Science.gov

Sample records for t3 receptor induces

  1. Overexpression of the Mitochondrial T3 Receptor Induces Skeletal Muscle Atrophy during Aging

    PubMed Central

    Casas, François; Pessemesse, Laurence; Grandemange, Stéphanie; Seyer, Pascal; Baris, Olivier; Gueguen, Naïg; Ramonatxo, Christelle; Perrin, Florence; Fouret, Gilles; Lepourry, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal

    2009-01-01

    In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative. Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase) were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1. Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia. PMID:19462004

  2. Lysophosphatidic Acid-induced ERK Activation and Chemotaxis in MC3T3-E1 Preosteoblasts are Independent of EGF Receptor Transactivation

    SciTech Connect

    Karagiosis, Sue A.; Chrisler, William B.; Bollinger, Nikki; Karin, Norman J.

    2009-06-01

    Growing evidence indicates that bone-forming osteoblasts and their progenitors are target cells for the lipid growth factor lysophosphatidic acid (LPA) which is produced by degranulating platelets at sites of injury. LPA is a potent inducer of bone cell migration, proliferation and survival in vitro and an attractive candidate to facilitate preosteoblast chemotaxis during skeletal regeneration in vivo, but the intracellular signaling pathways mediating the effects of this lipid on bone cells are not defined. In this study we measured the ability of LPA to stimulate extracellular signal-related kinase (ERK1/2) in MC3T3-E1 preosteoblastic cells and determined the contribution of this pathway to LPA-stimulated chemotaxis. LPA-treated cells exhibited a bimodal activation of ERK1/2 with maximal phosphorylation at 5 and 60 minutes. The kinetics of ERK1/2 phosphorylation were not coupled to Ras activation or LPA-induced elevations in cytosolic Ca2+. While LPA is coupled to the transactivation of the EGF receptor in many cell types, LPA-stimulated ERK1/2 activation in MC3T3-E1 cells was unaffected by inhibition of EGF receptor function. ERK isoforms rapidly accumulated at nuclear sites in LPA-treated cells, a process that was blocked if ERK1/2 phosphorylation was prevented with the MEK1 inhibitor U0126. Blocking ERK1/2 phosphorylation with U0126 also diminished MC3T3-E1 cell migration and altered the normal disassembly of LPA-induced stress fibers, while the inhibition of EGF receptor function had no effect on LPA-coupled preosteoblast motility. Our results identify ERK1/2 activation as a mediatora mediator of LPA-stimulated MC3T3-E1 cell migration that may be relevant to preosteoblast motility during bone repair in vivo.

  3. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes

    PubMed Central

    Li, Xia; Ycaza, John; Blumberg, Bruce

    2012-01-01

    Obesogens are chemicals that predispose exposed individuals to weight gain and obesity by increasing the number of fat cells, storage of fats into existing cells, altering metabolic rates, or disturbing the regulation of appetite and satiety. Tributyltin exposure causes differentiation of multipotent stromal stem cells (MSCs) into adipocytes; prenatal TBT exposure leads to epigenetic changes in the stem cell compartment that favor the production of adipocytes at the expense of bone, in vivo. While it is known that TBT acts through peroxisome proliferator activated receptor gamma to induce adipogenesis in MSCs, the data in 3T3-L1 preadipocytes are controversial. Here we show that TBT can activate the RXR-PPARγ heterodimer even in the presence of the PPARγ antagonist GW9662. We found that GW9662 has a ten-fold shorter half-life in cell culture than do PPARγ activators such as rosiglitazone (ROSI), accounting for previous observations that GW9662 did not inhibit TBT-mediated adipogenesis. When the culture conditions are adjusted to compensate for the short half-life of GW-9662, we found that TBT induces adipogenesis, triglyceride storage and the expression of adipogenic marker genes in 3T3-L1 cells in a PPARγ-dependent manner. Our results are broadly applicable to the study of obesogen action and indicate that ligand stability is an important consideration in the design and interpretation of adipogenesis assays. PMID:21397693

  4. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  5. Changes in triiodothyronine (T3) mononuclear leukocyte receptor kinetics after T3 administration and multiple cold-air exposures.

    PubMed

    D'Alesandro, M M; Malik, M; Reed, H L; Homer, L D

    1994-01-01

    Repeated cold-air exposures increase human triiodothyronine (T3) plasma clearance rates. To study the response of the nuclear T3 receptor (NT3R) in this condition, binding characteristics were analyzed in human mononuclear leukocytes (MNL). In addition, we supplemented one group of individuals with a daily oral replacement dose of T3 to isolate the influence of serum thyroxine (T4) and thyrotropin (TSH) levels on receptor kinetics. The subjects were exposed to cold air (4 degrees C) twice/d, 30 min/exposure, for a total of 80 exposures. The T3-subjects received placebo [n = 8] and the T3 + subjects received T3 (30 micrograms/d) [n = 8] in a double-blind fashion. Mononuclear leukocytes were isolated from peripheral blood before the cold exposure and drug regimen began, and then after every 20 exposures. The dissociation constant (Kd) and maximum binding capacity (MBC) of the NT3R values were log transformed to minimize between-subject variability. In the T3+ group, serum total thyroxine (TT4), free T4 (FT4), and TSH were approx 50% lower than both basal and T3-values. The log10Kd increased 0.304 +/- 0.139 (p < 0.04) and the log10MBC increased 0.49 +/- 0.10 (p < 0.001) in the T3+ subjects compared to baseline. This change in MBC represents a 311% increase in the MBC over baseline and a fivefold increase over placebo-treated subjects. The T3- group showed no change in MBC over the study. These results describe for the first time the rapid modulation of the NT3R in response to the combined influence of cold exposure and reduced circulating T4 and TSH. PMID:7894340

  6. The appearance, distribution, and longevity of receptor-[125I]T3 complexes within the nuclei of isolated rat hepatocytes.

