These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Activation of 5-HT1A receptors expressed in NIH-3T3 cells induces focus formation and potentiates EGF effect on DNA synthesis.  

PubMed Central

NIH-3T3 fibroblasts have been transfected with human serotonin 5-HT1A receptors. Clonal cell lines expressed between 40 and 500 fmol receptor/mg. 5-HT1A agonists strongly inhibited nonstimulated- as well as forskolin- or isoproterenol-stimulated adenylyl cyclase. The effects of 5-HT1A receptor activation on cell growth were investigated. 5-HT1A agonists accelerated cell division, generated foci, and increased DNA synthesis. The stimulation of [3H]thymidine incorporation was much stronger when tyrosine kinase receptors were activated concomitantly. Cyclic AMP (cAMP) elevating agents inhibited DNA synthesis induced by all mitogens tested. The mitogenic activity of 5-HT1A agonists did not seem to be linked to adenylyl cyclase inhibition because 1) we were not able to measure any decrease in intracellular cAMP levels under the conditions of DNA synthesis assay and 2) 2',5'-dideoxyadenosine, which strongly inhibited adenylyl cyclase, was not mitogenic and did not modify the mitogenic effects of 5-HT1A agonists. Pertussis toxin completely blocked potentiation of epidermal growth factor effect induced by 8-hydroxy-di-(n-propyl)aminotetralin, a 5-HT1A agonist, but only partially blocked the one induced by insulin. In conclusion, in transfected NIH-3T3 cells, transforming and mitogenic effects of 5-HT1A agonists involve a pertussis toxin-sensitive G protein but do not seem to be linked to adenylyl cyclase inhibition. Images PMID:1330092

Varrault, A; Bockaert, J; Waeber, C

1992-01-01

2

Lysophosphatidic Acid-induced ERK Activation and Chemotaxis in MC3T3-E1 Preosteoblasts are Independent of EGF Receptor Transactivation  

SciTech Connect

Growing evidence indicates that bone-forming osteoblasts and their progenitors are target cells for the lipid growth factor lysophosphatidic acid (LPA) which is produced by degranulating platelets at sites of injury. LPA is a potent inducer of bone cell migration, proliferation and survival in vitro and an attractive candidate to facilitate preosteoblast chemotaxis during skeletal regeneration in vivo, but the intracellular signaling pathways mediating the effects of this lipid on bone cells are not defined. In this study we measured the ability of LPA to stimulate extracellular signal-related kinase (ERK1/2) in MC3T3-E1 preosteoblastic cells and determined the contribution of this pathway to LPA-stimulated chemotaxis. LPA-treated cells exhibited a bimodal activation of ERK1/2 with maximal phosphorylation at 5 and 60 minutes. The kinetics of ERK1/2 phosphorylation were not coupled to Ras activation or LPA-induced elevations in cytosolic Ca2+. While LPA is coupled to the transactivation of the EGF receptor in many cell types, LPA-stimulated ERK1/2 activation in MC3T3-E1 cells was unaffected by inhibition of EGF receptor function. ERK isoforms rapidly accumulated at nuclear sites in LPA-treated cells, a process that was blocked if ERK1/2 phosphorylation was prevented with the MEK1 inhibitor U0126. Blocking ERK1/2 phosphorylation with U0126 also diminished MC3T3-E1 cell migration and altered the normal disassembly of LPA-induced stress fibers, while the inhibition of EGF receptor function had no effect on LPA-coupled preosteoblast motility. Our results identify ERK1/2 activation as a mediatora mediator of LPA-stimulated MC3T3-E1 cell migration that may be relevant to preosteoblast motility during bone repair in vivo.

Karagiosis, Sue A.; Chrisler, William B.; Bollinger, Nikki; Karin, Norman J.

2009-06-01

3

Original article Ontogeny of the liver nuclear T3-receptor  

E-print Network

Original article Ontogeny of the liver nuclear T3-receptor during the last days of incubation be the consequence of a down-regulation by T3 itself. chick embryo / T3-receptor I ontogeny Résumé ― Ontogénie

Paris-Sud XI, Université de

4

?? Adrenergic Receptor Activation Suppresses Bone Morphogenetic Protein (BMP)-Induced Alkaline Phosphatase Expression in Osteoblast-Like MC3T3E1 Cells.  

PubMed

? adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of ?2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. J. Cell. Biochem. 116: 1144-1152, 2015. 2014 Wiley Periodicals, Inc. PMID:25536656

Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

2015-06-01

5

Epigallocatechin Gallate (EGCG) Suppresses Lipopolysaccharide-Induced Toll-like Receptor 4 (TLR4) Activity via 67 kDa Laminin Receptor (67LR) in 3T3-L1 Adipocytes.  

PubMed

Obesity-related insulin resistance is associated with chronic systemic low-grade inflammation, and toll-like receptor 4 (TLR4) regulates inflammation. We investigated the pathways involved in epigallocatechin gallate (EGCG) modulation of insulin and TLR4 signaling in adipocytes. Inflammation was induced in adipocytes by lipopolysaccharide (LPS). An antibody against the 67 kDa laminin receptor (67LR, to which EGCG exclusively binds) was used to examine the effect of EGCG on TLR4 signaling, and a TLR4/MD-2 antibody was used to inhibit TLR4 activity and to determine the insulin sensitivity of differentiated 3T3-L1 adipocytes. We found that EGCG dose-dependently inhibited LPS stimulation of adipocyte inflammation by reducing inflammatory mediator and cytokine levels (IKK?, p-NF-?B, TNF-?, and IL-6). Pretreatment with the 67LR antibody prevented EGCG inhibition of inflammatory cytokines, decreased glucose transporter isoform 4 (GLUT4) expression, and inhibited insulin-stimulated glucose uptake. TLR4 inhibition attenuated inflammatory cytokine levels and increased glucose uptake by reversing GLUT4 levels. These data suggest that EGCG suppresses TLR4 signaling in LPS-stimulated adipocytes via 67LR and attenuates insulin-stimulated glucose uptake associated with decreased GLUT4 expression. PMID:25732404

Bao, Suqing; Cao, Yanli; Zhou, Haicheng; Sun, Xin; Shan, Zhongyan; Teng, Weiping

2015-03-18

6

Depletion of the p43 mitochondrial T3 receptor increases Sertoli cell proliferation in mice.  

PubMed

Among T3 receptors, TR?1 is ubiquitous and its deletion or a specific expression of a dominant-negative TR?1 isoform in Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the nuclear receptor TR?1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in Sertoli cells of p43-/- mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p43-/- probably explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43. PMID:24040148

Fumel, Betty; Roy, Stphanie; Fouchcourt, Sophie; Livera, Gabriel; Parent, Anne-Simone; Casas, Franois; Guillou, Florian

2013-01-01

7

Depletion of the p43 Mitochondrial T3 Receptor Increases Sertoli Cell Proliferation in Mice  

PubMed Central

Among T3 receptors, TR?1 is ubiquitous and its deletion or a specific expression of a dominant-negative TR?1 isoform in Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the nuclear receptor TR?1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in Sertoli cells of p43?/? mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p43?/? probably explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43. PMID:24040148

Fumel, Betty; Roy, Stphanie; Fouchcourt, Sophie; Livera, Gabriel; Parent, Anne-Simone; Casas, Franois; Guillou, Florian

2013-01-01

8

The 230 kDa mature form of KDR\\/Flk-1 (VEGF receptor-2) activates the PLC-? pathway and partially induces mitotic signals in NIH3T3 fibroblasts  

Microsoft Academic Search

KDR\\/Flk-1 tyrosine kinase, one of the two receptors for Vascular Endothelial Growth Factor (VEGF) has been shown to generate the major part of mitotic signals in endothelial cells, although the mechanisms are poorly understood. Here we examined the processing and signal transduction of KDR\\/Flk-1. Both in endothelial cells and in NIH3T3 cells expressing KDR\\/Flk-1, an immature form of KDR\\/Flk-1 with

Tomoko Takahashi; Masabumi Shibuya

1997-01-01

9

Nuclear localization of the type 1 parathyroid hormone/parathyroid hormone-related peptide receptor in MC3T3-E1 cells: association with serum-induced cell proliferation.  

PubMed

We have recently demonstrated that the receptor for parathyroid hormone (PTH) and PTH-related peptide (PTHrP), PTHR, can be localized to the nucleus of cells within the liver, kidney, uterus, gut, and ovary of the rat. We set out to determine the localization of the PTHR in cultured osteoblast-like cells. MC3T3-E1, ROS 17/2.8, UMR106, and SaOS-2 cells were cultured in alpha-modified eagle medium containing 15% fetal calf serum under standard conditions. Untreated cells were grown on glass coverslips to 75-95% confluence and fixed in 1% paraformaldehyde. For experiments designed to examine cells synchronized by serum starvation, cells were grown on glass coverslips, starved of serum for 46 h, and then fixed at 2-h intervals for a total of 26 h after the addition of serum to the medium. Parallel sets of cells were pulsed with [3H]thymidine to track the DNA duplication interval. The PTHR was localized by immunocytochemistry using a primary antibody raised against a portion of the N-terminal extracellular domain of the PTHR. The results presented herein indicate that the PTHR attains a nuclear localization in each cell line examined. In UMR106 cells, PTHR immunoreactivity was restricted to the nucleolus. After cell synchronization, MC3T3-E1 cells double approximately 24 h after the addition of serum. Immunocytochemistry for the PTHR in these cells showed that the receptor staining is initially diffuse for the first 6 h, then becomes more perinuclear in distribution by 12-16 h. Nuclear localization of the receptor is achieved approximately 16-20 h after the addition of serum and remains there throughout the mitotic phase. Intense staining of mitotic and postmitotic cells was observed. No change in cell proliferation kinetics was observed in MC3T3-E1 cells cultured in the presence of 25 nM PTH(1-34). These data suggest an important role for the PTHR in the nucleus of MC3T3-E1 cells at the time of DNA synthesis and mitosis. PMID:10709993

Watson, P H; Fraher, L J; Natale, B V; Kisiel, M; Hendy, G N; Hodsman, A B

2000-03-01

10

Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells  

SciTech Connect

Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

2006-07-01

11

Induction of a negative autocrine loop by expression of sst2 somatostatin receptor in NIH 3T3 cells.  

PubMed Central

The somatostatin receptor subtype sst2 mediates both activation of a tyrosine phosphatase activity and inhibition of cell proliferation induced by somatostatin analogues. In the absence of exogenous ligand, expression of sst2 in NIH 3T3 cells resulted in inhibition of cell growth. Polymerase chain reaction coupled to reverse transcription demonstrated that expression of sst2 in NIH 3T3 cells stimulated the expression of preprosomatostatin mRNA accompanied by a production of immunoreactive somatostatin-like peptide which corresponded predominantly to somatostatin 14. Moreover anti-somatostatin antibodies suppressed sst2-promoted inhibition of cell proliferation. Inhibition of cell proliferation associated with increased secretion of somatostatin-like immunoreactivity was also observed after expression of sst2 in human pancreatic tumor cells BxPC3 devoid of endogenous receptors. In addition, expression of sst2 in NIH 3T3 cells was associated with constitutive activation of tyrosine phosphatase PTP1C that resulted from enhanced expression of the protein. Blocking of PTP1C tyrosine phosphatase activity with orthovanadate or that of PTP1C protein with antisense PTP1C oligonucleotides decreased the sst2-induced inhibition of cell proliferation. These results, taken together, show that expression of sst2 in NIH 3T3 cells generated a negative autocrine loop by stimulating sst2 ligand production and amplifying PTP1C sst2-transducer. Sst2/ligand may function as a determinant factor involved in the negative growth control of cells. PMID:8621771

Rauly, I; Saint-Laurent, N; Delesque, N; Buscail, L; Estve, J P; Vaysse, N; Susini, C

1996-01-01

12

PTH regulates ?2-adrenergic receptor expression in osteoblast-like MC3T3-E1 cells.  

PubMed

As the aged population is soaring, prevalence of osteoporosis is increasing. However, the molecular basis underlying the regulation of bone mass is still incompletely understood. Sympathetic tone acts via beta2 adrenergic receptors in bone and regulates the mass of bone which is the target organ of parathyroid hormone (PTH). However, whether beta2 adrenergic receptor is regulated by PTH in bone cells is not known. We therefore investigated the effects of PTH on beta2 adrenergic receptor gene expression in osteoblast-like MC3T3-E1 cells. PTH treatment immediately suppressed the expression levels of beta2 adrenergic receptor mRNA. This PTH effect was dose-dependent starting as low as 1?nM. PTH action on beta2 adrenergic receptor gene expression was inhibited by a transcriptional inhibitor, DRB, but not by a protein synthesis inhibitor, cycloheximide suggesting direct transcription control. Knockdown of beta2 adrenergic receptor promoted PTH-induced expression of c-fos, an immediate early response gene. With respect to molecular basis for this phenomenon, knockdown of beta2 adrenergic receptor enhanced PTH-induced transcriptional activity of cyclic AMP response element-luciferase construct in osteoblasts. Knockdown of beta2 adrenergic receptors also enhanced forskolin-induced luciferase expression, revealing that adenylate cyclase activity is influenced by beta2 adrenergic receptor. As for phosphorylation of transcription factor, knockdown of beta2 adrenergic receptor enhanced PTH-induced phosphorylation of cyclic AMP response element binding protein (CREB). These data reveal that beta2 adrenergic receptor is one of the targets of PTH and acts as a suppressor of PTH action in osteoblasts. PMID:25164990

Moriya, Shuichi; Hayata, Tadayoshi; Notomi, Takuya; Aryal, Smriti; Nakamaoto, Testuya; Izu, Yayoi; Kawasaki, Makiri; Yamada, Takayuki; Shirakawa, Jumpei; Kaneko, Kazuo; Ezura, Yoichi; Noda, Masaki

2015-01-01

13

T3-induced liver AMP-activated protein kinase signaling: Redox dependency and upregulation of downstream targets  

PubMed Central

AIM: To investigate the redox dependency and promotion of downstream targets in thyroid hormone (T3)-induced AMP-activated protein kinase (AMPK) signaling as cellular energy sensor to limit metabolic stresses in the liver. METHODS: Fed male Sprague-Dawley rats were given a single ip dose of 0.1 mg T3/kg or T3 vehicle (NaOH 0.1 N; controls) and studied at 8 or 24 h after treatment. Separate groups of animals received 500 mg N-acetylcysteine (NAC)/kg or saline ip 30 min prior T3. Measurements included plasma and liver 8-isoprostane and serum ?-hydroxybutyrate levels (ELISA), hepatic levels of mRNAs (qPCR), proteins (Western blot), and phosphorylated AMPK (ELISA). RESULTS: T3 upregulates AMPK signaling, including the upstream kinases Ca2+-calmodulin-dependent protein kinase kinase-? and transforming growth factor-?-activated kinase-1, with T3-induced reactive oxygen species having a causal role due to its suppression by pretreatment with the antioxidant NAC. Accordingly, AMPK targets acetyl-CoA carboxylase and cyclic AMP response element binding protein are phosphorylated, with the concomitant carnitine palmitoyltransferase-1? (CPT-1?) activation and higher expression of peroxisome proliferator-activated receptor-? co-activator-1? and that of the fatty acid oxidation (FAO)-related enzymes CPT-1?, acyl-CoA oxidase 1, and acyl-CoA thioesterase 2. Under these conditions, T3 induced a significant increase in the serum levels of ?-hydroxybutyrate, a surrogate marker for hepatic FAO. CONCLUSION: T3 administration activates liver AMPK signaling in a redox-dependent manner, leading to FAO enhancement as evidenced by the consequent ketogenic response, which may constitute a key molecular mechanism regulating energy dynamics to support T3 preconditioning against ischemia-reperfusion injury. PMID:25516653

Videla, Luis A; Fernndez, Virginia; Cornejo, Pamela; Vargas, Romina; Morales, Paula; Ceballo, Juan; Fischer, Alvaro; Escudero, Nicols; Escobar, Oscar

2014-01-01

14

Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor.  

PubMed

Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003-0.05 compared with triiodothyronine (T3). A structure-binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR. PMID:24819616

Ren, Xiao-Min; Zhang, Yin-Feng; Guo, Liang-Hong; Qin, Zhan-Fen; Lv, Qi-Yan; Zhang, Lian-Ying

2015-02-01

15

Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalization  

SciTech Connect

Incubation of 3T3-L1 adipocytes with insulin at 37C resulted in a 2-fold increase in transferrin binding to surface receptors, as measured by a subsequent incubation of cells at 4C with SVI-transferrin. The insulin concentration required for half-maximal effect was 10 nM, and the half-time for insulin action was 40 sec. Scatchard analysis of SVI-transferrin binding to cells at 4C showed that the insulin-induced increase in transferrin binding was due to an increase in the number of surface transferrin receptors. When cells were incubated for 2 h at 37 with SVI-transferrin to achieve steady-state binding and then exposed to insulin, there was a 2-fold increase in surface-bound transferrin and a corresponding decrease in intracellularly bound transferrin. Thus, insulin elicits translocation of intracellular transferrin receptors to the plasma membrane. Concomitant with the 2-fold increase in surface receptors in response to insulin was a 2-fold increase in the rate of VZFe uptake from VZFe-transferrin. The rate of externalization of intracellular SVI-transferrin-receptor complex at 37 was determined for basal and insulin-treated cells. Insulin increased the first-order rate constant for this process 2-fold. The effect of insulin on the rate constant for externalization is sufficient to account entirely for the increase in surface transferrin receptors.

Tanner, L.; Lienhard, G.

1987-05-01

16

Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines  

Microsoft Academic Search

Curcumin, which is a widely used dietary pigment and spice, has been demonstrated to be an effective inhibitor of tumor promotion in mouse skin carcinogenesis. We report that curcumin induces cell shrinkage, chromatin condensation, and DNA fragmentation, characteristics of apoptosis, in immortalized mouse embryo fibroblast NIH 3T3 erb B2 oncogene?transformed NIH 3T3, mouse sarcoma S180, human colon cancer cell HT?29,

Ming?Chung Jiang

1996-01-01

17

Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging.  

PubMed

Thyroid hormones (TH) play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3) receptor (p43) which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes. PMID:24098680

Bertrand, Christelle; Blanchet, Emilie; Pessemesse, Laurence; Annicotte, Jean Sbastien; Feillet-Coudray, Christine; Chabi, Batrice; Levin, Jonathan; Fajas, Lluis; Cabello, Grard; Wrutniak-Cabello, Chantal; Casas, Franois

2013-01-01

18

Mice Lacking the p43 Mitochondrial T3 Receptor Become Glucose Intolerant and Insulin Resistant during Aging  

PubMed Central

Thyroid hormones (TH) play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3) receptor (p43) which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43?/? mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43?/? mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43?/? mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes. PMID:24098680

Bertrand, Christelle; Blanchet, Emilie; Pessemesse, Laurence; Annicotte, Jean Sbastien; Feillet-Coudray, Christine; Chabi, Batrice; Levin, Jonathan; Fajas, Lluis; Cabello, Grard; Wrutniak-Cabello, Chantal; Casas, Franois

2013-01-01

19

Capsaicin Induces Brite Phenotype in Differentiating 3T3-L1 Preadipocytes  

PubMed Central

Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending brite cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of brite phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1100 M, capsaicin promotes expression of major pro-adipogenic factor PPAR? and some of its downstream targets. In concentrations of 1 M, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and induces brown-like phenotype whereas higher doses. PMID:25072597

Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

2014-01-01

20

Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes  

PubMed Central

Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 5 g/ml insulin and 1 M dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-? and C/EBP? in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity. PMID:24611103

Rhyu, Jin; Kim, Min Sook; You, Mi-Kyoung; Bang, Mi-Ae

2014-01-01

21

Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes.  

PubMed

Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 5 g/ml insulin and 1 M dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-? and C/EBP? in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity. PMID:24611103

Rhyu, Jin; Kim, Min Sook; You, Mi-Kyoung; Bang, Mi-Ae; Kim, Hyeon-A

2014-02-01

22

Sphingosine kinase is induced in mouse 3T3-L1 cells and promotes adipogenesiss?  

PubMed Central

Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator that exerts numerous biological activities both as a receptor ligand and as an intracellular second messenger. In the present study, we explored roles of sphingosine kinase (SphK), an S1P-producing enzyme, in adipose tissue. We utilized mouse 3T3-L1 cells as an in vitro model of adipogenesis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. Real-time quantitative PCR (qRT-PCR) assays revealed that the expression levels of transcripts encoding both isoforms of SphK-1 and SphK-2 are up-regulated during adipogenesis (37.6- and 6.6-fold vs. basal, P < 0.05, respectively). Concomitantly, SphK-1/SphK-2 protein abundance and S1P contents of these cells increased at 3 days after hormonal stimulation. Loss-of-function approaches by pharmacological inhibition of SphK activity as well as by transfection with small interfering RNA (siRNA) against SphK-1 led to significant attenuation of lipid droplet accumulation and adipocyte marker gene expression. We detected marked elevation of SphK-1 mRNA in adipose tissue derived from 13-week-old ob/ob mice with obese phenotype than their lean littermates. These results suggest that increased expression of SphK, an S1P-producing enzyme, plays a significant role during adipogenesis, potentially providing a novel point of control in adipose tissue. PMID:19020339

Hashimoto, Takeshi; Igarashi, Junsuke; Kosaka, Hiroaki

2009-01-01

23

High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells  

SciTech Connect

In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10/sup 6/ receptors per cell. The cell line with the highest /sup 125/I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10/sup 6/ receptors with a K/sub d/ of 10/sup -9/ M. This level was not dependent on exposure to metals but could be increased further to 2 x 10/sup 7/ receptors per cell by addition of sodium butyrate to the culture medium. The ..cap alpha.. and ..beta.. subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the ..cap alpha.. and ..beta.. subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

1987-08-01

24

Potential contribution of translational factors on T3-induced insulin synthesis by pancreatic beta cells.  

PubMed

Background: Thyroid hormones are known to regulate protein synthesis by acting at transcriptional level inducing the expression of many genes. However, little is known about their role on protein expression at posttranscriptional level, even though, studies have shown a protein synthesis enhancement associated with mTOR/p70S6K activation after T3 administration. On the other hand, TH actions on translation initiation and polypeptidic chain elongation factors, which are essential to activate protein synthesis, have been poorly explored. Therefore, taking into account that preliminary studies from our laboratory have demonstrated an increase in insulin content in INS-1E cells in response to T3 treatment, the present study aimed to investigate whether proteins from the translational machinery might be involved on the establishment of this effect. Methods: INS-1E cells were maintained in the presence or absence of T3 (10-6M or 10-8M) for 12 h. Thereafter, insulin concentration in the culture medium was determined by radioimmunoassay and the cells were processed for Western blot detection of insulin, eIF2, p-eIF2, eIF5A, EF1A, 4E-BP, p-4E-BP, p70S6K and p-p70S6K. Results: It was shown that in parallel to the increased insulin expression, T3 induced p70S6K phosphorylation and the expression of the translational factors eIF2, eIF5A and eEF1A. On the other hand, total and phosphorylated 4E-BP, as well as total p70S6K and p-eIF2 content, remained unchanged after T3 treatment. Conclusions: Considering that: (1) p70S6K induces S6 phosphorylation of 40S ribosomal subunit, an essential condition for protein synthesis; (2) eIF2 is essential for the initiation of mRNA translation process, and (3) eIF5A and eEF1A play a central role on the elongation of the polypeptidic chain during the transcripts decoding, the data presented herein lead us to suppose that part of T3-induced insulin expression on INS-1E cells depends on the protein synthesis activation at posttranscriptional level, since these proteins from the translational machinery were shown to be regulated by T3. PMID:22385347

Goulart-Silva, Francemilson; Teixeira, Silvania Silva; Luchessi, Augusto Ducatti; Santos, Laila Romagueira Bichara; Rebelato, Eduardo; Carpinelli, Angelo; Nunes, Maria Tereza

2012-03-01

25

Fluid Shear-Induced ATP Secretion Mediates Prostaglandin Release in MC3T3-E1 Osteoblasts  

PubMed Central

ATP is rapidly released from osteoblasts in response to mechanical load. We examined the mechanisms involved in this release and established that shear-induced ATP release was mediated through vesicular fusion and was dependent on Ca2+ entry into the cell via L-type voltage-sensitive Ca2+ channels. Degradation of secreted ATP by apyrase prevented shear-induced PGE2 release. Introduction Fluid shear induces a rapid rise in intracellular calcium ([Ca2+]i) in osteoblasts that mediates many of the cellular responses associated with mechanotransduction in bone. A potential mechanism for this increase in [Ca2+]i is the activation of purinergic (P2) receptors resulting from shear-induced extracellular release of ATP. This study was designed to determine the effects of fluid shear on ATP release and the possible mechanisms associated with this release. Methods MC3T3-E1 preosteoblasts were plated on type I collagen, allowed to proliferate to 90% confluency, then subjected to 12 dynes/cm2 laminar fluid flow using a parallel plate flow chamber. ATP release into the flow media was measured using a luciferin/luciferase assay. Inhibitors of channels, gap junctional intercellular communication (GJIC) and vesicular formation were added prior to shear and maintained in the flow medium for the duration of the experiment. Results and Conclusions Fluid shear produced a transient increase in ATP release compared to static MC3T3-E1 cells (59.815.7nM vs. 6.21.8nM, respectively), peaking within 1 min of onset. Inhibition of calcium entry through the L-type voltage-sensitive Ca2+ channel (L-VSCC) with nifedipine or verapamil significantly attenuated shear-induced ATP release. Channel inhibition had no effect on basal ATP release in static cells. Ca2+ -dependent ATP release in response to shear appeared to result from vesicular release, and not through gap hemichannels, since vesicle disruption with N-ethylmaleimide, brefeldin A, or monensin prevented increases in flow-induced ATP release, whereas inhibition of gap hemichannels with either 18?-glycyrrhetinic acid or 18?-glycyrrhetinic acid did not. Degradation of extracellular ATP with apyrase prevented shear-induced increases in PGE2 release. These data suggest a time line of mechanotransduction wherein fluid shear activates L-VSCC's to promote Ca2+ entry that, in turn, stimulates vesicular ATP release. Further, these data suggest that P2 receptor activation by secreted ATP mediates flow-induced prostaglandin release. PMID:15619668

Genetos, Damian C.; Geist, Derik J.; Dawei, Liu; Donahue, Henry J.; Duncan, Randall L.

2010-01-01

26

Isolation and sequence determination of 5'-terminal oligonucleotide fragments of RNA transcripts synthesized by bacteriophage T3-induced RNA polymerase from T3 DNA.  

PubMed Central

The nucleotide sequence of the 5'-terminal oligonucleotides produced by pancreatic RNase digestion of bacteriophage T3 RNA polymerase (EC 2.7.7.6) transcripts of T3 DNA has been determined. The sequence determination is based upon a simple isolation procedure for the 5'-terminal oligonucleotides. This procedure involves treatment of pancreatic RNase digests of alpha 32P-labeled T3 RNA polymerase transcripts with bovine brain exoribonuclease to remove oligonucleotides with free 5'-hydroxyl termini and then chromatographing the products on hydroxylapatite to resolve the remaining oligonucleotides having 5'-phosphate termini. By application of standard two-dimensional separation and sequence techniques, the major 5'-end sequences deduced were pppGpGpGpApGpApGpApY(Y = pyrimidine nucleoside) and pppGpGpGpApGpApCp. In addition, the sequences of other minor 5'-terminal oligonucleotides observed on homochromatograms were also determined. The sequences of these 5'-oligonucleotides were pppGpGpGpApApCpY, pppGpGpGpApApUpY, pppGpGp(2-4 Gp, 2-3 ApGp)..., and pppGpGpGp.... These results demonstrate that T3 phage-induced RNA polymerase possesses a high degree of specificity in the initiation of RNA chains. Images PMID:6933443

Maitra, U; Jelinek, W; Yudelevich, A; Majumder, H K; Guha, A

1980-01-01

27

Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells  

SciTech Connect

A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

1986-02-01

28

Changes in laser-induced fluorescence responses of 3T3 fibroblasts to repetitive thermal stress  

NASA Astrophysics Data System (ADS)

The combined experimental use of laser-induced autofluorescence of cellular metabolites and methodological fundamentals of systems biology will provide access to biological thermal stress analysis on a sub cellular level. A test setup incorporating a pulsed nitrogen laser was realized with which autofluorescence of the coenzyme NADH could be measured in living 3T3 cells. The cells were subjected to different temperature stress at repetitive time intervals. When subjected to a simple mathematical analysis, the NADH concentration change measured through autofluorescence in biological cells exhibited approximate concentration-equivalent balance curves. These results add up to the fundamental know-how about the dosimetry of thermally therapeutic methods.

Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

2009-04-01

29

Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells.  

PubMed Central

The bone morphogenetic proteins (BMPs) are a group of transforming growth factor beta (TGF-beta)-related factors whose only receptor identified to date is the product of the daf-4 gene from Caenorhabditis elegans. Mouse embryonic NIH 3T3 fibroblasts display high-affinity 125I-BMP-4 binding sites. Binding assays are not possible with the isoform 125I-BMP-2 unless the positively charged N-terminal sequence is removed to create a modified BMP-2, 125I-DR-BMP-2. Cross-competition experiments reveal that BMP-2 and BMP-4 interact with the same binding sites. Affinity cross-linking assays show that both BMPs interact with cell surface proteins corresponding in size to the type I (57- to 62-kDa) and type II (75- to 82-kDa) receptor components for TGF-beta and activin. Using a PCR approach, we have cloned a cDNA from NIH 3T3 cells which encodes a novel member of the transmembrane serine/threonine kinase family most closely resembling the cloned type I receptors for TGF-beta and activin. Transient expression of this receptor in COS-7 cells leads to an increase in specific 125I-BMP-4 binding and the appearance of a major affinity-labeled product of approximately 64 kDa that can be labeled by either tracer. This receptor has been named BRK-1 in recognition of its ability to bind BMP-2 and BMP-4 and its receptor kinase structure. Although BRK-1 does not require cotransfection of a type II receptor in order to bind ligand in COS cells, complex formation between BRK-1 and the BMP type II receptor DAF-4 can be demonstrated when the two receptors are coexpressed, affinity labeled, and immunoprecipitated with antibodies to either receptor subunit. We conclude that BRK-1 is a putative BMP type I receptor capable of interacting with a known type II receptor for BMPs. Images PMID:8065329

Koenig, B B; Cook, J S; Wolsing, D H; Ting, J; Tiesman, J P; Correa, P E; Olson, C A; Pecquet, A L; Ventura, F; Grant, R A

1994-01-01

30

Anandamide induced PPAR? transcriptional activation and 3T3-L1 preadipocyte differentiation  

Microsoft Academic Search

We investigated the effects of anandamide on peroxisome proliferator-activated receptor ? (PPAR?) activity. In two different transactivation systems using either full-length or only the ligand binding domain of PPAR?, we showed that anandamide, but not palmitoylethanolamide induced transcriptional activation of PPAR? in a dose dependent manner with an EC50 of 8 ?M. In addition, competition binding experiments showed that anandamide

Monsif Bouaboula; Sandrine Hilairet; Jean Marchand; Lluis Fajas; Gerard Le Fur; Pierre Casellas

2005-01-01

31

Protective effect of quercitrin against hydrogen peroxide-induced dysfunction in osteoblastic MC3T3-E1 cells.  

PubMed

The protective effect of quercitrin on the response of osteoblastic MC3T3-E1 cells to oxidative stress was evaluated. Osteoblasts were incubated with H(2)O(2) and/or quercitrin, and markers of osteoblast function and oxidative damage were examined. Quercitrin treatment reversed the cytotoxic effect of H(2)O(2) significantly (P<0.05). This effect was blocked by ICI182780 and LY294002, suggesting that quercitrin's effect might be involved in estrogen action and results from PI3K mediated signaling pathway. Pretreatment of quercitrin increased collagen content, alkaline phosphatase (ALP) activity, and calcium deposition of osteoblasts compared with H(2)O(2) treated cells and these effects were blocked by ERKs and p38 mitogen-activated protein kinases (MAPKs) inhibitors such as PD98059 and SB203580, respectively. These suggest that quercitrin-induced protective effect against osteoblast dysfunction by oxidative stress is associated with increased activation of ERKs and p38 MAPK. Pretreatment with quercitrin also reduced the increase in bone-resorbing factor, receptor activator of nuclear factor-kB ligand (RANKL) and oxidative damage markers (malondialdehyde, protein carbonyl, and nitrotyrosine) induced by H(2)O(2). These results suggest that quercitrin may be protective against H(2)O(2)-induced dysfunction in osteoblasts. PMID:20822887

Choi, Eun Mi

2012-03-01

32

The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production.  

PubMed Central

The diverse functions of thyroid hormones are thought to be mediated by two nuclear receptors, T3R alpha1 and T3R beta, encoded by the genes T3R alpha and T3R beta respectively. The T3R alpha gene also produces a non-ligand-binding protein T3R alpha2. The in vivo functions of these receptors are still unclear. We describe here the homozygous inactivation of the T3R alpha gene which abrogates the production of both T3R alpha1 and T3R alpha2 isoforms and that leads to death in mice within 5 weeks after birth. After 2 weeks of life, the homozygous mice become progressively hypothyroidic and exhibit a growth arrest. Small intestine and bones showed a strongly delayed maturation. In contrast to the negative regulatory function of the T3R beta gene on thyroid hormone production, our data show that the T3R alpha gene products are involved in up-regulation of thyroid hormone production at weaning time. Thus, thyroid hormone production might be balanced through a positive T3R alpha and a negative T3R beta pathway. The abnormal phenotypes observed on the homozygous mutant mice strongly suggest that the T3R alpha gene is essential for the transformation of a mother-dependent pup to an 'adult' mouse. These data define crucial in vivo functions for thyroid hormones through a T3R alpha pathway during post-natal development. PMID:9250685

Fraichard, A; Chassande, O; Plateroti, M; Roux, J P; Trouillas, J; Dehay, C; Legrand, C; Gauthier, K; Kedinger, M; Malaval, L; Rousset, B; Samarut, J

1997-01-01

33

Bromocriptine inhibits adipogenesis and lipogenesis by agonistic action on ?2-adrenergic receptor in 3T3-L1 adipocyte cells.  

PubMed

The primary goals of the present study were to investigate the inhibitory effects of bromocriptine (BC) on adipogenesis and lipogenesis in 3T3-L1 adipocyte cells as well as to elucidate its molecular mechanism of action. Adipogenic and lipogenic capacity of BC-treated cells was evaluated by oil red-O staining, triglyceride content assay, real-time RT-PCR and immunoblotting. To determine the mechanism responsible for the anti-obesity effect of BC, we applied two methods. Firstly, we knocked down dopamine D2 receptor (D2R) up to 50% using siRNA. Secondly, we blocked the activity of ?2-adrenergic receptor (?2-AR) by yohimbine treatment and monitored its effects on adipogenic and lipogenic events in 3T3-L1 cells. BC decreased the expression levels of adipogenic activators, including Ppar?, Ppar?, and Cebp?, as well as major lipogenic target genes, including Me1, Acc1, 6Pgd, Fasn, and Prkaa1. Moreover, BC markedly reduced intracellular nitric oxide formation in a dose-dependent manner and expression of pro-inflammatory genes, Tnf? and Il6, which reflects attenuated pro-inflammatory responses. Further, upon treatment with BC, D2R-deficient cells displayed a significant decrease in lipogenic activity compared to control cells, whereas yohimbine-treated cells exhibited no reduction in lipogenic activity. BC can effectively attenuate adipogenesis and lipogenesis in 3T3-L1 cells by downregulating the expression of lipogenic genes and proteins. Our current experimental data collectively establish that the anti-obesity effects of BC are not D2R-dependent but result from the action of ?2-AR in 3T3-L1 adipocytes. PMID:23271132

Mukherjee, Rajib; Yun, Jong Won

2013-05-01

34

A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells  

PubMed Central

Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The ? subunits of Gs (G?s) and G14 (G?14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor ? (PPAR? and CCAAT/enhancer-binding protein ? (C/EBP? at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of G?s but not YM-254890, an inhibitor of G?14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of G?s had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

2013-01-01

35

Overexpression of the short form of the growth hormone receptor in 3T3-L1 mouse preadipocytes  

SciTech Connect

In rodents, the gene for the growth hormone receptor (GHR) gives rise to two mRNA transcripts encoding two proteins: a larger membrane spanning receptor (GHR{sub L}) and a smaller isoform, GHR{sub S} that consists of the extracellular domain and a unique hydrophillic carboxyl terminus. We examined the hypothesis that GHR{sub S} may contribute to cellular binding of GH and play a role in growth hormone (GH) signaling. Rat cDNA encoding GHR{sub S} was ligated into the mammalian expression vector pcDNA-I/neo and stably transfected into mouse 3T3-L1 preadipocytes which have endogenous GH receptors and, when differentiated into adipocytes, have the biochemical machinery to express the various GH effects. Sixteen of 24 neomycin resistant clones secreted at least twice as much GHR{sub s} in the growth medium as cells transfected with the vector alone, and in nine of these, GH binding was increased 2- to 4-fold. The amount of GHR{sub L} in extracts of these cells was unchanged, indicating that increased binding could not be accounted for by effects on formation or degradation of GHR{sub L}. The transfected cDNA for GHR{sub S} directs the synthesis of a 50 kDa protein. We conclude that GHR{sub S} contributes to GH binding and may therefore be a functional receptor. In addition, overexpression of GHR{sub S} in 3T3-L1 cells altered cell function in the absence of GH. 20 refs., 4 figs.

Bick, T.; Frick, G.P.; Leonard, D. [Univ. of Massachusetts Medical School, Worchester, MA (United States)] [and others

1994-12-31

36

Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells  

NASA Technical Reports Server (NTRS)

The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.

Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

1998-01-01

37

Mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis.  

PubMed

Thyroid hormone is a major determinant of energy expenditure and a key regulator of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine receptor (p43) that acts as a mitochondrial transcription factor of the organelle genome, which leads, in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Here we generated mice specifically lacking p43 to address its physiological influence. We found that p43 is required for normal glucose homeostasis. The p43(-/-) mice had a major defect in insulin secretion both in vivo and in isolated pancreatic islets and a loss of glucose-stimulated insulin secretion. Moreover, a high-fat/high-sucrose diet elicited more severe glucose intolerance than that recorded in normal animals. In addition, we observed in p43(-/-) mice both a decrease in pancreatic islet density and in the activity of complexes of the respiratory chain in isolated pancreatic islets. These dysfunctions were associated with a down-regulation of the expression of the glucose transporter Glut2 and of Kir6.2, a key component of the K(ATP) channel. Our findings establish that p43 is an important regulator of glucose homeostasis and pancreatic ?-cell function and provide evidence for the first time of a physiological role for a mitochondrial endocrine receptor. PMID:21914860

Blanchet, Emilie; Bertrand, Christelle; Annicotte, Jean Sbastien; Schlernitzauer, Audrey; Pessemesse, Laurence; Levin, Jonathan; Fouret, Gilles; Feillet-Coudray, Christine; Bonafos, Batrice; Fajas, Lluis; Cabello, Grard; Wrutniak-Cabello, Chantal; Casas, Franois

2012-01-01

38

Serum-induced G0/G1 transition in chemically transformed 3T3 cells  

SciTech Connect

Quiescent, chemically transformed (benzo-a-pyrene) BALB/c 3T3 cells (BP A31) enter the cell division cycle when exposed to complete medium containing 10% fetal calf serum (FCS); the number of cells recruited is a function of the duration of serum exposure. The recruitment of cells by short (<4 h) serum pulses is not inhibited by simultaneous exposure to cycloheximide (CH), and therefore the initial commitment does not require protein synthesis. The cells enter S phase with a constant delay following the removal of CH, even if CH exposure has been continued for as long as 20 h after the end of the serum pulse. The cell recruitment by serum pulses was inhibited by 5,6-dichloro-1-..beta..-D-ribofuranosyl-benzimidazole (DRB), an inhibitor of cytoplasmic mRNA accumulation. These data suggest that serum exposure produces a stable memory that is necessary and sufficient for the eventual progression through G1 to S phase that occurs when protein synthesis is resumed after the removal of CH; this memory probably consists of mRNA species that are induced by serum and that are stable in the absence of protein synthesis. Unexpectedly, pretreatment of quiescent BP A31 cells with CH (8-24 h) dramatically increased the fraction of the total cell population that is recruited by a serum pulse of fixed duration.

Gray, H.E.; Buchou, T.; Mester, J.

1987-03-01

39

Monocyte chemoattractant protein-induced protein 1 impairs adipogenesis in 3T3-L1 cells.  

PubMed

Monocyte chemoattractant protein-induced protein 1 (MCPIP1) encoded by the ZC3H12a gene (also known as Regnase-1) is involved in the regulation of degradation of mRNA of inflammatory modulators and for processing of pre-miRNA. These functions depend on the presence of the PIN domain. Moreover, MCPIP1 was described as a negative regulator of NF-?B and AP-1 signaling pathways although mechanisms underlying such activity remain unknown. We aimed at determining the role of MCPIP1 in adipogenesis. Here, we present evidence that Mcpip1 transcription is transiently activated during 3T3-L1 transition from pre- to adipocytes. However Mcpip1 protein expression is also strongly decreased at day one after induction of adipogenesis. Knockdown of Mcpip1 results in an upregulation of C/EBP? and PPAR? mRNAs, whereas overexpression of MCPIP1 reduces the level of both transcription factors and impairs adipogenesis. MCPIP1-dependend modulation of C/EBP? and PPAR? levels results in a modulation of the expression of downstream controlled genes. In addition, decreased C/EBP?, but not PPAR?, depends on the activity of the MCPIP1 PIN domain, which is responsible for RNase properties of this protein. Together, these data confirm that MCPIP1 is a key regulator of adipogenesis. PMID:24418043

Lipert, Barbara; Wegrzyn, Paulina; Sell, Henrike; Eckel, Juergen; Winiarski, Marek; Budzynski, Andrzej; Matlok, Maciej; Kotlinowski, Jerzy; Ramage, Lindsay; Malecki, Maciej; Wilk, Waclaw; Mitus, Jerzy; Jura, Jolanta

2014-04-01

40

Regulation of epidermal growth factor receptor by activated H-ras and V-myc oncogenes in mouse Balb/3T3 cells: possible roles of AP-1.  

PubMed

We previously reported that introduction of H-ras oncogene decreases the epidermal growth factor (EGF) binding activity to cell surface EGF receptor in mouse Balb/3T3. In this study, we have further isolated four H-ras transfectants, four v-myc transfectants and three both H-ras and v-myc (H-ras/v-myc) transfectants of mouse Balb/3T3 cells. In comparison with introduction of v-myc alone or both H-ras and v-myc oncogene, introduction of H-ras alone resulted in a loss of [125I]EGF binding activity to the cell surface EGF receptor. RT-PCR analysis also showed much lower levels of EGF receptor gene expression in H-ras transfectants compared to that of parental untransformed cells (Balb-Neo1), v-myc and H-ras/v-myc transfectants. Our results demonstrated the activated binding of a transcription factor, Stat1 p84/p91, which directly interacts with EGF receptor, to c-sis-inducible element (SIE) in both v-myc and H-rs/v-myc transfectants, but not in H-ras transfectants. Among transcription factors which we have analysed, activator protein 1 (AP-1) but not SP-1 was modulated by H-ras. Gel shift assays demonstrated the mobility pattern of TPA-responsive element (TRE) binding complex with AP-1 derived from H-ras transfectants migrated faster than those from Balb-Neo1, v-myc and H-ras/v-myc. Expression of c-Jun and Fra-1 was increased more than threefold in H-ras transfectants compared with Balb-Neo1, v-myc and H-ras/v-myc transfectants, but that of c-Fos, Jun B and SP-1 was unchanged. Both transient and permanent expression of H-ras enhanced AP-1 activity in mouse cells, but further co-introduction of dominant negative c-jun mutant encoding a transcriptionally inactive product inhibited the H-ras dependent AP-1 induction. Transfection of the dominant negative c-jun mutant also restored down-regulation of EGF binding by activated H-ras oncogene. Down-regulation of EGf receptor by activated H-ras and the possible involvement of a transcription factor, AP-1 will be discussed. PMID:8622882

Okimoto, T; Kohno, K; Kuwano, M; Gopas, J; Kung, H F; Ono, M

1996-04-18

41

Effect of thyroid hormone on T3-receptor mRNA levels and growth of thyrotropic tumors.  

PubMed

Thyrotropic tumors (TtT97) contain mRNA transcripts for three T3-receptor (TR) isoforms, alpha 1, beta 1 and beta 2, and a non-receptor alpha 2-variant. We administered T4 (5 mg/l of drinking water) for one month to TtT97-bearing mice, to examine its effect on tumor growth and tumor TR isoform steady-state mRNA levels. Baseline mice were killed at the start of the experiment, and placebo mice were maintained hypothyroid. The treated tumors were 30-35% smaller than the baseline tumors (p = NS), while the placebo tumors were 2- to 7-fold larger than the baseline tumors (p < 0.05). TR beta 1 mRNA increased 5- to 6-fold, while TR beta 2 mRNA decreased by 76%. TR alpha 1 and the alpha 2-variant decreased by 52% and 70%, respectively. Therefore, the tumors decreased their growth rate in response to T4 administration, and increased the ratio of TR beta 1 to TR beta 2 mRNA. This raises the intriguing possibility of a correlation between the relative abundance of the TR beta isoforms and tumor growth. PMID:8472856

Sarapura, V D; Wood, W M; Gordon, D F; Ridgway, E C

1993-02-01

42

Green Tea Polyphenol Epigallocatechin Gallate Inhibits Adipogenesis and Induces Apoptosis in 3T3-L1 Adipocytes  

Microsoft Academic Search

Objective: Green tea catechins have been shown to promote loss of body fat and to inhibit growth of many cancer cell types by inducing apoptosis. The objective of this study was to determine whether epigallocatechin gallate (EGCG), the primary green tea catechin, could act directly on adipocytes to inhibit adipogenesis and induce apoptosis.Research Methods and Procedures: Mouse 3T3-L1 preadipocytes and

Ji Lin; Mary Anne Della-Fera; Clifton A. Baile

2005-01-01

43

Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction.  

PubMed

Glucocorticoids reportedly induce insulin resistance. In this study, we investigated the mechanism of glucocorticoid-induced insulin resistance using 3T3-L1 adipocytes in which treatment with dexamethasone has been shown to impair the insulin-induced increase in glucose uptake. In 3T3-L1 adipocytes treated with dexamethasone, the GLUT1 protein expression level was decreased by 30%, which possibly caused decreased basal glucose uptake. On the other hand, dexamethasone treatment did not alter the amount of GLUT4 protein in total cell lysates but decreased the insulin-stimulated GLUT4 translocation to the plasma membrane, which possibly caused decreased insulin-stimulated glucose uptake. Dexamethasone did not alter tyrosine phosphorylation of insulin receptors, and it significantly decreased protein expression and tyrosine phosphorylation of insulin receptor substrate (IRS)-1. Interestingly, however, protein expression and tyrosine phosphorylation of IRS-2 were increased. To investigate whether the reduced IRS-1 content is involved in insulin resistance, IRS-1 was overexpressed in dexamethasone-treated 3T3-L1 adipocytes using an adenovirus transfection system. Despite protein expression and phosphorylation levels of IRS-1 being normalized, insulin-induced 2-deoxy-D-[3H]glucose uptake impaired by dexamethasone showed no significant improvement. Subsequently, we examined the effect of dexamethasone on the glucose uptake increase induced by overexpression of GLUT2-tagged p110alpha, constitutively active Akt (myristoylated Akt), oxidative stress (30 mU glucose oxidase for 2 h), 2 mmol/l 5-aminoimidazole-4-carboxamide ribonucleoside for 30 min, and osmotic shock (600 mmol/l sorbitol for 30 min). Dexamethasone treatment clearly inhibited the increases in glucose uptake produced by these agents. Thus, in conclusion, the GLUT1 decrease may be involved in the dexamethasone-induced decrease in basal glucose transport activity, and the mechanism of dexamethasone-induced insulin resistance in glucose transport activity (rather than the inhibition of phosphatidylinositol 3-kinase activation resulting from a decreased IRS-1 content) is likely to underlie impaired glucose transporter regulation. PMID:11016454

Sakoda, H; Ogihara, T; Anai, M; Funaki, M; Inukai, K; Katagiri, H; Fukushima, Y; Onishi, Y; Ono, H; Fujishiro, M; Kikuchi, M; Oka, Y; Asano, T

2000-10-01

44

FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells  

SciTech Connect

Transcriptional coactivator with PDZ-binding motif (TAZ) protein is a coactivator of Runx2 and corepressor of PPAR{gamma}. It also induces differentiation of mesenchymal cells into osteoblasts. In this study, we found that FGF-2, which inhibits bone mineralization and stimulates cell proliferation, reduced the TAZ protein expression level in osteoblast-like cells, MC3T3-E1. This reduction was recovered by removing FGF-2 from the culture medium, which also restored the osteoblastic features of MC3T3-E1 cells. Furthermore, FGF-2-induced reduction of TAZ is blocked by a SAPK/JNK-specific inhibitor. These findings suggest that the expression of TAZ protein is involved in osteoblast proliferation and differentiation. This may help elucidate the discrepancies in the effect of FGF-2 and contribute to the understanding of FGF/FGFR-associated craniosynostosis syndrome etiology and treatment.

Eda, Homare [Department of Biochemistry, Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461 (Japan); Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461 (Japan); Aoki, Katsuhiko [Department of Biochemistry, Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461 (Japan); Marumo, Keishi; Fujii, Katsuyuki [Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461 (Japan); Ohkawa, Kiyoshi [Department of Biochemistry, Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461 (Japan)], E-mail: pko@jikei.ac.jp

2008-02-08

45

AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model  

PubMed Central

Background Obesity is one of the principal causative factors involved in the development of metabolic syndrome. AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. The role of AMP-activated protein kinase in adipocyte differentiation is not completely understood, therefore, we examined the effect of 5-aminoimidazole-4-carboxamide-1-?-D-ribofuranoside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK) on adipocyte differentiation in 3T3L1 cells and in a mouse Diet induced obesity (DIO) model. Methods To examine the effect of AICAR on adipocyte differentiation in 3T3L1 cells and in a mouse Diet induced obesity (DIO) model, 3T3L1 cells were differentiatied in the presence or absence of different concentration of AICAR and neutral lipid content and expression of various adipocyte-specific transcription factors were examined. In vivo study, treated and untreated mice with AICAR (0.10.5 mg/g body weight) were fed high-fat diet (60% kcal% fat) to induce DIO and several parameters were studied. Results AICAR blocked adipogenic conversion in 3T3L1 cells along with significant decrease in the neutral lipid content by downregulating several adipocyte-specific transcription factors including peroxisome proliferators-activated receptor ? (PPAR?), C/EBP? and ADD1/SREBP1, which are critical for adipogenesis in vitro. Moreover, intraperitoneal administration of AICAR (0.5 mg g/body weight) to mice fed with high-fat diet (60% kcal% fat) to induce DIO, significantly blocked the body weight gain and total content of epididymal fat in these mice over a period of 6 weeks. AICAR treatment also restored normal adipokine levels and resulted in significant improvement in glucose tolerance and insulin sensitivity. The reduction in adipose tissue content in AICAR treated DIO mice was due to reduction in lipid accumulation in the pre-existing adipocytes. However, no change was observed in the expression of PPAR?, C/EBP? and ADD1/SREBP1 transcription factors in vivo though PGC1? expression was significantly induced. Conclusion This study suggests that AICAR inhibits adipocyte differentiation via downregulation of expression of adipogenic factors in vitro and reduces adipose tissue content in DIO mice by activating expression of PGC1? without inhibiting adipocyte-specific transcription factors in DIO mice. PMID:16901342

Giri, Shailendra; Rattan, Ramandeep; Haq, Ehtishamul; Khan, Mushfiquddin; Yasmin, Rifat; Won, Je-song; Key, Lyndon; Singh, Avtar K; Singh, Inderjit

2006-01-01

46

Pleiotrophin transforms NIH 3T3 cells and induces tumors in nude mice.  

