed at 1.5 T MRI significantly reduces both the incidence and severity of gas-induced artefacts, compared to examinations performed without bowel preparation. Copyright © 2017 Elsevier B.V. All rights

  12. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    PubMed

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the

  13. Fetal lung apparent diffusion coefficient measurement using diffusion-weighted MRI at 3 Tesla: Correlation with gestational age.

    PubMed

    Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K

    2016-12-01

    To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Incidental findings on MRI scans of patients presenting with audiovestibular symptoms.

    PubMed

    Papanikolaou, Vasileios; Khan, Mohammad H; Keogh, Ivan J

    2010-06-07

    The evaluation of patients presenting with audiovestibular symptoms usually includes MRI of the internal auditory meatus, the cerebellopontine angle and the brain. A significant percentage of these scans will present unexpected, incidental findings, which could have important clinical significance. To determine the frequency and clinical significance of incidental findings on MRI scans of patients with audiovestibular symptoms. A retrospective analysis of 200 serial MRI scans. Gender distribution: equal. Age range: 17-82 years. One-hundred and four scans (52%) were normal and 1 scan (0.5%) demonstrated a unilateral vestibular schwannoma. Ninety-five scans (47.5%) demonstrated incidental findings. Sixty-six of these (33%) were considered of ishaemic origin and did not require further action. Five (2.5%) scans demonstrated significant findings which warranted appropriate referral; Two Gliomas (1%), 2 cases of extensive White Matter Lesions (1%), 1 lipoma (0.5%). The remaining scans demonstrated various other findings. Investigation of patients with audiovestibular symptoms with MRI scans revealed incidental findings in a significant percentage (47.5%). The majority of these findings were benign warranting no further action and only 2.5% required further referral. It is the responsibility of the referring Otolaryngologist to be aware of these findings, to be able to assess their significance, to inform the patient and if needed to refer for further evaluation.

  15. Potential of fluid-attenuated inversion recovery (FLAIR) in identification of temporomandibular joint effusion compared with T2-weighted images.

    PubMed

    Imoto, Kenichi; Otonari-Yamamoto, Mika; Nishikawa, Keiichi; Sano, Tsukasa; Yamamoto, Aya

    2011-08-01

    The purpose of this study was to determine the potential of fluid-attenuated inversion recovery (FLAIR) sequence images in the identification of joint effusion (JE) compared with T2-weighted images. A total of 31 joints (28 patients) with JE were investigated by magnetic resonance imaging (MRI). Regions of interest were placed over JE, cerebrospinal fluid (CSF), and gray matter (GM) on T2-weighted and FLAIR images and their signal intensities compared. The signal intensity ratios (SIRs) of JE and CSF were calculated with GM as the reference point. The Pearson product-moment correlation coefficient was used for the statistical analysis. The SIR of JE showed a strong correlation between T2-weighted and FLAIR images. However, no correlation was observed for CSF. The average suppression ratio for JE was lower than that for CSF. MRI using FLAIR sequences revealed that JE was not just water content, but a fluid accumulation containing elements such as protein. Further studies are needed, and FLAIR sequences could be useful for the diagnosis of pain and symptoms of the temporomandibular joint (TMJ). Copyright © 2011 Mosby, Inc. All rights reserved.

  16. Role of MRI and added value of diffusion-weighted and gadolinium-enhanced MRI for the diagnosis of local recurrence from rectal cancer.

    PubMed

    Molinelli, Valeria; Angeretti, Maria Gloria; Duka, Ejona; Tarallo, Nicola; Bracchi, Elena; Novario, Raffaele; Fugazzola, Carlo

    2018-03-14

    To evaluate whether the addition of gadolinium-enhanced MRI and diffusion-weighted imaging (DWI) improves T2 sequence performance for the diagnosis of local recurrence (LR) from rectal cancer and to assess which approach is better at formulating this diagnosis among readers with different experience. Forty-three patients with suspected LR underwent pelvic MRI with T2 weighted (T2) sequences, gadolinium fat-suppressed T1 weighted sequences (post-contrast T1), and DWI sequences. Three readers (expert: G, intermediate: E, resident: V) scored the likelihood of LR on T2, T2 + post-contrast T1, T2 + DWI, and T2 + post-contrast T1 + DWI. In total, 18/43 patients had LR; on T2 images, the expert reader achieved an area under the ROC curve (AUC) of 0.916, sensitivity of 88.9%, and specificity of 76%; the intermediate reader achieved values of 0.890, 88.9%, and 48%, respectively, and the resident achieved values of 0.852, 88.9%, and 48%, respectively. DWI significantly improved the AUC value for the expert radiologist by up to 0.999 (p = 0.04), while post-contrast T1 significantly improved the AUC for the resident by up to 0.950 (p = 0.04). For the intermediate reader, both the T2 + DWI AUC and T2 + post-contrast T1 AUC were better than the T2 AUC (0.976 and 0.980, respectively), but with no statistically significant difference. No statistically significant difference was achieved by any of the three readers by comparing either the T2 + DWI AUCs to the T2 + post-contrast T1 AUCs or the AUCs of the two pairs of sequences to those of the combined three sequences. Furthermore, using the T2 sequences alone, all of the readers achieved a fair number of "equivocal" cases: they decreased with the addition of either DWI or post-contrast T1 sequences and, for the two less experienced readers, they decreased even more with the three combined sequences. Both DWI and T1 post-contrast MRI increased diagnostic performance for LR diagnosis compared to T2; however, no

  17. Black TiO2-based nanoprobes for T1-weighted MRI-guided photothermal therapy in CD133 high expressed pancreatic cancer stem-like cells.

    PubMed

    Wang, Siqi; Ren, Wenzhi; Wang, Jianhua; Jiang, Zhenqi; Saeed, Madiha; Zhang, Lili; Li, Aiguo; Wu, Aiguo

    2018-06-27

    At present, transmembrane glycoprotein CD133 highly expressed pancreatic cancer stem cells (PCSCs), with the features of chemotherapeutic/radiotherapeutic resistance and exclusive tumorigenic potential, are considered as the primary cause of metastasis and recurrence in pancreatic cancer, and therefore are an effective target in the disease treatment. Furthermore, with the launch of precision medicine, multifunctional nanoprobes have been applied as an efficient strategy for the magnetic resonance imaging (MRI)-guided photothermal therapy (PTT) of pancreatic cancer. In this research, with the aim of achieving precise MRI-guided PTT in CD133 highly expressed PCSCs, novel bTiO2-Gd-CD133mAb nanoprobes were designed and successfully prepared by loading Gd-DOTA and CD133 monoclonal antibodies on black TiO2 nanoparticles. It was very interesting to find that the r1 relaxivity value of the nanoprobes was 34.394 mM-1 s-1, about 7.5 times that of commercial Magnevist (4.5624 mM-1 s-1), which indicates that the nanoprobes have good potential as MRI T1 contrast agents with excellent performance. Herein, CD133 highly expressed PANC-1 cells were selected and verified as PCSCs model. In vitro experiments demonstrated that the nanoprobes exhibited active-targeting ability in PANC-1 cells, and consequently could specially enhance T1-weighted MR imaging and 808 nm near-infrared (NIR)-triggered PTT efficiency in the PCSCs model. Our study not only provides a new strategy for the effective treatment of pancreatic cancer and its' stem cells, but also further broadens the application of black TiO2 in the field of cancer theranostics.

  18. The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data.

    PubMed

    Puccio, Benjamin; Pooley, James P; Pellman, John S; Taverna, Elise C; Craddock, R Cameron

    2016-10-25

    Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.

  19. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    NASA Astrophysics Data System (ADS)

    Muzamil, Akhmad; Haries Firmansyah, Achmad

    2017-05-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information.

  20. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images - the difficulty of choosing.

    PubMed

    Lindig, Tobias; Kotikalapudi, Raviteja; Schweikardt, Daniel; Martin, Pascal; Bender, Friedemann; Klose, Uwe; Ernemann, Ulrike; Focke, Niels K; Bender, Benjamin

    2018-04-15

    Voxel-based morphometry is still mainly based on T1-weighted MRI scans. Misclassification of vessels and dura mater as gray matter has been previously reported. Goal of the present work was to evaluate the effect of multimodal segmentation methods available in SPM12, and their influence on identification of age related atrophy and lesion detection in epilepsy patients. 3D T1-, T2- and FLAIR-images of 77 healthy adults (mean age 35.8 years, 19-66 years, 45 females), 7 patients with malformation of cortical development (MCD) (mean age 28.1 years,19-40 years, 3 females), and 5 patients with left hippocampal sclerosis (LHS) (mean age 49.0 years, 25-67 years, 3 females) from a 3T scanner were evaluated. Segmentation based on T1-only, T1+T2, T1+FLAIR, T2+FLAIR, and T1+T2+FLAIR were compared in the healthy subjects. Clinical VBM results based on the different segmentation approaches for MCD and for LHS were compared. T1-only segmentation overestimated total intracranial volume by about 80ml compared to the other segmentation methods. This was due to misclassification of dura mater and vessels as GM and CSF. Significant differences were found for several anatomical regions: the occipital lobe, the basal ganglia/thalamus, the pre- and postcentral gyrus, the cerebellum, and the brainstem. None of the segmentation methods yielded completely satisfying results for the basal ganglia/thalamus and the brainstem. The best correlation with age could be found for the multimodal T1+T2+FLAIR segmentation. Highest T-scores for identification of LHS were found for T1+T2 segmentation, while highest T-scores for MCD were dependent on lesion and anatomical location. Multimodal segmentation is superior to T1-only segmentation and reduces the misclassification of dura mater and vessels as GM and CSF. Depending on the anatomical region and the pathology of interest (atrophy, lesion detection, etc.), different combinations of T1, T2 and FLAIR yield optimal results. Copyright © 2017 Elsevier

  1. Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place.

    PubMed

    Nöth, Ulrike; Laufs, Helmut; Stoermer, Robert; Deichmann, Ralf

    2012-03-01

    To describe heating effects to be expected in simultaneous electroencephalography (EEG) and magnetic resonance imaging (MRI) when deviating from the EEG manufacturer's instructions; to test which anatomical MRI sequences have a sufficiently low specific absorption rate (SAR) to be performed with the EEG equipment in place; and to suggest precautions to reduce the risk of heating. Heating was determined in vivo below eight EEG electrodes, using both head and body coil transmission and sequences covering the whole range of SAR values. Head transmit coil: temperature increases were below 2.2°C for low SAR sequences, but reached 4.6°C (one subject, clavicle) for high SAR sequences; the equilibrium temperature T(eq) remained below 39°C. Body transmit coil: temperature increases were higher and more frequent over subjects and electrodes, with values below 2.6°C for low SAR sequences, reaching 6.9°C for high SAR sequences (T8 electrode) with T(eq) exceeding a critical level of 40°C. Anatomical imaging should be based on T1-weighted sequences (FLASH, MPRAGE, MDEFT) with an SAR below values for functional MRI sequences based on gradient echo planar imaging. Anatomical sequences with a high SAR can pose a significant risk, which is reduced by using head coil transmission. Copyright © 2011 Wiley-Liss, Inc.

  2. T2-weighted high-intensity signals in the basal ganglia as an interesting image finding in Unverricht-Lundborg disease.

    PubMed

    Korja, Miikka; Ferlazzo, Edoardo; Soilu-Hänninen, Merja; Magaudda, Adriana; Marttila, Reijo; Genton, Pierre; Parkkola, Riitta

    2010-01-01

    We conducted a search for white matter changes (WMCs) in 13 Unverricht-Lundborg disease patients and compared the prevalence of WMCs in these patients to age-matched long-term epileptics and healthy controls. ULD patients had significantly more T2-weighted high-intensity signals on MRI than control subjects, due to the increased prevalence of these signals in the basal ganglia. Interestingly, ULD patients with the basal ganglia changes were overweight. Basal ganglia T2-weighted high-intensity signals are novel findings in ULD. 2009 Elsevier B.V. All rights reserved.

  3. Cortical pathology in multiple sclerosis detected by the T1/T2weighted ratio from routine magnetic resonance imaging

    PubMed Central

    Righart, Ruthger; Biberacher, Viola; Jonkman, Laura E.; Klaver, Roel; Schmidt, Paul; Buck, Dorothea; Berthele, Achim; Kirschke, Jan S.; Zimmer, Claus; Hemmer, Bernhard; Geurts, Jeroen J. G.

    2017-01-01

    Objective In multiple sclerosis, neuropathological studies have shown widespread changes in the cerebral cortex. In vivo imaging is critical, because the histopathological substrate of most measurements is unknown. Methods Using a novel magnetic resonance imaging analysis technique, based on the ratio of T1‐ and T2weighted signal intensities, we studied the cerebral cortex of a large cohort of patients in early stages of multiple sclerosis. A total of 168 patients with clinically isolated syndrome or relapsing–remitting multiple sclerosis (Expanded Disability Status Scale: median = 1, range = 0–3.5) and 80 age‐ and sex‐matched healthy controls were investigated. We also searched for the histopathological substrate of the T1/T2weighted ratio by combining postmortem imaging and histopathology in 9 multiple sclerosis brain donors. Results Patients showed lower T1/T2weighted ratio values in parietal and occipital areas. The 4 most significant clusters appeared in the medial occipital and posterior cingulate cortex (each left and right). The decrease of the T1/T2weighted ratio in the posterior cingulate was related to performance in attention. Analysis of the T1/T2weighted ratio values of postmortem imaging yielded a strong correlation with dendrite density but none of the other parameters including myelin. Interpretation The T1/T2weighted ratio decreases in early stages of multiple sclerosis in a widespread manner, with a preponderance of posterior areas and with a contribution to attentional performance; it seems to reflect dendrite pathology. As the method is broadly available and applicable to available clinical scans, we believe that it is a promising candidate for studying and monitoring cortical pathology or therapeutic effects in multiple sclerosis. Ann Neurol 2017;82:519–529 PMID:28833433

  4. Clinical safety of the ProMRI pacemaker system in patients subjected to head and lower lumbar 1.5-T magnetic resonance imaging scanning conditions.

    PubMed

    Bailey, William M; Rosenthal, Lawrence; Fananapazir, Lameh; Gleva, Marye; Mazur, Alexander; Rinaldi, C A; Kypta, Alexander; Merkely, Béla; Woodard, Pamela K

    2015-06-01

    Permanent cardiac pacemakers have historically been considered a contraindication to magnetic resonance imaging (MRI). The purpose of the ProMRI/ProMRI AFFIRM Study, which was a multicenter, prospective, single-arm, nonrandomized study, was to evaluate the clinical safety of the Biotronik ProMRI Pacemaker System under specific MRI conditions. The ProMRI Study (in the United States) and the ProMRI AFFIRM study (outside the United States) with identical design enrolled 272 patients with stable baseline pacing indices implanted with an Entovis or Evia pacemaker (DR-T or SR-T) and Setrox or Safio 53-cm or 60-cm lead. Device interrogation was performed at enrollment, pre-MRI and post-MRI scan, and 1 and 3 months post-MRI. End-points were (1) freedom from MRI- and pacing system-related serious adverse device effects (SADEs) through 1 month post-MRI, (2) freedom from atrial and ventricular MRI-induced pacing threshold increase (>0.5 V), and (3) freedom from P- and R-wave amplitude attenuation (<50%), or P wave <1.5 mV, or R wave <5.0 mV at 1 month post-MRI. Two hundred twenty-six patients completed the MRI and 1-month post-MRI follow-up. No adverse events related to the implanted system and the MRI procedure occurred, resulting in an SADE-free rate of 100.0% (229/229, P <.001). Freedom from atrial and ventricular pacing threshold increase was 99.0% (189/191, P = .003) and 100% (217/217, P <.001), respectively. Freedom from P- and R- wave amplitude attenuation was 99.4% (167/168, P <.001) and 99.5% (193/194, P <.001), respectively. The results of the ProMRI/ProMRI AFFIRM studies demonstrate the clinical safety and efficacy of the ProMRI pacemaker system in patients subjected to head and lower lumbar MRI conditions. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. SU-F-J-166: Volumetric Spatial Distortions Comparison for 1.5 Tesla Versus 3 Tesla MRI for Gamma Knife Radiosurgery Scans Using Frame Marker Fusion and Co-Registration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neyman, G

    Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less

  6. Use of diffusion-weighted MRI to modify radiosurgery planning in brain metastases may reduce local recurrence.

    PubMed

    Zakaria, Rasheed; Pomschar, Andreas; Jenkinson, Michael D; Tonn, Jörg-Christian; Belka, Claus; Ertl-Wagner, Birgit; Niyazi, Maximilian

    2017-02-01

    Stereotactic radiosurgery (SRS) is an effective and well tolerated treatment for selected brain metastases; however, local recurrence still occurs. We investigated the use of diffusion weighted MRI (DWI) as an adjunct for SRS treatment planning in brain metastases. Seventeen consecutive patients undergoing complete surgical resection of a solitary brain metastasis underwent image analysis retrospectively. SRS treatment plans were generated based on standard 3D post-contrast T1-weighted sequences at 1.5T and then separately using apparent diffusion coefficient (ADC) maps in a blinded fashion. Control scans immediately post operation confirmed complete tumour resection. Treatment plans were compared to one another and with volume of local recurrence at progression quantitatively and qualitatively by calculating the conformity index (CI), the overlapping volume as a proportion of the total combined volume, where 1 = identical plans and 0 = no conformation whatsoever. Gross tumour volumes (GTVs) using ADC and post-contrast T1-weighted sequences were quantitatively the same (related samples Wilcoxon signed rank test = -0.45, p = 0.653) but showed differing conformations (CI 0.53, p < 0.001). The diffusion treatment volume (DTV) obtained by combining the two target volumes was significantly greater than the treatment volume based on post contrast T1-weighted MRI alone, both quantitatively (median 13.65 vs. 9.52 cm 3 , related samples Wilcoxon signed rank test p < 0.001) and qualitatively (CI 0.74, p = 0.001). This DTV covered a greater volume of subsequent tumour recurrence than the standard plan (median 3.53 cm 3 vs. 3.84 cm 3 , p = 0.002). ADC maps may be a useful tool in addition to the standard post-contrast T1-weighted sequence used for SRS planning.

  7. MRI T2 Mapping of the Knee Articular Cartilage Using Different Acquisition Sequences and Calculation Methods at 1.5 Tesla.

    PubMed

    Mars, Mokhtar; Bouaziz, Mouna; Tbini, Zeineb; Ladeb, Fethi; Gharbi, Souha

    2018-06-12

    This study aims to determine how Magnetic Resonance Imaging (MRI) acquisition techniques and calculation methods affect T2 values of knee cartilage at 1.5 Tesla and to identify sequences that can be used for high-resolution T2 mapping in short scanning times. This study was performed on phantom and twenty-nine patients who underwent MRI of the knee joint at 1.5 Tesla. The protocol includes T2 mapping sequences based on Single Echo Spin Echo (SESE), Multi-Echo Spin Echo (MESE), Fast Spin Echo (FSE) and Turbo Gradient Spin Echo (TGSE). The T2 relaxation times were quantified and evaluated using three calculation methods (MapIt, Syngo Offline and monoexponential fit). Signal to Noise Ratios (SNR) were measured in all sequences. All statistical analyses were performed using the t-test. The average T2 values in phantom were 41.7 ± 13.8 ms for SESE, 43.2 ± 14.4 ms for MESE, 42.4 ± 14.1 ms for FSE and 44 ± 14.5 ms for TGSE. In the patient study, the mean differences were 6.5 ± 8.2 ms, 7.8 ± 7.6 ms and 8.4 ± 14.2 ms for MESE, FSE and TGSE compared to SESE respectively; these statistical results were not significantly different (p > 0.05). The comparison between the three calculation methods showed no significant difference (p > 0.05). t-Test showed no significant difference between SNR values for all sequences. T2 values depend not only on the sequence type but also on the calculation method. None of the sequences revealed significant differences compared to the SESE reference sequence. TGSE with its short scanning time can be used for high-resolution T2 mapping. ©2018The Author(s). Published by S. Karger AG, Basel.

  8. Estimation of the EEG power spectrum using MRI T(2) relaxation time in traumatic brain injury.

    PubMed

    Thatcher, R W; Biver, C; Gomez, J F; North, D; Curtin, R; Walker, R A; Salazar, A

    2001-09-01

    To study the relationship between magnetic resonance imaging (MRI) T(2) relaxation time and the power spectrum of the electroencephalogram (EEG) in long-term follow up of traumatic brain injury. Nineteen channel quantitative electroencephalograms or qEEG, tests of cognitive function and quantitative MRI T(2) relaxation times (qMRI) were measured in 18 mild to severe closed head injured outpatients 2 months to 4.6 years after injury and 11 normal controls. MRI T(2) and the Laplacian of T(2) were then correlated with the power spectrum of the scalp electrical potentials and current source densities of the qEEG. qEEG and qMRI T(2) were related by a frequency tuning with maxima in the alpha (8-12Hz) and the lower EEG frequencies (0.5-5Hz), which varied as a function of spatial location. The Laplacian of T(2) acted like a spatial-temporal "lens" by increasing the spatial-temporal resolution of correlation between 3-dimensional T(2) and the ear referenced alert but resting spontaneous qEEG. The severity of traumatic brain injury can be modeled by a linear transfer function that relates the molecular qMRI to qEEG resonant frequencies.

  9. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T.

    PubMed

    Morelli, John; Porter, David; Ai, Fei; Gerdes, Clint; Saettele, Megan; Feiweier, Thorsten; Padua, Abraham; Dix, James; Marra, Michael; Rangaswamy, Rajesh; Runge, Val

    2013-04-01

    Diffusion-weighted imaging (DWI) magnetic resonance imaging (MRI) is most commonly performed utilizing a single-shot echo-planar imaging technique (ss-EPI). Susceptibility artifact and image blur are severe when this sequence is utilized at 3 T. To evaluate a readout-segmented approach to DWI MR in comparison with single-shot echo planar imaging for brain MRI. Eleven healthy volunteers and 14 patients with acute and early subacute infarctions underwent DWI MR examinations at 1.5 and 3T with ss-EPI and readout-segmented echo-planar (rs-EPI) DWI at equal nominal spatial resolutions. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations were made, and two blinded readers ranked the scans in terms of high signal intensity bulk susceptibility artifact, spatial distortions, image blur, overall preference, and motion artifact. SNR and CNR were greatest with rs-EPI (8.1 ± 0.2 SNR vs. 6.0 ± 0.2; P <10(-4) at 3T). Spatial distortions were greater with single-shot (0.23 ± 0.03 at 3T; P <0.001) than with rs-EPI (0.12 ± 0.02 at 3T). Combined with blur and artifact reduction, this resulted in a qualitative preference for the readout-segmented scans overall. Substantial image quality improvements are possible with readout-segmented vs. single-shot EPI - the current clinical standard for DWI - regardless of field strength (1.5 or 3 T). This results in improved image quality secondary to greater real spatial resolution and reduced artifacts from susceptibility in MR imaging of the brain.

  10. High-resolution heavily T2-weighted magnetic resonance imaging for evaluation of the pituitary stalk in children with ectopic neurohypophysis.

    PubMed

    El Sanharawi, Imane; Tzarouchi, Loukia; Cardoen, Liesbeth; Martinerie, Laetitia; Leger, Juliane; Carel, Jean-Claude; Elmaleh-Berges, Monique; Alison, Marianne

    2017-05-01

    In anterior pituitary deficiency, patients with non visible pituitary stalk have more often multiple deficiencies and persistent deficiency than patients with visible pituitary stalk. To compare the diagnostic value of a high-resolution heavily T2-weighted sequence to 1.5-mm-thick unenhanced and contrast-enhanced sagittal T1-weighted sequences to assess the presence of the pituitary stalk in children with ectopic posterior pituitary gland. We retrospectively evaluated the MRI data of 14 children diagnosed with ectopic posterior pituitary gland between 2010 and 2014. We evaluated the presence of a pituitary stalk using a sagittal high-resolution heavily T2-weighted sequence and a 1.5-mm sagittal T1-weighted turbo spin-echo sequence before and after contrast medium administration. A pituitary stalk was present on at least one of the sequences in 10 of the 14 children (71%). T2-weighted sequence depicted the pituitary stalk in all 10 children, whereas the 1.5-mm-thick T1-weighted sequence depicted 2/10 (20%) before contrast injection and 8/10 (80%) after contrast injection (P=0.007). Compared with 1.5-mm-thick contrast-enhanced T1-weighted sequences, high-resolution heavily T2-weighted sequence demonstrates better sensitivity in detecting the pituitary stalk in children with ectopic posterior pituitary gland, suggesting that contrast injection is unnecessary to assess the presence of a pituitary stalk in this setting.

  11. Evaluation of renal quantitative T2* changes on MRI following administration of ferumoxytol as a T2* contrast agent.

    PubMed

    Hedgire, Sandeep S; McDermott, Shaunagh; Wojtkiewicz, Gregory R; Abtahi, Seyed Mahdi; Harisinghani, Mukesh; Gaglia, Jason L

    2014-01-01

    To evaluate the time-dependent changes in regional quantitative T2* maps of the kidney following intravenous administration of ferumoxytol. Twenty-four individuals with normal kidney function underwent T2*-weighted MRI of the kidney before, immediately after, and 48 hours after intravenous administration of ferumoxytol at a dose of 4 mg/kg (group A, n=12) or 6 mg/kg (group B, n=12). T2* values were statistically analyzed using two-tailed paired t-tests. In group A, the percentage changes from baseline to immediate post and baseline to 48 hours were 85.3% and 64.2% for the cortex and 90.8% and 64.6% for the medulla, respectively. In group B, the percentage changes from baseline to immediate post and baseline to 48 hours were 85.2% and 73.4% for the cortex and 94.5% and 74% for the medulla, respectively. This difference was significant for both groups (P<0.0001). There is significant and differential uptake of ferumoxytol in the cortex and medulla of physiologically normal kidneys. This differential uptake may offer the ability to interrogate renal cortex and medulla with possible clinical applications in medical renal disease and transplant organ assessment. We propose an organ of interest based dose titration of ferumoxytol to better differentiate circulating from intracellular ferumoxytol particles.

  12. Diagnostic value of T1-weighted gradient-echo in-phase images added to MRCP in differentiation of hepatolithiasis and intrahepatic pneumobilia.

    PubMed

    Erden, Ayşe; Haliloğlu, Nuray; Genç, Yasemin; Erden, Ilhan

    2014-01-01

    The purpose of this article is to determine the added diagnostic value of T1-weighted gradient-echo in-phase images obtained during MRCP in the detection and differentiation of hepatolithiasis and intrahepatic pneumobilia. Intrahepatic bile ducts in 47 patients were scored in terms of their possibility of containing biliary stone and air. MRI was performed with a 1-T system for 32 patients and with a 3-T system for 15 patients. Two radiologists independently reviewed two sets of MRI scans: set 1 included T2-weighted MRCP images, and set 2 included T2-weighted MRCP images plus T1-weighted gradient-echo in-phase images. The diagnostic performances of set 1 and set 2 in the evaluation of the bile ducts containing air or stone and bile ducts containing neither of them were analyzed using the area under the receiver operating characteristic curve (AUC) for clustered data. The sensitivities and specificities of both image sets to detect intrahepatic stone or air were also calculated and compared. For the diagnosis of hepatolithiasis, the AUC obtained from set 2 (0.983) was significantly higher than that obtained from set 1 (0.879; p = 0.037). For the diagnosis of pneumobilia, the AUC obtained from set 2 (0.965) was also significantly higher than that of set 1 (0.765; p = 0.002). With use of percutaneous transhepatic cholangiography, ERCP, and CT as the reference standards, the sensitivity of set 2 (97.1%; 95% CI, 91.1-100%) was significantly higher than that of set 1 (74.3%; 95% CI, 56.7-91.9%) in detecting intrahepatic stones (p = 0.011). For the detection of pneumobilia, the sensitivity of set 2 (98.5%; 95% CI, 95.4-100%) was also significantly higher than that of set 1 (70.8%; 95% CI, 57.7-83.3%; p = 0.000). The addition of T1-weighted gradient-echo in-phase images to standard MRCP sequences improves the detection and differentiation of hepatolithiasis and intrahepatic pneumobilia.

  13. MO-F-CAMPUS-J-05: Toward MRI-Only Radiotherapy: Novel Tissue Segmentation and Pseudo-CT Generation Techniques Based On T1 MRI Sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aouadi, S; McGarry, M; Hammoud, R

    Purpose: To develop and validate a 4 class tissue segmentation approach (air cavities, background, bone and soft-tissue) on T1 -weighted brain MRI and to create a pseudo-CT for MRI-only radiation therapy verification. Methods: Contrast-enhanced T1-weighted fast-spin-echo sequences (TR = 756ms, TE= 7.152ms), acquired on a 1.5T GE MRI-Simulator, are used.MRIs are firstly pre-processed to correct for non uniformity using the non parametric, non uniformity intensity normalization algorithm. Subsequently, a logarithmic inverse scaling log(1/image) is applied, prior to segmentation, to better differentiate bone and air from soft-tissues. Finally, the following method is enrolled to classify intensities into air cavities, background, bonemore » and soft-tissue:Thresholded region growing with seed points in image corners is applied to get a mask of Air+Bone+Background. The background is, afterward, separated by the scan-line filling algorithm. The air mask is extracted by morphological opening followed by a post-processing based on knowledge about air regions geometry. The remaining rough bone pre-segmentation is refined by applying 3D geodesic active contours; bone segmentation evolves by the sum of internal forces from contour geometry and external force derived from image gradient magnitude.Pseudo-CT is obtained by assigning −1000HU to air and background voxels, performing linear mapping of soft-tissue MR intensities in [-400HU, 200HU] and inverse linear mapping of bone MR intensities in [200HU, 1000HU]. Results: Three brain patients having registered MRI and CT are used for validation. CT intensities classification into 4 classes is performed by thresholding. Dice and misclassification errors are quantified. Correct classifications for soft-tissue, bone, and air are respectively 89.67%, 77.8%, and 64.5%. Dice indices are acceptable for bone (0.74) and soft-tissue (0.91) but low for air regions (0.48). Pseudo-CT produces DRRs with acceptable clinical visual

  14. Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI.

    PubMed

    Neubauer, Henning; Pabst, Thomas; Dick, Anke; Machann, Wolfram; Evangelista, Laura; Wirth, Clemens; Köstler, Herbert; Hahn, Dietbert; Beer, Meinrad

    2013-01-01

    Small-bowel MRI based on contrast-enhanced T1-weighted sequences has been challenged by diffusion-weighted imaging (DWI) for detection of inflammatory bowel lesions and complications in patients with Crohn disease. To evaluate free-breathing DWI, as compared to contrast-enhanced MRI, in children, adolescents and young adults with Crohn disease. This retrospective study included 33 children and young adults with Crohn disease ages 17 ± 3 years (mean ± standard deviation) and 27 matched controls who underwent small-bowel MRI with contrast-enhanced T1-weighted sequences and DWI at 1.5 T. The detectability of Crohn manifestations was determined. Concurrent colonoscopy as reference was available in two-thirds of the children with Crohn disease. DWI and contrast-enhanced MRI correctly identified 32 and 31 patients, respectively. All 22 small-bowel lesions and all Crohn complications were detected. False-positive findings (two on DWI, one on contrast-enhanced MRI), compared to colonoscopy, were a result of large-bowel lumen collapse. Inflammatory wall thickening was comparable on DWI and contrast-enhanced MRI. DWI was superior to contrast-enhanced MRI for detection of lesions in 27% of the assessed bowel segments and equal to contrast-enhanced MRI in 71% of segments. DWI facilitates fast, accurate and comprehensive workup in Crohn disease without the need for intravenous administration of contrast medium. Contrast-enhanced MRI is superior in terms of spatial resolution and multiplanar acquisition.

  15. [Multiparametric 3T MRI in the routine staging of prostate cancer].

    PubMed

    Largeron, J P; Galonnier, F; Védrine, N; Alfidja, A; Boyer, L; Pereira, B; Boiteux, J P; Kemeny, J L; Guy, L

    2014-03-01

    To analyse the detection ability of a multiparametric 3T MRI with phased-array coil in comparison with the pathological data provided by the prostatectomy specimens. Prospective study of 30 months, including 74 patients for whom a diagnosis of prostate cancer had been made on randomized prostate biopsies, and all eligible to a radical prostatectomy. They all underwent multiparametric 3T MRI with pelvic phased-array coil including T2-weighted imaging (T2W), dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) with an ADC mapping. Each gland was divided in octants. Three specific criteria have been sought (detection ability, capsular contact [CC] and extracapsular extension [ECE]), in comparison with the pathological data provided by the prostatectomy specimens. Five hundred and ninety-two octants were considered with 124 significant tumors (volume ≥ 0.1cm(3)). The general ability of tumor detection had a sensitivity, specificity, PPV and NPV respectively to 72.3%, 87.4%, 83.2% and 78.5%. The estimate of the CC and ECE had a high negative predictive power with specificities and VPN respectively to 96.4% and 95.4% for CC, and 97.5 and 97.7% for ECE. Multiparametric 3T MRI with pelvic phased-array coil appeared to be a reliable imaging technique in clinical and routine practice for the detection of localized prostate cancer. Estimation of the CC and millimeter ECE remains to be clarified, even if the negative predictive power for these parameters seems encouraging. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. T2 relaxation times of the glenohumeral joint at 3.0 T MRI in patients with and without primary and secondary osteoarthritis.

    PubMed

    Lee, So-Yeon; Park, Hee-Jin; Kwon, Heon-Ju; Kim, Mi Sung; Choi, Seon Hyeong; Choi, Yoon Jung; Kim, Eugene

    2015-11-01

    Quantitative magnetic resonance imaging (MRI) of cartilage has recently been applied to patients with osteoarthritis (OA). T2 mapping is a sensitive method of detecting changes in the chemical composition and structure of cartilage. To establish baseline T2 values of glenohumeral joint cartilage at 3.0 T and compare T2 values among subjects with and without OA. The study involved 30 patients (18 women, 12 men; median age, 67 years; age range, 51-78 years) with primary (n = 7) and secondary OA (n = 23) in the glenohumeral joint and 34 subjects without OA (19 women, 15 men; median age, 49 years; age range, 23-63 years). All subjects were evaluated by radiography and 3.0 T MRI including a multi-echo T2-weighted spin echo pulse sequence. The T2 value of the cartilage was measured by manually drawing the region of interest on the T2 map. Per-zone comparison of T2 values was performed using Mann-Whitney U test. Median T2 values differed significantly between subjects without OA (36.00 ms [interquartile range, 33.89-37.31 ms]) and those with primary (37.52 ms [36.84-39.11], P = 0.028), but not secondary (36.87 ms [34.70-41.10], P = 0.160) OA. Glenohumeral cartilage T2 values were higher in different zones between patients with primary and secondary OA than in subjects without OA. These T2 values can be used for comparison to assess cartilage degeneration in patients with shoulder OA. Significant differences in T2 were observed among subjects without OA and those with primary and secondary OA. © The Foundation Acta Radiologica 2014.

  17. Prostate Postbrachytherapy Seed Distribution: Comparison of High-Resolution, Contrast-Enhanced, T1- and T2-Weighted Endorectal Magnetic Resonance Imaging Versus Computed Tomography: Initial Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, B. Nicolas; Department of Radiology, General Hospital Vienna, Medical University Vienna, Vienna; Lenkinski, Robert E.

    2007-09-01

    Purpose: To compare contrast-enhanced, T1-weighted, three-dimensional magnetic resonance imaging (CEMR) and T2-weighted magnetic resonance imaging (T2MR) with computed tomography (CT) for prostate brachytherapy seed location for dosimetric calculations. Methods and Materials: Postbrachytherapy prostate MRI was performed on a 1.5 Tesla unit with combined surface and endorectal coils in 13 patients. Both CEMR and T2MR used a section thickness of 3 mm. Spiral CT used a section thickness of 5 mm with a pitch factor of 1.5. All images were obtained in the transverse plane. Two readers using CT and MR imaging assessed brachytherapy seed distribution independently. The dependency of datamore » read by both readers for a specific subject was assessed with a linear mixed effects model. Results: The mean percentage ({+-} standard deviation) values of the readers for seed detection and location are presented. Of 1205 implanted seeds, CEMR, T2MR, and CT detected 91.5% {+-} 4.8%, 78.5% {+-} 8.5%, and 96.1% {+-} 2.3%, respectively, with 11.8% {+-} 4.5%, 8.5% {+-} 3.5%, 1.9% {+-} 1.0% extracapsular, respectively. Assignment to periprostatic structures was not possible with CT. Periprostatic seed assignments for CEMR and T2MR, respectively, were as follows: neurovascular bundle, 3.5% {+-} 1.6% and 2.1% {+-} 0.9%; seminal vesicles, 0.9% {+-} 1.8% and 0.3% {+-} 0.7%; periurethral, 7.1% {+-} 3.3% and 5.8% {+-} 2.9%; penile bulb, 0.6% {+-} 0.8% and 0.3% {+-} 0.6%; Denonvillier's Fascia/rectal wall, 0.5% {+-} 0.6% and 0%; and urinary bladder, 0.1% {+-} 0.3% and 0%. Data dependency analysis showed statistical significance for the type of imaging but not for reader identification. Conclusion: Both enumeration and localization of implanted seeds are readily accomplished with CEMR. Calculations with MRI dosimetry do not require CT data. Dose determinations to specific extracapsular sites can be obtained with MRI but not with CT.« less

  18. Association of cartilage degeneration with four year weight gain– 3T MRI data from the Osteoarthritis Initiative

    PubMed Central

    Bucknor, Matthew D.; Nardo, Lorenzo; Joseph, Gabby B.; Alizai, Hamza; Srikhum, Waraporn; Nevitt, Michael C.; Lynch, John A.; McCulloch, Charles E.; Link, Thomas M.

    2015-01-01

    Objective To determine the effect of weight gain on progression of early knee morphologic abnormalities using magnetic resonance imaging (MRI) in a longitudinal study over 48 months. Design We studied the right knee of 100 subjects from the Osteoarthritis Initiative, selecting subjects aged ≥ 45 with osteoarthritis risk factors who demonstrated weight gain (minimum 5% increase in body mass index, BMI, n=50) or no change in weight (BMI change < 2%, n=50), frequency matched for age, gender, and baseline BMI. Baseline and 48 month knee MRI studies were scored for lesions using a modified whole organ MRI score (WORMS). Logistic regression models were used to compare the differences between the two groups. Results The odds of worsening maximum cartilage (11.3, 95%, CI 3.5–51.4) and meniscal WORMS (4.5, 95% CI 1.4–17.3) were significantly greater in the weight gain group compared to the no change group, in addition to the odds of worsening cartilage defects at the patella and average meniscal WORMS (p<0.05). Odds of worsening average bone marrow edema pattern (BMEP) were significantly greater for the weight gain group compared to the no change cohort (p<0.05). Conclusion Our study demonstrated that weight gain is strongly associated with increased progression of cartilage degeneration in middle-aged individuals with risk factors for osteoarthritis. PMID:25591445

  19. No effects of MRI scan on male reproduction hormones.

    PubMed

    Møllerløkken, Ole J; Moen, Bente E; Baste, Valborg; Magerøy, Nils; Oftedal, Gunnhild; Neto, Emanuel; Ersland, Lars; Bjørge, Line; Torjesen, Peter A; Mild, Kjell Hansson

    2012-08-01

    Magnetic resonance imaging (MRI) is increasing around the world and the possible adverse effects on reproductive health of electromagnetic fields (EMFs) in MRI are not previously studied. A prospective randomized balanced cross-over study using a head scan in real MRI with whole-body transmitting coil and sham MRI among 24 healthy male volunteers was conducted. Serum-blood samples of inhibin B, testosterone, prolactine, thyreotropine, luteinizing hormone, follicle stimulating hormone, sex-hormone binding globuline and estradiol were taken before and after the different scans. Neither immediately after, nor after 11 days were there seen any differences in the hormone levels comparing real and sham MRI. The lack of effects of EMF on male reproductive hormones should be reassuring to the public and especially for men examined in MRI. Adverse effects on other endpoints than male reproduction or possible chronic effect of multiple MRI scans have not been investigated in this study. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Assessment of carotid stenosis using three-dimensional T2-weighted dark blood imaging: Initial experience.

    PubMed

    Mihai, Georgeta; Winner, Marshall W; Raman, Subha V; Rajagopalan, Sanjay; Simonetti, Orlando P; Chung, Yiu-Cho

    2012-02-01

    To evaluate the use of a T2-weighted SPACE sequence (T2w-SPACE) to assess carotid stenosis via several methods and compare its performance with contrast-enhanced magnetic resonance angiography (ceMRA). Fifteen patients with carotid atherosclerosis underwent dark blood (DB)-MRI using a 3D turbo spin echo with variable flip angles sequence (T2w-SPACE) and ceMRA. Images were coregistered and evaluated by two observers. Comparisons were made for luminal diameter, luminal area, degree of luminal stenosis (NASCET: North American Symptomatic Endarterectomy Trial; ECST: European Carotid Surgery Trial, and area stenosis), and vessel wall area. Degree of NASCET stenosis was clinically classified as mild (<50%), moderate (50%-69%), or severe (>69%). Excellent agreement was seen between ceMRA and T2w-SPACE and between observers for assessment of lumen diameter, lumen area, vessel wall area, and degree of NASCET stenosis (r > 0.80, P < 0.001). ECST stenosis was consistently higher than NASCET stenosis (48 ± 14% vs. 24 ± 22%, P < 0.001). Area stenosis (72 ± 2%) was significantly higher (P < 0.001) than both ESCT and NASCET stenosis. DB-MRI of carotid arteries using T2w-SPACE is clinically feasible. It provides accurate measurements of lumen size and degree of stenosis in comparison with ceMRA and offers a more reproducible measure of ECST stenosis than ceMRA. Copyright © 2011 Wiley Periodicals, Inc.

  1. Further exploration of MRI techniques for liver T1rho quantification.

    PubMed

    Zhao, Feng; Yuan, Jing; Deng, Min; Lu, Pu-Xuan; Ahuja, Anil T; Wang, Yi-Xiang J

    2013-12-01

    With biliary duct ligation and CCl4 induced rat liver fibrosis models, recent studies showed that MR T1rho imaging is able to detect liver fibrosis, and the degree of fibrosis is correlated with the degree of elevation of the T1rho measurements, suggesting liver T1rho quantification may play an important role for liver fibrosis early detection and grading. It has also been reported it is feasible to obtain consistent liver T1rho measurement for human subjects at 3 Tesla (3 T), and preliminary clinical data suggest liver T1rho is increased in patients with cirrhosis. In these previous studies, T1rho imaging was used with the rotary-echo spin-lock pulse for T1rho preparation, and number of signal averaging (NSA) was 2. Due to the presence of inhomogeneous B0 field, artifacts may occur in the acquired T1rho-weighted images. The method described by Dixon et al. (Magn Reson Med 1996;36:90-4), which is a hard RF pulse with 135° flip angle and same RF phase as the spin-locking RF pulse is inserted right before and after the spin-locking RF pulse, has been proposed to reduce sensitivity to B0 field inhomogeneity in T1rho imaging. In this study, we compared the images scanned by rotary-echo spin-lock pulse method (sequence 1) and the pulse modified according to Dixon method (sequence 2). When the artifacts occurred in T1rho images, we repeated the same scan until satisfactory. We accepted images if artifact in liver was less than 10% of liver area by visual estimation. When NSA =2, the breath-holding duration for data acquisition of one slice scanning was 8 sec due to a delay time of 6,000 ms for magnetization restoration. If NSA =1, the duration was shortened to be 2 sec. In previous studies, manual region of interest (ROI) analysis of T1rho map was used. In this current study, histogram analysis was also applied to evaluate liver T1rho value on T1rho maps. MRI data acquisition was performed on a 3 T clinical scanner. There were 29 subjects with 61 examinations obtained

  2. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    PubMed

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  3. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images

    PubMed Central

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597

  4. A fast screening protocol for carotid plaques imaging using 3D multi-contrast MRI without contrast agent.

    PubMed

    Zhang, Na; Zhang, Lei; Yang, Qi; Pei, Anqi; Tong, Xiaoxin; Chung, Yiu-Cho; Liu, Xin

    2017-06-01

    To implement a fast (~15min) MRI protocol for carotid plaque screening using 3D multi-contrast MRI sequences without contrast agent on a 3Tesla MRI scanner. 7 healthy volunteers and 25 patients with clinically confirmed transient ischemic attack or suspected cerebrovascular ischemia were included in this study. The proposed protocol, including 3D T1-weighted and T2-weighted SPACE (variable-flip-angle 3D turbo spin echo), and T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) was performed first and was followed by 2D T1-weighted and T2-weighted turbo spin echo, and post-contrast T1-weighted SPACE sequences. Image quality, number of plaques, and vessel wall thicknesses measured at the intersection of the plaques were evaluated and compared between sequences. Average examination time of the proposed protocol was 14.6min. The average image quality scores of 3D T1-weighted, T2-weighted SPACE, and T1-weighted magnetization prepared rapid acquisition gradient echo were 3.69, 3.75, and 3.48, respectively. There was no significant difference in detecting the number of plaques and vulnerable plaques using pre-contrast 3D images with or without post-contrast T1-weighted SPACE. The 3D SPACE and 2D turbo spin echo sequences had excellent agreement (R=0.96 for T1-weighted and 0.98 for T2-weighted, p<0.001) regarding vessel wall thickness measurements. The proposed protocol demonstrated the feasibility of attaining carotid plaque screening within a 15-minute scan, which provided sufficient anatomical coverage and critical diagnostic information. This protocol offers the potential for rapid and reliable screening for carotid plaques without contrast agent. Copyright © 2016. Published by Elsevier Inc.

  5. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects

    NASA Astrophysics Data System (ADS)

    Yang, Lijiao; Zhou, Zijian; Liu, Hanyu; Wu, Changqiang; Zhang, Hui; Huang, Guoming; Ai, Hua; Gao, Jinhao

    2015-04-01

    Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM-1 s-1 with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver regions. This work may provide an insightful strategy to design MRI contrast agents with both positive and negative contrast abilities for biomedical applications.Magnetic resonance imaging (MRI) contrast agents with both positive (T1) and negative (T2) contrast abilities are needed in clinical diagnosis for fault-free accurate detection of lesions. We report a facile synthesis of europium-engineered iron oxide (EuIO) nanocubes as T1 and T2 contrast agents for MRI in living subjects. The Eu(iii) oxide-embedded iron oxide nanoparticles significantly increase the T1 relaxivity with an enhanced positive contrast effect. EuIO nanocubes with 14 nm in diameter showed a high r1 value of 36.8 mM-1 s-1 with respect to total metal ions (Fe + Eu), which is about 3 times higher than that of Fe3O4 nanoparticles with similar size. Moreover, both r1 and r2 values of EuIO nanocubes can be tuned by varying their sizes and Eu doping ratios. After citrate coating, EuIO nanocubes can provide enhanced T1 and T2 contrast effects in small animals, particularly in the cardiac and liver

  6. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.

    PubMed

    Hannila, I; Nieminen, M T; Rauvala, E; Tervonen, O; Ojala, R

    2007-05-01

    To evaluate the detection and the size of focal patellar cartilage lesions in T2 mapping as compared to standard clinical magnetic resonance imaging (MRI) at 1.5T. Fifty-five consecutive clinical patients referred to knee MRI were imaged both with a standard knee MRI protocol (proton-density-weighted sagittal and axial series, T2-weighted sagittal and coronal series, and T1-weighted coronal series) and with an axial multislice multi-echo spin-echo measurement to determine the T2 relaxation time of the patellar cartilage. MR images and T2 maps of patellar cartilage were evaluated for focal lesions. The lesions were evaluated for lesion width (mm), lesion depth (1/3, 2/3, or 3/3 of cartilage thickness), and T2 value (20-40 ms, 40-60 ms, or 60-80 ms) based on visual evaluation. Altogether, 36 focal patellar cartilage lesions were detected from 20 human subjects (11 male, nine female, mean age 40+/-15 years). Twenty-eight lesions were detected both on MRI and T2 maps, while eight lesions were only visible on T2 maps. Cartilage lesions were significantly wider (P = 0.001) and thicker (P<0.001) on T2 maps as compared to standard knee MRI. Most lesions 27 had moderately (T2 40-60 ms) increased T2 values, while two lesions had slightly (T2 20-40 ms) and seven lesions remarkably (T2 60-80 ms) increased T2 relaxation times. T2 mapping of articular cartilage is feasible in the clinical setting and may reveal early cartilage lesions not visible with standard clinical MRI.

  7. Differentiation of benign and malignant lesions of the tongue by using diffusion-weighted MRI at 3.0 T.

    PubMed

    Li, S; Cheng, J; Zhang, Y; Zhang, Z

    2015-01-01

    Diffusion-weighted MRI (DWI) has been introduced in head and neck lesions and adds important information to the findings obtained through conventional MRI. The purpose of this study was to assess the role of DWI in differentiating benign and malignant lesions of the tongue at 3.0-T field strength imaging. 78 patients with 78 lingual lesions underwent conventional MRI and DWI with b-values of 0 and 1000 s mm(-2) before therapy. The apparent diffusion coefficient (ADC) maps were reconstructed, and the ADC values of the lingual lesions were calculated and compared between benign and malignant lesions of the tongue. The mean ADC values of the malignant tumours, benign solid lesions and cystic lesions were (1.08±0.16)×10(-3), (1.68±0.33)×10(-3) and (2.21±0.35)×10(-3) mm2 s(-1), respectively. The mean ADC values of malignant tumours were significantly lower (p<0.001) than those of benign solid lesions, and the mean ADC values of benign solid lesions were significantly lower (p<0.001) than those of cystic lesions. Receiver operating characteristic analysis showed that when an ADC value<.31×10(-3) mm2 s(-1) was used for predicting malignancy, the highest accuracy of 95.3%, sensitivity of 92.6% and specificity of 97.3% were obtained. ADC values of benign and malignant lesions are significantly different at 3.0-T imaging. DWI can be applied as a complementary tool in the differentiation of benign and malignant lesions of the tongue.

  8. 2D and 3D T2-weighted MR sequences for the assessment of neurovascular bundle changes after nerve-sparing radical retropubic prostatectomy with erectile function correlation.

    PubMed

    Panebianco, Valeria; Sciarra, Alessandro; Osimani, Marcello; Lisi, Danilo; Ciccariello, Mauro; Salciccia, Stefano; Gentile, Vincenzo; Di Silverio, Franco; Passariello, Roberto

    2009-01-01

    The aim of this study was to assess the capability of a 3D isotropic MRI T2-weighted sequence (3D T2 ISO) in the depiction of changes of neurovascular bundles (NVBs) after bilateral nerve-sparing radical retropubic prostatectomy (RRP). Furthermore, our aim was also to introduce a new MRI classification score of the NVB alteration patterns using the International Index Erectile Function Five-Item (IIEF-5) score as standard of reference. Fifty-three consecutive patients were postoperatively submitted to two MR examinations, including both 2D TSE T2-weighted (2D T2) and 3D T2 ISO sequences. Image findings were scored using a relative five-point classification and correlated with the postoperative IIEF-5 score. Radiologists attributed 13.2% of patients to class 0, 11.3% to class I, 34% to class II, 24.5% to class III, and 16.9% to class IV. With 3D T2 ISO images, the same radiologists determined 43.3% class 0, 32% class I, 11.4% class II, 7.5% class III, and 5.7% class IV. In all cases, the correlation and regression analysis between the 3D T2 ISO and IIEF-5 score resulted in higher coefficients values. The 3D sequence correlated most closely with patients' grading of erectile function.