    PubMed

    Pullen, G L; Barsano, C P; Peffley, D M; Singh, K R

    1994-01-01

    The nuclei of isolated rat hepatocytes were separable into three receptor compartments based upon their differential salt extractabilities: nucleoplasmic receptors (NP) extractable with 0.15 M KCl, high-salt extractable receptors (HSE) extractable with 0.4 M KCl, and salt-resistant receptors (SR) extractable with 0.4 M KCl/5 mM dithiothreitol. The receptor distribution among the three compartments was approximately NP, 45%; HSE, 30%; SR, 25%. The mean percent occupancy with endogenous T3 of the SR receptors (86%) was higher than the occupancies of the NP receptors (68%) and the HSE receptors (63%). When hepatocytes were pulsed with 3 nM [125I]T3 at 37 degrees C for brief intervals, receptor-[125I]T3 complexes were detectable in all three nuclear compartments within 15 sec. With increasing pulse intervals up to 120 sec, the receptor content of each nuclear compartment increased progressively and without evidence of preferential accumulation in any of the three compartments. To determine the life span and intercompartmental "migration" pattern of nuclear receptors, hepatocytes were pulsed with 3 nM [125I]T3 at 37 degrees C for 2.5 min or 5 min, followed by a chase with a 500-fold excess of nonlabeled T3. The population of receptor-[125I]T3 complexes generated during the pulse was serially recovered at increasing intervals after the chase. The complexes of each compartment dissociated with a half-life of approximately 3 min and manifested no predilection to accumulate in any of the compartments. Exposure of isolated hepatocytes to 3 nM T3 for 5 min or 10 min at 37 degrees C induced no change in the gross intercompartmental distribution of receptors compared to control hepatocytes incubated without T3.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7833668

  7. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    PubMed Central

    2011-01-01

    Background Phosphatidylcholine (PPC) formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD), and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations <1 mg/ml, whereas SD and PPC formulation were cytotoxic. Western blot analysis demonstrated that PPC alone led to the phosphorylation of the stress signaling proteins, such as p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, and activated caspase-9, -8, -3 as well as cleavage of poly(ADP-ribose) polymerase. However, SD did not activate the apoptotic pathways. Instead, SD and PPC formulation induced cell membrane lysis, which may lead to necrosis of cells. Conclusions PPC results in apoptosis of 3T3-L1 cells. PMID:22145579

  8. Depletion of the p43 Mitochondrial T3 Receptor Increases Sertoli Cell Proliferation in Mice

    PubMed Central

    Fumel, Betty; Roy, Stéphanie; Fouchécourt, Sophie; Livera, Gabriel; Parent, Anne-Simone; Casas, François; Guillou, Florian

    2013-01-01

    Among T3 receptors, TRα1 is ubiquitous and its deletion or a specific expression of a dominant-negative TRα1 isoform in Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the nuclear receptor TRα1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in Sertoli cells of p43−/− mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p43−/− probably explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43. PMID:24040148

  9. Identical Gene Regulation Patterns of T3 and Selective Thyroid Hormone Receptor Modulator GC-1

    PubMed Central

    Yuan, Chaoshen; Lin, Jean Z.H.; Sieglaff, Douglas H.; Ayers, Steven D.; DeNoto-Reynolds, Frances; Baxter, John D.

    2012-01-01

    Synthetic selective thyroid hormone (TH) receptor (TR) modulators (STRM) exhibit beneficial effects on dyslipidemias in animals and humans and reduce obesity, fatty liver, and insulin resistance in preclinical animal models. STRM differ from native TH in preferential binding to the TRβ subtype vs. TRα, increased uptake into liver, and reduced uptake into other tissues. However, selective modulators of other nuclear receptors exhibit important gene-selective actions, which are attributed to differential effects on receptor conformation and dynamics and can have profound influences in animals and humans. Although there are suggestions that STRM may exhibit such gene-specific actions, the extent to which they are actually observed in vivo has not been explored. Here, we show that saturating concentrations of the main active form of TH, T3, and the prototype STRM GC-1 induce identical gene sets in livers of euthyroid and hypothyroid mice and a human cultured hepatoma cell line that only expresses TRβ, HepG2. We find one case in which GC-1 exhibits a modest gene-specific reduction in potency vs. T3, at angiopoietin-like factor 4 in HepG2. Investigation of the latter effect confirms that GC-1 acts through TRβ to directly induce this gene but this gene-selective activity is not related to unusual T3-response element sequence, unlike previously documented promoter-selective STRM actions. Our data suggest that T3 and GC-1 exhibit almost identical gene regulation properties and that gene-selective actions of GC-1 and similar STRM will be subtle and rare. PMID:22067320

  10. Analysis of the functional state of T3 nuclear receptors expressed in thyroid cells.

    PubMed

    Selmi-Ruby, S; Rousset, B

    1996-05-17

    T3 nuclear receptors (TR) are present in thyroid cells. We have analyzed the ability of thyroid TR to function as transcriptional regulators. Studies were performed on pig thyrocytes in primary culture. Messenger RNA corresponding to TR alpha 1, alpha 2 and beta were detected in pig thyrocytes by RT-PCR and Northern blot; the alpha 2 mRNA was more abundant than the alpha 1 mRNA. Thyrocytes were transiently transfected with different plasmids containing the CAT (chloramphenicol acetyl transferase) gene placed under the control of different promoters (delta MTV, TK or delta SV40) and bearing a thyroid hormone response element, TREp or TRE DR + 4. It was found that TSH induced a concentration-dependent increase of the transfection efficiency, an effect reproduced by (Bu)2cAMP and Forskolin. Cells transfected with either delta MTV-, TK- or delta SV40-TREp-CAT expressed similar basal CAT activities. Addition of T3 produced a 3-fold increase of CAT activity expressed from each of these vectors. In contrast, CAT activity expressed from a vector containing the TRE DR + 4 was decreased by about 50% by T3. Thus, TREp and TRE DR + 4 gave distinct responses. These data demonstrate that TR physiologically expressed in thyroid cells can act as transcriptional regulators in a T3-dependent manner. This finding directly substantiates the concept of autocrine regulatory actions of thyroid hormones. PMID:8793858

  11. 6-gingerol inhibits rosiglitazone-induced adipogenesis in 3T3-L1 adipocytes.