PubMed Central

The pleiotrophin (PTN) gene (Ptn) encodes an 18-kDa protein that is highly conserved among mammalian species and that functions as a weak mitogen and promotes neurite-outgrowth activity in vitro. To further investigate the role PTN plays in regulating cell growth, we overexpressed the bovine PTN cDNA and now show that PTN phenotypically transforms NIH 3T3 cells, as evidenced by increased cell number at confluence, focus formation, anchorage-independent growth, and tumor formation in the nude mouse. The results demonstrate that the Ptn gene has the potential to regulate NIH 3T3 cell growth and suggest that PTN may influence abnormal cell growth in vivo. Images PMID:8421705

Chauhan, A K; Li, Y S; Deuel, T F

1993-01-01

47

Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity.  

PubMed

In vertebrates, skeletal muscle myofibers display different contractile and metabolic properties associated with different mitochondrial content and activity. We have previously identified a mitochondrial triiodothyronine receptor (p43) regulating mitochondrial transcription and mitochondrial biogenesis. When overexpressed in skeletal muscle, it increases mitochondrial DNA content, stimulates mitochondrial respiration, and induces a shift in the metabolic and contractile features of muscle fibers toward a slower and more oxidative phenotype. Here we show that a p43 depletion in mice decreases mitochondrial DNA replication and respiratory chain activity in skeletal muscle in association with the induction of a more glycolytic muscle phenotype and a decrease of capillary density. In addition, p43(-/-) mice displayed a significant increase in muscle mass relative to control animals and had an improved ability to use lipids. Our findings establish that the p43 mitochondrial receptor strongly affects muscle mass and the metabolic and contractile features of myofibers and provides evidence that this receptor mediates, in part, the influence of thyroid hormone in skeletal muscle. PMID:22109994

Pessemesse, Laurence; Schlernitzauer, Audrey; Sar, Chamroeun; Levin, Jonathan; Grandemange, Stphanie; Seyer, Pascal; Favier, Franois B; Kaminski, Sandra; Cabello, Grard; Wrutniak-Cabello, Chantal; Casas, Franois

2012-02-01

48

RELAXIN enhances differentiation and matrix mineralization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells in vitro.  

PubMed

RELAXIN (RLN) is a polypeptide hormone of the insulin-like hormone family; it facilitates birth by softening and widening the pubic symphysis and cervix in many mammals, including humans. The role of RLN in bone metabolism was recently suggested by its ability to induce osteoclastogenesis and activate osteoclast function. RLN binds to RELAXIN/INSULIN-LIKE FAMILY PEPTIDE 1 (RXFP1) and 2 (RXFP2), with varying species-specific affinities. Young men with mutated RXFP2 are at high risk for osteoporosis, as RXFP2 influences osteoblast metabolism by binding to INSULIN-LIKE PEPTIDE 3 (INSL3). However, there have been no reports on RLN function in osteoblast differentiation and mineralization or on the functionally dominant receptors for RLN in osteoblasts. We previously described Rxfp1 and 2 expression patterns in developing mouse oral components, including the maxillary and mandibular bones, Meckel's cartilage, tongue, and tooth primordia. We hypothesized that Rln/Rxfp signaling is a key mediator of skeletal development and metabolism. Here, we present the gene expression patterns of Rxfp1 and 2 in developing mouse calvarial frontal bones as determined by in situ hybridization. In addition, RLN enhanced osteoblastic differentiation and caused abnormal mineralization and extracellular matrix metabolism through Rxfp2, which was predominant over Rxfp1 in MC3T3-E1 mouse calvarial osteoblasts. Our data suggest a novel role for Rln in craniofacial skeletal development and metabolism through Rxfp2. PMID:24857857

Duarte, Carolina; Kobayashi, Yukiho; Kawamoto, Tatsuo; Moriyama, Keiji

2014-08-01

49

Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes  

PubMed Central

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50?mg/kg/day of LP) and PCOS-control (1?mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100??g/mL LP and compared to untreated control and 10??M of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. PMID:23935612

Gu, Harvest F.; stenson, Claes-Gran; Manners-Holm, Louise; Stener-Victorin, Elisabet; Wan Mohamud, Wan Nazaimoon

2013-01-01

50

Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.  

PubMed

Abstract To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5?min on/10?min off, for various durations from 0.5 to 8?h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2?W/kg. A 2',7'-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect ?H2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1?h (p?T3 cells. PMID:24665905

Hou, Qingxia; Wang, Minglian; Wu, Shuicai; Ma, Xuemei; An, Guangzhou; Liu, Huan; Xie, Fei

2015-03-01

51

Dissociation of tumour-promoter-induced effects on prostaglandin release, polyamine synthesis and cell proliferation of 3T3 cells.  

PubMed Central

The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis. PMID:7306036

Lanz, R; Brune, K

1981-01-01

52

A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines  

Microsoft Academic Search

The cytotoxicity and free radical production induced by vanadium compounds were investigated in an osteoblast (MC3T3E1) and an osteosarcoma (UMR106) cell lines in culture. Vanadate induced cell toxicity, reactive oxygen species (ROS) formation and thiobarbituric acid reactive substances (TBARS) increased in a concentration-dependent manner (0.110 mM) after 4 h. The concentrationresponse curve of vanadate-induced cytotoxicity and oxidative stress in MC3T3E1

Ana Mar??a Cortizo; Liliana Bruzzone; Silvina Molinuevo; Susana Beatriz Etcheverry

2000-01-01

53

Negative trans-regulation of T-cell antigen receptor/T3 complex mRNA expression in murine T-lymphoma somatic cell hybrids.  

PubMed Central

The antigen-specific T-cell receptor (TCR) is composed of variable antigen-recognition chains TCR-alpha and TCR-beta in noncovalent association with the invariant T3 multimer. The TCR-alpha and TCR-beta chains are encoded by gene segments that must be juxtaposed by rearrangement in order to be expressed. To examine whether mechanisms other than gene rearrangement might regulate TCR/T3 gene expression, somatic cell hybrids were formed among closely related murine SL12 T-lymphoma clones that differ in TCR/T3 mRNA levels. In hybrid cells formed between cell clones in which one parent is TCR-beta+ and the other is TCR-beta-, the resultant hybrid cells lack detectable TCR-beta transcripts. Since the protein synthesis inhibitor cycloheximide partially reverses TCR-beta repression in the hybrid cells, we postulate that a labile repressor protein is involved. The amount of mRNA encoding one of the T3 polypeptide chains, T3-delta, is also strongly negatively transregulated in the same hybrid cells in which TCR-beta mRNA expression is repressed. The negative trans-regulation of TCR-beta and T3-delta mRNA expression is relatively specific, since the levels of TCR-alpha mRNA and several thymocyte surface antigens are not repressed in somatic cell hybrids. Our results indicate that rearrangement of the TCR genes alone is not sufficient for TCR-beta expression and that trans-acting factors regulate the amounts of both TCR-beta and T3-delta mRNA in this system. Images PMID:3092223

MacLeod, C L; Minning, L; Gold, D P; Terhorst, C; Wilkinson, M

1986-01-01

54

?-Mangostin Induces Apoptosis and Suppresses Differentiation of 3T3-L1 Cells via Inhibiting Fatty Acid Synthase  

PubMed Central

?-Mangostin, isolated from the hulls of Garcinia mangostana L., was found to have in vitro cytotoxicity against 3T3-L1 cells as well as inhibiting fatty acid synthase (FAS, EC 2.3.1.85). Our studies showed that the cytotoxicity of ?-mangostin with IC50 value of 20 M was incomplicated in apoptotic events including increase of cell membrane permeability, nuclear chromatin condensation and mitochondrial membrane potential (??m) loss. This cytotoxicity was accompanied by the reduction of FAS activity in cells and could be rescued by 50 M or 100 M exogenous palmitic acids, which suggested that the apoptosis of 3T3-L1 preadipocytes induced by ?-mangostin was via inhibition of FAS. Futhermore, ?-mangostin could suppress intracellular lipid accumulation in the differentiating adipocytes and stimulated lipolysis in mature adipocytes, which was also related to its inhibition of FAS. In addition, 3T3-L1 preadipocytes were more susceptible to the cytotoxic effect of ?-mangostin than mature adipocytes. Further studies showed that ?-mangostin inhibited FAS probably by stronger action on the ketoacyl synthase domain and weaker action on the acetyl/malonyl transferase domain. These findings suggested that ?-mangostin might be useful for preventing or treating obesity. PMID:22428036

Quan, Xiaofang; Wang, Yi; Ma, Xiaofeng; Liang, Yan; Tian, Weixi; Ma, Qingyun; Jiang, Hezhong; Zhao, Youxing

2012-01-01

55

?-Mangostin induces apoptosis and suppresses differentiation of 3T3-L1 cells via inhibiting fatty acid synthase.  

PubMed

?-Mangostin, isolated from the hulls of Garcinia mangostana L., was found to have in vitro cytotoxicity against 3T3-L1 cells as well as inhibiting fatty acid synthase (FAS, EC 2.3.1.85). Our studies showed that the cytotoxicity of ?-mangostin with IC(50) value of 20 M was incomplicated in apoptotic events including increase of cell membrane permeability, nuclear chromatin condensation and mitochondrial membrane potential (??m) loss. This cytotoxicity was accompanied by the reduction of FAS activity in cells and could be rescued by 50 M or 100 M exogenous palmitic acids, which suggested that the apoptosis of 3T3-L1 preadipocytes induced by ?-mangostin was via inhibition of FAS. Futhermore, ?-mangostin could suppress intracellular lipid accumulation in the differentiating adipocytes and stimulated lipolysis in mature adipocytes, which was also related to its inhibition of FAS. In addition, 3T3-L1 preadipocytes were more susceptible to the cytotoxic effect of ?-mangostin than mature adipocytes. Further studies showed that ?-mangostin inhibited FAS probably by stronger action on the ketoacyl synthase domain and weaker action on the acetyl/malonyl transferase domain. These findings suggested that ?-mangostin might be useful for preventing or treating obesity. PMID:22428036

Quan, Xiaofang; Wang, Yi; Ma, Xiaofeng; Liang, Yan; Tian, Weixi; Ma, Qingyun; Jiang, Hezhong; Zhao, Youxing

2012-01-01

56

Six new chalcones from Angelica keiskei inducing adiponectin production in 3T3-L1 adipocytes.  

PubMed

Angelica keiskei (Ashitaba in Japanese), a traditional herb in Japan, contains abundant prenylated chalcones. It has been reported that the chalcones from A. keiskei showed such bioactivities as anti-bacterial, anti-cancer and anti-diabetic effects. Xanthoangelol, 4-hydroxyderricin and six new chalcones were isolated in this study from an ethanol extract of A. keiskei by octadecyl silyl (ODS) and silica gel chromatography, and identified by 1D- and 2D-nuclear magnetic resonance (NMR) and high-resolution mass spectrometric analyses. The chalcones from A. keiskei markedly increased the expression of the adiponectin gene and the production of adiponectin in 3T3-L1 adipocytes. These results suggest that the chalcones from A. keiskei might be useful for preventing the metabolic syndrome. PMID:22738967

Ohnogi, Hiromu; Kudo, Yoko; Tahara, Kenichi; Sugiyama, Katsumi; Enoki, Tatsuji; Hayami, Shoko; Sagawa, Hiroaki; Tanimura, Yuko; Aoi, Wataru; Naito, Yuji; Kato, Ikunoshin; Yoshikawa, Toshikazu

2012-01-01

57

Characterization of the respiration of 3T3 cells by laser-induced fluorescence during a cyclic heating process  

NASA Astrophysics Data System (ADS)

The use of lasers in the near infrared spectral range for laser-induced tumor therapy (LITT) demands a new understanding of the thermal responses to repetitive heat stress. The analysis of laser-induced fluorescence during vital monitoring offers an excellent opportunity to solve many of the related issues in this field. The laser-induced fluorescence of the cellular coenzyme NADH was investigated for its time and intensity behavior under heat stress conditions. Heat was applied to vital 3T3 cells (from 22C to 50C) according to a typical therapeutical time regime. A sharp increase in temperature resulted in non-linear time behavior when the concentration of this vital coenzyme changed. There are indications that biological systems have a delayed reaction on a cellular level. These results are therefore important for further dosimetric investigations.

Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

2010-04-01

58

?-Tocotrienol induced cell cycle arrest and apoptosis via activating the Bax-mediated mitochondrial and AMPK signaling pathways in 3T3-L1 adipocytes.  

PubMed

This study aimed to examine the anti-proliferative effects of ?-, ?- and ?-tocotrienols (?T3, ?T3 and ?T3), and ?-tocopherol on 3T3-L1 adipocytes. Results showed that compared with other vitamin E analogues, ?T3 demonstrated the most potent anti-proliferative effect on 3T3-L1 cells. It significantly caused a reduction in mitochondrial membrane potential (??m) and an increase in ROS formation, as well as inducing cell apoptosis and cell cycle arrest at S phase. Further studies showed that it down-regulated Bcl-2 and PPAR-? expression, suppressed Akt and ERK activation and phosphorylation, and caused cytochrome c release from mitochondria to cytosol, whereas it up-regulated CD95 (APO-1/CD95) and Bax expression, and caused caspase-3 and JNK activation, PARP cleavage and AMPK phosphorylation. Pretreatments with caspase-3 (z-DEVD-fmk) and AMPK (CC) inhibitors significantly suppressed the ?T3-induced ROS production and cell death. Caspase-3 inhibitor also efficiently blocked CD95 (APO-1/CD95) and Bax expression, caspase-3 activation and PARP cleavage, whereas antioxidant N-acetyl-l-cysteine, AMPK inhibitor and AMPK siRNA effectively blocked the AMPK phosphorylation. Taken together, these results conclude that the potent anti-proliferative and anti-adipogenic effects of ?T3 on 3T3-L1 adipocytes could be through the Bax-mediated mitochondrial and AMPK signaling pathways. PMID:23816832

Wu, Shu-Jing; Huang, Guang-Yu; Ng, Lean-Teik

2013-09-01

59

Hormone-induced changes in nuclear receptor stoichiometry in HL60 cells correlate with induction of monocyte or neutrophil differentiation  

Microsoft Academic Search

HL60 cells diVerentiate to monocytes or neutrophils in response to 1,25(OH)2-vitamin D3 (D3) and retinoids respectively. D3 and retinoid actions converge since their receptors (VDR, RAR) heterodimerise with a common partner, RXR, which also interacts with thyroid hormone (T3) receptors (T3R). HL60 cells were treated with combinations of D3 and retinoids to induce diVerentiation and to investigate whether increased VDR

P G McTernan; M C Sheppard; G R Williams

1998-01-01

60

PPAR? agonist fenofibrate attenuates TNF-?-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway  

SciTech Connect

The ligand-activated transcription factor peroxisome proliferator-activated receptor-? (PPAR?) participates in the regulation of cellular inflammation. More recent studies indicated that sirtuin1 (SIRT1), a NAD{sup +}-dependent deacetylase, regulates the inflammatory response in adipocytes. However, whether the role of PPAR? in inflammation is mediated by SIRT1 remains unclear. In this study, we aimed to determine the effect of PPAR? agonist fenofibrate on the expressions of SIRT1 and pro-inflammatory cytokine CD40 and underlying mechanisms in 3T3-L1 adipocytes. We found that fenofibrate inhibited CD40 expression and up-regulated SIRT1 expression in tumor necrosis factor-? (TNF-?)-stimulated adipocytes, and these effects of fenofibrate were reversed by PPAR? antagonist GW6471. Moreover, SIRT1 inhibitors sirtinol/nicotinamide (NAM) or knockdown of SIRT1 could attenuate the effect of fenofibrate on TNF-?-induced CD40 expression in adipocytes. Importantly, NF-?B inhibitor pyrrolidine dithiocarbamate (PDTC) augmented the effect of fenofibrate on CD40 expression in adipocytes. Further study found that fenofibrate decreased the expression of acetylated-NF-?B p65 (Ac-NF-?B p65) in TNF-?-stimulated adipocytes, and the effect of fenofibrate was abolished by SIRT1 inhibition. In addition, fenofibrate up-regulated SIRT1 expression through AMPK in TNF-?-stimulated adipocytes. Taken together, these findings indicate that PPAR? agonist fenofibrate inhibits TNF-?-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway. -- Highlights: Fenofibrate up-regulates SIRT1 expression in TNF-?-stimulated adipocytes. Fenofibrate inhibits CD40 expression through SIRT1 in adipocytes. The effects of fenofibrate on CD40 and SIRT1 expressions are dependent on PPAR?. Fenofibrate inhibits CD40 expression via SIRT1-dependent deacetylation of NF-?B. Fenofibrate increases SIRT1 expression through PPAR? and AMPK in adipocytes.

Wang, Weirong [Department of Pharmacology, Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 (China); Lin, Qinqin [Physical Education College, Yanshan University, Qinhuangdao, Hebei 066004 (China); Lin, Rong, E-mail: linrong63@yahoo.com.cn [Department of Pharmacology, Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 (China); Zhang, Jiye [Faculty of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 (China); Ren, Feng; Zhang, Jianfeng; Ji, Meixi; Li, Yanxiang [Department of Pharmacology, Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 (China)

2013-06-10

61

Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation  

SciTech Connect

The receptor protein tyrosine phosphatase {gamma} gene, PTP{gamma} (locus name PTPRG), was previously mapped to chromosome region 3p14.2, within a 2- to 4-Mb region centromeric to the 3p14.2 breakpoint of the t(3;8) familial renal cell carcinoma (RCC)-associated constitutional chromosome translocation. Because of its chromosomal position, its enzymatic properties as a receptor phosphatase, which might oppose a growth activating kinase activity, its homozygous deletion in murine L cells, and its transcriptional activity in numerous normal tissues, including kidney, the PTP{gamma} gene was an attractive tumor suppressor gene candidate for renal cell carcinoma. To determine whether the PTP{gamma} gene was a target of loss of heterozygosity or mutation in RCCs and to determine its map position relative to the t(3;8) break at 3p14.2, we have isolated YAC and {lambda} genomic clones for the PTP{gamma} gene and other 3p14.2 markers and determined the relative positions of the t(3;8) break, a 3p14.2 de novo break possibly in a fragile site, and the 5{prime} end of the PTP{gamma} gene. Additionally, the genomic structure, position of the proximal promotor, and intron-exon border sequences of the 30-exon {approximately} 780-kb PTP{gamma} gene have been determined, which will facilitate analysis of the PTP{gamma} gene in tumors. 49 refs., 3 figs., 3 tabs.

Kastury, K.; Ohta, M.; Druck, T.; Huebner, K. [Jefferson Medical College, Philadelphia, PA (United States)] [and others] [Jefferson Medical College, Philadelphia, PA (United States); and others

1996-03-01

62

Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions  

NASA Technical Reports Server (NTRS)

Mechanical stimulation of bone induces new bone formation in vivo and increases the metabolic activity and gene expression of osteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission of mechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts caused reorganization of actin filaments into contractile stress fibers and involved recruitment of beta1-integrins and alpha-actinin to focal adhesions. Fluid shear also increased expression of two proteins linked to mechanotransduction in vivo, cyclooxygenase-2 (COX-2) and the early response gene product c-fos. Inhibition of actin stress fiber development by treatment of cells with cytochalasin D, by expression of a dominant negative form of the small GTPase Rho, or by microinjection into cells of a proteolytic fragment of alpha-actinin that inhibits alpha-actinin-mediated anchoring of actin filaments to integrins at the plasma membrane each blocked fluid-shear-induced gene expression in osteoblasts. We conclude that fluid shear-induced mechanical signaling in osteoblasts leads to increased expression of COX-2 and c-Fos through a mechanism that involves reorganization of the actin cytoskeleton. Thus Rho-mediated stress fiber formation and the alpha-actinin-dependent anchorage of stress fibers to integrins in focal adhesions may promote fluid shear-induced metabolic changes in bone cells.

Pavalko, F. M.; Chen, N. X.; Turner, C. H.; Burr, D. B.; Atkinson, S.; Hsieh, Y. F.; Qiu, J.; Duncan, R. L.

1998-01-01

63

Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts  

NASA Technical Reports Server (NTRS)

In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.

Fitzgerald, J.; Hughes-Fulford, M.

1999-01-01

64

The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts  

PubMed Central

Wnt proteins play important roles in regulating cell differentiation, proliferation and polarity. Wnts have been proposed to play roles in tissue repair and fibrosis, yet the gene expression profile of fibroblasts exposed to Wnts has not been examined. We use Affymetrix genome-wide expression profiling to show that a 6-h treatment of fibroblasts of Wnt3a results in the induction of mRNAs encoding known Wnt targets such as the fibrogenic pro-adhesive molecule connective tissue growth factor (CTGF, CCN2). Wnt3a also induces mRNAs encoding potent pro-fibrotic proteins such as TGF? and endothelin-1 (ET-1). Moreover, Wnt3a promotes genes associated with cell adhesion and migration, vasculature development, cell proliferation and Wnt signaling. Conversely, Wnt3a suppresses gene associated with skeletal development, matrix degradation and cell death. Results were confirmed using real-time polymerase chain reaction of cells exposed to Wnt3a and Wnt10b. These results suggest that Wnts induce genes promoting fibroblast differentiation towards angiogenesis and matrix remodeling, at the expense of skeletal development. PMID:18600477

Chen, Shaoqiong; McLean, Sarah; Carter, David E.

2008-01-01

65

Effect of Turmeric and its Active Principle Curcumin on T3-Induced Oxidative Stress and Hyperplasia in Rat Kidney: A Comparison  

PubMed Central

The present study was designed to compare the potential of turmeric and its active principle curcumin on T3-induced oxidative stress and hyperplasia. Adult male Wistar strain rats were rendered hyperthyroid by T3 treatment (10?g100g?1day?1 intraperitoneal for 15days in 0.1mM NaOH) to induce renal hyperplasia. Another two groups were treated similarly with T3 along with either turmeric or curcumin (30mgkg?1bodyweightday?1 orally for 15days). The results indicate that T3 induces both hypertrophy and hyperplasia in rat kidney as evidenced by increase in cell number per unit area, increased protein content, tubular dilation and interstitial edema. These changes were accompanied by increased mitochondrial lipid peroxidation and superoxide dismutase activity without any change in catalase activity and glutathione content suggesting an oxidative predominance. Both turmeric and curcumin were able to restore the level of mitochondrial lipid peroxidation and superoxide dismutase activity in the present dose schedule. T3-induced histo-pathological changes were restored with turmeric treatment whereas curcumin administration caused hypoplasia. This may be due to lower concentration of curcumin in the whole turmeric. Thus it is hypothesized that regulation of cell cycle in rat kidney by T3 is via reactive oxygen species and curcumin reveres the changes by scavenging them. Although the response trends are comparable for both turmeric and curcumin, the magnitude of alteration is more in the later. Turmeric in the current dose schedule is a safer bet than curcumin in normalizing the T3-induced hyperplasia may be due to the lower concentration of the active principle in the whole spice. PMID:21966112

Panigrahi, Jogamaya; Bhanja, Shravani; Chainy, Gagan B. N.

2010-01-01

66

Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation  

PubMed Central

Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway. PMID:25279585

Chowdhury, Helena H.; Kreft, Marko; Jensen, Jrgen; Zorec, Robert

2014-01-01

67

Insulin induces an increase in cytosolic glucose levels in 3T3-L1 cells with inhibited glycogen synthase activation.  

PubMed

Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600) to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway. PMID:25279585

Chowdhury, Helena H; Kreft, Marko; Jensen, Jrgen; Zorec, Robert

2014-01-01

68

Gangliosides inhibit platelet-derived growth factor-stimulated receptor dimerization in human glioma U-1242MG and Swiss 3T3 cells.  

PubMed

We previously showed that gangliosides inhibit DNA synthesis in Swiss 3T3 cells stimulated with platelet-derived growth factor (PDGF) in a dose-responsive manner. This correlated with the inhibitory effects of several gangliosides (except GM3) on tyrosine phosphorylation of the PDGF receptor (PDGFR). [35S]Methionine-labeled Swiss 3T3 cells were incubated either with or without gangliosides and stimulated with PDGF, and proteins were cross-linked with bis(sulfosuccinimidyl) suberate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that two protein bands (170 and 350 kDa) were specifically immunoprecipitated with an anti-PDGFR antibody. Using both Swiss 3T3 and human glioma U-1242MG cells, western blots with anti-PDGFR and anti-phosphotyrosine antibodies confirmed that these bands were the PDGFR monomer and dimer, respectively, and that phosphotyrosine was present in these bands only after cells were stimulated with PDGF. Of the gangliosides tested, GM1, GM2, GD1a, GD1b, GD3, and GT1b, but not GM3, inhibited the formation of the 350-kDa band. These results demonstrate that all gangliosides tested, except GM3, probably inhibit PDGF-mediated growth by preventing dimerization of PDGFR monomers. Loss of more complex gangliosides in human gliomas would permit unregulated activation of the PDGFR, contributing to uncontrolled growth stimulation. We propose that ganglioside inhibition of receptor dimerization is a novel mechanism for regulating and coordinating several trophic factor-mediated cell functions. PMID:8515285

Van Brocklyn, J; Bremer, E G; Yates, A J

1993-07-01

69

Chlamydia Induces Anchorage Independence in 3T3 Cells and Detrimental Cytological Defects in an Infection Model  

PubMed Central

Chlamydia are Gram negative, obligate intracellular bacterial organisms with different species causing a multitude of infections in both humans and animals. Chlamydia trachomatis is the causative agent of the sexually transmitted infection (STI) Chlamydia, the most commonly acquired bacterial STI in the United States. Chlamydial infections have also been epidemiologically linked to cervical cancer in women co-infected with the human papillomavirus (HPV). We have previously shown chlamydial infection results in centrosome amplification and multipolar spindle formation leading to chromosomal instability. Many studies indicate that centrosome abnormalities, spindle defects, and chromosome segregation errors can lead to cell transformation. We hypothesize that the presence of these defects within infected dividing cells identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation. Here we demonstrate that infection with Chlamydia trachomatis is able to transform 3T3 cells in soft agar resulting in anchorage independence and increased colony formation. Additionally, we show for the first time Chlamydia infects actively replicating cells in vivo. Infection of mice with Chlamydia results in significantly increased cell proliferation within the cervix, and in evidence of cervical dysplasia. Confocal examination of these infected tissues also revealed elements of chlamydial induced chromosome instability. These results contribute to a growing body of data implicating a role for Chlamydia in cervical cancer development and suggest a possible molecular mechanism for this effect. PMID:23308295

Knowlton, Andrea E.; Fowler, Larry J.; Patel, Rahul K.; Wallet, Shannon M.; Grieshaber, Scott S.

2013-01-01

70

Eucommia ulmoides Oliv. antagonizes H 2 O 2 -induced rat osteoblastic MC3T3-E1 apoptosis by inhibiting expressions of caspases 3, 6, 7, and 9  

Microsoft Academic Search

Eucommia ulmoides Oliv. (EuO), also known as Duzhong, native to China, has been reported to have antioxidative function, but its cellular mechanism\\u000a is not fully examined yet. We investigated inhibitory effects of EuO leaf ethanol extracts on H2O2-induced apoptosis in rat osteoblastic MC3T3-E1 cells and underlying mechanisms. Locally-grown Duzhong leaves were extracted\\u000a with ethanol. MC3T3-E1 cells were treated with EuO

Jun Lin; Yi-jing Fan; Christian Mehl; Jia-jun Zhu; Hong Chen; Ling-yan Jin; Jing-hong Xu; Hui-ming Wang

2011-01-01

71

The thyroid hormone receptor ? induces DNA damage and premature senescence  

PubMed Central

There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphateactivated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism. PMID:24395638

Zambrano, Alberto; Garca-Carpizo, Vernica; Gallardo, Mara Esther; Villamuera, Raquel; Gmez-Ferrera, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M.; Garesse, Rafael

2014-01-01

72

Transient expression of interferon-inducible p204 in the early stage is required for adipogenesis in 3T3-L1 cells.  

PubMed

A member of the interferon-inducible p200 family of proteins, p204, has recently been reported to function in the development of many mesoderm-derived tissues, such as bone, muscle, and cartilage. However, no published study has yet investigated the role of p204 in adipogenesis. Our preliminary experiments showed that p204 can be found in 3T3-L1 preadipocytes, and its expression was up-regulated in a differentiation-dependent manner. As such, we hypothesized that p204 is associated with adipogenesis and focused on the influence of p204 on adipogenesis. In the present study, we investigated the transient elevated expression and cytoplasm-to-nucleus translocation of p204 in the early stage of adipogenesis. To determine the effect of p204 on adipogenesis, p204-siRNA and expression vector were produced for p204 suppression and overexpression, respectively. The knockdown of p204 resulted in a significantly depressed adipocyte differentiation, whereas p204 overexpression promoted adipocyte differentiation. The mRNA expression of adipogenic markers, such as peroxisome-proliferator-activated receptor (PPAR)gamma, CCAAT/enhancer-binding-protein (C/EBP)alpha, lipoprotein lipase, and adipsin, was decreased by p204 suppression and increased by p204 overexpression. A coimmunoprecipitation assay coupled with an indirect immunofluorescence assay also indicated that p204 interacted and colocalized with C/EBPdelta in the nucleus. Furthermore, the knockdown of p204 disrupted the interaction between p204 and C/EBPdelta and partially suppressed the PPARgamma transcriptional activity by dissociating C/EBPdelta with the PPARgamma promoter element. Collectively, our data indicate that the transient expression of p204 in the early stage is indispensable for adipocyte differentiation. Disruption of p204 expression patterns at this stage leads to irreversible damage in fat formation. PMID:20444940

Xiao, Jing; Sun, Bing; Cai, Guo-ping

2010-07-01

73

Mammalian target of rapamycin complex 1 (mTORC1) plays a role in Pasteurella multocida toxin (PMT)-induced protein synthesis and proliferation in Swiss 3T3 cells.  

PubMed

Pasteurella multocida toxin (PMT) is a potent mitogen known to activate several signaling pathways via deamidation of a conserved glutamine residue in the ? subunit of heterotrimeric G-proteins. However, the detailed mechanism behind mitogenic properties of PMT is unknown. Herein, we show that PMT induces protein synthesis, cell migration, and proliferation in serum-starved Swiss 3T3 cells. Concomitantly PMT induces phosphorylation of ribosomal S6 kinase (S6K1) and its substrate, ribosomal S6 protein (rpS6), in quiescent 3T3 cells. The extent of the phosphorylation is time and PMT concentration dependent, and is inhibited by rapamycin and Torin1, the two specific inhibitors of the mammalian target of rapamycin complex 1 (mTORC1). Interestingly, PMT-mediated mTOR signaling activation was observed in MEF WT but not in G?(q/11) knock-out cells. These observations are consistent with the data indicating that PMT-induced mTORC1 activation proceeds via the deamidation of G?(q/11), which leads to the activation of PLC? to generate diacylglycerol and inositol trisphosphate, two known activators of the PKC pathway. Exogenously added diacylglycerol or phorbol 12-myristate 13-acetate, known activators of PKC, leads to rpS6 phosphorylation in a rapamycin-dependent manner. Furthermore, PMT-induced rpS6 phosphorylation is inhibited by PKC inhibitor, G6976. Although PMT induces epidermal growth factor receptor activation, it exerts no effect on PMT-induced rpS6 phosphorylation. Together, our findings reveal for the first time that PMT activates mTORC1 through the G?(q/11)/PLC?/PKC pathway. The fact that PMT-induced protein synthesis and cell migration is partially inhibited by rapamycin indicates that these processes are in part mediated by the mTORC1 pathway. PMID:23223576

Oubrahim, Hammou; Wong, Allison; Wilson, Brenda A; Chock, P Boon

2013-01-25

74

Quercetin reversed lipopolysaccharide-induced inhibition of osteoblast differentiation through the mitogen?activated protein kinase pathway in MC3T3-E1 cells.  

PubMed

Quercetin, a flavonoid found in onions and other vegetables, has potential inhibitory effects on bone resorption in vivo and in vitro. In our previous study it was identified that quercetin triggered the apoptosis of lipopolysaccharide (LPS)?induced osteoclasts and inhibited bone resorption. Currently, little information is available detailing the effect of quercetin on osteoblast differentiation and bone formation in bacteria?induced inflammatory diseases. The present study aimed to investigate the effect of quercetin on osteoblast differentiation in MC3T3?E1 osteoblasts stimulated with LPS. LPS significantly downregulated the mRNA expression of osteoblast?related genes in the MC3T3?E1 cells. By contrast, quercetin significantly restored the LPS?suppressed mRNA expression of osteoblast?related genes in a dose?dependent manner. Quercetin also restored the protein expression of Osterix in MC3T3?E1 cells suppressed by LPS. Furthermore, quercetin selectively triggered the activation of the mitogen?activated protein kinase (MAPK) pathway by enhancing the expression of extracellular signal-regulated kinase and reducing the expression of c?Jun N?terminal kinase. These data suggest that quercetin reversed the inhibition of osteoblast differentiation induced by LPS through MAPK signaling. These findings suggest that quercetin may be of potential use as a therapeutic agent to restore osteoblast function in bacteria?induced bone diseases. PMID:25323558

Wang, Xin-Chun; Zhao, Nzhi-Jun; Guo, Chun; Chen, Jing-Tao; Song, Jin-Ling; Gao, Li

2014-12-01

75

Antisense RNA--Induced Reduction in Murine TIMP Levels Confers Oncogenicity on Swiss 3T3 Cells  

Microsoft Academic Search

Mouse 3T3 cell lines capable of constitutively synthesizing an RNA complementary to the messenger RNA encoding TIMP, tissue inhibitor of metalloproteinases, were constructed by transfection with appropriate plasmid constructs. Many of the lines were down-modulated for TIMP messenger RNA levels and secreted less TIMP into the culture medium. In comparison to noninvasive, nontumorigenic controls, these cells not only were invasive

Rama Khokha; Paul Waterhouse; Simcha Yagel; Peeyush K. Lala; Christopher M. Overall; Gill Norton; David T. Denhardt

1989-01-01

76

Proinflammatory effects of arachidonic acid in a lipopolysaccharide-induced inflammatory microenvironment in 3T3-L1 adipocytes in vitro.  

PubMed

Long-chain n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have known anti-inflammatory effects, including the modulation of adipose tissue-derived inflammatory mediators (i.e., adipokines) implicated in obesity-related pathologies, such as insulin resistance. Less is known about the effects of plant-derived n-3 PUFA, ?-linolenic acid (ALA, 18:3n-3) and stearidonic acid (SDA 18:4n-3), or n-6 PUFA linoleic acid (LA, 18:2n-6) and arachidonic acid (AA, 20:4n-6), especially in combination with an inflammatory stimulus, such as lipopolysaccharide (LPS), at a dose intended to mimic obesity-associated low-grade inflammation. To study this, 3T3-L1 adipocytes were incubated with 100 ?mol/L of various n-3 or n-6 PUFA with or without 10 ng/mL LPS for up to 24 h. AA in the presence of LPS synergistically increased (p < 0.05) pro-inflammatory monocyte chemoattractant protein-1 (MCP)-1 and interleukin (IL)-6 secretion and gene expression, as well as COX-2 and TLR2 gene expression at 6 and/or 24 h, suggesting their potential roles in the synergistic effects of AA and LPS. Plant-derived fatty acids ALA, SDA, and LA did not differentially affect adipokine gene expression or secretion, whereas LPS-induced pro-inflammatory IL-1? expression and MCP-1 secretion was decreased (p < 0.05) by EPA, DHA, and/or EPA+DHA (50 ?mol/L each) compared with LPS alone. Only DHA increased (p < 0.05) gene expression of the n-3 PUFA receptor GPR120 and simultaneously decreased LPS-induced nuclear factor-?B activation compared with control. Our findings emphasize that specific fatty acids within the n-3 or n-6 PUFA class warrant consideration in the development of nutritional strategies to improve obesity-associated inflammation. PMID:25641170

Cranmer-Byng, Mary M; Liddle, Danyelle M; De Boer, Anna A; Monk, Jennifer M; Robinson, Lindsay E

2015-02-01

77

Activation of AMPK participates hydrogen sulfide-induced cyto-protective effect against dexamethasone in osteoblastic MC3T3-E1 cells.  

PubMed

Long-time glucocorticoids (GCs) usage causes osteoporosis. In the present study, we explored the potential role of hydrogen sulfide (H2S) against dexamethasone (Dex)-induced osteoblast cell damage, and focused on the underlying mechanisms. We showed that two H2S-producing enzymes, cystathionine ?-synthase (CBS) and cystathionine ?-lyase (CSE), were significantly downregulated in human osteonecrosis tissues as well as in Dex-treated osteoblastic MC3T3-E1 cells. H2S donor NaHS as well as the CBS activator S-adenosyl-l-methionine (SAM) inhibited Dex-induced viability reduction, death and apoptosis in MC3T3-E1 cells. NaHS activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling, which participated its cyto-protective activity. AMPK inhibition by its inhibitor (compound C) or reduction by targeted-shRNA suppressed its pro-survival activity against Dex in MC3T3-E1 cells. Further, we found that NaHS inhibited Dex-mediated reactive oxygen species (ROS) production and ATP depletion. Such effects by NaHS were again inhibited by compound C and AMPK?1-shRNA. In summary, we show that H2S inhibits Dex-induced osteoblast damage through activation of AMPK signaling. H2S signaling might be further investigated as a novel target for anti-osteoporosis treatment. PMID:25445596

Yang, Ming; Huang, Yue; Chen, Jia; Chen, Yi-lei; Ma, Jian-jun; Shi, Pei-hua

2014-11-01

78

NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Chronic inflammation is associated with obesity and insulin resistance. However, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and Nucleotide-oligomerization domain containing proteins play critical roles in innate immune response. Here we repo...

79

Ezrin, radixin, and moesin phosphorylation in NIH3T3 cells revealed angiotensin II type 1 receptor cell-type-dependent biased signaling.  

PubMed

?-Arrestin-biased agonists are a new class of drugs with promising therapeutic effects. The molecular mechanisms of ?-arrestin-biased agonists are still not completely identified. Here, we investigated the effect of angiotensin II (AngII) and [Sar1,Ile4,Ile8] AngII (SII), a ?-arrestin-biased agonist, on ezrin-radixin-moesin (ERM) phosphorylation in NIH3T3 cells (a fibroblast cell line) stably expressing AngII type 1A receptor. ERM proteins are cross-linkers between the plasma membrane and the actin cytoskeleton and control a number of signaling pathways. We also investigated the role of G?q protein and ?-arrestins in mediating ERM phosphorylation. We found that AngII stimulates ERM phosphorylation by acting as a ?-arrestin-biased agonist and AngII-stimulated ERM phosphorylation is mediated by ?-arrestin2 not ?-arrestin1. We also found that SII inhibits ERM phosphorylation by acting as a G?q protein-biased agonist. We concluded that ERM phosphorylation is a unique ?-arrestin-biased agonism signal. Both AngII and SII can activate either G?q protein or ?-arrestin-mediated signaling as functional biased agonists according to the type of the cell on which they act. PMID:23575451

Ibrahim, Islam A A E-H; Nakaya, Michio; Kurose, Hitoshi

2013-01-01

80

Activation of AMP-Activated Protein Kinase Attenuates Tumor Necrosis Factor-?-Induced Lipolysis via Protection of Perilipin in 3T3-L1 Adipocytes  

PubMed Central

Background Tumor necrosis factor (TNF)-? and AMP-activated protein kinase (AMPK) are known to stimulate and repress lipolysis in adipocytes, respectively; however, the mechanisms regulating these processes have not been completely elucidated. Methods The key factors and mechanism of action of TNF-? and AMPK in lipolysis were investigated by evaluating perilipin expression and activity of protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 ? (eIF2?) by Western blot and an immunofluorescence assay in 24-hour TNF-?-treated 3T3-L1 adipocytes with artificial manipulation of AMPK activation. Results Enhancement of AMPK activity by the addition of activator minoimidazole carboxamide ribonucleotide (AICAR) suppressed TNF-?-induced lipolysis, whereas the addition of compound C, an inhibitor of AMPK phosphorylation, enhanced lipolysis. Perilipin, a lipid droplet-associated protein, was decreased by TNF-? and recovered following treatment with AICAR, showing a correlation with the antilipolytic effect of AICAR. Significant activation of PERK/eIF2?, a component of the unfolded protein response signaling pathway, was observed in TNF-? or vesicle-treated 3T3-L1 adipocytes. The antilipolytic effect and recovery of perilipin expression by AICAR in TNF-?-treated 3T3-L1 adipocytes were significantly diminished by treatment with 2-aminopurine, a specific inhibitor of eIF2?. Conclusion These data indicated that AICAR-induced AMPK activation attenuates TNF-?-induced lipolysis via preservation of perilipin in 3T3-L1 adipocytes. In addition, PERK/eIF2? activity is a novel mechanism of the anti-lipolytic effect of AICAR. PMID:25325265

Hong, Seok-Woo; Lee, Jinmi; Park, Se Eun; Rhee, Eun-Jung; Park, Cheol-Young; Oh, Ki-Won; Park, Sung-Woo

2014-01-01

81

Blueberry Peel Extracts Inhibit Adipogenesis in 3T3-L1 Cells and Reduce High-Fat Diet-Induced Obesity  

PubMed Central

This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 g/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBP?, as well as the C/EBP? and PPAR? genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3?, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPAR? and C/EBP? and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBP?, C/EBP?, and PPAR? and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat accumulation in an HFD-induced animal model of obesity. PMID:23936120

Jang, Sun-Hee; Lee, Soo-Jung; Ko, Yeoung-Gyu; Kim, Gon-Sup; Cho, Jae-Hyeon

2013-01-01

82

Differential pathways (phospholipase C and phospholipase D) of bradykinin-induced biphasic 1,2-diacylglycerol formation in non-transformed and K-ras-transformed NIH-3T3 fibroblasts. Involvement of intracellular Ca2+ oscillations in phosphatidylcholine breakdown.  

PubMed Central

Bradykinin (BK) induced a biphasic increase in 1,2-diacylglycerol (DAG) in both K-ras-transformed fibroblasts (DT) and the parent NIH-3T3 cells. The first phase was coincident with the increase in Ins(1,4,5)P3 resulting from PtdIns(4,5)P2 hydrolysis, and the second, sustained, phase was derived from phosphatidylcholine (PtdCho) hydrolysis. In NIH-3T3 cells, stimulation by BK induced greater production of choline than phosphocholine in [3H]choline-labelled cells and appreciable phosphatidylethanol (PtdEtOH) formation in [3H]myristic acid-labelled cells, suggesting that PtdCho was hydrolysed mainly by a phospholipase D (PLD) activity. Pretreatment with propranolol, an inhibitor of phosphatidate phosphohydrolase, markedly diminished the second DAG accumulation, supporting the above notion. In DT cells, BK induced predominantly phosphocholine generation and little PtdEtOH formation, indicating that the PtdCho hydrolysis was due to a phospholipase C (PLC) activity. The BK-induced oscillations in intracellular Ca2+ concentration ([Ca2+]i) observed in single DT cells [Fu, Sugimoto, Oki, Murakami, Okano & Nozawa (1991) FEBS Lett. 281, 263-266] were detected as a sustained [Ca2+]i elevation when assayed in a cell suspension. A receptor-operated Ca2+ channel blocker, SK&F 96365, suppressed both the BK-induced phosphocholine generation and the sustained [Ca2+]i elevation in a similar dose-dependent manner. These results thus suggested that oscillations in [Ca2+]i are involved in the activation of PtdCho-specific PLC in DT cells. PMID:1575679

Fu, T; Okano, Y; Nozawa, Y

1992-01-01

83

Nano-hydroxyapatite particles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats.  

PubMed

While the advantages of nanomaterials are being increasingly recognized, their potential toxicity is drawing more and more attention and concern. In this study, we explore the toxicity mechanism of 20-30 nm rod-shaped hydroxyapatite (HA) nanoparticles in vitro and in vivo. The nanoparticles were prepared by precipitation and characterized by IR, XRD and TEM. Concentrations of 0 ?g mL(-1), 10 ?g mL(-1), 100 ?g mL(-1), 1 mg mL(-1), and 10 mg mL(-1) were applied to the MC3T3-E1 cells for viability (MTT-test). Based on the characteristic differences of the two methods of cell death, the morphological features of the MC3T3-E1 cell line co-cultured with nano-hydroxyapatite (n-HA) (10 mg mL(-1)) for 24 h were also observed by TEM. Furthermore, important serum biochemical markers and histopathological examinations were used to evaluate the potential toxicological effect of n-HA on the major organs of SD rats injected intraperitoneally with n-HA (33.3 mg kg(-1) body weight). In the results, we found cell growth inhibition and apoptosis in MC3T3-E1 cells co-cultured with n-HA. Moreover, apoptosis but not necrosis was illustrated in liver and renal tissue by using histopathology slices and serum biochemical markers. It suggests that apoptosis may be the possible mechanism of n-HA toxicity and provides a better understanding of the biocompatibility of nanomaterials applied in human bone repair. PMID:22450902

Wang, Liting; Zhou, Gang; Liu, Haifeng; Niu, Xufeng; Han, Jingyun; Zheng, Lisha; Fan, Yubo

2012-04-28

84

Nano-hydroxyapatite particles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats  

NASA Astrophysics Data System (ADS)

While the advantages of nanomaterials are being increasingly recognized, their potential toxicity is drawing more and more attention and concern. In this study, we explore the toxicity mechanism of 20-30 nm rod-shaped hydroxyapatite (HA) nanoparticles in vitro and in vivo. The nanoparticles were prepared by precipitation and characterized by IR, XRD and TEM. Concentrations of 0 ?g mL-1, 10 ?g mL-1, 100 ?g mL-1, 1 mg mL-1, and 10 mg mL-1 were applied to the MC3T3-E1 cells for viability (MTT-test). Based on the characteristic differences of the two methods of cell death, the morphological features of the MC3T3-E1 cell line co-cultured with nano-hydroxyapatite (n-HA) (10 mg mL-1) for 24 h were also observed by TEM. Furthermore, important serum biochemical markers and histopathological examinations were used to evaluate the potential toxicological effect of n-HA on the major organs of SD rats injected intraperitoneally with n-HA (33.3 mg kg-1 body weight). In the results, we found cell growth inhibition and apoptosis in MC3T3-E1 cells co-cultured with n-HA. Moreover, apoptosis but not necrosis was illustrated in liver and renal tissue by using histopathology slices and serum biochemical markers. It suggests that apoptosis may be the possible mechanism of n-HA toxicity and provides a better understanding of the biocompatibility of nanomaterials applied in human bone repair.

Wang, Liting; Zhou, Gang; Liu, Haifeng; Niu, Xufeng; Han, Jingyun; Zheng, Lisha; Fan, Yubo

2012-04-01

85

Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.  

PubMed

This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8mg/g) and retention time (5.5min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells. PMID:25685661

Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

2015-01-01

86

Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells  

PubMed Central

This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8mg/g) and retention time (5.5min) of piperine in the ethanol extract were quantified using UPLCMS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells. PMID:25685661

Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

2014-01-01

87

Expression of Caveolin-1 reduces cellular responses to TGF-{beta}1 through down-regulating the expression of TGF-{beta} type II receptor gene in NIH3T3 fibroblast cells  

SciTech Connect

Transcriptional repression of Transforming Growth Factor-{beta} type II receptor (T{beta}RII) gene has been proposed to be one of the major mechanisms leading to TGF-{beta} resistance. In this study, we demonstrate that expression of Caveolin-1 (Cav-1) gene in NIH3T3 fibroblast cells down-regulates the expression of T{beta}RII gene in the transcriptional level, eventually resulting in the decreased responses to TGF-{beta}. The reduced expression of T{beta}RII gene by Cav-1 appeared to be due to the changes of the sequence-specific DNA binding proteins to either Positive Regulatory Element 1 (PRE1) or PRE2 of the T{beta}RII promoter. In addition, Cav-1 expression inhibited TGF-{beta}-mediated cellular proliferation and Plasminogen Activator Inhibitor (PAI)-1 gene expression as well as TGF-{beta}-induced luciferase activity. Furthermore, the inhibition of endogeneous Cav-1 by small interfering RNA increased the expression of T{beta}RII gene. These findings strongly suggest that expression of Cav-1 leads to the decreased cellular responsiveness to TGF-{beta} through down-regulating T{beta}RII gene expression.

Lee, Eun Kyung [Inha University College of Medicine, Incheon 400-121 (Korea, Republic of); Lee, Youn Sook [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, In-Oc [Inha University College of Medicine, Incheon 400-121 (Korea, Republic of); Park, Seok Hee [Inha University College of Medicine, Incheon 400-121 (Korea, Republic of) and Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)]. E-mail: parks@skku.edu

2007-07-27

88

T3 test  

MedlinePLUS

... the action of T3 and other hormones, including thyroid-stimulating hormone (TSH) and T4. Sometimes it can be useful ... A higher-than-normal level of T3 may be a sign of: Overactive thyroid ... Graves disease ) T3 thyrotoxicosis (rare) Toxic nodular goiter ...