  9. Urinary bladder cancer T-staging from T2-weighted MR images using an optimal biomarker approach

    NASA Astrophysics Data System (ADS)

    Wang, Chuang; Udupa, Jayaram K.; Tong, Yubing; Chen, Jerry; Venigalla, Sriram; Odhner, Dewey; Guzzo, Thomas J.; Christodouleas, John; Torigian, Drew A.

    2018-02-01

    Magnetic resonance imaging (MRI) is often used in clinical practice to stage patients with bladder cancer to help plan treatment. However, qualitative assessment of MR images is prone to inaccuracies, adversely affecting patient outcomes. In this paper, T2-weighted MR image-based quantitative features were extracted from the bladder wall in 65 patients with bladder cancer to classify them into two primary tumor (T) stage groups: group 1 - T stage < T2, with primary tumor locally confined to the bladder, and group 2 - T stage < T2, with primary tumor locally extending beyond the bladder. The bladder was divided into 8 sectors in the axial plane, where each sector has a corresponding reference standard T stage that is based on expert radiology qualitative MR image review and histopathologic results. The performance of the classification for correct assignment of T stage grouping was then evaluated at both the patient level and the sector level. Each bladder sector was divided into 3 shells (inner, middle, and outer), and 15,834 features including intensity features and texture features from local binary pattern and gray-level co-occurrence matrix were extracted from the 3 shells of each sector. An optimal feature set was selected from all features using an optimal biomarker approach. Nine optimal biomarker features were derived based on texture properties from the middle shell, with an area under the ROC curve of AUC value at the sector and patient level of 0.813 and 0.806, respectively.

  10. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol versus gadoteridol: A pilot study

    PubMed Central

    Gahramanov, Seymur; Raslan, Ahmed; Muldoon, Leslie L.; Hamilton, Bronwyn E.; Rooney, William D.; Varallyay, Csanad G.; Njus, Jeffrey M.; Haluska, Marianne; Neuwelt, Edward A.

    2010-01-01

    Purpose We evaluated dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI) using gadoteridol in comparison to the iron oxide nanoparticle blood pool agent, ferumoxytol in patients with glioblastoma multiforme (GBM) who received standard radiochemotherapy (RCT). Methods and Materials Fourteen patients with GBM received standard RCT and underwent 19 MRI sessions that included DSC-MRI acquisitions with gadoteridol on day 1 and ferumoxytol on day 2. Relative cerebral blood volume (rCBV) values were calculated from DSC data obtained from each contrast agent. T1-weighted acquisition post-gadoteridol administration was used to identify enhancing regions. Results In 7 MRI sessions of clinically presumptive active tumor, gadoteridol-DSC showed low rCBV in 3 and high rCBV in 4, while ferumoxytol-DSC showed high rCBV in all 7 sessions (p=0.002). After RCT, 7 MRI sessions showed increased gadoteridol contrast enhancement on T1-weighted scans coupled with low rCBV without significant differences between contrast agents (p=0.9). Based on post-gadoteridol T1-weighted scans, DSC-MRI, and clinical presentation four patterns of response to RCT were observed: 1) regression, 2) pseudoprogression, 3) true progression, and 4) mixed response. Conclusion We conclude that DSC-MRI with a blood-pool agent such as ferumoxytol may provide a better monitor of tumor rCBV than DSC-MRI with gadoteridol. Lesions demonstrating increased enhancement on T1-weighted MRI coupled with low ferumoxytol rCBV, are likely exhibiting pseudoprogression, while high rCBV with ferumoxytol is a better marker than gadoteridol for determining active tumor. These interesting pilot observations suggest that ferumoxytol may differentiate tumor progression from pseudoprogression, and warrant further investigation. PMID:20395065

  11. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker.

    PubMed

    van Rooden, Sanneke; Versluis, Maarten J; Liem, Michael K; Milles, Julien; Maier, Andrea B; Oleksik, Ania M; Webb, Andrew G; van Buchem, Mark A; van der Grond, Jeroen

    2014-01-01

    Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). T2*-weighted MRI was performed in 16 AD patients and 15 control subjects. All magnetic resonance images were scored qualitatively by visual assessment, and quantitatively by measuring phase shifts in the cortical gray matter and hippocampus. Statistical analysis was performed to assess differences between groups. Patients with AD demonstrated an increased phase shift in the cortex in the temporoparietal, frontal, and parietal regions (P < .005), and this was associated with individual Mini-Mental State Examination scores (r = -0.54, P < .05). Increased cortical phase shift in AD patients demonstrated on 7-tesla T2*-weighted MRI is a potential new biomarker for AD, which may reflect amyloid pathology in the early stages. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  12. Perfluorocarbons enhance a T2*-based MRI technique for identifying the penumbra in a rat model of acute ischemic stroke

    PubMed Central

    Deuchar, Graeme A; Brennan, David; Griffiths, Hugh; Macrae, I  Mhairi; Santosh, Celestine

    2013-01-01

    Accurate imaging of ischemic penumbra is crucial for improving the management of acute stroke patients. T2* magnetic resonance imaging (MRI) combined with a T2*oxygen challenge (T2*OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. Using 100% O2, T2*OC-defined penumbra exhibits ongoing glucose metabolism and tissue recovery on reperfusion. However, potential limitations in translating this technique include a sinus artefact in human scans with delivery of 100% OC and relatively small signal changes. Here we investigate whether an oxygen-carrying perfluorocarbon (PFC) emulsion can enhance the sensitivity of the technique, enabling penumbra detection with lower levels of inspired oxygen. Stroke was induced in male Sprague-Dawley rats (n=17) with ischemic injury and perfusion deficit determined by diffusion and perfusion MRI, respectively. T2* signal change was measured in regions of interest (ROIs) located within ischemic core, T2*OC-defined penumbra and equivalent contralateral areas during 40% O2±prior PFC injection. Region of interest analyses between groups showed that PFC significantly enhanced the T2* response to 40% O2 in T2*-defined penumbra (mean increase of 10.6±2.3% compared to 5.6±1.5% with 40% O2, P<0.001). This enhancement was specific to the penumbra ROI. Perfluorocarbon emulsions therefore enhances the translational potential of the T2*OC technique for identifying penumbra in acute stroke patients. PMID:23801243

  13. Diagnostic accuracy of 3T magnetic resonance imaging in the preoperative localisation of parathyroid adenomas: comparison with ultrasound and 99mTc-sestamibi scans.

    PubMed

    Argirò, Renato; Diacinti, Daniele; Sacconi, Beatrice; Iannarelli, Angelo; Diacinti, Davide; Cipriani, Cristiana; Pisani, Daniela; Romagnoli, Elisabetta; Biffoni, Marco; Di Gioia, Cira; Pepe, Jessica; Bezzi, Mario; Letizia, Claudio; Minisola, Salvatore; Catalano, Carlo

    2018-05-07

    To evaluate the diagnostic performance of 3TMRI in comparison with ultrasound (US) and 99mTc-sestamibi scan for presurgical localisation of parathyroid adenomas (PTAs) in patients with primary hyperparathyroidism (PHPT). Fifty-seven patients affected by PHPT were prospectively enrolled and underwent US, 99mTc-sestamibi and 3TMRI. T2-weighted and post-contrast T1-weighted Iterative decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) sequences were acquired. Diagnostic performance of US, 99mTc-sestamibi and MRI in localising PTAs to correct quadrant were compared according to surgical and pathological findings. According to surgical findings, US correctly localised 41/46 PTAs (sensitivity of 89.1%; specificity 97.5%; PPV 93.1% and NPV 95.6%); 99mTc-sestamibi correctly localised 38/46 PTAs (sensitivity 83.6%, specificity 98.3%, PPV 95% and NPV 93.7%). US and 99mTc-sestamibi combined had a sensitivity of 93.4% (43/46 PTAs), specificity of 98.3%, PPV 95% and NPV 98.3%. MRI correctly localised 45/46 PTAs (sensitivity 97.8%; specificity 97.5%; PPV 93.7% and NPV 99.2%). MRI was able to detect six adenomas missed by 99mTc-sestamibi and two adenomas missed by US. MRI and US were able to detect all enlarged parathyroid glands in patients with multiglandular disease. MRI identified six of seven ectopic adenomas. Our study demonstrated high diagnostic performance of 3T MRI in the preoperative PTAs quadrant localisation, as well as in patients with multiglandular disease and ectopic PTAs. MRI may be preferred to adequately select patient candidates for minimally invasive parathyroidectomy (MIP). • PTA(s) quadrant localisation by 3TMRI was more accurate than US+99mTc-sestamibi. • MRI identified all enlarged glands in multiglandular disease similarly to US. • MRI identified 6/7 ectopic PTAs similarly to 99mTc-sestamibi. • Presurgical PTA(s) localisation by 3TMRI select the optimal candidates for MIP.

  14. Diagnostic accuracy of automatic normalization of CBV in glioma grading using T1- weighted DCE-MRI.

    PubMed

    Sahoo, Prativa; Gupta, Rakesh K; Gupta, Pradeep K; Awasthi, Ashish; Pandey, Chandra M; Gupta, Mudit; Patir, Rana; Vaishya, Sandeep; Ahlawat, Sunita; Saha, Indrajit

    2017-12-01

    Aim of this retrospective study was to compare diagnostic accuracy of proposed automatic normalization method to quantify the relative cerebral blood volume (rCBV) with existing contra-lateral region of interest (ROI) based CBV normalization method for glioma grading using T1-weighted dynamic contrast enhanced MRI (DCE-MRI). Sixty patients with histologically confirmed gliomas were included in this study retrospectively. CBV maps were generated using T1-weighted DCE-MRI and are normalized by contralateral ROI based method (rCBV_contra), unaffected white matter (rCBV_WM) and unaffected gray matter (rCBV_GM), the latter two of these were generated automatically. An expert radiologist with >10years of experience in DCE-MRI and a non-expert with one year experience were used independently to measure rCBVs. Cutoff values for glioma grading were decided from ROC analysis. Agreement of histology with rCBV_WM, rCBV_GM and rCBV_contra respectively was studied using Kappa statistics and intra-class correlation coefficient (ICC). The diagnostic accuracy of glioma grading using the measured rCBV_contra by expert radiologist was found to be high (sensitivity=1.00, specificity=0.96, p<0.001) compared to the non-expert user (sensitivity=0.65, specificity=0.78, p<0.001). On the other hand, both the expert and non-expert user showed similar diagnostic accuracy for automatic rCBV_WM (sensitivity=0.89, specificity=0.87, p=0.001) and rCBV_GM (sensitivity=0.81, specificity=0.78, p=0.001) measures. Further, it was also observed that, contralateral based method by expert user showed highest agreement with histological grading of tumor (kappa=0.96, agreement 98.33%, p<0.001), however; automatic normalization method showed same percentage of agreement for both expert and non-expert user. rCBV_WM showed an agreement of 88.33% (kappa=0.76,p<0.001) with histopathological grading. It was inferred from this study that, in the absence of expert user, automated normalization of CBV using the

  15. Post-operative paediatric cerebellar mutism syndrome: time to move beyond structural MRI.

    PubMed

    Toescu, Sebastian M; Hettige, Samantha; Phipps, Kim; Smith, R J Paul; Haffenden, Verity; Clark, Chris; Hayward, Richard; Mankad, Kshitij; Aquilina, Kristian

    2018-06-20

    To determine the value of structural magnetic resonance imaging (MRI) in predicting post-operative paediatric cerebellar mutism syndrome (pCMS) in children undergoing surgical treatment for medulloblastoma. Retrospective cohort study design. Electronic/paper case note review of all children with medulloblastoma presenting to Great Ormond Street Hospital between 2003 and 2013. The diagnosis of pCMS was established through a scoring system incorporating mutism, ataxia, behavioural disturbance and cranial nerve deficits. MRI scans performed at three time points were assessed by neuroradiologists blinded to the diagnosis of pCMS. Of 56 children included, 12 (21.4%) developed pCMS as judged by a core symptom of mutism. pCMS was more common in those aged 5 or younger. There was no statistically significant difference in pre-operative distortion or signal change of the dentate or red nuclei or superior cerebellar peduncles (SCPs) between those who did and did not develop pCMS. In both early (median 5 days) and late (median 31 months) post-operative scans, T2-weighted signal change in SCPs was more common in the pCMS group (p = 0.040 and 0.046 respectively). Late scans also showed statistically significant signal change in the dentate nuclei (p = 0.024). The development of pCMS could not be linked to any observable changes on pre-operative structural MRI scans. Post-operative T2-weighted signal change in the SCPs and dentate nuclei underlines the role of cerebellar efferent injury in pCMS. Further research using advanced quantitative MRI sequences is warranted given the inability of conventional pre-surgical MRI to predict pCMS.

  16. Readout-segmented multi-shot diffusion-weighted MRI of the knee joint in patients with juvenile idiopathic arthritis.

    PubMed

    Sauer, Alexander; Li, Mengxia; Holl-Wieden, Annette; Pabst, Thomas; Neubauer, Henning

    2017-10-12

    Diffusion-weighted MRI has been proposed as a new technique for imaging synovitis without intravenous contrast application. We investigated diagnostic utility of multi-shot readout-segmented diffusion-weighted MRI (multi-shot DWI) for synovial imaging of the knee joint in patients with juvenile idiopathic arthritis (JIA). Thirty-two consecutive patients with confirmed or suspected JIA (21 girls, median age 13 years) underwent routine 1.5 T MRI with contrast-enhanced T1w imaging (contrast-enhanced MRI) and with multi-shot DWI (RESOLVE, b-values 0-50 and 800 s/mm 2 ). Contrast-enhanced MRI, representing the diagnostic standard, and diffusion-weighted images at b = 800 s/mm 2 were separately rated by three independent blinded readers at different levels of expertise for the presence and the degree of synovitis on a modified 5-item Likert scale along with the level of subjective diagnostic confidence. Fourteen (44%) patients had active synovitis and joint effusion, nine (28%) patients showed mild synovial enhancement not qualifying for arthritis and another nine (28%) patients had no synovial signal alterations on contrast-enhanced imaging. Ratings by the 1st reader on contrast-enhanced MRI and on DWI showed substantial agreement (κ = 0.74). Inter-observer-agreement was high for diagnosing, or ruling out, active arthritis of the knee joint on contrast-enhanced MRI and on DWI, showing full agreement between 1st and 2nd reader and disagreement in one case (3%) between 1st and 3rd reader. In contrast, ratings in cases of absent vs. little synovial inflammation were markedly inconsistent on DWI. Diagnostic confidence was lower on DWI, compared to contrast-enhanced imaging. Multi-shot DWI of the knee joint is feasible in routine imaging and reliably diagnoses, or rules out, active arthritis of the knee joint in paediatric patients without the need of gadolinium-based i.v. contrast injection. Possibly due to "T2w shine-through" artifacts, DWI does not reliably

  17. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.

    PubMed

    Qin, Jiang-Bo; Liu, Zhenyu; Zhang, Hui; Shen, Chen; Wang, Xiao-Chun; Tan, Yan; Wang, Shuo; Wu, Xiao-Feng; Tian, Jie

    2017-05-07

    BACKGROUND Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences - T2-Weighted-Imaging-FLAIR (FLAIR), T1-Weighted-Imaging-Contrast-Enhanced (T1-CE), and Apparent Diffusion Coefficient (ADC) map - in glioma grading, and to improve the power of glioma grading by combining features. MATERIAL AND METHODS Sixty-six patients with histopathologically proven gliomas underwent T2-FLAIR and T1WI-CE sequence scanning with some patients (n=63) also undergoing DWI scanning. A total of 114 radiomic features were derived with radiomic methods by using in-house software. All radiomic features were compared between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Features with significant statistical differences were selected for receiver operating characteristic (ROC) curve analysis. The relationships between significantly different radiomic features and glial fibrillary acidic protein (GFAP) expression were evaluated. RESULTS A total of 8 radiomic features from 3 MRI sequences displayed significant differences between LGGs and HGGs. FLAIR GLCM Cluster Shade, T1-CE GLCM Entropy, and ADC GLCM Homogeneity were the best features to use in differentiating LGGs and HGGs in each MRI sequence. The combined feature was best able to differentiate LGGs and HGGs, which improved the accuracy of glioma grading compared to the above features in each MRI sequence. A significant correlation was found between GFAP and T1-CE GLCM Entropy, as well as between GFAP and ADC GLCM Homogeneity. CONCLUSIONS The combined radiomic feature had the highest efficacy in distinguishing LGGs from HGGs.

  18. Whole Body MRI at 3T with Quantitative Diffusion Weighted Imaging and Contrast-Enhanced Sequences for the Characterization of Peripheral Lesions in Patients with Neurofibromatosis Type 2 and Schwannomatosis.

    PubMed

    Fayad, Laura M; Blakeley, Jaishri; Plotkin, Scott; Widemann, Brigitte; Jacobs, Michael A

    2013-01-01

    Purpose. WB-MRI is mainly used for tumor detection and surveillance. The purpose of this study is to establish the feasibility of WB-MRI at 3T for lesion characterization, with DWI/ADC-mapping and contrast-enhanced sequences, in patients with neurofibromatosis type 2 (NF-2) and schwannomatosis. Materials and Methods. At 3T, WB-MRI was performed in 11 subjects (10 NF-2 and 1 schwannomatosis) with STIR, T1, contrast-enhanced T1, and DWI/ADC mapping (b = 50, 400, 800 s/mm(2)). Two readers reviewed imaging for the presence and character of peripheral lesions. Lesion size and features (signal intensity, heterogeneity, enhancement characteristics, and ADC values) were recorded. Descriptive statistics were reported. Results. Twenty-three lesions were identified, with average size of 4.6 ± 2.8 cm. Lesions were characterized as tumors (21/23) or cysts (2/23) by contrast-enhancement properties (enhancement in tumors, no enhancement in cysts). On T1, tumors were homogeneously isointense (5/21) or hypointense (16/21); on STIR, tumors were hyperintense and homogeneous (10/21) or heterogeneous (11/21); on postcontrast T1, tumors enhanced homogeneously (14/21) or heterogeneously (7/21); on DWI, tumor ADC values were variable (range 0.8-2.7), suggesting variability in intrinsic tumor properties. Conclusion. WB-MRI with quantitative DWI and contrast-enhanced sequences at 3T is feasible and advances the utility of WB-MRI not only to include detection, but also to provide additional metrics for lesion characterization.

  19. Whole Body MRI at 3T with Quantitative Diffusion Weighted Imaging and Contrast-Enhanced Sequences for the Characterization of Peripheral Lesions in Patients with Neurofibromatosis Type 2 and Schwannomatosis

    PubMed Central

    Fayad, Laura M.; Blakeley, Jaishri; Plotkin, Scott; Widemann, Brigitte; Jacobs, Michael A.

    2013-01-01

    Purpose. WB-MRI is mainly used for tumor detection and surveillance. The purpose of this study is to establish the feasibility of WB-MRI at 3T for lesion characterization, with DWI/ADC-mapping and contrast-enhanced sequences, in patients with neurofibromatosis type 2 (NF-2) and schwannomatosis. Materials and Methods. At 3T, WB-MRI was performed in 11 subjects (10 NF-2 and 1 schwannomatosis) with STIR, T1, contrast-enhanced T1, and DWI/ADC mapping (b = 50, 400, 800 s/mm2). Two readers reviewed imaging for the presence and character of peripheral lesions. Lesion size and features (signal intensity, heterogeneity, enhancement characteristics, and ADC values) were recorded. Descriptive statistics were reported. Results. Twenty-three lesions were identified, with average size of 4.6 ± 2.8 cm. Lesions were characterized as tumors (21/23) or cysts (2/23) by contrast-enhancement properties (enhancement in tumors, no enhancement in cysts). On T1, tumors were homogeneously isointense (5/21) or hypointense (16/21); on STIR, tumors were hyperintense and homogeneous (10/21) or heterogeneous (11/21); on postcontrast T1, tumors enhanced homogeneously (14/21) or heterogeneously (7/21); on DWI, tumor ADC values were variable (range 0.8–2.7), suggesting variability in intrinsic tumor properties. Conclusion. WB-MRI with quantitative DWI and contrast-enhanced sequences at 3T is feasible and advances the utility of WB-MRI not only to include detection, but also to provide additional metrics for lesion characterization. PMID:24967287

  20. T2- and diffusion-weighted magnetic resonance imaging at 3T for the detection of prostate cancer with and without endorectal coil: An intraindividual comparison of image quality and diagnostic performance.

    PubMed

    Baur, Alexander D J; Daqqaq, Tareef; Wagner, Moritz; Maxeiner, Andreas; Huppertz, Alexander; Renz, Diane; Hamm, Bernd; Fischer, Thomas; Durmus, Tahir

    2016-06-01

    To intraindividually compare image quality and diagnostic performance of multiparametric MRI (mpMRI) at 3T for the detection of prostate cancer (PCa) using a pelvic phased-array coil (PAC) and a combined endorectal and pelvic phased-array coil (ERC-PAC). Forty-five patients were prospectively included and received mpMRI of the prostate using a PAC and an ERC-PAC during one imaging session. Two radiologists evaluated image quality and the most suspicious lesion according to the PI-RADS scoring system. Results of MRI-TRUS-fusion biopsy of the prostate served as reference standard. Patient comfort and acceptance were assessed using a standardized questionnaire. Overall image quality for T2WI was rated significantly better with an ERC-PAC compared to a PAC (p=0.0038). The weighted kappa for PI-RADS scores for T2WI and DWI with a PAC and an ERC-PAC was 0.70 and 0.73, respectively. For a PI-RADS sum score including T2WI and DWI the area under the curve with a PAC and an ERC-PAC were 0.95-0.99 and 0.93-0.97, respectively (p=0.1395). For T2WI and DWI performed at 3T index PCa lesion identification and evaluation did not differ significantly with both coil setups. Patients preferred MRI without an ERC. Therefore, the use of an ERC may be omitted in a prostate cancer detection setting. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. TH-A-BRF-04: Intra-Fraction Motion Characterization for Early Stage Rectal Cancer Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleijnen, J; Asselen, B; Burbach, M

    2014-06-15

    Purpose: To investigate the intra-fraction motion in patients with early stage rectal cancer using cine-MRI. Methods: Sixteen patient diagnosed with early stage rectal cancer underwent 1.5 T MR imaging prior to each treatment fraction of their short course radiotherapy (n=76). During each scan session, three 2D sagittal cine-MRIs were performed: at the beginning (Start), after 9:30 minutes (Mid), and after 18 minutes (End). Each cine-MRI has a duration of one minute at 2Hz temporal resolution, resulting in a total of 3:48 hours of cine-MRI. Additionally, standard T2-weighted (T2w) imaging was performed. Clinical target volume (CTV) an tumor (GTV) were delineatedmore » on the T2w scan and transferred to the first time-point of each cine-MRI scan. Within each cine-MRI, the first frame was registered to the remaining frames of the scan, using a non-rigid B-spline registration. To investigate potential drifts, a similar registration was performed between the first frame of the Start and End scans.To evaluate the motion, the distances by which the edge pixels of the delineations move in anterior-posterior (AP) and cranial-caudal (CC) direction, were determined using the deformation field of the registrations. The distance which incorporated 95% of these edge pixels (dist95%) was determined within each cine-MRI, and between Start- End scans, respectively. Results: Within a cine-MRI, we observed an average dist95% for the CTV of 1.3mm/1.5mm (SD=0.7mm/0.6mm) and for the GTV of 1.2mm/1.5mm (SD=0.8mm/0.9mm), in respectively AP/CC. For the CTV motion between the Start and End scan, an average dist95% of 5.5mm/5.3mm (SD=3.1mm/2.5mm) was found, in respectively AP/CC. For the GTV motion, an average dist95% of 3.6mm/3.9mm (SD=2.2mm/2.5mm) was found in AP/CC, respectively. Conclusion: Although intra-fraction motion within a one minute cine-MRI is limited, substantial intra-fraction motion was observed within the 18 minute time period between the Start and End cine-MRI.« less

  2. Standardization of Analysis Sets for Reporting Results from ADNI MRI Data

    PubMed Central

    Wyman, Bradley T.; Harvey, Danielle J.; Crawford, Karen; Bernstein, Matt A.; Carmichael, Owen; Cole, Patricia E.; Crane, Paul; DeCarli, Charles; Fox, Nick C.; Gunter, Jeffrey L.; Hill, Derek; Killiany, Ronald J.; Pachai, Chahin; Schwarz, Adam J.; Schuff, Norbert; Senjem, Matthew L.; Suhy, Joyce; Thompson, Paul M.; Weiner, Michael; Jack, Clifford R.

    2013-01-01

    The ADNI 3D T1-weighted MRI acquisitions provide a rich dataset for developing and testing analysis techniques for extracting structural endpoints. To promote greater rigor in analysis and meaningful comparison of different algorithms, the ADNI MRI Core has created standardized analysis sets of data comprising scans that met minimum quality control requirements. We encourage researchers to test and report their techniques against these data. Standard analysis sets of volumetric scans from ADNI-1 have been created, comprising: screening visits, 1 year completers (subjects who all have screening, 6 and 12 month scans), two year annual completers (screening, 1, and 2 year scans), two year completers (screening, 6 months, 1 year, 18 months (MCI only) and 2 years) and complete visits (screening, 6 months, 1 year, 18 months (MCI only), 2, and 3 year (normal and MCI only) scans). As the ADNI-GO/ADNI-2 data becomes available, updated standard analysis sets will be posted regularly. PMID:23110865

  3. Evaluating Mesorectal Lymph Nodes in Rectal Cancer Before and After Neoadjuvant Chemoradiation Using Thin-Section T2-Weighted Magnetic Resonance Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, Dow-Mu; Chau, Ian; Tait, Diana

    2008-06-01

    Purpose: To apply thin-section T2-weighted magnetic resoance imaging (MRI) to evaluate the number, size, distribution, and morphology of benign and malignant mesorectal lymph nodes before and after chemoradiation treatment compared with histopathologic findings. Methods and Materials: Twenty-five patients with poor-risk adenocarcinoma of the rectum treated with neoadjuvant chemoradiation were evaluated prospectively. Thin-section T2-weighted MR images obtained before and after chemoradiation treatment were independently reviewed in consensus by 2 expert radiologists to determine the tumor stage, nodal size, nodal distribution, and nodal stage. Total mesorectal excision surgery after chemoradiation allowed MR nodal stage to be compared with histopathology using {kappa} statistics.more » Nodal downstaging was compared using the Chi-square test. Results: Before chemoradiation, 152 mesorectal nodes were visible (mean, 6.2 mm; 100 benign, 52 malignant) and 4 of 52 malignant nodes were in contact with the mesorectal fascia. The nodal staging was 7/25 N0, 10/25 N1, and 7/25 N2. After chemoradiation, only 29 nodes (mean, 4.1 mm; 24 benign, 5 malignant) were visible, and none were in contact with the mesorectal fascia. Nodal downstaging was observed: 20/25 N0 and 5/25 N1 (p < 0.01, Chi-square test). There was good agreement between MRI and pathologic T-staging ({kappa} = 0.64) and N-staging ({kappa} = 0.65) after chemoradiation. Conclusions: Neoadjuvant chemoradiation treatment resulted in a decrease in size and number of malignant- and benign-appearing mesorectal nodes on MRI. Nodal downstaging and nodal regression from the mesorectal fascia were observed after treatment. MRI is a useful tool for assessing nodal response to neoadjuvant treatment.« less

  4. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-07

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.

  5. MRI in T staging of rectal cancer: How effective is it?

    PubMed Central

    Mulla, MG; Deb, R; Singh, R

    2010-01-01

    Background: Rectal cancer constitutes about one-third of all gastrointestinal (GI) tract tumors. Because of the high recurrence rates (30%) in rectal cancer, it is vitally important to accurately stage these tumours preoperatively so that appropriate surgical resection can be undertaken. MRI is the ideal technique for the preoperative staging of these tumours. Aim: To determine the accuracy of local T staging of rectal cancer with MRI, using histopathological staging as the gold. Materials and Methods: Forty consecutive patients admitted with rectal cancer over a period of 18 months were included in this retrospective study. MRI scans were performed prior to surgery in all patients, on 1.5T scanners. Two radiologists, with a special interest in gastrointestinal imaging reported all images. Two dedicated histopathologists reported the histology slides. The accuracy of preoperative local MRI T staging was assessed by comparison with postoperative histopathological staging. Results: There was agreement between MRI and histopathology (TNM) staging in 12 patients (30%). The sensitivity and specificity of MRI for T staging was 89% and 67% respectively. The circumferential resection margin (CRM) status was accurately staged in 94.1% of the patients. Conclusions: Preoperative staging with MRI is sensitive in identifying CRM involvement, which is the main factor affecting the outcome of surgery. PMID:20607023

  6. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    PubMed

    Iglesias, Juan Eugenio; Augustinack, Jean C; Nguyen, Khoa; Player, Christopher M; Player, Allison; Wright, Michelle; Roy, Nicole; Frosch, Matthew P; McKee, Ann C; Wald, Lawrence L; Fischl, Bruce; Van Leemput, Koen

    2015-07-15

    Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and

  7. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    PubMed

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  8. Diffusion-weighted MRI monitoring of pancreatic cancer response to radiofrequency heat-enhanced intratumor chemotherapy.

    PubMed

    Zhang, Tong; Zhang, Feng; Meng, Yanfeng; Wang, Han; Le, Thomas; Wei, Baojie; Lee, Donghoon; Willis, Patrick; Shen, Baozhong; Yang, Xiaoming

    2013-12-01

    The aim of this study was to evaluate the feasibility of using diffusion-weighted MRI to monitor the early response of pancreatic cancers to radiofrequency heat (RFH)-enhanced chemotherapy. Human pancreatic carcinoma cells (PANC-1) in different groups and 24 mice with pancreatic cancer xenografts in four groups were treated with phosphate-buffered saline (PBS) as a control, RFH at 42 °C, gemcitabine and gemcitabine plus RFH at 42 °C. One day before and 1, 7 and 14 days after treatment, diffusion-weighted MRI and T2 -weighted imaging were applied to monitor the apparent diffusion coefficients (ADCs) of tumors and tumor growth. MRI findings were correlated with the results of tumor apoptosis analysis. In the in vitro experiments, the quantitative viability assay showed lower relative cell viabilities for treatment with gemcitabine plus RFH at 42 °C relative to treatment with RFH only and gemcitabine only (37 ± 5% versus 65 ± 4% and 58 ± 8%, respectively, p < 0.05). In the in vivo experiments, the combination therapy resulted in smaller relative tumor volumes than RFH only and chemotherapy only (0.82 ± 0.17 versus 2.23 ± 0.90 and 1.64 ± 0.44, respectively, p = 0.003). In vivo, 14-T MRI demonstrated a remarkable decrease in ADCs at day 1 and increased ADCs at days 7 and 14 in the combination therapy group. The apoptosis index in the combination therapy group was significantly higher than those in the chemotherapy-only, RFH-only and PBS treatment groups (37 ± 6% versus 20 ± 5%, 8 ± 2% and 3 ± 1%, respectively, p < 0.05). This study confirms that it is feasible to use MRI to monitor RFH-enhanced chemotherapy in pancreatic cancers, which may present new options for the efficient treatment of pancreatic malignancies using MRI/RFH-integrated local chemotherapy. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Role of MRI T2-DRIVE in the assessment of pituitary stalk abnormalities without gadolinium in pituitary diseases.

    PubMed

    Godano, Elisabetta; Morana, Giovanni; Di Iorgi, Natascia; Pistorio, Angela; Allegri, Anna Elsa Maria; Napoli, Flavia; Gastaldi, Roberto; Calcagno, Annalisa; Patti, Giuseppa; Gallizia, Annalisa; Notarnicola, Sara; Giaccardi, Marta; Noli, Serena; Severino, Mariasavina; Tortora, Domenico; Rossi, Andrea; Maghnie, Mohamad

    2018-06-01

    To investigate the role of T2-DRIVE MRI sequence in the accurate measurement of pituitary stalk (PS) size and the identification of PS abnormalities in patients with hypothalamic-pituitary disorders without the use of gadolinium. This was a retrospective study conducted on 242 patients who underwent MRI due to pituitary dysfunction between 2006 and 2015. Among 135 eligible patients, 102 showed eutopic posterior pituitary (PP) gland and 33 showed 'ectopic' PP (EPP). Two readers independently measured the size of PS in patients with eutopic PP at the proximal, midpoint and distal levels on pre- and post-contrast T1-weighted as well as T2-DRIVE images; PS visibility was assessed on pre-contrast T1 and T2-DRIVE sequences in those with EPP. The length, height, width and volume of the anterior pituitary (AP), PP height and length and PP area were analyzed. Significant agreement between the two readers was obtained for T2-DRIVE PS measurements in patients with 'eutopic' PP; a significant difference was demonstrated between the intraclass correlation coefficient calculated on the T2-DRIVE and the T1-pre- and post-contrast sequences. The percentage of PS identified by T2-DRIVE in EPP patients was 72.7% compared to 30.3% of T1 pre-contrast sequences. A significant association was found between the visibility of PS on T2-DRIVE and the height of AP. T2-DRIVE sequence is extremely precise and reliable for the evaluation of PS size and the recognition of PS abnormalities; the use of gadolinium-based contrast media does not add significant information and may thus be avoided. © 2018 European Society of Endocrinology.

  10. Tumor segmentation of multi-echo MR T2-weighted images with morphological operators

    NASA Astrophysics Data System (ADS)

    Torres, W.; Martín-Landrove, M.; Paluszny, M.; Figueroa, G.; Padilla, G.

    2009-02-01

    In the present work an automatic brain tumor segmentation procedure based on mathematical morphology is proposed. The approach considers sequences of eight multi-echo MR T2-weighted images. The relaxation time T2 characterizes the relaxation of water protons in the brain tissue: white matter, gray matter, cerebrospinal fluid (CSF) or pathological tissue. Image data is initially regularized by the application of a log-convex filter in order to adjust its geometrical properties to those of noiseless data, which exhibits monotonously decreasing convex behavior. Finally the regularized data is analyzed by means of an 8-dimensional morphological eccentricity filter. In a first stage, the filter was used for the spatial homogenization of the tissues in the image, replacing each pixel by the most representative pixel within its structuring element, i.e. the one which exhibits the minimum total distance to all members in the structuring element. On the filtered images, the relaxation time T2 is estimated by means of least square regression algorithm and the histogram of T2 is determined. The T2 histogram was partitioned using the watershed morphological operator; relaxation time classes were established and used for tissue classification and segmentation of the image. The method was validated on 15 sets of MRI data with excellent results.

  11. Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes

    NASA Astrophysics Data System (ADS)

    Hu, Fengqin; Zhao, Yong Sheng

    2012-09-01

    Magnetic resonance imaging (MRI) yields high spatially resolved contrast with anatomical details for diagnosis, deeper penetration depth and rapid 3D scanning. To improve imaging sensitivity, adding contrast agents accelerates the relaxation rate of water molecules, thereby greatly increasing the contrast between specific issues or organs of interest. Currently, the majority of T1 contrast agents are paramagnetic molecular complexes, typically Gd(iii) chelates. Various nanoparticulate T1 and T1/T2 contrast agents have recently been investigated as novel agents possessing the advantages of both the T1 contrast effect and nanostructural characteristics. In this minireview, we describe the recent progress of these inorganic nanoparticle-based MRI contrast agents. Specifically, we mainly report on Gd and Mn-based inorganic nanoparticles and ultrasmall iron oxide/ferrite nanoparticles.

  12. Cardiac Iron Determines Cardiac T2*, T2, and T1 in the Gerbil Model of Iron Cardiomyopathy

    PubMed Central

    Wood, John C.; Otto-Duessel, Maya; Aguilar, Michelle; Nick, Hanspeter; Nelson, Marvin D.; Coates, Thomas D.; Pollack, Harvey; Moats, Rex

    2010-01-01

    Background Transfusional therapy for thalassemia major and sickle cell disease can lead to iron deposition and damage to the heart, liver, and endocrine organs. Iron causes the MRI parameters T1, T2, and T2* to shorten in these organs, which creates a potential mechanism for iron quantification. However, because of the danger and variability of cardiac biopsy, tissue validation of cardiac iron estimates by MRI has not been performed. In this study, we demonstrate that iron produces similar T1, T2, and T2* changes in the heart and liver using a gerbil iron-overload model. Methods and Results Twelve gerbils underwent iron dextran loading (200 mg · kg−1 · wk−1) from 2 to 14 weeks; 5 age-matched controls were studied as well. Animals had in vivo assessment of cardiac T2* and hepatic T2 and T2* and postmortem assessment of cardiac and hepatic T1 and T2. Relaxation measurements were performed in a clinical 1.5-T magnet and a 60-MHz nuclear magnetic resonance relaxometer. Cardiac and liver iron concentrations rose linearly with administered dose. Cardiac 1/T2*, 1/T2, and 1/T1 rose linearly with cardiac iron concentration. Liver 1/T2*, 1/T2, and 1/T1 also rose linearly, proportional to hepatic iron concentration. Liver and heart calibrations were similar on a dry-weight basis. Conclusions MRI measurements of cardiac T2 and T2* can be used to quantify cardiac iron. The similarity of liver and cardiac iron calibration curves in the gerbil suggests that extrapolation of human liver calibration curves to heart may be a rational approximation in humans. PMID:16027257

  13. Breast MRI at Very Short TE (minTE): Image Analysis of minTE Sequences on Non-Fat-Saturated, Subtracted T1-Weighted Images.

    PubMed

    Wenkel, Evelyn; Janka, Rolf; Geppert, Christian; Kaemmerer, Nadine; Hartmann, Arndt; Uder, Michael; Hammon, Matthias; Brand, Michael

    2017-02-01

    temporal resolution for a better in-flow curve.. · Dynamic breast MRI with a shorter TE time is possible without relevant loss of information.. · Possible decrease of the overall scan time.. Citation Format · Wenkel E, Janka R, Geppert C et al. Breast MRI at Very Short TE (minTE): Image Analysis of minTE Sequences on Non-Fat-Saturated, Subtracted T1-Weighted Images. Fortschr Röntgenstr 2017; 189: 137 - 145. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    PubMed

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  15. Serial brain MRI and ultrasound findings: relation to gestational age, bilirubin level, neonatal neurologic status and neurodevelopmental outcome in infants at risk of kernicterus.

    PubMed

    Gkoltsiou, Konstantina; Tzoufi, Meropi; Counsell, Serena; Rutherford, Mary; Cowan, Frances

    2008-12-01

    To describe cranial ultrasound (cUS) and magnetic resonance imaging (MRI) findings in neonates at risk of kernicterus, in relation to gestational age (GA), total serum bilirubin (TSB), age at imaging and neurodevelopmental outcome. Neonates with peak TSB > 400 micromol/L and/or signs of bilirubin encephalopathy. Review of neonatal data, cUS, preterm, term and later MRI scans and neurodevelopmental outcome. 11 infants were studied, two < 31, four 34-36 and five 37-40 weeks GA. TSB levels: 235-583 micromol/L (preterms); 423-720 micromol/L (terms). Neonatal neurological examination was abnormal in 8/10. cUS showed increased basal ganglia (BG) in 4/9 infants and white matter (WM) echogenicity, lenticulostriate vasculopathy (LSV) and caudothalamic hyperechogencity/cysts (GLCs) in 5/9 infants. MRI showed abnormal signal intensity (SI) in the globus pallidum (GP) in 1/2 preterm, 8/9 term and 9/11 later scans. Abnormal WM SI occurred in 2 preterm, 7 term and 10/11 later scans. Seven infants developed athetoid/dystonic cerebral palsy (CP) and 6 hearing loss (HL). Adverse outcome was associated with abnormal BG on cUS (3/4 CP, 4/4 HL), with high SI in GP (7/9 CP, 6/9 HL) on late T2-weighted MRI (all GA) and on T1/T2-weighted term MRI, mainly in term-born infants. WM abnormalities, GLCs and LSV did not correlate with outcome. Severe CP occurred with relatively low TSB levels in preterms but only at high levels in full-terms; HL was difficult to predict. Early scans did not reliably predict motor deficits whilst all children with CP had abnormal central grey matter on later scans. Abnormal WM was seen early suggesting primary involvement rather than change secondary to grey matter damage. Why characteristic central grey matter MRI features of kernicterus are not seen early remains unexplained.

  16. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed Central

    Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D’Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-01-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa. PMID:28725592

  17. Is contrast enhancement needed for diagnostic prostate MRI?

    PubMed

    Scialpi, Michele; Rondoni, Valeria; Aisa, Maria Cristina; Martorana, Eugenio; D'Andrea, Alfredo; Malaspina, Corrado Maria; Orlandi, Agostino; Galassi, Giorgio; Orlandi, Emanuele; Scialpi, Pietro; Dragone, Michele; Palladino, Diego; Simeone, Annalisa; Amenta, Michele; Bianchi, Giampaolo

    2017-06-01

    Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) provides clinical guidelines for multiparametric magnetic resonance imaging (mpMRI) [T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)] of prostate. However, DCE-MRI seems to show a limited contribution in prostate cancer (PCa) detection and management. In our experience, DCE-MRI, did not show significant change in diagnostic performance in addition to DWI and T2WI [biparametric MRI (bpMRI)] which represent the predominant sequences to detect suspected lesions in peripheral and transitional zone (TZ). In this article we reviewed the role of DCE-MRI also indicating the potential contribute of bpMRI approach (T2WI and DWI) and lesion volume evaluation in the diagnosis and management of suspected PCa.

  18. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla.

    PubMed

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2013-11-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.

  19. Patch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.

    Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel

  20. A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.

    PubMed

    Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan

    2017-08-08

    The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.

  1. The interplay of T1- and T2-relaxation on T1-weighted MRI of hMSCs induced by Gd-DOTA-peptides.

    PubMed

    Cao, Limin; Li, Binbin; Yi, Peiwei; Zhang, Hailu; Dai, Jianwu; Tan, Bo; Deng, Zongwu

    2014-04-01

    Three Gd-DOTA-peptide complexes with different peptide sequence are synthesized and used as T1 contrast agent to label human mesenchymal stem cells (hMSCs) for magnetic resonance imaging study. The peptides include a universal cell penetrating peptide TAT, a linear MSC-specific peptide EM7, and a cyclic MSC-specific peptide CC9. A significant difference in labeling efficacy is observed between the Gd-DOTA-peptides as well as a control Dotarem. All Gd-DOTA-peptides as well as Dotarem induce significant increase in T1 relaxation rate which is in favor of T1-weighted MR imaging. Gd-DOTA-CC9 yields the maximum labeling efficacy but poor T1 contrast enhancement. Gd-DOTA-EM7 yields the minimum labeling efficacy but better T1 contrast enhancement. Gd-DOTA-TAT yields a similar labeling efficacy as Gd-DOTA-CC9 and similar T1 contrast enhancement as Gd-DOTA-EM7. The underlying mechanism that governs T1 contrast enhancement effect is discussed. Our results suggest that T1 contrast enhancement induced by Gd-DOTA-peptides depends not only on the introduced cellular Gd content, but more importantly on the effect that Gd-DOTA-peptides exert on the T1-relaxation and T2-relaxation processes/rates. Both T1 and particularly T2 relaxation rate have to be taken into account to interpret T1 contrast enhancement. In addition, the interpretation has to be based on cellular instead of aqueous longitudinal and transverse relaxivities of Gd-DOTA-peptides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Is the Susceptibility Vessel Sign on 3-Tesla Magnetic Resonance T2*-Weighted Imaging a Useful Tool to Predict Recanalization in Intravenous Tissue Plasminogen Activator?

    PubMed

    Yamamoto, N; Satomi, J; Harada, M; Izumi, Y; Nagahiro, S; Kaji, R

    2016-09-01

    The aim of this study was to investigate the independent factors associated with the absence of recanalization approximately 24 h after intravenous administration of tissue-type plasminogen activator (IV TPA). The previous studies have been conducted using 1.5-Tesla (T) magnetic resonance imaging (MRI). We studied whether the characteristics of 3-T MRI findings were useful to predict outcome and recanalization after IV tPA. Patients with internal carotid artery (ICA) or middle cerebral artery (MCA) (horizontal portion, M1; Sylvian portion, M2) occlusion and treated by IV tPA were enrolled. We studied whether the presence of susceptibility vessel sign (SVS) at M1 and low clot burden score on T2*-weighted imaging (T2*-CBS) on 3-T MRI were associated with the absence of recanalization. A total of 49 patients were enrolled (27 men; mean age, 73.9 years). MR angiography obtained approximately 24 h after IV tPA revealed recanalization in 21 (42.9 %) patients. Independent factors associated with the absence of recanalization included ICA or proximal M1 occlusion (odds ratio, 69.6; 95 % confidence interval, 5.05-958.8, p = 0.002). In this study, an independent factor associated with the absence of recanalization may be proximal occlusion of the cerebral arteries rather than SVS in the MCA or low T2*-CBS on 3-T MRI.

  3. High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.

    PubMed

    Krämer, Martin; Reichenbach, Jürgen R

    2014-05-01

    We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. Copyright © 2014. Published by Elsevier GmbH.

  4. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors.

    PubMed

    Bergamino, M; Bonzano, L; Levrero, F; Mancardi, G L; Roccatagliata, L

    2014-09-01

    In the last few years, several imaging methods, such as magnetic resonance imaging (MRI) and computed tomography, have been used to investigate the degree of blood-brain barrier (BBB) permeability in patients with neurological diseases including multiple sclerosis, ischemic stroke, and brain tumors. One promising MRI method for assessing the BBB permeability of patients with neurological diseases in vivo is T1-weighted dynamic contrast-enhanced (DCE)-MRI. Here we review the technical issues involved in DCE-MRI in the study of human brain tumors. In the first part of this paper, theoretical models for the DCE-MRI analysis will be described, including the Toft-Kety models, the adiabatic approximation to the tissue homogeneity model and the two-compartment exchange model. These models can be used to estimate important kinetic parameters related to BBB permeability. In the second part of this paper, details of the data acquisition, issues related to the arterial input function, and procedures for DCE-MRI image analysis are illustrated. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Registration of T2-weighted and diffusion-weighted MR images of the prostate: comparison between manual and landmark-based methods

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Soylu, Fatma N.; Tomek, Mark; Sensakovic, William; Oto, Aytekin

    2012-02-01

    Quantitative analysis of multi-parametric magnetic resonance (MR) images of the prostate, including T2-weighted (T2w) and diffusion-weighted (DW) images, requires accurate image registration. We compared two registration methods between T2w and DW images. We collected pre-operative MR images of 124 prostate cancer patients (68 patients scanned with a GE scanner and 56 with Philips scanners). A landmark-based rigid registration was done based on six prostate landmarks in both T2w and DW images identified by a radiologist. Independently, a researcher manually registered the same images. A radiologist visually evaluated the registration results by using a 5-point ordinal scale of 1 (worst) to 5 (best). The Wilcoxon signed-rank test was used to determine whether the radiologist's ratings of the results of the two registration methods were significantly different. Results demonstrated that both methods were accurate: the average ratings were 4.2, 3.3, and 3.8 for GE, Philips, and all images, respectively, for the landmark-based method; and 4.6, 3.7, and 4.2, respectively, for the manual method. The manual registration results were more accurate than the landmark-based registration results (p < 0.0001 for GE, Philips, and all images). Therefore, the manual method produces more accurate registration between T2w and DW images than the landmark-based method.

  6. SU-G-JeP2-01: A New Approach for MR-Only Treatment Planning: Tissue Segmentation-Based Pseudo-CT Generation Using T1-Weighted MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Leszczynski, K; Lee, Y

    Purpose: To evaluate MR-only treatment planning for brain Stereotactic Ablative Radiotherapy (SABR) based on pseudo-CT (pCT) generation using one set of T1-weighted MRI. Methods: T1-weighted MR and CT images from 12 patients who were eligible for brain SABR were retrospectively acquired for this study. MR-based pCT was generated by using a newly in-house developed algorithm based on MR tissue segmentation and voxel-based electron density (ED) assignment (pCTv). pCTs using bulk density assignment (pCTb where bone and soft tissue were assigned 800HU and 0HU,respectively), and water density assignment (pCTw where all tissues were assigned 0HU) were generated for comparison of EDmore » assignment techniques. The pCTs were registered with CTs and contours of radiation targets and Organs-at-Risk (OARs) from clinical CT-based plans were copied to co-registered pCTs. Volumetric-Modulated-Arc-Therapy(VMAT) plans were independently created for pCTv and CT using the same optimization settings and a prescription (50Gy/10 fractions) to planning-target-volume (PTV) mean dose. pCTv-based plans and CT-based plans were compared with dosimetry parameters and monitor units (MUs). Beam fluence maps of CT-based plans were transferred to co-registered pCTs, and dose was recalculated on pCTs. Dose distribution agreement between pCTs and CT plans were quantified using Gamma analysis (2%/2mm, 1%/1mm with a 10% cut-off threshold) in axial, coronal and sagittal planes across PTV. Results: The average differences of PTV mean and maximum doses, and monitor units between independently created pCTv-based and CT-based plans were 0.5%, 1.5% and 1.1%, respectively. Gamma analysis of dose distributions of the pCTs and the CT calculated using the same fluence map resulted in average agreements of 92.6%/79.1%/52.6% with 1%/1mm criterion, and 98.7%/97.4%/71.5% with 2%/2mm criterion, for pCTv/CT, pCTb/CT and pCTw/CT, respectively. Conclusion: Plans produced on Voxel-based pCT is dosimetrically more

  7. Retrospective review of percutaneous synovial cyst ruptures: increased thickness of the T2 hypointense rim on post-rupture MRI may be associated with need for subsequent surgery.

    PubMed

    Kwan, Benjamin Y M; Salehi, Fateme; Jia, Sang; McGregor, Stuart; Duggal, Neil; Pelz, David; Sharma, Manas

    2017-08-01

    To analyze MRI characteristics of lumbar facet synovial cysts and distinguish those requiring subsequent surgical management for recurrence, after percutaneous synovial cyst rupture. Retrospective chart review conducted in patients undergoing percutaneous synovial cyst rupture between February 2012 and April 2015. Pre- and post-percutaneous rupture procedure MRI spine studies were serially reviewed. Synovial cyst sizes, T1 and T2 signal characteristics and changes therein, T2 hypointense (or 'dark rim') thickness and change, and changes in the complexity of cyst signals were compared. Operative notes for patients who underwent subsequent surgical removal of recurrent synovial cysts were reviewed. 24 patients received 41 percutaneous synovial cyst rupture procedures, with a technical success rate of 82.9%. There was a significant difference in the mean increased thickness of the T2 hypointense rim on the first post-rupture MRI scan (p=0.0411) between patients requiring subsequent surgery and those who did not. There was a significant difference in the average sizes of synovial cysts before the procedure (p=0.0483) in those requiring subsequent surgery and those who did not. Five complications were noted (12.2%), mostly involving leg pain or weakness. Of the nine patients who underwent subsequent surgery post-synovial cyst rupture, six of the surgeries had recorded difficulty pertaining to scarring and/or adherence of the cyst to dura. A larger increase in thickness of the T2 hypointense rim on the first post-rupture MRI scan and a larger synovial cyst size were associated with the need for subsequent surgical resection. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  9. 3 Tesla MRI of patients with a vagus nerve stimulator: initial experience using a T/R head coil under controlled conditions.