    PubMed

    Tzeng, Thing-Fong; Chang, Chia Ju; Liu, I-Min

    2014-02-01

    We investigated the effects of 6-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone) on the inhibition of rosiglitazone (RGZ)-induced adipogenesis in 3T3-L1 cells. The morphological changes were photographed based on staining lipid accumulation by Oil-Red O in RGZ (1 µmol/l)-treated 3T3-L1 cells without or with various concentrations of 6-gingerol on differentiation day 8. Quantitation of triglycerides content was performed in cells on day 8 after differentiation induction. Differentiated cells were lysed to detect mRNA and protein levels of adipocyte-specific transcription factors by real-time reverse transcription-polymerase chain reaction and Western blot analysis, respectively. 6-gingerol (50 µmol/l) effectively suppressed oil droplet accumulation and reduced the sizes of the droplets in RGZ-induced adipocyte differentiation in 3T3-L1 cells. The triglyceride accumulation induced by RGZ in differentiated 3T3-L1 cells was also reduced by 6-gingerol (50 µmol/l). Treatment of differentiated 3T3-L1 cells with 6-gingerol (50 µmol/l) antagonized RGZ-induced gene expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein α. Additionally, the increased levels of mRNA and protein in adipocyte-specific fatty acid binding protein 4 and fatty acid synthase induced by RGZ in 3T3-L1 cells were decreased upon treatment with 6-gingerol. Our data suggests that 6-gingerol may be beneficial in obesity, by reducing adipogenesis partly through the down-regulating PPARγ activity. PMID:23519881

  12. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  13. High-affinity receptors for peptides of the bombesin family in Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Rozengurt, E.

    1985-11-01

    Gastrin-releasing peptide (GRP) labeled with /sup 125/I at tyrosine-15 (/sup 125/I-GRP) binds to intact quiescent Swiss 3T3 cells in a specific and saturable manner. Scatchard analysis indicates the presence of a single class of high-affinity binding sites of Kd = 0.5 X 10(-9) M and a value for the number of sites per cell of about 100,000. /sup 125/I-GRP binding was not inhibited by other mitogens for these cells, and cell lines that are mitogenically unresponsive to GRP do not exhibit specific GRP binding. Structure-activity relationships show a close parallel between the ability of a range of GRP-related peptides to both inhibit GRP binding and to stimulate mitogenesis. Further, GRP binding is selectively blocked in a competitive fashion by a novel bombesin antagonist, (D-Arg1, D-Pro2, D-Trp7,9, Leu11) substance P. In addition, this compound selectively inhibits GRP and bombesin-induced mitogenesis. These results demonstrate that the mitogenic response of Swiss 3T3 cells to peptides of the bombesin family is mediated by a class of receptors distinct from those of other mitogens for these cells.

  14. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    SciTech Connect

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  15. Interaction of human beta 1 thyroid hormone receptor and its mutants with DNA and retinoid X receptor beta. T3 response element-dependent dominant negative potency.

    PubMed Central

    Meier, C A; Parkison, C; Chen, A; Ashizawa, K; Meier-Heusler, S C; Muchmore, P; Cheng, S Y; Weintraub, B D

    1993-01-01

    Mutations in the human beta thyroid hormone receptor (h-TR beta) gene are associated with the syndrome of generalized resistance to thyroid hormone. We investigated the interaction of three h-TR beta 1 mutants representing different types of functional impairment (kindreds ED, OK, and PV) with different response elements for 3,3',5-triiodothyronine (T3) and with retinoid X receptor beta (RXR beta). The mutant receptors showed an increased tendency to form homodimers on a palindromic T3-response element (TREpal), a direct repeat (DR + 4), and an inverted palindrome (TRElap). On TRElap, wild type TR binding was decreased by T3, while the mutant receptors showed a variably decreased degree of dissociation from TRElap in response to T3. The extent of dissociation was proportional to their T3 binding affinities. RXR beta induced the formation of h-TR beta 1:RXR beta heterodimers equally well for mutants and the wild type h-TR beta 1 on these T3 response elements. However, the T3-dependent increase in heterodimerization with RXR beta was absent or reduced for the mutant TRs. Transient transfection studies indicated that the dominant negative potency was several-fold more pronounced on the TRElap as compared to TREpal or DR + 4. In CV-1 and HeLa cells, transfection of RXR beta could not reverse the dominant negative action. These results demonstrate that the binding of mutant h-TRs to DNA, as well as their dominant negative potency, are TRE dependent. In addition, competition for DNA binding, rather than for limiting amounts of RXR beta, is likely to mediate the dominant negative action. Images PMID:8408652

  16. Interaction of human beta 1 thyroid hormone receptor and its mutants with DNA and retinoid X receptor beta. T3 response element-dependent dominant negative potency.