89

The ?-SiC Nanowires (~100 nm) Induce Apoptosis via Oxidative Stress in Mouse Osteoblastic Cell Line MC3T3-E1  

PubMed Central

Silicon carbide (SiC), a compound of silicon and carbon, with chemical formula SiC, the beta modification (?-SiC), with a zinc blende crystal structure (similar to diamond), is formed at temperature below 1700C. ?-SiC will be the most suitable ceramic material for the future hard tissue replacement, such as bone and tooth. The in vitro cytotoxicity of ?-SiC nanowires was investigated for the first time. Our results indicated that 100?nm long SiC nanowires could significantly induce the apoptosis in MC3T3-E1 cells, compared with 100??m long SiC nanowires. And 100?nm long SiC nanowires increased oxidative stress in MC3T3-E1 cells, as determined by the concentrations of MDA (as a marker of lipid peroxidation) and 8-OHdG (indicator of oxidative DNA damage). Moreover, transmission electron microscopy (TEM) was performed to evaluate the morphological changes of MC3T3-E1 cells. After treatment with 100?nm long SiC nanowires, the mitochondria were swelled and disintegrated, and the production of ATP and the total oxygen uptake were also decreased significantly. Therefore, ?-SiC nanowires may have limitations as medical material. PMID:24967352

Xie, Weili; Xie, Qi; Jin, Meishan; Huang, Xiaoxiao; Zhang, Xiaodong; Shao, Zhengkai; Wen, Guangwu

2014-01-01

90

Involvement of phosphatidylcholine hydrolysis by phospholipase C in prostaglandin F2?-induced 1,2-diacylglycerol formation in osteoblast-like MC3T3-E1 cells  

Microsoft Academic Search

We previously demonstrated that a prostaglandin F2? (PGF2?)-induced, sustained increase in 1,2-diacylglycerol (DAG) production was important for proliferation in osteoblast-like MC3T3-E1 cells. The 1,2-DAG formation is mediated by various enzymes, such as phos-phoinositide (PI)-specific phospholipase C (PLC), phospholipase D (PLD), and phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). In the present study, to elucidate the mechanism of the 1,2-DAG formation, we have

Takayuki Sakai; Takatoshi Sugiyama; Yoshiko Banno; Yukihiro Kato; Yoshinori Nozawa

2004-01-01

91

Docosahexaenoic acid modulates phorbol ester-induced activation of extracellular signal-regulated kinases 1 and 2 in NIH\\/3T3 cells  

Microsoft Academic Search

Phosphorylation of extracellular signal-regulated kinases (ERK1\\/ERK2) has been implicated in cell proliferation of mammalian\\u000a cells. In the present study, we investigated the role of docosahexaenoic acid (DHA) in the modulation of ERK1\\/ERK2 phosphorylation,\\u000a stimulated either with phorbol 12-myristate 13-acetate (PMA) or transforming growth factor-alpha (TGF?) in NIH\\/3T3 cells.\\u000a We observed that both PMA and TGF? induced ERK1\\/ERK2 phosphorylation within 5

Anne Denys; Aziz Hichami; Bernard Maume; Naim Akhtar Khan

2001-01-01

92

Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-?B Pathways  

PubMed Central

A growing body of evidence suggests that activation of nuclear factor kappa B (NF-?B) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-?B pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-?B inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-? (TNF-?) and interleukin-1? (IL-1?) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-?B transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-?B inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes. PMID:25474091

Hafizi Abu Bakar, Mohamad; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

2014-01-01

93

Effect of endoplasmic reticulum (ER) stress inducer thapsigargin on the expression of extracellular-superoxide dismutase in mouse 3T3-L1 adipocytes  

PubMed Central

Endoplasmic reticulum stress is related to metabolic disorders, including atherosclerosis and type 2 diabetes. It is known that inflammatory adipocytokines and oxidative stress are increased, while anti-inflammatory adipocytokines such as adiponectin are decreased in adipocytes during above conditions. Extracellular-superoxide dismutase is an anti-inflammatory enzyme that protects cells from oxidative stress. Because plasma extracellular-superoxide dismutase levels in type 2 diabetes patients were inversely related to the body mass index and homeostasis model assessment-insulin resistance index, it is speculated that the regulation of extracellular-superoxide dismutase might lead to the suppression of metabolic disorders. Here, we observed the reduction of extracellular-superoxide dismutase and adiponectin in 3T3-L1 adipocytes treated with thapsigargin, an endoplasmic reticulum stress inducer. Interestingly, tunicamycin, another endoplasmic reticulum stress inducer, did not decrease the expression of extracellular-superoxide dismutase in spite of the induction of glucose regulated protein kinase 78kDa, an endoplasmic reticulum stress marker. Moreover, eukaryotic translation initiation factor 2? signaling cascade plays a pivotal role in the reduction of extracellular-superoxide dismutase in 3T3-L1 adipocytes during endoplasmic reticulum stress conditions. PMID:23525536

Kamiya, Tetsuro; Hara, Hirokazu; Adachi, Tetsuo

2013-01-01

94

MicroRNA-1 Participates in Nitric Oxide-Induced Apoptotic Insults to MC3T3-E1 Cells by Targeting Heat-Shock Protein-70  

PubMed Central

Our previous studies showed that nitric oxide (NO) could induce osteoblast apoptosis. MicroRNA-1 (miR-1), a skeletal- and cardiac muscle-specific small non-coding RNA, contributes to the regulation of multiple cell activities. In this study, we evaluated the roles of miR-1 in NO-induced insults to osteoblasts and the possible mechanisms. Exposure of mouse MC3T3-E1 cells to sodium nitroprusside (SNP) increased amounts of cellular NO and intracellular reactive oxygen species. Sequentially, SNP decreased cell survival but induced caspase-3 activation, DNA fragmentation, and cell apoptosis. In parallel, treatment with SNP induced miR-1 expression in a time-dependent manner. Application of miR-1 antisense inhibitors to osteoblasts caused significant inhibition of SNP-induced miR-1 expression. Knocking down miR-1 concurrently attenuated SNP-induced alterations in cell morphology and survival. Consecutively, SNP time-dependently inhibited heat-shock protein (HSP)-70 messenger (m)RNA and protein expressions. A bioinformatic search predicted the existence of miR-1-specific binding elements in the 3'-untranslational region of HSP-70 mRNA. Downregulation of miR-1 expression simultaneously lessened SNP-induced inhibition of HSP-70 mRNA and protein expressions. Consequently, SNP-induced modifications in the mitochondrial membrane potential, caspase-3 activation, DNA fragmentation, and apoptotic insults were significantly alleviated by miR-1 antisense inhibitors. Therefore, this study showed that miR-1 participates in NO-induced apoptotic insults through targeting HSP-70 gene expression. PMID:25678843

Lee, Yong-Eng; Hong, Chung-Ye; Lin, Yi-Ling; Chen, Ruei-Ming

2015-01-01

95

Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress.  

PubMed

Recent studies suggest that the AMP-activated protein kinase (AMPK) acts as a major energy sensor and regulator in adipose tissues. The objective of this study was to investigate the role of AMPK in nicotine-induced lipogenesis and lipolysis in 3T3L1 adipocytes. Exposure of 3T3L1 adipocytes to smoking-related concentrations of nicotine increased lipolysis and inhibited fatty acid synthase (FAS) activity in a time- and dose-dependent manner. The effects of nicotine on FAS activity were accompanied by phosphorylation of both AMPK (Thr(172)) and acetyl-CoA carboxylase (ACC; Ser(79)). Nicotine-induced AMPK phosphorylation appeared to be mediated by reactive oxygen species based on the finding that nicotine significantly increased superoxide anions and 3-nitrotyrosine-positive proteins, exogenous peroxynitrite (ONOO(-)) mimicked the effects of nicotine on AMPK, and N-acetylcysteine (NAC) abolished nicotine-enhanced AMPK phosphorylation. Inhibition of AMPK using either pharmacologic (insulin, compound C) or genetic means (overexpression of dominant negative AMPK; AMPK-DN) abolished FAS inhibition induced by nicotine or ONOO(-). Conversely, activation of AMPK by pharmacologic (nicotine, ONOO(-), metformin, and AICAR) or genetic (overexpression of constitutively active AMPK) means inhibited FAS activity. Notably, AMPK activation increased threonine phosphorylation of FAS, and this effect was blocked by adenovirus encoding dominant negative AMPK. Finally, AMPK-dependent FAS phosphorylation was confirmed by (32)P incorporation into FAS in adipocytes. Taken together, our results strongly suggest that nicotine, via ONOO(-) activates AMPK, resulting in enhanced threonine phosphorylation and consequent inhibition of FAS. PMID:17635921

An, Zhibo; Wang, Hong; Song, Ping; Zhang, Miao; Geng, Xuemei; Zou, Ming-Hui

2007-09-14

96

Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.  

PubMed

We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

2014-01-01

97

Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling  

PubMed Central

We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

2014-01-01

98

The fungal chimerolectin MOA inhibits protein and DNA synthesis in NIH/3T3 cells and may induce BAX-mediated apoptosis.  

PubMed

The Marasmius oreades mushroom agglutinin (MOA) is a blood group B-specific lectin carrying an active proteolytic domain. Its enzymatic activity has recently been shown to be critical for toxicity of MOA toward the fungivorous soil nematode Caenorhabditis elegans. Here we present evidence that MOA also induces cytotoxicity in a cellular model system (murine NIH/3T3 cells), by inhibiting protein synthesis, and that cytotoxicity correlates, at least in part, with proteolytic activity. A peptide-array screen identified the apoptosis mediator BAX as a potential proteolytic substrate and further suggests a variety of bacterial and fungal peptides as potential substrates. These findings are in line with the suggestion that MOA and related proteases may play a role for host defense. PMID:24747075

Cordara, Gabriele; Winter, Harry C; Goldstein, Irwin J; Krengel, Ute; Sandvig, Kirsten

2014-05-16

99

Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts  

NASA Astrophysics Data System (ADS)

Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

Cariveau, Mickael J.

2005-07-01

100

SPARC is over-expressed in adipose tissues of diet-induced obese rats and causes insulin resistance in 3T3-L1 adipocytes.  

PubMed

Secreted protein acidic and rich in cysteine (SPARC) is a secretory multifunctional matricellular glycoprotein. High circulating levels of SPARC have been reported to be associated with obesity and insulin resistance. The aim of the present study was to investigate whether SPARC induces insulin resistance and mitochondrial dysfunction in adipocytes. Our results showed that feeding high fat diet to rats for 12 weeks significantly increased SPARC expression in adipose tissues at both mRNA and protein levels. Moreover, SPARC overexpression in stably transfected 3T3-L1 cells induced insulin resistance and mitochondrial dysfunction, as evidenced by inhibition of insulin-stimulated glucose transport, lower ATP synthesis and mitochondrial membrane potential, reduced expression of glucose transporter 4 (GLUT4), and increased levels of reactive oxygen species (ROS) in mature adipocytes. Finally, overexpression of SPARC also modulated the expression levels of several inflammatory cytokines, which play important roles in insulin resistance, glucose and lipid metabolism during adipogenesis. In conclusion, our data suggest that SPARC is involved in obesity-induced adipose insulin resistance and may serve as a potential target in the treatment of obesity and obesity-related insulin resistance. PMID:23910024

Shen, Yang; Zhao, Yuyan; Yuan, Lizhi; Yi, Wei; Zhao, Rui; Yi, Qianru; Yong, Tongwu

2014-01-01

101

A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway  

NASA Technical Reports Server (NTRS)

Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.

Hatton, Jason P.; Pooran, Milad; Li, Chai-Fei; Luzzio, Chris; Hughes-Fulford, Millie

2003-01-01

102

Contribution of estrogen receptor alpha to oncogenic K-Ras-mediated NIH3T3 cell transformation and its implication for escape from senescence by modulating the p53 pathway.  

PubMed

We previously reported that enhanced transcriptional activation of estrogen receptor alpha (ERalpha) contributed to [(12)Val]K-Ras-mediated NIH3T3 cell transformation. Functional inactivation of ERalpha by a dominant negative mutant of ERalpha (DNER) in the presence of activated K-Ras 4B mutant arrested the cell cycle at G(0)/G(1), subsequently provoking replicative cell senescence, finally abrogating tumorigenic potential. p53-dependent up-regulation of p21 was implicated in this cell senescence induction. Alterations in the MDM2 protein in response to DNER accounted for this p21-mediated cell senescence induction. An oncogenic K-Ras 4B mutant significantly increased MDM2 proteins coprecipitated with p53, and suppressed p53 transcriptional activity. In turn, DNER exerted its function to decrease MDM2 proteins coprecipitated with p53, followed by the stimulation of p53 activity in the presence of the oncogenic K-Ras 4B mutant. In addition, overexpression of wild type ERalpha in NIH3T3 cells resulted in the significant increase in the MDM2 protein level and the resultant suppression of p53 transcriptional activity. Finally, we demonstrated that c-Jun expression overcame the suppression and resultant enhancement of p21 protein level in response to DNER. The data imply that the ERalpha-AP1 pathway activated by oncogenic K-Ras 4B mutant contributes to the NIH3T3 cells' transformation by modulating p53 transcriptional activity through MDM2. PMID:11781307

Kato, Kiyoko; Horiuchi, Shinji; Takahashi, Akira; Ueoka, Yousuke; Arima, Takahiro; Matsuda, Takao; Kato, Hidenori; Nishida Ji, Jun-ichi; Nakabeppu, Yusaku; Wake, Norio

2002-03-29

103

Muscarinic M1 receptor and cannabinoid CB1 receptor do not modulate paraoxon-induced seizures  

PubMed Central

One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon. PMID:25692018

Kow, Rebecca L; Cheng, Eugene M; Jiang, Kelly; Le, Joshua H; Stella, Nephi; Nathanson, Neil M

2015-01-01

104

Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A/sub 2/  

SciTech Connect

In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E/sub 2/ (PGE/sub 2/) synthesis. The EC/sub 50/ values for stimulation of PGE/sub 2/ synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-(..gamma..-thio)triphosphate stimulated PGE/sub 2/ synthesis and InsP formation, and guanosine-5'-(..beta..-thio)diphosphate inhibited both PGE/sub 2/ synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE/sub 2/ synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE/sub 2/ synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE/sub 2/ synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE/sub 2/ synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with (/sup 3/H) choline, the phospholipase A/sub 2/ products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A/sub 2/ and that phospholipase A/sub 2/ is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis.

Burch, R.M.; Axelrod, J.

1987-09-01

105

Active and inactive forms of 3,5,3'-triiodo-L-thyronine (T3)-binding protein in rat kidney cytosol: possible role of nicotinamide adenine dinucleotide phosphate in activation of T3 binding.  

PubMed

Extraction of rat kidney cytosol with 10% charcoal at 4 C inactivated specific T3 binding. The decreased T3 binding in extracted cytosol could be restored by addition of boiled kidney cytosol. Three different factors (a, b, and c) which could increase T3 binding were identified by Sephadex G-50 column chromatography of boiled cytosol. Two factors (b and c) were eluted as relatively small molecules. Factor a was present in small amounts. Factor c was neutralized by incubation with EDTA, but factor b was not. Factor b was not destroyed by trypsin, protease, DNase, or RNase, but was destroyed by alkaline phosphatase. Factor b was destroyed by incubation with nicotinamide adenine dinucleotide phosphate (NADPH)-dependent glutathione reductase in the presence of oxidized glutathione. Although T3 binding to charcoal-extracted cytosol protein was not influenced by reduced glutathione or dithiothreitol, it was markedly increased by NADPH. Maximal activation induced by 50 microM NADPH was not further increased by further addition of endogenous factor b. The elution position of NADPH in gel chromatography corresponded to the elution position of factor b. Factor b or NADPH increased maximal binding capacity without changes in affinity constant. These observations suggest that T3-binding protein in cytosol is present in inactive and active forms and that the active form is generated by NADPH, which is present as one of the activators in cytosol. The effect of these cytosolic T3-binding proteins on nuclear T3 binding in vitro was also studied. In the absence of cytosolic T3-binding protein, [125I]T3 binding to nuclear receptor was decreased by unlabeled T3 in a concentration-dependent manner. In the presence of inactive form of cytosolic T3-binding protein, nuclear [125I]T3 binding was slightly diminished. In the presence of NADPH and cytosolic T3-binding protein, however, the amount of [125I]T3 bound to nuclei markedly decreased, which was associated with an increase of cytosolic [125I]T3 binding. NADPH alone did not influence nuclear T3 binding. These results suggest that T3 binding to nuclear receptor is regulated by an active form of cytosolic T3-binding protein in vitro. PMID:3015555

Hashizume, K; Kobayashi, M; Miyamoto, T

1986-08-01

106

Bilobalide attenuates hypoxia induced oxidative stress, inflammation, and mitochondrial dysfunctions in 3T3-L1 adipocytes via its antioxidant potential.  

PubMed

Excessive expansion of white adipose tissue leads to hypoxia which is considered as a key factor responsible for adipose tissue dysfunction in obesity. Hypoxia induces inflammation, insulin resistance, and other obesity related complications. So the hypoxia-signalling pathway is expected to provide a new target for the treatment of obesity-associated complications. Inhibition or downregulation of the HIF-1 pathway could be an effective target for the treatment of obesity related hypoxia. In the present study, we evaluated the effect of hypoxia on functions of 3T3-L1 adipocytes emphasising on oxidative stress, antioxidant status, inflammation and mitochondrial functions. We have also evaluated the protective role of bilobalide, a bioactive from Gingko biloba, on hypoxia induced alterations. The results revealed that hypoxia significantly altered all the vital parameters of adipocyte biology like HIF-1? expression (103.47% ?), lactate and glycerol release (184.34% and 69.1% ?, respectively), reactive oxygen species (ROS) production (432.53% ?), lipid and protein oxidation (376.6% and 566.6% ?, respectively), reduction in antioxidant enzymes (superoxide dismutase and catalase) status, secretion of inflammatory markers (TNF-?, IL-6, IL-1? and IFN-?) and mitochondrial functions (mitochondrial mass, membrane potential, permeability transition pore integrity, superoxide generation). Bilobalide significantly protected adipocytes from adverse effects of hypoxia in a dose-dependent manner by attenuating oxidative stress, inflammation and protecting mitochondria. Acriflavine (HIF-1 inhibitor) was used as positive control. On the basis of this study, a detailed investigation is needed to delineate the mechanism of action of bilobalide to develop it as therapeutic target for obesity. PMID:25039303

Priyanka, A; Nisha, V M; Anusree, S S; Raghu, K G

2014-10-01

107

Insulin and isoproterenol induce phosphorylation of the particulate cyclic GMP-inhibited, low Km cyclic AMP phosphodiesterase (cGI PDE) in 3T3-L1 adipocytes.  

PubMed

The cGI PDE in particulate fractions of differentiated adipocytes (but not control 3T3-L1 fibroblasts) was cross-reactive with a polyclonal antibody raised against the bovine adipose cGI PDE. The 3T3-L1 adipocyte cGI PDE is a 135 kDa protein which is phosphorylated in 32P-labeled cells in response to beta-agonist or insulin. These results indicate that the 3T3-L1 cGI PDE is similar in structure and hormonal regulation to the analogous enzyme in the rat adipocyte. PMID:1314573

Vasta, V; Smith, C J; Calvo, J; Belfrage, P; Manganiello, V C

1992-03-31

108

PIP? induces the recycling of receptor tyrosine kinases.  

PubMed

Down-regulation of receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) is achieved by endocytosis of the receptor followed by degradation or recycling. We demonstrated that in the absence of ligand, increased phosphatidylinositol 3,4,5-trisphosphate (PIP3) concentrations induced clathrin- and dynamin-mediated endocytosis of EGFR but not that of transferrin or G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors. Endocytosis of the receptor in response to binding of EGF resulted in a decrease in the abundance of the EGFR, but PIP3-induced internalization decreased receptor ubiquitination and phosphorylation and resulted in recycling of the receptor to the plasma membrane. An RNA interference (RNAi) screen directed against lipid-binding domain-containing proteins identified polarity complex proteins, including PARD3 (partitioning defective 3), as essential for PIP3-induced receptor tyrosine kinase recycling. Thus, PIP3 and polarity complex proteins regulate receptor tyrosine kinase trafficking, which may enhance cellular responsiveness to growth factors. PMID:24425787

Laketa, Vibor; Zarbakhsh, Sirus; Traynor-Kaplan, Alexis; Macnamara, Aidan; Subramanian, Devaraj; Putyrski, Mateusz; Mueller, Rainer; Nadler, Andr; Mentel, Matthias; Saez-Rodriguez, Julio; Pepperkok, Rainer; Schultz, Carsten

2014-01-14

109

Maurocalcine interacts with cardiac ryanodine receptor without inducing channel modification.  

E-print Network

R2 or "cardiac muscle" isoform and RyR3 isoform showing a ubiquitous expression pattern [1]. Although1 Maurocalcine interacts with cardiac ryanodine receptor without inducing channel modification process of cardiac, type 2, ryanodine receptor (RyR2). By performing pull-down experiments we show

Paris-Sud XI, Université de

110

Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR  

NASA Technical Reports Server (NTRS)

The existence in osteoblasts of the G-protein-coupled extracellular calcium (Ca(o)(2+))-sensing receptor (CaR) that was originally cloned from parathyroid and kidney remains controversial. In our recent studies, we utilized multiple detection methods to demonstrate the expression of CaR transcripts and protein in several osteoblastic cell lines, including murine MC3T3-E1 cells. Although we and others have shown that high Ca(o)(2+) and other polycationic CaR agonists modulate the function of MC3T3-E1 cells, none of these actions has been unequivocally shown to be mediated by the CaR. Previous investigations using neurons and lens epithelial cells have shown that activation of the CaR stimulates Ca(2+)-activated K(+) channels. Because osteoblastic cells express a similar type of channel, we have examined the effects of specific "calcimimetic" CaR activators on the activity of a Ca(2+)-activated K(+) channel in MC3T3-E1 cells as a way of showing that the CaR is not only expressed in those cells but is functionally active. Patch-clamp analysis in the cell-attached mode showed that raising Ca(o)(2+) from 0.75 to 2.75 mmol/L elicited about a fourfold increase in the open state probability (P(o)) of an outward K(+) channel with a conductance of approximately 92 pS. The selective calcimimetic CaR activator, NPS R-467 (0.5 micromol/L), evoked a similar activation of the channel, while its less active stereoisomer, NPSS-467 (0.5 micromol/L), did not. Thus, the CaR is not only expressed in MC3T3-E1 cells, but is also functionally coupled to the activity of a Ca(2+)-activated K(+) channel. This receptor, therefore, could transduce local or systemic changes in Ca(o)(2+) into changes in the activity of this ion channel and related physiological processes in these and perhaps other osteoblastic cells.

Ye, C. P.; Yamaguchi, T.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

2000-01-01

111

Regulation of Insulin Receptor Substrate 1 (IRS-1)/AKT Kinase-mediated Insulin Signaling by O-Linked ?-N-Acetylglucosamine in 3T3-L1 Adipocytes*  

PubMed Central

Increased O-linked ?-N-acetylglucosamine (O-GlcNAc) is associated with insulin resistance in muscle and adipocytes. Upon insulin treatment of insulin-responsive adipocytes, O-GlcNAcylation of several proteins is increased. Key insulin signaling proteins, including IRS-1, IRS-2, and PDK1, are substrates for OGT, suggesting potential O-GlcNAc control points within the pathway. To elucidate the roles of O-GlcNAc in dampening insulin signaling (Vosseller, K., Wells, L., Lane, M. D., and Hart, G. W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 53135318), we focused on the pathway upstream of AKT. Increasing O-GlcNAc in 3T3-L1 adipocytes decreases phosphoinositide 3-kinase (PI3K) interactions with both IRS-1 and IRS-2. Elevated O-GlcNAc also reduces phosphorylation of the PI3K p85 binding motifs (YXXM) of IRS-1 and results in a concomitant reduction in tyrosine phosphorylation of Y608XXM in IRS-1, one of the two main PI3K p85 binding motifs. Additionally, insulin signaling stimulates the interaction of OGT with PDK1. We conclude that one of the steps at which O-GlcNAc contributes to insulin resistance is by inhibiting phosphorylation at the Y608XXM PI3K p85 binding motif in IRS-1 and possibly at PDK1 as well. PMID:20018868

Whelan, Stephen A.; Dias, Wagner B.; Thiruneelakantapillai, Lakshmanan; Lane, M. Daniel; Hart, Gerald W.

2010-01-01

112

Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types  

Microsoft Academic Search

Not Available Bibtex entry for this abstract Preferred format for this abstract (see Preferences) Find Similar Abstracts: Use: Authors Title Return: Query Results Return items starting with number Query Form Database: Astronomy Physics arXiv e-prints

Franois Casas; Laurence Pessemesse; Stphanie Grandemange; Pascal Seyer; Nag Gueguen; Olivier Baris; Laurence Lepourry; Grard Cabello; Chantal Wrutniak-Cabello; Jacques Samarut

2008-01-01

113

Ischemic neuroprotection by TRPV1 receptor-induced hypothermia  

PubMed Central

Although treatment of stroke patients with mild hypothermia is a promising therapeutic approach, chemicals inducing prompt and safe reduction of body temperature are an unmet need. We measured the effects of the transient receptor potential vanilloid-1 (TRPV1) agonist rinvanil on thermoregulation and ischemic brain injury in mice. Intraperitoneal or intracerebroventricular injection of rinvanil induces mild hypothermia that is prevented by the receptor antagonist capsazepine. Both intraischemic and postischemic treatments provide permanent neuroprotection in animals subjected to transient middle cerebral artery occlusion (MCAo), an effect lost in mice artificially kept normothermic. Data indicate that TRPV1 receptor agonists are promising candidates for hypothermic treatment of stroke. PMID:22434066

Muzzi, Mirko; Felici, Roberta; Cavone, Leonardo; Gerace, Elisabetta; Minassi, Alberto; Appendino, Giovanni; Moroni, Flavio; Chiarugi, Alberto

2012-01-01

114

Ischemic neuroprotection by TRPV1 receptor-induced hypothermia.  

PubMed

Although treatment of stroke patients with mild hypothermia is a promising therapeutic approach, chemicals inducing prompt and safe reduction of body temperature are an unmet need. We measured the effects of the transient receptor potential vanilloid-1 (TRPV1) agonist rinvanil on thermoregulation and ischemic brain injury in mice. Intraperitoneal or intracerebroventricular injection of rinvanil induces mild hypothermia that is prevented by the receptor antagonist capsazepine. Both intraischemic and postischemic treatments provide permanent neuroprotection in animals subjected to transient middle cerebral artery occlusion (MCAo), an effect lost in mice artificially kept normothermic. Data indicate that TRPV1 receptor agonists are promising candidates for hypothermic treatment of stroke. PMID:22434066

Muzzi, Mirko; Felici, Roberta; Cavone, Leonardo; Gerace, Elisabetta; Minassi, Alberto; Appendino, Giovanni; Moroni, Flavio; Chiarugi, Alberto

2012-06-01

115

Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association  

PubMed Central

Background Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis. PMID:21359179

Castoria, Gabriella; D'Amato, Loredana; Ciociola, Alessandra; Giovannelli, Pia; Giraldi, Tiziana; Sepe, Leandra; Paolella, Giovanni; Barone, Maria Vittoria; Migliaccio, Antimo; Auricchio, Ferdinando

2011-01-01

116

Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated receptor degradation.  

PubMed Central

We have measured the turnover rate of the polypeptide subunits of the insulin receptor in cultured human lymphocytes (IM-9 line) and have investigated the mechanism of insulin-induced receptor loss. To estimate the rate of receptor degradation, lymphocytes were either pulse-labeled with [35S]methionine or surface labeled with Na125I and lactoperoxidase. The insulin receptor was isolated by immunoprecipitation with anti-receptor antibody, and the rate of loss of radioactivity from each receptor subunit was determined after sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Two major (Mr 135,000 and 95,000) and one minor (Mr 210,000) subunits were found. By both labeling methods, the half-lives of the major insulin receptor subunits were 9--12 hr in normal media. When the cells were cultured in media containing 1 microM insulin the turnover was accelerated 2.5- to 3.5-fold (half-life approximately 3 hr). The increase in degradation rate was dependent on the insulin concentration and correlated well with the ability to "down-regulate" the receptor. Guinea pig insulin was about 2% as active as porcine insulin in accelerating degradation, and human growth hormone was without effect. The acceleration of receptor degradation induced by insulin was partially blocked by 100 microM cycloheximide. The rate of biosynthesis of the insulin receptor did not appear to be altered in the presence of 1 microM insulin after correction for the change in degradation rate. In conclusion, these data demonstrate that insulin-induced receptor loss in cultured lymphocytes is due to accelerated receptor degradation. Images PMID:7031662

Kasuga, M; Kahn, C R; Hedo, J A; Van Obberghen, E; Yamada, K M

1981-01-01

117

Melatonin promotes differentiation of 3T3-L1 fibroblasts.  

PubMed

Melatonin inhibits the genesis and growth of breast cancer by interfering at different levels in the estrogen-signaling pathways. Melatonin inhibits aromatase activity and expression in human breast cancer cells, thus behaving as a selective estrogen enzyme modulator. As the adipose tissue adjacent to the tumor seems to account for most aromatase expression and enzyme activity in breast tumors and also mediates the desmoplastic reaction or accumulation of undifferentiated fibroblasts around malignant epithelial cells, in this work, we studied the effects of melatonin on the conversion of preadipocytes (3T3-L1) into adipocytes and on the capability of these cells to synthesize estrogens by regulating the expression and enzyme activity of aromatase, one of the main enzymes that participates in the synthesis of estrogens in the peritumoral adipose tissue. Thus, in both differentiating and differentiated 3T3-L1 adipocytes, high concentrations of melatonin increased intracytoplasmic triglyceride accumulation, an indicator of adipogenic differentiation. Melatonin (1 mm) significantly increased the expression of both CCAAT/enhancer-binding protein ? and peroxisome proliferator-activated receptor ?, two main regulators of terminal adipogenesis, in 3T3-L1 cells. The presence of melatonin during differentiation also induced a parallel reduction in aromatase expression and activity and expression of the cells. The effects of melatonin were reversed by luzindole, a melatonin receptor antagonist, indicating that melatonin acts through known receptor-mediated mechanisms. These findings suggest that, in human breast tumors, melatonin could stimulate the differentiation of fibroblasts and reduce the aromatase activity and expression in both fibroblasts and adipocytes, thereby reducing the number of estrogen-producing cells proximal to malignant cells. PMID:21718362

Gonzlez, Alicia; Alvarez-Garca, Virginia; Martnez-Campa, Carlos; Alonso-Gonzlez, C; Cos, Samuel

2012-01-01

118

Non-NMDA receptor antagonist-induced drinking in rat  

NASA Technical Reports Server (NTRS)

Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

Xu, Z.; Johnson, A. K.

1998-01-01

119

GABAB receptor phosphorylation regulates KCTD12-induced K+ current desensitization  

PubMed Central

GABAB receptors assemble from GABAB1 and GABAB2 subunits. GABAB2 additionally associates with auxiliary KCTD subunits (named after their K+ channel tetramerization-domain). GABAB receptors couple to heterotrimeric Gproteins and activate inwardly-rectifying K+ channels through the ?? subunits released from the G-protein. Receptor-activated K+ currents desensitize in the sustained presence of agonist to avoid excessive effects on neuronal activity. Desensitization of K+ currents integrates distinct mechanistic underpinnings. GABAB receptor activity reduces protein kinase-A activity, which reduces phosphorylation of serine-892 in GABAB2 and promotes receptor degradation. This form of desensitization operates on the time scale of several minutes to hours. A faster form of desensitization is induced by the auxiliary subunit KCTD12, which interferes with channel activation by binding to the G-protein ?? subunits. Here we show that the two mechanisms of desensitization influence each other. Serine-892 phosphorylation in heterologous cells rearranges KCTD12 at the receptor and slows KCTD12-induced desensitization. Likewise, protein kinase-A activation in hippocampal neurons slows fast desensitization of GABAB receptor-activated K+ currents while protein kinase-A inhibition accelerates fast desensitization. Protein kinase-A fails to regulate fast desensitization in KCTD12 knock-out mice or knock-in mice with a serine-892 to alanine mutation, thus demonstrating that serine-892 phosphorylation regulates KCTD12-induced desensitization in vivo. Fast current desensitization is accelerated in hippocampal neurons carrying the serine-892 to alanine mutation, showing that tonic serine-892 phosphorylation normally limits KCTD12-induced desensitization. Tonic serine-892 phosphorylation is in turn promoted by assembly of receptors with KCTD12. This cross-regulation of serine-892 phosphorylation and KCTD12 activity sharpens the response during repeated receptor activation. PMID:25065880

Adelfinger, Lisa; Turecek, Rostislav; Ivankova, Klara; Jensen, Anders A.; Moss, Stephen J.; Gassmann, Martin; Bettler, Bernhard

2015-01-01

120

Obesity induces functional astrocytic leptin receptors in hypothalamus  

PubMed Central

The possible role of astrocytes in the regulation of feeding has been overlooked. It is well-established that the endothelial cells constituting the bloodbrain barrier transport leptin from blood to brain and that hypothalamic neurons respond to leptin to induce anorexic signaling. However, few studies have addressed the role of astrocytes in either leptin transport or cellular activation. We recently showed that the obese agouti viable yellow mouse has prominent astrocytic expression of the leptin receptor. In this study, we test the hypothesis that diet-induced obesity increases astrocytic leptin receptor expression and function in the hypothalamus. Double-labelling immunohistochemistry and confocal microscopic analysis showed that all astrocytes in the hypothalamus express leptin receptors. In adult obese mice, 2 months after being placed on a high-fat diet, there was a striking increase of leptin receptor (+) astrocytes, most prominent in the dorsomedial hypothalamus and arcuate nucleus. Agouti viable yellow mice with their adult-onset obesity showed similar changes, but the increase of leptin receptor (+) astrocytes was barely seen in ob/ob or db/db mice with their early-onset obesity and defective leptin systems. The marked leptin receptor protein expression in the astrocytes, shown with several antibodies against different receptor epitopes, was supported by RTPCR detection of leptin receptor-a and -b mRNAs in primary hypothalamic astrocytes. Unexpectedly, the protein expression of GFAP, a marker of astrocytes, was also increased in adult-onset obesity. Real-time confocal imaging showed that leptin caused a robust increase of calcium signalling in primary astrocytes from the hypothalamus, confirming their functionality. The results indicate that metabolic changes in obese mice can rapidly alter leptin receptor expression and astrocytic activity, and that leptin receptor is responsible for leptin-induced calcium signalling in astrocytes. This novel and clinically relevant finding opens new avenues in astrocyte biology. PMID:19293246

Hsuchou, Hung; He, Yi; Kastin, Abba J.; Tu, Hong; Markadakis, Emily N.; Rogers, Richard C.; Fossier, Paul B.

2009-01-01

121

Psychostimulant-Induced Neuroadaptations in Nucleus Accumbens AMPA Receptor Transmission  

PubMed Central

Medium spiny neurons of the nucleus accumbens serve as the interface between corticolimbic regions that elicit and modulate motivated behaviors, including those related to drugs of abuse, and motor regions responsible for their execution. Medium spiny neurons are excited primarily by AMPA-type glutamate receptors, making AMPA receptor transmission in the accumbens a key regulatory point for addictive behaviors. In animal models of cocaine addiction, changes in the strength of AMPA receptor transmission onto accumbens medium spiny neurons have been shown to underlie cocaine-induced behavioral adaptations related to cocaine seeking. Here we review changes in AMPA receptor levels and subunit composition that occur after discontinuing different types of cocaine exposure, as well as changes elicited by cocaine reexposure following abstinence or extinction. Signaling pathways that regulate these cocaine-induced adaptations will also be considered, as they represent potential targets for addiction pharmacotherapies. PMID:23232118

Pierce, R. Christopher; Wolf, Marina E.

2013-01-01

122

Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors  

Microsoft Academic Search

Rationale: Central cannabinoid systems have been implicated in appetite regulation by the respective hyperphagic actions of exogenous\\u000a cannabinoids, such as ?9-THC, and hypophagic effects of selective cannabinoid receptor antagonists. Objective: This study examined whether an endogenous cannabinoid, anandamide, could induce overeating, via a specific action at central\\u000a (CB1) cannabinoid receptors. Methods: Pre-satiated male rats (n=18), received subcutaneous injections of anandamide

Claire M. Williams; Tim C. Kirkham

1999-01-01

123

Morphine Induces Desensitization of Insulin Receptor Signaling  

Microsoft Academic Search

between the MOR and the insulin receptor (IR) signaling cascades. We show that prolonged morphine exposure of cell lines expressing endogenous or transfected MOR, IR, and the insulin substrate 1 (IRS-1) protein specifically desensitizes IR signaling to Akt and ERK cascades. Morphine caused serine phosphory- lation of the IR and impaired the formation of the signaling complex among the IR,

Yu Li; Shoshana Eitan; Jiong Wu; Christopher J. Evans; Brigitte Kieffer; Xiaojian Sun; Roberto D. Polakiewicz

2003-01-01

124

The Urokinase Receptor Can Be Induced by Borrelia burgdorferi through Receptors of the Innate Immune System  

Microsoft Academic Search

Received 18 June 2003\\/Returned for modification 11 July 2003\\/Accepted 24 July 2003 Monocytic cells exposed to Borrelia burgdorferi, through unknown receptors, overexpress the urokinase receptor (uPAR), a key mediator of the plasminogen activation system. We show that combined blockade of CD14 and TLR2 causes a significant inhibition of B. burgdorferi-induced uPAR in Mono Mac 6 (MM6) cells. Other pattern recognition

James L. Coleman; Jorge L. Benach

2003-01-01

125

Type III Secretion Needle Proteins Induce Cell Signaling and Cytokine Secretion via Toll-Like Receptors  

PubMed Central

Pathogens are recognized by hosts by use of various receptors, including the Toll-like receptor (TLR) and Nod-like receptor (NLR) families. Ligands for these varied receptors, including bacterial products, are identified by the immune system, resulting in development of innate immune responses. Only a couple of components from type III secretion (T3S) systems are known to be recognized by TLR or NLR family members. Known T3S components that are detected by pattern recognition receptors (PRRs) are (i) flagellin, detected by TLR5 and NLRC4 (Ipaf); and (ii) T3S rod proteins (PrgJ and homologs) and needle proteins (PrgI and homologs), detected by NAIP and the NLRC4 inflammasome. In this report, we characterize the induction of proinflammatory responses through TLRs by the Yersinia pestis T3S needle protein, YscF, the Salmonella enterica needle proteins PrgI and SsaG, and the Shigella needle protein, MxiH. More specifically, we determine that the proinflammatory responses occur through TLR2 and -4. These data support the hypothesis that T3S needles have an unrecognized role in bacterial pathogenesis by modulating immune responses. PMID:24643544

Jessen, Danielle L.; Osei-Owusu, Patrick; Toosky, Melody; Roughead, William; Bradley, David S.

2014-01-01

126

Oxytocin induces social communication by activating arginine-vasopressin V1a receptors and not oxytocin receptors.  

PubMed

Arginine-vasopressin (AVP) and oxytocin (OT) and their receptors are very similar in structure. As a result, at least some of the effects of these peptides may be the result of crosstalk between their canonical receptors. The present study investigated this hypothesis by determining whether the induction of flank marking, a form of social communication in Syrian hamsters, by OT is mediated by the OT receptor or the AVP V1a receptor. Intracerebroventricular (ICV) injections of OT or AVP induced flank marking in a dose-dependent manner although the effects of AVP were approximately 100 times greater than those of OT. Injections of highly selective V1a receptor agonists but not OT receptor agonists induced flank marking, and V1a receptor antagonists but not OT receptor antagonists significantly inhibited the ability of OT to induce flank marking. Lastly, injection of alpha-melanocyte-stimulating hormone (?-MSH), a peptide that stimulates OT but not AVP release, significantly increased odor-induced flank marking, and these effects were blocked by a V1a receptor antagonist. These data demonstrate that OT induces flank marking by activating AVP V1a and not OT receptors, suggesting that the V1a receptor should be considered to be an OT receptor as well as an AVP receptor. PMID:25173438

Song, Zhimin; McCann, Katharine E; McNeill, John K; Larkin, Tony E; Huhman, Kim L; Albers, H Elliott

2014-12-01

127

Reverse tri-iodothyronine as part of alpha 2 adrenergic receptors.  

PubMed

Thyroid hormones affect alpha and beta adrenergic receptor number profoundly. Presynaptic and post synaptic alpha 2 adrenergic receptor number is decreased in hypothyroidism. Behavioural studies show decreased presynaptic alpha 2 adrenergic function in hypothyroidism and increased function in hyperthyroidism. Reverse tri-iodothyronine (rT3) levels are also low in hypothyroidism and levels are high in hyperthyroidism induced by T4 administration. The present author has proposed that rT3 is incorporated into the alpha 2 adrenergic receptor where it provides the aromatic binding site. Tri-iodothyronine (T3) administration does not raise alpha 2 adrenergic receptor numbers above normal control values. This is consistent with the author's hypothesis as T3 cannot be converted to rT3. This paper describes how rT3 could provide the aromatic binding site for drugs that act on alpha 2 adrenergic receptors. PMID:2879211

Clur, A

1986-11-01

128

Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors  

PubMed Central

The exacerbation of musculoskeletal pain by stress in humans is modeled by the musculoskeletal hyperalgesia in rodents following a forced swim. We hypothesized that stress-sensitive corticotropin releasing factor (CRF) receptors and transient receptor vanilloid 1 (TRPV1) receptors are responsible for the swim stress-induced musculoskeletal hyperalgesia. We confirmed that a cold swim (26C) caused a transient, morphine-sensitive decrease in grip force responses reflecting musculoskeletal hyperalgesia in mice. Pretreatment with the CRF2 receptor antagonist astressin 2B, but not the CRF1 receptor antagonist NBI-35965, attenuated this hyperalgesia. Desensitizing the TRPV1 receptor centrally or peripherally using desensitizing doses of resiniferatoxin (RTX) failed to prevent the musculoskeletal hyperalgesia produced by cold swim. SB-366791, a TRPV1 antagonist, also failed to influence swim-induced hyperalgesia. Together these data indicate that swim stress-induced musculoskeletal hyperalgesia is mediated, in part, by CRF2 receptors but is independent of the TRPV1 receptor. PMID:23624287

Abdelhamid, Ramy E.; Kovacs, Katalin J.; Pasley, Jeff D.; Nunez, Myra G.; Larson, Alice A.

2013-01-01

129

Subthalamotomy-induced changes in dopamine receptors in parkinsonian monkeys.  

PubMed

Subthalamotomy allows a reduction of doses of l-DOPA in dyskinetic patients while its antiparkinsonian benefits are preserved. However, the mechanisms of the potentiation of this response to medication remain to be elucidated. Hence, dopamine D1 and D2 receptors as well as the dopamine transporter were investigated using receptor binding autoradiography. D1 and D2 receptors as well as preproenkephalin and preprodynorphin mRNA levels were measured by in situ hybridization. Four dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) parkinsonian monkeys that underwent unilateral subthalamotomy were compared to four controls, four saline-treated and four l-DOPA-treated MPTP monkeys. Dopamine, its metabolites and its transporter were extensively and similarly decreased in all parkinsonian monkeys. D1 receptor specific binding was decreased in the striatum of all MPTP monkeys. The l-DOPA-induced decrease in D1 receptor specific binding was reversed in the striatum ipsilateral to subthalamotomy. D1 receptor mRNA levels followed a similar pattern. D2 receptor specific binding and mRNA levels remained unchanged in all groups. Striatal preproenkephalin mRNA levels were overall increased in MPTP monkeys; the STN-lesioned parkinsonian group had significantly lower values than the saline-treated and l-DOPA-treated parkinsonian monkeys in the dorsolateral putamen. Striatal preprodynorphin mRNA levels remained unchanged in MPTP monkeys compared to controls whereas it increased in all monkeys treated with l-DOPA compared to controls; subthalamotomy induced a decrease in the dorsolateral putamen ipsilateral to surgery. The improved motor response to l-DOPA after subthalamotomy in the parkinsonian monkeys investigated may be associated with an increased synthesis and expression of D1 receptors ipsilateral to STN lesion of the direct pathway. PMID:25172808

Jourdain, Vincent A; Morin, Nicolas; Morissette, Marc; Grgoire, Laurent; Di Paolo, Thrse

2014-11-01

130

Hypoxia-Induced Alterations of Neutrophil Membrane Receptors  

Microsoft Academic Search

Extravasation of leukocytes at sites of ischemia may mediate tissue injury. To determine how leukocyte accumulation may be induced by ischemia, effects of hypoxia on basal neutrophil expression of adhesion and activation receptors were examined. Effects of hypoxia upon preactivated cells were also studied. To determine whether regulation of expression is dependent on oxygen availability or on mitochondrial respiration, the

G. Scannell; K. Waxman; N. D. Vaziri; J. Zhang; C. J. Kaupke; M. Jalali; C. C. Hecht

1995-01-01

131

Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells  

SciTech Connect

Highlights: ? We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ? 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ? A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ? This antagonist had no effects on RXR? and PPAR? levels in 9-cis-RA-treated cells. ? 9-cis-RA-induced decrease in both RXR? and PPAR? was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor ? (RXR?) with peroxisome proliferator-activated receptor ? (PPAR?) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RAs inhibitory effects on adipogenesis, but not on the intracellular levels of both RXR? and PPAR?. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPAR?s levels in a RXR activation-independent manner.

Sagara, Chiaki; Takahashi, Katsuhiko [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)] [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan); Kagechika, Hiroyuki [School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062 (Japan)] [School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062 (Japan); Takahashi, Noriko, E-mail: t-noriko@hoshi.ac.jp [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)] [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)

2013-03-29

132

Trans-cinnamic acid increases adiponectin and the phosphorylation of AMP-activated protein kinase through G-protein-coupled receptor signaling in 3T3-L1 adipocytes.  

PubMed

Adiponectin and intracellular 5'adenosine monophosphate-activated protein kinase (AMPK) are important modulators of glucose and fat metabolism. Cinnamon exerts beneficial effects by improving insulin sensitivity and blood lipids, e.g., through increasing adiponectin concentrations and AMPK activation. The underlying mechanism is unknown. The Gi/Go-protein-coupled receptor (GPR) 109A stimulates adiponectin secretion after binding its ligand niacin. Trans-cinnamic acid (tCA), a compound of cinnamon is another ligand. We hypothesize whether AMPK activation and adiponectin secretion by tCA is transmitted by GPR signaling. Differentiated 3T3-L1 cells were incubated with pertussis toxin (PTX), an inhibitor of G(i)/G(o)-protein-coupling, and treated with different tCA concentrations. Treatment with tCA increased adiponectin and the pAMPK/AMPK ratio (p ? 0.001). PTX incubation abolished the increased pAMPK/AMPK ratio and adiponectin secretion. The latter remained increased compared to controls (p ? 0.002). tCA treatment stimulated adiponectin secretion and AMPK activation; the inhibitory effect of PTX suggests GPR is involved in tCA stimulated signaling. PMID:24557583

Kopp, Christina; Singh, Shiva P; Regenhard, Petra; Mller, Ute; Sauerwein, Helga; Mielenz, Manfred

2014-01-01

133

Trans-Cinnamic Acid Increases Adiponectin and the Phosphorylation of AMP-Activated Protein Kinase through G-Protein-Coupled Receptor Signaling in 3T3-L1 Adipocytes  

PubMed Central

Adiponectin and intracellular 5?adenosine monophosphate-activated protein kinase (AMPK) are important modulators of glucose and fat metabolism. Cinnamon exerts beneficial effects by improving insulin sensitivity and blood lipids, e.g., through increasing adiponectin concentrations and AMPK activation. The underlying mechanism is unknown. The Gi/Go-protein-coupled receptor (GPR) 109A stimulates adiponectin secretion after binding its ligand niacin. Trans-cinnamic acid (tCA), a compound of cinnamon is another ligand. We hypothesize whether AMPK activation and adiponectin secretion by tCA is transmitted by GPR signaling. Differentiated 3T3-L1 cells were incubated with pertussis toxin (PTX), an inhibitor of Gi/Go-protein-coupling, and treated with different tCA concentrations. Treatment with tCA increased adiponectin and the pAMPK/AMPK ratio (p ? 0.001). PTX incubation abolished the increased pAMPK/AMPK ratio and adiponectin secretion. The latter remained increased compared to controls (p ? 0.002). tCA treatment stimulated adiponectin secretion and AMPK activation; the inhibitory effect of PTX suggests GPR is involved in tCA stimulated signaling. PMID:24557583

Kopp, Christina; Singh, Shiva P.; Regenhard, Petra; Mller, Ute; Sauerwein, Helga; Mielenz, Manfred

2014-01-01

134

Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin ? gene promoter  

SciTech Connect

Highlights: MED1 is a bona fide T3-dependent coactivator on TSHB promoter. Mice with LxxLL-mutant MED1 have attenuated TSH? mRNA and thyroid hormone levels. MED1 activates TSHB promoter T3-dependently in cultured cells. T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor ? (TR?) on the TSH? gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSH? gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSH? gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSH? gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSH? gene promoter.

Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei; Ishino, Ruri; Urahama, Norinaga; Hasegawa, Natsumi [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan)] [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Roeder, Robert G. [Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)] [Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Ito, Mitsuhiro, E-mail: itomi@med.kobe-u.ac.jp [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan) [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Department of Family and Community Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 654-0142 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan)

2013-10-11

135

Central glucocorticoid receptors modulate the expression of spinal cannabinoid receptors induced by chronic morphine exposure.  

PubMed

Central cannabinoid receptors (CBRs) have been implicated in the opioid analgesic effects. However, it remains unclear as to whether the expression of central CBRs would be altered after repeated morphine exposure. Here, we show that chronic intrathecal treatment with morphine (10 microg, twice daily for 6 days) induced a time-dependent upregulation of both CB-1 and CB-2 receptors within the spinal cord dorsal horn. This morphine-induced CB-1 and CB-2 upregulation was dose-dependently attenuated by the intrathecal co-administration of morphine with the glucocorticoid receptor (GR) antagonist RU38486 (0.25, 0.5, or 2 microg). The intrathecal RU38486 treatment regimen also attenuated the development of morphine tolerance. These results indicate that the expression of spinal CBRs was altered following repeated morphine exposure and regulated by the activation of central GRs. PMID:16150424

Lim, Grewo; Wang, Shuxing; Mao, Jianren

2005-10-12

136

Protection by the flavonoids quercetin and luteolin against peroxide- or menadione-induced oxidative stress in MC3T3-E1 osteoblast cells.  

PubMed

Potential protective effects of the flavonoids quercetin and luteolin have been examined against the oxidative stress of MC3T3-E1 osteoblast-like cells. Although hydrogen peroxide and menadione reduced cell viability, the toxicity was prevented by desferrioxamine or catalase but not superoxide dismutase, suggesting the involvement of hydrogen peroxide in both cases. Quercetin and luteolin reduced the oxidative damage, especially that caused by hydrogen peroxide. When cultures were pre-incubated with quercetin or luteolin, protection was reduced or lost. Protection was also reduced when a 24h pre-incubation with the flavonoids was followed by exposure to menadione alone. Pretreating cultures with luteolin impaired protection by quercetin, whereas quercetin pretreatment did not affect protection by luteolin. It is concluded that quercetin and luteolin suppress oxidative damage to MC3T3-E1 cells, especially caused by peroxide. The reduction in protection by pretreatment implies a down-regulation of part of the toxic transduction pathway. PMID:25427161

Fatokun, Amos A; Tome, Mercedes; Smith, Robert A; Darlington, L Gail; Stone, Trevor W

2014-11-26

137

TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation  

PubMed Central

The TRPA1 receptor is a member of the transient receptor potential (TRP) family of ion channels expressed in nociceptive neurons. TRPA1 receptors are targeted by pungent compounds from mustard and garlic and environmental irritants such as formaldehyde and acrolein. Ingestion or inhalation of these chemical agents causes irritation and burning in the nasal and oral mucosa and respiratory lining. Headaches have been widely reported to be induced by inhalation of environmental irritants, but it is unclear how these agents produce headache. Stimulation of trigeminal neurons releases CGRP and substance P and induces neurogenic inflammation associated with the pain of migraine. Here we test the hypothesis that activation of TRPA1 receptors are the mechanistic link between environmental irritants and peptide mediated neurogenic inflammation. Known TRPA1 agonists and environmental irritants stimulate CGRP release from dissociated rat trigeminal ganglia neurons and this release is blocked by a selective TRPA1 antagonist, HC-030031. Further, TRPA1 agonists and environmental irritants increase meningeal blood flow following intranasal administration. Prior dural application of the CGRP antagonist, CGRP837, or intranasal or dural administration of HC-030031, blocks the increases in blood flow elicited by environmental irritants. Together these results demonstrate that TRPA1 receptor activation by environmental irritants stimulates CGRP release and increases cerebral blood flow. We suggest that these events contribute to headache associated with environmental irritants. PMID:21075522

Kunkler, Phillip Edward; Ballard, Carrie Jo; Oxford, Gerry Stephen; Hurley, Joyce Harts

2010-01-01

138

Involvement of phosphatidylcholine hydrolysis by phospholipase C in prostaglandin F2alpha-induced 1,2-diacylglycerol formation in osteoblast-like MC3T3-E1 cells.  