    PubMed

    Gorny, Krzysztof R; Bernstein, Matt A; Watson, Robert E

    2010-02-01

    To assess safety of clinical MRI of the head in patients with implanted model 100, 102, and 103 vagus nerve stimulation (VNS) Therapy Systems (Cyberonics, Inc., Houston, TX) in 3.0 Tesla MRI (GE Healthcare, Milwaukee, WI). The distributions of the radiofrequency B(1) (+)-field produced by the clinically used transmit/receive (T/R) head coil (Advanced Imaging Research Incorporated, Cleveland, OH) and body coil were measured in a head and shoulders phantom. These measurements were supplemented by temperature measurements on the lead tips and the implantable pulse generator (IPG) of the VNS devices in a head and torso phantom with the same two coils. Clinical 3T MRI head scans were then acquired under highly controlled conditions in a series of 17 patients implanted with VNS. Phantom studies showed only weak B(1) (+) fields at the location of the VNS IPG and leads for MRI scans using the T/R head coil. The MRI-related heating on a VNS scanned in vitro at 3T was also found to be minimal (0.4-0.8 degrees C at the leads, negligible at the IPG). The patient MRI examinations were completed successfully without any adverse incidents. No patient reported any heating, discomfort, or any other unusual sensation. Safe clinical MRI head scanning of patients with implanted VNS is shown to be feasible on a GE Signa Excite 3T MRI system using one specific T/R head coil. These results apply to this particular MRI system configuration. Extrapolation or generalization of these results to more general or less controlled imaging situations without supporting data of safety is highly discouraged.

  10. Investigation into the quantitative and qualitative characteristics of choroidal melanoma through magnetic resonance imaging and B-scan ultrasound

    PubMed Central

    Papayiannis, Vassilis; Tsaousis, Konstantinos T; Kouskouras, Constantinos A; Haritanti, Afroditi; Diakonis, Vasilios F; Tsinopoulos, Ioannis T

    2017-01-01

    Objective To investigate the homogeneity and vascularity of choroidal melanoma through magnetic resonance imaging (MRI) and brightness modulation (B-mode) ultrasound scan and their correlation with dimensions of tumor, as well as to measure the sensitivity of both modalities in retinal detachment (RD) detection. Materials and methods This retrospective chart review included patients diagnosed with choroidal melanoma. All these patients underwent MRI scans using T2-weighted (T2-WI) and T1-weighted (T1-WI) sequences, before and after an intravenous injection of paramagnetic contrast material. The patients were also examined using a B-mode ultrasound scan, and the results from both modalities were compared (tumor homogeneity, tumor height, tumor base diameter, and tumor vascularity). Results Forty-two patients (mean age=65.33±12.51 years) with choroidal melanoma were included in the study. Homogeneity was confirmed in 16 patients through ultrasound scan, in 19 patients through T1-WI sequence, in 21 patients through T2-WI sequence, and in 25 patients through T1-WI sequence + contrast (gadolinium). Patients with homogenous tumors presented with lower (P=0.0045) mean height than that of those with nonhomogenous tumors, whereas no statistically significant difference was found for base diameter measurements (P=0.056). Patients with tumors of high vascularity presented with greater mean height (P=0.000638) and greater mean base diameter compared with those with tumors of low vascularity (P=0.019543). RD was detected in 26 patients through T1-WI sequence, in 13 patients through T2-WI sequence, in 26 patients through T1-WI sequence + contrast, and in 32 patients through ultrasound scan, which proved to be the most sensitive modality. Conclusion The height of choroidal melanoma was positively correlated with tumor’s homogeneity. Melanomas of greater height were found to be less homogenous, due to increased degeneration and higher occurrence of intratumoral hemorrhage. In

  11. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    PubMed

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P < 0.001) and lateral ( P < 0.001) compartment of the knee and in the tibial cartilage of the medial compartment ( P < 0.001). Conclusion In this study, alterations of the cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  12. Geometric distortion correction in prostate diffusion-weighted MRI and its effect on quantitative apparent diffusion coefficient analysis.

    PubMed

    Nketiah, Gabriel; Selnaes, Kirsten M; Sandsmark, Elise; Teruel, Jose R; Krüger-Stokke, Brage; Bertilsson, Helena; Bathen, Tone F; Elschot, Mattijs

    2018-05-01

    To evaluate the effect of correction for B 0 inhomogeneity-induced geometric distortion in echo-planar diffusion-weighted imaging on quantitative apparent diffusion coefficient (ADC) analysis in multiparametric prostate MRI. Geometric distortion correction was performed in echo-planar diffusion-weighted images (b = 0, 50, 400, 800 s/mm 2 ) of 28 patients, using two b 0 scans with opposing phase-encoding polarities. Histology-matched tumor and healthy tissue volumes of interest delineated on T 2 -weighted images were mapped to the nondistortion-corrected and distortion-corrected data sets by resampling with and without spatial coregistration. The ADC values were calculated on the volume and voxel level. The effect of distortion correction on ADC quantification and tissue classification was evaluated using linear-mixed models and logistic regression, respectively. Without coregistration, the absolute differences in tumor ADC (range: 0.0002-0.189 mm 2 /s×10 -3 (volume level); 0.014-0.493 mm 2 /s×10 -3 (voxel level)) between the nondistortion-corrected and distortion-corrected were significantly associated (P < 0.05) with distortion distance (mean: 1.4 ± 1.3 mm; range: 0.3-5.3 mm). No significant associations were found upon coregistration; however, in patients with high rectal gas residue, distortion correction resulted in improved spatial representation and significantly better classification of healthy versus tumor voxels (P < 0.05). Geometric distortion correction in DWI could improve quantitative ADC analysis in multiparametric prostate MRI. Magn Reson Med 79:2524-2532, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Mn(II) based T1 and T2 potential MRI contrast agent appended with tryptamine: Recognition moiety for Aβ-plaques.

    PubMed

    Rastogi, Neeraj; Tyagi, Nidhi; Singh, Ovender; Hemanth Kumar, B S; Singh, Udai P; Ghosh, Kaushik; Roy, Raja

    2017-12-01

    We report the synthesis and characterization of manganese(II) complexes having pentadentate ligands L 1 (2,6-bis(1-(2-phenyl-2-(pyridin-2-yl)hydrazono)ethyl)pyridine), L 2 (methyl 2,6-bis((E)-1-(2-phenyl-2-(pyridin-2yl)hydrazono)ethyl)isonicotinate), L 3 (N-(2-(1H-indol-3-yl)ethyl)-2,6-bis((E)-1-(2-phenyl-2-(pyridin2yl)hydrazono)ethyl)isonicotiamide) and their application as dual contrast agents for simultaneous T 1 and T 2 weighted magnetic resonance imaging. Single crystal analysis of all the complexes [Mn II L 1 , Mn II L 2 and Mn II L 3 ] confirm the formation of novel seven-coordinate manganese complexes with an inner sphere water and perchlorate ion. The Magnetic Resonance Imaging (MRI) contrast agent [MnL 2 ] was further modified by incorporating tryptamine as a binding moiety specific to Amyloid Beta-fibrils (Aβ-fibrils) in Alzhiemer's disease (AD) and it's in vitro evaluation for specific binding with Aβ-fibrils indicated as a bio-marker of AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    PubMed

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  15. Glucose metabolism-weighted imaging with chemical exchange-sensitive MRI of 2-deoxyglucose (2DG) in brain: Sensitivity and biological sources.

    PubMed

    Jin, Tao; Mehrens, Hunter; Wang, Ping; Kim, Seong-Gi

    2016-12-01

    Recent proof-of-principle studies have demonstrated the feasibility of measuring the uptake and metabolism of non-labeled 2-deoxy-D-glucose (2DG) by a chemical exchange-sensitive spin-lock (CESL) MRI approach. In order to gain better understanding of this new approach, we performed dynamic in vivo CESL MRI on healthy rat brains with an intravenous injection of 2DG under various conditions at 9.4T. For three 2DG doses of 0.25, 0.5 and 1g/kg, we found that 2DG-CESL signals increased linearly with injection dose at the initial (<20min) but not the later period (>40min) suggesting time-dependent differential weightings of 2DG transport and metabolism. Remaining 2DG-CESL studies were performed with 0.25g/kg 2DG. Since a higher isoflurane level reduces glucose metabolism and increases blood flow, 2DG-CESL was measured under 0.5%, 1.5% and 2.2% isoflurane. The 2DG-CESL signal was reduced at higher isoflurane levels correlating well with the 2DG phosphorylation in the intracellular space. To detect regional heterogeneities of glucose metabolism, 2DG-CESL with 0.33×0.33×1.50mm 3 resolution was obtained, which indeed showed a higher response in the cortex compared to the corpus callosum. Lastly, unlike CESL MRI with the injection of non-transportable mannitol, the 2DG-CESL response decreased with an increased spin-lock pulse power confirming that 2DG-CESL is dominated by chemical exchange processes in the extravascular space. Taken together, our results showed that 2DG-CESL MRI signals mainly indicate glucose transport and metabolism and may be a useful biomarker for metabolic studies of normal and diseased brains. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M.; Fortunati, Valerio

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreousmore » humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1

  17. MRI for the detection of calcific features of vertebral haemangioma.

    PubMed

    Bender, Y Y; Böker, S M; Diederichs, G; Walter, T; Wagner, M; Fallenberg, E; Liebig, T; Rickert, M; Hamm, B; Makowski, M R

    2017-08-01

    To evaluate the diagnostic performance of susceptibility-weighted-magnetic-resonance imaging (SW-MRI) for the detection of vertebral haemangiomas (VHs) compared to T1/T2-weighted MRI sequences, radiographs, and computed tomography (CT). The study was approved by the local ethics review board. An SW-MRI sequence was added to the clinical spine imaging protocol. The image-based diagnosis of 56 VHs in 46 patients was established using T1/T2 MRI in combination with radiography/CT as the reference standard. VHs were assessed based on T1/T2-weighted MRI images alone and in combination with SW-MRI, while radiographs/CT images were excluded from the analysis. Fifty-one of 56 VHs could be identified on T1/T2 MRI images alone, if radiographs/CT images were excluded from analysis. In five cases (9.1%), additional radiographs/CT images were required for the imaging-based diagnosis. If T1/T2 and SW-MRI images were used in combination, all VHs could be diagnosed, without the need for radiography/CT. Size measurements revealed a close correlation between CT and SW-MRI (R 2 =0.94; p<0.05). This study demonstrates that SW-MRI enables reliable detection of the typical calcified features of VHs. This is of importance for routine MRI of the spine, as the use of additional CT/radiography can be minimized. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy

    PubMed Central

    Wang, Jiahui; Fan, Zheng; Vandenborne, Krista; Walter, Glenn; Shiloh-Malawsky, Yael; An, Hongyu; Kornegay, Joe N.; Styner, Martin A.

    2015-01-01

    Purpose Golden retriever muscular dystrophy (GRMD) is a widely used canine model of Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. In this paper, we propose a semi-automated system to quantify MRI biomarkers of GRMD. Methods Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles using two competing schemes: 1) standard, limited muscle range segmentation and 2) semi-automatic full muscle segmentation. We then performed pre-processing, including: intensity inhomogeneity correction, spatial registration of different image sequences, intensity calibration of T2-weighted (T2w) and T2-weighted fat suppressed (T2fs) images, and calculation of MRI biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI biomarkers of muscle volume and intensity statistics over MRI biomarker maps, and statistical image texture features. Results The muscle volume and the mean intensities in T2 value, fat, and water maps showed group differences between normal and GRMD dogs. For the statistical texture biomarkers, both the histogram and run-length matrix features showed obvious group differences between normal and GRMD dogs. The full muscle segmentation shows significantly less error and variability in the proposed biomarkers when compared to the standard, limited muscle range segmentation. Conclusion The experimental results demonstrated that this quantification tool can reliably quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying disease progression and measuring therapeutic effect in DMD patients. PMID:23299128

  19. The robustness of T2 value as a trabecular structural index at multiple spatial resolutions of 7 Tesla MRI.

    PubMed

    Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H

    2018-04-15

    To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Comparison of 7.0- and 3.0-T MRI and MRA in ischemic-type moyamoya disease: preliminary experience.

    PubMed

    Deng, Xiaofeng; Zhang, Zihao; Zhang, Yan; Zhang, Dong; Wang, Rong; Ye, Xun; Xu, Long; Wang, Bo; Wang, Kai; Zhao, Jizong

    2016-06-01

    OBJECT The authors compared the image quality and diagnostic sensitivity and specificity of 7.0-T and 3.0-T MRI and time-of-flight (TOF) MR angiography (MRA) in patients with moyamoya disease (MMD). METHODS MR images of 15 patients with ischemic-type MMD (8 males, 7 females; age 13-48 years) and 13 healthy controls (7 males, 6 females; age 19-28 years) who underwent both 7.0-T and 3.0-T MRI and MRA were studied retrospectively. The main intracranial arteries were assessed by using the modified Houkin's grading system (MRA score). Moyamoya vessels (MMVs) were evaluated by 2 grading systems: the MMV quality score and the MMV area score. Two diagnostic criteria for MMD were used: the T2 criteria, which used flow voids in the basal ganglion on T2-weighted images, and the TOF criteria, which used the high-intensity areas in the basal ganglion on source images from TOF MRA. All data were evaluated by 2 independent readers who were blinded to the strength field and presence or absence of MMD. Using conventional angiography as the gold standard, the sensitivity and specificity of 7.0-T and 3.0-T MRI/MRA in the diagnosis of MMD were calculated. The differences between 7.0-T and 3.0-T MRI and MRA were statistically compared. RESULTS No significant differences were observed between 7.0-T and 3.0-T MRA in MRA score (p = 0.317) or MRA grade (p = 0.317). There was a strong correlation between the Suzuki's stage and MRA grade in both 3.0-T (rs = 0.930; p < 0.001) and 7.0-T (rs = 0.966; p < 0.001) MRA. However, MMVs were visualized significantly better on 7.0-T than on 3.0-T MRA, suggested by both the MMV quality score (p = 0.001) and the MMV area score (p = 0.001). The correlation between the Suzuki's stage and the MMV area score was moderate in 3.0-T MRA (rs = 0.738; p = 0.002) and strong in 7.0-T MRA (rs = 0.908; p < 0.001). Moreover, 7.0-T MR images showed a greater capacity for detecting flow voids in the basal ganglion on both T2-weighted MR images (p < 0.001) and TOF source

  1. SU-E-QI-19: Evaluation of a Clinical 1.5T MRI for Prostate Cancer MRS Imaging Using a In Vivo Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X; Chen, L; Hensley, H

    2014-06-15

    Purpose: Magnetic resonance spectroscopic (MRS) imaging may provide important bio-markers to distinguish normal/cancerous prostate tissue. While MRS imaging requires a high uniform magnetic field, the ability of a clinical 1.5T MRI to achieve a comparable MRS signal is of interest for radiation treatment planning/assessment. This study is to evaluate the MRS imaging of a 1.5T clinical MRI for prostate cancers by comparing with a small animal 7T MRS scanner. Methods: A tumor model was developed by implanting LNCaP tumor cells in nude mice prostates. Tumor was monitored 3 weeks after implantation using MRI, and MRS imaging was performed on themore » tumor area when the tumor reached around 1cm in diameter. The 1.5T GE clinical MR scanner and the 7T Bruker small animal MR scanner were used for each mouse. MR spectrums acquired with these scanners were analyzed and compared. The signals of Choline and Citrate were considered. Results: The prostate tumor MR spectrum under the 1.5T clinical MRI showed a similar spectrum pattern to that acquired using the 7T animal MRI. The Choline signal (3.2ppm) is clear and there is no clear peak for Citrate (2.6ppm). However, the signal magnitude for Choline is not dominant compared to the background signal under 1.5T MRI. Typical cancerous prostate tissue MR spectrum with an increased Choline signal and a reduced Citrate signal was observed. In addition, signal variation is noticeable between repeated spectrum scans. The average of these scans showed a comparable and consistent spectrum to those under 7T MRI. Conclusion: The clinical 1.5T MRI is able to acquire a MR spectrum for prostate cancer comparable to those acquired using a dedicated 7T MRS scanner. However, to achieve a consistent and reliable spectrum, multiple repeated scans were necessary to get a statistical result and reduce the noise-induced artifact. This work was supported in part by the National Cancer Institute Grant R21 CA131979 and R01CA172638.« less

  2. Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients.

    PubMed

    Kaireit, Till F; Gutberlet, Marcel; Voskrebenzev, Andreas; Freise, Julia; Welte, Tobias; Hohlfeld, Jens M; Wacker, Frank; Vogel-Claussen, Jens

    2018-06-01

    Ventilation-weighted Fourier decomposition-MRI (FD-MRI) has matured as a reliable technique for quantitative measures of regional lung ventilation in recent years, but has yet not been validated in COPD patients. To compare regional fractional lung ventilation obtained by ventilation-weighted FD-MRI with dynamic fluorinated gas washout MRI ( 19 F-MRI) and lung function test parameters. Prospective study. Twenty-seven patients with chronic obstructive pulmonary disease (COPD, median age 61 [54-67] years) were included. For FD-MRI and for 19 F-MRI a spoiled gradient echo sequence was used at 1.5T. FD-MRI coronal slices were acquired in free breathing. Dynamic 19 F-MRI was performed after inhalation of 25-30 L of a mixture of 79% fluorinated gas (C 3 F 8 ) and 21% oxygen via a closed face mask tubing using a dedicated coil tuned to 59.9 MHz. 19 F washout times in numbers of breaths ( 19 F-n breaths ) as well as fractional ventilation maps for both methods (FD-FV, 19 F-FV) were calculated. Slices were matched using a landmark driven algorithm, and only corresponding slices with an overlap of >90% were coregistered for evaluation. The obtained parameters were correlated with each other using Spearman's correlation coefficient (r). FD-FV strongly correlated with 19 F-n breaths on a global (r = -0.72, P < 0.0001) as well as on a lobar level and with lung function test parameters (FD-FV vs. FEV1, r = 0.76, P < 0.0001). There was a small systematic overestimation of FD-FV compared to 19 F-FV (mean difference -0.03 (95% confidence interval [CI]: -0.097; -0.045). Regional ventilation-weighted Fourier decomposition-MRI is a promising noninvasive, radiation-free tool for quantification of regional ventilation in COPD patients. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1534-1541. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Composite iron oxide-Prussian blue nanoparticles for magnetically guided T1-weighted magnetic resonance imaging and photothermal therapy of tumors.

    PubMed

    Kale, Shraddha S; Burga, Rachel A; Sweeney, Elizabeth E; Zun, Zungho; Sze, Raymond W; Tuesca, Anthony; Subramony, J Anand; Fernandes, Rohan

    2017-01-01

    Theranostic nanoparticles offer the potential for mixing and matching disparate diagnostic and therapeutic functionalities within a single nanoparticle for the personalized treatment of diseases. In this article, we present composite iron oxide-gadolinium-containing Prussian blue nanoparticles (Fe 3 O 4 @GdPB) as a novel theranostic agent for T 1 -weighted magnetic resonance imaging (MRI) and photothermal therapy (PTT) of tumors. These particles combine the well-described properties and safety profiles of the constituent Fe 3 O 4 nanoparticles and gadolinium-containing Prussian blue nanoparticles. The Fe 3 O 4 @GdPB nanoparticles function both as effective MRI contrast agents and PTT agents as determined by characterizing studies performed in vitro and retain their properties in the presence of cells. Importantly, the Fe 3 O 4 @GdPB nanoparticles function as effective MRI contrast agents in vivo by increasing signal:noise ratios in T 1 -weighted scans of tumors and as effective PTT agents in vivo by decreasing tumor growth rates and increasing survival in an animal model of neuroblastoma. These findings demonstrate the potential of the Fe 3 O 4 @GdPB nanoparticles to function as effective theranostic agents.

  4. Composite iron oxide–Prussian blue nanoparticles for magnetically guided T1-weighted magnetic resonance imaging and photothermal therapy of tumors

    PubMed Central

    Kale, Shraddha S; Burga, Rachel A; Sweeney, Elizabeth E; Zun, Zungho; Sze, Raymond W; Tuesca, Anthony; Subramony, J Anand; Fernandes, Rohan

    2017-01-01

    Theranostic nanoparticles offer the potential for mixing and matching disparate diagnostic and therapeutic functionalities within a single nanoparticle for the personalized treatment of diseases. In this article, we present composite iron oxide-gadolinium-containing Prussian blue nanoparticles (Fe3O4@GdPB) as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy (PTT) of tumors. These particles combine the well-described properties and safety profiles of the constituent Fe3O4 nanoparticles and gadolinium-containing Prussian blue nanoparticles. The Fe3O4@GdPB nanoparticles function both as effective MRI contrast agents and PTT agents as determined by characterizing studies performed in vitro and retain their properties in the presence of cells. Importantly, the Fe3O4@GdPB nanoparticles function as effective MRI contrast agents in vivo by increasing signal:noise ratios in T1-weighted scans of tumors and as effective PTT agents in vivo by decreasing tumor growth rates and increasing survival in an animal model of neuroblastoma. These findings demonstrate the potential of the Fe3O4@GdPB nanoparticles to function as effective theranostic agents. PMID:28919744

  5. Clinical equivalence assessment of T2 synthesized pediatric brain magnetic resonance imaging.

    PubMed

    Kerleroux, Basile; Kober, Tobias; Hilbert, Tom; Serru, Maxence; Sirinelli, Dominique; Morel, Baptiste

    2018-05-04

    Automated synthetic magnetic resonance imaging (MRI) provides qualitative, weighted image contrasts as well as quantitative information from one scan and is well-suited for various applications such as analysis of white matter disorders. However, the synthesized contrasts have been poorly evaluated in pediatric applications. The purpose of this study was to compare the image quality of synthetic T2 to conventional turbo spin echo (TSE) T2 in pediatric brain MRI. This was a mono-center prospective study. Synthetic and conventional MRI acquisitions at 1.5 Tesla were performed for each patient during the same session using a prototype accelerated T2 mapping sequence package (TA synthetic =3:07min, TA conventional =2:33min). Image sets were blindly and randomly analyzed by pediatric neuro-radiologists. Global image quality, morphologic legibility of standard structures and artifacts were assessed using a 4-point Likert scale. Inter-observer kappa agreements were calculated. The capability of the synthesized contrasts and conventional TSE T2 to discern normal and pathologic cases was evaluated. Sixty patients were included. The overall diagnostic quality of the synthesized contrasts was non-inferior to conventional imaging scale (p=0.06). There was no significant difference in the legibility of normal and pathological anatomic structures of synthetized and conventional TSE T2 (all p > 0.05) as well as for artifacts except for phase encoding (p=0.008). Interobserver agreement was good to almost perfect (kappa between 0.66 and 1). T2 synthesized contrasts, which also provides quantitative T2 information that could be useful, could be suggested as an equivalent technique in pediatric neuro-imaging, compared to conventional TSE T2. Copyright © 2018. Published by Elsevier Masson SAS.

  6. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI.

    PubMed

    Williams, Rebecca J; McMahon, Katie L; Hocking, Julia; Reutens, David C

    2014-08-01

    To compare diffusion-weighted functional magnetic resonance imaging (DfMRI), a novel alternative to the blood oxygenation level-dependent (BOLD) contrast, in a functional MRI experiment. Nine participants viewed contrast reversing (7.5 Hz) black-and-white checkerboard stimuli using block and event-related paradigms. DfMRI (b = 1800 mm/s(2)) and BOLD sequences were acquired. Four parameters describing the observed signal were assessed: percent signal change, spatial extent of the activation, the Euclidean distance between peak voxel locations, and the time-to-peak of the best fitting impulse response for different paradigms and sequences. The BOLD conditions showed a higher percent signal change relative to DfMRI; however, event-related DfMRI showed the strongest group activation (t = 21.23, P < 0.0005). Activation was more diffuse and spatially closer to the BOLD response for DfMRI when the block design was used. DfMRIevent showed the shortest TTP (4.4 ± 0.88 sec). The hemodynamic contribution to DfMRI may increase with the use of block designs. © 2013 Wiley Periodicals, Inc.

  7. MRI micturating urethrography for improved urethral delineation in prostate radiotherapy planning: a case study

    NASA Astrophysics Data System (ADS)

    Rai, Robba; Sidhom, Mark; Lim, Karen; Ohanessian, Lucy; Liney, Gary P.

    2017-04-01

    Stereotactic ablative body radiotherapy is used in prostate cancer to deliver a high dose of radiation to the tumour over a small number of treatments. This involves the simulation of the patient using both CT and MRI. Current practice is to insert an indwelling catheter (IDC) during CT to assist with visualisation of the urethra and subsequently minimise dose to this highly critical structure. However, this procedure is invasive and has an associated risk of infection. This is a case study, which demonstrates our initial experience of using a real-time non-invasive MRI technique to replace the use of IDC for prostate cancer patients. The patient was scanned on a dedicated 3T MRI and was instructed to micturate in their own time whereupon a sagittal T2 weighted HASTE sequence was acquired every 5 s. This was subsequently followed by T2 weighted axial imaging at the level of mid prostate to provide improved urethral definition. Acquired images showed bladder voidance in real-time and an increase in signal intensity in the proximal urethra post voiding allowing for delineation of the urethra. The dimension and shape of the proximal urethra was well visualised and accumulation time of urine in the urethra was sufficient to enable optimum timing of the scanning technique. We have presented for the first time a micturating urethography technique using MRI, which has allowed us to visualise the urethra without contrast and with minimal invasiveness to the patient.

  8. Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study.

    PubMed

    Miyazaki, Keiko; Jerome, Neil P; Collins, David J; Orton, Matthew R; d'Arcy, James A; Wallace, Toni; Moreno, Lucas; Pearson, Andrew D J; Marshall, Lynley V; Carceller, Fernando; Leach, Martin O; Zacharoulis, Stergios; Koh, Dow-Mu

    2015-09-01

    The objectives are to examine the reproducibility of functional MR imaging in children with solid tumours using quantitative parameters derived from diffusion-weighted (DW-) and dynamic contrast enhanced (DCE-) MRI. Patients under 16-years-of age with confirmed diagnosis of solid tumours (n = 17) underwent free-breathing DW-MRI and DCE-MRI on a 1.5 T system, repeated 24 hours later. DW-MRI (6 b-values, 0-1000 sec/mm(2)) enabled monoexponential apparent diffusion coefficient estimation using all (ADC0-1000) and only ≥100 sec/mm(2) (ADC100-1000) b-values. DCE-MRI was used to derive the transfer constant (K(trans)), the efflux constant (kep), the extracellular extravascular volume (ve), and the plasma fraction (vp), using a study cohort arterial input function (AIF) and the extended Tofts model. Initial area under the gadolinium enhancement curve and pre-contrast T1 were also calculated. Percentage coefficients of variation (CV) of all parameters were calculated. The most reproducible cohort parameters were ADC100-1000 (CV = 3.26%), pre-contrast T1 (CV = 6.21%), and K(trans) (CV = 15.23%). The ADC100-1000 was more reproducible than ADC0-1000, especially extracranially (CV = 2.40% vs. 2.78%). The AIF (n = 9) derived from this paediatric population exhibited sharper and earlier first-pass and recirculation peaks compared with the literature's adult population average. Free-breathing functional imaging protocols including DW-MRI and DCE-MRI are well-tolerated in children aged 6 - 15 with good to moderate measurement reproducibility. • Diffusion MRI protocol is feasible and well-tolerated in a paediatric oncology population. • DCE-MRI for pharmacokinetic evaluation is feasible and well tolerated in a paediatric oncology population. • Paediatric arterial input function (AIF) shows systematic differences from the adult population-average AIF. • Variation of quantitative parameters from paired functional MRI measurements were within 20%.

  9. Performance Comparison of 1.5 T Endorectal Coil MRI with Non-Endorectal Coil 3.0 T MRI in Patients with Prostate Cancer

    PubMed Central

    Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang

    2015-01-01

    Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637

  10. Cerebral white matter maturation patterns in preterm infants: an MRI T2 relaxation anisotropy and diffusion tensor imaging study

    PubMed Central

    Knight, Michael J.; Smith-Collins, Adam; Newell, Sarah; Denbow, Mark; Kauppinen, Risto A.

    2017-01-01

    Background and Purpose Preterm birth is associated with worse neurodevelopmental outcome, but brain maturation in preterm infants is poorly characterised with standard methods. We evaluated white matter (WM) of infant brains at term-equivalent age, as a function of gestational age at birth, using multi-modal MRI. Methods Infants born very pre-term (< 32 weeks gestation) and late pre-term (33-36 weeks gestation) were scanned at 3T at term-equivalent age using diffusion tensor imaging (DTI) and T2 relaxometry. MRI data were analysed using tract-based spatial statistics, and anisotropy of T2 relaxation was also determined. Principal component analysis and linear discriminant analysis were applied to seek the variables best distinguishing very pre-term and late pre-term groups. Results Across widespread regions of WM, T2 is longer in very pre-term infants than in late pre-term ones. These effects are more prevalent in regions of WM which myelinate earlier and faster. Similar effects are obtained from DTI, showing that fractional anisotropy (FA) is lower and radial diffusivity higher in the very pre-term group, with a bias towards earlier myelinating regions. Discriminant analysis shows high sensitivity and specificity of combined T2 relaxometry and DTI for the detection of a distinct WM development pathway in very preterm infants. T2 relaxation is anisotropic, depending on the angle between WM fibre and magnetic field, and this effect is modulated by FA. Conclusions Combined T2 relaxometry and DTI characterises specific patterns of retarded WM maturation, at term equivalent age, in infants born very pre-term relative to late pre-term. PMID:29205635

  11. In vivo evaluation of biomechanical properties in the patellofemoral joint after matrix-associated autologous chondrocyte transplantation by means of quantitative T2 MRI.

    PubMed

    Pachowsky, M L; Trattnig, S; Wondrasch, B; Apprich, S; Marlovits, S; Mauerer, A; Welsch, Goetz H; Blanke, M

    2014-06-01

    To determine in vivo biomechanical properties of articular cartilage and cartilage repair tissue of the patella, using biochemical MRI by means of quantitative T2 mapping. Twenty MR scans were achieved at 3T MRI, using a new 8-channel multi-function coil allowing controlled bending of the knee. Multi-echo spin-echo T2 mapping was prepared in healthy volunteers and in age- and sex-matched patients after matrix-associated autologous chondrocyte transplantation (MACT) of the patella. MRI was performed at 0° and 45° of flexion of the knee after 0 min and after 1 h. A semi-automatic region-of-interest analysis was performed for the whole patella cartilage. To allow stratification with regard to the anatomical (collagen) structure, further subregional analysis was carried out (deep-middle-superficial cartilage layer). Statistical analysis of variance was performed. During 0° flexion (decompression), full-thickness T2 values showed no significant difference between volunteers (43 ms) and patients (41 ms). Stratification was more pronounced for healthy cartilage compared to cartilage repair tissue. During 45° flexion (compression), full-thickness T2 values within volunteers were significantly increased (54 ms) compared to patients (44 ms) (p < 0.001). Again, stratification was more pronounced in volunteers compared to patients. The volunteer group showed no significant increase in T2 values measured in straight position and in bended position. There was no significant difference between the 0- and the 60-min MRI examination. T2 values in the patient group increased between the 0- and the 60-min examination. However, the increase was only significant in the superior cartilage layer of the straight position (p = 0.021). During compression (at 45° flexion), healthy patellar cartilage showed a significant increase in T2-values, indicating adaptations of water content and collagen fibril orientation to mechanical load. This could not be observed within the patella

  12. Motion corrected DWI with integrated T2-mapping for simultaneous estimation of ADC, T2-relaxation and perfusion in prostate cancer.

    PubMed

    Skorpil, M; Brynolfsson, P; Engström, M

    2017-06-01

    Multiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging - Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need. We here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200s/mm 2 and 600s/mm 2 were chosen, and for T2-estimation 6 echo times between 64.9ms and 114.9ms were used. Three patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation. This sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Diagnosis of complications associated with acute cholecystitis using computed tomography and diffusion-weighted imaging with background body signal suppression/T2 image fusion.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Tanaka, Satomi; Sunaoshi, Takafumi; Kano, Daisuke; Sugiyama, Eriko; Shite, Misaki; Haga, Ryouta; Fukamizu, Yoshiya; Fujita, Toshiyuki; Kagayama, Satoshi; Hasegawa, Rumiko; Shirai, Yoshinori; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2017-07-01

    In a clinical setting, it is important to diagnose complications of acute cholecystitis accurately. Diffusion-weighted whole body imaging with background body signal suppression/T2-weighted image fusion (DWIBS/T2) provides high signal intensity with a strong contrast against surrounding tissues in anatomical settings. In the present study, patients who were being treated for acute cholecystitis and underwent DWIBS/T2 in the National Hospital Organization Shimoshizu Hospital between December 2012 and August 2015 were enrolled. A total of 10 men and 4 women underwent DWIBS/T2. Records, including DWIBS/T2 and computed tomography (CT) imaging, were retrospectively analyzed for patients with acute cholecystitis. CT images revealed thickened gallbladder walls in patients with acute cholecystitis, and high signal intensity was observed in DWIBS/T2 images for the thickened gallbladder wall. Inflammation of the pericholecystic space and the liver resulted in high intensity signals with DWIBS/T2 imaging, whereas CT imaging revealed a low-density area in the cholecystic space. Plain CT scanning identified a low-density area in the liver, which became more obvious with contrast-enhanced CT. DWIBS/T2 imaging showed the inflammation of the liver and pericholesyctic space as an area of high signal intensity. Detectability of inflammation of the pericholecystic space and the liver was the same for DWIBS/T2 and CT, which suggests that DWIBS/T2 has the same sensitivity as CT scanning for the diagnosis of complicated acute cholecystitis. However, the strong contrast shown by DWIBS/T2 allows for easier evaluation of acute cholecystitis than CT scanning.

  14. Spot Sign in Acute Intracerebral Hemorrhage in Dynamic T1-Weighted Magnetic Resonance Imaging.

    PubMed

    Schindlbeck, Katharina A; Santaella, Anna; Galinovic, Ivana; Krause, Thomas; Rocco, Andrea; Nolte, Christian H; Villringer, Kersten; Fiebach, Jochen B

    2016-02-01

    In computed tomographic imaging of acute intracerebral hemorrhage spot sign on computed tomographic angiography has been established as a marker for hematoma expansion and poor clinical outcome. Although, magnetic resonance imaging (MRI) can accurately visualize acute intracerebral hemorrhage, a corresponding MRI marker is lacking to date. We prospectively examined 50 consecutive patients with acute intracerebral hemorrhage within 24 hours of symptom onset. The MRI protocol consisted of a standard stroke protocol and dynamic contrast-enhanced T1-weighted imaging with a time resolution of 7.07 s/batch. Stroke scores were assessed at admission and at time of discharge. Volume measurements of hematoma size and spot sign were performed with MRIcron. Contrast extravasation within sites of the hemorrhage (MRI spot sign) was seen in 46% of the patients. Patients with an MRI spot sign had a significantly shorter time to imaging than those without (P<0.001). The clinical outcome measured by the modified Rankin Scale was significantly worse in patients with spot sign compared with those without (P≤0.001). Hematoma expansion was observed in the spot sign group compared with the nonspot sign group, although the differences were not significant. Spot sign can be detected using MRI on postcontrast T1-weighted and dynamic T1-weighted images. It is associated with worse clinical outcome. The time course of contrast extravasation in dynamic T1 images indicates that these spots represent ongoing bleeding. © 2015 American Heart Association, Inc.

  15. Regional brain injury on conventional and diffusion weighted MRI is associated with outcome after pediatric cardiac arrest.

    PubMed

    Fink, Ericka L; Panigrahy, A; Clark, R S B; Fitz, C R; Landsittel, D; Kochanek, P M; Zuccoli, G

    2013-08-01

    To assess regional brain injury on magnetic resonance imaging (MRI) after pediatric cardiac arrest (CA) and to associate regional injury with patient outcome and effects of hypothermia therapy for neuroprotection. We performed a retrospective chart review with prospective imaging analysis. Children between 1 week and 17 years of age who had a brain MRI in the first 2 weeks after CA without other acute brain injury between 2002 and 2008 were included. Brain MRI (1.5 T General Electric, Milwaukee, WI, USA) images were analyzed by 2 blinded neuroradiologists with adjudication; images were visually graded. Brain lobes, basal ganglia, thalamus, brain stem, and cerebellum were analyzed using T1, T2, and diffusion-weighted images (DWI). We examined 28 subjects with median age 1.9 years (IQR 0.4-13.0) and 19 (68 %) males. Increased intensity on T2 in the basal ganglia and restricted diffusion in the brain lobes were associated with unfavorable outcome (all P < 0.05). Therapeutic hypothermia had no effect on regional brain injury. Repeat brain MRI was infrequently performed but demonstrated evolution of lesions. Children with lesions in the basal ganglia on conventional MRI and brain lobes on DWI within the first 2 weeks after CA represent a group with increased risk of poor outcome. These findings may be important for developing neuroprotective strategies based on regional brain injury and for evaluating response to therapy in interventional clinical trials.

  16. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging.

    PubMed

    Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo

    2016-08-01

    Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  17. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI Methods

    PubMed Central

    Jack, Clifford R.; Bernstein, Matt A.; Fox, Nick C.; Thompson, Paul; Alexander, Gene; Harvey, Danielle; Borowski, Bret; Britson, Paula J.; Whitwell, Jennifer L.; Ward, Chadwick; Dale, Anders M.; Felmlee, Joel P.; Gunter, Jeffrey L.; Hill, Derek L.G.; Killiany, Ron; Schuff, Norbert; Fox-Bosetti, Sabrina; Lin, Chen; Studholme, Colin; DeCarli, Charles S.; Krueger, Gunnar; Ward, Heidi A.; Metzger, Gregory J.; Scott, Katherine T.; Mallozzi, Richard; Blezek, Daniel; Levy, Joshua; Debbins, Josef P.; Fleisher, Adam S.; Albert, Marilyn; Green, Robert; Bartzokis, George; Glover, Gary; Mugler, John; Weiner, Michael W.

    2008-01-01

    The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimer's disease. Magnetic resonance imaging (MRI), (18F)-fluorode-oxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquiredat multiple time points. All data will be cross-linked and made available to the general scientific community. The purpose of this report is to describe the MRI methods employed in ADNI. The ADNI MRI core established specifications thatguided protocol development. A major effort was devoted toevaluating 3D T1-weighted sequences for morphometric analyses. Several options for this sequence were optimized for the relevant manufacturer platforms and then compared in a reduced-scale clinical trial. The protocol selected for the ADNI study includes: back-to-back 3D magnetization prepared rapid gradient echo (MP-RAGE) scans; B1-calibration scans when applicable; and an axial proton density-T2 dual contrast (i.e., echo) fast spin echo/turbo spin echo (FSE/TSE) for pathology detection. ADNI MRI methods seek to maximize scientific utility while minimizing the burden placed on participants. The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom-based monitoring of all scanners could be used as a model for other multisite trials. PMID:18302232

  18. Dynamic characteristics of T2*-weighted signal in calf muscles of peripheral artery disease during low-intensity exercise.

    PubMed

    Li, Zhijun; Muller, Matthew D; Wang, Jianli; Sica, Christopher T; Karunanayaka, Prasanna; Sinoway, Lawrence I; Yang, Qing X

    2017-07-01

    To evaluate the dynamic characteristics of T2* -weighted signal change in exercising skeletal muscle of healthy subjects and peripheral artery disease (PAD) patients under a low-intensity exercise paradigm. Nine PAD patients and nine age- and sex-matched healthy volunteers underwent a low-intensity exercise paradigm while magnetic resonance imaging (MRI) (3.0T) was obtained. T2*-weighted signal time-courses in lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior were acquired and analyzed. Correlations were performed between dynamic T2*-weighted signal and changes in heart rate, mean arterial pressure, leg pain, and perceived exertion. A significant signal decrease was observed during exercise in soleus and tibialis anterior of healthy participants (P = 0.0007-0.04 and 0.001-0.009, respectively). In PAD, negative signals were observed (P = 0.008-0.02 and 0.003-0.01, respectively) in soleus and lateral gastrocnemius during the early exercise stage. Then the signal gradually increased above the baseline in the lateral gastrocnemius during and after exercise in six of the eight patients who completed the study. This signal increase in patients' lateral gastrocnemius was significantly greater than in healthy subjects' during the later exercise stage (two-sample t-tests, P = 0.001-0.03). Heart rate and mean arterial pressure responses to exercise were significantly higher in PAD than healthy subjects (P = 0.036 and 0.008, respectively) and the patients experienced greater leg pain and exertion (P = 0.006 and P = 0.0014, respectively). During low-intensity exercise, there were different dynamic T2*-weighted signal behavior in the healthy and PAD exercising muscles. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:40-48. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    PubMed

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  20. Tissue Tracking: Applications for Brain MRI Classification

    DTIC Science & Technology

    2007-01-01

    General Hospital, Center for Morphometric Analysis.10,11 The IBSR data-sets are T1-weighted, 3D coronal brain scans after having been positionally...learned priors,” Image Processing, IEEE Transactions on 9(2), pp. 299–301, 2000. 5. P. Olver, G. Sapiro, and A. Tannenbaum, “Invariant Geometric Evolutions...MRI,” NeuroImage 22(3), pp. 1060–1075, 2004. 16. A. Zijdenbos, B. Dawant, R. Margolin, and A. Palmer, “ Morphometric analysis of white matter lesions in

  1. Cross-vendor harmonization of T2 -relaxation-under-spin-tagging (TRUST) MRI for the assessment of cerebral venous oxygenation.

    PubMed

    Jiang, Dengrong; Liu, Peiying; Li, Yang; Mao, Deng; Xu, Cuimei; Lu, Hanzhang

    2018-09-01

    Cerebral venous oxygenation (Y v ) is an important physiological parameter and has potential clinical application in many brain diseases. T 2 -relaxation-under-spin-tagging (TRUST) is a commonly used MRI method to measure Y v . Harmonization of this technique across MRI vendors is important for dissemination and multicenter studies of brain oxygenation and metabolism as a disease biomarker. TRUST pulse sequence components and imaging parameters were carefully matched between two major MRI vendors, Philips and Siemens. Each subject (N = 10) was scanned on both scanners within a 2.5-h period. On each scanner, the subject was scanned in two sessions to assess intersession reproducibility. A hyperoxia challenge was also included in both sessions and on both scanners to evaluate the sensitivity of the technique to Y v changes. Measured Y v values, confidence interval of Y v estimates ( εYv), as well as intrasession and intersession coefficient of variation (CoV) of Y v , were compared between the two scanners. Y v measured on the two vendors were highly compatible and strongly correlated (R 2  = 0.957). Y v changes associated with hyperoxia challenge were significant on both scanners (P < 0.001) and were also correlated across scanners (P = 0.007). Intrasession and intersession CoV of measured Y v were less than 3% and showed no difference between scanners. εYv were less than 1% on both scanners and showed no difference between scanners when echo times were matched on the two scanners. This work suggests that harmonized TRUST MRI can yield highly compatible Y v measurements across different vendors. Magn Reson Med 80:1125-1131, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Multi-atlas segmentation enables robust multi-contrast MRI spleen segmentation for splenomegaly

    NASA Astrophysics Data System (ADS)

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L.; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.

    2017-02-01

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≍1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  3. Multi-atlas Segmentation Enables Robust Multi-contrast MRI Spleen Segmentation for Splenomegaly.

    PubMed

    Huo, Yuankai; Liu, Jiaqi; Xu, Zhoubing; Harrigan, Robert L; Assad, Albert; Abramson, Richard G; Landman, Bennett A

    2017-02-11

    Non-invasive spleen volume estimation is essential in detecting splenomegaly. Magnetic resonance imaging (MRI) has been used to facilitate splenomegaly diagnosis in vivo. However, achieving accurate spleen volume estimation from MR images is challenging given the great inter-subject variance of human abdomens and wide variety of clinical images/modalities. Multi-atlas segmentation has been shown to be a promising approach to handle heterogeneous data and difficult anatomical scenarios. In this paper, we propose to use multi-atlas segmentation frameworks for MRI spleen segmentation for splenomegaly. To the best of our knowledge, this is the first work that integrates multi-atlas segmentation for splenomegaly as seen on MRI. To address the particular concerns of spleen MRI, automated and novel semi-automated atlas selection approaches are introduced. The automated approach interactively selects a subset of atlases using selective and iterative method for performance level estimation (SIMPLE) approach. To further control the outliers, semi-automated craniocaudal length based SIMPLE atlas selection (L-SIMPLE) is proposed to introduce a spatial prior in a fashion to guide the iterative atlas selection. A dataset from a clinical trial containing 55 MRI volumes (28 T1 weighted and 27 T2 weighted) was used to evaluate different methods. Both automated and semi-automated methods achieved median DSC > 0.9. The outliers were alleviated by the L-SIMPLE (≈1 min manual efforts per scan), which achieved 0.9713 Pearson correlation compared with the manual segmentation. The results demonstrated that the multi-atlas segmentation is able to achieve accurate spleen segmentation from the multi-contrast splenomegaly MRI scans.

  4. Manual versus Automated Carotid Artery Plaque Component Segmentation in High and Lower Quality 3.0 Tesla MRI Scans

    PubMed Central

    Smits, Loek P.; van Wijk, Diederik F.; Duivenvoorden, Raphael; Xu, Dongxiang; Yuan, Chun; Stroes, Erik S.; Nederveen, Aart J.

    2016-01-01

    Purpose To study the interscan reproducibility of manual versus automated segmentation of carotid artery plaque components, and the agreement between both methods, in high and lower quality MRI scans. Methods 24 patients with 30–70% carotid artery stenosis were planned for 3T carotid MRI, followed by a rescan within 1 month. A multicontrast protocol (T1w,T2w, PDw and TOF sequences) was used. After co-registration and delineation of the lumen and outer wall, segmentation of plaque components (lipid-rich necrotic cores (LRNC) and calcifications) was performed both manually and automated. Scan quality was assessed using a visual quality scale. Results Agreement for the detection of LRNC (Cohen’s kappa (k) is 0.04) and calcification (k = 0.41) between both manual and automated segmentation methods was poor. In the high-quality scans (visual quality score ≥ 3), the agreement between manual and automated segmentation increased to k = 0.55 and k = 0.58 for, respectively, the detection of LRNC and calcification larger than 1 mm2. Both manual and automated analysis showed good interscan reproducibility for the quantification of LRNC (intraclass correlation coefficient (ICC) of 0.94 and 0.80 respectively) and calcified plaque area (ICC of 0.95 and 0.77, respectively). Conclusion Agreement between manual and automated segmentation of LRNC and calcifications was poor, despite a good interscan reproducibility of both methods. The agreement between both methods increased to moderate in high quality scans. These findings indicate that image quality is a critical determinant of the performance of both manual and automated segmentation of carotid artery plaque components. PMID:27930665

  5. T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity.

    PubMed

    Harward, Stephen; Harrison Farber, S; Malinzak, Michael; Becher, Oren; Thompson, Eric M

    2018-03-01

    Diffuse intrinsic pontine glioma (DIPG) remains the main cause of death in children with brain tumors. Given the inefficacy of numerous peripherally delivered agents to treat DIPG, convection enhanced delivery (CED) of therapeutic agents is a promising treatment modality. The purpose of this study was to determine which MR imaging type provides the best discrimination of intratumoral heterogeneity to guide future stereotactic implantation of CED catheters into the most cellular tumor regions. Patients ages 18 years or younger with a diagnosis of DIPG from 2000 to 2015 were included. Radiographic heterogeneity index (HI) of the tumor was calculated by measuring the standard deviation of signal intensity of the tumor (SD Tumor ) normalized to the genu of the corpus callosum (SD Corpus Callosum ). Four MR image types (T2-weighted, contrast-enhanced T1-weighted, FLAIR, and ADC) were analyzed at several time points both before and after radiotherapy and chemotherapy. HI values across these MR image types were compared and correlated with patient survival. MR images from 18 patients with DIPG were evaluated. The mean survival ± standard deviation was 13.8 ± 13.7 months. T2-weighted images had the highest HI (mean ± SD, 5.1 ± 2.5) followed by contrast-enhanced T1-weighted images (3.7 ± 1.5), FLAIR images (3.0 ± 1.1), and ADC maps (1.6 ± 0.4). ANOVA demonstrated that HI values were significantly higher for T2-weighted images than FLAIR (p < 0.01) and ADC (p < 0.0001). Following radiotherapy, T2-weighted and contrast-enhanced T1-weighted image HI values increased, while FLAIR and ADC HI values decreased. Univariate and multivariate analyses did not reveal a relationship between HI values and patient survival (p > 0.05). For children with DIPG, T2-weighted MRI demonstrates the greatest signal intensity variance suggesting tumor heterogeneity. Within this heterogeneity, T2-weighted signal hypointensity is known to correlate with

  6. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: a comparison of CT and CT-MRI based tissue segmentation on simulated temperature.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-12-01

    In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI

  7. Fusion of MRIs and CT scans for surgical treatment of cholesteatoma of the middle ear in children.

    PubMed

    Plouin-Gaudon, Isabelle; Bossard, Denis; Ayari-Khalfallah, Sonia; Froehlich, Patrick

    2010-09-01

    To evaluate the efficiency of diffusion-weighted magnetic resonance imaging (MRI) and high-resolution computed tomographic (CT) scan coregistration in predicting and adequately locating primary or recurrent cholesteatoma in children. Prospective study. Tertiary care university hospital. Ten patients aged 2 to 17 years (mean age, 8.5 years) with cholesteatoma of the middle ear, some of which were previously treated, were included for follow-up with systematic CT scanning and MRI between 2007 and 2008. Computed tomographic scanning was performed on a Siemens Somaton 128 (0.5/0.2-mm slices reformatted in 0.5/0.3-mm images). Fine cuts were obtained parallel and perpendicular to the lateral semicircular canal in each ear (100 × 100-mm field of view). Magnetic resonance imaging was undertaken on a Siemens Avanto 1.5T unit, with a protocol adapted for young children. Diffusion-weighted imaging was acquired using a single-shot turbo spin-echo mode. To allow for diagnosis and localization of the cholesteatoma, CT and diffusion-weighted MRIs were fused for each case. In 10 children, fusion technique allowed for correct diagnosis and precise localization (hypotympanum, epitympanum, mastoid recess, and attical space) as confirmed by subsequent standard surgery (positive predictive value, 100%). In 3 cases, the surgical approach was adequately determined from the fusion results. Lesion sizes on the CT-MRI fusion corresponded with perioperative findings. Recent developments in imaging techniques have made diffusion-weighted MRI more effective for detecting recurrent cholesteatoma. The major drawback of this technique, however, has been its poor anatomical and spatial discrimination. Fusion imaging using high-resolution CT and diffusion-weighted MRI appears to be a promising technique for both the diagnosis and precise localization of cholesteatomas. It provides useful information for surgical planning and, furthermore, is easy to use in pediatric cases.

  8. Visualization of nigrosome 1 and its loss in PD

    PubMed Central

    Schwarz, Stefan T.; Pitiot, Alain; Stephenson, Mary C.; Lowe, James; Bajaj, Nin; Bowtell, Richard W.; Auer, Dorothee P.; Gowland, Penny A.