    PubMed

    Meier, C A; Parkison, C; Chen, A; Ashizawa, K; Meier-Heusler, S C; Muchmore, P; Cheng, S Y; Weintraub, B D

    1993-10-01

    Mutations in the human beta thyroid hormone receptor (h-TR beta) gene are associated with the syndrome of generalized resistance to thyroid hormone. We investigated the interaction of three h-TR beta 1 mutants representing different types of functional impairment (kindreds ED, OK, and PV) with different response elements for 3,3',5-triiodothyronine (T3) and with retinoid X receptor beta (RXR beta). The mutant receptors showed an increased tendency to form homodimers on a palindromic T3-response element (TREpal), a direct repeat (DR + 4), and an inverted palindrome (TRElap). On TRElap, wild type TR binding was decreased by T3, while the mutant receptors showed a variably decreased degree of dissociation from TRElap in response to T3. The extent of dissociation was proportional to their T3 binding affinities. RXR beta induced the formation of h-TR beta 1:RXR beta heterodimers equally well for mutants and the wild type h-TR beta 1 on these T3 response elements. However, the T3-dependent increase in heterodimerization with RXR beta was absent or reduced for the mutant TRs. Transient transfection studies indicated that the dominant negative potency was several-fold more pronounced on the TRElap as compared to TREpal or DR + 4. In CV-1 and HeLa cells, transfection of RXR beta could not reverse the dominant negative action. These results demonstrate that the binding of mutant h-TRs to DNA, as well as their dominant negative potency, are TRE dependent. In addition, competition for DNA binding, rather than for limiting amounts of RXR beta, is likely to mediate the dominant negative action. PMID:8408652

  17. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  18. T3-induced liver AMP-activated protein kinase signaling: Redox dependency and upregulation of downstream targets

    PubMed Central

    Videla, Luis A; Fernández, Virginia; Cornejo, Pamela; Vargas, Romina; Morales, Paula; Ceballo, Juan; Fischer, Alvaro; Escudero, Nicolás; Escobar, Oscar

    2014-01-01

    AIM: To investigate the redox dependency and promotion of downstream targets in thyroid hormone (T3)-induced AMP-activated protein kinase (AMPK) signaling as cellular energy sensor to limit metabolic stresses in the liver. METHODS: Fed male Sprague-Dawley rats were given a single ip dose of 0.1 mg T3/kg or T3 vehicle (NaOH 0.1 N; controls) and studied at 8 or 24 h after treatment. Separate groups of animals received 500 mg N-acetylcysteine (NAC)/kg or saline ip 30 min prior T3. Measurements included plasma and liver 8-isoprostane and serum β-hydroxybutyrate levels (ELISA), hepatic levels of mRNAs (qPCR), proteins (Western blot), and phosphorylated AMPK (ELISA). RESULTS: T3 upregulates AMPK signaling, including the upstream kinases Ca2+-calmodulin-dependent protein kinase kinase-β and transforming growth factor-β-activated kinase-1, with T3-induced reactive oxygen species having a causal role due to its suppression by pretreatment with the antioxidant NAC. Accordingly, AMPK targets acetyl-CoA carboxylase and cyclic AMP response element binding protein are phosphorylated, with the concomitant carnitine palmitoyltransferase-1α (CPT-1α) activation and higher expression of peroxisome proliferator-activated receptor-γ co-activator-1α and that of the fatty acid oxidation (FAO)-related enzymes CPT-1α, acyl-CoA oxidase 1, and acyl-CoA thioesterase 2. Under these conditions, T3 induced a significant increase in the serum levels of β-hydroxybutyrate, a surrogate marker for hepatic FAO. CONCLUSION: T3 administration activates liver AMPK signaling in a redox-dependent manner, leading to FAO enhancement as evidenced by the consequent ketogenic response, which may constitute a key molecular mechanism regulating energy dynamics to support T3 preconditioning against ischemia-reperfusion injury. PMID:25516653

  19. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells.

    PubMed

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-01-01

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis. PMID:27070587

  20. Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells

    PubMed Central

    Yoo, Yeong-Min; Han, Tae-Young; Kim, Han Sung

    2016-01-01

    Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis. PMID:27070587

  1. Temperature homeostasis in mice lacking the p43 mitochondrial T3 receptor.

    PubMed

    Bertrand-Gaday, Christelle; Pessemesse, Laurence; Cabello, Gérard; Wrutniak-Cabello, Chantal; Casas, François

    2016-04-01

    Thyroid hormones and Thra gene play a key role in energy expenditure regulation, temperature homeostasis, and mitochondrial function. To decipher the function of the mitochondrial TRα receptor in these phenomena, we used mice lacking specifically the p43 mitochondrial T3 receptor. We found that these animals were hypermetabolic, hyperphagic, and displayed a down setting of the core body temperature. However, p43-/- animals do not present cold intolerance or defect of facultative thermogenesis. In addition, the mitochondrial function of BAT is slightly affected in the absence of p43. Our study, therefore, suggests a complementarity of action between the mitochondrial receptor and other proteins encoded by the Thra gene in the control of basal metabolism, facultative thermogenesis, and determination of the set point of temperature regulation. PMID:26970082

  2. The aporphine alkaloid boldine induces adiponectin expression and regulation in 3T3-L1 cells.

    PubMed

    Yu, Bangning; Cook, Carla; Santanam, Nalini

    2009-10-01

    Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor (PPAR)-gamma, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H(2)O(2)) (100 microM) or tumor necrosis factor-alpha (TNFalpha) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5-100 microM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARgamma, and C/EBPalpha to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H(2)O(2) or TNFalpha and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5-25 microM) having a larger inductive effect compared to higher concentrations (50-100 microM). Boldine treatment alone in the absence of H(2)O(2) or TNFalpha was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  3. The Aporphine Alkaloid Boldine Induces Adiponectin Expression and Regulation in 3T3-L1 Cells