PubMed

We previously demonstrated that a prostaglandin F2alpha (PGF2alpha)-induced, sustained increase in 1,2-diacylglycerol (DAG) production was important for proliferation in osteoblast-like MC3T3-E1 cells. The 1,2-DAG formation is mediated by various enzymes, such as phos-phoinositide (PI)-specific phospholipase C (PLC), phospholipase D (PLD), and phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). In the present study, to elucidate the mechanism of the 1,2-DAG formation, we have examined the PGF2alpha-induced production of [(3)H]phosphorylcholine, a product of PC-PLC activity, in [(3)H]choline-labeled MC3T3-E1 cells. The PGF2alpha-induced [(3)H]phosphorylcholine production was inhibited by genistein, a potent protein tyrosine kinase inhibitor, and increased by vanadate, a potent protein tyrosine phosphatase inhibitor. However, there were no effects after treatment with protein kinase C (PKC) inhibitors, the guanosine triphosphate (GTP) binding protein activator, NaF/AlCl(3), a Ca(2+)-ionophore, or the potent activator of PKC, phorbol 12-myristate 13-acetate (PMA), suggesting that a tyrosine kinase(s) was involved in the PGF2alpha-induced [(3)H]phosphorylcholine formation. Furthermore, a PGF2alpha analogue, 16-(3-trifluoromethylphenoxy)-Omega-tetranor-trans-Delta(2) PGF2alpha methyl ester (ONO-995), stimulated the proliferation of MC3T3-E1 cells to a level similar to that seen with PGF2alpha, and also caused phosphorylcholine and 1,2-DAG generation. However, neither an increase in intracellular free calcium ion ([Ca(2+)]i) levels by PI-PLC, nor phosphatidylethanol formation (and choline production) by PC-PLD were observed. From these results, we conclude that PGF2alpha-induced 1,2-DAG accumulation was mediated mainly via tyrosine kinase(s)-dependent PC hydrolysis by PLC activity in osteoblast-like MC3T3-E1 cells. PMID:15108061

Sakai, Takayuki; Sugiyama, Takatoshi; Banno, Yoshiko; Kato, Yukihiro; Nozawa, Yoshinori

2004-01-01

139

Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes  

SciTech Connect

Highlights: ? Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ? Adipose lipin-1 expression is reduced in obesity. ? ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ? Activation of PPAR-? recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-? and interleukin-1? reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-? in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-? recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan) [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan)] [Innovation Center, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)] [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayoshi [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)] [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)] [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)] [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan)] [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)] [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757, Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

2013-02-01

140

Epidermal growth factor receptor-mediated expression of NF-?B transcription factor in osteoblastic MC3T3-E1 cells cultured under a low-calcium environment  

Microsoft Academic Search

We examined the effect of a low calcium environment on DNA-protein binding reaction activity of the transcription factor, NF-?B in osteoblastic MC3T3-E1 cells, using an electrophoretic mobility shift assay. Binding sites for the NF-?B sequence in DNA in nuclear protein in MC3T3-E1 cells are present. This DNA-protein binding reaction activity increased in MC3T3-E1 cells with EGF treatment, compared with those

A. Matsumoto; Y. Deyama; A. Deyama; M. Okitsu; Y. Yoshimura; K. Suzuki

1998-01-01

141

The Dual Orexin Receptor Antagonist Almorexant Induces Sleep and Decreases Orexin-Induced Locomotion by Blocking Orexin 2 Receptors  

PubMed Central

Study Objectives: Orexin peptides activate orexin 1 and orexin 2 receptors (OX1R and OX2R), regulate locomotion and sleep-wake. The dual OX1R/OX2R antagonist almorexant reduces activity and promotes sleep in multiple species, including man. The relative contributions of the two receptors in locomotion and sleep/wake regulation were investigated in mice. Design: Mice lacking orexin receptors were used to determine the contribution of OX1R and OX2R to orexin A-induced locomotion and to almorexant-induced sleep. Setting: N/A. Patients or Participants: C57BL/6J mice and OX1R+/+, OX1R-/-, OX2R+/+, OX2R-/- and OX1R-/-/OX2R-/- mice. Interventions: Intracerebroventricular orexin A; oral dosing of almorexant. Measurements and Results: Almorexant attenuated orexin A-induced locomotion. As in other species, almorexant dose-dependently increased rapid eye movement sleep (REM) and nonREM sleep in mice. Almorexant and orexin A were ineffective in OX1R-/-/OX2R-/- mice. Both orexin A-induced locomotion and sleep induction by almorexant were absent in OX2R-/- mice. Interestingly, almorexant did not induce cataplexy in wild-type mice under conditions where cataplexy was seen in mice lacking orexins and in OX1R-/-/OX2R-/- mice. Almorexant dissociates very slowly from OX2R as measured functionally and in radioligand binding. Under non equilibrium conditions in vitro, almorexant was a dual antagonist whereas at equilibrium, almorexant became OX2R selective. Conclusions: In vivo, almorexant specifically inhibits the actions of orexin A. The two known orexin receptors mediate sleep induction by almorexant and orexin A-induced locomotion. However, OX2R activation mediates locomotion induction by orexin A and antagonism of OX2R is sufficient to promote sleep in mice. Citation: Mang GM; Drst T; Brki H; Imobersteg S; Abramowski D; Schuepbach E; Hoyer D; Fendt M; Gee CE. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors. SLEEP 2012;35(12):1625-1635. PMID:23204605

Mang, Graldine M.; Drst, Thomas; Brki, Hugo; Imobersteg, Stefan; Abramowski, Dorothee; Schuepbach, Edi; Hoyer, Daniel; Fendt, Markus; Gee, Christine E.

2012-01-01

142

Ribonuclease III cleavage of bacteriophage T3RNA polymerase transcripts to late T3 mRNAs.  

PubMed Central

In vitro transcription of T3 DNA by T3 phage-induced RNA polymerase (nucleosidetriphosphate:RNA nucleotidyltransferase; EC 2.7.7.6) yields eight discrete RNAs (designated I-VIII) with molecular weights of approximately 6.2, 4.7, 4, 2.8, 1.8, 0.9, 0.52, and 0.21 X 10(6), respectively. Comparison of the size of in vitro T3 RNA polymerase transcripts with in vivo late T3 mRNAs indicates that several late RNAs produced in T3-infected cells do not correspond to any of the in vitro RNAs, and no RNAs as large as the three largest in vitro RNA species, I, II, and III, are observed. Escherichia coli RNase III cleaves these three high molecular weight T3 RNA polymerase transcripts to discrete RNAs that comigrate in polyacrylamide gel electrophoresis with some of the late T3 RNAs. Images PMID:337303

Majumder, H K; Bishayee, S; Chakraborty, P R; Maitra, U

1977-01-01

143

Mechanisms that underlie ?-opioid receptor agonist-induced constipation: differential involvement of ?-opioid receptor sites and responsible regions.  

PubMed

Reducing the side effects of pain treatment is one of the most important strategies for improving the quality of life of cancer patients. However, little is known about the mechanisms that underlie these side effects, especially constipation induced by opioid receptor agonists; i.e., do they involve naloxonazine-sensitive versus -insensitive sites or central-versus-peripheral ?-opioid receptors? The present study was designed to investigate the mechanisms of ?-opioid receptor agonist-induced constipation (i.e., the inhibition of gastrointestinal transit and colonic expulsion) that are antagonized by the peripherally restricted opioid receptor antagonist naloxone methiodide and naloxonazine in mice. Naloxonazine attenuated the fentanyl-induced inhibition of gastrointestinal transit more potently than the inhibition induced by morphine or oxycodone. Naloxone methiodide suppressed the oxycodone-induced inhibition of gastrointestinal transit more potently than the inhibition induced by morphine, indicating that ?-opioid receptor agonists induce the inhibition of gastrointestinal transit through different mechanisms. Furthermore, we found that the route of administration (intracerebroventricular, intrathecally, and/or intraperitoneally) of naloxone methiodide differentially influenced the suppressive effect on the inhibition of colorectal transit induced by morphine, oxycodone, and fentanyl. These results suggest that morphine, oxycodone, and fentanyl induce constipation through different mechanisms (naloxonazine-sensitive versus naloxonazine-insensitive sites and central versus peripheral opioid receptors), and these findings may help us to understand the characteristics of the constipation induced by each ?-opioid receptor agonist and improve the quality of life by reducing constipation in patients being treated for pain. PMID:23902939

Mori, Tomohisa; Shibasaki, Yumiko; Matsumoto, Kenjiro; Shibasaki, Masahiro; Hasegawa, Minami; Wang, Erika; Masukawa, Daiki; Yoshizawa, Kazumi; Horie, Syunji; Suzuki, Tsutomu

2013-10-01

144

The adenosine receptor antagonist theophylline induces a monoamine-dependent increase of the anticataleptic effects of NMDA receptor antagonists  

Microsoft Academic Search

Previous work revealed that adenosine antagonists as theophylline reversed neuroleptic-induced catalepsy and potentiated anticataleptic effects of dopamine agonists reflecting specific adenosine-dopamine receptor interactions in the central nervous system. We tested whether similar functional interactions exist between adenosine receptors and glutamate receptors of the N-methyl-D-asparte (NMDA) subtype. The present study demonstrates that the anticataleptic effects of the competitive NMDA receptor antagonist

W. Hauber; M. Miinkle

1996-01-01

145

SP600125 reduces lipopolysaccharide-induced apoptosis and restores the early-stage differentiation of osteoblasts inhibited by LPS through the MAPK pathway in MC3T3-E1 cells.  

PubMed

Bone degradation is a serious complication of chronic inflammatory diseases such as septic arthritis, osteomyelitis, and infected orthopedic implant failure. Effective therapeutic treatments for bacteria-caused bone destruction are limited. In a previous study, we found that lipopolysaccharide (LPS) induced osteoblast apoptosis and inhibited early and late-stage differentiation of osteoblasts via activation of the C-Jun N-terminal kinase (JNK) pathway. This study aimed to investigate the effect of JNK inhibition by SP600125 on the apoptosis and differentiation of MC3T3-E1 osteoblasts suppressed by LPS. Following pretreatment with SP600125 for 2h, MC3T3-E1 cells were treated LPS. Following this treatment, cell viability, activity of alkaline phosphatase(ALP) and caspase-3 were measured. mRNA and protein expression of osteoblast-specific genes, mitogen-activated protein kinases (MAPKs), Bax, Bcl-2 and caspase-3 were determined by quantitative polymerase chain reaction (qPCR) and western blot analysis. The results showed that SP600125 significantly restored LPS-inhibited cell metabolism and ALP activity and reduced the upregulated caspase-3 activity of MC3T3-E1 cells induced by LPS. SP600125 also significantly restored the LPS-suppressed mRNA and protein expression levels of early-stage osteoblast-associated genes in a dose-dependent manner. SP600125 significantly downregulated expression of Bax and caspase-3 but upregulated Bcl-2 expression in MC3T3-E1 cells stimulated by LPS. Furthermore, SP600125 selectively triggered the MAPK pathway by reducing the expression of JNK1, while enhancing the expression of extracellular signal?regulated kinase1(ERK1). Our results suggested that SP600125 reduced LPS-induced osteoblast apoptosis and restored early-stage differentiation of osteoblasts inhibited by LPS through MAPK signaling. These findings suggest that the therapeutic agent that inhibited JNK1 is of potential use for the restoration of osteoblast function in bacteria-induced bone diseases. PMID:25760015

Guo, Chun; Wang, Sheng-Li; Xu, Song-Tao; Wang, Jian-Guo; Song, Guo-Hua

2015-05-01

146

Crosslinking-Induced Endocytosis of Acetylcholine Receptors by Quantum Dots  

PubMed Central

In a majority of patients with myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies target postsynaptic AChR clusters and thus compromise the membrane integrity of neuromuscular junctions (NMJs) and lead to muscle weakness. Antibody-induced endocytosis of AChRs in the postsynaptic membrane represents the initial step in the pathogenesis of MG; however, the molecular mechanisms underlying AChR endocytosis remain largely unknown. Here, we developed an approach to mimic the pathogenic antibodies for inducing the crosslinking and internalization of AChRs from the postsynaptic membrane. Using biotin-?-bungarotoxin and quantum dot (QD)-streptavidin, cell-surface and internalized AChRs could be readily distinguished by comparing the size, fluorescence intensity, trajectory, and subcellular localization of the QD signals. QD-induced AChR endocytosis was mediated by clathrin-dependent and caveolin-independent mechanisms, and the trafficking of internalized AChRs in the early endosomes required the integrity of microtubule structures. Furthermore, activation of the agrin/MuSK (muscle-specific kinase) signaling pathway strongly suppressed QD-induced internalization of AChRs. Lastly, QD-induced AChR crosslinking potentiated the dispersal of aneural AChR clusters upon synaptic induction. Taken together, our results identify a novel approach to study the mechanisms of AChR trafficking upon receptor crosslinking and endocytosis, and demonstrate that agrin-MuSK signaling pathways protect against crosslinking-induced endocytosis of AChRs. PMID:24587270

Geng, Lin; Peng, H. Benjamin

2014-01-01

147

Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome ProliferatorActivated Receptor Gamma-Independent Mechanism  

PubMed Central

Background: Bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE), used in manufacturing coatings and resins, leach from packaging materials into food. Numerous studies suggested that BPA and BADGE may have adverse effects on human health, including the possibility that exposure to such chemicals can be superimposed on traditional risk factors to initiate or exacerbate the development of obesity. BPA is a suspected obesogen, whereas BADGE, described as a peroxisome proliferatoractivated receptor gamma (PPAR?) antagonist, could reduce weight gain. Objectives: We sought to test the adipogenic effects of BADGE in a biologically relevant cell culture model. Methods: We used multipotent mesenchymal stromal stem cells (MSCs) to study the adipogenic capacity of BADGE and BPA and evaluated their effects on adipogenesis, osteogenesis, gene expression, and nuclear receptor activation. Discussion: BADGE induced adipogenesis in human and mouse MSCs, as well as in mouse 3T3-L1 preadipocytes. In contrast, BPA failed to promote adipogenesis in MSCs, but induced adipogenesis in 3T3-L1 cells. BADGE exposure elicited an adipogenic gene expression profile, and its ability to induce adipogenesis and the expression of adipogenic genes was not blocked by known PPAR? antagonists. Neither BADGE nor BPA activated or antagonized retinoid X receptor (RXR) or PPAR? in transient transfection assays. Conclusions: BADGE can induce adipogenic differentiation in both MSCs and in preadipocytes at low nanomolar concentrations comparable to those that have been observed in limited human biomonitoring. BADGE probably acts through a mechanism that is downstream of, or parallel to, PPAR?. PMID:22763116

Chamorro-Garca, Raquel; Kirchner, Sverine; Li, Xia; Janesick, Amanda; Casey, Stephanie C.; Chow, Connie

2012-01-01

148

Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation.  

PubMed

Epicatechin, a flavonoid, is a well-known antioxidant linked to a variety of protective effects in both humans and animals. In particular, its role in protection against cardiovascular disease has been demonstrated by epidemiologic studies. Low-dose epicatechin, which does not have significant antioxidant activity, is also protective; however, the mechanism by which low-dose epicatechin induces this effect is unknown. Our laboratory tested the hypothesis that low-dose epicatechin mediates cardiac protection via opioid receptor activation. C57BL/6 mice were randomly assigned to 1 of 10 groups: control, epicatechin, naloxone (nonselective opioid receptor antagonist), epicatechin + naloxone, naltrindole (?-specific opioid receptor antagonist), epicatechin + naltrindole, norbinaltorphimine (nor-BNI, ?-specific opioid receptor antagonist), epicatechin + nor-BNI, 5-hydroxydecanoic acid [5-HD, ATP-sensitive potassium channel antagonist], and epicatechin + 5-HD. Epicatechin (1 mg/kg) or other inhibitors (5 mg/kg) were administered by oral gavage or intraperitoneal injection, respectively, daily for 10 days. Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion, and infarct size was determined via planimetry. Whole heart homogenates were assayed for downstream opioid receptor signaling targets. Infarct size was significantly reduced in epicatechin- and epicatechin + nor-BNI-treated mice compared with control mice. This protection was blocked by naloxone, naltrindole, and 5-HD. Epicatechin and epicatechin + nor-BNI increased the phosphorylation of Src, Akt, and I?B?, while simultaneously decreasing the expression of c-Jun NH(2)-terminal kinase and caspase-activated DNase. All signaling effects are consistent with opioid receptor stimulation and subsequent cardiac protection. Naloxone, naltrindole, and 5-HD attenuated these effects. In conclusion, epicatechin acts via opioid receptors and more specifically through the ?-opioid receptor to produce cardiac protection from ischemia-reperfusion injury. PMID:20833967

Panneerselvam, Mathivadhani; Tsutsumi, Yasuo M; Bonds, Jacqueline A; Horikawa, Yousuke T; Saldana, Michelle; Dalton, Nancy D; Head, Brian P; Patel, Piyush M; Roth, David M; Patel, Hemal H

2010-11-01

149

Vasoactive Intestinal Polypeptide and Muscarinic Receptors: Supersensitivity Induced by Long-Term Atropine Treatment  

NASA Astrophysics Data System (ADS)

Long-term treatment of rats with atropine induced large increases in the numbers of muscarinic receptors and receptors for vasoactive intestinal polypeptide in the salivary glands. Since receptors for vasoactive intestinal polypeptide coexist with muscarinic receptors on the same neurons in this preparation, the results suggest that a drug that alters the sensitivity of one receptor may also affect the sensitivity of the receptor for a costored transmitter and in this way contribute to the therapeutic or side effects of the drug.

Hedlund, Britta; Abens, Janis; Bartfai, Tamas

1983-04-01

150

Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.

Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)] [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Cho, Hyun-Ji, E-mail: hjcho.dr@gmail.com [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)] [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

2012-06-08

151

Testosterone enhances lipopolysaccharide-induced interleukin-6 and macrophage chemotactic protein-1 expression by activating the extracellular signal-regulated kinase 1/2/nuclear factor-?B signalling pathways in 3T3-L1 adipocytes.  

PubMed

Low?grade chronic inflammation is commonly found in patients with polycystic ovary syndrome (PCOS) who exhibit hyperandrogenism or hyperandrogenemia. Clinical studies have shown that hyperandrogenemia is closely correlated with low?grade chronic inflammation. However, the mechanism underlying this correlation remains unclear. Recent studies have suggested that adipocytes increase the production of proinflammatory mediators such as interleukin?6 (IL?6) and macrophage chemotactic protein?1 (MCP?1) when the inflammatory signal transduction cascade system is activated by external stimuli. The present study aimed to evaluate the effects of testosterone on the innate signalling and expression of proinflammatory mediators in 3T3?L1 adipocytes, which were or were not induced by lipopolysaccharide (LPS). The effects of testosterone on the expression of proinflammatory mediators, nuclear factor??B (NF??B), and extracellular signal?regulated kinase1/2 (ERK1/2) signalling pathways were investigated using an enzyme?linked immunosorbent assay, reverse transcriptase?polymerase chain reaction, western blot analysis and an electrophoresis mobility shift assay. Testosterone induces IL?6 and MCP?1, and enhances LPS?induction of IL?6 and MCP?1. However, the effects are not simply additive, testosterone significantly enhanced the effects of LPS?induced inflammation factors. Testosterone induces the phosphorylation of ERK1/2 and NF??B. The effect of testosterone on the expression of IL?6 and MCP?1 is inhibited by PD98059 , an ERK1/2 inhibitor, and PDTC, an NF??B inhibitor. The results indicate that testosterone enhances LPS?induced IL?6 and MCP?1 expression by activating the ERK1/2/NF??B signalling pathways in 3T3?L1 adipocytes. PMID:25738264

Su, Chunlin; Chen, Min; Huang, Haiyan; Lin, Jinfang

2015-07-01

152

Mass-spectrometric analysis of agonist-induced retinoic acid receptor gamma conformational change.  

PubMed Central

Apo and holo forms of retinoic acid receptors, and other nuclear receptors, display differential sensitivity to proteolytic digestion that likely reflects the distinct conformational states of the free and liganded forms of the receptor. We have developed a method for rapid peptide mapping of holo-retinoic acid receptor gamma that utilizes matrix-assisted laser-desorption-ionization time-of-flight MS to identify peptide fragments that are derived from the partially proteolysed holo-receptor. The peptide maps of retinoic acid receptor gamma bound by four different agonists were identical, suggesting that all four ligands induced a similar conformational change within the ligand-binding domain of the receptor. In all cases, this agonist-induced conformational change promoted the direct association of retinoic acid receptor gamma with the transcriptional co-activator p300 and inhibited interaction of the receptor with the nuclear receptor co-repressor. SR11253, a compound previously reported to exert mixed retinoic acid receptor gamma agonist/antagonist activities in cultured cells, was found to bind directly to, but only weakly altered the protease-sensitivity of, the receptor and failed to promote interaction of the receptor with p300 or induce dissociation of receptor-nuclear receptor co-repressor complexes. This technique should be generally applicable to other members of the nuclear receptor superfamily that undergo an induced structural alteration upon agonist or antagonist binding, DNA binding and/or protein-protein interaction. PMID:11829754

Peterson, Valerie J; Barofsky, Elisabeth; Deinzer, Max L; Dawson, Marcia I; Feng, Kai-Chia; Zhang, Xiao-kun; Madduru, Machender R; Leid, Mark

2002-01-01

153

Accepting the T3D  

SciTech Connect

In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

Rich, D.O.; Pope, S.C.; DeLapp, J.G.

1994-10-01

154

The estrogen receptor ?-PI3K/Akt pathway mediates the cytoprotective effects of tocotrienol in a cellular Parkinson's disease model.  

PubMed

Tocotrienols (T3s) are members of the vitamin E family, have antioxidant properties, and are promising candidates for neuroprotection in the pathogenesis of neurodegenerative disorders such as Parkinson's disease (PD). However, whether their antioxidant capacities are required for their cytoprotective activity remains unclear. In this regard, the antioxidant-independent cytoprotective activity of T3s has received considerable attention. Here, we investigated the signaling pathways that are induced during T3-dependent cytoprotection of human neuroblastoma SH-SY5Y cells, as these cells are used to model certain elements of PD. T3s were cytoprotective against 1-methyl-4-phenylpyridinium ion (MPP(+)) and other PD-related toxicities. ?T3 and ?T3 treatments led to marked activation of the PI3K/Akt signaling pathway. Furthermore, we identified estrogen receptor (ER) ? as an upstream mediator of PI3K/Akt signaling following ?T3/?T3 stimulation. Highly purified ?T3/?T3 bound to ER? directly in vitro, and knockdown of ER? in SH-SY5Y cells abrogated both ?T3/?T3-dependent cytoprotection and Akt phosphorylation. Since membrane-bound ER? was important for the signal-related cytoprotective effects of ?T3/?T3, we investigated receptor-mediated caveola formation as a candidate for the early events of signal transduction. Knockdown of caveolin-1 and/or caveolin-2 prevented the cytoprotective effects of ?T3/?T3, but did not affect Akt phosphorylation. This finding suggests that T3s and, in particular, ?T3/?T3, exhibit not only antioxidant effects but also a receptor signal-mediated protective action following ER?/PI3K/Akt signaling. Furthermore, receptor-mediated caveola formation is an important event during the early steps following T3 treatment. PMID:24768803

Nakaso, Kazuhiro; Tajima, Naoko; Horikoshi, Yosuke; Nakasone, Masato; Hanaki, Takehiko; Kamizaki, Kouki; Matsura, Tatsuya

2014-09-01

155

PACAP up-regulates the expression of apolipoprotein D in 3T3-L1 adipocytes. DRG/3T3-L1 co-cultures study.  

PubMed

The existence of a cross-talk between nerves and fatty tissue is increasingly recognized. Using co-cultures of dorsal root ganglion (DRG)-derived cells and 3T3-L1 adipocytes, we have previously shown that the presence of fat cells enhances neurite outgrowth and number of synapses. Vice versa, neural cells induced expression of neurotrophic adipokines apolipoprotein D and E (ApoD, ApoE) and angiopoietin-1 (Ang-1) by adipocytes. Here, we tested whether pituitary adenylate cyclase-activating peptide (PACAP), which is released by sensory fibres and causes Ca(2+) influx into fat cells, is involved in ApoD induction. Using 3T3-L1 cell cultures, we found that PACAP at a dose of 1 nM up-regulated the expression of ApoD protein and mRNA approx. 2.5 fold. This effect was driven by ERK1/2 acting upon PAC1/VPAC2 receptors. In turn, PACAP-treated 3T3-L1 adipocytes in co-cultures with DRG cells enhanced neurite ramification of neurofilament 200 (NF200)-positive neurons (measured using fluorescence microscopy) and neurofilament 68 protein levels (measured using Western blot analysis). This effect could be blocked using the PAC1/VPAC2 antagonist PACAP(6-38). Scanning cytometry revealed PACAP/ApoD induced low density lipoprotein receptors (LDLR) and ApoE receptor 2 (apoER2) in NF200-positive cells. Thus, a bidirectional loop seems to exist regulating the innervation of fatty tissues: PACAP released from sensory fibres might stimulate fat cells to synthesize neurotrophic adipokines, which, in turn, support peripheral innervation. PMID:20920539

Kosacka, Joanna; Schrder, Thomas; Bechmann, Ingo; Klting, Nora; Nowicki, Marcin; Mittag, Anja; Gericke, Martin; Spanel-Borowski, Katharina; Blher, Matthias

2011-01-01

156

QRFP-43 inhibits lipolysis by preventing ligand-induced complex formation between perilipin A, caveolin-1, the catalytic subunit of protein kinase and hormone-sensitive lipase in 3T3-L1 adipocytes.  

PubMed

QRFP (RFamide) peptides are neuropeptides involved in food intake and adiposity regulation in rodents. We have previously shown that QRFP-43 (43RFa) and QRFP-26 (26RFa) inhibited isoproterenol (ISO)-induced lipolysis in adipocytes. However, the antilipolytic signaling pathways activated by QRFP peptides have not been investigated. In the present study, 3T3-L1 adipocytes were used to identify the main pathways involved in QRFP-43 decreasing ISO-induced lipolysis. Our results show that QRFP-43 reduced ISO-induced phosphorylation of perilipin A (PLIN) and hormone-sensitive lipase (HSL) on Ser660 by 43 and 25%, respectively, but increased Akt phosphorylation by 44%. However, the inhibition of phosphodiesterase 3B (PDE3B), a regulator of lipolysis activated by Akt, did not reverse the antilipolytic effect of QRFP-43. PDE3B inhibition reversed the decrease of Ser660 HSL phosphorylation associated with QRFP-43 antilipolytic effect. QRFP-43 also prevented PKC activation and ISO-induced Src kinases activation leading to the inhibition of the caveolin-1 (CAV-1) translocation on lipid droplets. Indeed, QRFP-43 attenuated phorbol 12-myristate 13-acetate-induced lipolysis and ISO-induced extracellular signal-regulated and Src kinases by 28, 37 and 48%, respectively. The attenuation of ISO-induced lipolysis by QRFP-43 was associated with a decrease of phosphorylated Ser660 HSL, PKA-catalytic (PKA-c) subunit and CAV-1 translocation on lipid droplets by 37, 50 and 46%, respectively. The decrease in ISO-induced CAV-1 and PKA-c translocation was associated with a reduction of PLIN phosphorylation by 44% in QRFP-43-treated adipocytes. These results suggest that QRFP-43 attenuated ISO-induced lipolysis by preventing the formation of an active complex on lipid droplets and the activation of Src kinases and PKC. PMID:25677823

Mulumba, Mukandila; Granata, Riccarda; Marleau, Sylvie; Ong, Huy

2015-05-01

157

Mechanism of Selective Retinoid X Receptor Agonist-Induced Hypothyroidism in the Rat  

E-print Network

, including hypothyroidism (12). Patients receiving bexarotene treat- ment develop symptoms of hypothyroidismMechanism of Selective Retinoid X Receptor Agonist- Induced Hypothyroidism in the Rat SHA LIU 92121 The retinoid X receptor (RXR) agonist bexarotene can cause clinically significant hypothyroidism

Lawson, Mark A.

158

Proteomics of Oxidative Stress Using Inducible CYP2E1 Expressing HepG2 Cells and 3T3-L1 Adipocytes as Model Systems  

E-print Network

developed a doxycycline inducible CYP2E1 expressing HepG2 cell line using the pTet-On/pRevTRE expression system to allow greater control and sensitivity in the generation CYP2E1 mediated oxidative stress. Our cell line (RD12) demonstrated stability...

Newton, Billy Walker

2012-07-16

159

Low Extracellular pH Induces Activation of ERK 2, JNK, and p38 in A431 and Swiss 3T3 Cells  

Microsoft Academic Search

The mechanism by which mammalian cells respond to low environmental pH is unclear. A wide range of environmental stresses are known to induce activation of MAP kinases ERK 2, JNK and p38 and recent work has shown that low pH can activate the p38 homologue in yeast HOG1. In this study we show that ERK2 MAP kinase is activated in

Luzheng Xue; John M. Lucocq

1997-01-01

160

Inhibition of radiation-induced polyuria by histamine receptor antagonists  

SciTech Connect

In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

1986-03-01

161

The free triiodothyronine (T3) index.  

PubMed

In a large number of normal men (n = 111) and women (n = 110) the free triiodothyronine (T3), index, calculated from serum total T3 and T3-uptake, was highly correlated with free T3, measured by equilibrium dialysis. The correlation was almost as high as that of the free thyroxine (T4) index with free T4. The correlations of the total T3, free T3, and free T3 index with, respectively, the total T4, free T4, and free T4 index were much lower, though still statistically significant. The free T3 index is clinically useful because serum total T3 may sometimes be misleading. Hyperthyroid patients with apparent T4-toxicosis and normal total T3 may have an elevated free T3 index and thus physiologically elevated levels of both thyroid hormones. Calculation of the free T3 index might also make possible the diagnosis of T3-toxicosis in a patient with a normal free T4 index and normal total T3. Total T3 may be elevated without an elevated total T4 in women taking oral contraceptives; thus the free T3 index may prevent a misdiagnosis of T3-toxicosis. The free T3 index seems no better than total T3 in the diagnosis of primary hypothyroidism, but it can confirm the diagnosis of T3-hypothyroidism. PMID:637426

Sawin, C T; Chopra, D; Albano, J; Azizi, F

1978-04-01

162

ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)  

EPA Science Inventory

ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845) Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

163

Nuclear Receptors: Mediators And Modifiers Of Inflammation-Induced Cholestasis  

PubMed Central

Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive responses and possess anti-inflammatory characteristics. The latter two functions may be exploited in the search for new treatments for IIC and likely for cholestasis in general as well. Current knowledge of the pathogenesis of IIC and the dual role NRs in this process are reviewed. Special interest is given to the use of NRs as potential targets for intervention. PMID:19273222

Mulder, Jaap; Karpen, Saul J.; Tietge, Uwe J.F.; Kuipers, Folkert

2014-01-01

164

Insulin-like growth factor 1 (IGF-1)-induced twist expression is involved in the anti-apoptotic effects of the IGF-1 receptor.  

PubMed

In this study we investigated the molecular mechanisms whereby insulin-like growth factor 1 (IGF-1) induced Twist gene expression and the role of Twist in the anti-apoptotic actions of the IGF-1 receptor. In NIH-3T3 fibroblasts overexpressing the human IGF-1 receptor (NWTb3), treatment with IGF-1 (10(-8) m) for 1 and 4 h increased the level of Twist mRNA as well as protein by 3-fold. In contrast, insulin at physiological concentrations did not stimulate Twist expression in NIH-3T3 fibroblasts overexpressing the human insulin receptor. The IGF-1 effect was specific for the IGF-1 receptor since, in cells overexpressing a dominant negative IGF-1 receptor, IGF-1 failed to increase Twist expression. Pre-incubation with the ERK1/2 inhibitor U0126 or expression of a dominant negative MEK-1 abolished the effect of IGF-1 on Twist mRNA expression in NWTb3 cells, suggesting that Twist induction by IGF-1 occurs via the mitogen-activated protein kinase signaling pathway. In vivo, IGF-1 injection increased the mRNA level of Twist in mouse skeletal muscle, the major site of Twist expression. Finally, using an antisense strategy, we demonstrated that a reduction of 40% in Twist expression decreased significantly the ability of IGF-1 to rescue NWTb3 cells from etoposide-induced apoptosis. Taken together, these results define Twist as an important factor involved in the anti-apoptotic actions of the IGF-1 receptor. PMID:11323435

Dupont, J; Fernandez, A M; Glackin, C A; Helman, L; LeRoith, D

2001-07-13

165

Diallyl trisulfide suppresses the adipogenesis of 3T3-L1 preadipocytes through ERK activation.  

PubMed

Garlic and its organosulfur compounds display hypolipidemic effects by inhibiting fatty acid and cholesterol synthesis. We investigated the anti-adipogenic effect of diallyl trisulfide (DATS), the second most abundant organosulfide in garlic oil. We studied the effects of DATS in 3T3-L1 preadipocytes and the mechanism involved in its action. DATS (0-75 ?M) inhibited CCAAT/enhancer-binding protein (C/EBP) ? and ? and peroxisome proliferator-activated receptor (PPAR) ? mRNA and protein levels in a dose- and time-dependent manner, leading to a decrease of fatty acid synthase (FAS) expression and lipid accumulation in 3T3-L1 cells. Insulin treatment induced a transient increase in ERK phosphorylation in 3T3-L1 preadipocytes, and maximal induction was observed at 5 min and then declined. DATS, however, sustained ERK phosphorylation up to 120 min. In the presence of PD98059, the phosphorylation of ERK and suppression of PPAR? expression and DNA binding activity of PPAR? by DATS were reversed, and lipid accumulation was restored. In conclusion, these results indicate that DATS inhibits the differentiation of 3T3-L1 preadipocytes into adipocytes. DATS is likely to act by prolonging ERK activation, which leads to the down-regulation of adipogenic transcription factor expression during adipogenesis. Our results suggest that garlic may have potential as an anti-obesity agent. PMID:22137902

Lii, Chong-Kuei; Huang, Chun-Yin; Chen, Haw-Wen; Chow, Mun-Yew; Lin, Yu-Ru; Huang, Chin-Shiu; Tsai, Chia-Wen

2012-03-01

166

3T3 cells in adipocytic conversion.  

PubMed

3T3 are murine cells of an established heteroploid cellular line. Some clones of this cellular line, when cultured under adequate conditions differentiate into adipocytes. During the process of differentiation, the cells undergo a change from the elongated fibroblastic shape to a round or oval form and accumulate small drops of lipids within their cytoplasma. These lipid drops fuse into one large drop which displaces the nucleus towards the periphery, giving the cell the aspect of a mature adipocyte of white adipose tissue. The cells not only change their morphology, but they also present important biochemical changes. They show a simultaneous increase in triglyceride synthesis and activity of lipogenic enzymes. There is also an increase in the response of the activity of various hormones and the de novo synthesis of the receptors to such hormones, as insulin and ACTH. During the process of differentiation important changes occur in the synthesis of various proteins, such as actin, tubulin, and other proteins which also make up the cellular cytoskeleton, forming part of the lipid transportation within the adipose cell. The adipocytic differentiation of 3T3 cells depends on adipogenic serum factors used in the supplementary culture medium. These adipogenic factors seem to play an important role in the development of adipose tissue. There are hormones, chemical agents and serum factors which modulate adipocytic differentiation. The clone must be susceptible to adipocytic differentiation, it must reach a quiescent state and find itself in adipogenic conditions for the 3T3 cells to differentiate into adipocytes. It must also carry out an DNA synthesis which is an expression of the new phenotype. The differentiation of 3T3 cells in terminal. The fact that these cells present an adipocytic conversion under physiologic conditions and with adipogenic hormones which exist in the whole animal has been demonstrated. All of these characteristics show that the 3T3 cells may be used as an adequate experimental system to analyze the events which occur during the differentiation and development of adipose tissue. PMID:1726451

O'Shea Alvarez, M S

1991-01-01

167

Antiobesity Effects of an Edible Halophyte Nitraria retusa Forssk in 3T3-L1 Preadipocyte Differentiation and in C57B6J/L Mice Fed a High Fat Diet-Induced Obesity  

PubMed Central

Nitraria retusa is an edible halophyte, used in Tunisia for several traditional medicine purposes. The present study investigated the antiobesity effects of Nitraria retusa ethanol extract (NRE) in 3T3-L1 cells using different doses and in high-fat diet-induced obesity in mice. Male C57B6J/L mice were separately fed a normal diet (ND) or a high-fat diet (HFD) and daily administrated with NRE (50, 100?mg/kg) or one for 2 days with Naringenin (10?mg/kg). NRE administration significantly decreased body weight gain, fat pad weight, serum glucose, and lipid levels in HFD-induced obese mice. To elucidate the mechanism of action of NRE, the expression of genes involved in lipid and carbohydrate metabolism were measured in liver. Results showed that mice treated with NRE demonstrated a significant decrease in cumulative body weight and fat pad weight, a significant lowering in glucose and triglycerides serum levels, and an increase in the HDL-cholesterol serum level. Moreover mRNA expression results showed an enhancement of the expression of genes related to liver metabolism. Our findings suggest that NRE treatment had a protective or controlling effect against a high fat diet-induced obesity in C57B6J/L mice through the regulation of expression of genes involved in lipolysis and lipogenesis and thus the enhancement of the lipid metabolism in liver. PMID:24367387

Zar Kalai, Feten; Han, Junkyu; Ksouri, Riadh; El Omri, Abdelfatteh; Abdelly, Chedly; Isoda, Hiroko

2013-01-01

168

Antiobesity Effects of an Edible Halophyte Nitraria retusa Forssk in 3T3-L1 Preadipocyte Differentiation and in C57B6J/L Mice Fed a High Fat Diet-Induced Obesity.  

PubMed

Nitraria retusa is an edible halophyte, used in Tunisia for several traditional medicine purposes. The present study investigated the antiobesity effects of Nitraria retusa ethanol extract (NRE) in 3T3-L1 cells using different doses and in high-fat diet-induced obesity in mice. Male C57B6J/L mice were separately fed a normal diet (ND) or a high-fat diet (HFD) and daily administrated with NRE (50, 100?mg/kg) or one for 2 days with Naringenin (10?mg/kg). NRE administration significantly decreased body weight gain, fat pad weight, serum glucose, and lipid levels in HFD-induced obese mice. To elucidate the mechanism of action of NRE, the expression of genes involved in lipid and carbohydrate metabolism were measured in liver. Results showed that mice treated with NRE demonstrated a significant decrease in cumulative body weight and fat pad weight, a significant lowering in glucose and triglycerides serum levels, and an increase in the HDL-cholesterol serum level. Moreover mRNA expression results showed an enhancement of the expression of genes related to liver metabolism. Our findings suggest that NRE treatment had a protective or controlling effect against a high fat diet-induced obesity in C57B6J/L mice through the regulation of expression of genes involved in lipolysis and lipogenesis and thus the enhancement of the lipid metabolism in liver. PMID:24367387

Zar Kalai, Feten; Han, Junkyu; Ksouri, Riadh; El Omri, Abdelfatteh; Abdelly, Chedly; Isoda, Hiroko

2013-01-01

169

SirT3 Regulates the Mitochondrial Unfolded Protein Response  

PubMed Central

The mitochondria of cancer cells are characterized by elevated oxidative stress caused by reactive oxygen species (ROS). Such an elevation in ROS levels contributes to mitochondrial reprogramming and malignant transformation. However, high levels of ROS can cause irreversible damage to proteins, leading to their misfolding, mitochondrial stress, and ultimately cell death. Therefore, mechanisms to overcome mitochondrial stress are needed. The unfolded protein response (UPR) triggered by accumulation of misfolded proteins in the mitochondria (UPRmt) has been reported recently. So far, the UPRmt has been reported to involve the activation of CHOP and estrogen receptor alpha (ER?). The current study describes a novel role of the mitochondrial deacetylase SirT3 in the UPRmt. Our data reveal that SirT3 acts to orchestrate two pathways, the antioxidant machinery and mitophagy. Inhibition of SirT3 in cells undergoing proteotoxic stress severely impairs the mitochondrial network and results in cellular death. These observations suggest that SirT3 acts to sort moderately stressed from irreversibly damaged organelles. Since SirT3 is reported to act as a tumor suppressor during transformation, our findings reveal a dual role of SirT3. This novel role of SirT3 in established tumors represents an essential mechanism of adaptation of cancer cells to proteotoxic and mitochondrial stress. PMID:24324009

Papa, Luena

2014-01-01

170

Lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol on 3T3-L1 adipocytes and high fat and fructose diet induced obese C57/BL6J mice.  

PubMed

Aegle marmelos Correa., (Rutaceae) is a medium sized tree distributed in South East Asia and used traditionally for the management of obestiy and diabetes. In this study the lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol (Hfn) isolated from leaves of A. marmelos have been investigated. Intracellular lipid accumulation was measured by oil red O staining and glycerol secretion. The expression of genes related to adipocyte differentiation was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). Hfn decreased intracellular triglyceride accumulation and increased glycerol release in a dose dependent manner (5-20 ?g/ml) in differentiated 3T3-L1 adipocytes. In high fat diet fed C57/BL 6J mice, treatment with Hfn for four weeks reduced plasma glucose, insulin and triglyceride levels and showed a significant reduction in total adipose tissue mass by 37.85% and visceral adipose tissue mass by 62.99% at 50mg/kg b.w. concentration. RT-PCR analyses indicated that Hfn decreased the expression of peroxisome proliferator-activated receptor ? (PPAR?) and CCAAT enhancer binding protein ? (CEBP?) and increased the expression of sterol regulatory enzyme binding protein (SREBP-1c), peroxisome proliferator-activated receptor ? (PPAR?), Adiponectin and Glucose transporter protein 4 (GLUT4) compared to the high fat diet group. These results suggested that Hfn decreased adipocyte differentiation and stimulated lipolysis of adipocytes. This study justifies the folklore medicinal uses and claims about the therapeutic values of this plant for the management of insulin resistance and obesity. PMID:24952133

Saravanan, Munisankar; Pandikumar, Perumal; Saravanan, Subramaniam; Toppo, Erenius; Pazhanivel, Natesan; Ignacimuthu, Savarimuthu

2014-10-01

171

Dopamine and noradrenaline receptor stimulation: Reversal of reserpine-induced suppression of motor activity  

Microsoft Academic Search

The motor activity of reserpine treated mice was recorded after drug treatments causing stimulation of dopamine or noradrenaline receptors or both. The dopamine receptor stimulating agent apomorphine elicited an activation with stereotypies whereas the noradrenaline receptor stimulating agent clonidine was inefficient. Combined treatment with apomorphine and clonidine induced marked stimulation with jumping. Biochemically, clonidine did not significantly interfere with the

Nils-Erik Andn; Ulf Strmbom; Torgny H. Svensson

1973-01-01

172

Isobavachalcone suppresses expression of inducible nitric oxide synthase induced by Toll-like receptor agonists.  

PubMed

Toll-like receptors (TLRs) play an important role by recognizing many pathogen-associated molecular patterns and inducing innate immunity. Dysregulated activation of TLR signaling pathways induces the activation of various transcription factors such as nuclear factor-?B, leading to the induction of pro-inflammatory gene products such as inducible nitric oxide synthase (iNOS). The present study investigated the effect of isobavachalcone (IBC), a natural chalcone component of Angelica keiskei, on inflammation by modulating iNOS expression induced by TLR agonists in murine macrophages. IBC suppressed iNOS expression induced by macrophage-activating lipopeptide 2-kDa, polyriboinosinic polyribocytidylic acid, or lipopolysaccharide. These results indicate the potential of IBC as a potent anti-inflammatory drug. PMID:23164691

Shin, Hwa-Jeong; Shon, Dong-Hwa; Youn, Hyung-Sun

2013-01-01

173

Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes  

SciTech Connect

Highlights: Nebivolol may act as a partial agonist of ?3-adrenergic receptor (AR). Nebivolol stimulates mitochondrial DNA replication and protein expression. Nebivolol promotes mitochondrial synthesis via activation of eNOS by ?3-AR. -- Abstract: Nebivolol is a third-generation ?-adrenergic receptor (?-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolols role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-? coactivator-1? (PGC-1?), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and ?3-AR blocker SR59230A markedly attenuated PGC-1?, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of ?3-AR receptors.

Huang, Chenglin; Chen, Dongrui; Xie, Qihai [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)] [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Yang, Ying, E-mail: yangying_sh@yahoo.com [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)] [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)] [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)

2013-08-16

174

Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury  

PubMed Central

Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1?/? mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LCMS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified proteinprotein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1JNK1 signaling. WIN reduced TRPV1-induced Ca2+ transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification. Such suppression occurs through proteinprotein interaction between TRPV1 and CB1 leading to declines in TRPV1 phosphorylation status. CB1 activation of the GTP binding protein, Gi/o contributes to CB1 mediated TRPV1 dephosphorylation leading to TRPV1 desensitization, declines in TRPV1-induced increases in currents and pro-inflammatory signaling events. PMID:23142606

Yang, Y.; Yang, H.; Wang, Z.; Varadaraj, K.; Kumari, S.S.; Mergler, S.; Okada, Y.; Saika, S.; Kingsley, P.J.; Marnett, L.J.; Reinach, P.S.

2013-01-01

175

Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity.  

PubMed

Progressive decrease in neuronal function is an established feature of Alzheimer's disease (AD). Previous studies have shown that amyloid beta (Abeta) peptide induces acute increase in spontaneous synaptic activity accompanied by neurotoxicity, and Abeta induces excitotoxic neuronal death by increasing calcium influx mediated by hyperactive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. An in vivo study has revealed subpopulations of hyperactive neurons near Abeta plaques in mutant amyloid precursor protein (APP)-transgenic animal model of Alzheimer's disease (AD) that can be normalized by an AMPA receptor antagonist. In the present study, we aim to determine whether soluble Abeta acutely induces hyperactivity of AMPA receptors by a mechanism involving beta(2) adrenergic receptor (beta(2)AR). We found that the soluble Abeta binds to beta(2)AR, and the extracellular N terminus of beta(2)AR is critical for the binding. The binding is required to induce G-protein/cAMP/protein kinase A (PKA) signaling, which controls PKA-dependent phosphorylation of GluR1 and beta(2)AR, and AMPA receptor-mediated excitatory postsynaptic currents (EPSCs). beta(2)AR and GluR1 also form a complex comprising postsynaptic density protein 95 (PSD95), PKA and its anchor AKAP150, and protein phosphotase 2A (PP2A). Both the third intracellular (i3) loop and C terminus of beta(2)AR are required for the beta(2)AR/AMPA receptor complex. Abeta acutely induces PKA phosphorylation of GluR1 in the complex without affecting the association between two receptors. The present study reveals that non-neurotransmitter Abeta has a binding capacity to beta(2)AR and induces PKA-dependent hyperactivity in AMPA receptors. PMID:20395454

Wang, Dayong; Govindaiah, G; Liu, Ruijie; De Arcangelis, Vania; Cox, Charles L; Xiang, Yang K

2010-09-01

176

GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice.  

PubMed

In this study, we investigated the effects of GABA(A) and GABA(B) receptor agonists on the methamphetamine-induced impairment of recognition memory in mice. Repeated treatment with methamphetamine at a dose of 1 mg/kg for 7 days induced an impairment of recognition memory. Baclofen, a GABA(B) receptor agonist, ameliorated the repeated methamphetamine-induced cognitive impairment, although gaboxadol, a GABA(A) receptor agonist, had no significant effect. GABA(B) receptors may constitute a putative new target in treating cognitive deficits in patients suffering from schizophrenia, as well as methamphetamine psychosis. PMID:19028488

Arai, Sawako; Takuma, Kazuhiro; Mizoguchi, Hiroyuki; Ibi, Daisuke; Nagai, Taku; Kamei, Hiroyuki; Kim, Hyoung-Chun; Yamada, Kiyofumi

2009-01-01

177

"Mirror image" antagonists of thrombin-induced platelet activation based on thrombin receptor structure.  

PubMed

Platelet activation by thrombin plays a critical role in hemostasis and thrombosis. Based on structure-activity studies of a cloned platelet thrombin receptor, we designed two "mirror image" antagonists of thrombin and thrombin receptor function. First, "uncleavable" peptides mimicking the receptor domain postulated to interact with thrombin were found to be potent thrombin inhibitors. Second, proteolytically inactive mutant thrombins designed to bind but not cleave the thrombin receptor were found to be specific antagonists of receptor activation by thrombin. The effectiveness of these designed antagonists in blocking thrombin-induced platelet activation suggests a model for thrombin-receptor interaction and possible strategies for the development of novel antithrombotic agents. PMID:1310695

Hung, D T; Vu, T K; Wheaton, V I; Charo, I F; Nelken, N A; Esmon, N; Esmon, C T; Coughlin, S R

1992-02-01

178

A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity  

PubMed Central

Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. PMID:23994061

Friend, Danielle M.; Keefe, Kristen A.

2015-01-01

179

Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts  

NASA Technical Reports Server (NTRS)

The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

2000-01-01

180

Extract of Chaga mushroom (Inonotus obliquus) stimulates 3T3-L1 adipocyte differentiation.  

PubMed

Chaga mushroom (Inonotus obliquus) has long been used as a folk medicine due to its numerous biological functions such as antibacterial, antiallergic, antiinflammatory and antioxidative activities. In the present study, it was found that the I. obliquus hot water extract (IOWE) activated adipogenesis of 3T3-L1 preadipocytes. Even in the absence of adipogenic stimuli by insulin, the IOWE strongly induced adipogenesis of 3T3-L1 preadipocytes. The major constituent of IOWE was glucose-rich polysaccharides with a molecular mass of 149? kDa. IOWE enhanced the differentiation of 3T3-L1 preadipocytes, increasing TG (triacylglycerol) accumulation that is critical for acquisition of the adipocyte phenotype, in a dose-dependent manner. IOWE stimulated gene expression of C/EBP? (CCAAT/enhancer-binding protein ?) and PPAR? (peroxisome proliferator-activated receptors ?) during adipocyte differentiation, and induced the expression of PPAR? target genes such as aP2 (adipocyte protein 2), LPL (lipoprotein lipase) and CD36 (fatty acid translocase). Immunoblot analysis revealed that IOWE increased the expression of adipogenic makers such as PPAR? and GLUT4 (glucose transporter 4). The luciferase reporter assay demonstrated that IOWE did not exhibit PPAR? ligand activity. Although these results require further investigation, the ability of natural mushroom product to increase PPAR? transcriptional activities may be expected to be therapeutic targets for dyslipidemia and type 2 diabetes. PMID:21031614

Joo, Jeong In; Kim, Dong Hyun; Yun, Jong Won

2010-11-01

181

Identification of LRP16 as a negative regulator of insulin action and adipogenesis in 3T3-L1 adipocytes.  

PubMed

Leukemia related protein 16 (LRP16) was first cloned from acute myeloid leukemia cells in our laboratory. In the present study, we sought to investigate the role of LRP16 in insulin action and sensitivity, using LRP16-depleted and -overexpressing 3T3-L1 cells. LRP16 silencing resulted in a reduction of the expression and secretion of tumor necrosis factor-alpha (TNF-?) and a concomitant increase in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-?). Moreover, LRP16 depletion promoted insulin-induced glucose uptake and adipocyte differentiation of 3T3-L1 cells. In contrast, LRP16 overexpression increased TNF-? secretion, suppressed glucose uptake, and attenuated 3T3-L1 cell differentiation. The phosphorylation levels of insulin receptor substrate 1 (IRS-1), phosphatidylinositide 3-kinase (PI3-K), and Akt were increased in LRP16-deficient 3T3-L1 cells, and conversely, diminished in LRP16-overexpressing 3T3-L1 cells, when compared to the corresponding control cells. Additionally, LRP16 overexpression raised the phosphorylation level of mammalian target of rapamycin (mTOR). The pretreatment with rapamycin, a specific inhibitor of mTOR, prevented the TNF-? elevation and PPAR-? reduction and restored the phosphorylation of IRS-1, PI3-K, and Akt in LRP16-overexpressing cells. Our data collectively indicate that LRP16 acts as a negative regulator of insulin action and adipogenesis in 3T3-L1 adipocytes, which involves the activation of the mTOR signaling pathway. PMID:23389992

Zang, L; Xue, B; Lu, Z; Li, X; Yang, G; Guo, Q; Ba, J; Zou, X; Dou, J; Lu, J; Pan, C; Mu, Y

2013-05-01

182

Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway  

SciTech Connect

Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamuspituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. Both ELISA and TUNEL were used to detect the apoptosis. The receptor of ghrelin, GHSR, was expressed in MC3T3-E1 cells. Both Akt and ERK are critical adaptor molecules to mediate the effects of ghrelin.

Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing, E-mail: allenylq@hotmail.com; Liao, Er-Yuan, E-mail: eyliao@21cn.com

2013-11-01

183

Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation.  

PubMed

Icariin, the main active flavonoid glucoside isolated from Herba epimedii (HEF), is an anabolic agent in bone that has been reported to prevent bone loss in ovariectomized rats and postmenopausal women. However, the molecular mechanism for this anabolic action of Icariin remain largely unknown. Here, we found that Icariin could promote MC3T3-E1 osteoblastic cell proliferation and reduce cell apoptosis, associated with increased mRNA levels of positive regulators of cell cycle gene Cyclin E and proliferating cell nuclear antigen (PCNA), decreaed mRNA level of negative regulator gene, Cyclin-dependent kinase 4 inhibitor B (Cdkn2B), and reduced caspase-3 activity. Icariin also enhanced MC3T3-E1 cell differentiation and mineralization demonstrated by increased the expression of differentiation markers, alkaline phosphatase (ALP) and collagen type I (Col I), and bone nodule formation via Alizarin red S staining. To characterize the underlying mechanisms, we examined the effect of Icariin on mitogen-activated protein kinase (MAPK) signaling. Icariin treatment rapidly induced extracellular signal-regulated kinase (ERK) and c-Jun N terminal kinase (JNK) activation but showed no effect on activation of p38 kinase. Furthermore, Icariin-mediated effects on osteoblasts were dramatically attenuated by treatment with specific inhibitors of MAPKs, U0126 (ERK inhibitor) and SP600125 (JNK inhibitor). Interestingly, treatment of osteoblasts with estrogen receptor antagonist ICI182780 attenuated Icariin-mediated effect of proliferation and mineralization, associated with suppression of ERK and JNK phosphorylation. These observations provide a potential mechanism of anabolic actions of Icariin involving ERK and JNK pathway by estrogen receptor. PMID:23764463

Song, Lige; Zhao, Jiashen; Zhang, Xiuzhen; Li, Hong; Zhou, Yun

2013-08-15

184

NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity  

PubMed Central

Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs contribute to visceral hypersensitivity during inflammation. PMID:19772634

Suckow, Shelby K; Caudle, Robert M

2009-01-01

185

Central antinociception induced by ketamine is mediated by endogenous opioids and ?- and ?-opioid receptors.  

PubMed

It is generally believed that NMDA receptor antagonism accounts for most of the anesthetic and analgesic effects of ketamine, however, it interacts at multiple sites in the central nervous system, including NMDA and non-NMDA glutamate receptors, nicotinic and muscarinic cholinergic receptors, and adrenergic and opioid receptors. Interestingly, it was shown that at supraspinal sites, ketamine interacts with the ?-opioid system and causes supraspinal antinociception. In this study, we investigated the involvement of endogenous opioids in ketamine-induced central antinociception. The nociceptive threshold for thermal stimulation was measured in Swiss mice using the tail-flick test. The drugs were administered via the intracerebroventricular route. Our results demonstrated that the opioid receptor antagonist naloxone, the ?-opioid receptor antagonist clocinnamox and the ?-opioid receptor antagonist naltrindole, but not the ?-opioid receptor antagonist nor-binaltorphimine, antagonized ketamine-induced central antinociception in a dose-dependent manner. Additionally, the administration of the aminopeptidase inhibitor bestatin significantly enhanced low-dose ketamine-induced central antinociception. These data provide evidence for the involvement of endogenous opioids and ?- and ?-opioid receptors in ketamine-induced central antinociception. In contrast, ?-opioid receptors not appear to be involved in this effect. PMID:24675031

Pacheco, Daniela da Fonseca; Romero, Thiago Roberto Lima; Duarte, Igor Dimitri Gama

2014-05-01

186

Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin ? gene promoter  

PubMed Central

The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor ? (TR?) on the TSH? gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSH? gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSH? gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSH? gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSH? gene promoter. PMID:24055033

Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei; Ishino, Ruri; Urahama, Norinaga; Hasegawa, Natsumi; Roeder, Robert G.; Ito, Mitsuhiro

2015-01-01

187

Cannabinoid Receptor Type I Modulates Alcohol-Induced Liver Fibrosis  

PubMed Central

The cannabinoid system (CS) is implicated in the regulation of hepatic fibrosis, steatosis and inflammation, with cannabinoid receptors 1 and 2 (CB1 and CB2) being involved in regulation of pro- and antifibrogenic effects. Daily cannabis smoking is an independent risk factor for the progression of fibrosis in chronic hepatitis C and a mediator of experimental alcoholic steatosis. However, the role and function of CS in alcoholic liver fibrosis (ALF) is unknown so far. Thus, human liver samples from patients with alcoholic liver disease (ALD) were collected for analysis of CB1 expression. In vitro, hepatic stellate cells (HSC) underwent treatment with acetaldehyde, ?9-tetrahydrocannabinol H2O2, endo- and exocannabinoids (2-arachidonoylglycerol (2-AG) and [THC]), and CB1 antagonist SR141716 (rimonabant). In vivo, CB1 knockout (KO) mice received thioacetamide (TAA)/ethanol (EtOH) to induce fibrosis. As a result, in human ALD, CB1 expression was restricted to areas with advanced fibrosis only. In vitro, acetaldehyde, H2O2, as well as 2-AG and THC, alone or in combination with acetaldehyde, induced CB1 mRNA expression, whereas CB1 blockage with SR141716 dose-dependently inhibited HSC proliferation and downregulated mRNA expression of fibrosis-mediated genes PC?1(I), TIMP-1 and MMP-13. This was paralleled by marked cytotoxicity of SR141716 at high doses (510 ?mol/L). In vivo, CB1 knockout mice showed marked resistance to alcoholic liver fibrosis. In conclusion, CB1 expression is upregulated in human ALF, which is at least in part triggered by acetaldehyde (AA) and oxidative stress. Inhibition of CB1 by SR141716, or via genetic knock-out protects against alcoholic-induced fibrosis in vitro and in vivo. PMID:21863215

Patsenker, Eleonora; Stoll, Matthias; Millonig, Gunda; Agaimy, Abbas; Wissniowski, Till; Schneider, Vreni; Mueller, Sebastian; Brenneisen, Rudolf; Seitz, Helmut K; Ocker, Matthias; Stickel, Felix

2011-01-01

188

Shikonin stimulates glucose uptake in 3T3-L1 adipocytes via an insulin-independent tyrosine kinase pathway.  

PubMed

Type 2 diabetes is due to defects in both insulin action and secretion. In an attempt to discover small molecules that stimulate glucose uptake, similar to insulin, a cell-based glucose uptake screening assay was performed using 3T3-L1 adipocytes. Shikonin, a substance originally isolated from the root of the Chinese plant that has been used as an ointment for wound healing, was thus identified. Shikonin stimulated glucose uptake and potentiated insulin-stimulated glucose uptake in a concentration-dependent manner in 3T3-L1 adipocytes. Stimulation of glucose uptake was also observed in rat primary adipocytes and cardiomyocytes. Like insulin, shikonin-stimulated glucose uptake was inhibited by genistein, a tyrosine kinase inhibitor, and enhanced by vanadate, a tyrosine phosphatase inhibitor. However, in contrast to insulin, shikonin-stimulated glucose uptake was not strongly inhibited by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). In vitro phosphorylation analyses revealed that shikonin did not induce tyrosine phosphorylation of the insulin receptor, but significantly induced both Thr-308 and Ser-473 phosphorylation of Akt. Our results suggest that in 3T3-L1 adipocytes, shikonin action is not mediated primarily via the insulin receptor/PI3K pathway, but rather via another distinct tyrosine kinase-dependent pathway leading to glucose uptake involving Akt phosphorylation. PMID:11922615

Kamei, Reiko; Kitagawa, Yoshinori; Kadokura, Michinori; Hattori, Fumiyuki; Hazeki, Osamu; Ebina, Yousuke; Nishihara, Tatsuro; Oikawa, Shinzo

2002-04-01

189

IFN? induces functional chemokine receptor expression in human mesangial cells  

PubMed Central

Infiltration of leucocyte populations into sites of inflammation is a common feature in renal diseases. Glomerular mesangial cells are potent producers of a variety of chemokines, leading to specific attraction of distinct types of inflammatory leucocytes into the glomerulus, but so far there is limited knowledge about the responsiveness of mesangial cells to chemokines. We investigated the expression of chemokine receptors and the responsiveness of primary human mesangial cells (HMC) to the chemokines which they produce, namely monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-8. We found that mRNAs of the chemokine receptors CCR1, which has been shown before, CCR2 and CXCR2 were induced by T-helper cytokine interferon-gamma (IFN?). In IFN?-stimulated cells, CCR2 and CXCR2 were detectable by flow cytometry. Following treatment with IFN?, HMC responded to MCP-1 and IL-8 with an increase of IL-6 mRNA and protein expression, which was in part blocked by pertussis toxin. Moreover, chemokine stimulation of transfected HMC led to an activation of the immunoregulatory transcription factors NF?B and AP-1. Additionally, we found that MCP-1 enhanced the expression of its own mRNA in cells activated to express CCR2, suggesting autocrine feedback mechanisms in MCP-1 regulation. Finally, IFN?-activated cells migrated towards an MCP-1 gradient in a chemotaxis assay. These results strengthen the assumption that chemokines are not only involved in the recruitment of immune cells to inflamed tissues, but also seem to play a central role in the autocrine regulation of local tissue cells, leading to proceeding inflammation and possibly contributing to healing by mediating cell growth and migration. PMID:11985519

SCHWARZ, M; WAHL, M; RESCH, K; RADEKE, H H

2002-01-01

190

IFNgamma induces functional chemokine receptor expression in human mesangial cells.  

PubMed

Infiltration of leucocyte populations into sites of inflammation is a common feature in renal diseases. Glomerular mesangial cells are potent producers of a variety of chemokines, leading to specific attraction of distinct types of inflammatory leucocytes into the glomerulus, but so far there is limited knowledge about the responsiveness of mesangial cells to chemokines. We investigated the expression of chemokine receptors and the responsiveness of primary human mesangial cells (HMC) to the chemokines which they produce, namely monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-8. We found that mRNAs of the chemokine receptors CCR1, which has been shown before, CCR2 and CXCR2 were induced by T-helper cytokine interferon-gamma (IFNgamma). In IFNgamma-stimulated cells, CCR2 and CXCR2 were detectable by flow cytometry. Following treatment with IFNgamma, HMC responded to MCP-1 and IL-8 with an increase of IL-6 mRNA and protein expression, which was in part blocked by pertussis toxin. Moreover, chemokine stimulation of transfected HMC led to an activation of the immunoregulatory transcription factors NFkappaB and AP-1. Additionally, we found that MCP-1 enhanced the expression of its own mRNA in cells activated to express CCR2, suggesting autocrine feedback mechanisms in MCP-1 regulation. Finally, IFNgamma-activated cells migrated towards an MCP-1 gradient in a chemotaxis assay. These results strengthen the assumption that chemokines are not only involved in the recruitment of immune cells to inflamed tissues, but also seem to play a central role in the autocrine regulation of local tissue cells, leading to proceeding inflammation and possibly contributing to healing by mediating cell growth and migration. PMID:11985519

Schwarz, M; Wahl, M; Resch, K; Radeke, H H

2002-05-01

191

?2-Adrenergic receptor supports prolonged theta tetanus-induced LTP.  

PubMed

The widespread noradrenergic innervation in the brain promotes arousal and learning by molecular mechanisms that remain largely undefined. Recent work shows that the ?(2)-adrenergic receptor (?(2)AR) is linked to the AMPA-type glutamate receptor subunit GluA1 via stargazin and PSD-95 (Joiner ML, Lise MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW. EMBO J 29: 482-495, 2010). We now demonstrate that the ?(2)AR plays a prominent role in long-term potentiation (LTP) induced by a train of 900 stimuli at 5 Hz (prolonged theta-tetanus-LTP, or PTT-LTP) in the hippocampal CA1 region in mice, which requires simultaneous ?-adrenergic stimulation. Although PTT-LTP was impaired in hippocampal slices from ?(1)AR and ?(2)AR knockout (KO) mice, only ?(2)AR-selective stimulation with salbutamol supported this PTT-LTP in wild-type (WT) slices, whereas ?(1)AR-selective stimulation with dobutamine (+ prazosin) did not. Furthermore, only the ?(2)AR-selective antagonist ICI-118551 and not the ?(1)AR-selective antagonist CGP-20712 inhibited PTT-LTP and phosphorylation of GluA1 on its PKA site S845 in WT slices. Our analysis of S845A knockin (KI) mice indicates that this phosphorylation is relevant for PTT-LTP. These results identify the ?(2)AR-S845 signaling pathway as a prominent regulator of synaptic plasticity. PMID:22338020

Qian, Hai; Matt, Lucas; Zhang, Mingxu; Nguyen, Minh; Patriarchi, Tommaso; Koval, Olha M; Anderson, Mark E; He, Kaiwen; Lee, Hey-Kyoung; Hell, Johannes W

2012-05-01

192

?2-Adrenergic receptor supports prolonged theta tetanus-induced LTP  

PubMed Central

The widespread noradrenergic innervation in the brain promotes arousal and learning by molecular mechanisms that remain largely undefined. Recent work shows that the ?2-adrenergic receptor (?2AR) is linked to the AMPA-type glutamate receptor subunit GluA1 via stargazin and PSD-95 (Joiner ML, Lise MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW. EMBO J 29: 482495, 2010). We now demonstrate that the ?2AR plays a prominent role in long-term potentiation (LTP) induced by a train of 900 stimuli at 5 Hz (prolonged theta-tetanus-LTP, or PTT-LTP) in the hippocampal CA1 region in mice, which requires simultaneous ?-adrenergic stimulation. Although PTT-LTP was impaired in hippocampal slices from ?1AR and ?2AR knockout (KO) mice, only ?2AR-selective stimulation with salbutamol supported this PTT-LTP in wild-type (WT) slices, whereas ?1AR-selective stimulation with dobutamine (+ prazosin) did not. Furthermore, only the ?2AR-selective antagonist ICI-118551 and not the ?1AR-selective antagonist CGP-20712 inhibited PTT-LTP and phosphorylation of GluA1 on its PKA site S845 in WT slices. Our analysis of S845A knockin (KI) mice indicates that this phosphorylation is relevant for PTT-LTP. These results identify the ?2AR-S845 signaling pathway as a prominent regulator of synaptic plasticity. PMID:22338020

Qian, Hai; Matt, Lucas; Zhang, Mingxu; Nguyen, Minh; Patriarchi, Tommaso; Koval, Olha M.; Anderson, Mark E.; He, Kaiwen; Lee, Hey-Kyoung

2012-01-01

193

The two triiodothyronines (T3 and rT3). Thyroid biosynthesis of T3 and rT3 and peripheral metabolism of thyroxine (author's transl).  

PubMed

Thirty per cent of the iodine in thyroglobulin is present as iodothyronines. L-thyroxine (T4) represents 90-95% of hormonal iodine, 3,5,3'-triodo-L-thyronine (T3) contains at the most two per cent of it, 3,3'5'-triodo-L-thyronine (rT3) even less, as well as traces of 3,3'-diodo-L-thyronine. The plasma concentration of T4 is about 8 microgram per 100 ml, in the case of T3 it is 120 ng and 25 ng for rT3. The cell nucleus preferentially binds T3 and rT3 and there are also some specific mitochondrial proteins which possess a high affinity for T3. L-thyroxine is dehalogenated peripherically to T3, to take care of most of the requirements in T3. The enrichment of the plasma in rT3 has been shown to occur under various experimental and pathological conditoins. The blood level of T3 varies in inverse ratio to the level of rT3 and it shows that the peripheral formation of one is compensated for by the other. The excess of the prehormone T4 is metabolised as 3,5,3',5'-tetraiodothyroacetic acid (TetrAc); its level in the blood varies in the same way as the level of T3, in particular it decreases during starvation. PMID:900879

Roche, J; Michel, R

1977-01-01

194

Involvement of cholinergic nicotinic receptors in the menthol-induced gastric relaxation.  

PubMed

We have previously demonstrated that menthol reduces murine gastric tone in part through a neural mechanism, involving adrenergic pathways and reduction of ongoing release of acetylcholine from enteric nerves. In the present study we aimed to verify whether the gastric relaxation to menthol may be triggered by interaction with neural receptors or ionic channels proteins, such as transient receptor potential (TRP)-melastatin8 (TRPM8), TRP-ankyrin 1 (TRPA1), 5-hydroxytriptamine 3 (5-HT3) receptor or cholinergic nicotinic receptors. Spontaneous mechanical activity was detected in vitro as changes in intraluminal pressure from isolated mouse stomach. Menthol (0.3-30 mM) induced gastric relaxation which was not affected by 5-benzyloxytryptamine, a TRPM8 receptor antagonist, HC030031, a TRPA1 channel blocker. In addition, allylisothiocyanate, a TRPA1 agonist, but not (2S,5R)-2-Isopropyl-N-(4-methoxyphenyl)-5-methylcyclohexanecarboximide, a selective TRPM8 agonist, induced gastric relaxation. Genic expression of TRPA1, but not of TRPM8, was revealed in mouse stomach. Indeed, menthol-induced gastric relaxation was significantly reduced by hexamethonium, cholinergic nicotinic receptor antagonist. Menthol, at concentrations that failed to affect gastric tone, reduced the contraction induced by dimethylphenylpiperazinium, nicotinic receptor agonist. The joint application of hexamethonium and atropine, muscarinc receptor antagonist, or hexamethonium and phentholamine, ?-adrenergic receptor antagonist, did not produce any additive reduction of the relaxant response to menthol. Lastly, ondansetron, a 5-HT3 receptor antagonist, was ineffective. In conclusion, our study suggests that nicotinic receptors, but not TRP and 5-HT3 receptors, are molecular targets for menthol inducing murine gastric relaxation, ultimately due to the reduction of acetylcholine release from enteric nerves. PMID:25446932

Amato, Antonella; Serio, Rosa; Mul, Flavia

2014-12-15

195

Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors.  

PubMed

The endocannabinoid anandamide (AEA) is shown to induce apoptotic bodies formation and DNA fragmentation, hallmarks of programmed cell death, in human neuroblastoma CHP100 and lymphoma U937 cells. RNA and protein synthesis inhibitors like actinomycin D and cycloheximide reduced to one-fifth the number of apoptotic bodies induced by AEA, whereas the AEA transporter inhibitor AM404 or the AEA hydrolase inhibitor ATFMK significantly increased the number of dying cells. Furthermore, specific antagonists of cannabinoid or vanilloid receptors potentiated or inhibited cell death induced by AEA, respectively. Other endocannabinoids such as 2-arachidonoylglycerol, linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide did not promote cell death under the same experimental conditions. The formation of apoptotic bodies induced by AEA was paralleled by increases in intracellular calcium (3-fold over the controls), mitochondrial uncoupling (6-fold), and cytochrome c release (3-fold). The intracellular calcium chelator EGTA-AM reduced the number of apoptotic bodies to 40% of the controls, and electrotransferred anti-cytochrome c monoclonal antibodies fully prevented apoptosis induced by AEA. Moreover, 5-lipoxygenase inhibitors 5,8,11,14-eicosatetraynoic acid and MK886, cyclooxygenase inhibitor indomethacin, caspase-3 and caspase-9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK, but not nitric oxide synthase inhibitor Nomega-nitro-l-arginine methyl ester, significantly reduced the cell death-inducing effect of AEA. The data presented indicate a protective role of cannabinoid receptors against apoptosis induced by AEA via vanilloid receptors. PMID:10913156

Maccarrone, M; Lorenzon, T; Bari, M; Melino, G; Finazzi-Agro, A

2000-10-13

196

Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats  

PubMed Central

Abstract 3,5,3?-Levo-triiodothyronine (L-T3) is essential for DNA transcription, mitochondrial biogenesis and respiration, but its circulating levels rapidly decrease after myocardial infarction (MI). The main aim of our study was to test whether an early and sustained normalization of L-T3 serum levels after MI exerts myocardial protective effects through a mitochondrial preservation. Seventy-two hours after MI induced by anterior interventricular artery ligation, rats were infused with synthetic L-T3 (1.2 ?g/kg/day) or saline over 4 weeks. Compared to saline, L-T3 infusion restored FT3 serum levels at euthyroid state (3.0 0.2 versus 4.2 0.3 pg/ml), improved left ventricular (LV) ejection fraction (39.5 2.5 versus 65.5 6.9%), preserved LV end-systolic wall thickening in the peri-infarct zone (6.34 3.1 versus 33.7 6.21%) and reduced LV infarct-scar size by approximately 50% (all P < 0.05). Moreover, L-T3 significantly increased angiogenesis and cell survival and enhanced the expression of nuclear-encoded transcription factors involved in these processes. Finally, L-T3 significantly increased the expression of factors involved in mitochondrial DNA transcription and biogenesis, such as hypoxic inducible factor-1?, mitochondrial transcription factor A and peroxisome proliferator activated receptor ? coactivator-1?, in the LV peri-infarct zone. To further explore mechanisms of L-T3 protective effects, we exposed isolated neonatal cardiomyocytes to H2O2 and found that L-T3 rescued mitochondrial biogenesis and function and protected against cell death via a mitoKATP dependent pathway. Early and sustained physiological restoration of circulating L-T3 levels after MI halves infarct scar size and prevents the progression towards heart failure. This beneficial effect is likely due to enhanced capillary formation and mitochondrial protection. PMID:20100314

Forini, Francesca; Lionetti, Vincenzo; Ardehali, Hossein; Pucci, Angela; Cecchetti, Federica; Ghanefar, Mohsen; Nicolini, Giuseppina; Ichikawa, Yoshihiko; Nannipieri, Monica; Recchia, Fabio A; Iervasi, Giorgio

2011-01-01

197

Corticotropin-Releasing Factor-1 Receptor Activation Mediates Nicotine Withdrawal-Induced Deficit in Brain  

E-print Network

with drug withdrawal and stress-induced relapse. Discontinuation of cocaine, amphetamine, alcohol, fentanyl,5). Footshocks have been shown to induce the reinstatement of extinguished cocaine-, heroin-, nicotine corticotropin- releasing factor (CRF) in stress-induced reinstatement of drug seeking. Blockade of CRF receptors

Prncipe, Jos Carlos

198

Effect of Cannabinoid Receptor Agonists on Streptozotocin-Induced Hyperalgesia in Diabetic Neuropathy  

Microsoft Academic Search

The effect of CB-1 and CB-2 receptor agonists, as well as an influence of a non-selective inhibitor of nitric oxide synthase (NOS), L-NOArg, and an inhibitor acting preferentially on cyclooxygenase-1 (COX-1), indomethacin, on the action of cannabinoid receptor agonists in a streptozotocin (STZ)-induced neuropathic model was investigated. When administered alone, a non-selective cannabinoid receptor agonist, WIN 55,212-2, a potentially selective

Magdalena Bujalska

2008-01-01

199

A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor  

PubMed Central

Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence than the lateral ganglionic eminence or cerebral wall. Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by crossbreeding the mice with transgenic mouse lines available already. PMID:20674683

Fujimoto, Kumiko; Araki, Kiyomi; McCarthy, Deirdre M.; Sims, John R.; Ren, Jia-Qian; Zhang, Xuan; Bhide, Pradeep G.

2010-01-01

200

Thyroid Hormones, T3 and T4, in the Brain  

PubMed Central

Thyroid hormones (THs) are essential for fetal and post-natal nervous system development and also play an important role in the maintenance of adult brain function. Of the two major THs, T4 (3,5,3?,5?-tetraiodo-l-thyronine) is classically viewed as an pro-hormone that must be converted to T3 (3,5,3?-tri-iodo-l-thyronine) via tissue-level deiodinases for biological activity. THs primarily mediate their effects by binding to thyroid hormone receptor (TR) isoforms, predominantly TR?1 and TR?1, which are expressed in different tissues and exhibit distinctive roles in endocrinology. Notably, the ability to respond to T4 and to T3 differs for the two TR isoforms, with TR?1 generally more responsive to T4 than TR?1. TR?1 is also the most abundantly expressed TR isoform in the brain, encompassing 7080% of all TR expression in this tissue. Conversion of T4 into T3 via deiodinase 2 in astrocytes has been classically viewed as critical for generating local T3 for neurons. However, deiodinase-deficient mice do not exhibit obvious defectives in brain development or function. Considering that TR?1 is well-established as the predominant isoform in brain, and that TR?1 responds to both T3 and T4, we suggest T4 may play a more active role in brain physiology than has been previously accepted. PMID:24744751

Schroeder, Amy C.; Privalsky, Martin L.

2014-01-01

201

Functional selectivity induced by mGlu4 receptor positive allosteric modulation and concomitant activation of Gq coupled receptors  

PubMed Central

Metabotropic glutamate receptors (mGlus) are a group of Family C Seven Transmembrane Spanning Receptors (7TMRs) that play important roles in modulating signaling transduction, particularly within the central nervous system. mGlu4 belongs to a subfamily of mGlus that is predominantly coupled to Gi/o G proteins. We now report that the ubiquitous autacoid and neuromodulator, histamine, induces substantial glutamate-activated calcium mobilization in mGlu4-expressing cells, an effect which is observed in the absence of co-expressed chimeric G proteins. This strong induction of calcium signaling downstream of glutamate activation of mGlu4 depends upon the presence of H1 histamine receptors. Interestingly, the potentiating effect of histamine activation does not extend to other mGlu4-mediated signaling events downstream of Gi/o G proteins, such as cAMP inhibition, suggesting that the presence of Gq coupled receptors such as H1 may bias normal mGlu4-mediated Gi/o signaling events. When the activity induced by small molecule positive allosteric modulators of mGlu4 is assessed, the potentiated signaling of mGlu4 is further biased by histamine toward calcium-dependent pathways. These results suggest that Gi/o-coupled mGlus may induce substantial, and potentially unexpected, calcium-mediated signaling events if stimulation occurs concomitantly with activation of Gq receptors. Additionally, our results suggest that signaling induced by small molecule positive allosteric modulators may be substantially biased when Gq receptors are co-activated. This article is part of a Special Issue entitled mGluR PMID:22426233

Yin, Shen; Zamorano, Rocio; Conn, P. Jeffrey; Niswender, Colleen M.

2012-01-01

202

Thyroid Hormone Is an Inhibitor of Estrogen-Induced Degradation of Estrogen Receptor-Protein: Estrogen-  

E-print Network

Thyroid Hormone Is an Inhibitor of Estrogen-Induced Degradation of Estrogen Receptor- Protein in the control of receptor transcriptional activation function. Herein, we report that thyroid hormone can of the pituitary. The stabilization of ER pro- tein by thyroid hormone represents a selective blockade against

Alarid, Elaine T.

203

MODULATION OF ACETAMINOPHEN-INDUCED HEPATOTOXICITY BY THE XENOBIOTIC RECEPTOR CAR  

Technology Transfer Automated Retrieval System (TEKTRAN)

We have identified the xenobiotic receptor CAR (constitutive androstane receptor) as a key regulator of acetaminophen metabolism and hepatotoxicity. Known CAR activators as well as high doses of acetaminophen induced expression of three acetaminophen-metabolizing enzymes in wild-type but not in CAR-...

204

Antisense Inhibition of 5-Hydroxytryptamine2a Receptor Induces an Antidepressant-Like Effect in Mice  

E-print Network

Antisense Inhibition of 5-Hydroxytryptamine2a Receptor Induces an Antidepressant-Like Effect Treatment with different antidepressants is invariably accom- panied by the down-regulation of the 5 of antidepressant action, we manip- ulated levels of the 5-HT2A receptor by using a nonpharmaco- logical approach

Sibille, Etienne

205

Histamine induces cytoskeletal changes in human eosinophils via the H(4) receptor.  

PubMed

1. Histamine (0.004-2 microm) induced a concentration-dependent shape change of human eosinophils, but not of neutrophils or basophils, detected as an increase in forward scatter (FSC) in the gated autofluorescence/forward scatter (GAFS) assay. 2. The histamine-induced eosinophil shape change was completely abolished by thioperamide (10 microm), an H3/H4 receptor antagonist, but was not inhibited by pyrilamine or cimetidine (10 microm), H1 and H2 receptor antagonists, respectively. The H4 receptor agonists, clobenpropit and clozapine (0.004-2 microm), which are also H3 receptor antagonists, both induced eosinophil shape change, which was inhibited by thioperamide (10 microm). The H3/H4 receptor agonists, imetit, R-alpha-methyl histamine and N-alpha-methyl histamine (0.004-2 microm) also induced eosinophil shape change. 3. Histamine induced actin polymerisation (0.015-10 microm), intracellular calcium mobilisation (10-100 microm) and a significant upregulation of expression of the cell adhesion molecule CD11b (0.004-10 microm) in eosinophils, all of which were inhibited by thioperamide (10-100 microm). In addition, the H4 receptor agonist/H3 receptor antagonist clozapine (20 microm) stimulated a rise in intracellular calcium in eosinophils. 4. Activation of H4 receptors by histamine (1 microm) primed eosinophils for increased chemotactic responses to eotaxin, but histamine (0.1-10 microm) did not directly induce chemotaxis of eosinophils. 5. Pertussis toxin (1 microg ml-1) inhibited shape change and actin polymerisation responses induced by histamine showing that these effects are mediated by coupling to a Galphai/o G-protein. 6. This study demonstrates that human eosinophils express functional H4 receptors and may provide a novel target for allergic disease therapy. PMID:14530216

Buckland, Karen F; Williams, Timothy J; Conroy, Dolores M

2003-11-01

206

Dystroglycan Matrix Receptor Function in Cardiac Myocytes Is Important for Limiting Activity-Induced  

E-print Network

-induced cardiac stress, whereas exercised mice with normal dystroglycan expression accumulate membrane damageDystroglycan Matrix Receptor Function in Cardiac Myocytes Is Important for Limiting Activity patients and glycosylation defective myd mice develop cardiomyopathy with loss of dystroglycan matrix

Campbell, Kevin P.

207

Toward a Consensus on the Operation of Receptor-Induced Calcium Entry Signals  

NSDL National Science Digital Library

Receptor-induced Ca2+ signals involve both Ca2+ release from intracellular stores and extracellular Ca2+ entry across the plasma membrane. The channels mediating Ca2+ entry and the mechanisms controlling their function remain largely a mystery. Here we critically assess current views on the Ca2+ entry process and consider certain modifications to the widely held hypothesis that Ca2+ store emptying is the fundamental trigger for receptor-induced Ca2+ entry channels. Under physiological conditions, receptor-induced store depletion may be quite limited. A number of distinct channel activities appear to mediate receptor-induced Ca2+ entry, and their activation is observed to occur through quite diverse coupling processes.

Donald L. Gill (University of Maryland School of Medicine; Department of Biochemistry and Molecular Biology REV)

2004-07-27

208

Attenuation of methamphetamine-induced effects through the antagonism of sigma (?) receptors: Evidence from in vivo and in vitro studies  

Microsoft Academic Search

Methamphetamine (METH) and many other abused substances interact with ? receptors. ? receptors are found on dopaminergic neurons and can modulate dopaminergic neurotransmission. Antisense knock down of ? receptors also mitigates METH-induced stimulant effects, suggesting that these proteins are viable medication development targets for treating psychostimulant abuse. In the present study, AC927, a ? receptor antagonist, was evaluated for its

Rae R. Matsumoto; Jamaluddin Shaikh; Lisa L. Wilson; Shreedeepalakshmi Vedam; Andrew Coop

2008-01-01

209

Estrogen stimuli promote osteoblastic differentiation via the subtilisin-like proprotein convertase PACE4 in MC3T3-E1 cells.  

PubMed

Estrogenic compounds include endogenous estrogens such as estradiol as well as soybean isoflavones, such as daidzein and its metabolite equol, which are known phytoestrogens that prevent osteoporosis in postmenopausal women. Indeed, mineralization of MC3T3-E1 cells, a murine osteoblastic cell line, was significantly decreased in medium containing fetal bovine serum treated with charcoal-dextran to deplete endogenous estrogens, but estradiol and these soybean isoflavones dose-dependently restored the differentiation of MC3T3-E1 cells; equol was tenfold more effective than daidzein. These differentiation-promoting effects were inhibited by the addition of fulvestrant, which is a selective downregulator of estrogen receptors. Analysis of the expression pattern of bone-related genes by reverse transcription PCR (RT-PCR)/quantitative real-time PCR (qRT-PCR), which focused on responsiveness to the estrogen stimuli, revealed that the transcription of PACE4, a subtilisin-like proprotein convertase, was tightly linked with the differentiation of MC3T3-E1 cells induced by estrogen stimuli. Moreover, treatment with RNAi of PACE4 in MC3T3-E1 cells resulted in a drastic decrease of mineralization in the presence of estrogen stimuli. These results strongly suggest that PACE4 participates in bone formation at least in osteoblast differentiation, and estrogen receptor-mediated stimuli induce osteoblast differentiation through the upregulation of PACE4 expression. PMID:24557631

Kim, Hyejin; Tabata, Atsushi; Tomoyasu, Toshifumi; Ueno, Tomomi; Uchiyama, Shigeto; Yuasa, Keizo; Tsuji, Akihiko; Nagamune, Hideaki

2015-01-01

210

Liver growth factor induces testicular regeneration in EDS-treated rats and increases protein levels of class B scavenger receptors.  

PubMed

The aim of the present work was to determine the effects of liver growth factor (LGF) on the regeneration process of rat testes after chemical castration induced by ethane dimethanesulfonate (EDS) by analyzing some of the most relevant proteins involved in cholesterol metabolism, such as hormone sensitive lipase (HSL), 3?-hydroxysteroid dehydrogenase (3?-HSD), scavenger receptor SR-BI, and other components of the SR family that could contribute to the recovery of steroidogenesis and spermatogenesis in the testis. Sixty male rats were randomized to nontreated (controls) and LGF-treated, EDS-treated, and EDS + LGF-treated groups. Testes were obtained on days 10 (T1), 21 (T2), and 35 (T3) after EDS treatment, embedded in paraffin, and analyzed by immunohistochemistry and Western blot. LGF improved the recovery of the seminiferous epithelia, the appearance of the mature pattern of Leydig cell interstitial distribution, and the expression of mature SR-BI. Moreover, LGF treatment resulted in partial recovery of HSL expression in Leydig cells and spermatogonia. No changes in serum testosterone were observed in control or LGF-treated rats, but in EDS-castrated animals LGF treatment induced a progressive increase in serum testosterone levels and 3?-HSD expression. Based on the pivotal role of SR-BI in the uptake of cholesteryl esters from HDL, it is suggested that the observed effects of LGF would facilitate the provision of cholesterol for sperm cell growth and Leydig cell recovery. PMID:25389365

Lobo, M V T; Arenas, M I; Huerta, L; Sacristn, S; Prez-Crespo, M; Gutirrez-Adn, A; Daz-Gil, J J; Lasuncin, M A; Martn-Hidalgo, A

2015-01-15

211

Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ER? expression and induction of apoptosis  

PubMed Central

The present study investigated the effect of the phytochemical genistein on the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of estrogen receptor-? (ER?) expression and the induction of apoptosis. When MCF-7 human breast cancer cells were treated with 50, 100, 150 and 200 ?M genistein for 24, 48 or 72 h, cell growth was significantly decreased in a concentration-dependent manner. Notably, the patterns of ER? expression and proliferation in MCF-7 cells treated with genistein were similar. Furthermore, ER? expression in differentiating 3T3-L1 cells was significantly inhibited by 48 h treatment with 50 ?M genistein, which was selected based on the results of cytotoxicity assays on 3T3-L1 preadipocytes [lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays]. Under the same conditions, genistein-induced apoptotic features were observed in MCF-7 and differentiating 3T3-L1 cells. This observation is supported by the finding that B-cell lymphoma 2 (Bcl-2) expression was reduced while that of Bcl-2-associated X protein (Bax) was induced by genistein. The results of the present study suggest that an ER?-related pathway and the induction of apoptosis are involved in the proliferation of MCF-7 cells and the differentiation of 3T3-L1 cells. PMID:25009600

CHOI, EUN JEONG; JUNG, JAE YEON; KIM, GUN-HEE

2014-01-01

212

Modulation of the transferrin receptor during DMSO-induced differentiation in HL-60 cells  

SciTech Connect

When HL-60 cells are induced to differentiate by dimethyl sulfoxide along a granulocytic pathway there is a fivefold decrease in the total number of transferrin receptors within 3 days, as compared to untreated cells. This decrease is due primarily to a rapid decline in the synthesis of the receptor rather than an increase in the degradation of the receptor. The decrease in transferrin receptor synthesis is a specific and early event that precedes the cessation of cell proliferation, differentiation, and the decrease in total protein synthesis.

Enns, C.A.; Root, B. (Syracuse Univ., NY (USA)); Mulkins, M.A. (Syntex Corporation, Palo Alto, CA (USA)); Sussman, H. (Stanford Univ., CA (USA))

1988-01-01

213

Diosgenin induces hypoxia-inducible factor-1 activation and angiogenesis through estrogen receptor-related phosphatidylinositol 3-kinase/Akt and p38 mitogen-activated protein kinase pathways in osteoblasts.  

PubMed

Diosgenin, extracted from the root of wild yam (Dioscorea villosa), has been reported to demonstrate an opportunity for medical application. Vascular endothelial growth factor-A (VEGF-A) plays an important role in bone-related angiogenesis, a critical process occurring during bone formation and fracture healing. In this study, we examine whether diosgenin is able to induce VEGF-A expression and to promote angiogenesis in osteoblasts. For murine MC3T3-E1 preosteoblast-like cells, VEGF-A mRNA and protein expression seemed to be significantly elevated in response to diosgenin in a concentration-dependent fashion. Conditioned media prepared from cells treated with diosgenin induced strong angiogenic activity in either in vitro or ex vivo angiogenesis assay. Furthermore, diosgenin treatment increased the stability and activity of HIF-1alpha protein. Inhibition of HIF-1alpha activity by transfection with DN-HIF-1alpha significantly diminished diosgenin-mediated VEGF-A up-regulation. The use of pharmacological inhibitors or genetic inhibition revealed that both the phosphatidylinositol 3-kinase (PI3K)/Akt and p38 signaling pathways were potentially required for diosgenin-induced HIF-1 activation and subsequent VEGF-A up-regulation. It is noteworthy that an estrogen receptor binding assay revealed that diosgenin has the strong ability to replace [(3)H]estradiol bound to estrogen receptor (IC(50), 10 nM). In addition, the specific estrogen receptor antagonists ICI 182,780 (faslodex) and tamoxifen were noted to be able to strongly inhibit diosgenin-induced, src kinase-dependent Akt and p38 MAPK activation. Taken together, such results provide evidence that diosgenin up-regulates VEGF-A and promotes angiogenesis in preosteoblast-like cells by a hypoxia-inducible factor-1alpha-dependent mechanism involving the activation of src kinase, p38 MAPK, and Akt signaling pathways via estrogen receptor. PMID:15998873

Yen, Men Luh; Su, Jen Liang; Chien, Chung Liang; Tseng, Kuang Wen; Yang, Ching Yao; Chen, Wei Fang; Chang, Chiao Chia; Kuo, Min Liang

2005-10-01

214

Enhancement of D2 receptor agonist-induced inhibition by D1 receptor agonist in the ventral tegmental area.  

PubMed Central

1. A microiontophoretic study was performed on chloral hydrate-anaesthetized rats to examine the role of D1 receptors in the ventral tegmental area (VTA) neurones, which are inhibited by autoreceptor and D2 receptor agonists. 2. Inhibition by microiontophoretic application of quinpirole (a D2 agonist) of antidromic spikes elicited by stimulation of the nucleus accumbens in dopaminergic neurones of the VTA, was significantly enhanced by simultaneous application of SKF 38393 (D1 agonist), although SKF 38393 alone had little effect on the neurones. 3. In addition, quinpirole-induced inhibition was antagonized by iontophoretic application of domperidone (D2 antagonist), but was not affected by SCH 23390 (D1 antagonist). 4. Furthermore, SKF 38393-induced enhancement of inhibition by quinpirole was antagonized by simultaneous application of SCH 23390. 5. These results suggest that activation of D1 receptors located on the VTA dopaminergic neurones or on non-dopaminergic nerve terminals is not essential for inducing inhibition of the dopaminergic neurones, but enhances D2 receptor-mediated inhibition directly or indirectly via inhibitory neurones. Images Figure 1 PMID:7902179

Momiyama, T.; Sasa, M.; Takaori, S.

1993-01-01

215

GRK2 Protein-mediated Transphosphorylation Contributes to Loss of Function of ?-Opioid Receptors Induced by Neuropeptide FF (NPFF2) Receptors*  

PubMed Central

Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of ?-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF2 receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF2 receptor by [d-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of Gi/o proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-d-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF2 receptor activation was sufficient to recruit ?-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex. PMID:22375000

Mouldous, Lionel; Froment, Carine; Dauvillier, Stphanie; Burlet-Schiltz, Odile; Zajac, Jean-Marie; Mollereau, Catherine

2012-01-01

216

Genistein induces oestrogen receptor-? gene expression in osteoblasts through the activation of mitogen-activated protein kinases/NF-?B/activator protein-1 and promotes cell mineralisation.  

PubMed

Oestrogen and oestrogen receptors (ER) play critical roles in the maintenance of bone remodelling. Genistein, structurally similar to 17?-oestradiol, is a phyto-oestrogen that may be beneficial for treating osteoporosis. In the present study, we evaluated the effects of genistein on the regulation of ER? gene expression and osteoblast mineralisation using MC3T3-E1 cells and primary rat calvarial osteoblasts as our experimental models. Exposure of MC3T3-E1 cells and primary rat osteoblasts to genistein at ? 10 ?m for 24 h did not affect the cell morphology or viability. However, treatment of MC3T3-E1 cells with 10 ?m-genistein enhanced the phosphorylation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase 1/2 in a time-dependent manner. Sequentially, genistein increased the translocation of NF-?B and c-Jun from the cytoplasm to the nucleus. Consequently, exposure of MC3T3-E1 cells to genistein induced ER? mRNA expression in concentration- and time-dependent manners. In parallel, the amounts of cytosolic and nuclear ER? in MC3T3-E1 cells were increased following genistein administration. Additionally, genistein also increased the levels of ER? mRNA and nuclear ER? protein in rat calvarial osteoblasts. A bioinformatic search revealed that there are several ER?-specific DNA-binding elements in the 5'-promoter regions of the bone morphogenetic protein-6, collagen type I and osteocalcin genes. As a result, genistein could induce the expressions of these osteoblast differentiation-related genes in primary rat osteoblasts. Co-treatment with genistein and traditional differentiation reagents synergistically increased osteoblast mineralisation. Therefore, the present study showed that genistein can induce ER? gene expression via the activation of MAPK/NF-?B/activator protein-1 and accordingly stimulates differentiation-related gene expressions and osteoblast mineralisation. PMID:23829885

Liao, Mei-Hsiu; Tai, Yu-Ting; Cherng, Yih-Giun; Liu, Shing-Hwa; Chang, Ya-An; Lin, Pei-I; Chen, Ruei-Ming

2014-01-14

217

Desensitization of GABAergic receptors as a mechanism of zolpidem-induced somnambulism.  

PubMed

Sleepwalking is a frequently reported side effect of zolpidem which is a short-acting hypnotic drug potentiating activity of GABA(A) receptors. Paradoxically, the most commonly used medications for somnambulism are benzodiazepines, especially clonazepam, which also potentiate activity of GABA(A) receptors. It is proposed that zolpidem-induced sleepwalking can be explained by the desensitization of GABAergic receptors located on serotonergic neurons. According to the proposed model, the delay between desensitization of GABA receptors and a compensatory decrease in serotonin release constitutes the time window for parasomnias. The occurrence of sleepwalking depends on individual differences in receptor desensitization, autoregulation of serotonin release and drug pharmacokinetics. The proposed mechanism of interaction between GABAergic and serotonergic systems can be also relevant for zolpidem abuse and zolpidem-induced hallucinations. It is therefore suggested that special care should be taken when zolpidem is used in patients taking at the same time selective serotonin reuptake inhibitors. PMID:21565448

Juszczak, Grzegorz R

2011-08-01

218

Tetracycline-Based System for Controlled Inducible Expression of Group III Metabotropic Glutamate Receptors.  

PubMed

A stable and inducible expression of metabotropic glutamate receptor type 4, 7, and 8 was obtained in T-REx 293 cells using the tetracycline system. Tetracycline administration to the cell medium resulted in rapid induction and time-dependent expression of mGlu receptors, which also correlates with its functionality in a cAMP accumulation assay. The pharmacological properties of recombinant mGlu receptors were verified using orthosteric and allosteric ligands. Data suggest that the Tet-on inducible system is suitable for functional mGlu receptors' expression and characterization by means of the cAMP accumulation assay. It makes this system a precise, reproducible, and large-scale screening method, as well as a reasonable tool to study signaling properties of mGlu receptors. PMID:25394730

Chru?cicka, Barbara; Burnat, Grzegorz; Bra?ski, Piotr; Chorobik, Paulina; Lenda, Tomasz; Marciniak, Marcin; Pilc, Andrzej

2015-03-01

219

Brain CB1 receptor expression following lipopolysaccharide-induced inflammation  

PubMed Central

Cannabinoid 1 receptors (CB1) are highly expressed on presynaptic terminals in the brain where they are importantly involved in the control of neurotransmitter release. Alteration of CB1 expression is associated with a variety of neurological and psychiatric disorders. There is now compelling evidence that peripheral inflammatory disorders are associated with depression and cognitive impairments. These can be modeled in rodents with peripheral administration of lipopolysaccharide (LPS), but central effects of this treatment remain to be fully elucidated. As a reduction in endocannabinoid tone is thought to contribute to depression, we asked whether the expression of CB1 in the central nervous system (CNS) is altered following LPS treatment. CD1 mice received LPS (0.11 mg/kg, ip) and 6 hours later activated microglial cells were observed only in circumventricular organs and only at the higher dose. At 24 hours, activated microglial cells were identified in other brain regions, including the hippocampus, a structure implicated in some mood disorders. Immunohistochemistry and real-time PCR were utilized to evaluate the change of CB1 expression 24 hours after inflammation. LPS induced an increase of CB1 mRNA in hippocampus and brainstem. Subsequent immunohistochemical analysis revealed reduced CB1 in hippocampus, especially in CA3 pyramidal layer. Analysis of co-localization with markers of excitatory and inhibitory terminals indicated that the decrease in CB1 expression was restricted to glutamatergic terminals. Despite widespread microglial activation, these results suggest that peripheral LPS treatment leads to limited changes in CB1 expression in the brain. PMID:23041513

Hu, Huangming; Ho, Winnie; Mackie, Ken; Pittman, Quentin J.; Sharkey, Keith A.

2012-01-01

220

Roles of parathyroid hormone (PTH) receptor and reactive oxygen species in hyperlipidemia-induced PTH resistance in preosteoblasts.  

PubMed

Bioactive lipids initiate inflammatory reactions leading to pathogenesis of atherosclerosis. Evidence shows that they also contribute to bone loss by inhibiting parathyroid hormone receptor (PTH1R) expression and differentiation of osteoblasts. We previously demonstrated that bone anabolic effects of PTH(1-34) are blunted in hyperlipidemic mice and that these PTH effects are restored by antioxidants. However, it is not clear which osteoblastic cell developmental stage is targeted by bioactive lipids. To investigate the effects of hyperlipidemia at the cellular level, hyperlipidemic Ldlr(-/-) mice were bred with Col3.6GFPtpz mice, in which preosteoblasts/osteoblasts carry a topaz fluorescent label, and with Col2.3GFPcyan mice, in which more mature osteoblasts/osteocytes carry a cyan fluorescent label. Histological analyses of trabecular bone surfaces in femoral as well as calvarial bones showed that intermittent PTH(1-34) increased fluorescence intensity in WT-Tpz mice, but not in Tpz-Ldlr(-/-) mice. In contrast, PTH(1-34) did not alter fluorescence intensity in femoral cortical envelopes of either WT-Cyan or Ldlr(-/-)-Cyan mice. To test the mechanism of PTH1R downregulation, preosteoblastic MC3T3-E1 cells were treated with bioactive lipids and the antioxidant Trolox. Results showed that inhibitory effects of PTH1R levels by bioactive lipids were rescued by pretreatment with Trolox. The inhibitory effects on expression of PTH1R as well as on PTH-induced osteoblastic genes were mimicked by xanthine/xanthine oxidase, a known generator of reactive oxygen species. These findings suggest an important role of the preosteoblastic development stage as the target and downregulation of PTH receptor expression mediated by intracellular oxidant stress as a mechanism in hyperlipidemia-induced PTH resistance. PMID:24038594

Li, Xin; Garcia, Jamie; Lu, Jinxiu; Iriana, Sidney; Kalajzic, Ivo; Rowe, David; Demer, Linda L; Tintut, Yin

2014-01-01

221

Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors  

PubMed Central

G-protein coupled receptors, the largest family of proteins in the human genome, are involved in many complex signal transduction pathways, typically activated by orthosteric ligand binding and subject to allosteric modulation. Dopaminergic receptors, belonging to the class A family of G-protein coupled receptors, are known to be modulated by sodium ions from an allosteric binding site, although the details of sodium effects on the receptor have not yet been described. In an effort to understand these effects, we performed microsecond scale all-atom molecular dynamics simulations on the dopaminergic D2 receptor, finding that sodium ions enter the receptor from the extracellular side and bind at a deep allosteric site (Asp2.50). Remarkably, the presence of a sodium ion at this allosteric site induces a conformational change of the rotamer toggle switch Trp6.48 which locks in a conformation identical to the one found in the partially inactive state of the crystallized human ?2 adrenergic receptor. This study provides detailed quantitative information about binding of sodium ions in the D2 receptor and reports a possibly important sodium-induced conformational change for modulation of D2 receptor function. PMID:20711351

Selent, Jana; Sanz, Ferran; Pastor, Manuel; De Fabritiis, Gianni

2010-01-01

222

"Mirror image" antagonists of thrombin-induced platelet activation based on thrombin receptor structure.  

PubMed Central

Platelet activation by thrombin plays a critical role in hemostasis and thrombosis. Based on structure-activity studies of a cloned platelet thrombin receptor, we designed two "mirror image" antagonists of thrombin and thrombin receptor function. First, "uncleavable" peptides mimicking the receptor domain postulated to interact with thrombin were found to be potent thrombin inhibitors. Second, proteolytically inactive mutant thrombins designed to bind but not cleave the thrombin receptor were found to be specific antagonists of receptor activation by thrombin. The effectiveness of these designed antagonists in blocking thrombin-induced platelet activation suggests a model for thrombin-receptor interaction and possible strategies for the development of novel antithrombotic agents. Images PMID:1310695

Hung, D T; Vu, T K; Wheaton, V I; Charo, I F; Nelken, N A; Esmon, N; Esmon, C T; Coughlin, S R

1992-01-01

223

Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis.  