    2013-01-01

    Objective: This study assessed whether high-resolution 7 T MRI allowed direct in vivo visualization of nigrosomes, substructures of the substantia nigra pars compacta (SNpc) undergoing the greatest and earliest dopaminergic cell loss in Parkinson disease (PD), and whether any disease-specific changes could be detected in patients with PD. Methods: Postmortem (PM) midbrains, 2 from healthy controls (HCs) and 1 from a patient with PD, were scanned with high-resolution T2*-weighted MRI scans, sectioned, and stained for iron and neuromelanin (Perl), TH, and calbindin. To confirm the identification of nigrosomes in vivo on 7 T T2*-weighted scans, we assessed colocalization with neuromelanin-sensitive T1-weighted scans. We then assessed the ability to depict PD pathology on in vivo T2*-weighted scans by comparing data from 10 patients with PD and 8 age- and sex-matched HCs. Results: A hyperintense, ovoid area within the dorsolateral border of the otherwise hypointense SNpc was identified in the HC brains on in vivo and PM T2*-weighted MRI. Location, size, shape, and staining characteristics conform to nigrosome 1. Blinded assessment by 2 neuroradiologists showed consistent bilateral absence of this nigrosome feature in all 10 patients with PD, and bilateral presence in 7/8 HC. Conclusions: In vivo and PM MRI with histologic correlation demonstrates that high-resolution 7 T MRI can directly visualize nigrosome 1. The absence of nigrosome 1 in the SNpc on MRI scans might prove useful in developing a neuroimaging diagnostic test for PD. PMID:23843466

  9. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI.

    PubMed

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-12-09

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2  = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.

  10. Quantitative oxygen extraction fraction from 7-Tesla MRI phase: reproducibility and application in multiple sclerosis.

    PubMed

    Fan, Audrey P; Govindarajan, Sindhuja T; Kinkel, R Philip; Madigan, Nancy K; Nielsen, A Scott; Benner, Thomas; Tinelli, Emanuele; Rosen, Bruce R; Adalsteinsson, Elfar; Mainero, Caterina

    2015-01-01

    Quantitative oxygen extraction fraction (OEF) in cortical veins was studied in patients with multiple sclerosis (MS) and healthy subjects via magnetic resonance imaging (MRI) phase images at 7 Tesla (7 T). Flow-compensated, three-dimensional gradient-echo scans were acquired for absolute OEF quantification in 23 patients with MS and 14 age-matched controls. In patients, we collected T2*-weighted images for characterization of white matter, deep gray matter, and cortical lesions, and also assessed cognitive function. Variability of OEF across readers and scan sessions was evaluated in a subset of volunteers. OEF was averaged from 2 to 3 pial veins in the sensorimotor, parietal, and prefrontal cortical regions for each subject (total of ~10 vessels). We observed good reproducibility of mean OEF, with intraobserver coefficient of variation (COV)=2.1%, interobserver COV=5.2%, and scan-rescan COV=5.9%. Patients exhibited a 3.4% reduction in cortical OEF relative to controls (P=0.0025), which was not different across brain regions. Although oxygenation did not relate with measures of structural tissue damage, mean OEF correlated with a global measure of information processing speed. These findings suggest that cortical OEF from 7-T MRI phase is a reproducible metabolic biomarker that may be sensitive to different pathologic processes than structural MRI in patients with MS.

  11. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk

    Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly

  12. Quantification of in vivo pH-weighted amide proton transfer (APT) MRI in acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    Amide proton transfer (APT) imaging is a specific form of chemical exchange saturation transfer (CEST) MRI that probes the pH-dependent amide proton exchange.The endogenous APT MRI is sensitive to tissue acidosis, which may complement the commonly used perfusion and diffusion scans for characterizing heterogeneous ischemic tissue damage. Whereas the saturation transfer asymmetry analysis (MTRasym) may reasonably compensate for direct RF saturation, in vivo MTRasym is however, susceptible to an intrinsically asymmetric shift (MTR'asym). Specifically, the reference scan for the endogenous APT MRI is 7 ppm upfield from that of the label scan, and subjects to concomitant RF irradiation effects, including nuclear overhauser effect (NOE)-mediated saturation transfer and semisolid macromolecular magnetization transfer. As such, the commonly used asymmetry analysis could not fully compensate for such slightly asymmetric concomitant RF irradiation effects, and MTRasym has to be delineated in order to properly characterize the pH-weighted APT MRI contrast. Given that there is very little change in relaxation time immediately after ischemia and the concomitant RF irradiation effects only minimally depends on pH, the APT contrast can be obtained as the difference of MTRasym between the normal and ischemic regions. Thereby, the endogenous amide proton concentration and exchange rate can be solved using a dual 2-pool model, and the in vivo MTR'asym can be calculated by subtracting the solved APT contrast from asymmetry analysis (i.e., MTR'asym =MTRasym-APTR). In addition, MTR'asym can be quantified using the classical 2-pool exchange model. In sum, our study delineated the conventional in vivo pH-sensitive MTRasym contrast so that pHspecific contrast can be obtained for imaging ischemic tissue acidosis.

  13. SU-E-J-220: Assessment of MRI Geometric Distortion in Head and Neck Cancer Patients Scanned in Immobilized Radiation Treatment Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C; Mohamed, A; Weygand, J

    2015-06-15

    Purpose: Uncertainties about geometric distortion have somewhat hindered MRI simulation in radiation therapy. Most of the geometric distortion studies were performed with phantom measurements but another major aspect of MR distortion is patient related. We studied the geometric distortion in patient images by comparing their MRI scans with the corresponding CT, using CT as the non-distorted gold standard. Methods: Ten H&N cancer patients were imaged with MRI as part of a prospective IRB approved study. All patients had their treatment planning CT done on the same day or within one week of the MRI. MR Images were acquired with amore » T2 SE sequence (1×1×2.5mm voxel size) in the same immobilization position as in the CT scans. MRI to CT rigid registration was then done and geometric distortion comparison was done by measuring the corresponding anatomical landmarks on both the MRI and the CT images by two observers. Several skin to skin (9 landmarks), bone to bone (8 landmarks), and soft tissue (3 landmarks) were measured at specific levels in horizontal and vertical planes of both scans. Results: The mean distortion for all landmark measurements in all scans was 1.8±1.9mm. For each patient 11 measurements were done in the horizontal plane while 9 were done in the vertical plane. The measured geometric distortion were significantly lower in the horizontal axis compared to the vertical axis (1.3±0.16 mm vs 2.2±0.19 mm, respectively, P=0.003*). The magnitude of distortion was lower in the bone to bone landmarks compared to the combined soft tissue and skin to skin landmarks (1.2±0.19 mm vs 2.3±0.17 mm, P=0.0006*). The mean distortion measured by observer one was not significantly different compared toobserver 2 (2.3 vs 2.4 mm, P=0.4). Conclusion: MRI geometric distortions were quantified in H&N patients with mean error of less than 2 mm. JW received a corporate sponsored research grant from Elekta.« less

  14. Assessment of image quality of a radiotherapy-specific hardware solution for PET/MRI in head and neck cancer patients.

    PubMed

    Winter, René M; Leibfarth, Sara; Schmidt, Holger; Zwirner, Kerstin; Mönnich, David; Welz, Stefan; Schwenzer, Nina F; la Fougère, Christian; Nikolaou, Konstantin; Gatidis, Sergios; Zips, Daniel; Thorwarth, Daniela

    2018-05-07

    Functional PET/MRI has great potential to improve radiotherapy planning (RTP). However, data integration requires imaging with radiotherapy-specific patient positioning. Here, we investigated the feasibility and image quality of radiotherapy-customized PET/MRI in head-and-neck cancer (HNC) patients using a dedicated hardware setup. Ten HNC patients were examined with simultaneous PET/MRI before treatment, with radiotherapy and diagnostic scan setup, respectively. We tested feasibility of radiotherapy-specific patient positioning and compared the image quality between both setups by pairwise image analysis of 18 F-FDG-PET, T1/T2-weighted and diffusion-weighted MRI. For image quality assessment, similarity measures including average symmetric surface distance (ASSD) of PET and MR-based tumor contours, MR signal-to-noise ratio (SNR) and mean apparent diffusion coefficient (ADC) value were used. PET/MRI in radiotherapy position was feasible - all patients were successfully examined. ASSD (median/range) of PET and MR contours was 0.6 (0.4-1.2) and 0.9 (0.5-1.3) mm, respectively. For T2-weighted MRI, a reduced SNR of -26.2% (-39.0--11.7) was observed with radiotherapy setup. No significant difference in mean ADC was found. Simultaneous PET/MRI in HNC patients using radiotherapy positioning aids is clinically feasible. Though SNR was reduced, the image quality obtained with a radiotherapy setup meets RTP requirements and the data can thus be used for personalized RTP. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Pilot Study of the Use of Hybrid Multidimensional T2-Weighted Imaging-DWI for the Diagnosis of Prostate Cancer and Evaluation of Gleason Score.

    PubMed

    Sadinski, Meredith; Karczmar, Gregory; Peng, Yahui; Wang, Shiyang; Jiang, Yulei; Medved, Milica; Yousuf, Ambereen; Antic, Tatjana; Oto, Aytekin

    2016-09-01

    The objective of our study was to evaluate the role of a hybrid T2-weighted imaging-DWI sequence for prostate cancer diagnosis and differentiation of aggressive prostate cancer from nonaggressive prostate cancer. Twenty-one patients with prostate cancer who underwent preoperative 3-T MRI and prostatectomy were included in this study. Patients underwent a hybrid T2-weighted imaging-DWI examination consisting of DW images acquired with TEs of 47, 75, and 100 ms and b values of 0 and 750 s/mm(2). The apparent diffusion coefficient (ADC) and T2 were calculated for cancer and normal prostate ROIs at each TE and b value. Changes in ADC and T2 as a function of increasing the TE and b value, respectively, were analyzed. A new metric termed "PQ4" was defined as the percentage of voxels within an ROI that has increasing T2 with increasing b value and has decreasing ADC with increasing TE. ADC values were significantly higher in normal ROIs than in cancer ROIs at all TEs (p < 0.0001). With increasing TE, the mean ADC increased 3% in cancer ROIs and increased 12% in normal ROIs. T2 was significantly higher in normal ROIs than in cancer ROIs at both b values (p ≤ 0.0002). The mean T2 decreased with increasing b value in cancer ROIs (ΔT2 = -17 ms) and normal ROIs (ΔT2 = -52 ms). PQ4 clearly differentiated normal ROIs from prostate cancer ROIs (p = 0.0004) and showed significant correlation with Gleason score (ρ = 0.508, p < 0.0001). Hybrid MRI measures the response of ADC and T2 to changing TEs and b values, respectively. This approach shows promise for detecting prostate cancer and determining its aggressiveness noninvasively.

  16. MRI of gallstones with different compositions.

    PubMed

    Tsai, Hong-Ming; Lin, Xi-Zhang; Chen, Chiung-Yu; Lin, Pin-Wen; Lin, Jui-Che

    2004-06-01

    Gallstones are usually recognized on MRI as filling defects of hypointensity. However, they sometimes may appear as hyperintensities on T1-weighted imaging. This study investigated how gallstones appear on MRI and how their appearance influences the detection of gallstones. Gallstones from 24 patients who had MRI performed before the removal of the gallstones were collected for study. The gallstones were classified either as cholesterol gallstone (n = 4) or as pigment gallstone (n = 20) according to their gross appearance and based on analysis by Fourier transform infrared spectroscopy. MRI included three sequences: single-shot fast spin-echo T2-weighted imaging, 3D fast spoiled gradient-echo T1-weighted imaging, and in-phase fast spoiled gradient-echo T1-weighted imaging. The signal intensity and the detection rate of gallstones on MRI were further correlated with the character of the gallstones. On T1-weighted 3D fast spoiled gradient-echo images, most of the pigment gallstones (18/20) were hyperintense and all the cholesterol gallstones (4/4) were hypointense. The mean ratio of the signal intensity of gallstone to bile was (+/- standard deviation) 3.36 +/- 1.88 for pigment gallstone and 0.24 +/- 0.10 for cholesterol gallstone on the 3D fast spoiled gradient-echo sequence (p < 0.001). Combining the 3D fast spoiled gradient-echo and single-shot fast spin-echo sequences achieved the highest gallstone detection rate (96.4%). Based on the differences of signal intensity of gallstones, the 3D fast spoiled gradient-echo T1-weighted imaging was able to diagnose the composition of gallstones. Adding the 3D fast spoiled gradient-echo imaging to the single-shot fast spin-echo T2-weighted sequence can further improve the detection rate of gallstones.

  17. Abdominal MRI at 3.0 T: LAVA-Flex compared with conventional fat suppression T1-weighted images.

    PubMed

    Li, Xing Hui; Zhu, Jiang; Zhang, Xiao Ming; Ji, Yi Fan; Chen, Tian Wu; Huang, Xiao Hua; Yang, Lin; Zeng, Nan Lin

    2014-07-01

    To study liver imaging with volume acceleration-flexible (LAVA-Flex) for abdominal magnetic resonance imaging (MRI) at 3.0 T and compare the image quality of abdominal organs between LAVA-Flex and fast spoiled gradient-recalled (FSPGR) T1-weighted imaging. Our Institutional Review Board approval was obtained in this retrospective study. Sixty-nine subjects had both FSPGR and LAVA-Flex sequences. Two radiologists independently scored the acquisitions for image quality, fat suppression quality, and artifacts and the values obtained were compared with the Wilcoxon signed rank test. According to the signal intensity (SI) measurements, the uniformity of fat suppression, the contrast between muscle and fat and normal liver and liver lesions were compared by the paired t-test. The liver and spleen SI on the fat-only phase were analyzed in the fatty liver patients. Compared with FSPGR imaging, LAVA-Flex images had better and more homogenous fat suppression and lower susceptibility artifact (qualitative scores: 4.70 vs. 4.00, 4.86% vs. 7.14%, 4.60 and 4.10, respectively). The contrast between muscle and fat and between the liver and pathologic lesions was significantly improved on the LAVA-Flex sequence. The contrast value of the fatty liver and spleen was higher than that of the liver and spleen. The LAVA-Flex sequence offers superior and more homogenous fat suppression of the abdomen than does the FSPGR sequence. The fat-only phase can be a simple and effective method of assessing fatty liver. © 2013 Wiley Periodicals, Inc.

  18. MRI features of extramedullary myeloma.

    PubMed

    Tirumani, Sree Harsha; Shinagare, Atul B; Jagannathan, Jyothi P; Krajewski, Katherine M; Munshi, Nikhil C; Ramaiya, Nikhil H

    2014-04-01

    The purpose of this study was to describe the MRI features of extramedullary myeloma and to evaluate the role of MRI in extramedullary myeloma. The cases of 28 patients (15 men, 13 women; mean age, 57.53 years; range, 34-83 years) with extramedullary myeloma who underwent MRI at one institution from January 2004 through December 2012 were retrospectively identified through an electronic search of an institutional radiology database. Two radiologists reviewed images from 44 MRI examinations in consensus to document the morphologic, signal-intensity, and enhancement characteristics of extramedullary myeloma. Electronic medical records were reviewed to document the indication for MRI and subsequent management of extramedullary myeloma. A total of 72 sites of extramedullary myeloma were noted, most commonly the paraspinal-epidural location (28/72, 39%). Two radiologic patterns were identified: lesions contiguous with bone (n = 44) and lesions noncontiguous with bone (n = 28). Lesions contiguous with bone were larger (p = 0.001; Student t test). Of 28 paraspinal-epidural lesions, 13 compressed the cord. Compared with skeletal muscle, most of the lesions were hypointense to isointense on T1-weighted images (67/72, 93.1%) and isointense to hyperintense on T2-weighted images (62/72, 86.1%). Lesions noncontiguous with bone were more often hypointense on T2-weighted images (8/28 vs 2/44; p = 0.006; Fisher exact test). Neurologic symptoms prompted MRI in most cases (n = 32/44). MRI was helpful in management by radiotherapy and surgery (19/28). Extramedullary myeloma can be contiguous or noncontiguous with bone. Lesions contiguous with bone are larger, often occur in a paraspinal or epidural location, and can cause cord compression. Lesions noncontiguous with bone can be T2 hypointense. MRI helps in treatment planning.

  19. Comparison of BOLD, diffusion-weighted fMRI and ADC-fMRI for stimulation of the primary visual system with a block paradigm.

    PubMed

    Nicolas, R; Gros-Dagnac, H; Aubry, F; Celsis, P

    2017-06-01

    The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm 2 ), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm 2 ) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of

  20. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging.

    PubMed

    Chang, Gregory; Deniz, Cem M; Honig, Stephen; Egol, Kenneth; Regatte, Ravinder R; Zhu, Yudong; Sodickson, Daniel K; Brown, Ryan

    2014-06-01

    To demonstrate the feasibility of performing bone microarchitecture, high-resolution cartilage, and clinical imaging of the hip at 7T. This study had Institutional Review Board approval. Using an 8-channel coil constructed in-house, we imaged the hips of 15 subjects on a 7T magnetic resonance imaging (MRI) scanner. We applied: 1) a T1-weighted 3D fast low angle shot (3D FLASH) sequence (0.23 × 0.23 × 1-1.5 mm(3) ) for bone microarchitecture imaging; 2) T1-weighted 3D FLASH (water excitation) and volumetric interpolated breath-hold examination (VIBE) sequences (0.23 × 0.23 × 1.5 mm(3) ) with saturation or inversion recovery-based fat suppression for cartilage imaging; 3) 2D intermediate-weighted fast spin-echo (FSE) sequences without and with fat saturation (0.27 × 0.27 × 2 mm) for clinical imaging. Bone microarchitecture images allowed visualization of individual trabeculae within the proximal femur. Cartilage was well visualized and fat was well suppressed on FLASH and VIBE sequences. FSE sequences allowed visualization of cartilage, the labrum (including cartilage and labral pathology), joint capsule, and tendons. This is the first study to demonstrate the feasibility of performing a clinically comprehensive hip MRI protocol at 7T, including high-resolution imaging of bone microarchitecture and cartilage, as well as clinical imaging. Copyright © 2013 Wiley Periodicals, Inc.

  1. Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2+ADC) in the Heart With Motion-Compensated Spin Echo Diffusion-Weighted Imaging

    PubMed Central

    Aliotta, Eric; Moulin, Kévin; Zhang, Zhaohuan; Ennis, Daniel B.

    2018-01-01

    Purpose To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2+ADC) using spin echo (SE) diffusion-weighted imaging (DWI). Theory and Methods T2 maps from T2+ADC were compared with single-echo SE in phantoms and with T2-prepared (T2-prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2+ADC were compared with conventional DWI in phantoms and in vivo. T2+ADC was also demonstrated in a patient with acute myocardial infarction (MI). Results Phantom T2 values from T2+ADC were closer to a single-echo SE reference than T2-prep bSSFP (−2.3 ± 6.0% vs 22.2 ± 16.3%; P < 0.01), and ADC values were in excellent agreement with DWI (0.28 ± 0.4%). In volunteers, myocardial T2 values from T2+ADC were significantly shorter than T2-prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P < 0.01); myocardial ADC was not significantly (N.S.) different between T2+ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2/ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2: 40.4 ± 7.6 vs 56.8 ± 22.0; P < 0.01; ADC: 1.47 ± 0.59 vs 1.65 ± 0.65 mm2/ms; P < 0.01). Conclusion T2+ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. PMID:28516485

  2. IVIM diffusion-weighted imaging of the liver at 3.0 T: Comparison with 1.5 T

    PubMed Central

    Cui, Yong; Dyvorne, Hadrien; Besa, Cecilia; Cooper, Nancy; Taouli, Bachir

    2015-01-01

    Purpose To compare intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) of the liver between 1.5 T and 3.0 T in terms of parameter quantification and inter-platform reproducibility. Materials and methods In this IRB approved prospective study, 19 subjects (17 patients with chronic liver disease and 2 healthy volunteers) underwent two repeat scans at 1.5 T and 3.0 T. Each scan included IVIM DWI using 16 b values from 0 to 800 s/mm2. A single observer measured IVIM parameters for each platform and estimated signal to noise ratio (eSNR) at b0, 200, 400 and 800 s/mm2. Wilcoxon paired tests were used to compare liver eSNR and IVIM parameters. Inter-platform reproducibility was assessed by calculating within-subject coefficient of variation (CV) and Bland–Altman limits of agreement. An ice water phantom was used to test ADC variability between the two MRI systems. Results The mean invitro difference in ADC between the two platforms was 6.8%. eSNR was significantly higher at 3.0T for all selected b values (p = 0.006–0.020), except for b0 (p = 0.239). Liver IVIM parameters were significantly different between 1.5 T and 3.0 T (p = 0.005–0.044), except for ADC (p = 0.748). The inter-platform reproducibility of true diffusion coefficient (D) and ADC were good, with mean CV of 10.9% and 11.1%, respectively. Perfusion fraction (PF) and pseudodiffusion coefficient (D*) showed more limited inter-platform reproducibility (mean CV of 22.6% for PF and 46.9% for D*). Conclusion Liver D and ADC values showed good reproducibility between 1.5 T and 3.0 T platforms; while there was more variability in PF, and large variability in D* parameters between the two platforms. These findings may have implications for drug trials assessing the role of IVIM DWI in tumor response and liver fibrosis. PMID:26393236

  3. Beam characterisation of the 1.5 T MRI-linac

    NASA Astrophysics Data System (ADS)

    Woodings, S. J.; Bluemink, J. J.; de Vries, J. H. W.; Niatsetski, Y.; van Veelen, B.; Schillings, J.; Kok, J. G. M.; Wolthaus, J. W. H.; Hackett, S. L.; van Asselen, B.; van Zijp, H. M.; Pencea, S.; Roberts, D. A.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2018-04-01

    As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1  ×  1 and 57  ×  22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of  +0.24 cm. For a 10  ×  10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%–80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm)  =  57%. The entrance surface dose is  ∼36% of . Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017

  4. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.

    PubMed

    Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna

    2016-05-01

    To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

  5. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

    NASA Astrophysics Data System (ADS)

    Vallières, M.; Freeman, C. R.; Skamene, S. R.; El Naqa, I.

    2015-07-01

    This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping

  6. Quantitative DLA-based compressed sensing for T1-weighted acquisitions

    NASA Astrophysics Data System (ADS)

    Svehla, Pavel; Nguyen, Khieu-Van; Li, Jing-Rebecca; Ciobanu, Luisa

    2017-08-01

    High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI), which uses manganese as a T1 contrast agent, has great potential for functional imaging of live neuronal tissue at single neuron scale. However, reaching high resolutions often requires long acquisition times which can lead to reduced image quality due to sample deterioration and hardware instability. Compressed Sensing (CS) techniques offer the opportunity to significantly reduce the imaging time. The purpose of this work is to test the feasibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) sampling patterns for high resolution quantitative T1-weighted imaging. Fully encoded and DLA-CS T1-weighted images of Aplysia californica neural tissue were acquired on a 17.2T MRI system. The MR signal corresponding to single, identified neurons was quantified for both versions of the T1 weighted images. For a 50% undersampling, DLA-CS can accurately quantify signal intensities in T1-weighted acquisitions leading to only 1.37% differences when compared to the fully encoded data, with minimal impact on image spatial resolution. In addition, we compared the conventional polynomial undersampling scheme with the DLA and showed that, for the data at hand, the latter performs better. Depending on the image signal to noise ratio, higher undersampling ratios can be used to further reduce the acquisition time in MEMRI based functional studies of living tissues.

  7. A computerized MRI biomarker quantification scheme for a canine model of Duchenne muscular dystrophy.

    PubMed

    Wang, Jiahui; Fan, Zheng; Vandenborne, Krista; Walter, Glenn; Shiloh-Malawsky, Yael; An, Hongyu; Kornegay, Joe N; Styner, Martin A

    2013-09-01

    Golden retriever muscular dystrophy (GRMD) is a widely used canine model of Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. In this paper, we propose a semiautomated system to quantify MRI biomarkers of GRMD. Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles using a semiautomated full muscle segmentation method. We then performed preprocessing, including intensity inhomogeneity correction, spatial registration of different image sequences, intensity calibration of T2-weighted and T2-weighted fat-suppressed images, and calculation of MRI biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI biomarkers of muscle volume, intensity statistics over MRI biomarker maps, and statistical image texture features. The muscle volume and the mean intensities in T2 value, fat, and water maps showed group differences between normal and GRMD dogs. For the statistical texture biomarkers, both the histogram and run-length matrix features showed obvious group differences between normal and GRMD dogs. The full muscle segmentation showed significantly less error and variability in the proposed biomarkers when compared to the standard, limited muscle range segmentation. The experimental results demonstrated that this quantification tool could reliably quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying disease progression and measuring therapeutic effect in DMD patients.

  8. The value of specific MRI features in the evaluation of suspected placental invasion.

    PubMed

    Lax, Allison; Prince, Martin R; Mennitt, Kevin W; Schwebach, J Reid; Budorick, Nancy E

    2007-01-01

    The objective of this study was to determine imaging features that may help predict the presence of placenta accreta, placenta increta or placenta percreta on prenatal MRI scanning. A retrospective review of the prenatal MR scans of 10 patients with a diagnosis of placenta accreta, placenta increta or placenta percreta made by pathologic and clinical reports and of 10 patients without placental invasion was performed. Two expert MRI readers were blinded to the patients' true diagnosis and were asked to score a total of 17 MRI features of the placenta and adjacent structures. The interrater reliability was assessed using kappa statistics. The features with a moderate kappa statistic or better (kappa > .40) were then compared with the true diagnosis for each observer. Seven of the scored features had an interobserver reliability of kappa > .40: placenta previa (kappa = .83); abnormal uterine bulging (kappa = .48); intraplacental hemorrhage (kappa = .51); heterogeneity of signal intensity on T2-weighted (T2W) imaging (kappa = .61); the presence of dark intraplacental bands on T2W imaging (kappa = .53); increased placental thickness (kappa = .69); and visualization of the myometrium beneath the placenta on T2W imaging (kappa = .44). Using Fisher's two-sided exact test, there was a statistically significant difference between the proportion of patients with placental invasion and those without placental invasion for three of the features: abnormal uterine bulging (Rater 1, P = .005; Rater 2, P = .011); heterogeneity of T2W imaging signal intensity (Rater 1, P = .006; Rater 2, P = .010); and presence of dark intraplacental bands on T2W imaging (Rater 1, P = .003; Rater 2, P = .033). MRI can be a useful adjunct to ultrasound in diagnosing placenta accreta prenatally. Three features that are seen on MRI in patients with placental invasion appear to be useful for diagnosis: uterine bulging; heterogeneous signal intensity within the placenta; and the presence of dark

  9. Relative Value of Restaging MRI, CT, and FDG-PET Scan After Preoperative Chemoradiation for Rectal Cancer.

    PubMed

    Schneider, Daniel A; Akhurst, Timothy J; Ngan, Samuel Y; Warrier, Satish K; Michael, Michael; Lynch, Andrew C; Te Marvelde, Luc; Heriot, Alexander G

    2016-03-01

    Management of rectal cancer has become multidisciplinary and is driven by the stage of the disease, with increased focus on restaging rectal cancer after neoadjuvant therapy. The purpose of this study was to assess the relative impact of restaging after preoperative chemoradiation with FDG-PET scan, CT, and MRI in the management of patients with rectal cancer. This was a retrospective study from a single institution. This study was conducted at a tertiary cancer center. A total of 199 patients met the inclusion criteria: patients with rectal adenocarcinoma; staged with positron emission tomography, CT, and MRI; T2 to T4, N0 to N2, M0 to M1; treated with neoadjuvant chemoradiation 50.4 Gy and infusional 5-fluorouracil; and restaged 4 weeks after chemoradiation before surgery between 2003 and 2013. Comparisons of the tumor stage among different imaging modalities before and after neoadjuvant chemoradiation were performed. The impact of restaging on the management plan was assessed. The stage at presentation was T2, 8.04%; T3, 65.33%; T4, 26.63%; N0, 17.09%; N1, 47.74%; N2, 34.67%; M0, 81.91%; and M1, 18.09%. Changes in disease stage postneoadjuvant chemoradiation were observed in 99 patients (50%). The management plans of 29 patients (15%) were changed. The impact of each restaging modality on management for all of the patients was positron emission tomography, 11%; CT, 4%; and MRI, 4%. In patients with metastatic disease at primary staging, the relative impact of each restaging modality in changing management was positron emission tomography, 32%; CT, 18%; and MRI, 6%. This study was limited by its single-center and retrospective design. Operations were performed 4 weeks after restaging. Changes in the extent of disease after long-course chemoradiotherapy result in changes of management in a significant percentage of patients. Positron emission tomography has the most significant impact in the change of management overall, and its use in restaging advanced rectal

  10. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p < 3.323E-08) and 200 μL dose (p < 0.0007396). Discussion: In this preliminary study, the 150 μL Gd-DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  11. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Jerome, N. P.; d'Arcy, J. A.; Feiweier, T.; Koh, D.-M.; Leach, M. O.; Collins, D. J.; Orton, M. R.

    2016-12-01

    The bi-exponential intravoxel-incoherent-motion (IVIM) model for diffusion-weighted MRI (DWI) fails to account for differential T 2 s in the model compartments, resulting in overestimation of pseudodiffusion fraction f. An extended model, T2-IVIM, allows removal of the confounding echo-time (TE) dependence of f, and provides direct compartment T 2 estimates. Two consented healthy volunteer cohorts (n  =  5, 6) underwent DWI comprising multiple TE/b-value combinations (Protocol 1: TE  =  62-102 ms, b  =  0-250 mm-2s, 30 combinations. Protocol 2: 8 b-values 0-800 mm-2s at TE  =  62 ms, with 3 additional b-values 0-50 mm-2s at TE  =  80, 100 ms scanned twice). Data from liver ROIs were fitted with IVIM at individual TEs, and with the T2-IVIM model using all data. Repeat-measures coefficients of variation were assessed for Protocol 2. Conventional IVIM modelling at individual TEs (Protocol 1) demonstrated apparent f increasing with longer TE: 22.4  ±  7% (TE  =  62 ms) to 30.7  ±  11% (TE  =  102 ms) T2-IVIM model fitting accounted for all data variation. Fitting of Protocol 2 data using T2-IVIM yielded reduced f estimates (IVIM: 27.9  ±  6%, T2-IVIM: 18.3  ±  7%), as well as T 2  =  42.1  ±  7 ms, 77.6  ±  30 ms for true and pseudodiffusion compartments, respectively. A reduced Protocol 2 dataset yielded comparable results in a clinical time frame (11 min). The confounding dependence of IVIM f on TE can be accounted for using additional b/TE images and the extended T2-IVIM model.

  12. Sci-Thur PM - Colourful Interactions: Highlights 04: A Fast Quantitative MRI Acquisition and Processing Pipeline for Radiation Treatment Planning and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jutras, Jean-David

    MRI-only Radiation Treatment Planning (RTP) is becoming increasingly popular because of a simplified work-flow, and less inconvenience to the patient who avoids multiple scans. The advantages of MRI-based RTP over traditional CT-based RTP lie in its superior soft-tissue contrast, and absence of ionizing radiation dose. The lack of electron-density information in MRI can be addressed by automatic tissue classification. To distinguish bone from air, which both appear dark in MRI, an ultra-short echo time (UTE) pulse sequence may be used. Quantitative MRI parametric maps can provide improved tissue segmentation/classification and better sensitivity in monitoring disease progression and treatment outcome thanmore » standard weighted images. Superior tumor contrast can be achieved on pure T{sub 1} images compared to conventional T{sub 1}-weighted images acquired in the same scan duration and voxel resolution. In this study, we have developed a robust and fast quantitative MRI acquisition and post-processing work-flow that integrates these latest advances into the MRI-based RTP of brain lesions. Using 3D multi-echo FLASH images at two different optimized flip angles (both acquired in under 9 min, and 1mm isotropic resolution), parametric maps of T{sub 1}, proton-density (M{sub 0}), and T{sub 2}{sup *} are obtained with high contrast-to-noise ratio, and negligible geometrical distortions, water-fat shifts and susceptibility effects. An additional 3D UTE MRI dataset is acquired (in under 4 min) and post-processed to classify tissues for dose simulation. The pipeline was tested on four healthy volunteers and a clinical trial on brain cancer patients is underway.« less

  13. MRI Evaluation and Safety in the Developing Brain

    PubMed Central

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J.; Panigrahy, Ashok

    2015-01-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5T and 3T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, sedation considerations and a discussion of current technologies such as MRI-conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. PMID:25743582

  14. T1-weighted dual-echo MRI for fat quantification in pediatric nonalcoholic fatty liver disease.

    PubMed

    Pacifico, Lucia; Martino, Michele Di; Catalano, Carlo; Panebianco, Valeria; Bezzi, Mario; Anania, Caterina; Chiesa, Claudio

    2011-07-07

    To determine in obese children with nonalcoholic fatty liver disease (NAFLD) the accuracy of magnetic resonance imaging (MRI) in assessing liver fat concentration. A case-control study was performed. Cases were 25 obese children with biopsy-proven NAFLD. Controls were 25 obese children matched for age and gender, without NAFLD at ultrasonography and with normal levels of aminotransferases and insulin. Hepatic fat fraction (HFF) by MRI was obtained using a modification of the Dixon method. HFF ranged from 2% to 44% [mean, 19.0% (95% CI, 15.1-27.4)] in children with NAFLD, while in the controls this value ranged from 0.08% to 4.69% [2.0% (1.3-2.5), P < 0.0001]. HFF was highly correlated with histological steatosis (r = 0.883, P < 0.0001) in the NAFLD children. According to the histological grade of steatosis, the mean HFF was 8.7% (95% CI, 6.0-11.6) for mild, 21.6% (15.3-27.0) for moderate, and 39.7% (34.4-45.0) for severe fatty liver infiltration. With a cutoff of 4.85%, HFF had a sensitivity of 95.8% for the diagnosis of histological steatosis ≥ 5%. All control children had HFF lower than 4.85%; thus, the specificity was 100%. After 12 mo, children with weight loss displayed a significant decrease in HFF. MRI is an accurate methodology for liver fat quantification in pediatric NAFLD.

  15. [Diffusion weighted imaging and perfusion weighted imaging in the differential diagnosis of benign and malignant renal masses on 3.0 T MRI].

    PubMed

    Xu, Xiaowen; Wang, Peijun; Ma, Liang; Shao, Zhihong; Zhang, Min

    2015-01-20

    To explore the value of diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI) in identifying benign and malignant renal masses and differentiating the histological types of renal masses. Fifteen healthy volunteers and 46 patients with renal masses proven by pathology, including clear cell carcinomas (n = 18), papillary carcinomas (n = 8), chromophobe carcinomas (n = 7) and angiomyolipomas (n = 13), were examined with DWI and PWI scan at 3.0 T MRI. ANOVA was employed to compare the values of transfer constant (K(trans)), rate constant of backflux (Kep) and extra-vascular extra-cellular space fractional volume (Ve) proceeded by PWI and the value of ADC resulted from DWI between normal kidney and different histological types of renal masses. Receiver operating characteristics (ROC) curve was used to analyze and compare the diagnostic value of the methods of PWI and DWI in differentiating benign and malignant renal masses. The ADC value of normal renal parenchyma was (2.10 ± 0.24) × 10⁻³ mm²/s, which was statistically higher than benign and malignant renal masses (P < 0.05). The ADC value of benign masses was statistically higher than that of all histological types of malignant masses (P < 0.05). Among three histological types of malignancies, clear cell carcinoma showed the statistically highest ADC value (P < 0.05). But the difference between papillary carcinoma and chromophobe carcinoma had no statistical significance (P > 0.05).Values of K(trans), Kep and Ve between normal renal parenchyma and different histological types of renal masses had statistical differences.Values of K(trans) and Ve in three histological types of malignant renal masses were statistically higher than those of benign renal masses.Kep value of clear cell carcinoma was significantly higher than that of benign renal masses (P < 0.05).However, other histological types of malignant masses had no significant difference with benign masses.For three malignant masses, K(trans) of

  16. New Findings, Classification and Long-Term Follow-Up Study Based on MRI Characterization of Brainstem Encephalitis Induced by Enterovirus 71

    PubMed Central

    Wen, Feiqiu; Huang, Wenxian; Gan, Yungen; Zeng, Weibin; Chen, Ranran; He, Yanxia; Wang, Yonker; Liu, Zaiyi; Liang, Changhong; Wong, Kelvin K. L.

    2016-01-01

    Background To report the diversity of MRI features of brainstem encephalitis (BE) induced by Enterovirus 71. This is supported by implementation and testing of our new classification scheme in order to improve the diagnostic level on this specific disease. Methods Neuroimaging of 91 pediatric patients who got EV71 related BE were hospitalized between March, 2010 to October, 2012, were analyzed retrospectively. All patients underwent pre- and post-contrast MRI scan. Thereafter, 31 patients were randomly called back for follow-up MRI study during December 2013 to August 2014. The MRI signal patterns of BE primary lesion were analyzed and classified according to MR signal alteration at various disease stages. Findings in fatal and non-fatal cases were compared, and according to the MRI scan time point during the course of this disease, the patients’ conditions were classified as 1) acute stage, 2) convalescence stage, 3) post mortem stage, and 4) long term follow-up study. Results 103 patients were identified. 11 patients did not undergo MRI, as they died within 48 hours. One patient died on 14th day without MR imaging. 2 patients had postmortem MRI. Medical records and imaging were reviewed in the 91 patients, aged 4 months to 12 years, and two cadavers who have had MRI scan. At acute stage: the most frequent pattern (40 patients) was foci of prolonged T1 and T2 signal, with (15) or without (25) contrast enhancement. We observed a novel pattern in 4 patients having foci of low signal intensity on T2WI, with contrast enhancement. Another pattern in 10 patients having foci of contrast enhancement without abnormalities in T1WI or T2WI weighted images. Based on 2 cases, the entire medulla and pons had prolonged T1 and T2 signal, and 2 of our postmortem cases demonstrated the same pattern. At convalescence stage, the pattern observed in 4 patients was foci of prolonged T1 and T2 signal without contrast enhancement. Follow-up MR study of 31 cases showed normal in 26

  17. New Findings, Classification and Long-Term Follow-Up Study Based on MRI Characterization of Brainstem Encephalitis Induced by Enterovirus 71.

    PubMed

    Zeng, Hongwu; Wen, Feiqiu; Huang, Wenxian; Gan, Yungen; Zeng, Weibin; Chen, Ranran; He, Yanxia; Wang, Yonker; Liu, Zaiyi; Liang, Changhong; Wong, Kelvin K L

    2016-01-01

    To report the diversity of MRI features of brainstem encephalitis (BE) induced by Enterovirus 71. This is supported by implementation and testing of our new classification scheme in order to improve the diagnostic level on this specific disease. Neuroimaging of 91 pediatric patients who got EV71 related BE were hospitalized between March, 2010 to October, 2012, were analyzed retrospectively. All patients underwent pre- and post-contrast MRI scan. Thereafter, 31 patients were randomly called back for follow-up MRI study during December 2013 to August 2014. The MRI signal patterns of BE primary lesion were analyzed and classified according to MR signal alteration at various disease stages. Findings in fatal and non-fatal cases were compared, and according to the MRI scan time point during the course of this disease, the patients' conditions were classified as 1) acute stage, 2) convalescence stage, 3) post mortem stage, and 4) long term follow-up study. 103 patients were identified. 11 patients did not undergo MRI, as they died within 48 hours. One patient died on 14th day without MR imaging. 2 patients had postmortem MRI. Medical records and imaging were reviewed in the 91 patients, aged 4 months to 12 years, and two cadavers who have had MRI scan. At acute stage: the most frequent pattern (40 patients) was foci of prolonged T1 and T2 signal, with (15) or without (25) contrast enhancement. We observed a novel pattern in 4 patients having foci of low signal intensity on T2WI, with contrast enhancement. Another pattern in 10 patients having foci of contrast enhancement without abnormalities in T1WI or T2WI weighted images. Based on 2 cases, the entire medulla and pons had prolonged T1 and T2 signal, and 2 of our postmortem cases demonstrated the same pattern. At convalescence stage, the pattern observed in 4 patients was foci of prolonged T1 and T2 signal without contrast enhancement. Follow-up MR study of 31 cases showed normal in 26 cases, and demonstrated foci of

  18. Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival

    PubMed Central

    Sahoo, Prativa; Frankel, Paul; Ressler, Julie; Gutova, Margarita; Annala, Alexander J.; Portnow, Jana; Aboody, Karen S.

    2018-01-01

    Background The aim of this study was to correlate T1-weighted dynamic contrast-enhanced MRI- (DCE-MRI-) derived perfusion parameters with overall survival of recurrent high-grade glioma patients who received neural stem cell- (NSC-) mediated enzyme/prodrug gene therapy. Methods A total of 12 patients were included in this retrospective study. All patients were enrolled in a first-in-human study (NCT01172964) of NSC-mediated therapy for recurrent high-grade glioma. DCE-MRI data from all patients were collected and analyzed at three time points: MRI#1—day 1 postsurgery/treatment, MRI#2— day 7 ± 3 posttreatment, and MRI#3—one-month follow-up. Plasma volume (V p), permeability (K tr), and leakage (λ tr) perfusion parameters were calculated by fitting a pharmacokinetic model to the DCE-MRI data. The contrast-enhancing (CE) volume was measured from the last dynamic phase acquired in the DCE sequence. Perfusion parameters and CE at each MRI time point were recorded along with their relative change between MRI#2 and MRI#3 (Δ32). Cox regression was used to analyze patient survival. Results At MRI#1 and at MRI#3, none of the parameters showed a significant correlation with overall survival (OS). However, at MRI#2, CE and λ tr were significantly associated with OS (p < 0.05). The relative λ tr and V p from timepoint 2 to timepoint 3 (Δ32 λ tr and Δ32 V p) were each associated with a higher hazard ratio (p < 0.05). All parameters were highly correlated, resulting in a multivariate model for OS including only CE at MRI#2 and Δ32 V p, with an R 2 of 0.89. Conclusion The change in perfusion parameter values from 1 week to 1 month following NSC-mediated therapy combined with contrast-enhancing volume may be a useful biomarker to predict overall survival in patients with recurrent high-grade glioma. PMID:29731779

  19. Early Changes in Tumor Perfusion from T1-Weighted Dynamic Contrast-Enhanced MRI following Neural Stem Cell-Mediated Therapy of Recurrent High-Grade Glioma Correlate with Overall Survival.

    PubMed

    Sahoo, Prativa; Frankel, Paul; Ressler, Julie; Gutova, Margarita; Annala, Alexander J; Badie, Behnam; Portnow, Jana; Aboody, Karen S; D'Apuzzo, Massimo; Rockne, Russell C

    2018-01-01

    The aim of this study was to correlate T1-weighted dynamic contrast-enhanced MRI- (DCE-MRI-) derived perfusion parameters with overall survival of recurrent high-grade glioma patients who received neural stem cell- (NSC-) mediated enzyme/prodrug gene therapy. A total of 12 patients were included in this retrospective study. All patients were enrolled in a first-in-human study (NCT01172964) of NSC-mediated therapy for recurrent high-grade glioma. DCE-MRI data from all patients were collected and analyzed at three time points: MRI#1-day 1 postsurgery/treatment, MRI#2- day 7 ± 3 posttreatment, and MRI#3-one-month follow-up. Plasma volume ( V p ), permeability ( K tr ), and leakage ( λ tr ) perfusion parameters were calculated by fitting a pharmacokinetic model to the DCE-MRI data. The contrast-enhancing (CE) volume was measured from the last dynamic phase acquired in the DCE sequence. Perfusion parameters and CE at each MRI time point were recorded along with their relative change between MRI#2 and MRI#3 (Δ 32 ). Cox regression was used to analyze patient survival. At MRI#1 and at MRI#3, none of the parameters showed a significant correlation with overall survival (OS). However, at MRI#2, CE and λ tr were significantly associated with OS ( p < 0.05). The relative λ tr and V p from timepoint 2 to timepoint 3 (Δ 32 λ tr and Δ 32 V p ) were each associated with a higher hazard ratio ( p < 0.05). All parameters were highly correlated, resulting in a multivariate model for OS including only CE at MRI#2 and Δ 32 V p , with an R 2 of 0.89. The change in perfusion parameter values from 1 week to 1 month following NSC-mediated therapy combined with contrast-enhancing volume may be a useful biomarker to predict overall survival in patients with recurrent high-grade glioma.

  20. [3T magnetic resonance T2 mapping for evaluation of cartilage repair after matrix-associated autologous chondrocyte transplantation].

    PubMed

    Zhang, Jun; Xu, Xian; Li, Xue; Chen, Min; Dong, Tian-Ming; Zuo, Pan-Li; An, Ning-Yu

    2015-01-01

    To assess the value of magnetic resonance imaging (MRI) T2 mapping in quantitative evaluation of cartilage repair following matrix-associated autologous chondrocyte transplantation (MACT). Six patients (with 9 plug cartilages) following MACT underwent MRI on a 3.0 Tesla MR scan system at 3, 6 and 12 months after the surgery. The full-thickness and zonal areas (deep and superficial layers) T2 values were calculated for the repaired cartilage and control cartilage. The mean T2 values of the repaired cartilage after MACT were significantly higher than that of the control cartilages at 3 and 6 months (P<0.05), but not at 12 months (P=0.063). At 6 and 12 months, the T2 values of the superficial layers were significantly higher than those of the deep layers in the repaired cartilages (P<0.05). The zonal (deep and superficial layers) T2 values of the repaired cartilages decreased significantly over time at 6 and 12 months as compared to those at 3 months after the surgery (P<0.05). MRI T2 mapping can serve as an important modality for assessing the repair of the articular cartilage following MACT.

  1. Fully Bayesian inference for structural MRI: application to segmentation and statistical analysis of T2-hypointensities.

    PubMed

    Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark

    2013-01-01

    Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.

  2. Ultrasound guided high-intensity focused ultrasound combined with gonadotropin releasing hormone analogue (GnRHa) ablating uterine leiomyoma with homogeneous hyperintensity on T2 weighted MR imaging.

    PubMed

    Yang, Shenghua; Kong, Fanjing; Hou, Ruijie; Rong, Fengmei; Ma, Nana; Li, Shaoping; Yang, Jun

    2017-05-01

    The study aimed to evaluate the safety and efficiency of ultrasound-guided high-intensity focused ultrasound (USgHIFU) combined with gonadotropin-releasing hormone analogue (GnRHa)-ablating symptomatic uterine leiomyoma with homogeneous hyperintensity on T 2 weighted MRI prospectively. A total of 34 patients with 42 symptomatic uterine leiomyomas with homogeneous hyperintensity on T 2 weighted MRI were enrolled in our study. In the patient who had multiple uterine leiomyomas, only one dominant leiomyoma was treated. According to the principles of voluntariness, 18 patients underwent a 3-month therapy of GnRHa (once a month) before the high-intensity focused ultrasound (HIFU) treatment, while 16 patients received only HIFU treatment. Enhanced MRI was performed before and after GnRHa and HIFU treatment. Evaluation of the main indicators included treatment time, sonication time, treatment efficiency, non-perfused volume (NPV) (indicative of successful ablation) ratio and energy effect ratio; adverse events were also recorded. The treatment time and sonication time of the combination group were 102.0 min (55.8-152.2 min) and 25.4 min (12.2-34.1 min); however, they were 149.0 min (87.0-210.0 min) and 38.9 min (14.0-46.7 min) in the simple USgHIFU group. The treatment and sonication time for the combination group was significantly shorter than that for the simple USgHIFU group. Treatment efficiency, NPV ratio and energy effect ratio were 46.7 mm 3  s -1 (28.5-95.8 mm 3  s -1 ), 69.2 ± 29.8% (35.5-97.4%) and 9.9 KJ mm -3 (4.5-15.7 KJ mm -3 ) in the combination group, respectively; but, the lowest treatment efficiency, lowest NPV ratio and more energy effect ratio were observed in the simple HIFU group, which were 16.8 mm 3  s -1 (8.9-32.9 mm 3  s -1 ), 50.2 ± 27.3% (0-78.6%) and 23.8 KJ mm -3 (12.4-46.2 KJ mm -3 ), respectively. Pain scores in the combination group were 3.0 ± 0.5 points (2-4 points

  3. Insulin Resistance-Associated Interhemispheric Functional Connectivity Alterations in T2DM: A Resting-State fMRI Study

    PubMed Central

    Xia, Wenqing; Wang, Shaohua; Spaeth, Andrea M.; Rao, Hengyi; Wang, Pin; Yang, Yue; Huang, Rong; Cai, Rongrong; Sun, Haixia

    2015-01-01

    We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM) by using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR) among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG) and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR) negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients. PMID:26064945

  4. Implant detectibility of intervertebral disc spacers in post fusion MRI: evaluation of the MRI scan quality by using a scoring system--an in vitro study.

    PubMed

    Ernstberger, Thorsten; Heidrich, Gabert; Schultz, Wolfgang; Grabbe, Eckhardt

    2007-02-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium and cobalt chromium alloys and carbon fiber-reinforced polymers. Implant-related susceptibility artifacts can decrease the quality of MRI scans. The aim of this cadaveric study was to demonstrate the extent that implant-related MRI artifacting affects the postfusion differentiation of determined regions of interest (ROIs). In six cadaveric porcine spines, we evaluated the postimplantation MRI scans of a titanium, cobalt-chromium and carbon spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into ROIs to characterize the spinal canal as well as the intervertebral disc space. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists the artifact-affected image quality of the median MRI slice was rated on a score of 0-3. A maximum score of 18 points (100%) for the determined ROIs was possible. Turbo spin echo sequences produced the best scores for all spacers and the control. Only the control achieved a score of 100%. For the determined ROI maximum scores for the cobalt-chromium, titanium and carbon spacers were 24%, 32% and 84%, respectively. By using favored T1 TSE sequences the carbon spacer showed a clear advantage in postfusion spinal imaging. Independent of artifact dimensions, the scoring system used allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.

  5. Repeated diffusion MRI reveals earliest time point for stratification of radiotherapy response in brain metastases

    NASA Astrophysics Data System (ADS)

    Mahmood, Faisal; Johannesen, Helle H.; Geertsen, Poul; Hansen, Rasmus H.

    2017-04-01

    An imaging biomarker for early prediction of treatment response potentially provides a non-invasive tool for better prognostics and individualized management of the disease. Radiotherapy (RT) response is generally related to changes in gross tumor volume manifesting months later. In this prospective study we investigated the apparent diffusion coefficient (ADC), perfusion fraction and pseudo diffusion coefficient derived from diffusion weighted MRI as potential early biomarkers for radiotherapy response of brain metastases. It was a particular aim to assess the optimal time point for acquiring the DW-MRI scan during the course of treatment, since to our knowledge this important question has not been addressed directly in previous studies. Twenty-nine metastases (N  =  29) from twenty-one patients, treated with whole-brain fractionated external beam RT were analyzed. Patients were scanned with a 1 T MRI system to acquire DW-, T2*W-, T2W- and T1W scans, before start of RT, at each fraction and at follow up two to three months after RT. The DW-MRI parameters were derived using regions of interest based on high b-value images (b  =  800 s mm-2). Both volumetric and RECIST criteria were applied for response evaluation. It was found that in non-responding metastases the mean ADC decreased and in responding metastases it increased. The volume based response proved to be far more consistently predictable by the ADC change found at fraction number 7 and later, compared to the linear response (RECIST). The perfusion fraction and pseudo diffusion coefficient did not show sufficient prognostic value with either response assessment criteria. In conclusion this study shows that the ADC derived using high b-values may be a reliable biomarker for early assessment of radiotherapy response for brain metastases patients. The earliest response stratification can be achieved using two DW-MRI scans, one pre-treatment and one at treatment day 7-9 (equivalent to 21 Gy).

  6. ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI.

    PubMed

    Yiannakas, Marios C; Tozer, Daniel J; Schmierer, Klaus; Chard, Declan T; Anderson, Valerie M; Altmann, Daniel R; Miller, David H; Wheeler-Kingshott, Claudia A M

    2013-05-01

    There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. We obtained conventional PDw and T2w images from 10 patients with relapsing-remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. Our study's ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished.