    PubMed Central

    Yu, Bangning; Cook, Carla

    2009-01-01

    Abstract Adiponectin is an adipokine secreted by differentiated adipocytes. Clinical studies suggest a negative correlation between oxidative stress and adiponectin levels in patients with metabolic syndrome or cardiovascular disease. Natural compounds that can prevent oxidative stress mediated inhibition of adiponectin may be potentially therapeutic. Boldine, an aporphine alkaloid abundant in the medicinal plant Peumus boldus, is a powerful antioxidant. The current study demonstrates the effects of boldine on the expression of adiponectin and its regulators, CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor (PPAR)-γ, in 3T3-L1 cells. Differentiated 3T3-L1 adipocytes were exposed to either hydrogen peroxide (H2O2) (100 μM) or tumor necrosis factor-α (TNFα) (1 ng/mL) for 24 hours in the presence or absence of increasing concentrations of boldine (5–100 μM). Quantitative polymerase chain reaction showed that both the oxidants decreased the mRNA levels of adiponectin, PPARγ, and C/EBPα to half of the control levels. Boldine, at all concentrations, counteracted the inhibitory effect of H2O2 or TNFα and increased the expression of adiponectin and its regulators. The effect of boldine on adiponectin expression was biphasic, with the lower concentrations (5–25 μM) having a larger inductive effect compared to higher concentrations (50–100 μM). Boldine treatment alone in the absence of H2O2 or TNFα was also able to induce adiponectin at the inductive phase of adipogenesis. Peroxisome proliferator response element-luciferase promoter transactivity analysis showed that boldine interacts with the PPAR response element and could potentially modulate PPAR responsive genes. Our results indicate that boldine is able to modulate the expression of adiponectin and its regulators in 3T3-L1 cells and has the potential to be beneficial in obesity-related cardiovascular disease. PMID:19857072

  4. Increase of adipogenesis by ginsenoside (Rh2) in 3T3-L1 cell via an activation of glucocorticoid receptor.

    PubMed

    Niu, C-S; Yeh, C-H; Yeh, M-F; Cheng, J-T

    2009-04-01

    Adipocyte plays an important role in lipid regulation in mammals. Understanding of adipocyte differentiation becomes a key issue for the development of anti-obesity agent. Glucocorticoids (GCs) regulate lipid metabolism through promoting lipogenesis in adipose tissue. Ginsenoside Rh2, with a similar chemical structure as GCs, shows antidiabetic, anti-inflammatory, and anticancer actions both in vivo and in vitro. However, effect of Rh2 on glucocorticoid receptor (GR) for an increase of adipogenesis like GCs remains unclear. In the present study, we employed ginsenoside Rh2 to investigate the changes in adipogenetic process of 3T3-L1, one of the widely used preadipocytes, through activating GR or not. In leuciferase assay, we found that ginsenoside Rh2 induced GRs transitivity in a way as dexamethasone, which was deleted by RU486 at concentrations sufficient to block GR. Moreover, 3T3-L1 preadipocytes were differentiated into adipocytes by adipogenic induction medium containing 0.01 to 1 microM of ginsenoside Rh2. Also, RU486 blocked this adipogenesis induced by ginsenoside Rh2 or dexamethasone. The obtained results suggest that ginsenoside Rh2 can promote preadipocytes differentiation through activating GR. This finding seems helpful for the understanding of ginsenosides in the regulation of lipid metabolism. PMID:19048455

  5. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    SciTech Connect

    Yao, Congjun; Evans, Chheng-Orn; Stevens, Victoria L.; Owens, Timothy R.; Oyesiku, Nelson M.

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  6. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    PubMed

    Zhang, Min; Qin, Zhen-Ying; Dai, Yong-mei; Wang, Yu-Mei; Zhu, Guan-zhong; Zhao, Ya-Ping; Ji, Chen-Bo; Zhu, Jin-Gai; Shi, Chun-Mei; Qiu, Jie; Cao, Xin-Guo; Guo, Xi-Rong

    2014-09-01

    LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 M FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1. PMID:24771405

  7. Capsaicin Induces “Brite” Phenotype in Differentiating 3T3-L1 Preadipocytes

    PubMed Central

    Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

    2014-01-01

    Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and induces brown-like phenotype whereas higher doses. PMID:25072597

  8. The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes.

    PubMed

    Martinez de Mena, Raquel; Scanlan, Thomas S; Obregon, Maria-Jesus

    2010-10-01

    Brown adipose tissue (BAT) thermogenesis increases when uncoupling protein-1 (UCP1) is activated adrenergically and requires T3. In humans, UCP1 activation in BAT seems involved in body weight maintenance. BAT type 2 deiodinase (D2) increases in response to adrenergic agents, producing the T3 required for UCP1 expression. T3 actions are mediated by thyroid hormone nuclear T3 receptors (TR), TRα and TRβ. Studies in mice suggest that TRβ is required for UCP1 induction, whereas TRα regulates body temperature and adrenergic sensitivity. In the present study, we compare the effects of T3 vs. specific TRβ1 and TRα1 agonists [GC-1 and CO23] on the adrenergic induction of UCP1 and D2 in cultured rat brown adipocytes. T3 and GC-1 produced similar increases on UCP1, whereas CO23 increased UCP1 only at high doses (50 nm). GC-1 at low doses (0.2-10 nm) was less potent than T3, increasing the adrenergic stimulation of D2 activity and mRNA. At higher doses, GC-1 further stimulated whereas T3 inhibited D2 activity but not D2 mRNA, suggesting posttranscriptional effects. CO23 had no effect on D2 activity but increased D2 mRNA. T3, GC-1, or CO23 by themselves did not increase UCP1 or D2 mRNA. High T3 doses shortened D2 half-life and increased D2 turnover via proteasome, whereas GC-1 did not change D2 stability. The α1- and α2-adrenergic D2 responses increased using high T3 doses. In summary, T3 increases the adrenergic stimulation of UCP1 and D2 expression mostly via the TRβ1 isoform, and in brown adipocytes, D2 is protected from degradation by the action of T3 on TRβ1. PMID:20719854