PubMed

Oral NaCl produces a greater natriuresis and diuresis than the intravenous infusion of the same amount of NaCl. Gastrin is the major gastrointestinal hormone taken up by renal proximal tubule (RPT) cells. We hypothesized that renal gastrin and dopamine receptors interact to synergistically increase sodium excretion, an impaired interaction of which may be involved in the pathogenesis of hypertension. In Wistar-Kyoto rats, infusion of gastrin induced natriuresis and diuresis, which was abrogated in the presence of a gastrin (cholecystokinin B receptor [CCKBR]; CI-988) or a D1-like receptor antagonist (SCH23390). Similarly, the natriuretic and diuretic effects of fenoldopam, a D1-like receptor agonist, were blocked by SCH23390, as well as by CI-988. However, the natriuretic effects of gastrin and fenoldopam were not observed in spontaneously hypertensive rats. The gastrin/D1-like receptor interaction was also confirmed in RPT cells. In RPT cells from Wistar-Kyoto but not spontaneously hypertensive rats, stimulation of either D1-like receptor or gastrin receptor inhibited Na(+)-K(+)-ATPase activity, an effect that was blocked in the presence of SCH23390 or CI-988. In RPT cells from Wistar-Kyoto and spontaneously hypertensive rats, CCKBR and D1 receptor coimmunoprecipitated, which was increased after stimulation of either D1 receptor or CCKBR in RPT cells from Wistar-Kyoto rats; stimulation of one receptor increased the RPT cell membrane expression of the other receptor, effects that were not observed in spontaneously hypertensive rats. These data suggest that there is a synergism between CCKBR and D1-like receptors to increase sodium excretion. An aberrant interaction between the renal CCK?BR and D1-like receptors (eg, D1 receptor) may play a role in the pathogenesis of hypertension. PMID:24019399

Chen, Yue; Asico, Laureano D; Zheng, Shuo; Villar, Van Anthony M; He, Duofen; Zhou, Lin; Zeng, Chunyu; Jose, Pedro A

2013-11-01

224

Muscle hyperalgesia induced by peripheral P2X3 receptors is modulated by inflammatory mediators.  

PubMed

ATP, via activation of P2X3 receptors, has been highlighted as a key target in inflammatory hyperalgesia. Therefore, the aim of this study was to confirm whether the activation of P2X3 receptors in the gastrocnemius muscle of rats induces mechanical muscle hyperalgesia and, if so, to analyze the involvement of the classical inflammatory mediators (bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines and neutrophil migration) in this response. Intramuscular administration of the non-selective P2X3 receptor agonist ?,?-meATP in the gastrocnemius muscle of rats induced mechanical muscle hyperalgesia, which, in turn, was prevented by the selective P2X3 and P2X2/3 receptors antagonist A-317491, the selective bradykinin B1-receptor antagonist Des-Arg9-[Leu8]-BK (DALBK), the cyclooxygenase inhibitor indomethacin, the ?1- or ?2-adrenoceptor antagonist atenolol and ICI 118,551, respectively. Also, the nonspecific selectin inhibitor fucoidan. ?,?-meATP induced increases in the local concentration of the pro-inflammatory cytokines tumor necrosis factor-? (TNF-?) and interleukin 1? (IL-1?), which were reduced by bradykinin antagonist. Finally, ?,?-meATP also induced neutrophil migration. Together, these findings suggest that ?,?-meATP induced mechanical hyperalgesia in the gastrocnemius muscle of rats via activation of peripheral P2X3 receptors, which involves bradykinin, prostaglandins, sympathetic amines, pro-inflammatory cytokines release and neutrophil migration. It is also indicated that bradykinin is the key modulator of the mechanical muscle hyperalgesia induced by P2X3 receptors. Therefore, we suggest that P2X3 receptors are important targets to control muscle inflammatory pain. PMID:25446353

Schiavuzzo, J G; Teixeira, J M; Melo, B; da Silva dos Santos, D F; Jorge, C O; Oliveira-Fusaro, M C G; Parada, C A

2015-01-29

225

Steroid-induced androgen receptoroestradiol receptor ?Src complex triggers prostate cancer cell proliferation  

PubMed Central

Treatment of human prostate carcinoma-derived LNCaP cells with androgen or oestradiol triggers simultaneous association of androgen receptor and oestradiol receptor ? with Src, activates the Src/Raf-1/Erk-2 pathway and stimulates cell proliferation. Surprisingly, either androgen or oestradiol action on each of these steps is inhibited by both anti-androgens and anti-oestrogens. Similar findings for oestradiol receptor ? were observed in MCF-7 or T47D cells stimulated by either oestradiol or androgens. Microinjection of LNCaP, MCF-7 and T47D cells with SrcK abolishes steroid-stimulated S-phase entry. Data from transfected Cos cells confirm and extend the findings from these cells. Hormone-stimulated Src interaction with the androgen receptor and oestradiol receptor ? or ? is detected using glutathione S-transferase fusion constructs. Src SH2 interacts with phosphotyrosine 537 of oestradiol receptor ? and the Src SH3 domain with a proline-rich stretch of the androgen receptor. The role of this phosphotyrosine is stressed by its requirement for association of oestradiol receptor ? with Src and consequent activation of Src in intact Cos cells. PMID:11032808

Migliaccio, Antimo; Castoria, Gabriella; Di Domenico, Marina; de Falco, Antonietta; Bilancio, Antonio; Lombardi, Maria; Barone, Maria Vittoria; Ametrano, Donatella; Zannini, Maria Stella; Abbondanza, Ciro; Auricchio, Ferdinando

2000-01-01

226

Peripheral P2X7 receptor-induced mechanical hyperalgesia is mediated by bradykinin.  

PubMed

P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), ?1 (atenolol) or ?2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor ? (TNF-?), interleukin (IL)-1?, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1? and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation. PMID:24997266

Teixeira, J M; de Oliveira-Fusaro, M C G; Parada, C A; Tambeli, C H

2014-09-26

227

Inhibitor of DNA Binding 2 Is a Small Molecule-Inducible Modulator of Peroxisome Proliferator-Activated Receptor-? Expression and Adipocyte Differentiation  

PubMed Central

We previously identified the small molecule harmine as a regulator of peroxisome proliferator activated-receptor ? (PPAR?) and adipocyte differentiation. In an effort to identify signaling pathways mediating harmines effects, we performed transcriptional profiling of 3T3-F442A preadipocytes. Inhibitor of DNA biding 2 (Id2) was identified as a gene rapidly induced by harmine but not by PPAR? agonists. Id2 is also induced in 3T3-L1 preadipocytes treated with dexamethasone, 3-isobutyl-1-methylxanthine, and insulin, suggesting that Id2 regulation is a common feature of the adipogenic program. Stable overexpression of Id2 in preadipocytes promotes expression of PPAR? and enhances morphological differentiation and lipid accumulation. Conversely, small interfering RNA-mediated knockdown of Id2 antagonizes adipocyte differentiation. Mice lacking Id2 expression display reduced adiposity, and embryonic fibroblasts derived from these mice exhibit reduced PPAR? expression and a diminished capacity for adipocyte differentiation. Finally, Id2 expression is elevated in adipose tissues of obese mice and humans. These results outline a role for Id2 in the modulation of PPAR? expression and adipogenesis and underscore the utility of adipogenic small molecules as tools to dissect adipocyte biology. PMID:18562627

Won Park, Kye; Waki, Hironori; Villanueva, Claudio J.; Monticelli, Laurel A.; Hong, Cynthia; Kang, Sona; MacDougald, Ormond A.; Goldrath, Ananda W.; Tontonoz, Peter

2008-01-01

228

Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells  

EPA Science Inventory

This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...

229

Human transforming growth factor type. cap alpha. coding sequence is not a directed-acting oncogene when overexpressed in NIH 3T3 cells  

SciTech Connect

A peptide secreted by some tumor cells in vitro imparts anchorage-independent growth to normal rat kidney (NRK) cells and has been termed transforming growth factor type ..cap alpha.. (TGF-..cap alpha..). To directly investigate the transforming properties of this factor, the human sequence coding for TGF-..cap alpha.. was placed under the control of either a metallothionein promoter or a retroviral long terminal repeat. These constructs failed to induce morphological transformation upon transfection of NIH 3T3 cells, whereas viral oncogenes encoding a truncated form of its cognate receptor, the EGF receptor, or another growth factor, sis/platelet-derived growth factor 2, efficiently induced transformed foci. Binding assays were done using (/sup 125/I)-EGF. When NIH 3T3 clonal sublines were selected by transfection of TGF-..cap alpha.. expression vectors in the presence of a dominant selectable market, they were shown to secrete large amounts of TGF-..cap alpha.. into the medium, to have downregulated EGF receptors, and to be inhibited in growth by TGF-..cap alpha.. monoclonal antibody. These results indicated that secreted TGF-..cap alpha.. interacts with its receptor at a cell surface location. Single cell-derived TGF-..cap alpha..-expressing sublines grew to high saturation density in culture. These and other results imply that TGF-..cap alpha.. exerts a growth-promoting effect on the entire NIH 3T3 cell population after secretion into the medium but little, if any, effect on the individual cell synthesizing this factor. It is concluded that the normal coding sequence for TGF-..cap alpha.. is not a direct-acting oncogene when overexpressed in NIH 3T3 cells.

Finzi, E.; Fleming, T.; Segatto, O.; Pennington, C.Y.; Bringman, T.S.; Derynck, R.; Aaronson, S.A.

1987-06-01

230

Gamma-hydroxybutyrate (GHB) induces cognitive deficits and affects GABAB receptors and IGF-1 receptors in male rats.  

PubMed

In recent years, the abuse of the club drug gamma-hydroxybutyrate (GHB) has become increasingly popular among adolescents. The drug induces euphoria but can also result in sedation, anaesthesia as well as short-term amnesia. In addition, the abuse of GHB causes cognitive impairments and the mechanism by which GHB induces these impairments is not clarified. The present study investigates the impact of GHB treatment on spatial learning and memory using a water maze (WM) test in rats. Furthermore, the behavioural data is combined with an autoradiographic analysis of the GABAB and the IGF-1 receptor systems. The results demonstrate that the animals administered with GHB display an impaired performance in the WM test as compared to controls. In addition, significant alterations in GABAB and IGF-1 receptor density as well as GABAB receptor functionality, were observed in several brain regions associated with cognitive functions e.g. hippocampus. To conclude, our findings suggest that GHB treatment can affect spatial learning and memory, and that this outcome at least to some extent is likely to involve both GABAB and IGF-1 receptors. PMID:24786330

Johansson, Jenny; Grnbladh, Alfhild; Hallberg, Mathias

2014-08-01

231

Dextromethorphan-induced psychotoxic behaviors cause sexual dysfunction in male mice via stimulation of ?-1 receptors.  

PubMed

Dextromethorphan (DM) is a well-known antitussive dextrorotatory morphinan. We and others have demonstrated that sigma (?) receptors may be important for DM-mediated neuromodulation. Because an earlier report suggested that DM might affect sexual function and that ? receptor ligands affect signaling pathways in the periphery, we examined whether DM-induced psychotoxic burden affected male reproductive function. We observed that DM had a high affinity at ?-1 receptors in the brain and testis but relatively low affinity at ?-2 receptors. Prolonged treatment with DM resulted in conditioned place preference and hyperlocomotion, followed by an increase in Fos-related antigen expression in the nucleus accumbens in male mice. Simultaneously, DM induced significant reductions in gonadotropin-releasing-hormone immunoreactivity in the hypothalamus. Moreover, we observed that DM induced increased sperm abnormalities and decreased sperm viability and sexual behavior. These phenomena were significantly attenuated by combined treatment with BD1047, a ?-1 receptor antagonist, but not by SM-21, a ?-2 receptor antagonist. Thus, these results suggest that DM psychotoxicity might lead to reproductive stress in male mice by activating ?-1 receptors. PMID:22326744

Nam, Yunsung; Shin, Eun-Joo; Yang, Boo-Keun; Bach, Jae-Hyung; Jeong, Ji Hoon; Chung, Yoon Hee; Park, Eon Sub; Li, Zhengyi; Kim, Kee-Won; Kwon, Young-Bae; Nabeshima, Toshitaka; Kim, Hyoung-Chun

2012-11-01

232

alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.  

PubMed Central

Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

Romero-Avila, M Teresa; Flores-Jasso, C Fabin; Garca-Sinz, J Adolfo

2002-01-01

233

D-1 dopamine receptors mediate dopamine-induced pancreatic exocrine secretion in anesthetized dogs.  

PubMed

Characterization of dopamine (DA) receptor subtypes was examined on the canine exocrine pancreas using selective DA receptor agonists and antagonists in anesthetized dogs. Each drug was injected i.a. in a single bolus fashion. Graded doses of DA (0.01-3 mumol) produced dose-dependent increases in the secretory rate of pancreatic juice, with a maximum effect at approximately 1 mumol. SCH23390 (3-30 nmol), a selective D-1 DA receptor antagonist, caused a progressive parallel shift to the right in the dose-response curve for DA-induced pancreatic secretion without changes in the maximal response. However, domperidone (3 mumol), a selective D-2 DA receptor antagonist, did not antagonize the DA-induced pancreatic exocrine secretion. A Schild analysis of the data indicates that the inhibitory constant value for SCH23390 to inhibit DA-stimulated secretion was 6.9 nmol. In addition, the stimulatory effects of SKF38393 (0.1-10 mumol) and YM435 (0.3-30 nmol), selective D-1 DA receptor agonists, and LY171555 (1-10 mumol), a selective D-2 DA receptor agonist, on pancreatic secretion were demonstrated. The rank order of agonist potency was YM435 > DA > SKF38393 > LY171555. These results suggest that DA-induced pancreatic exocrine secretion is mediated by activation of D-1 DA receptors. PMID:8529053

Iwatsuki, K; Horiuchi, A; Ren, L M; Chiba, S

1995-06-01

234

Involvement of NMDA receptors in the ventrolateral striatum of rats in apomorphine-induced jaw movements.  

PubMed

The role of NMDA receptors in the ventrolateral striatum to modulate dopamine receptor-mediated jaw movements was investigated in freely moving rats, using a magnetic sensor system combined with intracerebral microinjection of drugs. Apomorphine (1mg/kg i.v.) induced repetitive jaw movements that were reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor agonist NMDA (0.1 and 1mug/0.2mul bilaterally) into the ventrolateral striatum. Apomorphine-induced repetitive jaw movements were also reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor antagonists d-APV (0.01 and 0.1mug) or MK-801 (0.5 and 5mug). The inhibitory effect of NMDA (1mug) was reduced by co-administration of MK-801 (0.5mug). Microinjections of drugs into the ventrolateral striatum in the absence of apomorphine did not affect jaw movements. These results suggest that NMDA receptors in the ventrolateral striatum play an important modulatory role in the expression of dopamine receptor-mediated jaw movements. However, similar effects of NMDA and NMDA antagonists echo previous paradoxical findings and indicate that interactions between dopamine and NMDA receptors are complex and multifaceted. Cellular mechanism(s) may involve differential effects of NMDA agonism and antagonism on dopamine D1-like vs D2-like receptors and, possibly, on related GABAergic processes. PMID:20122906

Fujita, Satoshi; Kiguchi, Motori; Kobayashi, Masayuki; Koshikawa, Noriaki; Waddington, John L

2010-03-31

235

How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis.  

PubMed

Thyroid stimulating hormone (TSH) activates two major G-protein arms, Gs? and Gq leading to initiation of down-stream signaling cascades for survival, proliferation and production of thyroid hormones. Antibodies to the TSH receptor (TSHR-Abs), found in patients with Graves' disease, may have stimulating, blocking, or neutral actions on the thyroid cell. We have shown previously that such TSHR-Abs are distinct signaling imprints after binding to the TSHR and that such events can have variable functional consequences for the cell. In particular, there is a great contrast between stimulating (S) TSHR-Abs, which induce thyroid hormone synthesis and secretion as well as thyroid cell proliferation, compared to so called "neutral" (N) TSHR-Abs which may induce thyroid cell apoptosis via reactive oxygen species (ROS) generation. In the present study, using a rat thyrocyte (FRTL-5) ex vivo model system, our hypothesis was that while N-TSHR-Abs can induce apoptosis via activation of mitochondrial ROS (mROS), the S-TSHR-Abs are able to stimulate cell survival and avoid apoptosis by actively suppressing mROS. Using fluorescent microscopy, fluorometry, live cell imaging, immunohistochemistry and immunoblot assays, we have observed that S-TSHR-Abs do indeed suppress mROS and cellular stress and this suppression is exerted via activation of the PKA/CREB and AKT/mTOR/S6K signaling cascades. Activation of these signaling cascades, with the suppression of mROS, initiated cell proliferation. In sharp contrast, a failure to activate these signaling cascades with increased activation of mROS induced by N-TSHR-Abs resulted in thyroid cell apoptosis. Our current findings indicated that signaling diversity induced by different TSHR-Abs regulated thyroid cell fate. While S-TSHR-Abs may rescue cells from apoptosis and induce thyrocyte proliferation, N-TSHR-Abs aggravate the local inflammatory infiltrate within the thyroid gland, or in the retro-orbit, by inducing cellular apoptosis; a phenomenon known to activate innate and by-stander immune-reactivity via DNA release from the apoptotic cells. PMID:23958398

Morshed, Syed A; Ma, Risheng; Latif, Rauf; Davies, Terry F

2013-12-01

236

Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor ?/? (PPAR?/?).  

PubMed

Retinoic acid (RA) regulates gene transcription by activating the nuclear receptors retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR) ?/? and their respective cognate lipid-binding proteins CRABP-II and FABP5. RA induces neuronal differentiation, but the contributions of the two transcriptional pathways of the hormone to the process are unknown. Here, we show that the RA-induced commitment of P19 stem cells to neuronal progenitors is mediated by the CRABP-II/RAR path and that the FABP5/PPAR?/? path can inhibit the process through induction of the RAR repressors SIRT1 and Ajuba. In contrast with its inhibitory activity in the early steps of neurogenesis, the FABP5/PPAR?/? path promotes differentiation of neuronal progenitors to mature neurons, an activity mediated in part by the PPAR?/? target gene PDK1. Hence, RA-induced neuronal differentiation is mediated through RAR in the early stages and through PPAR?/? in the late stages of the process. The switch in RA signaling is accomplished by a transient up-regulation of RAR? concomitantly with a transient increase in the CRABP-II/FABP5 ratio at early stages of differentiation. In accordance with these conclusions, hippocampi of FABP5-null mice display excess accumulation of neuronal progenitor cells and a deficit in mature neurons versus wild-type animals. PMID:23105114

Yu, Shuiliang; Levi, Liraz; Siegel, Ruth; Noy, Noa

2012-12-01

237

Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.  

PubMed

Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid. PMID:24333477

Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

2014-01-15

238

Memory Deficits Induced by Inflammation Are Regulated by ?5-Subunit-Containing GABAA Receptors  

PubMed Central

SUMMARY Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting ?5-subunit-containing ?-aminobutyric acid type A (?5GABAA) receptors and deleting the gene associated with the ?5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of ?5GABAA receptor function. A tonic inhibitory current generated by ?5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1? through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1? also increased the surface expression of ?5GABAA receptors in the hippocampus. Collectively, these results show that ?5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits. PMID:22999935

Wang, Dian-Shi; Zurek, Agnieszka A.; Lecker, Irene; Yu, Jieying; Abramian, Armen M.; Avramescu, Sinziana; Davies, Paul A.; Moss, Stephen J.; Lu, Wei-Yang; Orser, Beverley A.

2015-01-01

239

Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesias.  

PubMed

In the present study we investigated whether the neuropeptide nociceptin/orphanin FQ (N/OFQ), previously implicated in the pathogenesis of Parkinson's disease, also affects L-DOPA-induced dyskinesia. In striatal slices of naive rodents, N/OFQ (0.1-1 ?m) prevented the increase of ERK phosphorylation and the loss of depotentiation of synaptic plasticity induced by the D1 receptor agonist SKF38393 in spiny neurons. In vivo, exogenous N/OFQ (0.03-1 nmol, i.c.v.) or a synthetic N/OFQ receptor agonist given systemically (0.01-1 mg/Kg) attenuated dyskinesias expression in 6-hydroxydopamine hemilesioned rats primed with L-DOPA, without causing primary hypolocomotive effects. Conversely, N/OFQ receptor antagonists worsened dyskinesia expression. In vivo microdialysis revealed that N/OFQ prevented dyskinesias simultaneously with its neurochemical correlates such as the surge of nigral GABA and glutamate, and the reduction of thalamic GABA. Regional microinjections revealed that N/OFQ attenuated dyskinesias more potently and effectively when microinjected in striatum than substantia nigra (SN) reticulata, whereas N/OFQ receptor antagonists were ineffective in striatum but worsened dyskinesias when given in SN. Quantitative autoradiography showed an increase in N/OFQ receptor binding in striatum and a reduction in SN of both unprimed and dyskinetic 6-hydroxydopamine rats, consistent with opposite adaptive changes of N/OFQ transmission. Finally, the N/OFQ receptor synthetic agonist also reduced dyskinesia expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated dyskinetic macaques without affecting the global parkinsonian score. We conclude that N/OFQ receptor agonists may represent a novel strategy to counteract L-DOPA-induced dyskinesias. Their action is possibly mediated by upregulated striatal N/OFQ receptors opposing the D1 receptor-mediated overactivation of the striatonigral direct pathway. PMID:23152595

Marti, Matteo; Rodi, Donata; Li, Qin; Guerrini, Remo; Fasano, Stefania; Morella, Ilaria; Tozzi, Alessandro; Brambilla, Riccardo; Calabresi, Paolo; Simonato, Michele; Bezard, Erwan; Morari, Michele

2012-11-14

240

Nephronectin expression is regulated by SMAD signaling in osteoblast-like MC3T3-E1 cells.  

PubMed

Nephronectin (Npnt) is an extracellular matrix protein known to be a ligand for the integrin ?8?1. We previously demonstrated that Npnt expression was suppressed by TGF-? through ERK1/2 and JNK in osteoblasts. In this study, we found that inhibition of a TGF-? type I receptor (TGF-? R1, Alk5) by a specific inhibitor {2-[3-(6-Methylpyridin-2-yl)-1H-pyrazol-4-yl]-1,5-naphthyridine} strongly induced Npnt expression in osteoblast-like MC3T3-E1 cells. The Alk5 inhibitor-induced increase of Npnt expression occurred in both time- and dose-dependent manners, while that expression was also induced by introduction of an siRNA for Smad2, a central intracellular mediator of TGF-? signaling. These results suggest that the expression of Npnt is regulated by the Alk5-SMAD signaling pathway in osteoblasts. PMID:22842459

Tsukasaki, Masayuki; Yamada, Atsushi; Yoshimura, Kentaro; Miyazono, Agasa; Yamamoto, Matsuo; Takami, Masamichi; Miyamoto, Yoichi; Morimura, Naoko; Kamijo, Ryutaro

2012-08-24

241

AMPA-receptor trafficking and injury-induced cell death  

PubMed Central

AMPA receptors (AMPARs) are critical for synaptic plasticity, and are subject to alterations based on subunit composition and receptor trafficking to and from the plasma membrane. One of the most potent regulators of AMPAR trafficking is the pro-inflammatory cytokine tumor necrosis factor (TNF)?, which is involved in physiological regulation of synaptic strength (Beattie et al., (2002) Science, 295, 22822285; Stellwagen and Malenka, (2006) Nature, 440, 10541059) and is also present at high concentrations after CNS injury. Here, we review evidence that TNF can rapidly alter the surface expression of AMPARs so that the proportion of Ca++-permeable receptors is increased and that this increase, in combination with increased levels of extracellular glutamate after injury, plays an important role in enhancing excitotoxic cell death after CNS injury. Thus, the pathophysiological hijacking of a critical regulator of synaptic plasticity and homeostasis by the secondary injury cascade may represent a new therapeutic target for neuroprotection. PMID:20646045

Beattie, Michael S.; Ferguson, Adam R.; Bresnahan, Jacqueline C.

2011-01-01

242

Blockade of adenosine A 2A receptor counteracts neuropeptide-S-induced hyperlocomotion in mice  

Microsoft Academic Search

Neuropeptide S (NPS) is the endogenous ligand of a G-protein-coupled receptor named as NPSR. Behavioral effects have been\\u000a recently attributed to NPS, i.e. hyperlocomotion, anxiolysis, and wakefulness. However, little is known about the mechanisms\\u000a by which NPS evokes such biological actions. The present study aimed to investigate the role played by the adenosine A2A and A1 receptors in hyperlocomotion induced

Carina R. Boeck; Caroline Martinello; Adalberto A. de Castro; Morgana Moretti; Tiago dos Santos Casagrande; Remo Guerrini; Girolamo Calo; Elaine C. Gavioli

2010-01-01

243

Tumor Necrosis Factor Receptor Family Member RANK Mediates Osteoclast Differentiation and Activation Induced by Osteoprotegerin Ligand  

Microsoft Academic Search

A receptor that mediates osteoprotegerin ligand (OPGL)-induced osteoclast differentiation and activation has been identified via genomic analysis of a primary osteoclast precursor cell cDNA library and is identical to the tumor necrosis factor receptor (TNFR) family member RANK. The RANK mRNA was highly expressed by isolated bone marrow-derived osteoclast progenitors and by mature osteoclasts in vivo. Recombinant OPGL binds specifically

Hailing Hsu; David L. Lacey; Colin R. Dunstan; Irina Solovyev; Anne Colombero; Emma Timms; Hong-Lin Tan; Gary Elliott; Michael J. Kelley; Ildiko Sarosi; Ling Wang; Xing-Zhong Xia; Robin Elliott; Laura Chiu; Tabitha Black; Sheila Scully; Casey Capparelli; Sean Morony; Grant Shimamoto; Michael B. Bass; William J. Boyle

1999-01-01

244

Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis  

Microsoft Academic Search

T-cell receptor (TCR)-mediated apoptosis in immature thymocytes and T-cell hybridomas is calcium de- pendent and can be inhibited by cyclosporin A (CsA). Induction of the orphan steroid receptor Nur77 (NGFI-B) is required for activation-induced apoptosis. Here, we examined the regulation of Nur77 expression, in response to apoptotic TCR signals, which consists of kinase C and calcium pathways. We show that

JOHN D. WORONICZ; ANDREA LINA; BARBARA J. CALNAN; SHANNAN SZYCHOWSKI; LAURENCE CHENG; ANDASTAR WINOTO

1995-01-01

245

MAPK pathway mediates muscarinic receptor-induced human lung fibroblast proliferation  

Microsoft Academic Search

Airway remodelling is a pathological feature of chronic inflammatory and obstructive airway diseases like asthma and COPD wherein fibroblasts contribute to structural alteration processes. We recently reported expression of multiple muscarinic receptors in human lung fibroblasts and demonstrated muscarinic receptor-induced, Gi-mediated proliferation in these cells. We now explore the underlying intracellular signalling pathways. As a measure of cell proliferation (3H)-thymidine

Sonja Matthiesen; Amit Bahulayan; Olaf Holz; Kurt Rack

2007-01-01

246

Paradoxical neostigmine-induced TOFfade: on the role of presynaptic cholinergic and adenosine receptors.  

PubMed

Neuromuscular transmission is clinically monitored using the train-of-four ratio (TOFratio), which is the quotient between twitch tension produced by the fourth (T4) and by the first (T1) stimulus within a train-of-four stimulation at 2Hz. Neostigmine causes a paradoxical depression of the TOFratio (TOFfade) that is amplified by intra-arterial atropine in cats. This led us to question the usefulness of the TOFratio as a sole testing element to control neostigmine-induced reversal of neuromuscular transmission block caused by non-depolarizing agents. We hypothesized that the inhibition of cholinesterase activity might increase acetylcholine bioavailability and consequently cholinoceptor activation, leading to concomitant adenosine release from nerve endings and skeletal muscle fibers. The involvement of presynaptic muscarinic and adenosine receptors in neostigmine-induced TOFfade in the rat phrenic nerve diaphragm was investigated. Blockade of adenosine A2A receptors with ZM241385 and of muscarinic M2 receptors with methoctramine or atropine amplified neostigmine-induced TOFfade. Notwithstanding TOFfade amplification, the blockade of M2 or A2A receptors increased both T1 and T4 twitch tensions above control during the first 3min of neostigmine application. Beyond that period, the T1 twitch tension returned to baseline, whereas T4 decreased further until the control value with neostigmine alone. Blockade of M1 receptors by pirenzepine did not change neostigmine-induced TOFfade, unless A2A receptors were concurrently blocked with ZM241385. Data indicate that the paradoxical neostigmine-induced fade involves presynaptic mechanisms that regulate transmitter release and synaptic adenosine accumulation, including the activation of adenosine A2A and muscarinic M2 receptors. PMID:24247035

de Paula Ramos, Edivan; Antnio, Marilia Bordignon; Ambiel, Celia Regina; Correia-de-S, Paulo; Alves-Do-Prado, Wilson

2014-01-15

247

Effect of Ganoderma applanatum mycelium extract on the inhibition of adipogenesis in 3T3-L1 adipocytes.  

PubMed

Ganoderma applanatum (GA) and related fungal species have been used for over 2000 years in China to prevent and treat various human diseases. However, there is no critical research evaluating the functionality of GA grown using submerged culture technology. This study aimed to evaluate the effects of submerged culture GA mycelium (GAM) and its active components (protocatechualdehyde [PCA]) on preadipocyte differentiation of 3T3-L1 cells. Mouse-derived preadipocyte 3T3-L1 cells were treated with differentiation inducers in the presence or absence of GAM extracts. We determined triglyceride accumulations, glycerol-3-phosphate dehydrogenase (GPDH) activities, and differentiation makers. PCA, the active component of GAM extract, was also used to treat 3T3-L1 cells. The MTT assay showed that the GAM extract (0.01-1?mg/mL) was not toxic to 3T3-L1 preadipocyte. Treatment of cells with GAM extracts and its active components significantly decreased the GPDH activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Western blot analysis results showed that the protein expression levels of peroxisome proliferator-activated receptor ? (PPAR?), CCAAT/enhancer-binding protein ? (C/EBP?), and sterol regulatory element-binding protein 1 (SREBP1) were inhibited by the GAM extract. In addition, adipogenic-specific genes such as perilipin, fatty acid synthase (FAS), fatty acid transport protein 1 (FATP1), and fatty acid-binding protein 4 (FABP4) decreased in a dose-dependent manner. Quantitative high-performance liquid chromatography analysis showed that the GAM extract contained 1.14?mg/g PCA. GAM extracts suppressed differentiation of 3T3-L1 preadipocytes, in part, through altered regulation of PPAR?, C/EBP?, and SREBP1. These results suggest that GAM extracts and PCA may suppress adipogenesis by inhibiting differentiation of preadipocytes. PMID:25140758

Kim, Ji-Eun; Park, Sung-Jin; Yu, Mi-Hee; Lee, Sam-Pin

2014-10-01

248

Spinal ephrinB/EphB signalling contributed to remifentanil-induced hyperalgesia via NMDA receptor  

PubMed Central

Background One of the major unresolved issues in treating pain is the paradoxical hyperalgesia produced by opiates, and accumulating evidence implicate that EphBs receptors and ephrinBs ligands are involved in mediation of spinal nociceptive information and central sensitization, but the manner in which ephrinB/EphB signalling acts on spinal nociceptive information networks to produce hyperalgesia remains enigmatic. The objective of this research was to investigate the role of ephrinB/EphB signalling in remifentanil-induced hyperalgesia (RIH) and its downstream effector. Methods We characterized the remifentanil-induced pain behaviours by evaluating thermal hyperalgesia and mechanical allodynia in a rat hind paw incisional model. Protein expression of EphB1 receptor and ephrinB1 ligand in spinal dorsal horn cord was determined by Western blotting, and Fos was determined by immunohistochemistry assay, respectively. To figure out the manner in which ephrinB/EphB signalling acts with N-methyl-d-aspartic acid (NMDA) receptor, we used MK-801, an antagonist of NMDA receptor, trying to suppressed the hyperalgesia induced by ephrinB1-Fc, an agonist of ephrinB/EphB. Results Continuing infusion of remifentanil produced a thermal hyperalgesia and mechanical allodynia, which was accompanied with increased protein expression of spinal-level EphB1 receptor, ephrinB1 ligand and Fos; what appeared above was suppressed by pretreatment with EphB1-Fc, an antagonist of ephrinB/EphB or MK-801, and increased pain behaviours induced by intrathecal injection of ephrinB1-Fc, an agonist of ephrinB/EphB, were suppressed by MK-801. Conclusions Our findings indicated that ephrinB/EphB signalling is involved in RIH. EphrinB/EphB signalling might be the upstream of NMDA receptor. What's already known about this topic? EphBs receptors and ephrinBs ligands are involved in mediation of spinal nociceptive information and central sensitization. The combination of EphB receptor and N-methyl-d-aspartic acid receptor induces long-term potentiation that is critical for causing excitation of spinal neuron and pain hyperalgesia. What does this study add? EphrinB/EphB signalling is involved in remifentanil-induced hyperalgesia (RIH). EphrinB/EphB signalling might be the upstream of N-methyl-d-aspartic acid receptor in RIH. PMID:24737575

Xia, WS; Peng, YN; Tang, LH; Jiang, LS; Yu, LN; Zhou, XL; Zhang, FJ; Yan, M

2014-01-01

249

Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs  

PubMed Central

Lysophosphatidic acid (LPA), a bioactive phospholipid, plays an important role in lung inflammation by inducing the release of chemokines and lipid mediators. Our previous studies have shown that LPA induces the secretion of interleukin-8 and prostaglandin E2 in lung epithelial cells. Here, we demonstrate that LPA receptors contribute to lipopolysaccharide (LPS)-induced inflammation. Pretreatment with LPA receptor antagonist Ki16425 or downregulation of LPA receptor 1 (LPA1) by small-interfering RNA (siRNA) attenuated LPS-induced phosphorylation of p38 MAPK, I-?B kinase, and I-?B in MLE12 epithelial cells. In addition, the blocking of LPA1 also suppressed LPS-induced IL-6 production. Furthermore, LPS treatment promoted interaction between LPA1 and CD14, a LPS coreceptor, in a time- and dose-dependent manner. Disruption of lipid rafts attenuated the interaction between LPA1 and CD14. Mice challenged with LPS increased plasma LPA levels and enhanced expression of LPA receptors in lung tissues. To further investigate the role of LPA receptors in LPS-induced inflammation, wild-type, or LPA1-deficient mice, or wild-type mice pretreated with Ki16425 were intratracheally challenged with LPS for 24 h. Knock down or inhibition of LPA1 decreased LPS-induced IL-6 release in bronchoalveolar lavage (BAL) fluids and infiltration of cells into alveolar space compared with wild-type mice. However, no significant differences in total protein concentration in BAL fluids were observed. These results showed that knock down or inhibition of LPA1 offered significant protection against LPS-induced lung inflammation but not against pulmonary leak as observed in the murine model for lung injury. PMID:21821728

Zhao, Jing; He, Donghong; Su, Yanlin; Berdyshev, Evgeny; Chun, Jerold; Natarajan, Viswanathan

2011-01-01

250

Laminin Polymerization Induces a Receptor-Cytoskeleton Network  

Microsoft Academic Search

The transition of laminin from a monomeric to a polymerized state is thought to be a crucial step in the development of basement membranes and in the case of skeletal muscle, mutations in laminin can result in severe muscular dystrophies with basement mem- brane defects. We have evaluated laminin polymer and receptor interactions to determine the requirements for laminin assembly

Holly Colognato; Donald A. Winkelmann; Peter D. Yurchenco

2010-01-01

251

Therapeutics Based On The Induced Internalization Of Surface Receptors  

Cancer.gov

The National Cancer Institute, Laboratory of Cellular Oncology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize therapeutics for diseases or conditions associated with target receptors, such as cancer, angiogenesis, or HIV infections.

252

Targeting death-inducing receptors in cancer therapy  

Microsoft Academic Search

Deregulated cell death pathways may lead to the development of cancer, and induction of tumor cell apoptosis is the basis of many cancer therapies. Knowledge accumulated concerning the molecular mechanisms of apoptotic cell death has aided the development of new therapeutic strategies to treat cancer. Signals through death receptors of the tumor necrosis factor (TNF) superfamily have been well elucidated,

K Takeda; J Stagg; H Yagita; K Okumura; M J Smyth

2007-01-01

253

Kappa opioid receptors participate in nerve growth factor-induced hyperalgesia.  

PubMed

It has recently been observed that nerve growth factors induces the rapid onset of thermal hyperalgesia, and the more delayed onset of mechanical hyperalgesia when administered to mature rats. Though several mechanisms have been proposed to explain this phenomenon, it is still not well understood. Previous studies have shown that nerve growth factor can directly excite nociceptive sensory ganglion neurons in culture via activation of kappa excitatory opioid receptors. The possible involvement of these excitatory opioid receptors in mediating the hyperalgesia was investigated. Nerve growth factor-induced thermal hyperalgesia in rodents was prevented by co-administration of the non-selective opiate antagonist naloxone, as well as by the kappa-selective antagonist nor-binaltorphimine. Addition of the long-acting opioid antagonist, naltrexone, partially prevented mechanical hyperalgesia. Administration of low dose dynorphin to mice (a selective kappa-receptor agonist) mimicked the hyperalgesia effects of nerve growth factor. Opiate antagonists and anti-nerve growth factor antibody both interfered with Freund's adjuvant-induced inflammatory hyperalgesia. Altogether, these observations suggest that activation of excitatory opioid receptors plays a role in mediating nerve growth factor-induced hyperalgesia and that, in turn, nerve growth factor contributes to the hyperalgesia associated with inflammatory states. Since opioid receptor antagonists are well tolerated clinically, they may be useful for patients receiving nerve growth factor as part of ongoing trials of the factor in peripheral neuropathy. PMID:8544993

Apfel, S C; Newel, M; Dormia, C; Kessler, J A

1995-10-01

254

Ligand-Induced Alterations in the Phosphorylation State of Ethylene Receptors in Tomato Fruit1[W][OA  

E-print Network

Ligand-Induced Alterations in the Phosphorylation State of Ethylene Receptors in Tomato Fruit1[W fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum in tomato fruits. We provide insights into the nature of receptor on and off states. The gaseous plant

Klee, Harry J.

255

Basal and glucocorticoid induced changes of hepatic glucocorticoid receptor during aging: relation to activities of tyrosine aminotransferase and tryptophan oxygenase  

Microsoft Academic Search

The characteristics of glucocorticoid receptors, their sensitivity to glucocorticoid as well as the basal and glucocorticoid induced thyrosine aminotranferase (TAT) and tryptophan oxygenase (TO) activities were studied in rat liver during aging. The concentration (N) and dissociation constant (Kd) of glucocorticoid receptor (GR) significantly change during the aging both in untreated and dexamethasone treated animals. The level of receptors was

Nevena Ribarac-Stepi?; Mojca Vulovi?; Goran Kori?anac; Esma Isenovi?

2005-01-01

256

Prostaglandin E2 Receptor, EP3, Is Induced in Diabetic Islets and Negatively Regulates Glucose-and Hormone-  

E-print Network

Prostaglandin E2 Receptor, EP3, Is Induced in Diabetic Islets and Negatively Regulates Glucose is stimulated by prostaglandin E2 (PGE2) and cou- ples to G-proteins of the Gi subfamily to decrease- glandin (PG)E2, termed prostaglandin E receptor 3 (EP3), the only one of four PGE2 receptors that couples

Attie, Alan D.

257

Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice.  

PubMed

We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglutide, the MC4R agonist RM-493 or a combination of RM-493 and liraglutide. Co-treatment of DIO mice with RM-493 and liraglutide improves body weight loss and enhances glycemic control and cholesterol metabolism beyond what can be achieved with either mono-therapy. The superior metabolic efficacy of this combination therapy is attributed to the anorectic and glycemic actions of both drugs, along with the ability of RM-493 to increase energy expenditure. Interestingly, compared to mice treated with liraglutide alone, hypothalamic Glp-1r expression was higher in mice treated with the combination therapy after both acute and chronic treatment. Further, RM-493 enhanced hypothalamic Mc4r expression. Hence, co-dosing with MC4R and GLP-1R agonists increases expression of each receptor, indicative of minimized receptor desensitization. Together, these findings suggest potential opportunities for employing combination treatments that comprise parallel MC4R and GLP-1R agonism for the treatment of obesity and diabetes. PMID:25652173

Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin; Tom, Robby Zachariah; Legutko, Beata; Sehrer, Laura; Heine, Daniela; Grassl, Niklas; Meyer, Carola W; Henderson, Bart; Hofmann, Susanna M; Tschp, Matthias H; Van der Ploeg, Lex Ht; Mller, Timo D

2015-01-01

258

Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice  

PubMed Central

We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglutide, the MC4R agonist RM-493 or a combination of RM-493 and liraglutide. Co-treatment of DIO mice with RM-493 and liraglutide improves body weight loss and enhances glycemic control and cholesterol metabolism beyond what can be achieved with either mono-therapy. The superior metabolic efficacy of this combination therapy is attributed to the anorectic and glycemic actions of both drugs, along with the ability of RM-493 to increase energy expenditure. Interestingly, compared to mice treated with liraglutide alone, hypothalamic Glp-1r expression was higher in mice treated with the combination therapy after both acute and chronic treatment. Further, RM-493 enhanced hypothalamic Mc4r expression. Hence, co-dosing with MC4R and GLP-1R agonists increases expression of each receptor, indicative of minimized receptor desensitization. Together, these findings suggest potential opportunities for employing combination treatments that comprise parallel MC4R and GLP-1R agonism for the treatment of obesity and diabetes. PMID:25652173

Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin; Tom, Robby Zachariah; Legutko, Beata; Sehrer, Laura; Heine, Daniela; Grassl, Niklas; Meyer, Carola W; Henderson, Bart; Hofmann, Susanna M; Tschp, Matthias H; Van der Ploeg, Lex HT; Mller, Timo D

2015-01-01

259

Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells  

PubMed Central

Natural killer (NK) lymphocytes use a variety of activating receptors to recognize and kill infected or tumorigenic cells during an innate immune response. To prevent targeting healthy tissue, NK cells also express numerous inhibitory receptors that signal through immunotyrosine-based inhibitory motifs (ITIMs). Precisely how signals from competing activating and inhibitory receptors are integrated and resolved is not understood. To investigate how ITIM receptor signaling impinges on activating pathways, we developed a photochemical approach for stimulating the inhibitory receptor KIR2DL2 during ongoing NK cellactivating responses in high-resolution imaging experiments. Photostimulation of KIR2DL2 induces the rapid formation of inhibitory receptor microclusters in the plasma membrane and the simultaneous suppression of microclusters containing activating receptors. This is followed by the collapse of the peripheral actin cytoskeleton and retraction of the NK cell from the source of inhibitory stimulation. These results suggest a cell biological basis for ITIM receptor signaling and establish an experimental framework for analyzing it. PMID:21339333

Abeyweera, Thushara P.; Merino, Ernesto

2011-01-01

260

Endothelial Cell-specific Deficiency of AngII Type 1a Receptors Attenuates AngII-induced Ascending Aortic Aneurysms in LDL Receptor ?/? Mice  

PubMed Central

Rationale Human studies and mouse models have provided evidence for angiotensin II (AngII)-based mechanisms as an underlying cause of aneurysms localized to the ascending aorta. In agreement with this associative evidence, we have published recently that AngII infusion induces aneurysmal pathology in the ascending aorta. Objective The aim of this study was to define the role of angiotensin II type 1a (AT1a) receptors and their cellular location in AngII-induced ascending aortic aneurysms (AAs). Methods and Results Male LDL receptor ?/? mice were fed a saturated fat-enriched diet for 1 week prior to osmotic mini-pump implantation and infused with either saline or AngII (1,000 ng/kg/min) for 28 days. Intimal surface areas of ascending aortas were measured to quantify ascending AAs. Whole body AT1a receptor deficiency ablated AngII-induced ascending AAs (P<0.001). To determine the role of AT1a receptors on leukocytes, LDL receptor ?/? x AT1a receptor +/+ or ?/? mice were irradiated and repopulated with bone marrow-derived cells isolated from either AT1a receptor +/+ or ?/? mice. Deficiency of AT1a receptors in bone marrow-derived cells had no effect on AngII-induced ascending AAs. To determine the role of AT1a receptors on vascular wall cells, we developed AT1a receptor floxed mice with depletion on either smooth muscle (SMC) or endothelial cells using Cre driven by either SM22 or Tek, respectively. AT1a receptor deletion in SMCs had no effect on ascending AAs. In contrast, endothelial-specific depletion attenuated this pathology. Conclusions AngII infusion promotes aneurysms in the ascending aorta via stimulation of AT1a receptors that are expressed on endothelial cells. PMID:21252156

Rateri, Debra L.; Moorleghen, Jessica J.; Balakrishnan, Anju; Owens, A. Phillip; Howatt, Deborah A.; Subramanian, Venkateswaran; Poduri, Aruna; Charnigo, Richard; Cassis, Lisa A.; Daugherty, Alan

2011-01-01

261

Prostaglandin D(2) induces contraction via thromboxane A(2) receptor in rat liver myofibroblasts.  

PubMed

Increased intrahepatic resistance is one of the major characteristics of cirrhotic liver, in which extravascular cells including liver myofibroblasts (MFs) abnormally contract. Although several studies provided evidence that various prostaglandins (PG) are involved in liver cirrhosis, the role of PGD(2) remains unknown. In this study, we investigated the effect of PGD(2) on the contractile properties of liver MFs. Cultured rat liver MFs were used at passages 4-7. A collagen gel contraction assay was used for the evaluation of the MFs contraction. mRNA expression was assessed by semi-quantitative RT-PCR. Intracellular Ca(2+) concentrations ([Ca(2+)](i)) were measured by monitoring the fluorescence intensity of fura-2. PGD(2) (1-10 microM) induced liver MF contraction in a dose-dependent manner with [Ca(2+)](i) elevation. Pretreatment with 300 nM LaCl(3), a nonselective Ca(2+) channel blocker abolished the 10 microM PGD(2)-induced MFs contraction. RT-PCR revealed that three distinct PGD(2) responsive receptors, prostanoid DP receptor, chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and thromboxane A(2) receptor (prostanoid TP receptor), were expressed in liver MFs. While prostanoid DP receptor agonist and CRTH2 agonist didn't induce contraction, 0.01-1 microM U46619 (11alpha, 9alpha-epoxymethano-PGH(2), prostanoid TP receptor agonist) caused robust contraction with [Ca(2+)](i) elevation. Furthermore, pretreatment with prostanoid TP receptor antagonists ramatroban (1 microM) or SQ29548 ([1S-[1alpha, 2alpha(Z), 3alpha, 4alpha

Maruyama, Tomoharu; Murata, Takahisa; Ayabe, Shinya; Hori, Masatoshi; Ozaki, Hiroshi

2008-09-01

262

Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells.  

PubMed

The presence of angiotensin type2 (AT2) receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and their role in the induction of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor agonist, Compound 21 (C21), penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24h. The cells, which escaped cell death, displayed activation of the mitochondrial apoptotic pathway, i.e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our results point to a new, unique approach enabling the elimination non-cycling uterine leiomyosarcoma cells providing that they over-express the AT2 receptor. PMID:25487516

Zhao, Yi; Ltzen, Ulf; Fritsch, Jrgen; Zuhayra, Maaz; Schtze, Stefan; Steckelings, Ulrike M; Recanti, Chiara; Namsoleck, Pawel; Unger, Thomas; Culman, Juraj

2015-05-01

263

Significance of the progesterone receptor and epidermal growth factor receptor, but not the estrogen receptor, in chemically induced lung carcinogenesis in female A/J mice  

PubMed Central

In the present study, the expression levels of female hormone receptors, estrogen receptor (ER) and progesterone receptor (PR) and the epidermal growth factor receptor, (EGFR), as well as proliferating cell nuclear antigen (PCNA) were examined in lung tumors that were induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female A/J mice. Each seven-week-old mouse was administered with 2 mg NNK via intraperitoneal injection and the mice were subsequently euthanized at week 52. Lung tumors, including adenomas, carcinomas in adenomas and adenocarcinomas, were obtained and analyzed by immunohistochemistry for the expression levels of the receptors, ER, PR and EGFR, and PCNA. The results were as follows: i) In mouse lung adenomas, a significant correlation was identified between the size of the tumor and PCNA expression, although not with the expression of the receptors (ER, PR and EGFR); ii) in the carcinoma components of the carcinomas in adenomas, the size of the tumor and PCNA expression were correlated, while EGFR expression demonstrated a significant correlation with PR expression; iii) in adenocarcinomas, the tumor size significantly correlated with PCNA, EGFR and PR expression; and iv) EGFR and PR expression was identified to be significantly correlated in adenocarcinomas, and to a certain extent in the carcinoma components of the carcinomas in adenomas, although not in the adenomas. Notably, ER expression was not associated with tumor growth or the other factors, particularly EGFR expression, and no significant differences were identified between the three types of lesion. These results indicate that PR, like EGFR, may be significant in lung carcinogenesis. PMID:25364399

KISHI, SOSUKE; YOKOHIRA, MASANAO; YAMAKAWA, KEIKO; SAOO, KOUSUKE; IMAIDA, KATSUMI

2014-01-01

264

Antinociceptive effects induced through the stimulation of spinal cannabinoid type 2 receptors in chronically inflamed mice.  

PubMed

The stimulation of spinal cannabinoid type 2 (CB(2)) receptors is a suitable strategy for the alleviation of experimental pain symptoms. Several reports have described the up-regulation of spinal cannabinoid CB(2) receptors in neuropathic settings together with the analgesic effects derived from their activation. Besides, we have recently reported in two murine bone cancer models that the intrathecal administration of cannabinoid CB(2) receptor agonists completely abolishes hyperalgesia and allodynia, whereas spinal cannabinoid CB(2) receptor expression remains unaltered. The present experiments were designed to measure the expression of spinal cannabinoid CB(2) receptors as well as the analgesic efficacy derived from their stimulation in mice chronically inflamed by the intraplantar injection of complete Freund's adjuvant 1 week before. Both spinal cannabinoid CB(2) receptors mRNA measured by real-time PCR and cannabinoid CB(2) receptor protein levels measured by western blot remained unaltered in inflamed mice. Besides, the intrathecal (i.t.) administration of the cannabinoid CB(2) receptor agonists AM1241, (R,S)-3-(2-Iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole, (0.03-1 ?g) and JWH 133, (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran, (3-30 ?g) dose-dependently blocked inflammatory thermal hyperalgesia and mechanical allodynia. The analgesic effects induced by both agonists were counteracted by the coadministration of the selective cannabinoid CB(2) receptor antagonist SR144528, 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide, (5 ?g) but not by the cannabinoid CB(1) receptor antagonist AM251, N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, (10 ?g). The effects induced by AM1241 were also inhibited by the coadministration of the opioid receptor antagonist, naloxone (1 ?g). These results demonstrate that effective analgesia can be achieved in chronic inflammatory settings through the stimulation of spinal cannabinoid CB(2) receptors even if this receptor population is not up-regulated. PMID:21771590

Curto-Reyes, Verdad; Boto, Tamara; Hidalgo, Agustn; Menndez, Luis; Baamonde, Ana

2011-10-01

265

Optimal T-cell receptor affinity for inducing autoimmunity.  

PubMed

T-cell receptor affinity for self-antigen has an important role in establishing self-tolerance. Three transgenic mouse strains expressing antigens of variable affinity for the OVA transgenic-I T-cell receptor were generated to address how TCR affinity affects the efficiency of negative selection, the ability to prime an autoimmune response, and the elimination of the relevant target cell. Mice expressing antigens with an affinity just above the negative selection threshold exhibited the highest risk of developing experimental autoimmune diabetes. The data demonstrate that close to the affinity threshold for negative selection, sufficient numbers of self-reactive T cells escape deletion and create an increased risk for the development of autoimmunity. PMID:25411315

Koehli, Sabrina; Naeher, Dieter; Galati-Fournier, Virginie; Zehn, Dietmar; Palmer, Ed

2014-12-01

266

T3 augmentation of SSRI resistant depression  

Microsoft Academic Search

Purpose of studyTo investigate whether the addition of triiodothyronine (T3) helps relieve depressive symptoms in non-hypothyroid major depressive disorder patients who failed to respond to an adequate course of standard SSRI antidepressant treatments.