  7. ADvanced IMage Algebra (ADIMA): a novel method for depicting multiple sclerosis lesion heterogeneity, as demonstrated by quantitative MRI

    PubMed Central

    Tozer, Daniel J; Schmierer, Klaus; Chard, Declan T; Anderson, Valerie M; Altmann, Daniel R; Miller, David H; Wheeler-Kingshott, Claudia AM

    2013-01-01

    Background: There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. Objective: To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. Methods: We obtained conventional PDw and T2w images from 10 patients with relapsing–remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. Results: Our study’s ADIMA-derived volumes correlated with conventional lesion volumes (p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML (p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. Conclusion: ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished. PMID:23037551

  8. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging.

    PubMed

    Murphy, B J

    2001-06-01

    To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee.

  9. Small mammal MRI imaging in spinal cord injury: a novel practical technique for using a 1.5 T MRI.

    PubMed

    Levene, Howard B; Mohamed, Feroze B; Faro, Scott H; Seshadri, Asha B; Loftus, Christopher M; Tuma, Ronald F; Jallo, Jack I

    2008-07-30

    The field of spinal cord injury research is an active one. The pathophysiology of SCI is not yet entirely revealed. As such, animal models are required for the exploration of new therapies and treatments. We present a novel technique using available hospital MRI machines to examine SCI in a mouse SCI model. The model is a 60 kdyne direct contusion injury in a mouse thoracic spine. No new electronic equipment is required. A 1.5T MRI machine with a human wrist coil is employed. A standard multisection 2D fast spin-echo (FSE) T2-weighted sequence is used for imaging the mouse. The contrast-to-noise ratio (CNR) between the injured and normal area of the spinal cord showed a three-fold increase in the contrast between these two regions. The MRI findings could be correlated with kinematic outcome scores of ambulation, such as BBB or BMS. The ability to follow a SCI in the same animal over time should improve the quality of data while reducing the quantity of animals required in SCI research. It is the aim of the authors to share this non-invasive technique and to make it available to the scientific research community.

  10. Revised PROPELLER for T2-weighted imaging of the prostate at 3 Tesla: impact on lesion detection and PI-RADS classification.

    PubMed

    Meier-Schroers, Michael; Marx, Christian; Schmeel, Frederic Carsten; Wolter, Karsten; Gieseke, Jürgen; Block, Wolfgang; Sprinkart, Alois Martin; Traeber, Frank; Willinek, Winfried; Schild, Hans Heinz; Kukuk, Guido Matthias

    2018-01-01

    To evaluate revised PROPELLER (RevPROP) for T2-weighted imaging (T2WI) of the prostate as a substitute for turbo spin echo (TSE). Three-Tesla MR images of 50 patients with 55 cancer-suspicious lesions were prospectively evaluated. Findings were correlated with histopathology after MRI-guided biopsy. T2 RevPROP, T2 TSE, diffusion-weighted imaging, dynamic contrast enhancement, and MR-spectroscopy were acquired. RevPROP was compared to TSE concerning PI-RADS scores, lesion size, lesion signal-intensity, lesion contrast, artefacts, and image quality. There were 41 carcinomas in 55 cancer-suspicious lesions. RevPROP detected 41 of 41 carcinomas (100%) and 54 of 55 lesions (98.2%). TSE detected 39 of 41 carcinomas (95.1%) and 51 of 55 lesions (92.7%). RevPROP showed fewer artefacts and higher image quality (each p < 0.001). No differences were observed between single and overall PI-RADS scores based on RevPROP or TSE (p = 0.106 and p = 0.107). Lesion size was not different (p = 0.105). T2-signal intensity of lesions was higher and T2-contrast of lesions was lower on RevPROP (each p < 0.001). For prostate cancer detection RevPROP is superior to TSE with respect to motion robustness, image quality and detection rates of lesions. Therefore, RevPROP might be used as a substitute for T2WI. • Revised PROPELLER can be used as a substitute for T2-weighted prostate imaging. • Revised PROPELLER detected more carcinomas and more suspicious lesions than TSE. • Revised PROPELLER showed fewer artefacts and better image quality compared to TSE. • There were no significant differences in PI-RADS scores between revised PROPELLER and TSE. • The lower T2-contrast of revised PROPELLER did not impair its diagnostic quality.

  11. Uterine sarcoma vs adenocarcinoma: can MRI distinguish between them?

    PubMed

    Hernández Mateo, P; Méndez Fernández, R; Serrano Tamayo, E

    2016-01-01

    To analyze the MRI characteristics of uterine sarcomas (mainly carcinosarcomas) and to compare them with those of adenocarcinomas to define the findings that would be useful for the differential diagnosis. We retrospectively reviewed the MRI studies of 13 patients with histologically diagnosed uterine sarcoma. We analyzed tumor size, signal in T2-weighted, unenhanced and gadolinium-enhanced T1-weighted, and diffusion-weighted sequences. We compared the data obtained with those of another series of 30 consecutive cases of adenocarcinomas studied with MRI. The sarcomas (> 9cm in 77% of cases) were considerably larger than the adenocarcinomas (p<0.001). There were no differences in FIGO staging by MRI or surgery: both tumor types were diagnosed in early stages. The signal intensity in T2-weighted images differed significantly between the two tumor types: all the sarcomas were heterogeneous and predominantly hyperintense with respect to the myometrium in T2-weighted sequences (p<0.001). In postcontrast studies, all the sarcomas showed enhancement greater than or equal to the myometrium; this finding was significantly different from the adenocarcinomas (p<0.001). In diffusion-weighted sequences, we found no significant differences in ADC values in the areas with greatest restriction, but the ADC map was more heterogeneous in the sarcomas. Uterine sarcomas do not have specific characteristics on MRI, but some findings can indicate the diagnosis. In our study, we found significant differences between sarcomas and adenocarcinomas. Sarcomas were larger, had more hyperintense and heterogeneous signal intensity in T2-weighted sequences, and enhanced more than or at least as much as the myometrium. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  12. Effect of low refocusing angle in T1-weighted spin echo and fast spin echo MRI on low-contrast detectability: a comparative phantom study at 1.5 and 3 Tesla.

    PubMed

    Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R

    2013-01-01

    MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.

  13. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi, E-mail: yiguo@usc.edu; Zhu, Yinghua; Lingala, Sajan Goud

    Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm{sup 3}, FOV 22 × 22 × 4.2 cm{sup 3}, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm{sup 3}, and broader coverage 22 × 22 × 19 cm{sup 3}. Temporal resolution was 5 smore » for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.« less

  14. Prospective Evaluation of 68Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Findings on Conventional Imaging.

    PubMed

    Minamimoto, Ryogo; Sonni, Ida; Hancock, Steven; Vasanawala, Shreyas; Loening, Andreas; Gambhir, Sanjiv S; Iagaru, Andrei

    2018-05-01

    68 Ga-labeled DOTA-4-amino-1-carboxymethyl-piperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH 2 ( 68 Ga-RM2) is a synthetic bombesin receptor antagonist that targets gastrin-releasing peptide receptor (GRPr). GRPr proteins are highly overexpressed in several human tumors, including prostate cancer (PCa). We present data from the use of 68 Ga-RM2 in patients with biochemical recurrence (BCR) of PCa and negative findings on conventional imaging. Methods: We enrolled 32 men with BCR of PCa, who were 59-83 y old (mean ± SD, 68.7 ± 6.4 y). Imaging started at 40-69 min (mean, 50.5 ± 6.8 min) after injection of 133.2-151.7 MBq (mean, 140.6 ± 7.4 MBq) of 68 Ga-RM2 using a time-of-flight-enabled simultaneous PET/MRI scanner. T1-weighted, T2-weighted, and diffusion-weighted images were acquired. Results: All patients had a rising level of prostate-specific antigen (PSA) (range, 0.3-119.0 ng/mL; mean, 10.1 ± 21.3 ng/mL) and negative findings on conventional imaging (CT or MRI, and a 99m Tc-methylene diphosphonate bone scan) before enrollment. The observed 68 Ga-RM2 PET detection rate was 71.8%. 68 Ga-RM2 PET identified recurrent PCa in 23 of the 32 participants, whereas the simultaneous MRI scan identified findings compatible with recurrent PCa in 11 of the 32 patients. PSA velocity was 0.32 ± 0.59 ng/mL/y (range, 0.04-1.9 ng/mL/y) in patients with negative PET findings and 2.51 ± 2.16 ng/mL/y (range, 0.13-8.68 ng/mL/y) in patients with positive PET findings ( P = 0.006). Conclusion: 68 Ga-RM2 PET can be used for assessment of GRPr expression in patients with BCR of PCa. High uptake in multiple areas compatible with cancer lesions suggests that 68 Ga-RM2 is a promising PET radiopharmaceutical for localization of disease in patients with BCR of PCa and negative findings on conventional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  15. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    PubMed

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  16. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Fatemi, A; Sahgal, A

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less

  17. Susceptibility-weighted imaging at 7 T: Improved diagnosis of cerebral cavernous malformations and associated developmental venous anomalies☆☆☆

    PubMed Central

    Frischer, Josa M.; Göd, Sabine; Gruber, Andreas; Saringer, Walter; Grabner, Günther; Gatterbauer, Brigitte; Kitz, Klaus; Holzer, Sabrina; Kronnerwetter, Claudia; Hainfellner, Johannes A.; Knosp, Engelbert; Trattnig, Siegfried

    2012-01-01

    Background and aim In the diagnosis of cerebral cavernous malformations (CCMs) magnetic resonance imaging is established as the gold standard. Conventional MRI techniques have their drawbacks in the diagnosis of CCMs and associated venous malformations (DVAs). The aim of our study was to evaluate susceptibility weighted imaging SWI for the detection of CCM and associated DVAs at 7 T in comparison with 3 T. Patients and methods 24 patients (14 female, 10 male; median age: 38.3 y (21.1 y–69.1 y) were included in the study. Patients enrolled in the study received a 3 T and a 7 T MRI on the same day. The following sequences were applied on both field strengths: a T1 weighted 3D GRE sequence (MP-RAGE) and a SWI sequence. After obtaining the study MRIs, eleven patients underwent surgery and 13 patients were followed conservatively or were treated radio-surgically. Results Patients initially presented with haemorrhage (n = 4, 16.7%), seizures (n = 2, 8.3%) or other neurology (n = 18, 75.0%). For surgical resected lesions histopathological findings verified the diagnosis of CCMs. A significantly higher number of CCMs was diagnosed at 7 T SWI sequences compared with 3 T SWI (p < 0.05). Additionally diagnosed lesions on 7 T MRI were significantly smaller compared to the initial lesions on 3 T MRIs (p < 0.001). Further, more associated DVAs were diagnosed at 7 T MRI compared to 3 T MRI. Conclusion SWI sequences at ultra-high-field MRI improve the diagnosis of CCMs and associated DVAs and therefore add important pre-operative information. PMID:24179744

  18. Comparison of contrast-enhanced T1-weighted FLAIR with BLADE, and spin-echo T1-weighted sequences in intracranial MRI.

    PubMed

    Alkan, Ozlem; Kizilkiliç, Osman; Yildirim, Tülin; Alibek, Sedat

    2009-06-01

    We compared periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER, BLADE) MR technique with spin echo (SE) technique for evaluation of artifacts, and detection and delineation of brain lesions. Contrast-enhanced T1-weighted fluid attenuated inversion recovery (FLAIR) images with BLADE technique (CE T1W-FLAIR BLADE) and contrast-enhanced T1-weighted SE (CE T1W-SE) were performed in 50 patients with intracranial enhancing lesions. These techniques were compared by two neuroradiologists for qualitative analysis of artifacts, lesion detectability, lesion delineation from adjacent structures, and preferred imaging technique; and for quantitative variables, i.e., lesion-to-background and lesion-to-cerebrospinal fluid (CSF) contrast-to-noise (CNR) ratios. Reader agreement was assessed by kappa statistics. All lesions depicted with the CE T1W-SE were also detected with the CE T1W-FLAIR BLADE technique. Delineation of lesions was better on CE T1W-FLAIR BLADE in the majority of patients. Flow-related artifacts were considerably reduced with CE T1W-FLAIR BLADE. A star-like artifact at the level of the 4(th) ventricle was noted on CE T1W-FLAIR BLADE but not on CE T1W-SE. The lesion-to-background CNR and lesion-to-CSF CNR did not show a statistically significant difference between the two techniques. CE T1W-FLAIR BLADE images were preferred by the observers over the CE T1w-SE images, indicating good interobserver agreement (k = 0.70). CE T1W-FLAIR BLADE technique is superior to CE T1WSE for delineation of lesions and reduction of flow-related artifacts, especially within the posterior fossa, and is preferred by readers. CE T1W-FLAIR BLADE may be an alternative approach to imaging, especially for posterior fossa lesions.

  19. Evaluation of T1/T2 ratios in a pilot study as a potential biomarker of biopsy: proven benign and malignant breast lesions in correlation with histopathological disease stage.

    PubMed

    Malikova, Marina A; Tkacz, Jaroslaw N; Slanetz, Priscilla J; Guo, Chao-Yu; Aakil, Adam; Jara, Hernan

    2017-08-01

    Early breast cancer detection is important for intervention and prognosis. Advances in treatment and outcome require diagnostic tools with highly positive predictive value. To study the potential role of quantitative MRI (qMRI) using T1/T2 ratios to differentiate benign from malignant breast lesions. A cross-sectional study of 69 women with 69 known or suspicious breast lesions were scanned with mixed-turbo spin echo pulse sequence. Patients were grouped according to histopathological assessment of disease stage: untreated malignant tumor, treated malignancy and benign disease. Elevated T1/T2 means were observed for biopsy-proven malignant lesions and for malignant lesions treated prior to qMRI with chemotherapy and/or radiation, as compared with benign lesions. The qMRI-obtained T1/T2 ratios correlated with histopathology. Analysis revealed correlation between elevated T1/T2 ratio and disease stage. This could provide valuable complementary information on tissue properties as an additional diagnostic tool.

  20. Core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual modal MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Li, Fenfen; Zhi, Debo; Luo, Yufeng; Zhang, Jiqian; Nan, Xiang; Zhang, Yunjiao; Zhou, Wei; Qiu, Bensheng; Wen, Longping; Liang, Gaolin

    2016-06-01

    T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes could be applied as T1-T2 dual modal MR CAs for a wide range of theranostic applications in the near future.T1-T2 dual modal magnetic resonance imaging (MRI) has attracted considerable interest because it offers complementary diagnostic information, leading to more precise diagnosis. To date, a number of nanostructures have been reported as T1-T2 dual modal MR contrast agents (CAs). However, hybrids of nanocubes with both iron and gadolinium (Gd) elements as T1-T2 dual modal CAs have not been reported. Herein, we report the synthesis of novel core/shell Fe3O4/Gd2O3 nanocubes as T1-T2 dual-modal CAs and their application for enhanced T1-T2 MR imaging of rat livers. A relaxivity study at 1.5 T indicated that our Fe3O4/Gd2O3 nanocubes have an r1 value of 45.24 mM-1 s-1 and an r2 value of 186.51 mM-1 s-1, which were about two folds of those of Gd2O3 nanoparticles and Fe3O4 nanocubes, respectively. In vivo MR imaging of rats showed both T1-positive and T2-negative contrast enhancements in the livers. We envision that our Fe3O4/Gd2O3 nanocubes

  1. Reference-tissue correction of T2-weighted signal intensity for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Oto, Aytekin

    2014-03-01

    The purpose of this study was to investigate whether correction with respect to reference tissue of T2-weighted MRimage signal intensity (SI) improves its effectiveness for classification of regions of interest (ROIs) as prostate cancer (PCa) or normal prostatic tissue. Two image datasets collected retrospectively were used in this study: 71 cases acquired with GE scanners (dataset A), and 59 cases acquired with Philips scanners (dataset B). Through a consensus histology- MR correlation review, 175 PCa and 108 normal-tissue ROIs were identified and drawn manually. Reference-tissue ROIs were selected in each case from the levator ani muscle, urinary bladder, and pubic bone. T2-weighted image SI was corrected as the ratio of the average T2-weighted image SI within an ROI to that of a reference-tissue ROI. Area under the receiver operating characteristic curve (AUC) was used to evaluate the effectiveness of T2-weighted image SIs for differentiation of PCa from normal-tissue ROIs. AUC (+/- standard error) for uncorrected T2-weighted image SIs was 0.78+/-0.04 (datasets A) and 0.65+/-0.05 (datasets B). AUC for corrected T2-weighted image SIs with respect to muscle, bladder, and bone reference was 0.77+/-0.04 (p=1.0), 0.77+/-0.04 (p=1.0), and 0.75+/-0.04 (p=0.8), respectively, for dataset A; and 0.81+/-0.04 (p=0.002), 0.78+/-0.04 (p<0.001), and 0.79+/-0.04 (p<0.001), respectively, for dataset B. Correction in reference to the levator ani muscle yielded the most consistent results between GE and Phillips images. Correction of T2-weighted image SI in reference to three types of extra-prostatic tissue can improve its effectiveness for differentiation of PCa from normal-tissue ROIs, and correction in reference to the levator ani muscle produces consistent T2-weighted image SIs between GE and Phillips MR images.

  2. Normalization of T2W-MRI prostate images using Rician a priori

    NASA Astrophysics Data System (ADS)

    Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Vilanova, Joan C.; Walker, Paul M.; Freixenet, Jordi; Meyer-Baese, Anke; Mériaudeau, Fabrice; Martí, Robert

    2016-03-01

    Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to the normalization of T2W-Magnetic Resonance Imaging (MRI) prostate images. In this paper, we propose two methods to normalize T2W-MRI prostate images: (i) based on a Rician a priori and (ii) based on a Square-Root Slope Function (SRSF) representation which does not make any assumption regarding the Probability Density Function (PDF) of the data. A comparison with the state-of-the-art methods is also provided. The normalization of the data is assessed by comparing the alignment of the patient PDFs in both qualitative and quantitative manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art methods.

  3. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease.

    PubMed

    Deng, Jie; Fishbein, Mark H; Rigsby, Cynthia K; Zhang, Gang; Schoeneman, Samantha E; Donaldson, James S

    2014-11-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2*W) and fat (T2*F) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model (P < 0.0001). With increasing fat fraction, T2*W (27.9 ± 3.5 ms) decreased, whereas T2*F (20.3 ± 5.5 ms) increased; and T2*W and T2*F became increasingly more similar when fat fraction was higher than

  4. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmann, A; Stafford, R; Yung, J

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR.more » Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.« less

  5. Ultrasound guided high-intensity focused ultrasound combined with gonadotropin releasing hormone analogue (GnRHa) ablating uterine leiomyoma with homogeneous hyperintensity on T2 weighted MR imaging

    PubMed Central

    Yang, Shenghua; Kong, Fanjing; Hou, Ruijie; Rong, Fengmei; Ma, Nana; Li, Shaoping

    2017-01-01

    Objective: The study aimed to evaluate the safety and efficiency of ultrasound-guided high-intensity focused ultrasound (USgHIFU) combined with gonadotropin-releasing hormone analogue (GnRHa)-ablating symptomatic uterine leiomyoma with homogeneous hyperintensity on T2 weighted MRI prospectively. Methods: A total of 34 patients with 42 symptomatic uterine leiomyomas with homogeneous hyperintensity on T2 weighted MRI were enrolled in our study. In the patient who had multiple uterine leiomyomas, only one dominant leiomyoma was treated. According to the principles of voluntariness, 18 patients underwent a 3-month therapy of GnRHa (once a month) before the high-intensity focused ultrasound (HIFU) treatment, while 16 patients received only HIFU treatment. Enhanced MRI was performed before and after GnRHa and HIFU treatment. Evaluation of the main indicators included treatment time, sonication time, treatment efficiency, non-perfused volume (NPV) (indicative of successful ablation) ratio and energy effect ratio; adverse events were also recorded. Results: The treatment time and sonication time of the combination group were 102.0 min (55.8–152.2 min) and 25.4 min (12.2–34.1 min); however, they were 149.0 min (87.0–210.0 min) and 38.9 min (14.0–46.7 min) in the simple USgHIFU group. The treatment and sonication time for the combination group was significantly shorter than that for the simple USgHIFU group. Treatment efficiency, NPV ratio and energy effect ratio were 46.7 mm3 s-1 (28.5–95.8 mm3 s-1), 69.2 ± 29.8% (35.5–97.4%) and 9.9 KJ mm−3 (4.5–15.7 KJ mm−3) in the combination group, respectively; but, the lowest treatment efficiency, lowest NPV ratio and more energy effect ratio were observed in the simple HIFU group, which were 16.8 mm3 s−1 (8.9–32.9 mm3 s−1), 50.2 ± 27.3% (0–78.6%) and 23.8 KJ mm−3 (12.4–46.2 KJ mm−3), respectively. Pain scores in the combination group were 3.0

  6. MRI appearance of posterior cruciate ligament tears.

    PubMed

    Rodriguez, William; Vinson, Emily N; Helms, Clyde A; Toth, Alison P

    2008-10-01

    There is little in the radiology literature regarding the MRI appearance of a torn posterior cruciate ligament (PCL). The purpose of this study was to describe the MRI appearance of surgically proven PCL tears and to emphasize previously unreported signs. The PCL is usually injured as the result of stretching deformation; on MRI, the ligament maintains continuity as a single structure with apparent thickening. On sagittal T2-weighted images, an anteroposterior diameter of 7 mm or more is highly suggestive of a torn PCL. Increased intrasubstance signal intensity in the PCL on proton-density images with lower signal intensity on T2-weighted images is another common feature.

  7. MRI evaluation and safety in the developing brain.

    PubMed

    Tocchio, Shannon; Kline-Fath, Beth; Kanal, Emanuel; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-03-01

    Magnetic resonance imaging (MRI) evaluation of the developing brain has dramatically increased over the last decade. Faster acquisitions and the development of advanced MRI sequences, such as magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), perfusion imaging, functional MR imaging (fMRI), and susceptibility-weighted imaging (SWI), as well as the use of higher magnetic field strengths has made MRI an invaluable tool for detailed evaluation of the developing brain. This article will provide an overview of the use and challenges associated with 1.5-T and 3-T static magnetic fields for evaluation of the developing brain. This review will also summarize the advantages, clinical challenges, and safety concerns specifically related to MRI in the fetus and newborn, including the implications of increased magnetic field strength, logistics related to transporting and monitoring of neonates during scanning, and sedation considerations, and a discussion of current technologies such as MRI conditional neonatal incubators and dedicated small-foot print neonatal intensive care unit (NICU) scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients.

    PubMed

    Vos, Sjoerd B; Micallef, Caroline; Barkhof, Frederik; Hill, Andrea; Winston, Gavin P; Ourselin, Sebastien; Duncan, John S

    2018-03-02

    T2-FLAIR is the single most sensitive MRI contrast to detect lesions underlying focal epilepsies but 3D sequences used to obtain isotropic high-resolution images are susceptible to motion artefacts. Prospective motion correction (PMC) - demonstrated to improve 3D-T1 image quality in a pediatric population - was applied to high-resolution 3D-T2-FLAIR scans in adult epilepsy patients to evaluate its clinical benefit. Coronal 3D-T2-FLAIR scans were acquired with a 1mm isotropic resolution on a 3T MRI scanner. Two expert neuroradiologists reviewed 40 scans without PMC and 40 with navigator-based PMC. Visual assessment addressed six criteria of image quality (resolution, SNR, WM-GM contrast, intensity homogeneity, lesion conspicuity, diagnostic confidence) on a seven-point Likert scale (from non-diagnostic to outstanding). SNR was also objectively quantified within the white matter. PMC scans had near-identical scores on the criteria of image quality to non-PMC scans, with the notable exception that intensity homogeneity was generally worse. Using PMC, the percentage of scans with bad image quality was substantially lower than without PMC (3.25% vs. 12.5%) on the other five criteria. Quantitative SNR estimates revealed that PMC and non-PMC had no significant difference in SNR (P=0.07). Application of prospective motion correction to 3D-T2-FLAIR sequences decreased the percentage of low-quality scans, reducing the number of scans that need to be repeated to obtain clinically useful data. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  9. Time-delayed contrast-enhanced MRI improves detection of brain metastases and apparent treatment volumes.

    PubMed

    Kushnirsky, Marina; Nguyen, Vinh; Katz, Joel S; Steinklein, Jared; Rosen, Lisa; Warshall, Craig; Schulder, Michael; Knisely, Jonathan P S

    2016-02-01

    Contrast-enhanced MRI is the preeminent diagnostic test for brain metastasis (BM). Detection of BMs for stereotactic radiosurgery (SRS) planning may improve with a time delay following administration of a high-relaxivity agent for 1.5-T and 3-T imaging systems. Metastasis detection with time-delayed MRI was evaluated in this study. Fifty-three volumetric MRI studies from 38 patients undergoing SRS for BMs were evaluated. All studies used 0.1-mmol/kg gadobenate dimeglumine (MultiHance; Bracco Diagnostics) immediately after injection, followed by 2 more axial T1-weighted sequences after 5-minute intervals (final image acquisition commenced 15 minutes after contrast injection). Two studies were motion limited and excluded. Two hundred eighty-seven BMs were identified. The studies were randomized and examined separately by 3 radiologists, who were blinded to the temporal sequence. Each radiologist recorded the number of BMs detected per scan. A Wilcoxon signed-rank test compared BM numbers between scans. One radiologist determined the scan on which BMs were best defined. All confirmed, visible tumors were contoured using iPlan RT treatment planning software on each of the 3 MRI data sets. A linear mixed model was used to analyze volume changes. The interclass correlations for Scans 1, 2, and 3 were 0.7392, 0.7951, and 0.7290, respectively, demonstrating excellent interrater reliability. At least 1 new lesion was detected in the second scan as compared with the first in 35.3% of subjects (95% CI 22.4%-49.9%). The increase in BM numbers between Scans 1 and 2 ranged from 1 to 10. At least 1 new lesion was detected in the third scan as compared with the second in 21.6% of subjects (95% CI 11.3%-35.3%). The increase in BM numbers between Scans 2 and 3 ranged from 1 to 9. Between Scans 1 and 3, additional tumors were seen on 43.1% of scans (increase ranged from 1 to 14). The median increase in tumor number for all comparisons was 1. There was a significant increase in number

  10. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    PubMed Central

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2017-01-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by physiology related signals, e.g., head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to “true” neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA. Our preliminary results indicate that fast (TR <0.5 s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion toward a better understanding and a more quantitative use of fMRI. PMID:28164083

  11. Scanning fast and slow: current limitations of 3 Tesla functional MRI and future potential

    NASA Astrophysics Data System (ADS)

    Boubela, Roland N.; Kalcher, Klaudius; Nasel, Christian; Moser, Ewald

    2014-02-01

    Functional MRI at 3T has become a workhorse for the neurosciences, e.g., neurology, psychology, and psychiatry, enabling non-invasive investigation of brain function and connectivity. However, BOLD-based fMRI is a rather indirect measure of brain function, confounded by fluctuation related signals, e.g. head or brain motion, brain pulsation, blood flow, intermixed with susceptibility differences close or distant to the region of neuronal activity. Even though a plethora of preprocessing strategies have been published to address these confounds, their efficiency is still under discussion. In particular, physiological signal fluctuations closely related to brain supply may mask BOLD signal changes related to "true" neuronal activation. Here we explore recent technical and methodological advancements aimed at disentangling the various components, employing fast multiband vs. standard EPI, in combination with fast temporal ICA.Our preliminary results indicate that fast (TR< 0.5s) scanning may help to identify and eliminate physiologic components, increasing tSNR and functional contrast. In addition, biological variability can be studied and task performance better correlated to other measures. This should increase specificity and reliability in fMRI studies. Furthermore, physiological signal changes during scanning may then be recognized as a source of information rather than a nuisance. As we are currently still undersampling the complexity of the brain, even at a rather coarse macroscopic level, we should be very cautious in the interpretation of neuroscientific findings, in particular when comparing different groups (e.g., age, sex, medication, pathology, etc.). From a technical point of view our goal should be to sample brain activity at layer specific resolution with low TR, covering as much of the brain as possible without violating SAR limits. We hope to stimulate discussion towards a better understanding and a more quantitative use of fMRI.

  12. Ultrashort Echo Time and Zero Echo Time MRI at 7T

    PubMed Central

    Larson, Peder E. Z.; Han, Misung; Krug, Roland; Jakary, Angela; Nelson, Sarah J.; Vigneron, Daniel B.; Henry, Roland G.; McKinnon, Graeme; Kelley, Douglas A. C.

    2016-01-01

    Object Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences at 7T to assess differences between these methods. Materials and Methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the Water- and fat-suppressed solid-state proton projection imaging (WASPI) method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted as well as shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Several key differences are that ZTE is limited to volumetric imaging but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection. PMID:26702940

  13. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    PubMed

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for

  14. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study

    PubMed Central

    Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E.; Lauenstein, Thomas C.; Forsting, Michael; Quick, Harald H.; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1

  15. Measuring the volume of brain tumour and determining its location in T2-weighted MRI images using hidden Markov random field: expectation maximization algorithm

    NASA Astrophysics Data System (ADS)

    Mat Jafri, Mohd. Zubir; Abdulbaqi, Hayder Saad; Mutter, Kussay N.; Mustapha, Iskandar Shahrim; Omar, Ahmad Fairuz

    2017-06-01

    A brain tumour is an abnormal growth of tissue in the brain. Most tumour volume measurement processes are carried out manually by the radiographer and radiologist without relying on any auto program. This manual method is a timeconsuming task and may give inaccurate results. Treatment, diagnosis, signs and symptoms of the brain tumours mainly depend on the tumour volume and its location. In this paper, an approach is proposed to improve volume measurement of brain tumors as well as using a new method to determine the brain tumour location. The current study presents a hybrid method that includes two methods. One method is hidden Markov random field - expectation maximization (HMRFEM), which employs a positive initial classification of the image. The other method employs the threshold, which enables the final segmentation. In this method, the tumour volume is calculated using voxel dimension measurements. The brain tumour location was determined accurately in T2- weighted MRI image using a new algorithm. According to the results, this process was proven to be more useful compared to the manual method. Thus, it provides the possibility of calculating the volume and determining location of a brain tumour.

  16. Introduction of High Throughput Magnetic Resonance T2-Weighted Image Texture Analysis for WHO Grade 2 and 3 Gliomas.

    PubMed

    Kinoshita, Manabu; Sakai, Mio; Arita, Hideyuki; Shofuda, Tomoko; Chiba, Yasuyoshi; Kagawa, Naoki; Watanabe, Yoshiyuki; Hashimoto, Naoya; Fujimoto, Yasunori; Yoshimine, Toshiki; Nakanishi, Katsuyuki; Kanemura, Yonehiro

    2016-01-01

    Reports have suggested that tumor textures presented on T2-weighted images correlate with the genetic status of glioma. Therefore, development of an image analyzing framework that is capable of objective and high throughput image texture analysis for large scale image data collection is needed. The current study aimed to address the development of such a framework by introducing two novel parameters for image textures on T2-weighted images, i.e., Shannon entropy and Prewitt filtering. Twenty-two WHO grade 2 and 28 grade 3 glioma patients were collected whose pre-surgical MRI and IDH1 mutation status were available. Heterogeneous lesions showed statistically higher Shannon entropy than homogenous lesions (p = 0.006) and ROC curve analysis proved that Shannon entropy on T2WI was a reliable indicator for discrimination of homogenous and heterogeneous lesions (p = 0.015, AUC = 0.73). Lesions with well-defined borders exhibited statistically higher Edge mean and Edge median values using Prewitt filtering than those with vague lesion borders (p = 0.0003 and p = 0.0005 respectively). ROC curve analysis also proved that both Edge mean and median values were promising indicators for discrimination of lesions with vague and well defined borders and both Edge mean and median values performed in a comparable manner (p = 0.0002, AUC = 0.81 and p < 0.0001, AUC = 0.83, respectively). Finally, IDH1 wild type gliomas showed statistically lower Shannon entropy on T2WI than IDH1 mutated gliomas (p = 0.007) but no difference was observed between IDH1 wild type and mutated gliomas in Edge median values using Prewitt filtering. The current study introduced two image metrics that reflect lesion texture described on T2WI. These two metrics were validated by readings of a neuro-radiologist who was blinded to the results. This observation will facilitate further use of this technique in future large scale image analysis of glioma.

  17. [A comparison between 3.0 T MRI and histopathology for preoperative T staging of potentially resectable esophageal cancer].

    PubMed

    Wang, Z Q; Zhang, F G; Guo, J; Zhang, H K; Qin, J J; Zhao, Y; Ding, Z D; Zhang, Z X; Zhang, J B; Yuan, J H; Li, H L; Qu, J R

    2017-03-21

    Objective: To explore the value of 3.0 T MRI using multiple sequences (star VIBE+ BLADE) in evaluating the preoperative T staging for potentially resectable esophageal cancer (EC). Methods: Between April 2015 and March 2016, a total of 66 consecutive patients with endoscopically proven resectable EC underwent 3.0T MRI in the Affiliated Cancer Hospital of Zhengzhou University.Two independent readers were assigned a T staging on MRI according to the 7th edition of UICC-AJCC TNM Classification, the results of preoperative T staging were compared and analyzed with post-operative pathologic confirmation. Results: The MRI T staging of two readers were highly consistent with histopathological findings, and the sensitivity, specificity and accuracy of preoperative T staging MR imaging were also very high. Conclusion: 3.0 T MRI using multiple sequences is with high accuracy for patients of potentially resectable EC in T staging. The staging accuracy of T1, T2 and T3 is better than that of T4a. 3.0T MRI using multiple sequences could be used as a noninvasive imaging method for pre-operative T staging of EC.

  18. Differentiation of periapical granulomas and cysts by using dental MRI: a pilot study.

    PubMed

    Juerchott, Alexander; Pfefferle, Thorsten; Flechtenmacher, Christa; Mente, Johannes; Bendszus, Martin; Heiland, Sabine; Hilgenfeld, Tim

    2018-05-17

    The purpose of this pilot study was to evaluate whether periapical granulomas can be differentiated from periapical cysts in vivo by using dental magnetic resonance imaging (MRI). Prior to apicoectomy, 11 patients with radiographically confirmed periapical lesions underwent dental MRI, including fat-saturated T2-weighted (T2wFS) images, non-contrast-enhanced T1-weighted images with and without fat saturation (T1w/T1wFS), and contrast-enhanced fat-saturated T1-weighted (T1wFS+C) images. Two independent observers performed structured image analysis of MRI datasets twice. A total of 15 diagnostic MRI criteria were evaluated, and histopathological results (6 granulomas and 5 cysts) were compared with MRI characteristics. Statistical analysis was performed using intraclass correlation coefficient (ICC), Cohen's kappa (κ), Mann-Whitney U-test and Fisher's exact test. Lesion identification and consecutive structured image analysis was possible on T2wFS and T1wFS+C MRI images. A high reproducibility was shown for MRI measurements of the maximum lesion diameter (intraobserver ICC = 0.996/0.998; interobserver ICC = 0.997), for the "peripheral rim" thickness (intraobserver ICC = 0.988/0.984; interobserver ICC = 0.970), and for all non-quantitative MRI criteria (intraobserver-κ = 0.990/0.995; interobserver-κ = 0.988). In accordance with histopathological results, six MRI criteria allowed for a clear differentiation between cysts and granulomas: (1) outer margin of lesion, (2) texture of "peripheral rim" in T1wFS+C, (3) texture of "lesion center" in T2wFS, (4) surrounding tissue involvement in T2wFS, (5) surrounding tissue involvement in T1wFS+C and (6) maximum "peripheral rim" thickness (all: P < 0.05). In conclusion, this pilot study indicates that radiation-free dental MRI enables a reliable differentiation between periapical cysts and granulomas in vivo. Thus, MRI may substantially improve treatment strategies and help to avoid unnecessary

  19. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation

    PubMed Central

    2013-01-01

    Background Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. Methods 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PSL%), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBVL%) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBViwL%). For PBViwL%, the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. Results The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBVL% showed error of 49.24% to −40.37% (intraclass correlation coefficient RI = 0.55) and PBFL% had error of 34.87% to −27.76% (RI = 0.80). With the inflow-weighted model, PBViwL% had much less error of 12.28% to −11.20% (RI = 0.98) from PSL%. Conclusions The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated. PMID:23448679

  20. Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI.

    PubMed

    Drey, Florian; Choi, Yeong-Hoon; Neef, Klaus; Ewert, Birgit; Tenbrock, Arne; Treskes, Philipp; Bovenschulte, Henning; Liakopoulos, Oliver J; Brenkmann, Meike; Stamm, Christof; Wittwer, Thorsten; Wahlers, Thorsten

    2013-01-01

    Cardiac cell therapy with mesenchymal stem cells (MSCs) represents a promising treatment approach for end-stage heart failure. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work is to determine the feasibility of magnetic resonance imaging (MRI) and in vivo monitoring after transplantation into infarcted mouse hearts using a clinical 3.0 T MRI device. The labeling procedure of bone marrow-derived MSCs with micron-sized paramagnetic iron oxide particles (MPIOs) did not affect the viability of the cells and their cell type-defining properties when compared to unlabeled cells. Using a clinical 3.0 T MRI scanner equipped with a dedicated small animal solenoid coil, 10(5) labeled MSCs could be detected and localized in the mouse hearts for up to 4 weeks after intramyocardial transplantation. Weekly ECG-gated scans using T1-weighted sequences were performed, and left ventricular function was assessed. Histological analysis of hearts confirmed the survival of labeled MSCs in the target area up to 4 weeks after transplantation. In conclusion, in vivo tracking of labeled MSCs using a clinical 3.0 T MRI scanner is feasible. In combination with assessment of heart function, this technology allows the monitoring of the therapeutic efficacy of regenerative therapies in a small animal model.

  1. Comparison of the accuracy rates of 3-T and 1.5-T MRI of the knee in the diagnosis of meniscal tear.

    PubMed

    Grossman, Jeffrey W; De Smet, Arthur A; Shinki, Kazuhiko

    2009-08-01

    The purpose of this study was to compare the accuracy of 3-T MRI with that of 1.5-T MRI of the knee in the diagnosis of meniscal tear and to analyze the causes of diagnostic error. We reviewed the medical records and original MRI interpretations of 100 consecutive patients who underwent 3-T MRI of the knee and of 100 consecutive patients who underwent 1.5-T MRI of the knee to determine the accuracy of diagnoses of meniscal tear. Knee arthroscopy was the reference standard. We retrospectively reviewed all MRI diagnostic errors to determine the cause of the errors. At arthroscopy, 109 medial and 77 lateral meniscal tears were identified in the 200 patients. With two abnormal MR images indicating a meniscal tear, the sensitivity and specificity for medial tear were 92.7% and 82.2% at 1.5-T MRI and 92.6% and 76.1% at 3-T MRI (p = 1.0, p = 0.61). The sensitivity and specificity for lateral tears were 68.4% and 95.2% at 1.5-T MRI and 69.2% and 91.8% at 3-T MRI (p = 1.0, p = 0.49). Of the false-positive diagnoses of medial meniscal tear, five of eight at 1.5 T and seven of 11 at 3 T were apparent peripheral longitudinal tears of the posterior horn. Fifteen of the 26 missed medial and lateral meniscal tears were not seen in retrospect even with knowledge of the tear type and location. Allowing for sample size limitations, we found comparable accuracy of 3-T and 1.5-T MRI of the knee in the diagnosis of meniscal tear. The causes of false-positive and false-negative MRI diagnoses of meniscal tear are similar for 3-T and 1.5-T MRI.

  2. Biparametric MRI of the prostate.

    PubMed

    Scialpi, Michele; D'Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca

    2017-12-01

    Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists.

  3. Biparametric MRI of the prostate

    PubMed Central

    Scialpi, Michele; D’Andrea, Alfredo; Martorana, Eugenio; Malaspina, Corrado Maria; Aisa, Maria Cristina; Napoletano, Maria; Orlandi, Emanuele; Rondoni, Valeria; Scialpi, Pietro; Pacchiarini, Diamante; Palladino, Diego; Dragone, Michele; Di Renzo, Giancarlo; Simeone, Annalisa; Bianchi, Giampaolo; Brunese, Luca

    2017-01-01

    Biparametric Magnetic Resonance Imaging (bpMRI) of the prostate combining both morphologic T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) is emerging as an alternative to multiparametric MRI (mpMRI) to detect, to localize and to guide prostatic targeted biopsy in patients with suspicious prostate cancer (PCa). BpMRI overcomes some limitations of mpMRI such as the costs, the time required to perform the study, the use of gadolinium-based contrast agents and the lack of a guidance for management of score 3 lesions equivocal for significant PCa. In our experience the optimal and similar clinical results of the bpMRI in comparison to mpMRI are essentially related to the DWI that we consider the dominant sequence for detection suspicious PCa both in transition and in peripheral zone. In clinical practice, the adoption of bpMRI standardized scoring system, indicating the likelihood to diagnose a clinically significant PCa and establishing the management of each suspicious category (from 1 to 4), could represent the rationale to simplify and to improve the current interpretation of mpMRI based on Prostate Imaging and Reporting Archiving Data System version 2 (PI-RADS v2). In this review article we report and describe the current knowledge about bpMRI in the detection of suspicious PCa and a simplified PI-RADS based on bpMRI for management of each suspicious PCa categories to facilitate the communication between radiologists and urologists. PMID:29201499

  4. An RF dosimeter for independent SAR measurement in MRI scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is

  5. Optimized 14 + 1 receive coil array and position system for 3D high-resolution MRI of dental and maxillomandibular structures.

    PubMed

    Sedlacik, Jan; Kutzner, Daniel; Khokale, Arun; Schulze, Dirk; Fiehler, Jens; Celik, Turgay; Gareis, Daniel; Smeets, Ralf; Friedrich, Reinhard E; Heiland, Max; Assaf, Alexandre T

    2016-01-01

    The purpose of this study was to design, build and test a multielement receive coil array and position system, which is optimized for three-dimensional (3D) high-resolution dental and maxillomandibular MRI with high patient comfort. A 14 + 1 coil array and positioning system, allowing easy handling by the technologists, reproducible positioning of the patients and high patient comfort, was tested with three healthy volunteers using a 3.0-T MRI machine (Siemens Skyra; Siemens Medical Solutions, Erlangen, Germany). High-resolution 3D T1 weighted, water excitation T1 weighted and fat-saturated T2 weighted imaging sequences were scanned, and 3D image data were reformatted in different orientations and curvatures to aid diagnosis. The high number of receiving coils and the comfortable positioning of the coil array close to the patient's face provided a high signal-to-noise ratio and allowed high quality, high resolution, 3D image data to be acquired within reasonable scan times owing to the possibility of parallel image acquisition acceleration. Reformatting the isotropic 3D image data in different views is helpful for diagnosis, e.g. panoramic reconstruction. The visibility of soft tissues such as the mandibular canal, nutritive canals and periodontal ligaments was exquisite. The optimized MRI receive coil array and positioning system for dental and oral-maxillofacial imaging provides a valuable tool for detecting and diagnosing pathologies in dental and oral-maxillofacial structures while avoiding radiation dose. The high patient comfort, as achieved by our design, is very crucial, since image artefacts due to movement or failing to complete the examination jeopardize the diagnostic value of MRI examinations.

  6. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0 T: a pilot study

    PubMed Central

    Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M

    2015-01-01

    Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918

  7. Update on the MRI Core of the Alzheimer's Disease Neuroimaging Initiative

    PubMed Central

    Jack, Clifford R; Bernstein, Matt A; Borowski, Bret J; Gunter, Jeffrey L; Fox, Nick C; Thompson, Paul M; Schuff, Norbert; Krueger, Gunnar; Killiany, Ronald J; DeCarli, Charles S; Dale, Anders M; Weiner, Michael W

    2010-01-01

    Functions of the ADNI MRI core fall into three categories: (1) those of the central MRI core lab at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data, and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present (“ADNI-GO”) and future (“ADNI-2”, if funded) MRI protocol will be to maintain MRI methodological consistency in previously enrolled “ADNI-1” subjects who are followed longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor specific pilot sub-studies of arterial spin labeling perfusion, resting state functional connectivity and diffusion tensor imaging. One each of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multi-center (but single vendor) setting for these three emerging MRI applications. PMID:20451869

  8. An Observational Study to Assess Brain MRI Change and Disease Progression in Multiple Sclerosis Clinical Practice-The MS-MRIUS Study.

    PubMed

    Zivadinov, Robert; Khan, Nasreen; Medin, Jennie; Christoffersen, Pia; Price, Jennifer; Korn, Jonathan R; Bonzani, Ian; Dwyer, Michael G; Bergsland, Niels; Carl, Ellen; Silva, Diego; Weinstock-Guttman, Bianca

    2017-05-01

    To describe methodology, interim baseline, and longitudinal magnetic resonance imaging (MRI) acquisition parameter characteristics of the multiple sclerosis clinical outcome and MRI in the United States (MS-MRIUS). The MS-MRIUS is an ongoing longitudinal and retrospective study of MS patients on fingolimod. Clinical and brain MRI image scan data were collected from 600 patients across 33 MS centers in the United States. MRI brain outcomes included change in whole-brain volume, lateral ventricle volume, T2- and T1-lesion volumes, and new/enlarging T2 and gadolinium-enhancing lesions. Interim baseline and longitudinal MRI acquisition parameters results are presented for 252 patients. Mean age was 44 years and 81% were female. Forty percent of scans had 3-dimensional (3D) T1 sequence in the preindex period, increasing to 50% in the postindex period. Use of 2-dimensional (2D) T1 sequence decreased over time from 85% in the preindex period to 65% in the postindex. About 95% of the scans with FLAIR and 2D T1-WI were considered acceptable or good quality compared to 99-100% with 3D T1-WI. There were notable changes in MRI hardware, software, and coil (39.5% in preindex to index and 50% in index to postindex). MRI sequence parameters (orientation, thickness, or protocol) differed for 36%, 29%, and 20% of index/postindex scans for FLAIR, 2D T1-WI, and 3D T1-WI, respectively. The MS-MRIUS study linked the clinical and brain MRI outcomes into an integrated database to create a cohort of fingolimod patients in real-world practice. Variability was observed in MRI acquisition protocols overtime. © 2016 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  9. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owrangi, A; Jolly, S; Balter, J

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction,more » each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.« less

  10. Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer

    PubMed Central

    Liney, G P; Owen, S C; Beaumont, A K E; Lazar, V R; Manton, D J

    2013-01-01

    Objective: A combination of CT and MRI is recommended for radiotherapy planning of head and neck cancers, and optimal spatial co-registration is achieved by imaging in the treatment position using the necessary immobilisation devices on both occasions, something which requires wide-bore scanners. Quality assurance experiments were carried out to commission a newly installed 1.5-T wide-bore MRI scanner and a dedicated, flexible six-channel phased array head and neck coil. Methods: Signal-to-noise ratio (SNR) and spatial signal uniformity were quantified using a homogeneous aqueous phantom, and geometric distortion was quantified using a phantom with water-filled fiducials in a grid pattern. Volunteer scans were also used to determine the in vivo image quality. Clinically relevant T1 weighted and T2 weighted fat-suppressed sequences were assessed in multiple scan planes (both sequences fast spin echo based). The performance of two online signal uniformity correction schemes, one utilising low-resolution reference scans and the other not utilising low-resolution reference scans, was compared. Results: Geometric distortions, for a ±35-kHz bandwidth, were <1 mm for locations within 10 cm of the isocentre rising to 1.8 mm at 18 cm away. SNR was above 50, and uniformity in the axial plane was 71% and 95% before and after uniformity correction, respectively. Conclusion: The combined performance of the wide-bore scanner and the dedicated coil was adjudged adequate, although superior–inferior spatial coverage was slightly limited in the lower neck. Advances in knowledge: These results will be of interest to the increasing number of oncology centres that are seeking to incorporate MRI into planning practice using dedicated equipment. PMID:23690434

  11. T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.

    PubMed

    Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-06-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition

  12. Arm MRI scan

    MedlinePlus

    ... MRI and often available in the emergency room. Alternative Names MRI - arm; Wrist MRI; MRI - wrist; Elbow ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  13. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer.

    PubMed

    Mosavi, Firas; Laurell, Anna; Ahlström, Håkan

    2015-11-01

    Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences

  14. MRI evidence of structural changes in the sacroiliac joints of patients with non-radiographic axial spondyloarthritis even in the absence of MRI inflammation.

    PubMed

    Maksymowych, Walter P; Wichuk, Stephanie; Dougados, Maxime; Jones, Heather; Szumski, Annette; Bukowski, Jack F; Marshall, Lisa; Lambert, Robert G

    2017-06-06

    Studies have shown that structural lesions may be present in patients with non-radiographic axial spondyloarthritis (nr-axSpA). However, the relevance of structural lesions in these patients is unclear, particularly without signs of inflammation on magnetic resonance imaging (MRI). We assessed the presence of structural lesions at baseline on MRI in the sacroiliac joints (SIJ) of patients with nr-axSpA with and without SIJ inflammation on MRI. Bone marrow edema (BME) was assessed on short tau inversion recovery (STIR) scans from 185 patients with nr-axSpA, by two independent readers at baseline using the Spondyloarthritis Research Consortium of Canada (SPARCC) score. Structural lesions were evaluated on T1 weighted spin echo scans, with readers blinded to STIR scans, using the SPARCC MRI SIJ structural score. Disease characteristics and structural lesions were compared in patients with SIJ BME (score ≥2) and without SIJ BME (score <2). Both SIJ BME and structural lesions scores were available for 183 patients; 128/183 (69.9%) patients had SIJ BME scores ≥2 and 55/183 (30.1%) had scores <2. Frequencies of MRI structural lesions in patients with vs without SIJ BME were: erosions (45.3% vs 10.9%, P < 0.001), backfill (20.3% vs 0%, P < 0.001), fat metaplasia (10.9% vs 1.8%, P = 0.04), and ankylosis (2.3% vs 1.8%, P = ns). Significantly more patients with both SIJ BME and structural lesions were male and/or HLA-B27 positive than patients with only SIJ BME. Mean (SD) spinal scores (23 discovertebral units) were significantly higher in patients with SIJ structural lesions than without: 6.5 (11.5) vs 3.3 (5.1), respectively, P = 0.01. In patients with nr-axSpA, SIJ structural lesions, particularly erosions, may be present on MRI when radiographs are normal or inconclusive, even in patients negative for MRI SIJ inflammation. They may reflect more severe disease with greater spinal inflammation. ClinicalTrials.gov, NCT01258738 . Registered on 9

  15. TH-A-BRF-05: MRI of Individual Lymph Nodes to Guide Regional Breast Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Asselen, B van; Lagendijk, J

    2014-06-15

    Purpose: In regional radiotherapy (RT) for breast-cancer patients, direct visualization of individual lymph nodes (LNs) may reduce target volumes and Result in lower toxicity (i.e. reduced radiation pneumonitis, arm edema, arm morbidity), relative to standard CT-based delineations. To this end, newly designed magnetic resonance imaging (MRI) sequences were optimized and assessed qualitatively and quantitatively. Methods: In ten healthy female volunteers, a scanning protocol was developed and optimized. Coronal images were acquired in supine RT position positioned on a wedge board on a 1.5 T Ingenia (Philips) wide-bore MRI. In four volunteers the optimized MRI protocol was applied, including a 3-dimensionalmore » (3D) T1-weighted (T1w) fast-field-echo (FFE). T2w sequences, including 3D FFE, 3D and 2D fast spin echo (FSE), and diffusion-weighted single-shot echo-planar imaging (DWI) were also performed. Several fatsuppression techniques were used. Qualitative evaluation parameters included LN contrast, motion susceptibility, visibility of anatomical structures, and fat suppression. The number of visible axillary and supraclavicular LNs was also determined. Results: T1 FFE, insensitive to motion, lacked contrast of LNs, which often blended in with soft tissue and blood. T2 FFE showed high contrast, but some LNs were obscured due to motion. Both 2D and 3D FSE were motion-insensitive having high contrast, although some blood remained visible. 2D FSE showed more anatomical details, while in 3D FSE, some blurring occurred. DWI showed high LN contrast, but suffered from geometric distortions and low resolution. Fat suppression by mDixon was the most reliable in regions with magnetic-field inhomogeneities. The FSE sequences showed the highest sensitivity for LN detection. Conclusion: MRI of regional LNs was achieved in volunteers. The FSE techniques were robust and the most sensitive. Our optimized MRI sequences can facilitate direct delineation of individual LNs. This

  16. Reduced acoustic noise in diffusion tensor imaging on a compact MRI system.

    PubMed

    Tan, Ek T; Hardy, Christopher J; Shu, Yunhong; In, Myung-Ho; Guidon, Arnaud; Huston, John; Bernstein, Matt A; K F Foo, Thomas

    2018-06-01

    To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Parenchymal signal intensity in 3-T body MRI of dogs with hematopoietic neoplasia.