  9. Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes

    PubMed Central

    Rhyu, Jin; Kim, Min Sook; You, Mi-Kyoung; Bang, Mi-Ae

    2014-01-01

    Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 5 µg/ml insulin and 1 µM dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-γ and C/EBPα in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity. PMID:24611103

  10. Pear pomace water extract inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes.

    PubMed

    Rhyu, Jin; Kim, Min Sook; You, Mi-Kyoung; Bang, Mi-Ae; Kim, Hyeon-A

    2014-02-01

    Obesity occurs when a person's calorie intake exceeds the amount of energy burns, which may lead to pathologic growth of adipocytes and the accumulation of fat in the tissues. In this study, the effect and mechanism of pear pomace extracts on 3T3-L1 adipocyte differentiation and apoptosis of mature adipocytes were investigated. The effects of pear pomace extract on cell viability and the anti-adipogenic and proapoptotic effects were investigated via MTT assay, Oil red O staining, western blot analysis and apoptosis assay. 3T3-L1 preadipocytes were stimulated with DMEM containing 10% FBS, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 5 µg/ml insulin and 1 µM dexamethasone for differentiation to adipocytes. 3T3-L1 cells were cultured with PBS or water extract of pear pomace. Water extract of pear pomace effectively inhibited lipid accumulations and expressions of PPAR-γ and C/EBPα in 3T3-L1 cells. It also increased expression of p-AMPK and decreased the expression of SREBP-1c and FAS in 3T3-L1 cells. The induction of apoptosis was observed in 3T3-L1 cells treated with pear pomace. These results indicate that pear pomace water extract inhibits adipogenesis and induces apoptosis of adipocytes and thus can be used as a potential therapeutic substance as part of prevention or treatment strategy for obesity. PMID:24611103

  11. A distinct cation-sensing mechanism in MC3T3-E1 osteoblasts functionally related to the calcium receptor.

    PubMed

    Quarles, L D; Hartle, J E; Siddhanti, S R; Guo, R; Hinson, T K

    1997-03-01

    The presence of a cation-sensing mechanism in osteoblasts is suggested by the ability of specific cations to stimulate osteoblastic proliferation in culture and to induce de novo bone formation in some experimental models. Our study examines whether extracellular cations stimulate osteoblasts through the recently identified G protein-coupled calcium receptor (CaR). We found that CaR agonists, calcium (Ca2+), gadolinium (Gd3+), aluminum (Al3+), and neomycin, stimulated DNA synthesis in murine-derived MC3T3-E1 preosteoblasts, whereas magnesium (Mg2+), nickel (Ni2+), cadmium (Cd2+), and zinc (Zn2+) had no effect. With the exception of Mg2+, the cation specificities and apparent affinities were similar to that reported for CaR. CaR agonists also stimulated DNA synthesis in C3HT10(1/2) fibroblasts, but not in mesangial PVG, CHO, hepatic HTC, COS-7 cells, or malignant transformed ROS17/2.8 and UMR-106 osteoblasts. In addition, similar to other growth factors, CaR agonists activated transcription of a serum response element luciferase reporter construct (SRE-Luc) stably transfected into MC3T3-E1 osteoblasts, but had no effect on SRE-Luc transfected into CHO and COS-7 cells. We were unable to detect CaR expression by Northern analysis using a mouse CaR-specific probe or to amplify CaR mRNA by reverse transcribed polymerase chain reaction in MC3T3-E1 osteoblasts. These findings suggest that an extra-cellular cation-sensing mechanism is present in murine-derived osteoblasts that is functionally similar to but molecularly distinct from CaR. PMID:9076582

  12. Butyrate modulates the expression of. beta. -adrenergic receptor subtype in 3T3-L1 cells

    SciTech Connect

    Poksay, K.S.; Nakada, M.T.; Crooke, S.T.; Stadel, J.M.

    1986-03-05

    In mouse 3T3-L1 fibroblasts, the glucocorticoid dexamethasone (dex) affects a switch in ..beta..-adrenergic receptor (..beta..AR) subtype expression from ..beta../sub 1/AR to ..beta../sub 2/AR and increases total ..beta..AR number. They now demonstrate a similar effect by sodium butyrate (B) and find that the combined effect of these two gene-activating agents is greater than additive suggesting different mechanisms of action on the ..beta..AR. ..beta..AR are assayed in membranes prepared from 3T3-L1 cells using the radiolabeled ..beta..AR-specific antagonist (/sup 125/I)-cyanopindolol. ..beta..AR subtype is determined by competition binding of the ..beta../sub 2/AR-selective antagonist ICI 118.551 for the radioligand. B (2-10mM) causes a dose-dependent increase in total ..beta..AR number (up to 2-fold over control) and the proportion of ..beta../sub 2/AR. B (5mM) causes a time-dependent increase in total ..beta..AR number (2-fold) and the proportion of ..beta../sub 2/AR up to 24 hr. Dex maximally increases total ..beta..AR number (2-fold) when treated for 48 hr at concentrations greater than or equal to 100nM. B (2 or 5mM) together with dex (250nM) have a greater than additive effect on total ..beta..AR number at 24 hr (1.7-fold) and at 48 hr (1.4-2.4-fold, using 5 or 10mM B and dex greater than or equal to 10nM). The proportion of ..beta../sub 2/AR is also greater when both compounds are added together. In comparison with proprionate and valerate, B increases total ..beta..AR number and the proportion of ..beta../sub 2/AR to a greater extent and at lower concentrations. To determine a functional correlate to these findings, cells were pre-treated for 48 hr with B and/or dex, intracellular ATP labeled with /sup 3/H-adenine, followed by treatment with forskolin (10..mu..M) and ..beta..AR agonists. B caused a dramatic increase in /sup 3/H-cAMP produced compared to control and dex treatments and a greater than additive effect was again achieved when B and dex were added together.