Gebrehiwot Abraham; Roumen Milev; J. Stuart Lawson

2006-01-01

267

Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARgamma activation.  

PubMed

Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPARgamma by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPARgamma target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPARgamma and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome. PMID:19891958

Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-Il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

2009-12-25

268

Epidermal Growth Factor Induces G Protein-Coupled Receptor 30 Expression in Estrogen Receptor-Negative Breast Cancer Cells  

PubMed Central

Different cellular receptors mediate the biological effects induced by estrogens. In addition to the classical nuclear estrogen receptors (ERs)-? and -?, estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPR)-30. Using as a model system SkBr3 and BT20 breast cancer cells lacking the classical ER, the regulation of GPR30 expression by 17?-estradiol, the selective GPR30 ligand G-1, IGF-I, and epidermal growth factor (EGF) was evaluated. Transient transfections with an expression plasmid encoding a short 5?-flanking sequence of the GPR30 gene revealed that an activator protein-1 site located within this region is required for the activating potential exhibited only by EGF. Accordingly, EGF up-regulated GPR30 protein levels, which accumulated predominantly in the intracellular compartment. The stimulatory role elicited by EGF on GPR30 expression was triggered through rapid ERK phosphorylation and c-fos induction, which was strongly recruited to the activator protein-1 site found in the short 5?-flanking sequence of the GPR30 gene. Of note, EGF activating the EGF receptor-MAPK transduction pathway stimulated a regulatory loop that subsequently engaged estrogen through GPR30 to boost the proliferation of SkBr3 and BT20 breast tumor cells. The up-regulation of GPR30 by ligand-activated EGF receptor-MAPK signaling provides new insight into the well-known estrogen and EGF cross talk, which, as largely reported, contributes to breast cancer progression. On the basis of our results, the action of EGF may include the up-regulation of GPR30 in facilitating a stimulatory role of estrogen, even in ER-negative breast tumor cells. PMID:18467441

Albanito, Lidia; Sisci, Diego; Aquila, Saveria; Brunelli, Elvira; Vivacqua, Adele; Madeo, Antonio; Lappano, Rosamaria; Pandey, Deo Prakash; Picard, Didier; Mauro, Loredana; And, Sebastiano; Maggiolini, Marcello

2008-01-01

269

Estrogen receptor (ER) modulators each induce distinct conformational changes in ER ? and ER ?  

PubMed Central

Estrogen receptor (ER) modulators produce distinct tissue-specific biological effects, but within the confines of the established models of ER action it is difficult to understand why. Previous studies have suggested that there might be a relationship between ER structure and activity. Different ER modulators may induce conformational changes in the receptor that result in a specific biological activity. To investigate the possibility of modulator-specific conformational changes, we have applied affinity selection of peptides to identify binding surfaces that are exposed on the apo-ERs ? and ? and on each receptor complexed with estradiol or 4-OH tamoxifen. These peptides are sensitive probes of receptor conformation. We show here that ER ligands, known to produce distinct biological effects, induce distinct conformational changes in the receptors, providing a strong correlation between ER conformation and biological activity. Furthermore, the ability of some of the peptides to discriminate between different ER ? and ER ? ligand complexes suggests that the biological effects of ER agonists and antagonists acting through these receptors are likely to be different. PMID:10097152

Paige, Lisa A.; Christensen, Dale J.; Grn, Hanne; Norris, John D.; Gottlin, Elizabeth B.; Padilla, Karen M.; Chang, Ching-yi; Ballas, Lawrence M.; Hamilton, Paul T.; McDonnell, Donald P.; Fowlkes, Dana M.

1999-01-01

270

Retinoids induce integrin-independent lymphocyte adhesion through RAR-? nuclear receptor activity.  

PubMed

Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH)2D3, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-? receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion. PMID:25450689

Whelan, Jarrett T; Wang, Lei; Chen, Jianming; Metts, Meagan E; Nasser, Taj A; McGoldrick, Liam J; Bridges, Lance C

2014-10-31

271

APS, an adaptor protein containing PH and SH2 domains, is associated with the PDGF receptor and c-Cbl and inhibits PDGF-induced mitogenesis.  

PubMed

Previously we cloned a novel adaptor protein, APS (adaptor molecules containing PH and SH2 domains) which was tyrosine phosphorylated in response to c-kit or B cell receptor stimulation. Here we report that APS was expressed in some human osteosarcoma cell lines, markedly so in SaOS-2 cells, and was tyrosine-phosphorylated in response to several growth factors, including platelet derived growth factor (PDGF), insulin-like growth factor (IGF), and granulocyte-macrophage colony stimulating factor (GM-CSF). Ectopic expression of the wild type APS, but not C-terminal truncated APS, in NIH3T3 fibroblasts suppressed PDGF-induced MAP kinase (Erk2) activation, c-fos and c-myc induction as well as cell proliferation. In vitro binding experiments suggest that APS bound to the beta type PDGF receptor, mainly via phosphotyrosine 1021 (pY1021). Indeed, tyrosine phosphorylation of PLC-gamma, which has been demonstrated to bind to pY1021, but not that of PI3 kinase and associated proteins, was reduced in APS transformants. PDGF induced phosphorylation of the tyrosine residue of APS close to the C-terminal end. In vitro and in vivo binding experiments indicate that the tyrosine phosphorylated C-terminal region of APS bound to c-Cbl, which has been shown to be a negative regulator of tyrosine kinases. Since coexpression of c-Cbl with wild type APS, but not C-terminal truncated APS, synergistically inhibited PDGF-induced c-fos promoter activation, c-Cbl could be a mechanism of inhibitory action of APS on PDGF receptor signaling. PMID:9989826

Yokouchi, M; Wakioka, T; Sakamoto, H; Yasukawa, H; Ohtsuka, S; Sasaki, A; Ohtsubo, M; Valius, M; Inoue, A; Komiya, S; Yoshimura, A

1999-01-21

272

Influence of muscarinic receptor modulators on interacerebroventricular injection of arachydonylcyclopropylamide induced antinociception in mice.  

PubMed

The interaction between antinociception induced by CB1 agonist and muscarinic receptor modulators has not been studied yet. In the present study, the effect of pilocarpine (a muscarinic agonist) and atropine (a muscarinic antagonist) on arachidonylcyclopropylamide (ACPA, a CB1 agonist) induced antinociception was studied in mice. In this study the antinociceptive effect of intracerebroventricular administration of ACPA (0.001-2 ?g/mice) or intraperitoneal injection of pilocarpine (2.5-20mg/kg) or atropine (1 and 5mg/kg) were studied individually. Then the effect of co-administration of pilocarine (2.5mg/kg) or atropine (5mg/kg) and ACPA (0.001-2 ?g/mice) were studied as well. ACPA and pilocarpine induced antinociception in mice but atropine did not. Pilocarpine potentiated but atropine antagonized the antinociceptive effect of ACPA. It is concluded that ACPA induced antinociception is influenced by muscarinic receptor modulators in mice. PMID:25447472

Jafari, Mohammad R; Onsori, Samaneh; Fekrmandi, Fatemeh; Tabrizian, Pouria; Alipour, Mohsen; Zarrindast, Mohammad R

2015-01-01

273

NOP receptor mediates anti-analgesia induced by agonist-antagonist opioids.  

PubMed

Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ?90min after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J-113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

Gear, R W; Bogen, O; Ferrari, L F; Green, P G; Levine, J D

2014-01-17

274

Pharmacological evaluation of SN79, a sigma (?) receptor ligand, against methamphetamine-induced neurotoxicity in vivo  

PubMed Central

Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (?) receptors in the brain at physiologically relevant concentrations, where it acts in part as an agonist. SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative ? receptor antagonist with nanomolar affinity and selectivity for ? receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established ? receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate ? receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. PMID:22921523

Kaushal, Nidhi; Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

2013-01-01

275

Pharmacological evaluation of SN79, a sigma (?) receptor ligand, against methamphetamine-induced neurotoxicity in vivo.  

PubMed

Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (?) receptors in the brain at physiologically relevant concentrations, where it "acts in part as an agonist." SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative ? receptor antagonist with nanomolar affinity and selectivity for ? receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established ? receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate ? receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. PMID:22921523

Kaushal, Nidhi; Seminerio, Michael J; Robson, Matthew J; McCurdy, Christopher R; Matsumoto, Rae R

2013-08-01

276

Amplification of small molecule-inducible gene expression via tuning of intracellular receptor densities  

PubMed Central

Ligand-responsive transcription factors in prokaryotes found simple small molecule-inducible gene expression systems. These have been extensively used for regulated protein production and associated biosynthesis of fine chemicals. However, the promoter and protein engineering approaches traditionally used often pose significant restrictions to predictably and rapidly tune the expression profiles of inducible expression systems. Here, we present a new unified and rational tuning method to amplify the sensitivity and dynamic ranges of versatile small molecule-inducible expression systems. We employ a systematic variation of the concentration of intracellular receptors for transcriptional control. We show that a low density of the repressor receptor (e.g. TetR and ArsR) in the cell can significantly increase the sensitivity and dynamic range, whereas a high activator receptor (e.g. LuxR) density achieves the same outcome. The intracellular concentration of receptors can be tuned in both discrete and continuous modes by adjusting the strength of their cognate driving promoters. We exemplified this approach in several synthetic receptor-mediated sensing circuits, including a tunable cell-based arsenic sensor. The approach offers a new paradigm to predictably tune and amplify ligand-responsive gene expression with potential applications in synthetic biology and industrial biotechnology. PMID:25589545

Wang, Baojun; Barahona, Mauricio; Buck, Martin

2015-01-01

277

Effects of cannabinoid receptor ligands on LPS-induced pulmonary inflammation in mice  

Microsoft Academic Search

The effects of cannabinoid receptor agonists WIN 55,212-2, ?9-tetrahydrocannabinol (?9-THC), arachidonoylethanolamide (anandamide) and palmitoylethanolamide on lipopolysaccharide (LPS) -induced bronchopulmonary inflammation in mice were investigated. WIN 55,212-2 and ?9-THC induced a concentration-dependent decrease in TNF-? level in the bronchoalveolar lavage fluid (BALF) (maximum inhibition 52.7% and 36.9% for intranasal doses of 750 nmol.kg?1 and 2.65 mmol.kg?1, respectively). This effect was accompanied

E. Berdyshev; E. Boichot; M. Corbel; N. Germain; V Lagente

1998-01-01

278

Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression  

Microsoft Academic Search

We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metallo- proteinases collagenase and stromelysin. That induc- tion was a direct consequence of interaction with the FnR was

Zena Werb; Patrice M. Tremble; Ole Behrendtsen; Eileen Crowley; Caroline H. Damskytll

1989-01-01

279

Trapping of the beta-adrenergic receptor in the hormone-induced state.  

PubMed Central

Isoproterenol and other agonists readily dissociate from the beta-adrenergic receptor in turkey erythrocyte membranes. However, when a low concentration of deoxycholate is added, the receptor locks the prebound agonist; i.e., the rate of dissociation of the prebound agonist decreases drastically. The dissociation of prebound antagonists is slightly increased by deoxycholate. Locking, which is thus agonist specific, occurs in the cold, is reversed when detergent is removed from the membranes, and appears not to require the guanyl nucleotide binding protein of the adenylate cyclase system. It is suggested that this induced fit of a receptor to an agonist represents the specific conformational response that normally propagates in the receptor molecule in its interaction with the next component along the pathway of signal transmission. PMID:6314327

Neufeld, G; Steiner, S; Korner, M; Schramm, M

1983-01-01

280

Basal ganglia serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia.  

PubMed

L-DOPA-induced dyskinesias (LID)s are abnormal involuntary movements limiting the chronic use of L-DOPA, the main pharmacological treatment of Parkinson's disease (PD). Serotonin receptors are thought to contribute to LID but serotonin 1B (5-HT1B) receptors have never been investigated in any primate models of PD and LID. Therefore, we measured 5-HT1B receptors with [(3)H]GR 125743 autoradiography in controls, MPTP-lesioned monkeys, and L-DOPA-treated MPTP monkeys, with or without Ro 61-8048 treatment, a kynurenine hydroxylase inhibitor alleviating LID. In normal condition, 5-HT1B receptor specific binding was highest in the substantia nigra pars reticulata (SNr), high in the globus pallidus (GP), nucleus accumbens and substantia innominata and lower in the caudate nucleus and putamen. 5-HT1B receptors were increased in caudate nucleus, putamen and SNr of MPTP monkeys compared to controls. L-DOPA-treated MPTP monkeys had elevated 5-HT1B receptor specific binding in caudate nucleus, putamen, SNr and internal GP. In all these brain regions, increases were prevented by co-administration of Ro 61-8048. No effect of MPTP lesion or treatment was observed for 5-HT1B specific binding in the external GP, nucleus accumbens and substantia innominata. This study is the first description in primates of altered brain 5-HT1B receptors associated with prevention of LID. PMID:23954709

Riahi, Golnasim; Morissette, Marc; Samadi, Pershia; Parent, Martin; Di Paolo, Thrse

2013-10-01

281

Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors  

SciTech Connect

The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

Di Paolo, T.; Falardeau, P.

1987-08-31

282

beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy  

SciTech Connect

Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with (/sup 3/H)-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with (/sup 3/H)-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension.

Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

1985-05-01

283

Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.  

PubMed

Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to glucocorticoids. PMID:19880449

Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

2009-11-15

284

The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen  

PubMed Central

Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as ()-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, G?q or G?i/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

2010-01-01

285

HIGH GLUCOSE INDUCES TOLL-LIKE RECEPTOR EXPRESSION IN HUMAN MONOCYTES: MECHANISM OF ACTIVATION  

Technology Transfer Automated Retrieval System (TEKTRAN)

Objective: Hyperglycemia induced inflammation is central in diabetes complications and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses as well as inflammation. However, there is a paucity of data examining the expression a...

286

Toll Like Receptor-4 Mediates Vascular Inflammation and Insulin Resistance in Diet-Induced Obesity  

Technology Transfer Automated Retrieval System (TEKTRAN)

Vascular dysfunction is a major complication of metabolic disorders such as diabetes and obesity. The current studies were undertaken to determine if inflammatory responses are activated in the vasculature of mice with diet-induced obesity (DIO), and if so, whether Toll Like Receptor-4 (TLR4), a ke...

287

MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)  

EPA Science Inventory

MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

288

Peroxisome Proliferator-Activated Receptor Protects Against Alcohol-Induced Liver Damage  

E-print Network

Peroxisome Proliferator-Activated Receptor Protects Against Alcohol-Induced Liver Damage Tamie alcoholic liver disease are not completely understood, but lipid accumulation seems to be central. To investi- gate the roles of PPAR in alcoholic liver injury, wild-type and PPAR -null mice were continuously

Omiecinski, Curtis

289

Could hormone-induced loss of gonadotrophin receptors reduce the efficiency of superovulations stimulated by PMSG ?  

E-print Network

Could hormone-induced loss of gonadotrophin receptors reduce the efficiency of superovulations, 1976 ; Seidel et al., 1978). Pituitary follicle stimulating hormone (FSH) is unlikely to be ever, as well as FSH activity, it also acts as a luteinizing or interstitial cell stimulating hormone (Papkoff

Boyer, Edmond

290

Garlic (Allium sativum) Extracts Inhibits Lipopolysaccharide-Induced Toll-Like Receptor 4 Dimerization  

Technology Transfer Automated Retrieval System (TEKTRAN)

Garlic has been used as a folk medicine for a long history. Numerous studies demonstrated that garlic extracts and its sulfur-containing compounds inhibit nuclear factor-kappa B (NF-kB) activation induced by various receptor agonist including lipopolysaccharide (LPS). These effects suggest that garl...

291

Oestrogen-induced apoptosis in colonocytes expressing oestrogen receptor  

Microsoft Academic Search

Epidemiological studies of postmenopausal hormone replacement therapy show a reduction in the risk of developing colon cancer, and animal studies using 17-oestradiol (E2) demonstrate a decreased incidence of chemically-induced colon cancer. Using the colon cancer cell line, COLO205, we found that E2 induced a dose-dependent increase in DNA frag- mentation and nuclear condensation, significant effects being seen at 1012 mol\\/l.

Y Qiu; C E Waters; A E Lewis; M C Eggo

2002-01-01

292

Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes.  

PubMed

Receptor-ligand binding is an essential interaction for biological function. Oxidative stress can modify receptors and/or membrane lipid dynamics, thus altering cell physiological functions. The aim of this study is to analyze how oxidative stress may alter receptor-ligand binding and lipid domain distribution in the case of progesterone-induced blocking factor/progesterone-induced blocking factor-receptor. For membrane fluidity regionalization analysis of MEC-1 lymphocytes, two-photon microscopy was used in individual living cells. Lymphocytes were also double stained with AlexaFluor647/progesterone-induced blocking factor and Laurdan to evaluate -induced blocking factor/progesterone-induced blocking factor-receptor distribution in the different membrane domains, under oxidative stress. A new procedure has been developed which quantitatively analyzes the regionalization of a membrane receptor among the lipid domains of different fluidity in the plasma membrane. We have been able to establish a new tool which detects and evaluates lipid raft clustering from two-photon microscopy images of individual living cells. We show that binding of progesterone-induced blocking factor to progesterone-induced blocking factor-receptor causes a rigidification of plasma membrane which is related to an increase of lipid raft clustering. However, this clustering is inhibited under oxidative stress conditions. In conclusion, oxidative stress decreases membrane fluidity, impairs receptor-ligand binding and reduces lipid raft clustering. PMID:23954806

de la Haba, Carlos; Palacio, Jos R; Palkovics, Tamas; Szekeres-Barth, Jlia; Morros, Antoni; Martnez, Paz

2014-01-01

293

UDP induces intestinal epithelial migration via the P2Y6 receptor  

PubMed Central

BACKGROUND AND PURPOSE Extracellular nucleotides are released at high concentrations from damaged cells and function through P2 receptor activation. Intestinal epithelial restitution, which is defined as cell migration independent of cell proliferation, is an important initial step in the process of wound healing. In this study, we investigated the role of extracellular nucleotides in intestinal epithelial migratory responses. EXPERIMENTAL APPROACH Wound-healing and trans-well migration assays were performed with a rat intestinal epithelial cell line (IEC-6). The concentrations of extracellular nucleotides released from injured IEC-6 cells were measured by HPLC. TGF-? expression was assessed by RT-PCR and elisa. KEY RESULTS Scratching the monolayer of IEC-6 cells induced cell migration. Pretreatment with apyrase or MRS2578, a selective P2Y6 antagonist, inhibited the wound-induced cell migration. Among the cellular nucleotides, only ATP and uridine 5'-diphosphate (UDP) were detected in the culture medium after cell wounding. Exogenously applied UDP dose-dependently enhanced the migration more effectively than ATP but did not induce proliferation. In addition, cell wounding and UDP increased the expression of TGF-?, and both the wound-induced and UDP-enhanced migration were inhibited by MRS2578 or ALK5Inhibitor (ALK5i), a TGF-? receptor blocker. Furthermore, cell wounding and UDP stimulation up-regulated the expression of P2Y6 receptor mRNA, and this effect was suppressed by MRS2578 or ALK5i. CONCLUSION AND IMPLICATIONS Wound-induced UDP evokes intestinal epithelial restitution by activation of P2Y6 receptors, which mediates de novo synthesis of TGF-?. In addition, the expression of P2Y6 receptors is increased by cell wounding and UDP, which constitutes a positive-feedback loop for mucosal repair. PMID:23941325

Nakamura, Tatsuro; Murata, Takahisa; Hori, Masatoshi; Ozaki, Hiroshi

2013-01-01

294

Phosphatidylinositol 4,5-bisphosphate induced flunitrazepam sensitive-GABAA receptor increase in synaptosomes from chick forebrain.  

PubMed

The flunitrazepam sensitive-GABA(A) receptor density was increased by cytochalasins C and D at 37 degrees C suggesting that microfilament depolymerization induces exposure to the radioligand of a GABA(A) receptor in synaptosomes (Pharm Biochem Behav 72 (2002) 497). Similarly, phosphatidylinositol-4,5-bisphosphate (1-5 microM), but not a mixture of phospholipids, induced an increase of GABA(A) receptors in synaptosomes. Furthermore, N-ethyl maleimide, an inactivator of the sensitive fusion protein, which interacts with GABA(A) receptor, abolished the receptor increase induced by phosphatidylinositol-4,5-bisphosphate. Together, the results suggest that phosphatidylinositol-4,5-bisphosphate, acts via microfilament depolymerization increasing the binding of the radioligand to receptors possibly by modulation of their interaction with proteins involved in trafficking and docking mechanisms. PMID:17401677

Cid, Mariana Paula; Salvatierra, Nancy Alicia; Arce, Augusto

2007-06-01

295

EGF RECEPTOR REGULATES MECHANICAL VENTILATION INDUCED LUNG INJURY IN MICE  

PubMed Central

SUMMARY Mechanical ventilation (MV) is used as therapy to support critically ill patients, however the mechanisms by which MV induces lung injury and inflammation remain unclear. EGFR mediated signaling plays a key role in various physiologic and pathologic processes, including those modulated by mechanical and shear forces, in various cell types. We hypothesized that EGFR-activated signaling plays a key role in ventilator induced lung injury and inflammation (VILI). To test this hypothesis, we assessed lung vascular and alveolar permeability, as well as inflammation, which are cardinal features of VILI, in mice treated with the EGFR inhibitor, AG1478. Inhibition of EGFR activity greatly diminished MV-induced lung alveolar permeability and neutrophil accumulation in the bronchoalveolar lavage (BAL) fluid, as compared to vehicle-treated controls. Similarly, AG1478 inhibition diminished lung vascular leak (as assessed by Evans blue extravasation), but did not affect interstitial neutrophil accumulation. Inhibition of the EGFR pathway also blocked expression of genes induced by MV. However, intratracheal instillation of EGF alone failed to induce lung injury. Collectively, our findings suggest that EGFR-activated signaling is necessary but not sufficient to produce ALI in mice. PMID:19059161

Bierman, Alexis; Yerrapureddy, Adi; Reddy, Narsa M.; Hassoun, Paul M; Reddy, Sekhar P.

2008-01-01

296

Discoidin domain receptor 1 mediates collagen-induced inflammatory activation of microglia in culture.  

PubMed

Discoidin domain receptor 1 (DDR1) is a nonintegrin collagen receptor tyrosine kinase with an extracellular domain homologous to discoidin 1 of a soil-living amoeba Dictyostelium discoideum. We have previously demonstrated that DDR1 mediates collagen-induced nitric oxide production in J774A.1 murine macrophages. Because collagen is one of the main components of extracellular matrix in the central nervous system, we hypothesized that collagen also induces inflammatory activation of brain microglia, and DDR1 may mediate collagen-induced microglial activation. Using BV-2 mouse microglial cells and mouse primary microglial cultures, we have demonstrated that (1) collagen induces inflammatory activation of microglia as evidenced by production of nitric oxide, expression of inducible nitric oxide synthase, COX-2, CD40, and matrix metalloproteinase-9; (2) DDR1 is expressed in microglia and is phosphorylated by collagen treatment; and (3) collagen-induced microglial activation is abrogated by DDR1 blockade but not by integrin neutralization. We have further shown that p38 MAPK, c-Jun N-terminal kinase, and nuclear factor-kappa B are involved in the collagen-DDR1-induced microglial activation. Our results suggest that collagen can induce inflammatory activation of brain microglia and that DDR1 mediates this effect of collagen in an integrin-independent manner. PMID:17969104

Seo, Min-Chul; Kim, Sangseop; Kim, Sang-Hyun; Zheng, Long Tai; Park, Eui Kyun; Lee, Won-Ha; Suk, Kyoungho

2008-04-01

297

Spurious T3 Thyrotoxicosis Unmasking Multiple Myeloma  

PubMed Central

Objective. To document a case of spurious T3 thyrotoxicosis in a 54-year-old woman. Methods. We present the diagnostic approach of a patient with euthyroid hypertri-iodothyronemia. Results. A 54-year-old, clinically euthyroid woman without personal or family history of thyroid disease referred to endocrinology for possible T3 thyrotoxicosis, after thyroid function tests revealed total T3 > 800?ng/dL (reference range 60181), normal TSH, and T4. The laboratory data were not compatible with the clinical picture, so thyroid binding globulin abnormalities were suspected. Additional laboratory studies confirmed the diagnosis of multiple myeloma. Conclusion. Monoclonal gammopathy is characterized by the presence of a monoclonal immunoglobulin in the serum or urine, occurring in multiple myeloma, and can cause assay interference and spurious results. We identify a newly recognized cause of euthyroid hypertri-iodothyronemia, due to binding of T3 to monoclonal immunoglobulins in the setting of multiple myeloma. Our case is the only one to date suggesting that monoclonal immunoglobulins from multiple myeloma may exhibit binding to T3 only. PMID:23984117

Antonopoulou, Marianna; Silverberg, Arnold

2013-01-01

298

Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets.  

PubMed

The widely used lipid-lowering drug niacin is reported to induce hyperglycemia during chronic and high-dose treatments, but the mechanism is poorly understood. Recently, the niacin receptor [G-protein-coupled receptor, (GPR) 109a], has been localized to islet cells while its potential role therein remains unclear. We, therefore, aimed at investigating how GPR109a regulates islet beta-cell function and its downstream signaling using high-fat diet-induced obese mice and INS-1E beta cells. Eight-week niacin treatment elevated blood glucose concentration in obese mice with increased areas under the curve at oral glucose and intraperitoneal insulin tolerance tests. Additionally, niacin treatment significantly decreased glucose-stimulated insulin secretion (GSIS) but induced peroxisome proliferator-activated receptor gamma (Pparg) and GPR109a expression in isolated pancreatic islets; concomitantly, reactive oxygen species (ROS) were transiently increased, with decreases in GSIS, intracellular cyclic adenosine monophosphate (cAMP) accumulation and mitochondrial membrane potential (??m), but with increased expression of uncoupling protein 2 (Ucp2), Pparg and Gpr109a in INS-1E cells. Corroborating these findings, the decreases in GSIS, ??m and cAMP production and increases in ROS, Pparg and GPR109a expression were abolished in INS-1E cells by GPR109a knockdown. Our data indicate that niacin-induced pancreatic islet dysfunction is probably modulated through activation of the islet beta-cell GPR109a-induced ROS-PPAR?-UCP2 pathways. PMID:25622782

Chen, Lihua; So, Wing Yan; Li, Stephen Y T; Cheng, Qianni; Boucher, Barbara J; Leung, Po Sing

2015-03-15

299

Role of direct estrogen receptor signaling in wear particle-induced osteolysis  

PubMed Central

Estrogen withdrawal following surgical ovariectomy was recently shown to mitigate particle-induced osteolysis in the murine calvarial model. Currently, we hypothesize that estrogen receptors (ERs) were involved in this paradoxical phenomenon. To test this hypothesis, we first evaluated polyethylene (PE) particle-induced osteolysis in the murine calvarial model, using wild type (WT) C57BL6J female mice, ER? deficient (ER?KO) mice, and WT mice either treated with 17?-estradiol (E2) or with the ER pan-antagonist ICI 182,780. According to micro-CT and histomorphometry, we showed that bone resorption was consistently altered in both ER?KO and ICI 182,780 treated mice as compared to WT and E2 groups. Then, we demonstrated that ER disruption consistently decreased both PE and polymethylmethacrylate (PMMA) particle-induced production of TNF-? by murine macrophages in vitro. Similar results were obtained following ER blockade using ICI 182,780 in RAW 264.7 and WT macrophages. ER disruption and pre treatment with ICI 182,780 resulted in a consistent down-regulation of particle-induced TNF-? mRNA expression relative to WT macrophages or untreated RAW cells. These results indicate that the response to wear particles involves estrogen receptors in female mice, as part of macrophage activation. Estrogen receptors may be considered as a future therapeutic target for particle-induced osteolysis. PMID:23113918

Nich, Christophe; Rao, Allison J.; Valladares, Roberto D.; Li, Chenguang; Christman, Jane E.; Antonios, Joseph K.; Yao, Zhenyu; Zwingenberger, Stefan; Petite, Herv; Hamadouche, Moussa; Goodman, Stuart B.

2014-01-01

300

Spinal vasopressin alleviates formalin-induced nociception by enhancing GABAA receptor function in mice.  

PubMed

Arginine vasopressin (AVP) plays a regulatory role in nociception. Intrathecal administration of AVP displays an antinociceptive effect. However, little is understood about the mechanism underlying spinal AVP analgesia. Here, we have found that spinal AVP dose dependently reduced the second, but not first, phase of formalin-induced spontaneous nociception in mice. The AVP analgesia was completely blocked by intrathecal injected SR 49059, a vasopressin-1A (V1A) receptor antagonist. However, spinal AVP failed to exert its antinociceptive effect on the second phase formalin-induced spontaneous nociception in V1A receptor knock-out (V1A-/-) mice. The AVP analgesia was also reversed by bicuculline, a GABAA receptor antagonist. Moreover, AVP potentiated GABA-activated currents in dorsal root ganglion neurons from wild-type littermates, but not from V1A-/- mice. Our results may reveal a novel spinal mechanism of AVP analgesia by enhancing the GABAA receptor function in the spinal cord through V1A receptors. PMID:25782631

Peng, Fang; Qu, Zu-Wei; Qiu, Chun-Yu; Liao, Min; Hu, Wang-Ping

2015-04-23

301

Involvement of supraspinal and peripheral naloxonazine-insensitive opioid receptor sites in the expression of ?-opioid receptor agonist-induced physical dependence.  

PubMed

Withdrawal syndrome after the cessation of ?-opioid receptor agonists remains an obstacle in the clinical treatment of pain. There is limited information available on the mechanisms that underlie the expression of the withdrawal signs of opioids, and especially regarding the involvement of ?-opioid receptor subtypes and the location of the responsible opioid receptors. Therefore, the present study was designed to determine the mechanism of the expression of withdrawal signs in ?-opioid receptor agonist-dependent mice. Morphine-, oxycodone- and fentanyl-dependent mice showed a marked loss of body-weight and other signs of withdrawal after a naloxone challenge. Interestingly, the phenotype of the withdrawal signs for morphine and oxycodone was different from that of fentanyl. Furthermore, pretreatment with naloxonazine (so-called ?1-opioid receptor antagonist), did not significantly alter the withdrawal signs precipitated by naloxone in these ?-opioid receptor agonist-dependent mice, whereas the peripherally limited opioid receptor antagonist naloxone methiodide significantly increased the loss of body-weight accompanied by diarrhea, indicating that a peripheral naloxonazine-insensitive site for opioid receptors, as an adaptation mechanism, plays an important role in the expression of at least the loss of body-weight. On the other hand, i.c.v. treatment with naloxone methiodide potently induced jumping behavior and trembling in morphine-dependent mice. These results indicate that the prolonged activation of supraspinal ?-opioid receptors plays a role in most of the physical dependence induced by ?-opioid receptor agonists in mice. Thus, the withdrawal symptoms observed after the cessation of ?-opioid receptor agonists are distinctly regulated though supraspinal and peripheral naloxonazine-insensitive sites of ?-opioid receptors. PMID:23707904

Mori, Tomohisa; Komiya, Sachiko; Uzawa, Naoki; Inoue, Koichi; Itoh, Toshimasa; Aoki, Shiyou; Shibasaki, Masahiro; Suzuki, Tsutomu

2013-09-01

302

Ligand-induced desensitization of interleukin 1 receptor-initiated intracellular signaling events in T helper lymphocytes  

PubMed Central

Although interleukin 1 (IL-1) receptor signaling events in T helper lymphocytes are incompletely characterized, events associated with translocation of the transcription factor NF-kappa B are receptor- proximal assays of ligand-initiated responses. In this report we demonstrate that the transient nature of IL-1-induced NF-kappa B nuclear translocation occurs as a consequence of ligand-induced receptor desensitization. Other receptor-initiated events including induction of I kappa B alpha phosphorylation, expression of c-jun and junB mRNA, and costimulatory effects on IL-2 synthesis also are altered by IL-1 receptor desensitization. IL-1 receptor desensitization is not initiated by tumor necrosis factor, which also stimulates NF-kappa B translocation, and is not a consequence of alterations in either IL-1 receptor expression or binding affinity. In the absence of IL-1, the effects of desensitization are completely reversed within 18 h. Since IL-1 desensitization is initiated under conditions of low receptor occupancy, it is likely that receptor desensitization results from alterations to a receptor-proximal transducer, rather than from direct modification of the IL-1 receptor. These results suggest that the cyclic nature of the events in the T helper lymphocyte activation program can be controlled, in part, by the reversible desensitization of cell surface IL-1 receptors. PMID:7931065

1994-01-01

303

H2-receptor blockade and exercise-induced asthma.  

PubMed Central

While in vitro studies suggest that H2-receptor blockade enhances mediator release from bronchial mast cells and leads to bronchoconstriction, in vivo studies have given conflicting results. Eight asthmatic subjects were given cimetidine 800 mg and placebo double-blind on different days. Baseline values of forced expiratory volume in one second (FEV1) were obtained before an 8 min standardized exercise test using a bicycle ergometer. Subjects inhaled cold, dry air and exercise on cimetidine and placebo days was matched for ventilation and thermal load. FEV1 was measured immediately, 5, 10, 15, and 20 min after exercise. No significant differences were observed between mean baseline FEV1, immediate post exercise FEV1, or maximum percentage fall from baseline after exercise on cimetidine or placebo days. Cimetidine does not appear to effect lung function or bronchial responses to cold air exercise challenge. PMID:6150725

Nogrady, S G; Hahn, A G

1984-01-01

304

Interleukin-1? mediates virus-induced m2 muscarinic receptor dysfunction and airway hyperreactivity.  

PubMed

Respiratory viral infections are associated with the majority of asthma attacks. Inhibitory M2 receptors on parasympathetic nerves, which normally limit acetylcholine (ACh) release, are dysfunctional after respiratory viral infection. Because IL-1? is up-regulated during respiratory viral infections, we investigated whether IL-1? mediates M2 receptor dysfunction during parainfluenza virus infection. Virus-infected guinea pigs were pretreated with the IL-1? antagonist anakinra. In the absence of anakinra, viral infection increased bronchoconstriction in response to vagal stimulation but not to intravenous ACh, and neuronal M2 muscarinic receptors were dysfunctional. Pretreatment with anakinra prevented virus-induced increased bronchoconstriction and M2 receptor dysfunction. Anakinra did not change smooth muscle M3 muscarinic receptor response to ACh, lung viral loads, or blood and bronchoalveolar lavage leukocyte populations. Respiratory virus infection decreased M2 receptor mRNA expression in parasympathetic ganglia extracted from infected animals, and this was prevented by blocking IL-1? or TNF-?. Treatment of SK-N-SH neuroblastoma cells or primary cultures of guinea pig parasympathetic neurons with IL-1? directly decreased M2 receptor mRNA, and this was not synergistic with TNF-? treatment. Treating guinea pig trachea segment with TNF-? or IL-1? in vitro increased tracheal contractions in response to activation of airway nerves by electrical field stimulation. Blocking IL-1? during TNF-? treatment prevented this hyperresponsiveness. These data show that virus-induced hyperreactivity and M2 dysfunction involves IL-1? and TNF-?, likely in sequence with TNF-? causing production of IL-1?. PMID:24735073

Rynko, Abby E; Fryer, Allison D; Jacoby, David B

2014-10-01

305

Sensitization of cutaneous neuronal purinergic receptors contributes to endothelin-1-induced mechanical hypersensitivity.  

PubMed

Endothelin (ET-1), an endogenous peptide with a prominent role in cutaneous pain, causes mechanical hypersensitivity in the rat hind paw, partly through mechanisms involving local release of algogenic molecules in the skin. The present study investigated involvement of cutaneous ATP, which contributes to pain in numerous animal models. Pre-exposure of ND7/104 immortalized sensory neurons to ET-1 (30nM) for 10min increased the proportion of cells responding to ATP (2?M) with an increase in intracellular calcium, an effect prevented by the ETA receptor-selective antagonist BQ-123. ET-1 (3nM) pre-exposure also increased the proportion of isolated mouse dorsal root ganglion neurons responding to ATP (0.2-0.4?M). Blocking ET-1-evoked increases in intracellular calcium with the IP3 receptor antagonist 2-APB did not inhibit sensitization to ATP, indicating a mechanism independent of ET-1-mediated intracellular calcium increases. ET-1-sensitized ATP calcium responses were largely abolished in the absence of extracellular calcium, implicating ionotropic P2X receptors. Experiments using quantitative polymerase chain reaction and receptor-selective ligands in ND7/104 showed that ET-1-induced sensitization most likely involves the P2X4 receptor subtype. ET-1-sensitized calcium responses to ATP were strongly inhibited by broad-spectrum (TNP-ATP) and P2X4-selective (5-BDBD) antagonists, but not antagonists for other P2X subtypes. TNP-ATP and 5-BDBD also significantly inhibited ET-1-induced mechanical sensitization in the rat hind paw, supporting a role for purinergic receptor sensitization in vivo. These data provide evidence that mechanical hypersensitivity caused by cutaneous ET-1 involves an increase in the neuronal sensitivity to ATP in the skin, possibly due to sensitization of P2X4 receptors. PMID:24569146

Barr, Travis P; Hrnjic, Alen; Khodorova, Alla; Sprague, Jared M; Strichartz, Gary R

2014-06-01

306

Toll-like receptor 2 induces mucosal homing receptor expression and IgA production by human B cells.  

PubMed

There is a need for developing vaccines that elicit mucosal immunity. Although oral or nasal vaccination methods would be ideal, current strategies have yielded mixed success. Toll-like receptor 2 (TLR2) ligands are effective adjuvants and are currently used in the Haemophilus influenzae type B vaccine. Induction of humoral immunity in the mucosa is critical for effective vaccination; thus, we sought to determine the effects of TLR2 ligands on human mucosal B cell differentiation. We demonstrate that TLR2 ligands induce CCR9 and CCR10 expression by circulating B cells and increased chemotaxis to cognate chemokines CCL25 and CCL28 suggesting that TLR2 induces B cell homing to the gastrointestinal tract. TLR2 stimulation of B cells also induced J chain and IgA production demonstrating the induction of mucosal-like antibody secreting cells. These observations suggest that vaccines containing TLR2-ligands as adjuvants could induce mucosal B cell immunity even when delivered in a non-mucosal manner. PMID:20947433

Liang, YanMei; Hasturk, Hatice; Elliot, Jennifer; Noronha, Ansu; Liu, Xiuping; Wetzler, Lee M; Massari, Paola; Kantarci, Alpdogan; Winter, Harland S; Farraye, Francis A; Ganley-Leal, Lisa M

2011-01-01

307

SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation  

PubMed Central

Methamphetamine (METH) abuse is associated with several negative side effects including neurotoxicity in specific brain regions such as the striatum. The precise molecular mechanisms by which METH usage results in neurotoxicity remain to be fully elucidated, with recent evidence implicating the importance of microglial activation and neuroinflammation in damaged brain regions. METH interacts with sigma receptors which are found in glial cells in addition to neurons. Moreover, sigma receptor antagonists have been shown to block METH-induced neurotoxicity in rodents although the cellular mechanisms underlying their neuroprotection remain unknown. The purpose of the current study was to determine if the prototypic sigma receptor antagonist, SN79, mitigates METH-induced microglial activation and associated increases in cytokine expression in a rodent model of METH-induced neurotoxicity. METH increased striatal mRNA and protein levels of cluster of differentiation 68 (CD68), indicative of microglial activation. METH also increased ionized calcium binding adapter molecule 1 (IBA-1) protein expression, further confirming the activation of microglia. Along with microglial activation, METH increased striatal mRNA expression levels of IL-6 family pro-inflammatory cytokines, leukemia inhibitory factor (lif), oncostatin m (osm), and interleukin-6 (il-6). Pretreatment with SN79 reduced METH-induced increases in CD68 and IBA-1 expression, demonstrating its ability to prevent microglial activation. SN79 also attenuated METH-induced mRNA increases in IL-6 pro-inflammatory cytokine family members. The ability of a sigma receptor antagonist to block METH-induced microglial activation and cytokine production provides a novel mechanism through which the neurotoxic effects of METH may be mitigated. PMID:23631864

Robson, Matthew J.; Turner, Ryan C.; Naser, Zachary J.; McCurdy, Christopher R.; Huber, Jason D.; Matsumoto, Rae R.

2013-01-01

308

Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System  

PubMed Central

Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2/ mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae. PMID:22392969

Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

2012-01-01

309

Nociceptin/orphanin FQ receptor activation decreases the airway hyperresponsiveness induced by allergen in sensitized mice.  

PubMed

Several studies suggest that the N/OFQ (nociceptin/orphanin FQ)-NOP (N/OFQ peptide) receptor pathway is involved in airway physiology. We previously demonstrated a modulation of the endogenous N/OFQ levels in allergen-sensitized mice. Here, we investigated the effects of NOP receptor activation in allergen sensitization using a murine model of allergen-induced airway hyperresponsiveness (AHR). BALB/c mice were intraperitoneally treated with the NOP receptor agonist UFP-112, either during the sensitization phase (30 min before ovalbumin administration) or at the end of sensitization process (15 min before bronchopulmonary reactivity evaluation). At day 21 from the first allergen exposure, bronchopulmonary reactivity and total and differential cell count in bronchoalveolar lavage fluid were evaluated. In a separate set of experiments cell proliferation in lymphocytes, cytokine levels, IgE serum levels, and the effect of UFP-112 on IL-13-induced AHR were evaluated. Pretreatment with UFP-112, during the sensitization phase, caused a significant reduction in allergen-induced AHR and total cell lung infiltration. No effect on allergen-induced AHR was observed when the treatment was performed at the end of sensitization process, on tissues harvested from OVA-sensitized mice and on IL-13-induced AHR. The in vitro proliferative response of lymphocytes was significantly reduced by pretreatment during the sensitization phase with UFP-112. This effect was paralleled by a significant modulation of cytokine secretion in pulmonary tissues and lymphocytes. In conclusion, we demonstrated a role for the NOP receptor and N/OFQ pathway in the AHR induced by allergen, probably through a modulation of the immune response that triggers the development of AHR that involves pro- and anti-inflammatory cytokines. PMID:23502511

Sullo, Nikol; Roviezzo, Fiorentina; Matteis, Maria; Ianaro, Angela; Cal, Girolamo; Guerrini, Remo; De Gruttola, Luana; Spaziano, Giuseppe; Cirino, Giuseppe; Rossi, Francesco; D'Agostino, Bruno

2013-05-15

310

Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia  

PubMed Central

BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a doseresponse study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general anesthesia. PMID:23221866

Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

2012-01-01

311

Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.  

PubMed

The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30min. The results indicated that exposure to 20 and 30min stress, but not 10min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02?g/rat), 5min before exposure to an ineffective stress (10min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5?g/rat), 5min before 20min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5?g/rat) in rats unexposed to 20min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4?g/rat, intra-BLA) reversed muscimol (0.02?g/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment. PMID:24280002

Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

2014-04-01

312

SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation.  

PubMed

Methamphetamine (METH) abuse is associated with several negative side effects including neurotoxicity in specific brain regions such as the striatum. The precise molecular mechanisms by which METH usage results in neurotoxicity remain to be fully elucidated, with recent evidence implicating the importance of microglial activation and neuroinflammation in damaged brain regions. METH interacts with sigma receptors which are found in glial cells in addition to neurons. Moreover, sigma receptor antagonists have been shown to block METH-induced neurotoxicity in rodents although the cellular mechanisms underlying their neuroprotection remain unknown. The purpose of the current study was to determine if the prototypic sigma receptor antagonist, SN79, mitigates METH-induced microglial activation and associated increases in cytokine expression in a rodent model of METH-induced neurotoxicity. METH increased striatal mRNA and protein levels of cluster of differentiation 68 (CD68), indicative of microglial activation. METH also increased ionized calcium binding adapter molecule 1 (IBA-1) protein expression, further confirming the activation of microglia. Along with microglial activation, METH increased striatal mRNA expression levels of IL-6 family pro-inflammatory cytokines, leukemia inhibitory factor (lif), oncostatin m (osm), and interleukin-6 (il-6). Pretreatment with SN79 reduced METH-induced increases in CD68 and IBA-1 expression, demonstrating its ability to prevent microglial activation. SN79 also attenuated METH-induced mRNA increases in IL-6 pro-inflammatory cytokine family members. The ability of a sigma receptor antagonist to block METH-induced microglial activation and cytokine production provides a novel mechanism through which the neurotoxic effects of METH may be mitigated. PMID:23631864

Robson, Matthew J; Turner, Ryan C; Naser, Zachary J; McCurdy, Christopher R; Huber, Jason D; Matsumoto, Rae R

2013-09-01

313

?-ArrestinBiased Agonism of the Angiotensin Receptor Induced by Mechanical Stress  

PubMed Central

?-Arrestins, which were originally characterized as terminators of heterotrimeric guanine nucleotidebinding protein (G protein)coupled receptor (GPCR) signaling, also act as important signal transducers. An emerging concept in GPCR signaling is ?-arrestinbiased agonism, in which specific ligand-activated GPCR conformational states selectively signal through ?-arrestins, rather than through G proteins. Here, we show that mechanical stretch induced ?-arrestinbiased signaling downstream of angiotensin II type I receptors (AT1Rs) in the absence of ligand or G protein activation. Mechanical stretch triggered an AT1R-mediated conformational change in ?-arrestin similar to that induced by a ?-arrestinbiased ligand to selectively stimulate receptor signaling in the absence of detectable G protein activation. Hearts from mice lacking ?-arrestin or AT1Rs failed to induce responses to mechanical stretch, as shown by blunted extra-cellular signalregulated kinase and Akt activation, impaired transactivation of the epidermal growth factor receptor, and enhanced myocyte apoptosis. These data show that the heart responds to acute increases in mechanical stress by activating ?-arrestinmediated cell survival signals. PMID:20530803

Rakesh, Kriti; Yoo, ByungSu; Kim, Il-Man; Salazar, Natasha; Kim, Ki-Seok; Rockman, Howard A.

2010-01-01

314

Tyrosine phosphorylation is required for ligand-induced internalization of the antigen receptor on B lymphocytes.  

PubMed Central

The membrane immunoglobulin (mIg) receptor for antigen mediates signal transduction in B lymphocytes. Multivalent ligand induces several early activation events including an increase in intracellular calcium concentration, hydrolysis of phosphatidylinositol, and activation of protein kinase C. Most recently, it has been demonstrated that anti-immunoglobulin antibodies induce the rapid accumulation of tyrosine phosphorylated proteins and anti-phosphotyrosine immune complex-associated kinase activity, both of which require receptor crosslinking. Multivalent ligand binding of mIg also results in its association with detergent-insoluble cytoskeletal components and with a slight lag period, in a characteristic pattern of patching, followed by polar capping and finally internalization of the receptors. In this report, we demonstrate that two specific inhibitors of tyrosine phosphorylation, a tyrphostin and genistein, retard the modulation of mIg on the cell surface and inhibit ligand-induced receptor internalization. We conclude that in B cells, tyrosine phosphorylation occurs as the result of crosslinking mIg and is required for subsequent internalization of mIg-ligand complexes. This suggests that tyrosine phosphorylation may be important for B cells to function as specific antigen presenting cells. Images PMID:1370346

Pur, E; Tardelli, L

1992-01-01

315

Inhibition of ATP-induced macrophage death by emodin via antagonizing P2X7 receptor.  

PubMed

Emodin (1,3,8-trihydroxy-6-methylanthraquinone), an anthraquinone derivative from Rheum officinale Baill, exhibits anti-inflammatory and immunosuppressive activities, however, the underlying mechanisms are not fully understood. This study examined the effects of emodin on ATP-evoked responses in rat peritoneal macrophages and in human embryonic kidney 293 cells (HEK293) heterologously expressing the cloned rat P2X7 receptor. Emodin reduced macrophage death induced by millimolar ATP in a concentration-dependent manner with the half of maximal inhibition values (IC50) of 0.2 microM. It also strongly inhibited ATP-induced dye uptake or pore formation, a hallmark property associated with P2X7 receptor activation, and 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) induced increases in intracellular Ca2+ concentrations in macrophages with an IC50 of 0.5 microM. Furthermore, emodin significantly suppressed BzATP-evoked currents in P2X7 receptor expressing HEK293 cells with an IC50 of 3.4 microM. Taken together, these results provide compelling evidence for a novel action of emodin as a P2X7 receptor antagonist, which may underlie its anti-inflammatory and immunosuppressive activities. PMID:20452342

Liu, Lijun; Zou, Jie; Liu, Xing; Jiang, Lin-Hua; Li, Junying

2010-08-25

316

Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene-induced rat mammary tumors  

SciTech Connect

Mammary tumors were induced in rats by treatment with dimethylbenz(a)anthracene. Cytosol receptors for 17 beta-estradiol and progesterone were estimated by means of sucrose density gradient centrifugation, and the metabolism of (/sup 14/C)progesterone, (/sup 14/C)testosterone, and 17 beta-(/sup 14/C)estradiol by minced tumor tissue was studied. The estradiol receptor (ER) and progesterone receptor (PR) levels of the tumors varied considerably from less than 5 to 48 fmol/mg protein for ER and to 243 fmol/mg protein for PR. Considering a receptor level lower than 5 fmol/mg protein to be negative, four groups of tumors were found: ER-negative and PR-negative; ER-positive and PR-negative; ER-negative and PR-positive; ER-positive and PR-positive. In dimethylbenz(a)anthracene-induced tumor tissue, high 5 alpha-reductase and 20 alpha-hydroxysteroid dehydrogenase activities and somewhat lower 3 alpha-hydroxysteroid dehydrogenase and 6 alpha-hydroxylase activities were found. No aromatization was detectable. Steroids, especially estradiol, were also metabolized in a high degree to unextractable metabolites. It was concluded that steroid metabolism of dimethylbenz(a)anthracene-induced rat mammary tumors was not related to the ER and/or PR concentration of tumor tissue.

Eechaute, W.; de Thibault de Boesinghe, L.; Lacroix, E.

1983-09-01

317

Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC  

PubMed Central

Plasmodium vivax and Plasmodium knowlesi depend on the Duffy-Binding Protein DBL domain (RII-PvDBP or RII-PkDBP) engaging Duffy Antigen/Receptor for Chemokines on red blood cells during invasion. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, resolution of which has profound implications for parasite biology and control. We report crystallographic, solution and functional studies of RII-PvDBP, showing dimerization is required for and driven by receptor engagement. This work provides a unifying framework for prior studies and accounts for the action of naturally-acquired blocking-antibodies and the mechanism of immune evasion. We show dimerization is conserved in DBL-domain receptor-engagement, and propose receptor-mediated ligand-dimerization drives receptor affinity and specificity. Since dimerization is prevalent in signaling, our studies raise the possibility that induced dimerization activates pathways for invasion. PMID:21743458

Batchelor, Joseph D.; Zahm, Jacob A.; Tolia, Niraj H.

2011-01-01

318

NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors.  