    PubMed

    Feeney, Daniel A; Sharkey, Leslie C; Steward, Susan M; Bahr, Katherine L; Henson, Michael S; Ito, Daisuke; O'Brien, Timothy D; Jessen, Carl R; Husbands, Brian D; Borgatti, Antonella; Modiano, Jaime F

    2013-04-01

    We performed a preliminary study involving 10 dogs to assess the applicability of body MRI for staging of canine diffuse hematopoietic neoplasia. T1-weighted (before and after intravenous gadolinium), T2-weighted, in-phase, out-of-phase, and short tau inversion recovery pulse sequences were used. By using digital region of interest (ROI) and visual comparison techniques, relative parenchymal organ (medial iliac lymph nodes, liver, spleen, kidney cortex, and kidney medulla) signal intensity was quantified as less than, equal to, or greater than that of skeletal muscle in 2 clinically normal young adult dogs and 10 dogs affected with either B-cell lymphoma (n = 7) or myelodysplastic syndrome (n = 3). Falciform fat and urinary bladder were evaluated to provide additional perspective regarding signal intensity from the pulse sequences. Dogs with nonfocal disease could be distinguished from normal dogs according to both the visual and ROI signal-intensity relationships. In normal dogs, liver signal intensity on the T2-weighted sequence was greater than that of skeletal muscle by using either the visual or ROI approach. However in affected dogs, T2-weighted liver signal intensity was less than that of skeletal muscle by using either the ROI approach (10 of 10 dogs) or the visual approach (9 of 10 dogs). These findings suggest that the comparison of relative signal intensity among organs may have merit as a research model for infiltrative parenchymal disease (ROI approach) or metabolic effects of disease; this comparison may have practical clinical applicability (visual comparison approach) as well.

  18. Parenchymal Signal Intensity in 3-T Body MRI of Dogs with Hematopoietic Neoplasia

    PubMed Central

    Feeney, Daniel A; Sharkey, Leslie C; Steward, Susan M; Bahr, Katherine L; Henson, Michael S; Ito, Daisuke; O'Brien, Timothy D; Jessen, Carl R; Husbands, Brian D; Borgatti, Antonella; Modiano, Jaime F

    2013-01-01

    We performed a preliminary study involving 10 dogs to assess the applicability of body MRI for staging of canine diffuse hematopoietic neoplasia. T1-weighted (before and after intravenous gadolinium), T2-weighted, in-phase, out-of-phase, and short tau inversion recovery pulse sequences were used. By using digital region of interest (ROI) and visual comparison techniques, relative parenchymal organ (medial iliac lymph nodes, liver, spleen, kidney cortex, and kidney medulla) signal intensity was quantified as less than, equal to, or greater than that of skeletal muscle in 2 clinically normal young adult dogs and 10 dogs affected with either B-cell lymphoma (n = 7) or myelodysplastic syndrome (n = 3). Falciform fat and urinary bladder were evaluated to provide additional perspective regarding signal intensity from the pulse sequences. Dogs with nonfocal disease could be distinguished from normal dogs according to both the visual and ROI signal-intensity relationships. In normal dogs, liver signal intensity on the T2-weighted sequence was greater than that of skeletal muscle by using either the visual or ROI approach. However in affected dogs, T2-weighted liver signal intensity was less than that of skeletal muscle by using either the ROI approach (10 of 10 dogs) or the visual approach (9 of 10 dogs). These findings suggest that the comparison of relative signal intensity among organs may have merit as a research model for infiltrative parenchymal disease (ROI approach) or metabolic effects of disease; this comparison may have practical clinical applicability (visual comparison approach) as well. PMID:23582424

  19. T1 weighted Brain Images at 7 Tesla Unbiased for Proton Density, T2* contrast and RF Coil Receive B1 Sensitivity with Simultaneous Vessel Visualization

    PubMed Central

    Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-01-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique

  20. Parent perspectives and preferences for strategies regarding nonsedated MRI scans in a pediatric oncology population.

    PubMed

    Walker, Breya; Conklin, Heather M; Anghelescu, Doralina L; Hall, Lacey P; Reddick, Wilburn E; Ogg, Robert; Jacola, Lisa M

    2018-06-01

    Children with cancer frequently require MRI scans for clinical purposes. Sedation with general anesthesia (GA) is often used to promote compliance, reduce motion, and alleviate anxiety. The use of GA for MRI scans is costly in terms of time, personnel, and medications. In addition, prominent risks are associated with anesthesia exposure in patients with complex medical conditions. Successful behavioral interventions have been implemented in clinical research settings to promote scan success and compliance. To our knowledge, parent/caregiver acceptability of behavioral interventions to promote nonsedated MRI has not been systematically investigated in a medically complex population. As a first step toward developing a protocol-based intervention to promote nonsedated scanning, we conducted a survey to explore parental perspectives regarding acceptability of nonsedated scanning and to gain information regarding preference for specific behavioral interventions to facilitate nonsedated MRI exams. Parents or guardians of 101 patients diagnosed with childhood cancer participated in a semi-structured survey via telephone. The sample was stratified by age group (8-12 years; 13-18 years), gender, and diagnosis (solid tumor (ST), brain tumor (BT), and acute lymphoblastic leukemia (ALL)). The majority of parents indicated that nonsedated MRI scans would be acceptable. Reduced anesthesia exposure was the most frequently identified benefit, followed by decreased irritability post-MRI scan, and shorter appointment time. Challenges included fear of movement and noise during scans and change in routine, with parents of younger children and those with a history of sedated exams identifying more challenges. Behavioral intervention preference differed by patient age and gender; however, education was ranked as most preferred overall. Parents of children treated for cancer consider behavior interventions to promote nonsedated scanning as acceptable. Patient characteristics should be

  1. Does MRI scan acceleration affect power to track brain change?

    PubMed

    Ching, Christopher R K; Hua, Xue; Hibar, Derrek P; Ward, Chadwick P; Gunter, Jeffrey L; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    The Alzheimer's Disease Neuroimaging Initiative recently implemented accelerated T1-weighted structural imaging to reduce scan times. Faster scans may reduce study costs and patient attrition by accommodating people who cannot tolerate long scan sessions. However, little is known about how scan acceleration affects the power to detect longitudinal brain change. Using tensor-based morphometry, no significant difference was detected in numerical summaries of atrophy rates from accelerated and nonaccelerated scans in subgroups of patients with Alzheimer's disease, early or late mild cognitive impairment, or healthy controls over a 6- and 12-month scan interval. Whole-brain voxelwise mapping analyses revealed some apparent regional differences in 6-month atrophy rates when comparing all subjects irrespective of diagnosis (n = 345). No such whole-brain difference was detected for the 12-month scan interval (n = 156). Effect sizes for structural brain changes were not detectably different in accelerated versus nonaccelerated data. Scan acceleration may influence brain measures but has minimal effects on tensor-based morphometry-derived atrophy measures, at least over the 6- and 12-month intervals examined here. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation.

    PubMed

    Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi; Chung, Hsiao-Wen; Huang, Yi-Luan; Wu, Fu-Zong; Lin, Chu-Chuan; Peng, Nan-Jing; Wu, Ming-Ting

    2013-02-28

    Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PS(L%)), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBV(L%)) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBV(iw)(L%)). For PBViw(L%), the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBV(L%) showed error of 49.24% to -40.37% (intraclass correlation coefficient R(I) = 0.55) and PBF(L%) had error of 34.87% to -27.76% (R(I) = 0.80). With the inflow-weighted model, PBV(iw)(L%) had much less error of 12.28% to -11.20% (R(I) = 0.98) from PS(L%). The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated.

  3. Intelligent and automatic in vivo detection and quantification of transplanted cells in MRI.

    PubMed

    Afridi, Muhammad Jamal; Ross, Arun; Liu, Xiaoming; Bennewitz, Margaret F; Shuboni, Dorela D; Shapiro, Erik M

    2017-11-01

    Magnetic resonance imaging (MRI)-based cell tracking has emerged as a useful tool for identifying the location of transplanted cells, and even their migration. Magnetically labeled cells appear as dark contrast in T2*-weighted MRI, with sensitivities of individual cells. One key hurdle to the widespread use of MRI-based cell tracking is the inability to determine the number of transplanted cells based on this contrast feature. In the case of single cell detection, manual enumeration of spots in three-dimensional (3D) MRI in principle is possible; however, it is a tedious and time-consuming task that is prone to subjectivity and inaccuracy on a large scale. This research presents the first comprehensive study on how a computer-based intelligent, automatic, and accurate cell quantification approach can be designed for spot detection in MRI scans. Magnetically labeled mesenchymal stem cells (MSCs) were transplanted into rats using an intracardiac injection, accomplishing single cell seeding in the brain. T2*-weighted MRI of these rat brains were performed where labeled MSCs appeared as spots. Using machine learning and computer vision paradigms, approaches were designed to systematically explore the possibility of automatic detection of these spots in MRI. Experiments were validated against known in vitro scenarios. Using the proposed deep convolutional neural network (CNN) architecture, an in vivo accuracy up to 97.3% and in vitro accuracy of up to 99.8% was achieved for automated spot detection in MRI data. The proposed approach for automatic quantification of MRI-based cell tracking will facilitate the use of MRI in large-scale cell therapy studies. Magn Reson Med 78:1991-2002, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. A study on the flip angle for an optimal T1-weighted image based on the 3D-THRIVE MRI technique: Focusing on the detection of a hepatocellular carcinoma (HCC)

    NASA Astrophysics Data System (ADS)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan; Kim, Young-Jae

    2014-04-01

    This study examined the optimal flip angle (FA) for a T1-weighted image in the detection of a hepatocellular carcinoma (HCC). A 3D-T1-weighted high-resolution isotropic volume examination (THRIVE) technique was used to determine the dependence of the signal to noise ratio (SNR) and the contrast-to-noise ratio (CNR) on the change in FA. This study targeted 40 liver cancer patients (25 men and 15 women aged 50 to 70 years with a mean age of 60.32 ± 6.2 years) who visited this hospital to undergo an abdominal MRI examination from January to June 2013. A 3.0 Tesla MRI machine (Philips, Medical System, Achieva) and a MRI receiver coil for data reception with a 16-channel multicoil were used in this study. The THRIVE (repetition time (TR): 8.1 ms, echo time (TE): 3.7 ms, matrix: 172 × 172, slice thickness: 4 mm, gap: 2 mm, field of view (FOV): 350 mm, and band width (BW): 380.1 Hz) technique was applied as a pulse sequence. The time required for the examination was 19 seconds, and the breath-hold technique was used. Axial images were obtained at five FAs: 5, 10, 15, 20 and 25°. The signal intensities of the liver, the lesion and the background noise were measured based on the acquired images before the SNR and the CNR were calculated. To evaluate the image at the FA, we used SPSS for Windows ver. 17.0 to conduct a one-way ANOVA test. A Bonferroni test was conducted as a post-hoc test. The SNRs of the hemorrhagic HCC in the 3D-THRIVE technique were 35.50 ± 4.12, 97.00 ± 10.24, 66.09 ± 7.29, 53.84 ± 5.43, and 42.92 ± 5.11 for FAs of 5, 10, 15, 20, and 25°, respectively (p = 0.0430), whereas the corresponding CNRs were 30.50 ± 3.84, 43.00 ± 5.42, 36.54 ± 4.09, 32.30 ± 2.79, and 31.69 ± 3.21 (p = 0.0003). At a small FA of 10, the SNR and the CNR showed the highest values. As the FA was increased, the SNR and the CNR values showed a decreasing tendency. In conclusion, the optimal T1-weighted image FA should be set to 10° to detect a HCC by using the 3D

  5. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  6. PROPELLER technique to improve image quality of MRI of the shoulder.

    PubMed

    Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A

    2011-12-01

    The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.

  7. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.

    PubMed

    Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong

    2015-02-01

    Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and

  8. Body growth and brain development in premature babies: an MRI study.

    PubMed

    Tzarouchi, Loukia C; Drougia, Aikaterini; Zikou, Anastasia; Kosta, Paraskevi; Astrakas, Loukas G; Andronikou, Styliani; Argyropoulou, Maria I

    2014-03-01

    Prematurity and intrauterine growth restriction are associated with neurodevelopmental disabilities. To assess the relationship between growth status and regional brain volume (rBV) and white matter microstructure in premature babies at around term-equivalent age. Premature infants (n= 27) of gestational age (GA): 29.8 ± 2.1 weeks, with normal brain MRI scans were studied at corrected age: 41.2 ± 1.4 weeks. The infants were divided into three groups: 1) appropriate for GA at birth and at the time of MRI (AGA), 2) small for GA at birth with catch-up growth at the time of MRI (SGAa) and 3) small for GA at birth with failure of catch-up growth at the time of MRI (SGAb). The T1-weighted images were segmented into 90 rBVs using the SPM8/IBASPM and differences among groups were assessed. Fractional anisotropy (FA) was measured bilaterally in 15 fiber tracts and its relationship to GA and somatometric measurements was explored. Lower rBV was observed in SGAb in superior and anterior brain areas. A positive correlation was demonstrated between FA and head circumference and body weight. Body weight was the only significant predictor for FA (P< 0.05). In premature babies, catch-up growth is associated with regional brain volume catch-up at around term-equivalent age, starting from the brain areas maturing first. Body weight seems to be a strong predictor associated with WM microstructure in brain areas related to attention, language, cognition, memory and executing functioning.

  9. Normal saline as a natural intravascular contrast agent for dynamic perfusion-weighted MRI of the brain: Proof of concept at 1.5T.

    PubMed

    Jara, Hernán; Mian, Asim; Sakai, Osamu; Anderson, Stephan W; Horn, Mitchel J; Norbash, Alexander M; Soto, Jorge A

    2016-12-01

    Gadolinium-based contrast agents have associated risks. Normal saline (NS) is a nontoxic sodium chloride water solution that can significantly increase the magnetic resonance imaging (MRI) relaxation times of blood via transient hemodilution (THD). The purpose of this pilot study was to test in vivo in the head the potential of normal saline as a safer, exogenous perfusion contrast agent. This Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study was approved by the local Institutional Review Board (IRB): 12 patients were scanned with T 1 -weighted inversion recovery turbo spin echo pulse sequence at 1.5T. The dynamic inversion recovery pulse sequence was run before, during, and after the NS injection for up to 5 minutes: 100 ml of NS was power-injected via antecubital veins at 3-4 ml/s. Images were processed to map maximum enhancement area-under-the-curve, time-to-peak, and mean-transit-time. These maps were used to identify the areas showing significant NS injection-related signal and to generate enhancement time curves. Hardware and pulse sequence stability were studied via phantom experimentation. Main features of the time curves were tested against theoretical modeling of THD signal effects using inversion recovery pulse sequences. Pearson correlation coefficient (R) mapping was used to differentiate genuine THD effects from motion confounders and noise. The scans of 8 out of 12 patients showed NS injection-related effects that correlate in magnitude with tissue type (gray matter ∼15% and white matter ∼3%). Motion artifacts prevented ascertaining NS signal effects in the remaining four patients. Positive and negative time curves were observed in vivo and this dual THD signal polarity was also observed in the theoretical simulations. R-histograms that were approximately constant in the range 0.1 < |R| < 0.8 and leading to correlation fractions of F corr (|R| > 0.5) = 0.45 and 0.59 were found to represent scans with genuine

  10. Using High Spatial Resolution to Improve BOLD fMRI Detection at 3T

    PubMed Central

    Claise, Béatrice; Jean, Betty

    2015-01-01

    For different functional magnetic resonance imaging experiments using blood oxygenation level-dependent (BOLD) contrast, the acquisition of T 2*-weighted scans at a high spatial resolution may be advantageous in terms of time-course signal-to-noise ratio and of BOLD sensitivity when the regions are prone to susceptibility artifacts. In this study, we explore this solution by examining how spatial resolution influences activations elicited when appetizing food pictures are viewed. Twenty subjects were imaged at 3 T with two different voxel volumes, 3.4 μl and 27 μl. Despite the diminution of brain coverage, we found that high-resolution acquisition led to a better detection of activations. Though known to suffer to different degrees from susceptibility artifacts, the activations detected by high spatial resolution were notably consistent with those reported in published activation likelihood estimation meta-analyses, corresponding to taste-responsive regions. Furthermore, these regions were found activated bilaterally, in contrast with previous findings. Both the reduction of partial volume effect, which improves BOLD contrast, and the mitigation of susceptibility artifact, which boosts the signal to noise ratio in certain regions, explained the better detection noted with high resolution. The present study provides further evidences that high spatial resolution is a valuable solution for human BOLD fMRI, especially for studying food-related stimuli. PMID:26550990

  11. MRI and histopathologic study of a novel cholesterol-fed rabbit model of xanthogranuloma.

    PubMed

    Chen, Yuanxin; Hamilton, Amanda M; Parkins, Katie M; Wang, Jian-Xiong; Rogers, Kem A; Zeineh, Michael M; Rutt, Brian K; Ronald, John A

    2016-09-01

    To develop a rabbit model of xanthogranuloma based on supplementation of dietary cholesterol. The aim of this study was to analyze the xanthogranulomatous lesions using magnetic resonance imaging (MRI) and histological examination. Rabbits were fed a low-level cholesterol (CH) diet (n = 10) or normal chow (n = 5) for 24 months. In vivo brain imaging was performed on a 3T MR system using fast imaging employing steady state acquisition, susceptibility-weighted imaging, spoiled gradient recalled, T1 -weighted inversion recovery imaging and T1 relaxometry, PD-weighted and T2 -weighted spin-echo imaging and T2 relaxometry, iterative decomposition of water and fat with echo asymmetry and least-squares estimation, ultrashort TE MRI (UTE-MRI), and T2* relaxometry. MR images were evaluated using a Likert scale for lesion presence and quantitative analysis of lesion size, ventricular volume, and T1 , T2 , and T2* values of lesions was performed. After imaging, brain specimens were examined using histological methods. In vivo MRI revealed that 6 of 10 CH-fed rabbits developed lesions in the choroid plexus. Region-of-interest analysis showed that for CH-fed rabbits the mean lesion volume was 8.5 ± 2.6 mm(3) and the volume of the lateral ventricle was significantly increased compared to controls (P < 0.01). The lesions showed significantly shorter mean T2 values (35 ± 12 msec, P < 0.001), longer mean T1 values (1581 ± 146 msec, P < 0.05), and shorter T2* values (22 ± 13 msec, P < 0.001) compared to adjacent brain structures. The ultrashort T2* components were visible using UTE-MRI. Histopathologic evaluation of lesions demonstrated features of human xanthogranuloma. Rabbits fed a low-level CH diet develop sizable intraventricular masses that have similar histopathological features as human xanthogranuloma. Multiparametric MRI techniques were able to provide information about the complex composition of these lesions. J. Magn. Reson. Imaging 2016

  12. Improvement of the repeatability of parallel transmission at 7T using interleaved acquisition in the calibration scan.

    PubMed

    Kameda, Hiroyuki; Kudo, Kohsuke; Matsuda, Tsuyoshi; Harada, Taisuke; Iwadate, Yuji; Uwano, Ikuko; Yamashita, Fumio; Yoshioka, Kunihiro; Sasaki, Makoto; Shirato, Hiroki

    2017-12-04

    Respiration-induced phase shift affects B 0 /B 1 + mapping repeatability in parallel transmission (pTx) calibration for 7T brain MRI, but is improved by breath-holding (BH). However, BH cannot be applied during long scans. To examine whether interleaved acquisition during calibration scanning could improve pTx repeatability and image homogeneity. Prospective. Nine healthy subjects. 7T MRI with a two-channel RF transmission system was used. Calibration scanning for B 0 /B 1 + mapping was performed under sequential acquisition/free-breathing (Seq-FB), Seq-BH, and interleaved acquisition/FB (Int-FB) conditions. The B 0 map was calculated with two echo times, and the B 1 + map was obtained using the Bloch-Siegert method. Actual flip-angle imaging (AFI) and gradient echo (GRE) imaging were performed using pTx and quadrature-Tx (qTx). All scans were acquired in five sessions. Repeatability was evaluated using intersession standard deviation (SD) or coefficient of variance (CV), and in-plane homogeneity was evaluated using in-plane CV. A paired t-test with Bonferroni correction for multiple comparisons was used. The intersession CV/SDs for the B 0 /B 1 + maps were significantly smaller in Int-FB than in Seq-FB (Bonferroni-corrected P < 0.05 for all). The intersession CVs for the AFI and GRE images were also significantly smaller in Int-FB, Seq-BH, and qTx than in Seq-FB (Bonferroni-corrected P < 0.05 for all). The in-plane CVs for the AFI and GRE images in Seq-FB, Int-FB, and Seq-BH were significantly smaller than in qTx (Bonferroni-corrected P < 0.01 for all). Using interleaved acquisition during calibration scans of pTx for 7T brain MRI improved the repeatability of B 0 /B 1 + mapping, AFI, and GRE images, without BH. 1 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Diagnostic problems in case of twin pregnancies: US vs. MRI study.

    PubMed

    Bekiesinska-Figatowska, Monika; Herman-Sucharska, Izabela; Romaniuk-Doroszewska, Anna; Jaczynska, Renata; Furmanek, Mariusz; Bragoszewska, Hanna

    2013-09-01

    To present an experience with twin pregnancies underlining the impact of magnetic resonance imaging (MRI) on diagnosis and management. There were 17 cases of twin pregnancies: nine monochorionic [including four monochorionic diamniotic and five monochorionic monoamniotic (conjoined twins)] and eight dichorionic. The MRI examinations were performed between 19 and 39 weeks of gestational age in two centers using 1.5 T scanners (GE Signa Excite and GE Signa HDxt; GE Healthcare, Waukesha, WI, USA), always after ultrasound (US). In the first period of our activity, SSFSE sequence in T2-weighted images (SSFSE/T2WI) was the main diagnostic tool supported by TSE or GRE T1-weighted images (T1WI). After upgrading the scanners, diffusion-weighted imaging (DWI), steady-state free precession (FIESTA), and echoplanar GRE imaging (EPIGRE) became available. In 11 cases (64.7%), MRI was superior to US and supplied additional information, including two cases in which pathology of the second twin suspected on US was ruled out on the basis of MRI. In six cases (35.3%) MRI confirmed US diagnosis and brought no new data. MRI offers more detailed assessment of fetal pathology in cases of twin pregnancies, including conjoined twins, in which sonographic evaluation is more difficult than in single cases.

  14. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running.

    PubMed

    Mosher, T J; Liu, Y; Torok, C M

    2010-03-01

    To characterize effects of age and physical activity level on cartilage thickness and T2 response immediately after running. Institutional review board approval was obtained and all subjects provided informed consent prior to study participation. Cartilage thickness and magnetic resonance imaging (MRI) T2 values of 22 marathon runners and 15 sedentary controls were compared before and after 30 min of running. Runner and control groups were stratified by ageor=46 years. Multi-echo [(Time to Repetition (TR)/Time to Echo (TE) 1500 ms/9-109 ms)] MR images obtained using a 3.0 T scanner were used to calculate thickness and T2 values from the central femoral and tibial cartilage. Baseline cartilage T2 values, and change in cartilage thickness and T2 values after running were compared between the four groups using one-way analysis of variance (ANOVA). After running MRI T2 values decreased in superficial femoral (2 ms-4 ms) and tibial (1 ms-3 ms) cartilage along with a decrease in cartilage thickness: (femoral: 4%-8%, tibial: 0%-12%). Smaller decrease in cartilage T2 values were observed in the middle zone of cartilage, and no change was observed in the deepest layer. There was no difference cartilage deformation or T2 response to running as a function of age or level of physical activity. Running results in a measurable decrease in cartilage thickness and MRI T2 values of superficial cartilage consistent with greater compressibility of the superficial cartilage layer. Age and level of physical activity did not alter the T2 response to running. Copyright 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis.

    PubMed

    Hada, Shinnosuke; Ishijima, Muneaki; Kaneko, Haruka; Kinoshita, Mayuko; Liu, Lizu; Sadatsuki, Ryo; Futami, Ippei; Yusup, Anwajan; Takamura, Tomohiro; Arita, Hitoshi; Shiozawa, Jun; Aoki, Takako; Takazawa, Yuji; Ikeda, Hiroshi; Aoki, Shigeki; Kurosawa, Hisashi; Okada, Yasunori; Kaneko, Kazuo

    2017-09-12

    Medial meniscal extrusion (MME) is associated with progression of medial knee osteoarthritis (OA), but no or little information is available for relationships between MME and osteophytes, which are found in cartilage and bone parts. Because of the limitation in detectability of the cartilage part of osteophytes by radiography or conventional magnetic resonance imaging (MRI), the rate of development and size of osteophytes appear to have been underestimated. Because T2 mapping MRI may enable us to evaluate the cartilage part of osteophytes, we aimed to examine the association between MME and OA-related changes, including osteophytes, by using conventional and T2 mapping MRI. Patients with early-stage knee OA (n = 50) were examined. MRI-detected OA-related changes, in addition to MME, were evaluated according to the Whole-Organ Magnetic Resonance Imaging Score. T2 values of the medial meniscus and osteophytes were measured on T2 mapping images. Osteophytes surgically removed from patients with end-stage knee OA were histologically analyzed and compared with findings derived by radiography and MRI. Medial side osteophytes were detected by T2 mapping MRI in 98% of patients with early-stage knee OA, although the detection rate was 48% by conventional MRI and 40% by radiography. Among the OA-related changes, medial tibial osteophyte distance was most closely associated with MME, as determined by multiple logistic regression analysis, in the patients with early-stage knee OA (β = 0.711, p < 0.001). T2 values of the medial meniscus were directly correlated with MME in patients with early-stage knee OA, who showed ≥ 3 mm of MME (r = 0.58, p = 0.003). The accuracy of osteophyte evaluation by T2 mapping MRI was confirmed by histological analysis of the osteophytes removed from patients with end-stage knee OA. Our study demonstrates that medial tibial osteophyte evaluated by T2 mapping MRI is frequently observed in the patients with early-stage knee

  16. K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow.

    PubMed

    Stankovic, Zoran; Fink, Jury; Collins, Jeremy D; Semaan, Edouard; Russe, Maximilian F; Carr, James C; Markl, Michael; Langer, Mathias; Jung, Bernd

    2015-04-01

    We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.

  17. Comprehensive imaging of tumor recurrence in breast cancer patients using whole-body MRI at 1.5 and 3 T compared to FDG-PET-CT.

    PubMed

    Schmidt, Gerwin P; Baur-Melnyk, Andrea; Haug, Alexander; Heinemann, Volker; Bauerfeind, Ingo; Reiser, Maximilian F; Schoenberg, Stefan O

    2008-01-01

    To compare the diagnostic accuracy for the detection of tumor recurrence in breast cancer patients using whole-body-MRI (WB-MRI) at 1.5 or 3T compared to FDG-PET-CT. Thirty-three female patients with breast cancer and suspicion of recurrence underwent FDG-PET-CT and WB-MRI. Coronal T1w-TSE- and STIR-sequences, HASTE-imaging of the lungs, contrast-enhanced T1w- and T2w-TSE-sequences of the liver, brain and abdomen were performed, using a WB-MRI-scanner at 1.5 (n=23) or 3T (n=10). Presence of local recurrence, lymph node involvement and distant metastatic disease was assessed using clinical and radiological follow-up as a standard of reference. Tumor recurrence was found in 20 of 33 patients. Overall 186 malignant foci were detected with WB-MRI and PET-CT. Both modalities revealed two recurrent tumors of the breast. PET-CT detected more lymph node metastases (n=21) than WB-MRI (n=16). WB-MRI was more precise in the detection of distant metastases (n=154 versus n=147). Sensitivity was 93% (172/186) and 91% (170/186) for WB-MRI and PET-CT, specificity was 86% (66/77) and 90% (69/77), respectively. Examination times for WB-MRI at 1.5 and 3T were 51 and 43 min, respectively, examination time for PET-CT was 103 min. WB-MRI and PET-CT are useful for the detection of tumor recurrence in the follow-up of breast cancer. WB-MRI is highly sensitive to distant metastatic disease. PET-CT is more sensitive in detecting lymph node involvement. Tumor screening with WB-MRI is feasible at 1.5 and 3T, scan time is further reduced at 3T with identical resolution.

  18. Comparison of amyloid plaque contrast generated by T2-, T2*-, and susceptibility-weighted imaging methods in transgenic mouse models of Alzheimer’s disease

    PubMed Central

    Chamberlain, Ryan; Reyes, Denise; Curran, Geoffrey L.; Marjanska, Malgorzata; Wengenack, Thomas M.; Poduslo, Joseph F.; Garwood, Michael; Jack, Clifford R.

    2009-01-01

    One of the hallmark pathologies of Alzheimer’s disease (AD) is amyloid plaque deposition. Plaques appear hypointense on T2- and T2*-weighted MR images probably due to the presence of endogenous iron, but no quantitative comparison of various imaging techniques has been reported. We estimated the T1, T2, T2*, and proton density values of cortical plaques and normal cortical tissue and analyzed the plaque contrast generated by a collection of T2-, T2*-, and susceptibility-weighted imaging (SWI) methods in ex vivo transgenic mouse specimens. The proton density and T1 values were similar for both cortical plaques and normal cortical tissue. The T2 and T2* values were similar in cortical plaques, which indicates that the iron content of cortical plaques may not be as large as previously thought. Ex vivo plaque contrast was increased compared to a previously reported spin echo sequence by summing multiple echoes and by performing SWI; however, gradient echo and susceptibility weighted imaging was found to be impractical for in vivo imaging due to susceptibility interface-related signal loss in the cortex. PMID:19253386

  19. Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T.

    PubMed

    Chung, Julius Juhyun; Choi, Wonmin; Jin, Tao; Lee, Jung Hee; Kim, Seong-Gi

    2017-09-01

    Chemical exchange (CE)-sensitive MRI benefits greatly from stronger magnetic fields; however, field effects on CE-sensitive imaging have not yet been studied well in vivo. We have compared CE-sensitive Z-spectra and maps obtained at the fields of 9.4 T and 15.2 T in phantoms and rats with off-resonance chemical-exchange-sensitive spin lock (CESL), which is similar to conventional chemical exchange saturation transfer. At higher fields, the background peak at water resonance has less spread and the exchange rate relative to chemical shift decreases, thus CESL intensity is dependent on B 0 . For the in vivo amide and nuclear Overhauser enhancement (NOE) composite resonances of rat brains, intensities were similar for both magnetic fields, but effective amide proton transfer and NOE values obtained with three-point quantification or a curve fitting method were larger at 15.2 T due to the reduced spread of attenuation at the direct water resonance. When using intermediate exchange-sensitive irradiation parameters, the amine proton signal was 65% higher at 15.2 T than at 9.4 T due to a reduced ratio of exchange rate to chemical shift. In summary, increasing magnetic field provides enhancements to CE-sensitive signals in the intermediate exchange regime and reduces contamination from background signals in the slow exchange regime. Consequently, ultrahigh magnetic field is advantageous for CE-sensitive MRI, especially for amine and hydroxyl protons. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival

    PubMed Central

    Hattingen, Elke; Jurcoane, Alina; Daneshvar, Keivan; Pilatus, Ulrich; Mittelbronn, Michel; Steinbach, Joachim P.; Bähr, Oliver

    2013-01-01

    Background Anti-angiogenic treatment in recurrent glioblastoma patients suppresses contrast enhancement and reduces vasogenic edema while non-enhancing tumor progression is common. Thus, the importance of T2-weighted imaging is increasing. We therefore quantified T2 relaxation times, which are the basis for the image contrast on T2-weighted images. Methods Conventional and quantitative MRI procedures were performed on 18 patients with recurrent glioblastoma before treatment with bevacizumab and every 8 weeks thereafter until further tumor progression. We segmented the tumor on conventional MRI into 3 subvolumes: enhancing tumor, non-enhancing tumor, and edema. Using coregistered quantitative maps, we followed changes in T2 relaxation time in each subvolume. Moreover, we generated differential T2 maps by a voxelwise subtraction using the first T2 map under bevacizumab as reference. Results Visually segmented areas of tumor and edema did not differ in T2 relaxation times. Non-enhancing tumor volume did not decrease after commencement of bevacizumab treatment but strikingly increased at progression. Differential T2 maps clearly showed non-enhancing tumor progression in previously normal brain. T2 relaxation times decreased under bevacizumab without re-increasing at tumor progression. A decrease of <26 ms in the enhancing tumor following exposure to bevacizumab was associated with longer overall survival. Conclusions Combining quantitative MRI and tumor segmentation improves monitoring of glioblastoma patients under bevacizumab. The degree of change in T2 relaxation time under bevacizumab may be an early response parameter predictive of overall survival. The sustained decrease in T2 relaxation times toward values of healthy tissue masks progressive tumor on conventional T2-weighted images. Therefore, quantitative T2 relaxation times may detect non-enhancing progression better than conventional T2-weighted imaging. PMID:23925453

  1. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T.

    PubMed

    Mürtz, Petra; Kaschner, Marius; Träber, Frank; Kukuk, Guido M; Büdenbender, Sarah M; Skowasch, Dirk; Gieseke, Jürgen; Schild, Hans H; Willinek, Winfried A

    2012-11-01

    To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n=5), thorax (n=8), abdomen (n=6) and pelvis (n=21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as "improved", "equal", "worse" or "ambiguous". Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. By the use of TX, signal homogeneity was "improved" in 25/40 and "equal" in 15/40 cases. Fat suppression was "improved" in 17/40 and "equal" in 23/40 cases. These improvements were statistically significant (p<0.001, Wilcoxon signed-rank test). In five patients, fluid-related dielectric shading was present, which improved remarkably. The ADC values did not significantly differ for the two RF excitation methods (p=0.630 over all data, pairwise Student's t-test). Dual-source parallel RF excitation improved image quality of DWIBS at 3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Pelvis MRI scan

    MedlinePlus

    ... and most often available in the emergency room. Alternative Names MRI - pelvis; MRI - hips; Pelvic MRI with ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  3. MRI simulation: end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms

    NASA Astrophysics Data System (ADS)

    Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.

    2015-04-01

    To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.

  4. T2*-based MR imaging (gradient echo or susceptibility-weighted imaging) in midline and off-midline intracranial germ cell tumors: a pilot study.

    PubMed

    Morana, Giovanni; Alves, Cesar Augusto; Tortora, Domenico; Finlay, Jonathan L; Severino, Mariasavina; Nozza, Paolo; Ravegnani, Marcello; Pavanello, Marco; Milanaccio, Claudia; Maghnie, Mohamad; Rossi, Andrea; Garrè, Maria Luisa

    2018-01-01

    The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naïve intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT.

  5. Does fat suppression via chemically selective saturation affect R2*-MRI for transfusional iron overload assessment? A clinical evaluation at 1.5T and 3T.

    PubMed

    Krafft, Axel J; Loeffler, Ralf B; Song, Ruitian; Bian, Xiao; McCarville, M Beth; Hankins, Jane S; Hillenbrand, Claudia M

    2016-08-01

    Fat suppression (FS) via chemically selective saturation (CHESS) eliminates fat-water oscillations in multiecho gradient echo (mGRE) R2*-MRI. However, for increasing R2* values as seen with increasing liver iron content (LIC), the water signal spectrally overlaps with the CHESS band, which may alter R2*. We investigated the effect of CHESS on R2* and developed a heuristic correction for the observed CHESS-induced R2* changes. Eighty patients [female, n = 49; male, n = 31; mean age (± standard deviation), 18.3 ± 11.7 y] with iron overload were scanned with a non-FS and a CHESS-FS mGRE sequence at 1.5T and 3T. Mean liver R2* values were evaluated using three published fitting approaches. Measured and model-corrected R2* values were compared and statistically analyzed. At 1.5T, CHESS led to a systematic R2* reduction (P < 0.001 for all fitting algorithms) especially toward higher R2*. Our model described the observed changes well and reduced the CHESS-induced R2* bias after correction (linear regression slopes: 1.032/0.927/0.981). No CHESS-induced R2* reductions were found at 3T. The CHESS-induced R2* bias at 1.5T needs to be considered when applying R2*-LIC biopsy calibrations for clinical LIC assessment, which were established without FS at 1.5T. The proposed model corrects the R2* bias and could therefore improve clinical iron overload assessment based on linear R2*-LIC calibrations. Magn Reson Med 76:591-601, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Early Articular Cartilage MRI T2 Changes After Anterior Cruciate Ligament Reconstruction Correlate With Later Changes in T2 and Cartilage Thickness

    PubMed Central

    Williams, Ashley; Winalski, Carl S.; Chu, Constance R.

    2018-01-01

    Anterior cruciate ligament (ACL) injury is a known risk factor for future development of osteoarthritis (OA). This human clinical study seeks to determine if early changes to cartilage MRI T2 maps between baseline and 6 months following ACL reconstruction (ACLR) are associated with changes to cartilage T2 and cartilage thickness between baseline and 2 years after ACLR. Changes to T2 texture metrics and T2 mean values in medial knee cartilage of 17 human subjects 6 months after ACLR were compared to 2-year changes in T2 and in cartilage thickness of the same areas. T2 texture and mean assessments were also compared to that of 11 uninjured controls. In ACLR subjects, six-month changes in mean T2 correlated to 2-year changes in mean T2 (R = 0.80, p = 0.0001), and 6-month changes to T2 texture metrics, but not T2 mean, correlated with 2-year changes in medial femoral cartilage thickness in 9 of the 20 texture features assessed (R = 0.48–0.72, p ≤ 0.05). Both mean T2 and texture differed (p < 0.05) between ALCR subjects and uninjured controls. Clinical Significance These results show that short-term longitudinal evaluation of T2 map and textural changes may provide early warning of cartilage at risk for progressive degeneration after ACL injury and reconstruction. PMID:27381512

  7. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  8. Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI.

    PubMed

    Wu, Dan; Ma, Ting; Ceritoglu, Can; Li, Yue; Chotiyanonta, Jill; Hou, Zhipeng; Hsu, John; Xu, Xin; Brown, Timothy; Miller, Michael I; Mori, Susumu

    2016-01-15

    Technologies for multi-atlas brain segmentation of T1-weighted MRI images have rapidly progressed in recent years, with highly promising results. This approach, however, relies on a large number of atlases with accurate and consistent structural identifications. Here, we introduce our atlas inventories (n=90), which cover ages 4-82years with unique hierarchical structural definitions (286 structures at the finest level). This multi-atlas library resource provides the flexibility to choose appropriate atlases for various studies with different age ranges and structure-definition criteria. In this paper, we describe the details of the atlas resources and demonstrate the improved accuracy achievable with a dynamic age-matching approach, in which atlases that most closely match the subject's age are dynamically selected. The advanced atlas creation strategy, together with atlas pre-selection principles, is expected to support the further development of multi-atlas image segmentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Value of diffusion-weighted MRI during carotid angioplasty and stenting.

    PubMed

    McDonnell, C O; Fearn, S J; Baker, S R; Goodman, M A; Price, D; Lawrence-Brown, M M D

    2006-07-01

    The incidence of neurological injury following carotid angioplasty and stenting is of great interest to those advocating it as an alternative to endarterectomy in the management of critical carotid stenosis. A significant inter-observer variation exists in determining the presence or absence of a neurological deficit following the procedure objective imaging would be advantageous. In this study, we sought to assess diffusion weighted MRI as a diagnostic tool in evaluating the incidence of neurological injury following carotid angioplasty and stenting (CAS). The first 110 cases of CAS in our unit were included in this series. The procedure was abandoned in three patients. Patients underwent intracranial and extracranial MR angiography, together with diffusion-weighted MRI (DWI) prior to and following CAS and had a formal neurological assessment in the intensive care unit after the procedure. One hundred and ten Procedures were attempted in 98 patients. Twenty-eight percent were asymptomatic. Following CAS, 7.2% of patients had a positive neurological exam (two major strokes with one fatality) and 21% had positive DWI scans, equating to a sensitivity of 86% and a specificity of 85% for DWI in detecting cerebral infarction following CAS. The positive predictive value of the test was 0.3 and negative predictive value 0.99. The major stroke and death rate was 1.8%. While the use of a cerebral protection device appeared to significantly reduce the incidence of cerebral infarction (5% vs. 25%, p = 0.031) this may be a reflection of the learning curve encountered during the study. The incidence of subclinical DWI detected neurological injury was significantly higher than clinical neurological deficit following CAS. Conventional methods of neurological assessment of patients undergoing CAS may be too crude to detect subtle changes and more sensitive tests of cerebral function are required to establish whether these subclinical lesions are relevant.

  10. Computer extracted texture features on T2w MRI to predict biochemical recurrence following radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Ginsburg, Shoshana B.; Rusu, Mirabela; Kurhanewicz, John; Madabhushi, Anant

    2014-03-01

    In this study we explore the ability of a novel machine learning approach, in conjunction with computer-extracted features describing prostate cancer morphology on pre-treatment MRI, to predict whether a patient will develop biochemical recurrence within ten years of radiation therapy. Biochemical recurrence, which is characterized by a rise in serum prostate-specific antigen (PSA) of at least 2 ng/mL above the nadir PSA, is associated with increased risk of metastasis and prostate cancer-related mortality. Currently, risk of biochemical recurrence is predicted by the Kattan nomogram, which incorporates several clinical factors to predict the probability of recurrence-free survival following radiation therapy (but has limited prediction accuracy). Semantic attributes on T2w MRI, such as the presence of extracapsular extension and seminal vesicle invasion and surrogate measure- ments of tumor size, have also been shown to be predictive of biochemical recurrence risk. While the correlation between biochemical recurrence and factors like tumor stage, Gleason grade, and extracapsular spread are well- documented, it is less clear how to predict biochemical recurrence in the absence of extracapsular spread and for small tumors fully contained in the capsule. Computer{extracted texture features, which quantitatively de- scribe tumor micro-architecture and morphology on MRI, have been shown to provide clues about a tumor's aggressiveness. However, while computer{extracted features have been employed for predicting cancer presence and grade, they have not been evaluated in the context of predicting risk of biochemical recurrence. This work seeks to evaluate the role of computer-extracted texture features in predicting risk of biochemical recurrence on a cohort of sixteen patients who underwent pre{treatment 1.5 Tesla (T) T2w MRI. We extract a combination of first-order statistical, gradient, co-occurrence, and Gabor wavelet features from T2w MRI. To identify which of these

  11. Evaluation of vascular variations at cerebellopontine angle by 3D T2WI magnetic-resonance imaging in patients with vertigo.

    PubMed

    Beyazal Celiker, Fatma; Dursun, Engin; Celiker, Metin; Durakoglugil, Tugba; Beyazal, Mehmet; Inecikli, Mehmet Fatih; Ozgur, Abdulkadir; Terzi, Suat

    2017-01-01

    Vascular loops of the anterior-inferior cerebellar artery (AICA) at the cerebellopontine angle (CPA) are considered related to auditory-vestibular symptoms. Clinical association of these anatomical aberrations, which can be grouped together as vascular compression syndromes, is controversial. Magnetic resonance imaging (MRI) is widely used to visualize this anatomical region, given its high sensitivity and specificity. To elucidate the clinical relationship of vertigo symptoms with vascular loop compression syndrome by evaluating the neurovascular contacts of the vestibulocochlear nerve (VCN) and AICA at the CPA and internal auditory canal via high-resolution MRI. The study included 417 patients (178 with vertigo and 239 without vertigo) undergoing MRI for various clinical causes. MRI scans were assessed to study the presence of vascular abnormalities at the CPA. According to our findings, type 1 vascular variation was observed most frequently in both sides. MRI findings were similar for the patients with and without vertigo. Identifying the prevalence of the vascular loops of the AICA primarily depends on diagnostic technique, and our results identified a slightly higher prevalence than those of previous studies, which might be partly related to the high-sensitivity of 3-dimensional T2-weighted MRI.

  12. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla.

    PubMed

    Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin

    2017-04-01

    To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m 2 (30.02 ± 6.63 kg/m 2 ) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.

  13. There's more than one way to scan a cat: imaging cat auditory cortex with high-field fMRI using continuous or sparse sampling.

    PubMed

    Hall, Amee J; Brown, Trecia A; Grahn, Jessica A; Gati, Joseph S; Nixon, Pam L; Hughes, Sarah M; Menon, Ravi S; Lomber, Stephen G

    2014-03-15

    When conducting auditory investigations using functional magnetic resonance imaging (fMRI), there are inherent potential confounds that need to be considered. Traditional continuous fMRI acquisition methods produce sounds >90 dB which compete with stimuli or produce neural activation masking evoked activity. Sparse scanning methods insert a period of reduced MRI-related noise, between image acquisitions, in which a stimulus can be presented without competition. In this study, we compared sparse and continuous scanning methods to identify the optimal approach to investigate acoustically evoked cortical, thalamic and midbrain activity in the cat. Using a 7 T magnet, we presented broadband noise, 10 kHz tones, or 0.5 kHz tones in a block design, interleaved with blocks in which no stimulus was presented. Continuous scanning resulted in larger clusters of activation and more peak voxels within the auditory cortex. However, no significant activation was observed within the thalamus. Also, there was no significant difference found, between continuous or sparse scanning, in activations of midbrain structures. Higher magnitude activations were identified in auditory cortex compared to the midbrain using both continuous and sparse scanning. These results indicate that continuous scanning is the preferred method for investigations of auditory cortex in the cat using fMRI. Also, choice of method for future investigations of midbrain activity should be driven by other experimental factors, such as stimulus intensity and task performance during scanning. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  15. Fetal MRI: A Technical Update with Educational Aspirations

    PubMed Central

    Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.

    2015-01-01

    Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129

  16. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; hide

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  17. Value of Endorectal MRI in Romanian Men for High Risk of Prostate Cancer: MRI Findings Compared with Saturation Biopsy.

    PubMed

    Lebovici, A; Sfrangeu, S A; Caraiani, C; Lucan, C; Suciu, M; Elec, F; Iacob, Gh; Buruian, M

    2015-01-01

    To evaluate the potentials of T2 weighted (T2W)MRI and diffusion weighted (DW) MRI for prostate cancer(PCa) detection, local staging and treatment planning in high-risk group. Endorectal MRI was performed in 17 Romanian men (median age: 66 years; range: 58 75 years), prostate specific antigen (PSA) serum levels (median: 20 ng mL; range: 8.6 100 ng mL) with positive findings for PCa(median Gleason score: 8; range: 7 - 9). Imaging findings were compared to standarised 20-core transperineal saturation biopsy. The prostate was divided into 16 standart sectors(10 posterior and 6 anterior). Overall, prostate cancer was detected in 16 patients(94%) on DW-MRI alone and in all 17 patients (100%) on T2W-MRI alone, and on combined imaging. On T2W-MRI165 sectors out of 272 were suspicious for PCa and 124 (75%)were cancer positive. On DW-MRI 126 sectors out of 272 were suspicious for PCa and 118 (95%) were cancer positive. On the combined imaging approach 134 sectors out of 272 were suspicious for PCa and 126 (94%) were cancer positive. This resulted in diagnostic accuracies per sector of 76% for T2WMRI, 86% for DW-MRI and 89% for combined imaging. Multifocal PCa was confirmed both on MR imaging and by biopsy in 8 of the 17 men (47%) Extra capsular extension(ECE) or seminal vesicles invasion (SVI) was highly suspected in 8 (47%) respectively 7 (41%) of the 17 patients. 6 patients(35%) presented both ECE and SVI. MRI findings were taken into account for treatment planning and none of these patients underwent radical prostatectomy and instead was treated with palliative cryotherapy, radiotherapy and hormone therapy. Endorectal MRI is highly accurate in PCa detection in the high-risk group and seems to have an important role in local staging and treatment planning for Romanian population. Celsius.

  18. T1-weighted dynamic contrast-enhanced brain magnetic resonance imaging: A preliminary study with low infusion rate in pediatric patients.

    PubMed

    Rochetams, Bruno-Bernard; Marechal, Bénédicte; Cottier, Jean-Philippe; Gaillot, Kathleen; Sembely-Taveau, Catherine; Sirinelli, Dominique; Morel, Baptiste

    2017-10-01

    Background The aim of this preliminary study is to evaluate the results of T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in pediatric patients at 1.5T, with a low peripheral intravenous gadoteric acid injection rate of 1 ml/s. Materials and methods Children with neurological symptoms were examined prospectively with conventional MRI and T1-weighted DCE MRI. An magnetic resonance perfusion analysis method was used to obtain time-concentration curves (persistent pattern, type-I; plateau pattern, type-II; washout pattern, type-III) and to calculate pharmacokinetic parameters. A total of two radiologists manually defined regions of interest (ROIs) in the part of the lesion exhibiting the greatest contrast enhancement and in the surrounding normal or contralateral tissue. Lesion/surrounding tissue or contralateral tissue pharmacokinetic parameter ratios were calculated. Tumors were categorized by grade (I-IV) using the World Health Organization (WHO) Grade. Mann-Whitney testing and receiver-operating characteristic (ROC) curves were performed. Results A total of nine boys and nine girls (mean age 10.5 years) were included. Lesions consisted of 10 brain tumors, 3 inflammatory lesions, 3 arteriovenous malformations and 2 strokes. We obtained analyzable concentration-time curves for all patients (6 type-I, 9 type-II, 3 type-III). K trans between tumor tissue and surrounding or contralateral tissue was significantly different ( p = 0.034). K trans ratios were significantly different between grade I tumors and grade IV tumors ( p = 0.027) and a K trans ratio value superior to 0.63 appeared to be discriminant to determine a grade IV of malignancy. Conclusions Our results confirm the feasibility of pediatric T1-weighted DCE MRI at 1.5T with a low injection rate, which could be of great value in differentiating brain tumor grades.