  13. Persistent GnRH receptor activation in pituitary αT3-1 cells analyzed with a label-free technology.

    PubMed

    Nederpelt, I; Vergroesen, R D; IJzerman, A P; Heitman, L H

    2016-05-15

    The gonadotropin-releasing hormone (GnRH) receptor is a drug target for certain hormone-dependent diseases such as prostate cancer. In this study, we examined the activation profiles of the endogenous ligand, GnRH and a well-known marketed analog, buserelin using a label-free assay in pituitary αT3-1 cells with endogenous GnRH receptor expression. This whole cell impedance-based technology allows for the real-time measurement of morphological cellular changes. Both agonists dose-dependently decreased the impedance as a result of GnRH receptor activation with potencies of 9.3±0.1 (pEC50 value, buserelin) and 7.8±0.06 (pEC50 value, GnRH). Subsequently, GnRH receptor activation was completely abolished with a selective Gαq inhibitor, thereby confirming the Gαq-coupling of the GnRH receptor in pituitary αT3-1 cells. Additionally, we observed continued responses after agonist stimulation of αT3-1 cells indicating long-lasting cellular effects. Wash-out experiments demonstrated that the long-lasting effects induced by GnRH were most likely caused by rebinding since over 70% of the original response was abolished after wash-out. In contrast, a long receptor residence time was responsible for the prolonged effects caused by buserelin, with over 70% of the original response remaining after wash-out. In summary, we validated that impedance-based label-free technology is suited for studying receptor-mediated activation in cell lines endogenously expressing the target of interest. Moreover, this real-time monitoring allows the examination of binding kinetics and its influence on receptor activation at a cellular level. PMID:26774084

  14. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    SciTech Connect

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-08-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10/sup 6/ receptors per cell. The cell line with the highest /sup 125/I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10/sup 6/ receptors with a K/sub d/ of 10/sup -9/ M. This level was not dependent on exposure to metals but could be increased further to 2 x 10/sup 7/ receptors per cell by addition of sodium butyrate to the culture medium. The ..cap alpha.. and ..beta.. subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the ..cap alpha.. and ..beta.. subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  15. Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3-L1 adipocytes

    SciTech Connect

    Weiland, M.; Joost, H.G. ); Brandenburg, C.; Brandenburg, D. )

    1990-02-01

    In the present study the authors describe the antagonistic effects of the covalently dimerized insulin derivative B29,B29{prime}-suberoyl-insulin on insulin receptors in 3T3-L1 mouse cells. In differentiated 3T3-L1 adipocytes, the derivative fully inhibits binding of {sup 125}I-labeled insulin to its receptor with about the same affinity as unlabeled insulin. In contrast, the dimerized derivative only partially (approximately 20%) mimics insulin's effects on glucose transport and DNA synthesis in the absence of insulin. In the presence of insulin, the agent competitively inhibits insulin-stimulated DNA synthesis (({sup 3}H)thymidine incorporation into total DNA), glucose transport activity (2-deoxyglucose uptake rate), and insulin receptor tyrosine kinase activity. In rat adipocytes, in contrast, the dimerized derivative stimulates glucose transport (initial 3-O-methylglucose as well as 2-deoxyglucose uptake rates) to the same extent as insulin does, and it fails to inhibit the effect of insulin. The data indicate that the dimerized insulin derivative B29,B29{prime}-suberoyl-insulin is an insulin receptor antagonist (partial agonist) which retains a moderate intrinsic activity. The effects of this agent reveal a striking difference in insulin receptor-mediated stimulation of glucose transport between 3T3-L1 fatty fibroblasts and the mature rat adipocyte.

  16. Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells

    SciTech Connect

    Yasumoto, S.; Burkhardt, A.L.; Doniger, J.; DiPaolo, J.A.

    1986-02-01

    A biological function for human papillomavirus 16 (HPV 16) DNA was demonstrated by transformation of NIH 3T3 cells. HPV 16 DNA has been found frequently in genital cancer and has been classified as a papillomavirus on the basis of DNA homology. A recombinant HPV 16 DNA (pSHPV16d), which contains a head-to-tail dimer of the full-length HPV 16 genome, induced morphologic transformation; the transformed cells were tumorigenic in nude mice. Expression of transforming activity was unique because of the long latency period (more than 4 weeks) required for induction of morphologic transformation and because the transfected DNA existed primarily in a multimeric form with some rearrangement. Furthermore, virus-specific RNAs were expressed in the transformants. The transformation of NIH 3T3 cells provides a model for analyzing the functions of HPV 16, which is associated with cervical carcinomas.

  17. Temperature induced modulation of lipid oxidation and lipid accumulation in palmitate-mediated 3T3-L1 adipocytes and 3T3-L1 adipocytes.