PubMed

Intramuscular injection of nerve growth factor (NGF) in healthy humans mimics some of the symptoms of myofascial temporomandibular disorders (M-TMD). We hypothesized that NGF induces a prolonged myofascial mechanical sensitization by increasing peripheral N-methyl-d-aspartate (NMDA) receptor expression, leading to an enhanced response of muscle nociceptors to endogenous glutamate. Behavioral experiments with an injection of NGF (25 ?g/ml, 10 ?l) into the masseter muscle reduced the mechanical withdrawal threshold for 1 day in male rats and 5 days in female rats. These results mirror the sex-related differences found in NGF-induced mechanical sensitization in humans. Intramuscular injection with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV, 0.020 g/ml, 10 ?l) reversed the mechanical sensitization in male but not in female rats. NGF increased the number of NMDA receptor subtype 2B (NR2B)-expressing rat trigeminal masseter ganglion neurons in both sexes, which peaked at 3 days post injection. There was an association between the levels of NR2B expression and NGF-induced mechanical sensitization. The average soma size of NR2B-expressing neurons increased significantly. Increased expression of neuropeptides (CGRP and SP) was observed in NR2B-expressing masseter ganglion neurons in female but not in male rats. In healthy men and women, comparable basal expression levels of NR2B and SP were found in peripheral fibers from masseter muscle microbiopsies. This study suggests that NGF-induced sensitization of masseter nociceptors is mediated, in part, by enhanced peripheral NMDA receptor expression. Measurement of peripheral NMDA receptor expression may be useful as a biomarker for M-TMD pain. PMID:24704516

Wong, H; Kang, I; Dong, X-D; Christidis, N; Ernberg, M; Svensson, P; Cairns, B E

2014-06-01

319

Neurosteroid Agonist at GABAA Receptor Induces Persistent Neuroplasticity in VTA Dopamine Neurons  

PubMed Central

The main fast-acting inhibitory receptors in the mammalian brain are ?-aminobutyric acid type-A (GABAA) receptors for which neurosteroids, a subclass of steroids synthesized de novo in the brain, constitute a group of endogenous ligands with the most potent positive modulatory actions known. Neurosteroids can act on all subtypes of GABAA receptors, with a preference for ?-subunit-containing receptors that mediate extrasynaptic tonic inhibition. Pathological conditions characterized by emotional and motivational disturbances are often associated with perturbation in the levels of endogenous neurosteroids. We studied the effects of ganaxolone (GAN)a synthetic analog of endogenous allopregnanolone that lacks activity on nuclear steroid receptorson the mesolimbic dopamine (DA) system involved in emotions and motivation. A single dose of GAN in young mice induced a dose-dependent, long-lasting neuroplasticity of glutamate synapses of DA neurons ex vivo in the ventral tegmental area (VTA). Increased ?-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/N-methyl-D-aspartate ratio and rectification of AMPA receptor responses even at 6 days after GAN administration suggested persistent synaptic targeting of GluA2-lacking AMPA receptors. This glutamate neuroplasticity was not observed in GABAA receptor ?-subunit-knockout (?-KO) mice. GAN (500?nM) applied locally to VTA selectively increased tonic inhibition of GABA interneurons and triggered potentiation of DA neurons within 4?h in vitro. Place-conditioning experiments in adult wild-type C57BL/6J and ?-KO mice revealed aversive properties of repeated GAN administration that were dependent on the ?-subunits. Prolonged neuroadaptation to neurosteroids in the VTA might contribute to both the physiology and pathophysiology underlying processes and changes in motivation, mood, cognition, and drug addiction. PMID:24077066

Vashchinkina, Elena; Manner, Aino K; Vekovischeva, Olga; Hollander, Bjrnar den; Uusi-Oukari, Mikko; Aitta-aho, Teemu; Korpi, Esa R

2014-01-01

320

Neurosteroid Agonist at GABAA receptor induces persistent neuroplasticity in VTA dopamine neurons.  

PubMed

The main fast-acting inhibitory receptors in the mammalian brain are ?-aminobutyric acid type-A (GABAA) receptors for which neurosteroids, a subclass of steroids synthesized de novo in the brain, constitute a group of endogenous ligands with the most potent positive modulatory actions known. Neurosteroids can act on all subtypes of GABAA receptors, with a preference for ?-subunit-containing receptors that mediate extrasynaptic tonic inhibition. Pathological conditions characterized by emotional and motivational disturbances are often associated with perturbation in the levels of endogenous neurosteroids. We studied the effects of ganaxolone (GAN)-a synthetic analog of endogenous allopregnanolone that lacks activity on nuclear steroid receptors-on the mesolimbic dopamine (DA) system involved in emotions and motivation. A single dose of GAN in young mice induced a dose-dependent, long-lasting neuroplasticity of glutamate synapses of DA neurons ex vivo in the ventral tegmental area (VTA). Increased ?-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/N-methyl-D-aspartate ratio and rectification of AMPA receptor responses even at 6 days after GAN administration suggested persistent synaptic targeting of GluA2-lacking AMPA receptors. This glutamate neuroplasticity was not observed in GABAA receptor ?-subunit-knockout (?-KO) mice. GAN (500?nM) applied locally to VTA selectively increased tonic inhibition of GABA interneurons and triggered potentiation of DA neurons within 4?h in vitro. Place-conditioning experiments in adult wild-type C57BL/6J and ?-KO mice revealed aversive properties of repeated GAN administration that were dependent on the ?-subunits. Prolonged neuroadaptation to neurosteroids in the VTA might contribute to both the physiology and pathophysiology underlying processes and changes in motivation, mood, cognition, and drug addiction. PMID:24077066

Vashchinkina, Elena; Manner, Aino K; Vekovischeva, Olga; den Hollander, Bjrnar; Uusi-Oukari, Mikko; Aitta-Aho, Teemu; Korpi, Esa R

2014-02-01

321

Absence of Nuclear Receptors for Oxysterols Liver X Receptor Induces Ovarian Hyperstimulation Syndrome in Mice  

PubMed Central

Ovarian hyperstimulation syndrome is a frequent complication occurring during in vitro fertilization cycles. It is characterized by a massive ovarian enlargement associated with an accumulation of extra vascular fluid. Here we show that liver X receptor (LXR)-? and LXR-? deficient mice present many clinical and biological signs of ovarian hyperstimulation syndrome: ovarian enlargement, hemorrhagic corpora lutea, increased ovarian vascular permeability, and elevated estradiol. Ovulation stimulation resulted in excessive ovarian response to exogenous gonadotropins because follicle number and estradiol production were higher in transgenic mice. LXR deficiency also leads to perturbations in general inflammatory status, associated with ovarian il-6 deregulation. Upon treatment with the synthetic LXR agonist T09101317, serum estradiol and expression of star and cyp11a1 genes were markedly increased in wild-type mice, showing that LXRs are key regulators of ovarian steroidogenesis. These results suggest that LXRs control the ovulation by regulating endocrine and vascular processes. PMID:19325005

Mouzat, Kevin; Volat, Fanny; Baron, Silvre; Alves, Georges; Pommier, Aurlien J. C.; Volle, David H.; Marceau, Geoffroy; DeHaze, Anglique; Dchelotte, Pierre; Duggavathi, Raj; Caira, Franoise; Lobaccaro, Jean-Marc A.

2009-01-01

322

The activation of liver X receptors inhibits toll-like receptor-9-induced foam cell formation.  

PubMed

Toll-like receptors (TLRs) are related to foam cell formation (FCF), key event in the establishment/progression of atherosclerosis. The activation of TLR2 and TLR4 can increase FCF. The aim of this study was to evaluate the role of TLR9 in FCF. Murine macrophages were treated with CpG-ODN, TLR9 agonist, and oxidized particles of LDL (Paz-PC) and FCF was analyzed by means of Oil Red O staining. The administration of CpG-ODN plus Paz-PC onto macrophages increased the amount of lipid droplets, correlated to increased levels of tumor necrosis factor (TNF)-alpha, IFNbeta, and IP-10. The underlying mechanism by which TLR9 ligation influenced Paz-PC in the FCF was NF-kappaB- and IRF7-dependent, as observed by higher levels of phosphorylated IkappaBalpha, increased nuclear translocation of the p65 subunit, lower levels of the total IKKalpha protein and higher release of interferon-dependent cytokines, such as IP-10. Liver X receptors (LXRs) regulate lipid cellular transport and negatively modulate TLR-dependent signaling pathways. Indeed, the addition of GW3965, synthetic LXRs agonist, significantly reduced FCF after CpG-ODN plus Paz-PC stimulation. In this condition, we observed decreased levels of the nuclear translocation of the p65 subunit, related to the higher presence of LXRalpha into the nucleus. TNF-alpha, IP-10, and IFNbeta levels were reduced by the administration of GW3965 following CpG-ODN and Paz-PC treatment. In conclusion, the activation of TLR9 facilitates the formation of foam cells in an NF-kappaB- and IRF7-dependent manner, countered by the activation of LXRs. This study further support LXRs as potential anti-atherosclerotic target. PMID:20049870

Sorrentino, Rosalinda; Morello, Silvana; Chen, Shuang; Bonavita, Eduardo; Pinto, Aldo

2010-04-01

323

Channel Opening by Anesthetics and GABA Induces Similar Changes in the GABAA Receptor M2 Segment  

PubMed Central

For many general anesthetics, their molecular basis of action involves interactions with GABAA receptors. Anesthetics produce concentration-dependent effects on GABAA receptors. Low concentrations potentiate submaximal GABA-induced currents. Higher concentrations directly activate the receptors. Functional effects of anesthetics have been characterized, but little is known about the conformational changes they induce. We probed anesthetic-induced conformational changes in the M2 membrane-spanning, channel-lining segment using disulfide trapping between engineered cysteines. Previously, we showed that oxidation by copper phenanthroline in the presence of GABA of the M2 6? cysteine mutants, ?1T261C?1T256C and ?1?1T256C resulted in formation of an intersubunit disulfide bond between the adjacent ?-subunits that significantly increased the channels' spontaneous open probability. Oxidation in GABA's absence had no effect. We examined the effect on ?1T261C?1T256C and on ?1?1T256C of oxidation by copper phenanthroline in the presence of potentiating and directly activating concentrations of the general anesthetics propofol, pentobarbital, and isoflurane. Oxidation in the presence of potentiating concentration of anesthetics had little effect. Oxidation in the presence of directly activating anesthetic concentrations significantly increased the channels' spontaneous open probability. We infer that activation by anesthetics and GABA induces a similar conformational change at the M2 segment 6? position that is related to channel opening. PMID:17293408

Rosen, Ayelet; Bali, Moez; Horenstein, Jeffrey; Akabas, Myles H.

2007-01-01

324

Low Magnitude and High Frequency Mechanical Loading Prevents Decreased Bone Formation Responses of 2T3 Preosteoblasts  

PubMed Central

Bone loss due to osteoporosis or disuse such as in paraplegia or microgravity is a significant health problem. As a treatment for osteoporosis, brief exposure of intact animals or humans to low magnitude and high frequency (LMHF) mechanical loading has been shown to normalize and prevent bone loss. However, the underlying molecular changes and the target cells by which LMHF mechanical loading alleviate bone loss are not known. Here, we hypothesized that direct application of LMHF mechanical loading to osteoblasts alters their cell responses, preventing decreased bone formation induced by disuse or microgravity conditions. To test our hypothesis, preosteoblast 2T3 cells were exposed to a disuse condition using the Random Positioning Machine (RPM) and intervened with an LMHF mechanical load (0.1-0.4g at 30Hz for 10-60 min/day). Exposure of 2T3 cells to the RPM decreased bone formation responses as determined by alkaline phosphatase (ALP) activity and mineralization even in the presence of a submaximal dose of BMP4 (20ng/ml). However, LMHF mechanical loading prevented the RPM-induced decrease in ALP activity and mineralization. Mineralization induced by LMHF mechanical loading was enhanced by treatment with bone morphogenic protein 4 (BMP4) and blocked by the BMP antagonist noggin, suggesting a role for BMPs in this response. In addition, LMHF mechanical loading rescued the RPM-induced decrease in gene expression of ALP, runx2, osteomodulin, parathyroid hormone receptor 1, and osteoglycin. These findings suggest that preosteoblasts may directly respond to LMHF mechanical loading to induce differentiation responses. The mechanosensitive genes identified here provide potential targets for pharmaceutical treatments that may be used in combination with low level mechanical loading to better treat osteoporosis or disuse-induced bone loss. PMID:19125415

Patel, Mamta J.; Chang, Kyungh Hwa; Sykes, Michelle C.; Talish, Roger; Rubin, Clinton; Jo, Hanjoong

2009-01-01

325

IgG receptor Fc?RIIB plays a key role in obesity-induced hypertension.  

PubMed

There is a well-recognized association between obesity, inflammation, and hypertension. Why obesity causes hypertension is poorly understood. We previously demonstrated using a C-reactive protein (CRP) transgenic mouse that CRP induces hypertension that is related to NO deficiency. Our prior work in cultured endothelial cells identified the Fc? receptor IIB (Fc?RIIB) as the receptor for CRP whereby it antagonizes endothelial NO synthase. Recognizing known associations between CRP and obesity and hypertension in humans, in the present study we tested the hypothesis that Fc?RIIB plays a role in obesity-induced hypertension in mice. Using radiotelemetry, we first demonstrated that the hypertension observed in transgenic mouse-CRP is mediated by the receptor, indicating that Fc?RIIB is capable of modifying blood pressure. We then discovered in a model of diet-induced obesity yielding equal adiposity in all study groups that whereas Fc?RIIB(+/+) mice developed obesity-induced hypertension, Fc?RIIB(-/-) mice were fully protected. Levels of CRP, the related pentraxin serum amyloid P component which is the CRP-equivalent in mice, and total IgG were unaltered by diet-induced obesity; Fc?RIIB expression in endothelium was also unchanged. However, whereas IgG isolated from chow-fed mice had no effect, IgG from high-fat diet-fed mice inhibited endothelial NO synthase in cultured endothelial cells, and this was an Fc?RIIB-dependent process. Thus, we have identified a novel role for Fc?RIIB in the pathogenesis of obesity-induced hypertension, independent of processes regulating adiposity, and it may entail an IgG-induced attenuation of endothelial NO synthase function. Approaches targeting Fc?RIIB may potentially offer new means to treat hypertension in obese individuals. PMID:25368023

Sundgren, Nathan C; Vongpatanasin, Wanpen; Boggan, Brigid-Meghan D; Tanigaki, Keiji; Yuhanna, Ivan S; Chambliss, Ken L; Mineo, Chieko; Shaul, Philip W

2015-02-01

326

Sulindac metabolites induce proteosomal and lysosomal degradation of the epidermal growth factor receptor.  

PubMed

The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. In response to ligand, EGFR is internalized and degraded by the ubiquitin-proteasome/lysosome pathway. We previously reported that metabolites of the nonsteroidal anti-inflammatory drug sulindac downregulate the expression of EGFR and inhibit basal and EGF-induced EGFR signaling through extracellular signal-regulated kinase 1/2. We now have evaluated the mechanisms of sulindac metabolite-induced downregulation of EGFR. EGF-induced downregulation of EGFR occurs within 10 minutes and lasts for 24 hours. By contrast, downregulation of EGFR by sulindac sulfide and sulindac sulfone was first evident at 4 and 24 hours, respectively, with maximal downregulation at 72 hours. Pretreatment with either the lysosomal inhibitor chloroquine or the proteosomal inhibitor MG132 blocked sulindac metabolite-induced downregulation of EGFR. Sulindac metabolites also increased the ubiquitination of EGFR. Whereas sulindac metabolites inhibited phosphorylation of EGFR pY1068, they increased phosphorylation of EGFR pY1045, the docking site where c-Cbl binds, thereby enabling receptor ubiquitination and degradation. Immunofluorescence analysis of EGF and EGFR distribution confirmed the biochemical observations that sulindac metabolites alter EGFR localization and EGFR internalization in a manner similar to that seen with EGF treatment. Expression of ErbB family members HER2 and HER3 was also downregulated by sulindac metabolites. We conclude that downregulation of EGFR expression by sulindac metabolites is mediated via lysosomal and proteosomal degradation that may be due to drug-induced phosphorylation at pY1045 with resultant ubiquitination of EGFR. Thus, sulindac metabolite-induced downregulation of EGFR seems to be mediated through mechanism(s) similar, at least in part, to those involved in EGF-induced downregulation of EGFR. PMID:20332299

Pangburn, Heather A; Ahnen, Dennis J; Rice, Pamela L

2010-04-01

327

Neurosteroids and Microneurotrophins Signal Through NGF Receptors to Induce Prosurvival Signaling in Neuronal Cells  

NSDL National Science Digital Library

The neurosteroid dehydroepiandrosterone (DHEA) exerts a portion of its neuroprotective effects by directly interacting with the nerve growth factor (NGF) receptors TrkA and p75NTR to induce prosurvival signaling. DHEA is an intermediate in the biosynthesis of estrogens and androgens that affects the endocrine system and potentially increases the risk for developing estrogen- and androgen-dependent tumors. We have synthesized 17-spiro analogs of DHEA that lack estrogenic or androgenic properties and bind to and activate NGF receptors, thus exerting potent neuroprotective effects without the tumor risk. These synthetic DHEA derivatives may serve as lead molecules to develop small agonists of NGF receptors that can penetrate the blood-brain barrier (microneurotrophins) with potential applications in the treatment of neurodegenerative diseases. The neuroprotective properties of microneurotrophins are now being tested in various animal models of neurodegenerative diseases.

Achille Gravanis (Heraklion; Foundation of Research and Technology REV)

2012-10-16

328

Differential regulation of chemotaxis: role of G?? in chemokine receptor-induced cell migration.  

PubMed

CC and CXC chemokine receptor signalling networks are regulated in different ways. Here we show that intracellular calcium release and cell migration occur independent of G?? activation in response to CCL3, whereas CXCL11 induced migration of activated T-lymphocytes depends on G?? activation. Treatment of a range of cell types with gallein, a pharmacological inhibitor of G?? signalling, did not result in a reduction in CCL3 induced cellular migration, but resulted in enhanced calcium mobilisation following chemokine stimulation. Inhibition of PI3 kinase (PI3K) and AKT, which are activated downstream of G??, equally had no effect on calcium release and a minor effect on cell migration. Similarly, inhibition of ERK1/2 did not prevent CCL3 induced migration. Interestingly, G?? as well as PI3K activation is necessary for CXCL11 induced migration of activated T-cells. These data not only confirm a role for G?? signalling in CXCL11 induced migration, but also demonstrate that targeting G?? as a therapeutic target to prevent migration in inflammatory disease may not be beneficial, at least not for CCL3 induced migration. This highlights the distinct differences in the mechanisms on how CC- and CXC-receptors activate cellular migration. PMID:23277202

Kerr, Jason S; Jacques, Richard O; Moyano Cardaba, Clara; Tse, Tim; Sexton, Darren; Mueller, Anja

2013-04-01

329

T3DB: the toxic exposome database  

PubMed Central

The exposome is defined as the totality of all human environmental exposures from conception to death. It is often regarded as the complement to the genome, with the interaction between the exposome and the genome ultimately determining one's phenotype. The toxic exposome is the complete collection of chronically or acutely toxic compounds to which humans can be exposed. Considerable interest in defining the toxic exposome has been spurred on by the realization that most human injuries, deaths and diseases are directly or indirectly caused by toxic substances found in the air, water, food, home or workplace. The Toxin-Toxin-Target Database (T3DB - www.t3db.ca) is a resource that was specifically designed to capture information about the toxic exposome. Originally released in 2010, the first version of T3DB contained data on nearly 2900 common toxic substances along with detailed information on their chemical properties, descriptions, targets, toxic effects, toxicity thresholds, sequences (for both targets and toxins), mechanisms and references. To more closely align itself with the needs of epidemiologists, toxicologists and exposome scientists, the latest release of T3DB has been substantially upgraded to include many more compounds (>3600), targets (>2000) and gene expression datasets (>15 000 genes). It now includes extensive data on normal toxic compound concentrations in human biofluids as well as detailed chemical taxonomies, informative chemical ontologies and a large number of referential NMR, MS/MS and GC-MS spectra. This manuscript describes the most recent update to the T3DB, which was previously featured in the 2010 NAR Database Issue. PMID:25378312

Wishart, David; Arndt, David; Pon, Allison; Sajed, Tanvir; Guo, An Chi; Djoumbou, Yannick; Knox, Craig; Wilson, Michael; Liang, Yongjie; Grant, Jason; Liu, Yifeng; Goldansaz, Seyed Ali; Rappaport, Stephen M.

2015-01-01

330

T3DB: the toxic exposome database.  

PubMed

The exposome is defined as the totality of all human environmental exposures from conception to death. It is often regarded as the complement to the genome, with the interaction between the exposome and the genome ultimately determining one's phenotype. The 'toxic exposome' is the complete collection of chronically or acutely toxic compounds to which humans can be exposed. Considerable interest in defining the toxic exposome has been spurred on by the realization that most human injuries, deaths and diseases are directly or indirectly caused by toxic substances found in the air, water, food, home or workplace. The Toxin-Toxin-Target Database (T3DB--www.t3db.ca) is a resource that was specifically designed to capture information about the toxic exposome. Originally released in 2010, the first version of T3DB contained data on nearly 2900 common toxic substances along with detailed information on their chemical properties, descriptions, targets, toxic effects, toxicity thresholds, sequences (for both targets and toxins), mechanisms and references. To more closely align itself with the needs of epidemiologists, toxicologists and exposome scientists, the latest release of T3DB has been substantially upgraded to include many more compounds (>3600), targets (>2000) and gene expression datasets (>15,000 genes). It now includes extensive data on 'normal' toxic compound concentrations in human biofluids as well as detailed chemical taxonomies, informative chemical ontologies and a large number of referential NMR, MS/MS and GC-MS spectra. This manuscript describes the most recent update to the T3DB, which was previously featured in the 2010 NAR Database Issue. PMID:25378312

Wishart, David; Arndt, David; Pon, Allison; Sajed, Tanvir; Guo, An Chi; Djoumbou, Yannick; Knox, Craig; Wilson, Michael; Liang, Yongjie; Grant, Jason; Liu, Yifeng; Goldansaz, Seyed Ali; Rappaport, Stephen M

2015-01-01

331

Increase of capsaicin-induced trigeminal Fos-like immunoreactivity by 5-HT7 receptors  

PubMed Central

Objective To explore whether pharmacological stimulation of the 5-HT7 receptor modulates Fos-like immunoreactivity in the trigeminal nucleus caudalis of rats. Background The serotonin 5-HT7 receptor was proposed to be involved in migraine pathogenesis and evidence suggests it plays a role in peripheral nociception and hyperalgesia through an action on sensory afferent neurons. Methods The potential activating or sensitizing role of 5-HT7 receptors on trigeminal sensory neurons, as visualized by Fos-like immunoreactivity in the superficial layers of the trigeminal nucleus caudalis in rats, was investigated using the 5-HT7 receptor agonist, LP-211, in the absence and the presence of intracisternal capsaicin, respectively. The agonist effect was characterized with the 5-HT7 receptor antagonist, SB-656104A. Male Wistar rats received a subcutaneous injection of LP-211, SB-656104A, and SB-656104A + LP-211. They were then anesthetized and prepared to receive an intracisternal injection of capsaicin or its vehicle. Animals were perfused and brains removed; sections of the brain stem from the area postrema to the CI level were obtained and processed for Fos immunohistochemistry. Results Capsaicin but not its vehicle induced Fos-like immunoreactivity within laminae I and II of trigeminal nucleus caudalis. Pretreatment with LP-211 had no effect on Fos-like immunoreactivity but strongly increased the response produced by capsaicin; this effect was abolished by SB-656104A. Interestingly, capsaicin-induced Fos-like immunoreactivity was abolished by SB-656104A pretreatment thus suggesting involvement of endogenous 5-HT. Conclusions Data suggest that 5-HT7 receptors increase activation of meningeal trigeminovascular afferents and/or transmission of nociceptive information in the brain stem. This mechanism could be relevant in migraine and its prophylactic treatment. PMID:22082421

Terrn, Jos; Martnez-Garca, Esther; Leopoldo, Marcello; Lacivita, Enza

2013-01-01

332

Functional monoclonal antibody acts as a biased agonist by inducing internalization of metabotropic glutamate receptor 7  

PubMed Central

BACKGROUND AND PURPOSE The mGlu7 receptors are strategically located at the site of vesicle fusion where they modulate the release of the main excitatory and inhibitory neurotransmitters. Consequently, they are implicated in the underlying pathophysiology of CNS diseases such as epilepsy and stress-related psychiatric disorders. Here, we characterized a selective, potent and functional anti-mGlu7 monoclonal antibody, MAB1/28, that triggers receptor internalization. EXPERIMENTAL APPROACH MAB1/28's activity was investigated using Western blot and direct immunofluorescence on live cells, in vitro pharmacology by functional cAMP and [35S]-GTP? binding assays, the kinetics of IgG-induced internalization by image analysis, and the activation of the ERK1/2 by elisa. KEY RESULTS mGlu7/mGlu6 chimeric studies located the MAB1/28 binding site at the extracellular amino-terminus of mGlu7. MAB1/28 potently antagonized both orthosteric and allosteric agonist-induced inhibition of cAMP accumulation. The potency of the antagonistic actions was similar to the potency in triggering receptor internalization. The internalization mechanism occurred via a pertussis toxin-insensitive pathway and did not require G?i protein activation. MAB1/28 activated ERK1/2 with potency similar to that for receptor internalization. The requirement of a bivalent receptor binding mode for receptor internalizations suggests that MAB1/28 modulates mGlu7 dimers. CONCLUSIONS AND IMPLICATIONS We obtained evidence for an allosteric-biased agonist activity triggered by MAB1/28, which activates a novel IgG-mediated GPCR internalization pathway that is not utilized by small molecule, orthosteric or allosteric agonists. Thus, MAB1/28 provides an invaluable biological tool for probing mGlu7 function and selective activation of its intracellular trafficking. PMID:22747985

Ullmer, C; Zoffmann, S; Bohrmann, B; Matile, H; Lindemann, L; Flor, PJ; Malherbe, P

2012-01-01

333

Expression of netrin-1 receptors in retina of oxygen-induced retinopathy in mice  

PubMed Central

Background Netrin-1 has been reported to promote retinal neovascularization in oxygen-induced retinopathy (OIR). However, netrin-1 receptors, which may mediate netrin-1 action during retinal neovascularization, have not been characterized. In this study, we investigated netrin-1 receptor subtype expression and associated changes in the retinas of mice with OIR. Methods C57BL/6J mice were exposed to 752% oxygen for 5 days and then returned to normal air to induce retinal neovascularization. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot were used to examine the expression of netrin-1 receptor subtypes in the mouse retinas. Double staining of netrin-1 receptor subtypes and isolectin B4 was used to determine the location of the netrin-1 receptor subtypes in the retinas. Inhibition of retinal neovascularization was achieved by UNC5B shRNA plasmid intravitreal injection. Retinal neovascularization was examined by fluorescein angiography and quantification of preretinal neovascular nuclei in retinal sections. Results RT-PCR results showed that, except for UNC5A, netrin-1 receptor subtypes UNC5B, UNC5C, UNC5D, DCC, neogenin, and A2b were all expressed in the retinas of OIR mice 17 days after birth. Western blots showed that only UNC5B expression was significantly increased on that day, and immunofluorescence results showed that only UNC5B and neogenin were expressed in retinal vessels. Treatment of OIR mice with the UNC5B shRNA plasmid dramatically reduced neovascular tufts and neovascular outgrowth into the inner limiting membrane. Conclusions UNC5B may promote retinal neovascularization in OIR mice. PMID:25149138

2014-01-01

334

NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis  

PubMed Central

Pilocarpine administration has been used as an animal model for temporal lobe epilepsy since it produces several morphological and synaptic features in common with human complex partial seizures. Little is known about changes in extracellular neurotransmitter concentrations during the seizures provoked by pilocarpine, a non-selective muscarinic agonist. Focally evoked pilocarpine-induced seizures in freely moving rats were provoked by intrahippocampal pilocarpine (10?mM for 40?min at a flow rate of 2??l min?1) administration via a microdialysis probe. Concomitant changes in extracellular hippocampal glutamate, ?-aminobutyric acid (GABA) and dopamine levels were monitored and simultaneous electrocorticography was performed. The animal model was characterized by intrahippocampal perfusion with the muscarinic receptor antagonist atropine (20?mM), the sodium channel blocker tetrodotoxin (1??M) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine maleate, 100??M). The effectiveness of locally (600??M) or systemically (10?mg kg?1 day?1) applied lamotrigine against the pilocarpine-induced convulsions was evaluated. Pilocarpine initially decreased extracellular hippocampal glutamate and GABA levels. During the subsequent pilocarpine-induced limbic convulsions extracellular glutamate, GABA and dopamine concentrations in hippocampus were significantly increased. Atropine blocked all changes in extracellular transmitter levels during and after co-administration of pilocarpine. All pilocarpine-induced increases were completely prevented by simultaneous tetrodotoxin perfusion. Intrahippocampal administration of MK-801 and lamotrigine resulted in an elevation of hippocampal dopamine levels and protected the rats from the pilocarpine-induced seizures. Pilocarpine-induced convulsions developed in the rats which received lamotrigine perorally. Pilocarpine-induced seizures are initiated via muscarinic receptors and further mediated via NMDA receptors. Sustained increases in extracellular glutamate levels after pilocarpine perfusion are related to the limbic seizures. These are arguments in favour of earlier described NMDA receptor-mediated excitotoxicity. Hippocampal dopamine release may be functionally important in epileptogenesis and may participate in the anticonvulsant effects of MK-801 and lamotrigine. The pilocarpine-stimulated hippocampal GABA, glutamate and dopamine levels reflect neuronal vesicular release. PMID:9249254

Smolders, Ilse; Khan, Ghous M; Manil, Jacqueline; Ebinger, Guy; Michotte, Yvette

1997-01-01

335

Signaling through the lymphotoxin beta receptor induces the death of some adenocarcinoma tumor lines  

PubMed Central

Surface lymphotoxin (LT) is a heteromeric complex of LT-alpha and LT- beta chains that binds to the LT-beta receptor (LT-beta-R), a member of the tumor necrosis factor (TNF) family of receptors. The biological function of this receptor-ligand system is poorly characterized. Since signaling through other members of this receptor family can induce cell death, e.g., the TNF and Fas receptors, it is important to determine if similar signaling events can be communicated via the LT-beta-R. A soluble form of the surface complex was produced by coexpression of LT- alpha and a converted form of LT-beta wherein the normally type II LT- beta membrane protein was changed to a type I secreted form. Recombinant LT-alpha 1/beta 2 was cytotoxic to the human adenocarcinoma cell lines HT-29, WiDr, MDA-MB-468, and HT-3 when added with the synergizing agent interferon (IFN) gamma. When immobilized on a plastic surface, anti-LT-beta-R monoclonal antibodies (mAbs) induced the death of these cells, demonstrating direct signaling via the LT-beta-R. Anti- LT-beta-R mAbs were also identified that inhibited ligand-induced cell death, whereas others were found to potentiate the activity of the ligand when added in solution. The human WiDr adenocarcinoma line forms solid tumors in immunocompromised mice, and treatment with an anti-LT- beta-R antibody combined with human IFN-gamma arrested tumor growth. The delineation of a biological signaling event mediated by the LT-beta- R opens a window for further studies on its immunological role, and furthermore, activation of the LT-beta-R may have an application in tumor therapy. PMID:8642291

1996-01-01

336

Cannabinoid-Induced Mesenteric Vasodilation through an Endothelial Site Distinct from CB1 or CB2 Receptors  

Microsoft Academic Search

Cannabinoids, including the endogenous ligand arachidonyl ethanolamide (anandamide), elicit not only neurobehavioral but also cardiovascular effects. Two cannabinoid receptors, CB1 and CB2, have been cloned, and studies with the selective CB1 receptor antagonist SR141716A have implicated peripherally located CB1 receptors in the hypotensive action of cannabinoids. In rat mesenteric arteries, anandamide-induced vasodilation is inhibited by SR141716A, but other potent CB1

Zoltan Jarai; Jens A. Wagner; Karoly Varga; Kristy D. Lake; David R. Compton; Billy R. Martin; Anne M. Zimmer; Tom I. Bonner; Nancy E. Buckley; Eva Mezey; Raj K. Razdan; Andreas Zimmer; George Kunos

1999-01-01

337

Agonist-induced internalization and recycling of the glucagon-like peptide-1 receptor in transfected fibroblasts and in insulinomas.  

PubMed

Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor. PMID:7646446

Widmann, C; Dolci, W; Thorens, B

1995-08-15

338

Bradykinin-induced knee joint incapacitation involves bradykinin B 2 receptor mediated hyperalgesia and bradykinin B 1 receptor-mediated nociception  

Microsoft Academic Search

The participation of B1 and B2 types of bradykinin receptors was studied in the rat knee-joint incapacitation test. Five intra-articular successive hourly administrations of bradykinin produced progressive incapacitation, thus indicating that bradykinin induced sensitization to its own nociceptive effect. Four co-injections of bradykinin with the bradykinin B1 receptor antagonist des-Arg9-[Leu8]bradykinin were without nociceptive effect. However, a 5th injection of bradykinin

Carlos R Tonussi; Srgio H Ferreira

1997-01-01

339

Prostate Tumorigenesis Induced by PTEN Deletion Involves Estrogen Receptor ? Repression  

PubMed Central

The role of ER? in prostate cancer is unclear, although its loss of ER? is associated with aggressive disease. Given that mice deficient in ER? do not develop prostate cancer, we hypothesized that ER? loss occurs as a consequence of tumorigenesis caused by other oncogenic mechanisms and that its loss is necessary for tumorigenesis. In support of this hypothesis, we found that ER? is targeted for repression in prostate cancer caused by PTEN deletion and that loss of ER? is important for tumor formation. ER? transcription is repressed by BMI-1, which is induced by PTEN deletion and important for prostate tumorigenesis. This finding provides a mechanism for how ER? expression is regulated in prostate cancer. Repression of ER? contributes to tumorigenesis because it enables HIF-1/VEGF signaling that sustains BMI-1 expression. These data reveal a positive feedback loop that is activated in response to PTEN loss and sustains BMI-1. PMID:25818291

Mak, Paul; Li, Jiarong; Samanta, Sanjoy; Chang, Cheng; Jerry, D. Joseph; Davis, Roger J.; Leav, Irwin; Mercurio, Arthur M.

2015-01-01

340

Activation of A(3) adenosine receptor induces calcium entry and chloride secretion in A(6) cells.  

PubMed

We have previously demonstrated that in A(6) renal epithelial cells, a commonly used model of the mammalian distal section of the nephron, adenosine A(1) and A(2A) receptor activation modulates sodium and chloride transport and intracellular pH (Casavola et al., 1997). Here we show that apical addition of the A(3) receptor-selective agonist, 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-methyluronamide (Cl-IB-MECA) stimulated a chloride secretion that was mediated by calcium- and cAMP-regulated channels. Moreover, in single cell measurements using the fluorescent dye Fura 2-AM, Cl-IB-MECA caused an increase in Ca(2+) influx. The agonist-induced rise in [Ca(2+)](i) was significantly inhibited by the selective adenosine A(3) receptor antagonists, 2,3-diethyl-4, 5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate (MRS 1523) and 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1, 4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS 1191) but not by antagonists of either A(1) or A(2) receptors supporting the hypothesis that Cl-IB-MECA increases [Ca(2+)](i) by interacting exclusively with A(3) receptors. Cl-IB-MECA-elicited Ca(2+) entry was not significantly inhibited by pertussis toxin pretreatment while being stimulated by cholera toxin preincubation or by raising cellular cAMP levels with forskolin or rolipram. Preincubation with the protein kinase A inhibitor, H89, blunted the Cl-IB-MECA-elicited [Ca(2+)](i) response. Moreover, Cl-IB-MECA elicited an increase in cAMP production that was inhibited only by an A(3) receptor antagonist. Altogether, these data suggest that in A(6) cells a G(s)/protein kinase A pathway is involved in the A(3) receptor-dependent increase in calcium entry. PMID:11083899

Reshkin, S J; Guerra, L; Bagorda, A; Debellis, L; Cardone, R; Li, A H; Jacobson, K A; Casavola, V

2000-11-15

341

Activation of spinal ?2 adrenergic receptors induces hyperglycemia in mouse though activating sympathetic outflow.  

PubMed

The roles of ?2-adrenergic receptors located in the spinal cord in the regulation of blood glucose levels were studied in imprinting control region (ICR) mice. Mice were treated intrathecally (i.t.) with clonidine or yohimbine, and the blood glucose levels were measured at 0, 30, 60 and 120min after i.t. administration. The i.t. injection with clonidine caused a pronounced elevation of the blood glucose levels in a dose-dependent manner. Clonidine-induced hyperglycemic effect was dose-dependently attenuated by i.t. pretreatment with yohimbine. Furthermore, plasma insulin level was attenuated by clonidine, and yohimbine pretreatment reversed partially, but significantly, clonidine-induced down-regulation of the plasma insulin level. I.t. pretreatment with pertussis toxin (PTX) almost abolished the hyperglycemic effect induced by clonidine. PTX pretreatment reversed the induced down-regulation of the insulin level. In addition, i.t. pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) or intraperitoneal (i.p.) pretreatment with mifepristone, hexamethonium and 6-hydroxydopamine (6-OHDA) attenuated the hyperglycemic effect induced by clonidine. I.t. injected clonidine significantly increased plasma corticosterone level. The elevated blood glucose level induced by clonidine was significantly decreased in adrenalectomized (ADX) mice. Our results suggest that the ?2-adrenergic receptors located in the spinal cord play important roles for the elevation of the blood glucose level. The hyperglycemic effect induced by clonidine appears to be mediated by a reduction of the plasma insulin level. In addition, glucocortioid system appears to be involved in clonidine-induced hyperglycemic effect. Furthermore, the clonidine-induced hyperglycemia appears to be mediated via activating the spinal nerves or peripheral sympathetic nervous system. PMID:25179570

Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

2014-10-15

342

Ligand-Induced Dynamics of Neurotrophin Receptors Investigated by Single-Molecule Imaging Approaches  

PubMed Central

Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells. PMID:25603178

Marchetti, Laura; Luin, Stefano; Bonsignore, Fulvio; de Nadai, Teresa; Beltram, Fabio; Cattaneo, Antonino

2015-01-01

343

Activation of ?-opioid receptor exerts the glucose-homeostatic effect in streptozotocin-induced diabetic mice.  

PubMed

Opioid and its receptors play important roles in glucose homeostasis. However, few reports were available for the study of ?-opioid receptor in glucose regulation. In our study, we found that the blood glucose of diabetic mice dropped significantly following the treatment with U50,488H (a selective ?-opioid receptor agonist). This phenomenon was time-dependent and associated with the coincident alteration of Glut4 translocation in the skeleton muscles. U50,488H increased the serum adiponectin, but not serum insulin in diabetic mice. U50,488H increased the AdipoR1 expression at both mRNA and protein levels. It also promoted AMPK phosphorylation and Glut4 translocation. All these effects were abolished by nor-BNI (a selective ?-opioid receptor antagonist). These findings suggest that activation of ?-opioid receptor reduces hyperglycemia in streptozotocin-induced diabetic mice. This effect is associated with the translocation of Glut4 and might be relevant to increased adiponectin, AdipoR1, and AMPK phosphorylation. PMID:25186835

Shang, Yulong; Guo, Fan; Li, Juan; Fan, Rong; Ma, Xinliang; Wang, Yuemin; Feng, Na; Yin, Yue; Jia, Min; Zhang, Shumiao; Zhou, Jingjun; Wang, Hongbing; Pei, Jianming

2015-02-01

344

Cannabinoid CB2 receptor attenuates morphine-induced inflammatory responses in activated microglial cells  

PubMed Central

BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB2 and -opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of -opioid and CB2 receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1?, TNF-?, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1?, TNF-?, IL-6, and of NO via -opioid receptor in activated microglial cells. In contrast, CB2 receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB2 receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids. PMID:22428664

Merighi, Stefania; Gessi, Stefania; Varani, Katia; Fazzi, Debora; Mirandola, Prisco; Borea, Pier Andrea

2012-01-01

345

Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor  

SciTech Connect

Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan) [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)] [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan)] [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)] [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan)] [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China)] [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States)] [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)] [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

2011-10-15

346

GABA-induced uncoupling of GABA/benzodiazepine site interactions is associated with increased phosphorylation of the GABAA receptor.  

PubMed

The use-dependent regulation of the GABAA receptor occurs under physiological, pathological, and pharmacological conditions. Tolerance induced by prolonged administration of benzodiazepines is associated with changes in GABAA receptor function. Chronic exposure of neurons to GABA for 48 hr induces a downregulation of the GABAA receptor number and an uncoupling of the GABA/benzodiazepine site interactions. A single brief exposure ((t1/2) =?3 min) of rat neocortical neurons to the neurotransmitter initiates a process that results in uncoupling hours later (t(1/2)?=?12 hr) without alterations in the number of GABAA receptors and provides a paradigm to study the uncoupling mechanism selectively. Here we report that uncoupling induced by a brief GABAA receptor activation is blocked by the coincubation with inhibitors of protein kinases A and C, indicating that the uncoupling is mediated by the activation of a phosphorylation cascade. GABA-induced uncoupling is accompanied by subunit-selective changes in the GABAA receptor mRNA levels. However, the GABA-induced downregulation of the ?3 subunit mRNA level is not altered by the kinase inhibitors, suggesting that the uncoupling is the result of a posttranscriptional regulatory process. GABA exposure also produces an increase in the serine phosphorylation on the GABAA receptor ?2 subunit. Taken together, our results suggest that the GABA-induced uncoupling is mediated by a posttranscriptional mechanism involving an increase in the phosphorylation of GABAA receptors. The uncoupling of the GABAA receptor may represent a compensatory mechanism to control GABAergic neurotransmission under conditions in which receptors are persistently activated. PMID:24723313

Gutirrez, Mara L; Ferreri, Mara C; Farb, David H; Gravielle, Mara C

2014-08-01

347

Fas and mutant estrogen receptor chimeric gene: a novel suicide vector for tamoxifen-inducible apoptosis.  

PubMed

Several cancer gene therapy strategies involve suicide genes to kill the neoplasm, or to regulate effector cells such as lymphocytes. We have developed an inducible apoptosis system with a Fas-estrogen receptor fusion protein (MfasER) for rapid elimination of transduced cells. In the present study, we further improved this molecular switch for estrogen-inducible apoptosis to overcome concerns with the wild-type estrogen receptor and its natural ligand, 17beta-estradiol (E2). The ligand-binding domain of MfasER was replaced with that of a mutant estrogen receptor which is unable to bind estrogen yet retains affinity for a synthetic ligand, 4-hydroxytamoxifen (Tm). The resultant fusion protein (MfasTmR) and MfasER were expressed in L929 cells for examination of their ligand specificities. Tm induced apoptosis in MfasTmR-expressing cells (L929MfasTmR) at 10(-8) M or higher concentrations, but induced no apoptosis in MfasER-expressing cells (L929MfasER) at up to 10(-6) M. On the other hand, E2 induced apoptosis in L929MfasER at concentrations as low as 10(-10)-10(-9) M, while it did so partially in L929MfasTmR at concentrations greater than 10(-7) M. Thus, L929MfasTmR cells were highly susceptible to Tm, but refractory to E2, with 100-1,000 times more tolerance than L929MfasER. These results suggest that the MfasTmR/Tm system would induce apoptosis in the target cells more safely in vivo, working independently of endogenous estrogen. PMID:9738981

Kodaira, H; Kume, A; Ogasawara, Y; Urabe, M; Kitano, K; Kakizuka, A; Ozawa, K

1998-07-01

348

Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor.  

PubMed

Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) - a high-production volume organophosphate-based flame retardant - results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) - a nuclear receptor that regulates vertebrate heart morphogenesis - in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) - a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) - a major target gene for RA-induced RAR activation in zebrafish - and found that RA and TPP exposure resulted in a ?5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RAR?-, RAR?-, or RAR? to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

Isales, Gregory M; Hipszer, Rachel A; Raftery, Tara D; Chen, Albert; Stapleton, Heather M; Volz, David C

2015-04-01

349

Topical acetone treatment induces neurogenic oedema on the sensitized mouse ear: an in vivo study using transient receptor potential vanilloid 1 (TRPV1) receptor knockout mice  

Microsoft Academic Search

.\\u000a Objective:The participation of sensory neurons and transient receptor potential vanilloid 1 (TRPV1) receptors in phorbol 12-myristate\\u000a 13-acetate (PMA)-induced nerve-sensitizing effect was examined.\\u000a \\u000a \\u000a \\u000a Materials and methods:PMA dissolved in acetone and acetone were applied to the ears of TRPV1 receptor knockout and wild-type mice. Different groups\\u000a of animals received ibuprofen, anti-interleukin-1 beta (IL-1?) antibody, resiniferatoxin (RTX) or capsaicin pretreatment.\\u000a Ear thickness,

G. Pozsgai; K. Sndor; A. Perkecz; J. Szolcsnyi; Z. Helyes; S. D. Brain; E. Pintr

2007-01-01

350

Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism.  

PubMed

There is mounting evidence that the neuropeptide oxytocin is a possible candidate for the treatment of drug addiction. Oxytocin was shown to reduce methamphetamine self-administration, conditioned place-preference, hyperactivity and reinstatement in rodents, highlighting its potential for the management of methamphetamine addiction. Thus, we hypothesised that the central endogenous oxytocinergic system is dysregulated following chronic methamphetamine administration. We tested this hypothesis by examining the effect of chronic methamphetamine administration on oxytocin receptor density in mice brains with the use of quantitative receptor autoradiographic binding. Saline (4ml/kg/day, i.p.) or methamphetamine (1mg/kg/day, i.p.) was administered daily for 10 days to male, CD1 mice. Quantitative autoradiographic mapping of oxytocin receptors was carried out with the use of [(125)I]-vasotocin in brain sections of these animals. Chronic methamphetamine administration induced a region specific upregulation of oxytocin receptor density in the amygdala and hypothalamus, but not in the nucleus accumbens and caudate putamen. As there is evidence suggesting an involvement of central adenosine A2A receptors on central endogenous oxytocinergic function, we investigated whether these methamphetamine-induced oxytocinergic neuroadaptations are mediated via an A2A receptor-dependent mechanism. To test this hypothesis, autoradiographic oxytocin receptor binding was carried out in brain sections of male CD1 mice lacking A2A receptors which were chronically treated with methamphetamine (1mg/kg/day, i.p. for 10 days) or saline. Similar to wild-type animals, chronic methamphetamine administration induced a region-specific upregulation of oxytocin receptor binding in the amygdala and hypothalamus of A2A receptor knockout mice and no genotype effect was observed. These results indicate that chronic methamphetamine use can induce profound neuroadaptations of the oxytocinergic receptor system in brain regions associated with stress, emotionality and social bonding and that these neuroadaptations are independent on the presence of A2A receptors. These results may at least partly explain some of the behavioural consequences of chronic methamphetamine use. PMID:23680573

Zanos, Panos; Wright, Sherie R; Georgiou, Polymnia; Yoo, Ji Hoon; Ledent, Catherine; Hourani, Susanna M; Kitchen, Ian; Winsky-Sommerer, Raphaelle; Bailey, Alexis

2014-04-01

351

Antidepressant-induced modulation of GABAA receptors and beta-adrenoceptors but not GABAB receptors in the frontal cortex of olfactory bulbectomised rats.  

PubMed

The effects of prolonged administration of antidepressant drugs, belonging to three different classes, on high-affinity GABAA receptor, GABAB receptor and beta-adrenoceptor binding parameters were determined in the frontal cortex of olfactory bulbectomised rats. Clorgyline (1 mg/kg/day), paroxetine (10 mg/kg/day) or desipramine (10 mg/kg/day) were administered for 21 days via subcutaneous osmotic minipumps implanted in the scapular region 7 days after bulbectomy. Cortical GABAA receptor densities, defined with [3H]gamma-aminobutyric acid ([3H]GABA), were significantly increased following bulbectomy. This effect on Bmax values was reversed by all three antidepressant drugs. GABAB receptor densities decreased slightly after bulbectomy. Chronic antidepressant administration had no effect on GABAB receptor binding parameters. Olfactory bulbectomy did not induce any changes in cortical beta-adrenoceptor binding parameters determined with [3H]CGP-12177 ((-)-4-(3-t- butylamino-2-hydroxypropxy)- [5,7-3H]benzimidazol-2-one). However, prolonged administration of all three antidepressant drugs induced a downregulation of beta-adrenoceptors. The results of the present study confirm the involvement of cortical GABAA rather than GABAB receptors in the olfactory bulbectomy animal model of human depression. Moreover, the data further support the hypothesis that a decrease in function of the GABAA receptor complex could play a role in the therapeutic effects of antidepressant treatments. PMID:7813565

Dennis, T; Beauchemin, V; Lavoie, N

1994-09-01

352

Heat Treatment Induces Liver Receptor Homolog1 Expression in Monkey and Rat Sertoli Cells  

Microsoft Academic Search

We demonstrated in this study that liver receptor homolog-1 (LRH-1) was expressed in the round spermatids in normal monkey testis, and no LRH-1 signal was observed in the Ser- toli cells. After local warming (43 C) the monkey testis, how- ever, LRH-1 expression was induced in the Sertoli cells in coincidence with activation of cytokeratin 18 (CK-18), a Ser- toli

Jian Guo; Shi-Xin Tao; Min Chen; Yu-Qiang Shi; Zhu-Qiang Zhang; Yin-Chuan Li; Xue-Sen Zhang; Zhao-Yuan Hu; Yi-Xun Liu

2006-01-01

353

Direct evidence for leptin-induced lipid oxidation independent of long-form leptin receptor  

Microsoft Academic Search

Leptin administration has been shown to enhance muscle lipid oxidation in relation to the energy expenditure. Both long-form (Ob-RL) and short-form leptin receptors (Ob-RS) are expressed in skeletal muscle, but the role of Ob-RS is unclear. In the present study, the role of Ob-RS in leptin-induced lipid oxidation in skeletal muscles was investigated using primary murine myotubes from m\\/m and

Yunike Akasaka; Masaki Tsunoda; Tomomi Ogata; Tomohiro Ide; Koji Murakami

2010-01-01

354

Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation  

Microsoft Academic Search

Agrin is thought to be the nerve-derived fac- tor that initiates acetylcholine receptor (AChR) clus- tering at the developing neuromuscular junction. We have investigated the signaling pathway in mouse C2 myotubes and report that agrin induces a rapid but transient tyrosine phosphorylation of the AChR 13 sub- unit. As the 13-subunit tyrosine phosphorylation occurs before the formation of AChR clusters,

Michael Ferns; Michael Deiner; Zach Hall

1996-01-01

355

Two Intracellular Pathways Mediate Metabotropic Glutamate Receptor-Induced Ca2 Mobilization in Dopamine Neurons  

Microsoft Academic Search

Activation of metabotropic glutamate receptors (mGluRs) causes membrane hyperpolarization in midbrain dopamine neurons. This hyperpolarization results from the opening of Ca 2-sensitive K channels, which is mediated by the release of Ca 2 from intracellular stores. Neurotransmitter-induced mobilization of Ca 2 is generally ascribed to the action of inositol 1,4,5-triphosphate (IP3 ) in neurons. Here we show that the mGluR-mediated

Hitoshi Morikawa; Kamran Khodakhah; John T. Williams

356

gp13 (EHV-gC): a complement receptor induced by equine herpesviruses  

Microsoft Academic Search

Equine herpesviruses type 1 (EHV-1) and type 4 (EHV-4) induce a complement receptor protein on the surface of infected cells capable of binding to the third component of complement (C3). The protein mediating the binding to the C3 component of complement was identified as glycoprotein 13 (gp13, EHV-gC), as expression of the cloned viral gene under the control of a

Hartwig P. Huemer; Norbert Nowotny; Brendan S. Crabb; Hermann Meyer; Peter H. Hbert

1995-01-01