  19. SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi-Ardekani, A; Wronski, M; Kim, A

    2015-06-15

    Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode priormore » to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla.« less

  20. TU-AB-BRA-03: Atlas-Based Algorithms with Local Registration-Goodness Weighting for MRI-Driven Electron Density Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farjam, R; Tyagi, N; Veeraraghavan, H

    Purpose: To develop image-analysis algorithms to synthesize CT with accurate electron densities for MR-only radiotherapy of head & neck (H&N) and pelvis anatomies. Methods: CT and 3T-MRI (Philips, mDixon sequence) scans were randomly selected from a pool of H&N (n=11) and pelvis (n=12) anatomies to form an atlas. All MRIs were pre-processed to eliminate scanner and patient-induced intensity inhomogeneities and standardize their intensity histograms. CT and MRI for each patient were then co-registered to construct CT-MRI atlases. For more accurate CT-MR fusion, bone intensities in CT were suppressed to improve the similarity between CT and MRI. For a new patient,more » all CT-MRI atlases are deformed onto the new patients’ MRI initially. A newly-developed generalized registration error (GRE) metric was then calculated as a measure of local registration accuracy. The synthetic CT value at each point is a 1/GRE-weighted average of CTs from all CT-MR atlases. For evaluation, the mean absolute error (MAE) between the original and synthetic CT (generated in a leave-one-out scheme) was computed. The planning dose from the original and synthetic CT was also compared. Results: For H&N patients, MAE was 67±9, 114±22, and 116±9 HU over the entire-CT, air and bone regions, respectively. For pelvis anatomy, MAE was 47±5 and 146±14 for the entire and bone regions. In comparison with MIRADA medical, an FDA-approved registration tool, we found that our proposed registration strategy reduces MAE by ∼30% and ∼50% over the entire and bone regions, respectively. GRE-weighted strategy further lowers MAE by ∼15% to ∼40%. Our primary dose calculation also showed highly consistent results between the original and synthetic CT. Conclusion: We’ve developed a novel image-analysis technique to synthesize CT for H&N and pelvis anatomies. Our proposed image fusion strategy and GRE metric help generate more accurate synthetic CT using locally more similar atlases (Support

  1. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography.

    PubMed

    Pujol, Esteban; Van Bree, Henri; Cauzinille, Laurent; Poncet, Cyrill; Gielen, Ingrid; Bouvy, Bernard

    2011-06-01

    To investigate the use of low-field magnetic resonance imaging (MRI) and MR arthrography in normal canine stifles and to compare MRI images to gross dissection. Descriptive study. Adult canine pelvic limbs (n=17). Stifle joints from 12 dogs were examined by orthopedic and radiographic examination, synovial fluid analysis, and MRI performed using a 0.2 T system. Limbs 1 to 7 were used to develop the MR and MR arthrography imaging protocol. Limbs 8-17 were studied with the developed MR and MR arthrography protocol and by gross dissection. Three sequences were obtained: T1-weighted spin echo (SE) in sagittal, dorsal, and transverse plane; T2-weighted SE in sagittal plane and T1-gradient echo in sagittal plane. Specific bony and soft tissue structures were easily identifiable with the exception of articular cartilage. The cranial and caudal cruciate ligaments were identified. Medial and lateral menisci were seen as wedge-shaped hypointense areas. MR arthrography permitted further delineation of specific structures. MR images corresponded with gross dissection morphology. With the exception of poor delineation of articular cartilage, a low-field MRI and MR arthrography protocol provides images of adequate quality to assess the normal canine stifle joint. © Copyright 2011 by The American College of Veterinary Surgeons.

  2. Applicability of T1-weighted MRI in the assessment of forensic age based on the epiphyseal closure of the humeral head.

    PubMed

    Ekizoglu, Oguzhan; Inci, Ercan; Ors, Suna; Kacmaz, Ismail Eralp; Basa, Can Doruk; Can, Ismail Ozgur; Kranioti, Elena F

    2018-05-26

    This work investigates the value of magnetic resonance imaging analysis of proximal epiphyseal fusion in research examining the growth and development of the humerus and its potential utility in establishing forensic age estimation. In this study, 428 proximal humeral epiphyses (patient age, 12-30 years) were evaluated with T1-weighted turbo spin echo (T1 TSE) sequences in coronal oblique orientation on shoulder MRI images. A scoring system was created following a combination of the Schmeling and Kellinghaus methods. Spearman's rank correlation analysis revealed a significant positive relationship between age and ossification stage of the proximal humeral epiphysis (all subjects: rho = 0.664, p < 0.001; males: 0.631, p < 0.001; females: rho = 0.651, p < 0.001). The intra- and inter-observer reliability assessed using Cohen's kappa statistic was κ = 0.898 and κ = 0.828, respectively. The earliest age of epiphysis closure was 17 years for females and 18 years for males. MRI of the proximal humeral epiphysis can be considered advantageous for forensic age estimation of living individuals in a variety of situations, ranging from monitoring public health to estimating the age of illegal immigrants/asylum seekers, minors engaged in criminal activities, and illegal participants in competitive sports, without the danger of radiation exposure.

  3. SU-G-JeP2-02: A Unifying Multi-Atlas Approach to Electron Density Mapping Using Multi-Parametric MRI for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, S; Tianjin University, Tianjin; Hara, W

    Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less

  4. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2014-01-01

    Objectives To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T, and to compare 7-T and 3-T images. Methods Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Results Image scores at 7 T and 3 T were similar on standard-resolution images (1.1× 1.1×1.1−1.6 mm3), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P≤0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T over 3 T, owing to effective adiabatic inversion-based FS and the inherent 7 T signal advantage. Signal uniformity was comparable at 7 T and 3 T (P<0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. Conclusion The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique mitigate the impact of high-field heterogeneity to produce image quality that is as good as or better than at 3 T PMID:23896763

  5. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

    PubMed

    Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu

    2018-03-01

    To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. SU-E-J-217: Multiparametric MR Imaging of Cranial Tumors On a Dedicated 1.0T MR Simulator Prior to Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, N; Glide-Hurst, C; Liu, M

    Purpose: Quantitative magnetic resonance imaging (MRI) of cranial lesions prior to stereotactic radiosurgery (SRS) may improve treatment planning and provide potential prognostic value. The practicality and logistics of acquiring advanced multiparametric MRI sequences to measure vascular and cellular properties of cerebral tumors are explored on a 1.0 Tesla MR Simulator. Methods: MR simulation was performed immediately following routine CT simulation on a 1T MR Simulator. MR sequences used were in the order they were performed: T2-Weighted Turbo Spin Echo (T2W-TSE), T2 FLAIR, Diffusion-weighted (DWI, b = 0, 800 to generate an apparent diffusion coefficient (ADC) map), 3D T1-Weighted Fast Fieldmore » Echo (T1W-FFE), Dynamic Contrast Enhanced (DCE) and Post Gadolinium Contrast Enhanced 3D T1W-FFE images. T1 pre-contrast values was generated by acquiring six different flip angles. The arterial input function was derived from arterial pixels in the perfusion images selected manually. The extended Tofts model was used to generate the permeability maps. Routine MRI scans took about 30 minutes to complete; the additional scans added 12 minutes. Results: To date, seven patients with cerebral tumors have been imaged and tumor physiology characterized. For example, on a glioblastoma patient, the volume contoured on T1 Gd images, ADC map and the pharmacokinetic map (Ktrans) were 1.9, 1.4, and 1.5 cc respectively with strong spatial correlation. The mean ADC value of the entire volume was 1141 μm2/s while the value in the white matter was 811 μm2/s. The mean value of Ktrans was 0.02 min-1 in the tumor volume and 0.00 in the normal white matter. Conclusion: Our initial results suggest that multiparametric MRI sequences may provide a more quantitative evaluation of vascular and tumor properties. Implementing functional imaging during MR-SIM may be particularly beneficial in assessing tumor extent, differentiating radiation necrosis from tumor recurrence, and establishing

  7. Diffusion-Weighted Magnetic Resonance Imaging of Cholesteatoma Using PROPELLER at 1.5T: A Single-Centre Retrospective Study.

    PubMed

    Clarke, Sharon E; Mistry, Dipan; AlThubaiti, Talal; Khan, M Naeem; Morris, David; Bance, Manohar

    2017-05-01

    The purpose of this study was to evaluate the sensitivity, specificity, and positive and negative predictive values of the diffusion-weighted periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique in the detection of cholesteatoma at our institution with surgical confirmation in all cases. A retrospective review of 21 consecutive patients who underwent diffusion-weighted PROPELLER magnetic resonance imaging (MRI) on a 1.5T MRI scanner prior to primary or revision/second-look surgery for suspected cholesteatoma from 2009-2012 was performed. Diffusion-weighted PROPELLER had a sensitivity of 75%, specificity of 60%, positive predictive value of 86%, and negative predictive value of 43%. In the 15 patients for whom the presence or absence of cholesteatoma was correctly predicted, there were 2 cases where the reported locations of diffusion restriction did not correspond to the location of the cholesteatoma observed at surgery. On the basis of our retrospective study, we conclude that diffusion-weighted PROPELLER MRI is not sufficiently accurate to replace second look surgery at our institution. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  8. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3T MRI: a feasibility study.

    PubMed

    Marik, W; Apprich, S; Welsch, G H; Mamisch, T C; Trattnig, S

    2012-05-01

    To perform an in vivo evaluation comparing overlying articular cartilage in patients suffering from osteochondrosis dissecans (OCD) in the talocrural joint and healthy volunteers using quantitative T2 mapping at 3.0 T. Ten patients with OCD of Grade II or lower and 9 healthy age matched volunteers were examined at a 3.0 T whole body MR scanner using a flexible multi-element coil. In all investigated persons MRI included proton-density (PD)-FSE and 3D GRE (TrueFisp) sequences for morphological diagnosis and location of anatomical site and quantitative T2 and T2 maps. Region of interest (ROI) analysis was performed for the cartilage layer above the OCD and for a morphologically healthy graded cartilage layer. Mean T2 and T2 values were then statistically analysed. The cartilage layer of healthy volunteers showed mean T2 and T2 values of 29.4 ms (SD 4.9) and 11.8 ms (SD 2.7), respectively. In patients with OCD of grade I and II lesions mean T2 values were 40.9 ms (SD 6.6), 48.7 ms (SD 11.2) and mean T2 values were 16.1 ms (SD 3.2), 16.2 ms (SD 4.8). Therefore statistically significantly higher mean T2 and T2 values were found in patients suffering from OCD compared to healthy volunteers. T2 and T2 mapping can help assess the microstructural composition of cartilage overlying osteochondral lesions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Diagnostic Quality of 3D T2-SPACE Compared with T2-FSE in the Evaluation of Cervical Spine MRI Anatomy.

    PubMed

    Chokshi, F H; Sadigh, G; Carpenter, W; Allen, J W

    2017-04-01

    Spinal anatomy has been variably investigated using 3D MRI. We aimed to compare the diagnostic quality of T2 sampling perfection with application-optimized contrasts by using flip angle evolution (SPACE) with T2-FSE sequences for visualization of cervical spine anatomy. We predicted that T2-SPACE will be equivalent or superior to T2-FSE for visibility of anatomic structures. Adult patients undergoing cervical spine MR imaging with both T2-SPACE and T2-FSE sequences for radiculopathy or myelopathy between September 2014 and February 2015 were included. Two blinded subspecialty-trained radiologists independently assessed the visibility of 12 anatomic structures by using a 5-point scale and assessed CSF pulsation artifact by using a 4-point scale. Sagittal images and 6 axial levels from C2-T1 on T2-FSE were reviewed; 2 weeks later and after randomization, T2-SPACE was evaluated. Diagnostic quality for each structure and CSF pulsation artifact visibility on both sequences were compared by using a paired t test. Interobserver agreement was calculated (κ). Forty-five patients were included (mean age, 57 years; 40% male). The average visibility scores for intervertebral disc signal, neural foramina, ligamentum flavum, ventral rootlets, and dorsal rootlets were higher for T2-SPACE compared with T2-FSE for both reviewers ( P < .001). Average scores for remaining structures were either not statistically different or the superiority of one sequence was discordant between reviewers. T2-SPACE showed less degree of CSF flow artifact ( P < .001). Interobserver variability ranged between -0.02-0.20 for T2-SPACE and -0.02-0.30 for T2-FSE (slight to fair agreement). T2-SPACE may be equivalent or superior to T2-FSE for the evaluation of cervical spine anatomic structures, and T2-SPACE shows a lower degree of CSF pulsation artifact. © 2017 by American Journal of Neuroradiology.

  10. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    PubMed

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both

  11. T renal MRI: challenges and promises.

    PubMed

    de Boer, Anneloes; Hoogduin, Johannes M; Blankestijn, Peter J; Li, Xiufeng; Luijten, Peter R; Metzger, Gregory J; Raaijmakers, Alexander J E; Umutlu, Lale; Visser, Fredy; Leiner, Tim

    2016-06-01

    The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging.

  12. Repeatability and correlations of dynamic contrast enhanced and T2* MRI in patients with advanced pancreatic ductal adenocarcinoma.

    PubMed

    Klaassen, Remy; Gurney-Champion, Oliver J; Wilmink, Johanna W; Besselink, Marc G; Engelbrecht, Marc R W; Stoker, Jaap; Nederveen, Aart J; van Laarhoven, Hanneke W M

    2018-07-01

    In current oncological practice of pancreatic ductal adenocarcinoma (PDAC), there is a great demand for response predictors and markers for early treatment evaluation. In this study, we investigated the repeatability and the interaction of dynamic contrast enhanced (DCE) and T2* MRI in patients with advanced PDAC to enable for such evaluation using these techniques. 15 PDAC patients underwent two DCE, T2* and anatomical 3 T MRI sessions before start of treatment. Parametric maps were calculated for the transfer constant (K trans ), rate constant (k ep ), extracellular extravascular space (v e ) and perfusion fraction (v p ). Quantitative R2* (1/T2*) maps were obtained from the multi-echo T2* images. Differences between normal and cancerous pancreas were determined using a Wilcoxon matched pairs test. Repeatability was obtained using Bland-Altman analysis and relations between DCE and T2*/R2* were observed by Spearman correlation and voxel-wise binned plots of tumor voxels. PDAC K trans (p = 0.007), k ep (p < 0.001), v p (p = 0.035) were lower and v e (p < 0.001) was higher compared to normal pancreas. The coefficient of variation between sessions was 21.8% for K trans , 9.9% for k ep , 19.3% for v e , 18.2% for v p and 18.7% for R2*. Variation between patients ranged from 20.2% for k ep to 43.6% for K trans . In the tumor both K trans (r = 0.56, p = 0.030) and v e (r = 0.54, p = 0.037) showed a positive correlation with T2*. Voxel wise analysis showed a steep increase in R2* for tumor voxels with lower K trans and v e . We showed good repeatability of DCE and T2* related MRI parameters in advanced PDAC patients. Furthermore, we have illustrated the relation of DCE K trans and v e with tissue T2* and R2* indicating substantial value of these parameters for detecting tumor hypoxia in future studies. The results from our study pave the way for further response evaluation studies and patient selection based on DCE and T2* parameters

  13. Feasibility of an intracranial EEG-fMRI protocol at 3T: risk assessment and image quality.

    PubMed

    Boucousis, Shannon M; Beers, Craig A; Cunningham, Cameron J B; Gaxiola-Valdez, Ismael; Pittman, Daniel J; Goodyear, Bradley G; Federico, Paolo

    2012-11-15

    Integrating intracranial EEG (iEEG) with functional MRI (iEEG-fMRI) may help elucidate mechanisms underlying the generation of seizures. However, the introduction of iEEG electrodes in the MR environment has inherent risk and data quality implications that require consideration prior to clinical use. Previous studies of subdural and depth electrodes have confirmed low risk under specific circumstances at 1.5T and 3T. However, no studies have assessed risk and image quality related to the feasibility of a full iEEG-fMRI protocol. To this end, commercially available platinum subdural grid/strip electrodes (4×5 grid or 1×8 strip) and 4 or 6-contact depth electrodes were secured to the surface of a custom-made phantom mimicking the conductivity of the human brain. Electrode displacement, temperature increase of electrodes and surrounding phantom material, and voltage fluctuations in electrode contacts were measured in a GE Discovery MR750 3T MR scanner during a variety of imaging sequences, typical of an iEEG-fMRI protocol. An electrode grid was also used to quantify the spatial extent of susceptibility artifact. The spatial extent of susceptibility artifact in the presence of an electrode was also assessed for typical imaging parameters that maximize BOLD sensitivity at 3T (TR=1500 ms; TE=30 ms; slice thickness=4mm; matrix=64×64; field-of-view=24 cm). Under standard conditions, all electrodes exhibited no measurable displacement and no clinically significant temperature increase (<1°C) during scans employed in a typical iEEG-fMRI experiment, including 60 min of continuous fMRI. However, high SAR sequences, such as fast spin-echo (FSE), produced significant heating in almost all scenarios (>2.0°C) that in some cases exceeded 10°C. Induced voltages in the frequency range that could elicit neuronal stimulation (<10 kHz) were well below the threshold of 100 mV. fMRI signal intensity was significantly reduced within 20mm of the electrodes for the imaging parameters

  14. Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques

    PubMed Central

    Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.

    2016-01-01

    Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173

  15. SU-E-J-232: Feasibility of MRI-Based Preplan On Low Dose Rate Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y; Tward, J; Rassiah-Szegedi, P

    Purpose: To investigate the feasibility of using MRI-based preplan for low dose rate prostate brachytherapy. Methods: 12 patients who received transrectal ultrasound (TRUS) guided prostate brachytherapy with Pd-103 were retrospectively studied. Our care-standard of the TRUS-based preplan served as the control. One or more prostate T2-weighted wide and/or narrow-field of view MRIs obtained within the 3 months prior to the implant were imported into the MIM Symphony software v6.3 (MIM Software Inc., Cleveland, OH) for each patient. In total, 37 MRI preplans (10 different image sequences with average thickness of 4.8mm) were generated. The contoured prostate volume and the seedmore » counts required to achieve adequate dosimetric coverage from TRUS and MRI preplans were compared for each patient. The effects of different MRI sequences and image thicknesses were also investigated statistically using Student’s t-test. Lastly, the nomogram from the MRI preplan and TRUS preplan from our historical treatment data were compared. Results: The average prostate volume contoured on the TRUS and MRI were 26.6cc (range: 12.6∼41.3cc), and 27.4 cc (range: 14.3∼50.0cc), respectively. Axial MRI thicknesses (range: 3.5∼8.1mm) did not significantly affect the contoured volume or the number of seeds required on the preplan (R2 = 0.0002 and 0.0012, respectively). Four of the MRI sequences (AX-T2, AX-T2-Whole-Pelvis, AX-T2-FSE, and AXIALT2- Hi-Res) showed statistically significant better prostate volume agreement with TRUS than the other seven sequences (P <0.01). Nomogram overlay between the MRI and TRUS preplans showed good agreement; indicating volumes contoured on MRI preplan scan reliably predict how many seeds are needed for implant. Conclusion: Although MRI does not allow for determination of the actual implant geometry, it can give reliable volumes for seed ordering purposes. Our future work will investigate if MRI is sufficient to reliably replace TRUS preplanning in

  16. Evaluation of articular cartilage following rotational acetabular osteotomy for hip dysplasia using T2 mapping MRI.

    PubMed

    Shoji, Takeshi; Yamasaki, Takuma; Izumi, Soutaro; Sawa, Mikiya; Akiyama, Yuji; Yasunaga, Yuji; Adachi, Nobuo

    2018-04-27

    Rotational acetabular osteotomy (RAO) is one of the surgical treatments for acetabular dysplasia, and satisfactory results have been reported. We evaluated the postoperative changes of articular cartilage and whether the pre-operative condition of the articular cartilage influences the clinical results using T2 mapping MRI. We reviewed 31 hips with early stage osteoarthritis in 31 patients (mean age, 39.6 years), including three men and 28 women who underwent RAO for hip dysplasia. Clinical evaluations including Japanese Orthopedic Association (JOA) score and Japanese Orthopedic Association Hip Disease Evaluation Questionnaire (JHEQ), and radiographical evaluations on X-ray were performed. Longitudinal qualitative assessment of articular cartilage was also performed using 3.0-T MRI with T2 mapping technique preoperatively, 6 months, and at 1 and 2 years postoperatively. There was no case with progression of osteoarthritis. The mean JOA score improved from 70.1 to 93.4 points, the mean postoperative JHEQ score was 68.8 points, and radiographical data also improved postoperatively. We found that the T2 values of the cartilage at both femoral head and acetabulum increased at 6 months on coronal and sagittal views. However, they significantly decreased 1 and 2 years postoperatively. The T2 values of the center to anterolateral region of acetabulum negatively correlated with postoperative JHEQ score, particularly in pain score. This study suggests that biomechanical and anatomical changes could apparently cause decreased T2 values 1-2 years postoperatively compared with those preoperatively. Furthermore, preoperative T2 values of the acetabulum can be prognostic factors for the clinical results of RAO.

  17. Detection of Local Tumor Recurrence After Definitive Treatment of Head and Neck Squamous Cell Carcinoma: Histogram Analysis of Dynamic Contrast-Enhanced T1-Weighted Perfusion MRI.

    PubMed

    Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan

    2017-01-01

    This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p < 0.05). The 90th percentile of the AUCR values (AUCR 90 ) was the best predictor of local tumor recurrence (AUC, 0.77; 95% CI, 0.64-0.91) with an estimated cutoff of 1.02. AUCR 90 increased sensitivity by 11.7% over that of conventional MRI alone when added to inconclusive results. Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.

  18. Ultra-high magnetic resonance imaging (MRI): a potential examination for deep brain stimulation devices and the limitation study concerning MRI-related heating injury.

    PubMed

    Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-03-01

    Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.

  19. Functional Magnetic Resonance Imaging (MRI) and MRI Tractography in Progressive Supranuclear Palsy-Like Syndrome

    PubMed Central

    Vaphiades, Michael S.; Visscher, Kristina; Rucker, Janet C.; Vattoth, Surjith; Roberson, Glenn H.

    2015-01-01

    ABSTRACT An 18-year-old woman underwent an uneventful ascending aortic aneurysm repair then developed progressive supranuclear palsy-like syndrome. Extensive neuroimaging including contrasted fat-suppressed cranial and orbital magnetic resonance imaging (MRI), MRI tractography, and functional MRI (fMRI) revealed no clear radiographic involvement except for a single tiny hypoechoic midbrain dot on the T2*-weighted gradient-echo imaging, which is not considered sufficient to account for the patient’s deficits. This case attests to the occult nature of this rare and devastating syndrome. PMID:27928334

  20. SU-F-T-47: MRI T2 Exclusive Based Planning Using the Endocavitary/interstitial Gynecological Benidorm Applicator: A Proposed TPS Library and Preplan Efficient Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richart, J; Otal, A; Rodriguez, S

    Purpose: ABS and GEC-ESTRO have recommended MRI T2 for image guided brachytherapy. Recently, a new applicator (Benidorm Template, TB) has been developed in our Department (Rodriguez et al 2015). TB is fully MRI compatible because the Titanium needles and it allows the use of intrauterine tandem. Currently, TPS applicators library are not currently available for non-rigid applicators in case of interstitial component as the TB.The purpose of this work is to present the development of a library for the TB, together with its use on a pre-planning technique. Both new goals allow a very efficient and exclusive T2 MRI basedmore » planning clinical TB implementation. Methods: The developed library has been implemented in Oncentra Brachytherapy TPS, version 4.3.0 (Elekta) and now is being implemented on Sagiplan v 2.0 TPS (Eckert&Ziegler BEBIG). To model the TB, free and open software named FreeCAD and MeshLab have been used. The reconstruction process is based on three inserted A-vitamin pellets together with the data provided by the free length. The implemented preplanning procedure is as follow: 1) A MRI T2 acquisition is performed with the template in place just with the vaginal cylinder (no uterine tube nor needles). 2) The CTV is drawn and the required needles are selected using a developed Java based application and 3) A post-implant MRI T2 is performed. Results: This library procedure has been successfully applied by now in 25 patients. In this work the use of the developed library will be illustrated with clinical examples. The preplanning procedure has been applied by now in 6 patients, having significant advantages: needle depth estimation, needle positions and number are optimized a priori, time saving, etc Conclusion: TB library and pre-plan techniques are feasible and very efficient and their use will be illustrated in this work.« less

  1. Cluster analysis of quantitative MRI T2 and T1ρ relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T.

    PubMed

    Monu, U D; Jordan, C D; Samuelson, B L; Hargreaves, B A; Gold, G E; McWalter, E J

    2017-04-01

    To identify focal lesions of elevated MRI T 2 and T 1ρ relaxation times in articular cartilage of an ACL-injured group using a novel cluster analysis technique. Eighteen ACL-injured patients underwent 3T MRI T 2 and T 1ρ relaxometry at baseline, 6 months and 1 year and six healthy volunteers at baseline, 1 day and 1 year. Clusters of contiguous pixels above or below T 2 and T 1ρ intensity and area thresholds were identified on a projection map of the 3D femoral cartilage surface. The total area of femoral cartilage plate covered by clusters (%CA) was split into areas above (%CA+) and below (%CA-) the thresholds and the differences in %CA(+ or -) over time in the ACL-injured group were determined using the Wilcoxon signed rank test. %CA+ was greater in the ACL-injured patients than the healthy volunteers at 6 months and 1 year with average %CA+ of 5.2 ± 4.0% (p = 0.0054) and 6.6 ± 3.7% (p = 0.0041) for T 2 and 6.2 ± 7.1% (p = 0.063) and 8.2 ± 6.9% (p = 0.042) for T 1ρ , respectively. %CA- at 6 months and 1 year was 3.0 ± 1.8% (p > 0.1) and 5.9 ± 5.0% (p > 0.1) for T 2 and 4.4 ± 4.9% (p > 0.1) and 4.5 ± 4.6% (p > 0.1) for T 1ρ , respectively. With the proposed cluster analysis technique, we have quantified cartilage lesion coverage and demonstrated that the ACL-injured group had greater areas of elevated T 2 and T 1ρ relaxation times as compared to healthy volunteers. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. A New Joint-Blade SENSE Reconstruction for Accelerated PROPELLER MRI.

    PubMed

    Lyu, Mengye; Liu, Yilong; Xie, Victor B; Feng, Yanqiu; Guo, Hua; Wu, Ed X

    2017-02-16

    PROPELLER technique is widely used in MRI examinations for being motion insensitive, but it prolongs scan time and is restricted mainly to T2 contrast. Parallel imaging can accelerate PROPELLER and enable more flexible contrasts. Here, we propose a multi-step joint-blade (MJB) SENSE reconstruction to reduce the noise amplification in parallel imaging accelerated PROPELLER. MJB SENSE utilizes the fact that PROPELLER blades contain sharable information and blade-combined images can serve as regularization references. It consists of three steps. First, conventional blade-combined images are obtained using the conventional simple single-blade (SSB) SENSE, which reconstructs each blade separately. Second, the blade-combined images are employed as regularization for blade-wise noise reduction. Last, with virtual high-frequency data resampled from the previous step, all blades are jointly reconstructed to form the final images. Simulations were performed to evaluate the proposed MJB SENSE for noise reduction and motion correction. MJB SENSE was also applied to both T2-weighted and T1-weighted in vivo brain data. Compared to SSB SENSE, MJB SENSE greatly reduced the noise amplification at various acceleration factors, leading to increased image SNR in all simulation and in vivo experiments, including T1-weighted imaging with short echo trains. Furthermore, it preserved motion correction capability and was computationally efficient.

  3. Task-based optimization of flip angle for fibrosis detection in T1-weighted MRI of liver

    PubMed Central

    Brand, Jonathan F.; Furenlid, Lars R.; Altbach, Maria I.; Galons, Jean-Philippe; Bhattacharyya, Achyut; Sharma, Puneet; Bhattacharyya, Tulshi; Bilgin, Ali; Martin, Diego R.

    2016-01-01

    Abstract. Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. The current reference standard for diagnosing HF is biopsy followed by pathologist examination; however, this is limited by sampling error and carries a risk of complications. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically in the order of 1 to 5 mm, which approximates the resolution limit of in vivo gadolinium-enhanced magnetic resonance imaging in the delayed phase. We use MRI of formalin-fixed human ex vivo liver samples as phantoms that mimic the textural contrast of in vivo Gd-MRI. We have developed a local texture analysis that is applied to phantom images, and the results are used to train model observers to detect HF. The performance of the observer is assessed with the area-under-the-receiver–operator-characteristic curve (AUROC) as the figure-of-merit. To optimize the MRI pulse sequence, phantoms were scanned with multiple times at a range of flip angles. The flip angle that was associated with the highest AUROC was chosen as optimal for the task of detecting HF. PMID:27446971

  4. Association between MRI structural features and cognitive measures in pediatric multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Amoroso, N.; Bellotti, R.; Fanizzi, A.; Lombardi, A.; Monaco, A.; Liguori, M.; Margari, L.; Simone, M.; Viterbo, R. G.; Tangaro, S.

    2017-09-01

    Multiple sclerosis (MS) is an inflammatory and demyelinating disease associated with neurodegenerative processes that lead to brain structural changes. The disease affects mostly young adults, but 3-5% of cases has a pediatric onset (POMS). Magnetic Resonance Imaging (MRI) is generally used for diagnosis and follow-up in MS patients, however the most common MRI measures (e.g. new or enlarging T2-weighted lesions, T1-weighted gadolinium- enhancing lesions) have often failed as surrogate markers of MS disability and progression. MS is clinically heterogenous with symptoms that can include both physical changes (such as visual loss or walking difficulties) and cognitive impairment. 30-50% of POMS experience prominent cognitive dysfunction. In order to investigate the association between cognitive measures and brain morphometry, in this work we present a fully automated pipeline for processing and analyzing MRI brain scans. Relevant anatomical structures are segmented with FreeSurfer; besides, statistical features are computed. Thus, we describe the data referred to 12 patients with early POMS (mean age at MRI: 15.5 +/- 2.7 years) with a set of 181 structural features. The major cognitive abilities measured are verbal and visuo-spatial learning, expressive language and complex attention. Data was collected at the Department of Basic Sciences, Neurosciences and Sense Organs, University of Bari, and exploring different abilities like the verbal and visuo-spatial learning, expressive language and complex attention. Different regression models and parameter configurations are explored to assess the robustness of the results, in particular Generalized Linear Models, Bayes Regression, Random Forests, Support Vector Regression and Artificial Neural Networks are discussed.

  5. Towards high-resolution 4D flow MRI in the human aorta using kt-GRAPPA and B1+ shimming at 7T.

    PubMed

    Schmitter, Sebastian; Schnell, Susanne; Uğurbil, Kâmil; Markl, Michael; Van de Moortele, Pierre-François

    2016-08-01

    To evaluate the feasibility of aortic 4D flow magnetic resonance imaging (MRI) at 7T with improved spatial resolution using kt-GRAPPA acceleration while restricting acquisition time and to address radiofrequency (RF) excitation heterogeneities with B1+ shimming. 4D flow MRI data were obtained in the aorta of eight subjects using a 16-channel transmit/receive coil array at 7T. Flow quantification and acquisition time were compared for a kt-GRAPPA accelerated (R = 5) and a standard GRAPPA (R = 2) accelerated protocol. The impact of different dynamic B1+ shimming strategies on flow quantification was investigated. Two kt-GRAPPA accelerated protocols with 1.2 × 1.2 × 1.2 mm(3) and 1.8 × 1.8 × 2.4 mm(3) spatial resolution were compared. Using kt-GRAPPA, we achieved a 4.3-fold reduction in net acquisition time resulting in scan times of about 10 minutes. No significant effect on flow quantification was observed compared to standard GRAPPA with R = 2. Optimizing the B1+ fields for the aorta impacted significantly (P <  0.05) the flow quantification while specific B1+ settings were required for respiration navigators. The high-resolution protocol yielded similar flow quantification, but allowed the depiction of branching vessels. 7T in combination with B1+ shimming allows for high-resolution 4D flow MRI acquisitions in the human aorta, while kt-GRAPPA limits total scan times without affecting flow quantification. J. Magn. Reson. Imaging 2016;44:486-499. © 2016 Wiley Periodicals, Inc.

  6. Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study.

    PubMed

    Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A

    2005-03-01

    To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.

  7. T2* measurements of 3-T MRI with ultrashort TEs: capabilities of pulmonary function assessment and clinical stage classification in smokers.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Yoshikawa, Takeshi; Matsumoto, Keiko; Takahashi, Masaya; Van Cauteren, Marc; Sugimura, Kazuro

    2011-08-01

    The purpose of this study was to determine the usefulness of MRI with ultrashort TEs on a 3-T system and of thin-section MDCT for pulmonary function assessment and clinical stage classification of chronic obstructive pulmonary disease (COPD) in smokers. Forty smokers (24 men and 16 women; mean age ± SD, 68.0 ± 9.3 years) underwent MRI with ultrashort TEs and thin-section MDCT. Pulmonary function testing was also performed to determine the following: the ratio of forced expiratory volume in 1 second to forced vital capacity (percentage predicted) (FEV(1/)FVC%), percentage predicted forced expiratory volume in 1 second (%FEV(1)), and percentage predicted diffusing capacity of lung for carbon monoxide corrected for alveolar volume (%DLCO/V(A)). All subjects were classified into one of four groups as follows: smokers without COPD, with mild COPD, with moderate COPD, and with severe or very severe COPD. T2(*) maps were expressed using proprietary software. Regional T2(*) values were determined by region of interest measurements and were averaged to determine a mean T2(*) value for each subject. CT-based functional lung volume and the ratio of the wall area to the total airway area were also determined. All indexes were statistically correlated with pulmonary function parameters. Then, all indexes were compared among all groups by means of Tukey's honest significance test. All indexes had significant correlation with FEV(1)/FVC%, %FEV(1), and % DLCO/V(A) (p < 0.05). All indexes except WA% of smokers without COPD and smokers with mild COPD differed significantly from those of smokers with moderate COPD and smokers with severe or very severe COPD (p < 0.05). Moreover, the mean T2(*) value of the moderate COPD group was significantly different from that of the severe or very severe COPD group (p < 0.05). MRI with ultrashort TEs is potentially as useful as quantitatively assessed MDCT for pulmonary function loss assessment and clinical stage classification of COPD in

  8. Novel Diffusion-Weighted MRI for High-Grade Prostate Cancer Detection

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0346 TITLE: Novel Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection PRINCIPAL INVESTIGATOR: Michael Abern...Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of...Diffusion-Weighted MRI for High -Grade Prostate Cancer Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0346 5c. PROGRAM ELEMENT NUMBER 6

  9. Evaluation of the Subscapularis Tendon Tears on 3T Magnetic Resonance Arthrography: Comparison of Diagnostic Performance of T1-Weighted Spectral Presaturation with Inversion-Recovery and T2-Weighted Turbo Spin-Echo Sequences.

    PubMed

    Lee, Hoseok; Ahn, Joong Mo; Kang, Yusuhn; Oh, Joo Han; Lee, Eugene; Lee, Joon Woo; Kang, Heung Sik

    2018-01-01

    To compare the T1-weighted spectral presaturation with inversion-recovery sequences (T1 SPIR) with T2-weighted turbo spin-echo sequences (T2 TSE) on 3T magnetic resonance arthrography (MRA) in the evaluation of the subscapularis (SSC) tendon tear with arthroscopic findings as the reference standard. This retrospective study included 120 consecutive patients who had undergone MRA within 3 months between April and December 2015. Two musculoskeletal radiologists blinded to the arthroscopic results evaluated T1 SPIR and T2 TSE images in separate sessions for the integrity of the SSC tendon, examining normal/articular-surface partial-thickness tear (PTTa)/full-thickness tear (FTT). Diagnostic performance of T1 SPIR and T2 TSE was calculated with arthroscopic results as the reference standard, and sensitivity, specificity, and accuracy were compared using the McNemar test. Interobserver agreement was measured with kappa (κ) statistics. There were 74 SSC tendon tears (36 PTTa and 38 FTT) confirmed by arthroscopy. Significant differences were found in the sensitivity and accuracy between T1 SPIR and T2 TSE using the McNemar test, with respective rates of 95.9-94.6% vs. 71.6-75.7% and 90.8-91.7% vs. 79.2-83.3% for detecting tear; 55.3% vs. 31.6-34.2% and 85.8% vs. 78.3-79.2%, respectively, for FTT; and 91.7-97.2% vs. 58.3-61.1% and 89% vs. 78-79.3%, respectively, for PTTa. Interobserver agreement for T1 SPIR was almost perfect for T1 SPIR (κ = 0.839) and substantial for T2 TSE (κ = 0.769). T1-weighted spectral presaturation with inversion-recovery sequences is more sensitive and accurate compared to T2 TSE in detecting SSC tendon tear on 3T MRA.

  10. Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.

    PubMed

    Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A

    2016-06-01

    Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping at 3T MRI of the wrist: Feasibility and clinical application.

    PubMed

    Rehnitz, Christoph; Klaan, Bastian; Burkholder, Iris; von Stillfried, Falko; Kauczor, Hans-Ulrich; Weber, Marc-André

    2017-02-01

    To assess the feasibility of delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T 2 mapping for biochemical imaging of the wrist at 3T. Seventeen patients with wrist pain (mean age, 41.4 ± 13.1 years) including a subgroup with chondromalacia (n = 11) and 15 healthy volunteers (26.0 ± 2.2 years) underwent dGEMRIC and T 2 mapping at 3T. For dGEMRIC, the optimum time window after contrast-injection (gadopentetate dimeglumine) was defined as the plateau of the T 1 curve of repeated measurements 15-90 minutes postinjection and assessed in all volunteers. Reference values of healthy-appearing cartilage from all individuals and values in areas of chondromalacia were assessed using region-of-interest analyses. Receiver-operating-characteristic analyses were applied to assess discriminatory ability between damaged and normal cartilage. The optimum time window was 45-90 minutes, and the 60-minute timepoint was subsequently used. In chondromalacia, dGEMRIC values were lower (551 ± 84 msec, P < 0.001), and T 2 values higher (63.9 ± 17.7, P = 0.001) compared to healthy-appearing cartilage of the same patient. Areas under the curve did not significantly differ between dGEMRIC (0.91) and T 2 mapping (0.99; P = 0.17). In healthy-appearing cartilage of volunteers and patients, mean dGEMRIC values were 731.3 ± 47.1 msec and 674.6 ± 72.1 msec (P = 0.01), and mean T 2 values were 36.5 ± 5 msec and 41.1 ± 3.2 msec (P = 0.009), respectively. At 3T, dGEMRIC and T 2 mapping are feasible for biochemical cartilage imaging of the wrist. Both techniques allow separation and biochemical assessment of thin opposing cartilage surfaces and can distinguish between healthy and damaged cartilage. 3 J. Magn. Reson. Imaging 2017;45:381-389. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Diagnostic performance of dark-blood T2-weighted CMR for evaluation of acute myocardial injury.

    PubMed

    Srichai, Monvadi B; Lim, Ruth P; Lath, Narayan; Babb, James; Axel, Leon; Kim, Daniel

    2013-01-01

    We compared the image quality and diagnostic performance of 2 fat-suppression methods for black-blood T2-weighted fast spin-echo (FSE), which are as follows: (a) short T1 inversion recovery (STIR; FSE-STIR) and (b) spectral adiabatic inversion recovery (SPAIR; FSE-SPAIR), for detection of acute myocardial injury. Edema-sensitive T2-weighted FSE cardiac magnetic resonance (CMR) imaging is useful in detecting acute myocardial injury but may experience reduced myocardial signal and signal dropout. The SPAIR pulse aims to eliminate artifacts associated with the STIR pulse. A total of 65 consecutive patients referred for CMR evaluation of myocardial structure and function underwent FSE-STIR and FSE-SPAIR, in addition to cine and late gadolinium enhancement (LGE) CMR. T2-weighted FSE images were independently evaluated by 2 readers for image quality and artifacts (Likert scale of 1-5; best-worst) and presence of increased myocardial signal suggestive of edema. In addition, clinical CMR interpretation, incorporating all CMR sequences available, was recorded for comparison. Diagnostic performance of each T2-weighted sequence was measured using recent (<30 days) troponin elevation greater than 2 times the upper limit of normal as the reference standard for acute myocardial injury. Of the 65 patients, there were 21 (32%) with acute myocardial injury. Image quality and artifact scores were significantly better with FSE-SPAIR compared with FSE-STIR (2.15 vs 2.68, P < 0.01; 2.62 vs 3.05, P < 0.01, respectively). The sensitivity, specificity, positive predictive value, and negative predictive value for acute myocardial injury were as follows: 29%, 93%, 67%, and 73% for FSE-SPAIR; 38%, 91%, 67%, and 75% for FSE-STIR; 71%, 98%, 94%, and 88% for clinical interpretation including LGE, T2, and wall motion. There was a statistically significant difference in sensitivity between the clinical interpretation and each of the T2-weighted sequences but not between each T2-weighted sequence

  13. Automated planning of MRI scans of knee joints

    NASA Astrophysics Data System (ADS)

    Bystrov, Daniel; Pekar, Vladimir; Young, Stewart; Dries, Sebastian P. M.; Heese, Harald S.; van Muiswinkel, Arianne M.

    2007-03-01

    A novel and robust method for automatic scan planning of MRI examinations of knee joints is presented. Clinical knee examinations require acquisition of a 'scout' image, in which the operator manually specifies the scan volume orientations (off-centres, angulations, field-of-view) for the subsequent diagnostic scans. This planning task is time-consuming and requires skilled operators. The proposed automated planning system determines orientations for the diagnostic scan by using a set of anatomical landmarks derived by adapting active shape models of the femur, patella and tibia to the acquired scout images. The expert knowledge required to position scan geometries is learned from previous manually planned scans, allowing individual preferences to be taken into account. The system is able to automatically discriminate between left and right knees. This allows to use and merge training data from both left and right knees, and to automatically transform all learned scan geometries to the side for which a plan is required, providing a convenient integration of the automated scan planning system in the clinical routine. Assessment of the method on the basis of 88 images from 31 different individuals, exhibiting strong anatomical and positional variability demonstrates success, robustness and efficiency of all parts of the proposed approach, which thus has the potential to significantly improve the clinical workflow.

  14. Myocardial effective transverse relaxation time T2* Correlates with left ventricular wall thickness: A 7.0 T MRI study.

    PubMed

    Huelnhagen, Till; Hezel, Fabian; Serradas Duarte, Teresa; Pohlmann, Andreas; Oezerdem, Celal; Flemming, Bert; Seeliger, Erdmann; Prothmann, Marcel; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2017-06-01

    Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo. Magn Reson Med 77:2381-2389, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. SU-G-JeP2-13: Spatial Accuracy Evaluation for Real-Time MR Guided Radiation Therapy Using a Novel Large-Field MRI Distortion Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolak, A; Bayouth, J; Bosca, R

    Purpose: Evaluate a large-field MRI phantom for assessment of geometric distortion in whole-body MRI for real-time MR guided radiation therapy. Methods: A prototype CIRS large-field MRI distortion phantom consisting of a PMMA cylinder (33 cm diameter, 30 cm length) containing a 3D-printed orthogonal grid (3 mm diameter rods, 20 mm apart), was filled with 6 mM NiCl{sub 2} and 30 mM NaCl solution. The phantom was scanned at 1.5T and 3.0T on a GE HDxt and Discovery MR750, respectively, and at 0.35T on a ViewRay system. Scans were obtained with and without 3D distortion correction to demonstrate the impact ofmore » such corrections. CT images were used as a reference standard for analysis of geometric distortion, as determined by a fully automated gradient-search method developed in Matlab. Results: 1,116 grid points distributed throughout a cylindrical volume 28 cm in diameter and 16 cm in length were identified and analyzed. With 3D distortion correction, average/maximum displacements for the 1.5, 3.0, and 0.35T systems were 0.84/2.91, 1.00/2.97, and 0.95/2.37 mm, respectively. The percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (73%, 92%, 97%), (54%, 85%, 97%), and (55%, 90%, 99%), respectively. A reduced scan volume of 20 × 20 × 10 cm{sup 3} (representative of a head and neck scan volume) consisting of 420 points was also analyzed. In this volume, the percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (90%, 99%, 100%), (63%, 95%, 100%), and (75%, 96%, 100%), respectively. Without 3D distortion correction, average/maximum displacements were 1.35/3.67, 1.67/4.46, and 1.51/3.89 mm, respectively. Conclusion: The prototype large-field MRI distortion phantom and developed software provide a thorough assessment of 3D spatial distortions in MRI. The distortions measured were acceptable for RT applications, both for the high field strengths and the system configuration developed by ViewRay.« less

  16. [Optimal scan parameters for a method of k-space trajectory (radial scan method) in evaluation of carotid plaque characteristics].

    PubMed

    Nakamura, Manami; Makabe, Takeshi; Tezuka, Hideomi; Miura, Takahiro; Umemura, Takuma; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-04-01

    The purpose of this study was to optimize scan parameters for evaluation of carotid plaque characteristics by k-space trajectory (radial scan method), using a custom-made carotid plaque phantom. The phantom was composed of simulated sternocleidomastoid muscle and four types of carotid plaque. The effect of chemical shift artifact was compared using T1 weighted images (T1WI) of the phantom obtained with and without fat suppression, and using two types of k-space trajectory (the radial scan method and the Cartesian method). The ratio of signal intensity of simulated sternocleidomastoid muscle to the signal intensity of hematoma, blood (including heparin), lard, and mayonnaise was compared among various repetition times (TR) using T1WI and T2 weighted imaging (T2WI). In terms of chemical shift artifacts, image quality was improved using fat suppression for both the radial scan and Cartesian methods. In terms of signal ratio, the highest values were obtained for the radial scan method with TR of 500 ms for T1WI, and TR of 3000 ms for T2WI. For evaluation of carotid plaque characteristics using the radial scan method, chemical shift artifacts were reduced with fat suppression. Signal ratio was improved by optimizing the TR settings for T1WI and T2WI. These results suggest the potential for using magnetic resonance imaging for detailed evaluation of carotid plaque.

  17. 68Ga-PSMA and 11C-Choline comparison using a tri-modality PET/CT-MRI (3.0 T) system with a dedicated shuttle.

    PubMed

    Alonso, Omar; Dos Santos, Gerardo; García Fontes, Margarita; Balter, Henia; Engler, Henry

    2018-01-01

    The aim of this study was to prospectively compare the detection rate of 68 Ga-PSMA versus 11 C-Choline in men with prostate cancer with biochemical recurrence and to demonstrate the added value of a tri-modality PET/CT-MRI system. We analysed 36 patients who underwent both 11 C-Choline PET/CT and 68 Ga-PSMA PET/CT scanning within a time window of 1-2 weeks. Additionally, for the 68 Ga-PSMA scan, we used a PET/CT-MRI (3.0 T) system with a dedicated shuttle, acquiring MRI images of the pelvis. Both scans were positive in 18 patients (50%) and negative in 8 patients (22%). Nine patients were positive with 68 Ga-PSMA alone (25%) and one with 11 C-Choline only (3%). The median detected lesion per patient was 2 for 68 Ga-PSMA (range 0-93) and 1 for 11 C-Choline (range 0-57). Tumour to background ratios in all concordant lesions ( n  = 96) were higher for 68 Ga-PSMA than for 11 C-Choline (110.3 ± 107.8 and 27.5 ± 17.1, mean ± S.D., for each tracer, respectively P  = 0.0001). The number of detected lesions per patient was higher for 11 C-Choline in those with PSA ≥ 3.3 ng/mL, while the number of detected lesions was independent of PSA levels for 68 Ga-PSMA using the same PSA cut-off value. Metastatic pelvic lesions were found in 25 patients (69%) with 68 Ga-PSMA PET/CT, in 18 (50%) with 11 C-Choline PET/CT and in 21 (58%) with MRI (3.0 T). MRI was very useful in detecting recurrence in cases classified as indeterminate by means of PET/CT alone at prostate bed. In patients with prostate cancer with biochemical recurrence 68 Ga-PSMA detected more lesions per patient than 11 C-Choline, regardless of PSA levels. PET/CT-MRI (3.0 T) system is a feasible imaging modality that potentially adds useful relevant information with increased accuracy of diagnosis.

  18. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amro, H; Chetty, I; Gordon, J

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in themore » phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.« less

  19. Hippocampal CA1 apical neuropil atrophy in mild Alzheimer disease visualized with 7-T MRI(Podcast)

    PubMed Central

    Kerchner, G.A.; Hess, C.P.; Hammond-Rosenbluth, K.E.; Xu, D.; Rabinovici, G.D.; Kelley, D.A.C.; Vigneron, D.B.; Nelson, S.J.; Miller, B.L.

    2010-01-01

    Objectives: In Alzheimer disease (AD), mounting evidence points to a greater role for synaptic loss than neuronal loss. Supporting this notion, multiple postmortem studies have demonstrated that the hippocampal CA1 apical neuropil is one of the earliest sites of pathology, exhibiting tau aggregates and then atrophy before there is substantial loss of the CA1 pyramidal neurons themselves. In this cross-sectional study, we tested whether tissue loss in the CA1 apical neuropil layer can be observed in vivo in patients with mild AD. Methods: We performed ultra-high-field 7-T MRI on subjects with mild AD (n = 14) and age-matched normal controls (n = 16). With a 2-dimensional T2*-weighted gradient-recalled echo sequence that was easily tolerated by subjects, we obtained cross-sectional slices of the hippocampus at an in-plane resolution of 195 μm. Results: On images revealing the anatomic landmarks of hippocampal subfields and strata, we observed thinning of the CA1 apical neuropil in subjects with mild AD compared to controls. By contrast, the 2 groups exhibited no difference in the thickness of the CA1 cell body layer or of the entire CA1 subfield. Hippocampal volume, measured on a conventional T1-weighted sequence obtained at 3T, also did not differentiate these patients with mild AD from controls. Conclusions: CA1 apical neuropil atrophy is apparent in patients with mild AD. With its superior spatial resolution, 7-T MRI permits in vivo analysis of a very focal, early site of AD pathology. GLOSSARY AD = Alzheimer disease; CDR = Clinical Dementia Rating; DG = dentate gyrus; GRE = gradient-recalled echo; NC = normal control; PiB = Pittsburgh Compound B; SP = stratum pyramidale; SRLM = stratum radiatum and stratum lacunosum-moleculare; TIV = total intracranial volume. PMID:20938031

  20. High signal intensity of intervertebral calcified disks on T1-weighted MR images resulting from fat content.

    PubMed

    Malghem, Jacques; Lecouvet, Frédéric E; François, Robert; Vande Berg, Bruno C; Duprez, Thierry; Cosnard, Guy; Maldague, Baudouin E

    2005-02-01

    To explain a cause of high signal intensity on T1-weighted MR images in calcified intervertebral disks associated with spinal fusion. Magnetic resonance and radiological examinations of 13 patients were reviewed, presenting one or several intervertebral disks showing a high signal intensity on T1-weighted MR images, associated both with the presence of calcifications in the disks and with peripheral fusion of the corresponding spinal segments. Fusion was due to ligament ossifications (n=8), ankylosing spondylitis (n=4), or posterior arthrodesis (n=1). Imaging files included X-rays and T1-weighted MR images in all cases, T2-weighted MR images in 12 cases, MR images with fat signal suppression in 7 cases, and a CT scan in 1 case. Histological study of a calcified disk from an anatomical specimen of an ankylosed lumbar spine resulting from ankylosing spondylitis was examined. The signal intensity of the disks was similar to that of the bone marrow or of perivertebral fat both on T1-weighted MR images and on all sequences, including those with fat signal suppression. In one of these disks, a strongly negative absorption coefficient was focally measured by CT scan, suggesting a fatty content. The histological examination of the ankylosed calcified disk revealed the presence of well-differentiated bone tissue and fatty marrow within the disk. The high signal intensity of some calcified intervertebral disks on T1-weighted MR images can result from the presence of fatty marrow, probably related to a disk ossification process in ankylosed spines.

  1. Spatial working memory impairment in primary onset middle-age type 2 diabetes mellitus: An ethology and BOLD-fMRI study.

    PubMed

    Huang, Ran-Ran; Jia, Bao-Hui; Xie, Lei; Ma, Shu-Hua; Yin, Jing-Jing; Sun, Zong-Bo; Le, Hong-Bo; Xu, Wen-Can; Huang, Jin-Zhuang; Luo, Dong-Xue

    2016-01-01

    To explore mild cognitive dysfunction and/or spatial working memory impairment in patients with primary onset middle-age type 2 diabetes mellitus (T2DM] using ethology (behavior tests) and blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI). Eighteen primary onset T2DM patients and 18 matched subjects with normal blood glucose levels were all tested using the Montreal cognitive assessment scale test, the Wechsler Memory Scale Chinese-revised test, and scanned using BOLD-fMRI (1.5T, EPI sequence) while performing the n-back task to find the activation intensity of some cognition-related areas. The ethology results showed that T2DM patients had a mild cognitive impairment and memory dysfunction (P < 0.05). The fMRI scan identified a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), bilateral premotor area (PreMA), bilateral parietal lobe (PA), and anterior cingulate cortex (ACC) / supplementary motor area (SMA) that was activated during the n-back task, with right hemisphere dominance. However, only the right PA and ACC/SMA showed a load effect via quantitative analysis in the T2DM group; the activation intensity of most working memory-related brain areas for the T2DM group were lower than for the control group under three memory loads. Furthermore, we found that the activation intensity of some cognition-related areas, including the right insular lobe, left caudate nucleus, and bilateral hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. Diabetes-related brain damage of primary onset middle-age T2DM patients with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial working memory and mild cognitive dysfunction. © 2015 Wiley Periodicals, Inc.

  2. Leg MRI scan

    MedlinePlus

    ... anything that contains metal into the scanner room. Considerations Tests that may be done instead of an ... Magnetic resonance imaging - ankle; MRI - femur; MRI - leg Patient Instructions Femur fracture repair - discharge Hip fracture - discharge ...

  3. MEG-guided analysis of 7T-MRI in patients with epilepsy.

    PubMed

    Colon, A J; Osch, M J P van; Buijs, M; Grond, J V D; Hillebrand, A; Schijns, O; Wagner, G J; Ossenblok, P; Hofman, P; Buchem, M A V; Boon, P

    2018-05-26

    To study possible detection of structural abnormalities on 7T MRI that were not detected on 3T MRI and estimate the added value of MEG-guidance. For abnormalities found, analysis of convergence between clinical, MEG and 7T MRI localization of suspected epileptogenic foci. In adult patients with well-documented localization-related epilepsy in whom a previous 3T MRI did not demonstrate an epileptogenic lesion but MEG indicated a plausible epileptogenic focus, 7T MRI was performed. Based on semiologic data, visual analysis of the 7T images was performed as well as based on prior MEG results. Correlation with other data from the patient charts, for as far as these were available, was analysed. To establish the level of concordance between the three observers the generalized or Fleiss kappa was calculated. In 3/19 patients abnormalities that, based on semiology, could plausibly represent an epileptogenic lesion were detected using 7T MRI. In an additional 3/19 an abnormality was detected after MEG-guidance. However, in these later cases there was no concordance among the three observers with regard to the presence of a structural abnormality. In one of these three cases intracranial recording was performed, proving the possible abnormality on 7T MRI to be the epileptogenic focus. In 32% of patients 7T MRI showed abnormalities that could indicate an epileptogenic lesion whereas previous 3T MRI did not, especially when visual inspection was guided by the presence of focal interictal MEG abnormalities. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Evaluation of carotid plaque vulnerability in vivo: Correlation between dynamic contrast-enhanced MRI and MRI-modified AHA classification.

    PubMed

    Ge, Xiaoqian; Zhou, Zien; Zhao, Huilin; Li, Xiao; Sun, Beibei; Suo, Shiteng; Hackett, Maree L; Wan, Jieqing; Xu, Jianrong; Liu, Xiaosheng

    2017-09-01

    To noninvasively monitor carotid plaque vulnerability by exploring the relationship between pharmacokinetic parameters (PPs) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and plaque types based on MRI-modified American Heart Association (AHA) classification, as well as to assess the ability of PPs in discrimination between stable and vulnerable plaques suspected on MRI. Of 70 consecutive patients with carotid plaques who volunteered for 3.0T MRI (3D time-of-flight [TOF], T 1 -weighted, T 2 -weighted, 3D magnetization-prepared rapid acquisition gradient-echo [MP-RAGE] and DCE-MRI), 66 participants were available for analysis. After plaque classification according to MRI-modified AHA Lesion-Type (LT), PPs (K trans , k ep , v e , and v p ) of DCE-MRI were measured. The Extended Tofts model was used for calculation of PPs. For participants with multiple carotid plaques, the plaque with the worst MRI-modified AHA LT was chosen for analysis. Correlations between PPs and plaque types and the ability of these parameters to distinguish stable and vulnerable plaques suspected on MRI were assessed. Significant positive correlation between K trans and LT III to VI was found (ρ = 0.532, P < 0.001), as was the correlation between k ep and LT III to VI (ρ = 0.409, P < 0.001). Stable and vulnerable plaques suspected on MRI could potentially be distinguished by K trans (sensitivity 83%, specificity 100%) and k ep (sensitivity 77%, specificity 91%). K trans and k ep from DCE-MRI can provide quantitative information to monitor plaque vulnerability in vivo and differentiate vulnerable plaques suspected on MRI from stable ones. These two parameters could be adopted as imaging biomarkers for plaque characterization and risk stratification. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:870-876. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage.

    PubMed

    Zilkens, Christoph; Miese, Falk; Kim, Young-Jo; Jäger, Marcus; Mamisch, Tallal C; Hosalkar, Harish; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2014-01-01

    To investigate the potential of delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) after intra-articular (ia) contrast agent administration at 3 Tesla (T), a paired study comparing intravenous (iv) dGEMRIC (standard) with ia-dGEMRIC was performed. Thirty-five symptomatic patients with suspected cartilage damage underwent ia- and iv-dGEMRIC. MRI was performed with a 3T system wherein the interval between both measurements was 2 weeks. For iv-dGEMRIC, FDA approved Gd-DOTA(-) was injected intravenously 45 min before the MRI scan. For ia-dGEMRIC, 10-20 mL of a 2 mM solution of Gd- DOTA(-) was injected under fluoroscopic guidance 30 min before the MRI scan. Both ia- and iv-dGEMRIC demonstrated the typical T1Gd pattern in hip joint cartilage with increasing values toward the superior regions in acetabular cartilage reflecting the higher glycosaminoglycan (GAG) content in the main weight-bearing area. Correlation analysis revealed a moderate correlation between both techniques (r = 0.439, P-value < 0.001), whereas the T1Gd values for iv-dGEMRIC were significantly higher than those for ia-dGEMRIC. This corresponds with the Bland-Altman plot analysis, which revealed a systemic bias (higher T1Gd values after iv gadolinium application) of ∼70 ms. Ia-dGEMRIC was able to reveal the characteristic T1Gd pattern in hip joint cartilage confirming the sensitivity of ia-dGEMRIC for GAG. In addition, there was a significant correlation between iv-dGEMRIC and ia-dGEMRIC. However, the T1Gd values after ia contrast media application were significantly lower than those after iv application that has to be considered for future studies. Copyright © 2013 Wiley Periodicals, Inc.

  6. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI

    PubMed Central

    Mainero, C; Benner, T; Radding, A; van der Kouwe, A; Jensen, R; Rosen, B R.; Kinkel, R P.

    2009-01-01

    Objective: We used ultra-high field MRI to visualize cortical lesion types described by neuropathology in 16 patients with multiple sclerosis (MS) compared with 8 age-matched controls; to characterize the contrast properties of cortical lesions including T2*, T2, T1, and phase images; and to investigate the relationship between cortical lesion types and clinical data. Methods: We collected, on a 7-T scanner, 2-dimensional fast low-angle shot (FLASH)-T2*-weighted spoiled gradient-echo, T2-weighted turbo spin-echo (TSE) images (0.33 × 033 × 1 mm3), and a 3-dimensional magnetization-prepared rapid gradient echo. Results: Overall, 199 cortical lesions were detected in patients on both FLASH-T2* and T2-TSE scans. Seven-tesla MRI allowed for characterization of cortical plaques into type I (leukocortical), type II (intracortical), and type III/IV (subpial extending partly or completely through the cortical width) lesions as described histopathologically. Types III and IV were the most frequent type of cortical plaques (50.2%), followed by type I (36.2%) and type II (13.6%) lesions. Each lesion type was more frequent in secondary progressive than in relapsing–remitting MS. This difference, however, was significant only for type III/IV lesions. T2*-weighted images showed the highest, while phase images showed the lowest, contrast-to-noise ratio for all cortical lesion types. In patients, the number of type III/IV lesions was associated with greater disability (p < 0.02 by Spearman test) and older age (p < 0.04 by Spearman test). Conclusions: Seven-tesla MRI detected different histologic cortical lesion types in our small multiple sclerosis (MS) sample, suggesting, if validated in a larger population, that it may prove a valuable tool to assess the contribution of cortical MS pathology to clinical disability. GLOSSARY ANOVA = analysis of variance; BN = background noise; CNR = contrast-to-noise ratio; DIR = double-inversion recovery; EDSS = Expanded Disability Status

  7. A wearable bluetooth LE sensor for patient monitoring during MRI scans.

    PubMed

    Vogt, Christian; Reber, Jonas; Waltisberg, Daniel; Buthe, Lars; Marjanovic, Josip; Munzenrieder, Niko; Pruessmann, Klaas P; Troster, Gerhard

    2016-08-01

    This paper presents a working prototype of a wearable patient monitoring device capable of recording the heart rate, blood oxygen saturation, surface temperature and humidity during an magnetic resonance imaging (MRI) experiment. The measured values are transmitted via Bluetooth low energy (LE) and displayed in real time on a smartphone on the outside of the MRI room. During 7 MRI image acquisitions of at least 1 min and a total duration of 25 min no Bluetooth data packets were lost. The raw measurements of the light intensity for the photoplethysmogram based heart rate measurement shows an increased noise floor by 50LSB (least significant bit) during the MRI operation, whereas the temperature and humidity readings are unaffected. The device itself creates a magnetic resonance (MR) signal loss with a radius of 14 mm around the device surface and shows no significant increase in image noise of an acquired MRI image due to its radio frequency activity. This enables continuous and unobtrusive patient monitoring during MRI scans.

  8. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    PubMed Central

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  9. 2D and 3D MOCART scoring systems assessed by 9.4 T high-field MRI correlate with elementary and complex histological scoring systems in a translational model of osteochondral repair.

    PubMed

    Goebel, L; Zurakowski, D; Müller, A; Pape, D; Cucchiarini, M; Madry, H

    2014-10-01

    To compare the 2D and 3D MOCART system obtained with 9.4 T high-field magnetic resonance imaging (MRI) for the ex vivo analysis of osteochondral repair in a translational model and to correlate the data with semiquantitative histological analysis. Osteochondral samples representing all levels of repair (sheep medial femoral condyles; n = 38) were scanned in a 9.4 T high-field MRI. The 2D and adapted 3D MOCART systems were used for grading after point allocation to each category. Each score was correlated with corresponding reconstructions between both MOCART systems. Data were next correlated with corresponding categories of an elementary (Wakitani) and a complex (Sellers) histological scoring system as gold standards. Correlations between most 2D and 3D MOCART score categories were high, while mean total point values of 3D MOCART scores tended to be 15.8-16.1 points higher compared to the 2D MOCART scores based on a Bland-Altman analysis. "Defect fill" and "total points" of both MOCART scores correlated with corresponding categories of Wakitani and Sellers scores (all P ≤ 0.05). "Subchondral bone plate" also correlated between 3D MOCART and Sellers scores (P < 0.001). Most categories of the 2D and 3D MOCART systems correlate, while total scores were generally higher using the 3D MOCART system. Structural categories "total points" and "defect fill" can reliably be assessed by 9.4 T MRI evaluation using either system, "subchondral bone plate" using the 3D MOCART score. High-field MRI is valuable to objectively evaluate osteochondral repair in translational settings. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Comparison of iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on liver and cardiac T2* MRI in thalassemia maior.

    PubMed

    Ansari, Shahla; Azarkeivan, Azita; Miri-Aliabad, Ghasem; Yousefian, Saeed; Rostami, Tahereh

    2017-01-01

    Cardiac complications due to iron overload are the most common cause of death in patients with thalassemia major. The aim of this study was to compare iron chelation effects of deferoxamine, deferasirox, and combination of deferoxamine and deferiprone on cardiac and liver iron load measured by T2* MRI. In this study, 108 patients with thalassemia major aged over 10 years who had iron overload in cardiac T2* MRI were studied in terms of iron chelators efficacy on the reduction of myocardial siderosis. The first group received deferoxamine, the second group only deferasirox, and the third group, a combination of deferoxamine and deferiprone. Myocardial iron was measured at baseline and 12 months later through T2* MRI technique. The three groups were similar in terms of age, gender, ferritin level, and mean myocardial T2* at baseline. In the deferoxamine group, myocardial T2* was increased from 12.0±4.1 ms at baseline to 13.5±8.4 ms at 12 months (p=0.10). Significant improvement was observed in myocardial T2* of the deferasirox group (p<0.001). In the combined treatment group, myocardial T2* was significantly increased (p<0.001). These differences among the three groups were not significant at the 12 months. A significant improvement was observed in liver T2* at 12 months compared to baseline in the deferasirox and the combination group. In comparison to deferoxamine monotherapy, combination therapy and deferasirox monotherapy have a significant impact on reducing iron overload and improvement of myocardial and liver T2* MRI.

  11. Functional magnetic porous silica for T 1-T 2 dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhang, Run; Guo, Yi; Zhang, Cheng; Zhao, Wei; Xu, Zhiping; Whittaker, Andrew K.

    2016-12-01

    A smart magnetic-targeting drug carrier γ-Fe2O3@p-silica comprising a γ-Fe2O3 core and porous shell has been prepared and characterized. The particles have a uniform size of about 60 nm, and a porous shell of thickness 3 nm. Abundant hydroxyl groups and a large surface area enabled the γ-Fe2O3@p-silica to be readily loaded with a large payload of the basic model drug rhodamine B (RB) (up to 73 mg g-1). Cytotoxicity assays of the γ-Fe2O3@p-silica particles indicated that the particles were biocompatible and suitable for carrying drugs. It was found that the RB was released rapidly at pH 5.5 but at pH 7.4 the rate and extent of release was greatly attenuated. The particles therefore demonstrate an excellent pH-triggered drug release. In addition, the γ-Fe2O3@p-silica particles could be tracked by magnetic resonance imaging (MRI). A clear dose-dependent contrast enhancement in both T 1-weighted and T 2-weighted MR images indicated the potential of the γ-Fe2O3@p-silica particles to act as dual-mode T 1 and T 2 MRI contrast agents.

  12. MRI diffusion-weighted imaging (DWI) in pediatric small bowel Crohn disease: correlation with MRI findings of active bowel wall inflammation.

    PubMed

    Ream, Justin M; Dillman, Jonathan R; Adler, Jeremy; Khalatbari, Shokoufeh; McHugh, Jonathan B; Strouse, Peter J; Dhanani, Muhammad; Shpeen, Benjamin; Al-Hawary, Mahmoud M

    2013-09-01

    Restricted diffusion on diffusion-weighted imaging (DWI) sequences during magnetic resonance enterography (MRE) has been shown in segments of bowel affected by Crohn disease. However, the exact meaning of this finding, particularly within the pediatric Crohn disease population, is poorly understood. The purpose of this study was to determine the significance of bowel wall restricted diffusion in children with small bowel Crohn disease by correlating apparent diffusion coefficient (ADC) values with other MRI markers of disease activity. A retrospective review of pediatric patients (≤ 18 years of age) with Crohn disease terminal ileitis who underwent MRE with DWI at our institution between May 1, 2009 and May 31, 2011 was undertaken. All of the children had either biopsy-proven Crohn disease terminal ileitis or clinically diagnosed Crohn disease, including terminal ileal involvement by imaging. The mean minimum ADC value within the wall of the terminal ileum was determined for each examination. ADC values were tested for correlation/association with other MRI findings to determine whether a relationship exists between bowel wall restricted diffusion and disease activity. Forty-six MRE examinations with DWI in children with terminal ileitis were identified (23 girls and 23 boys; mean age, 14.3 years). There was significant negative correlation or association between bowel wall minimum ADC value and established MRI markers of disease activity, including degree of bowel wall thickening (R = (-)0.43; P = 0.003), striated pattern of arterial enhancement (P = 0.01), degree of arterial enhancement (P = 0.01), degree of delayed enhancement (P = 0.045), amount of mesenteric inflammatory changes (P < 0.0001) and presence of a stricture (P = 0.02). ADC values were not significantly associated with bowel wall T2-weighted signal intensity, length of disease involvement or mesenteric fibrofatty proliferation. Increasing bowel wall restricted diffusion

  13. Signal-to-noise ratio, T2 , and T2* for hyperpolarized helium-3 MRI of the human lung at three magnetic field strengths.

    PubMed

    Komlosi, Peter; Altes, Talissa A; Qing, Kun; Mooney, Karen E; Miller, G Wilson; Mata, Jaime F; de Lange, Eduard E; Tobias, William A; Cates, Gordon D; Mugler, John P

    2017-10-01

    To evaluate T 2 , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 ( 3 He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T. Sixteen healthy volunteers were imaged using a commercial whole body scanner at 0.43T, 0.79T, and 1.5T. Whole-lung T 2 values were calculated from a Carr-Purcell-Meiboom-Gill spin-echo-train acquisition. T2* maps and SNR were determined from dual-echo and single-echo gradient-echo images, respectively. Mean whole-lung SNR values were normalized by ventilated lung volume and administered 3 He dose. As expected, T 2 and T2* values demonstrated a significant inverse relationship to field strength. Hyperpolarized 3 He images acquired at all three field strengths had comparable SNR values and thus appeared visually very similar. Nonetheless, the relatively small SNR differences among field strengths were statistically significant. Hyperpolarized 3 He images of the human lung with similar image quality were obtained at three field strengths ranging from 0.43T and 1.5T. The decrease in susceptibility effects at lower fields that are reflected in longer T 2 and T2* values may be advantageous for optimizing pulse sequences inherently sensitive to such effects. The three-fold increase in T2* at lower field strength would allow lower receiver bandwidths, providing a concomitant decrease in noise and relative increase in SNR. Magn Reson Med 78:1458-1463, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. Validation using [14C]2-deoxyglucose autoradiography.

    PubMed

    Robertson, Craig A; McCabe, Christopher; Gallagher, Lindsay; Lopez-Gonzalez, Maria del Rosario; Holmes, William M; Condon, Barrie; Muir, Keith W; Santosh, Celestine; Macrae, I Mhairi

    2011-08-01

    Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T(2)(*) MRI (T(2)(*) OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T(2)(*) signal change during OC. [(14)C]2-deoxyglucose (2-DG) autoradiography was combined with T(2)(*) OC to determine metabolic status of T(2)(*)-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147 ± 32 minutes after stroke, T(2)(*) signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T(2)(*)-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T(2)(*) signal increase of 9.22% ± 3.9% (mean ± s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T(2)(*) signal change was negligible in ischemic core, 3.2% ± 0.78% in contralateral regions, and 1.41% ± 0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue following stroke.

  15. Chevron-type medial malleolar osteotomy: a functional, radiographic and quantitative T2-mapping MRI analysis.

    PubMed

    Lamb, Joshua; Murawski, Christopher D; Deyer, Timothy W; Kennedy, John G

    2013-06-01

    The purpose of this study was to retrospectively evaluate a large series of patients for functional, radiographic and MRI outcomes after a Chevron-type medial malleolar osteotomy. Sixty-two patients underwent a Chevron-type medial malleolar osteotomy with a median follow-up of 34.5 months. Standard digital radiographs were used to determine bony union and the angle of the osteotomy relative to the longitudinal axis of the tibia. Morphologic and quantitative T2-mapping MRI was also analysed in 32 patients. Fifty-eight patients (94 %) reported being asymptomatic at the site of the medial malleolar osteotomy. The median time to healing on standard radiograph was 6 weeks (range, 4-6 weeks) with an angle of 31.7° ± 6.9°. Quantitative T2-mapping MRI analysis demonstrated that the deep half of interface repair tissue had relaxation times that were not significantly different from normal tibial cartilage. In contrast, interface repair tissue in the superficial half demonstrated significant prolongation from normal relaxation time values, indicating a more fibrocartilaginous repair. Four patients (6 %) reported pain post-operatively. A Chevron-type medial malleolar osteotomy demonstrates satisfactory healing and fixation, with fibrocartilaginous tissue evident superficially at the osteotomy interface. Further investigation is warranted in the form of longitudinal study to assess the long-term outcomes of medial malleolar osteotomy.

  16. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    PubMed

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  17. A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI.

    PubMed

    Tao, Ran; Fletcher, P Thomas; Gerber, Samuel; Whitaker, Ross T

    2009-01-01

    This paper presents a method for correcting the geometric and greyscale distortions in diffusion-weighted MRI that result from inhomogeneities in the static magnetic field. These inhomogeneities may due to imperfections in the magnet or to spatial variations in the magnetic susceptibility of the object being imaged--so called susceptibility artifacts. Echo-planar imaging (EPI), used in virtually all diffusion weighted acquisition protocols, assumes a homogeneous static field, which generally does not hold for head MRI. The resulting distortions are significant, sometimes more than ten millimeters. These artifacts impede accurate alignment of diffusion images with structural MRI, and are generally considered an obstacle to the joint analysis of connectivity and structure in head MRI. In principle, susceptibility artifacts can be corrected by acquiring (and applying) a field map. However, as shown in the literature and demonstrated in this paper, field map corrections of susceptibility artifacts are not entirely accurate and reliable, and thus field maps do not produce reliable alignment of EPIs with corresponding structural images. This paper presents a new, image-based method for correcting susceptibility artifacts. The method relies on a variational formulation of the match between an EPI baseline image and a corresponding T2-weighted structural image but also specifically accounts for the physics of susceptibility artifacts. We derive a set of partial differential equations associated with the optimization, describe the numerical methods for solving these equations, and present results that demonstrate the effectiveness of the proposed method compared with field-map correction.

  18. TMRI detects cartilage damage in asymptomatic individuals with a cam deformity.

    PubMed

    Anwander, Helen; Melkus, Gerd; Rakhra, Kawan S; Beaulé, Paul E

    2016-06-01

    Hips with a cam deformity are at risk for early cartilage degeneration, mainly in the anterolateral region of the joint. TMRI is a described technique for assessment of proteoglycan content in hyaline cartilage and subsequently early cartilage damage. In this study, 1.5 Tesla TMRI was performed on 20 asymptomatic hips with a cam deformity and compared to 16 healthy control hips. Cam deformity was defined as an alpha angle at 1:30 o'clock position over 60° and/or at 3:00 o'clock position over 50.5°. Hip cartilage was segmented and divided into four regions of interest (ROIs): anterolateral, anteromedial, posterolateral, and posteromedial quadrants. Mean T1ρ value of the entire weight bearing cartilage in hips with a cam deformity (34.0 ± 4.6 ms) was significantly higher compared to control hips (31.3 ± 3.2 ms, p = 0.050). This difference reached significance in the anterolateral (p = 0.042) and posteromedial quadrants (p = 0.041). No significant correlation between the alpha angle and T1ρ values was detected. The results indicate cartilage damage occurs in hips with a cam deformity before symptoms occur. A significant difference in T1ρ values was found in the anterolateral quadrant, the area of direct engagement of the deformity, and in the posteromedial quadrant. To conclude, TMRI can detect early chondral damage in asymptomatic hips with a cam deformity. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1004-1009, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Evaluation of liver fat in the presence of iron with MRI using T2* correction: a clinical approach.

    PubMed

    Henninger, Benjamin; Benjamin, Henninger; Kremser, Christian; Christian, Kremser; Rauch, Stefan; Stefan, Rauch; Eder, Robert; Robert, Eder; Judmaier, Werner; Werner, Judmaier; Zoller, Heinz; Heinz, Zoller; Michaely, Henrik; Henrik, Michaely; Schocke, Michael; Michael, Schocke

    2013-06-01

    To assess magnetic resonance imaging (MRI) with conventional chemical shift-based sequences with and without T2* correction for the evaluation of steatosis hepatitis (SH) in the presence of iron. Thirty-one patients who underwent MRI and liver biopsy because of clinically suspected diffuse liver disease were retrospectively analysed. The signal intensity (SI) was calculated in co-localised regions of interest (ROIs) using conventional spoiled gradient-echo T1 FLASH in-phase and opposed-phase (IP/OP). T2* relaxation time was recorded in a fat-saturated multi-echo-gradient-echo sequence. The fat fraction (FF) was calculated with non-corrected and T2*-corrected SIs. Results were correlated with liver biopsy. There was significant difference (P < 0.001) between uncorrected and T2* corrected FF in patients with SH and concomitant hepatic iron overload (HIO). Using 5 % as a threshold resulted in eight false negative results with uncorrected FF whereas T2* corrected FF lead to true positive results in 5/8 patients. ROC analysis calculated three threshold values (8.97 %, 5.3 % and 3.92 %) for T2* corrected FF with accuracy 84 %, sensitivity 83-91 % and specificity 63-88 %. FF with T2* correction is accurate for the diagnosis of hepatic fat in the presence of HIO. Findings of our study suggest the use of IP/OP imaging in combination with T2* correction. • Magnetic resonance helps quantify both iron and fat content within the liver • T2* correction helps to predict the correct diagnosis of steatosis hepatitis • "Fat fraction" from T2*-corrected chemical shift-based sequences accurately quantifies hepatic fat • "Fat fraction" without T2* correction underestimates hepatic fat with iron overload.

  20. In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation.

    PubMed

    Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki

    2018-02-01

    Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.

  1. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI.

    PubMed

    Brown, Anna M; Nagala, Sidhartha; McLean, Mary A; Lu, Yonggang; Scoffings, Daniel; Apte, Aditya; Gonen, Mithat; Stambuk, Hilda E; Shaha, Ashok R; Tuttle, R Michael; Deasy, Joseph O; Priest, Andrew N; Jani, Piyush; Shukla-Dave, Amita; Griffiths, John

    2016-04-01

    Ultrasound-guided fine needle aspirate cytology fails to diagnose many malignant thyroid nodules; consequently, patients may undergo diagnostic lobectomy. This study assessed whether textural analysis (TA) could noninvasively stratify thyroid nodules accurately using diffusion-weighted MRI (DW-MRI). This multi-institutional study examined 3T DW-MRI images obtained with spin echo echo planar imaging sequences. The training data set included 26 patients from Cambridge, United Kingdom, and the test data set included 18 thyroid cancer patients from Memorial Sloan Kettering Cancer Center (New York, New York, USA). Apparent diffusion coefficients (ADCs) were compared over regions of interest (ROIs) defined on thyroid nodules. TA, linear discriminant analysis (LDA), and feature reduction were performed using the 21 MaZda-generated texture parameters that best distinguished benign and malignant ROIs. Training data set mean ADC values were significantly different for benign and malignant nodules (P = 0.02) with a sensitivity and specificity of 70% and 63%, respectively, and a receiver operator characteristic (ROC) area under the curve (AUC) of 0.73. The LDA model of the top 21 textural features correctly classified 89/94 DW-MRI ROIs with 92% sensitivity, 96% specificity, and an AUC of 0.97. This algorithm correctly classified 16/18 (89%) patients in the independently obtained test set of thyroid DW-MRI scans. TA classifies thyroid nodules with high sensitivity and specificity on multi-institutional DW-MRI data sets. This method requires further validation in a larger prospective study. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. Engineered contrast agents in a single structure for T1-T2 dual magnetic resonance imaging.

    PubMed

    Cabrera-García, Alejandro; Checa-Chavarria, Elisa; Pacheco-Torres, Jesús; Bernabeu-Sanz, Ángela; Vidal-Moya, Alejandro; Rivero-Buceta, Eva; Sastre, Germán; Fernández, Eduardo; Botella, Pablo

    2018-04-05

    The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T1-T2 dual-mode relaxivity requires the accurate assembly of T1 and T2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)4[Fe(CN)6] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)4[Fe(CN)6]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T1- and T2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application.

  3. Radiofrequency thermal ablation in canine femur: evaluation of coagulation necrosis reproducibility and MRI-histopathologic correlation.

    PubMed

    Lee, Jeong Min; Choi, Seong Hong; Park, Hee Seon; Lee, Min Woo; Han, Chang Jin; Choi, Joon-il; Choi, Ja-Young; Hong, Sung Hwan; Han, Joon Koo; Choi, Byung Ihn

    2005-09-01

    Our purposes were to determine whether a single application of radiofrequency energy to normal bone can create coagulation necrosis reproducibly and to assess the accuracy of MRI at revealing the extent of radiofrequency-induced thermal bone injury. Using a 200-W generator and a 17-gauge cooled-tip electrode, a total of 11 radiofrequency ablations were performed under fluoroscopic guidance in the distal femurs of seven dogs. Radiofrequency was applied in standard monopolar mode at 100 W for 10 min. During radiofrequency ablation, the changes in impedance and currents were recorded. MRI, including unenhanced T1- and T2-weighted images and contrast-enhanced fat-suppressed T1-weighted images, was performed to evaluate ablation regions. Six dogs were killed on day 4 after MRI and one dog on day 7. In all animals, radiofrequency ablation created a well-defined coagulation necrosis and no significant complications were noted. The mean long-axis diameter and the mean short-axis diameter of the coagulation zones produced were 45.9 +/- 5.5 mm and 17.7 +/- 2.7 mm, respectively. At gross examination, thermal ablation regions appeared as a central, light-brown area with a dark-brown peripheral hemorrhagic zone, which was surrounded by a pale-yellow rim. On MRI, the ablated areas showed multilayered zones with signal intensities that differed from normal marrow on unenhanced images and a perfusion defect on contrast-enhanced T1-weighted images. The maximum difference between lesion sizes on MR images, established by measuring macroscopic coagulation necrosis, was 3 mm. The correlation between the diameter of coagulation necrosis and lesion size at MRI was strong, with correlation coefficients ranging from 0.89 for unenhanced T1-weighted images and 0.97 for unenhanced T2-weighted images to 0.98 for contrast-enhanced T1-weighted images (p < 0.05). Radiofrequency ablation created well-defined coagulation necrosis in a reproducible manner, and MRI accurately determined the extent

  4. Spiral MRI on a 9.4T Vertical-bore Superconducting Magnet Using Unshielded and Self-shielded Gradient Coils.

    PubMed

    Kodama, Nao; Setoi, Ayana; Kose, Katsumi

    2018-04-10

    Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.

  5. Less head motion during MRI under task than resting-state conditions.

    PubMed

    Huijbers, Willem; Van Dijk, Koene R A; Boenniger, Meta M; Stirnberg, Rüdiger; Breteler, Monique M B

    2017-02-15

    might be especially useful when acquiring structural MRI data such as T1/T2-weighted and diffusion MRI in research and clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.

    PubMed

    Obata, Takayuki; Uemura, Koji; Nonaka, Hiroi; Tamura, Mitsuru; Tanada, Shuji; Ikehira, Hiroo

    2006-01-01

    To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.

  7. Spine labeling in MRI via regularized distribution matching.

    PubMed

    Hojjat, Seyed-Parsa; Ayed, Ismail; Garvin, Gregory J; Punithakumar, Kumaradevan

    2017-11-01

    This study investigates an efficient (nearly real-time) two-stage spine labeling algorithm that removes the need for an external training while being applicable to different types of MRI data and acquisition protocols. Based solely on the image being labeled (i.e., we do not use training data), the first stage aims at detecting potential vertebra candidates following the optimization of a functional containing two terms: (i) a distribution-matching term that encodes contextual information about the vertebrae via a density model learned from a very simple user input, which amounts to a point (mouse click) on a predefined vertebra; and (ii) a regularization constraint, which penalizes isolated candidates in the solution. The second stage removes false positives and identifies all vertebrae and discs by optimizing a geometric constraint, which embeds generic anatomical information on the interconnections between neighboring structures. Based on generic knowledge, our geometric constraint does not require external training. We performed quantitative evaluations of the algorithm over a data set of 90 mid-sagittal MRI images of the lumbar spine acquired from 45 different subjects. To assess the flexibility of the algorithm, we used both T1- and T2-weighted images for each subject. A total of 990 structures were automatically detected/labeled and compared to ground-truth annotations by an expert. On the T2-weighted data, we obtained an accuracy of 91.6% for the vertebrae and 89.2% for the discs. On the T1-weighted data, we obtained an accuracy of 90.7% for the vertebrae and 88.1% for the discs. Our algorithm removes the need for external training while being applicable to different types of MRI data and acquisition protocols. Based on the current testing data, a subject-specific model density and generic anatomical information, our method can achieve competitive performances when applied to T1- and T2-weighted MRI images.

  8. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database

    ERIC Educational Resources Information Center

    Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.

    2015-01-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…

  9. The Value of Restaging With Chest and Abdominal CT/MRI Scan After Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer.

    PubMed

    Liu, Guo-Chen; Zhang, Xu; Xie, E; An, Xin; Cai, Pei-Qiang; Zhu, Ying; Tang, Jing-Hua; Kong, Ling-Heng; Lin, Jun-Zhong; Pan, Zhi-Zhong; Ding, Pei-Rong

    2015-11-01

    Little was known with regard to the value of preoperative systemic restaging for patients with locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (CRT). This study was designed to evaluate the role of chest and abdominal computed tomography (CT) scan or magnetic resonance imaging (MRI) on preoperative restaging in LARC after neoadjuvant CRT and to assess the impact on treatment strategy.Between January 2007 and April 2013, 386 newly diagnosed consecutive patients with LARC who underwent neoadjuvant CRT and received restaging with chest and abdominal CT/MRI scan were included. Imaging results before and after CRT were analyzed.Twelve patients (3.1%) (6 liver lesions, 2 peritoneal lesions, 2 distant lymph node lesions, 1 lung lesions, 1 liver and lung lesions) were diagnosed as suspicious metastases on the restaging scan after radiotherapy. Seven patients (1.8%) were confirmed as metastases by pathology or long-term follow-up. The treatment strategy was changed in 5 of the 12 patients as a result of restaging CT/MRI findings. Another 10 patients (2.6%) who present with normal restaging imaging findings were diagnosed as metastases intra-operatively. The sensitivity, specificity accuracy, negative predictive value, and positive predictive values of restaging CT/MRI was 41.4%, 98.6%, 58.3%, and 97.3%, respectively.The low incidence of metastases and minimal consequences for the treatment plan question the clinical value of routine restaging of chest and abdomen after neoadjuvant CRT. Based on this study, a routine restaging CT/MRI of chest and abdomen in patients with rectal cancer after neoadjuvant CRT is not advocated, carcino-embryonic antigen (CEA) -guided CT/MRI restaging might be an alternative.

  10. Tuning the relaxation rates of dual-mode T1/T2 nanoparticle contrast agents: a study into the ideal system

    NASA Astrophysics Data System (ADS)

    Keasberry, Natasha A.; Bañobre-López, Manuel; Wood, Christopher; Stasiuk, Graeme. J.; Gallo, Juan; Long, Nicholas. J.

    2015-09-01

    Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in each individual imaging mode acquisition. Recently, the combination of both T1 and T2 imaging capabilities into a single platform has emerged as a tool to reduce uncertainties in MR image analysis. To date, contradicting reports on the effect on the contrast of the coupling of a T1 and T2 agent have hampered the application of these specialised probes. Herein, we present a systematic experimental study on a range of gadolinium-labelled magnetite nanoparticles envisioned to bring some light into the mechanism of interaction between T1 and T2 components, and advance towards the design of efficient (dual) T1 and T2 MRI probes. Unexpected behaviours observed in some of the constructs will be discussed. In this study, we demonstrate that the relaxivity of such multimodal probes can be rationally tuned to obtain unmatched potentials in MR imaging, exemplified by preparation of the magnetite-based nanoparticle with the highest T2 relaxivity described to date.Magnetic resonance imaging (MRI) is an excellent imaging modality. However the low sensitivity of the technique poses a challenge to achieving an accurate image of function at the molecular level. To overcome this, contrast agents are used; typically gadolinium based agents for T1 weighted imaging, or iron oxide based agents for T2 imaging. Traditionally, only one imaging mode is used per diagnosis although several physiological situations are known to interfere with the signal induced by the contrast agents in

  11. 7T Magnetization Transfer and Chemical Exchange Saturation Transfer MRI of Cortical Gray Matter: Can We Detect Neurochemical and Macromolecular Abnormalities

    DTIC Science & Technology

    2015-10-01

    with fMRI , and CEST acquisitions. Analysis hurdles were noted in the qMT, which we discuss here. Recruitment continues in the MS cohort (all healthy...Saturation Transfer (CEST) • Magnetization Transfer (MT) • Brain • Cortical Gray Matter (cGM) • Multiple Sclerosis (MS) • Functional MRI ( fMRI ) • Pool Size...MPRAGE Anatomical – 2:12 • fMRI Resting State – 8:34 • fMRI N-Back task – 8:30 • fMRI Trailmaking task – 4:14 The current scan time for all scans is

  12. T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI.

    PubMed

    Kubota, Bruno Yukio; Coan, Ana Carolina; Yasuda, Clarissa Lin; Cendes, Fernando

    2015-05-01

    Increased MRI T2 signal is commonly present not only in the hippocampus but also in other temporal structures of patients with temporal lobe epilepsy (TLE), and it is associated with histological abnormalities related to the epileptogenic lesion. This study aimed to verify the distribution of T2 increased signal in temporal lobe structures and its correlations with clinical characteristics of TLE patients with (TLE-HS) or without (TLE-NL) MRI signs of hippocampal sclerosis. We selected 203 consecutive patients: 124 with TLE-HS and 79 with TLE-NL. Healthy controls (N=59) were used as a comparison group/comparative group. T2 multiecho images obtained via a 3-T MRI were evaluated with in-house software. T2 signal decays were computed from five original echoes in regions of interest in the hippocampus, amygdala, and white matter of the anterior temporal lobe. Values higher than 2 standard deviations from the mean of controls were considered as abnormal. T2 signal increase was observed in the hippocampus in 78% of patients with TLE-HS and in 17% of patients with TLE-NL; in the amygdala in 13% of patients with TLE-HS and in 14% of patients with TLE-NL; and in the temporal lobe white matter in 22% of patients with TLE-HS and in 8% of patients with TLE-NL. Group analysis demonstrated a significant difference in the distribution of the T2 relaxation times of the hippocampus (ANOVA, p<0.0001), amygdala (p=0.003), and temporal lobe white matter (p<0.0001) ipsilateral to the epileptogenic zone for patients with TLE-HS compared with controls but only for the amygdala (p=0.029) and temporal lobe white matter (ANOVA, p=0.025) for patients with TLE-NL compared with controls. The average signal from the hippocampus ipsilateral to the epileptogenic zone was significantly higher in patients with no family history of epilepsy (two-sample T-test, p=0.005). Increased T2 signal occurs in different temporal structures of patients with TLE-HS and in patients with TLE-NL. The hippocampal

  13. Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths

    PubMed Central

    West, Janne; Blystad, Ida; Engström, Maria; Warntjes, Jan B. M.; Lundberg, Peter

    2013-01-01

    Background Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. Methods In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. Results Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. Conclusions Most of the brain was identically classified at the two field strengths, although some regional differences were observed. PMID:24066153

  14. T₁ρ MRI of human musculoskeletal system.

    PubMed

    Wang, Ligong; Regatte, Ravinder R

    2015-03-01

    Magnetic resonance imaging (MRI) offers the direct visualization of the human musculoskeletal (MSK) system, especially all diarthrodial tissues including cartilage, bone, menisci, ligaments, tendon, hip, synovium, etc. Conventional MRI techniques based on T1 - and T2 -weighted, proton density (PD) contrast are inconclusive in quantifying early biochemically degenerative changes in MSK system in general and articular cartilage in particular. In recent years, quantitative MR parameter mapping techniques have been used to quantify the biochemical changes in articular cartilage, with a special emphasis on evaluating joint injury, cartilage degeneration, and soft tissue repair. In this article we focus on cartilage biochemical composition, basic principles of TMRI, implementation of T1ρ pulse sequences, biochemical validation, and summarize the potential applications of the TMRI technique in MSK diseases including osteoarthritis (OA), anterior cruciate ligament (ACL) injury, and knee joint repair. Finally, we also review the potential advantages, challenges, and future prospects of TMRI for widespread clinical translation. © 2014 Wiley Periodicals, Inc.

  15. SU-C-17A-05: Quantification of Intra-Fraction Motion of Breast Tumors Using Cine-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijst, T van; Philippens, M; Bongard, D van den

    2014-06-01

    Purpose: Magnetic resonance imaging (MRI) enables direct characterization of intra-fraction motion ofbreast tumors, due to high softtissue contrast and geometric accuracy. The purpose is to analyzethis motion in early-stage breast-cancer patients using pre-operative supine cine-MRI. Methods: MRI was performed in 12 female early-stage breast-cancer patients on a 1.5-T Ingenia (Philips)wide-bore scanner in supine radiotherapy (RT) position, prior to breast-conserving surgery. Twotwodimensional (2D) T2-weighted balanced fast-field echo (cine-MRI) sequences were added tothe RT protocol, oriented through the tumor. They were alternately acquired in the transverse andsagittal planes, every 0.3 s during 1 min. A radiation oncologist delineated gross target volumes(GTVs) onmore » 3D contrast-enhanced MRI. Clinical target volumes (CTV = GTV + 15 mm isotropic)were generated and transferred onto the fifth time-slice of the time-series, to which subsequents lices were registered using a non-rigid Bspline algorithm; delineations were transformed accordingly. To evaluate intra-fraction CTV motion, deformation fields between the transformed delineations were derived to acquire the distance ensuring 95% surface coverage during scanning(P95%), for all in-plane directions: anteriorposterior (AP), left-right (LR), and caudal-cranial(CC). Information on LR was derived from transverse scans, CC from sagittal scans, AP fromboth sets. Results: Time-series with registration errors - induced by motion artifacts - were excluded by visual inspection. For our analysis, 11 transverse, and 8 sagittal time-series were taken into account. Themedian P95% calculated in AP (19 series), CC (8), and LR (11) was 1.8 mm (range: 0.9–4.8), 1.7mm (0.8–3.6), and 1.0 mm (0.6–3.5), respectively. Conclusion: Intra-fraction motion analysis of breast tumors was achieved using cine-MRI. These first results show that in supine RT position, motion amplitudes are limited. This information can be used for

  16. SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, J; Lopez, C; Tschudi, Y

    Purpose: To determine whether blood oxygenation level dependent (BOLD) MRI signal measured in prostate cancer patients, in addition to quantitative diffusion and perfusion parameters from multiparametric (mp)MRI exams, can help discriminate aggressive and/or radioresistant lesions. Methods: Several ongoing clinical trials in our institution require mpMRI exam to determine eligibility (presence of identifiable tumor lesion on mpMRI) and prostate volumes for dose escalation. Upon consent, patients undergo fiducial markers placement and a T2*-weighted imaging at the time of CT sim to facilitate the fusion. In a retrospective analysis eleven clinical trial patients were identified who had undergone mpMRI on GE 3Tmore » magnet, followed by T2*-weighted imaging (time-period mean±SD = 48±20 days) using a consistent protocol (gradient echo, TR/TE=30/11.8ms, flip angle=12, matrix=256×256×75, voxel size=1.25×1.25×2.5mm). ROIs for prostate tumor lesions were automatically determined using ADC threshold ≤1200 µm2/s. Although the MR protocol was not intended for BOLD analysis, we utilized the T2*-weighted signal normalized to that in nearby muscle; likewise, T2-weighted lesion signal was normalized to muscle, following rigid registration of the T2 to T2* images. The ratio of these normalized signals, T2*/T2, is a measure of BOLD effect in the prostate tumors. Perfusion parameters (Ktrans, ve, kep) were also calculated. Results: T2*/T2 (mean±SE) was found to be substantially lower for Gleason score (GS) 8&9 (0.82±0.04) compared to GS 7 (1.08±0.07). A k-means cluster analysis of T2*/T2 versus kep = Ktrans/ve revealed two distinct clusters, one with higher T2*/T2 and lower kep, containing only GS 7 lesions, and another with lower T2*/T2 and higher kep, associated with tumor aggressiveness. This latter cluster contained all GS 8&9 lesions, as well as some GS 7. Conclusion: BOLD MRI, in addition to ADC and kep, may play a role (perhaps orthogonal to Gleason score) in

  17. 3T deep gray matter T2 hypointensity correlates with disability over time in stable relapsing-remitting multiple sclerosis: a 3-year pilot study.

    PubMed

    Zhang, Y; Metz, L M; Yong, V W; Mitchell, J R

    2010-10-15

    Abnormally decreased deep gray matter (GM) signal intensity on T2-weighted MRI (T2 hypointensity) is associated with brain atrophy and disability progression in patients with multiple sclerosis (MS) and is believed to represent excessive iron deposition. We investigated the time course of deep GM T2 hypointensity and its relationship with disability at 3T in 8 stable relapsing-remitting (RR) MS patients treated with minocycline over 3years. MRI and disability measurements were compared at baseline, 6, 12, 24, and 36months. Grand mean deep GM T2 hypointensity was negatively correlated with EDSS over time (r=-0.94, P=0.02). This correlation was strongest in the head of caudate (r=-0.95, P=0.01) and putamen (r=-0.89, P=0.04). Additionally, baseline grand mean deep GM T2 hypointensity appears to predict third year EDSS (r=-0.72, P=0.04). These results suggest that iron associated deep GM injury correlates with patient disability in stable RRMS. Measurements of deep GM T2 hypointensity at high field MRI may prove to be useful in monitoring individuals with MS. Further studies are required to confirm these results in a large sample and to determine if T2 hypointensity changes in clinically active MS patients. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Primary Uterine Peripheral T-cell Lymphoma

    PubMed Central

    Gong, Jing; Dong, Aisheng; Wang, Yang; Zhang, Xuefeng; Yang, Panpan; Wang, Li; Jing, Wei

    2016-01-01

    Abstract Primary uterine non-Hodgkin's lymphoma is extremely rare accounting for <1% of all extranodal non-Hodgkin's lymphomas. Imaging findings of primary uterine lymphoma have rarely been reported before. We present magnetic resonance imaging (MRI) and fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT findings in a patient with primary uterine peripheral T-cell lymphoma. A 27-year-old female presented with intermittent fever with neutropenia for 7 months. MRI showed an ill-defined mass involved both the uterine corpus and cervix, resulting in diffuse enlargement of the uterus. This mass showed inhomogeneous hypointensity on unenhanced T1-weighted images, hyperintensity on diffusion-weighted imaging, relative hypointensity compared to the surrounding myometrium on T2-weighted images and lower enhancement than the surrounding myometrium on enhanced T1-weighted images. FDG PET/CT showed intense FDG uptake in the thickened wall of the uterine corpus and cervix with SUVmax of 26.9. There were multiple hypermetabolic lymph nodes in the pelvis and retroperitoneum. Uterine curettage and CT-guided biopsy of the uterine mass revealed peripheral T-cell lymphoma. Bone marrow biopsy revealed no evidence of lymphomatous involvement. The imaging and pathologic findings were consistent with primary uterine lymphoma. After 3 circles of chemotherapy, follow-up enhanced MRI showed decreased thickness of the uterine wall. Despite its rarity, primary uterine non-Hodgkin's lymphoma should be taken into consideration when a uterine tumor shows large size, relative hypointesity on both T2-weighted images and enhanced T1-weighted images compared to the surrounding myometrium, and intense FDG uptake on PET/CT. MRI may be helpful for describing the relationship between the tumor and adjacent structures. FDG PET/CT may be useful for tumor detection and staging. PMID:27124063

  19. The use of parallel imaging for MRI assessment of knees in children and adolescents.

    PubMed

    Doria, Andrea S; Chaudry, Gulraiz A; Nasui, Cristina; Rayner, Tammy; Wang, Chenghua; Moineddin, Rahim; Babyn, Paul S; White, Larry M; Sussman, Marshall S

    2010-03-01

    Parallel imaging provides faster scanning at the cost of reduced signal-to-noise ratio (SNR) and increased artifacts. To compare the diagnostic performance of two parallel MRI protocols (PPs) for assessment of pathologic knees using an 8-channel knee coil (reference standard, conventional protocol [CP]) and to characterize the SNR losses associated with parallel imaging. Two radiologists blindly interpreted 1.5 Tesla knee MRI images in 21 children (mean 13 years, range 9-18 years) with clinical indications for an MRI scan. Sagittal proton density, T2-W fat-saturated FSE, axial T2-W fat-saturated FSE, and coronal T1-W (NEX of 1,1,1) images were obtained with both CP and PP. Images were read for soft tissue and osteochondral findings. There was a 75% decrease in acquisition time using PP in comparison to CP. The CP and PP protocols fell within excellent or upper limits of substantial agreement: CP, kappa coefficient, 0.81 (95% CIs, 0.73-0.89); PP, 0.80-0.81 (0.73-0.89). The sensitivity of the two PPs was similar for assessment of soft (0.98-1.00) and osteochondral (0.89-0.94) tissues. Phantom data indicated an SNR of 1.67, 1.6, and 1.51 (axial, sagittal and coronal planes) between CP and PP scans. Parallel MRI provides a reliable assessment for pediatric knees in a significantly reduced scan time without affecting the diagnostic performance of MRI.

  20. 3D T2-weighted and Gd-EOB-DTPA-enhanced 3D T1-weighted MR cholangiography for evaluation of biliary anatomy in living liver donors.

    PubMed

    Cai, Larry; Yeh, Benjamin M; Westphalen, Antonio C; Roberts, John; Wang, Zhen J

    2017-03-01

    To investigate whether the addition of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced 3D T1-weighted MR cholangiography (T1w-MRC) to 3D T2-weighted MRC (T2w-MRC) improves the confidence and diagnostic accuracy of biliary anatomy in living liver donors. Two abdominal radiologists retrospectively and independently reviewed pre-operative MR studies in 58 consecutive living liver donors. The second-order bile duct visualization on T1w- and T2w-MRC images was rated on a 4-point scale. The readers also independently recorded the biliary anatomy and their diagnostic confidence using (1) combined T1w- and T2w-MRC, and (2) T2w-MRC. In the 23 right lobe donors, the biliary anatomy at imaging and the imaging-predicted number of duct orifices at surgery were compared to intra-operative findings. T1w-MRC had a higher proportion of excellent visualization than T2w-MRC, 66% vs. 45% for reader 1 and 60% vs. 31% for reader 2. The median confidence score for biliary anatomy diagnosis was significantly higher with combined T1w- and T2w-MRC than T2w-MRC alone for both readers (Reader 1: 3 vs. 2, p < 0.001; Reader 2: 3 vs. 1, p < 0.001). Compared to intra-operative findings, the accuracy of imaging-predicted number of duct orifices using combined T1w-and T2w-MRC was significantly higher than that using T2w-MRC alone (p = 0.034 for reader 1, p = 0.0082 for reader 2). The addition of Gd-EOB-DTPA-enhanced 3D T1w-MRC to 3D T2w-MRC improves second-order bile duct visualization and increases the confidence in biliary anatomy diagnosis and the accuracy in the imaging-predicted number of duct orifices acquired during right lobe harvesting.