    PubMed

    Lin, Xiaofen; Li, Yi; Leung, Polly Hangmei; Li, Jiashen; Hu, Junyan; Liu, Xuan; Li, Zhi

    2016-05-01

    Human skin temperature can vary widely depending on anatomical location and ambient temperature. It is also known that local changes in skin and subcutaneous temperature can affect fat metabolism. This study aimed to explore the potential effects of surrounding thermal environment on fat by investigating cell viability, lipid oxidation, and lipid accumulation in 3T3-L1 adipocytes and palmitate-treated adipocytes after 4h incubation. No significant differences of viability in 3T3-L1 adipocytes were detected under different temperature conditions. Despite no significant increase being observed under warm temperature (39°C) conditions, a similarly significant suppression of intracellular reactive oxygen species (ROS) and lipid peroxidation were found in 3T3-L1 adipocytes and palmitate-treated adipocytes under 4h exposure to cooler temperatures of 31-33°C (P<0.01). ROS, chemically reactive molecules containing oxygen, are currently understood to be a major contributor to oxidantive stress in obesity. Additionally, cooler temperatures (31-33°C) could improve the size of lipid droplets in 3T3-L1 adipocytes (P<0.01), but no significant effect was generated by temperature change on lipid droplets in palmitate-treated adipocytes. In the palmitate-induced adiposity model, although excessive ROS and lipid peroxidation has been attenuated by temperature decrease (P<0.01), it still does not positively modulate lipid droplet size (P>0.05) and remedy the palmitate damage induced cell death (P<0.01). These findings provide preliminary support for potential interventions based on temperature manipulation for cell metabolism of adipocytes. PMID:27157327

  18. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    PubMed

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription. PMID:26189725

  19. Fluid Shear-Induced ATP Secretion Mediates Prostaglandin Release in MC3T3-E1 Osteoblasts

    PubMed Central

    Genetos, Damian C.; Geist, Derik J.; Dawei, Liu; Donahue, Henry J.; Duncan, Randall L.

    2010-01-01

    ATP is rapidly released from osteoblasts in response to mechanical load. We examined the mechanisms involved in this release and established that shear-induced ATP release was mediated through vesicular fusion and was dependent on Ca2+ entry into the cell via L-type voltage-sensitive Ca2+ channels. Degradation of secreted ATP by apyrase prevented shear-induced PGE2 release. Introduction Fluid shear induces a rapid rise in intracellular calcium ([Ca2+]i) in osteoblasts that mediates many of the cellular responses associated with mechanotransduction in bone. A potential mechanism for this increase in [Ca2+]i is the activation of purinergic (P2) receptors resulting from shear-induced extracellular release of ATP. This study was designed to determine the effects of fluid shear on ATP release and the possible mechanisms associated with this release. Methods MC3T3-E1 preosteoblasts were plated on type I collagen, allowed to proliferate to 90% confluency, then subjected to 12 dynes/cm2 laminar fluid flow using a parallel plate flow chamber. ATP release into the flow media was measured using a luciferin/luciferase assay. Inhibitors of channels, gap junctional intercellular communication (GJIC) and vesicular formation were added prior to shear and maintained in the flow medium for the duration of the experiment. Results and Conclusions Fluid shear produced a transient increase in ATP release compared to static MC3T3-E1 cells (59.815.7nM vs. 6.21.8nM, respectively), peaking within 1 min of onset. Inhibition of calcium entry through the L-type voltage-sensitive Ca2+ channel (L-VSCC) with nifedipine or verapamil significantly attenuated shear-induced ATP release. Channel inhibition had no effect on basal ATP release in static cells. Ca2+ -dependent ATP release in response to shear appeared to result from vesicular release, and not through gap hemichannels, since vesicle disruption with N-ethylmaleimide, brefeldin A, or monensin prevented increases in flow-induced ATP release, whereas inhibition of gap hemichannels with either 18?-glycyrrhetinic acid or 18?-glycyrrhetinic acid did not. Degradation of extracellular ATP with apyrase prevented shear-induced increases in PGE2 release. These data suggest a time line of mechanotransduction wherein fluid shear activates L-VSCC's to promote Ca2+ entry that, in turn, stimulates vesicular ATP release. Further, these data suggest that P2 receptor activation by secreted ATP mediates flow-induced prostaglandin release. PMID:15619668

  20. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    PubMed

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  1. Involvement of ligand occupancy in Insulin-like growth factor-I (IGF-I) induced cell growth in osteoblast like MC3T3-E1 cells.

    PubMed

    Kim, Seok-Kwun; Kwon, Ji-Young; Nam, Taek-Jeong

    2007-01-01

    Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts. PMID:18057550

  2. Expression of progesterone receptor B is associated with G0/G1 arrest of the cell cycle and growth inhibition in NIH3T3 cells

    SciTech Connect

    Horiuchi, Shinji; Kato, Kiyoko . E-mail: kkatoh@tsurumi.beppu.kyushu-u.ac.jp; Suga, Shin; Takahashi, Akira; Ueoka, Yousuke; Arima, Takahiro; Nishida, Jun-ichi; Hachisuga, Toru; Kawarabayashi, Tatsuhiko; Wake, Norio

    2005-05-01

    Previously, we found a significant reduction of progesterone receptor B (PR-B) expression levels in the Ras-mediated NIH3T3 cell transformation, and re-expression of exogenous PR-B eliminated the tumorigenic potential. We hypothesized that this reduction is of biological significance in cell transformation. In the present study, we determined the correlation between PR-B expression and cell cycle progression. In synchronized NIH3T3 cells, we found an increase in PR-B protein and p27 CDK inhibitor levels in the G0/G1 phase and a reduction due to redistribution in the S and G2/M phases. The MEK inhibitor or cAMP stimulation arrested NIH3T3 cells in the G0/G1 phase of the cell cycle. The expression of PR-B and p27 CDK inhibitors was up-regulated by treatment with both the MEK inhibitor and cAMP. Treatment of synchronized cells with a PKA inhibitor in the presence of 1% calf serum resulted in a significant reduction in both PR-B and p27 levels. The decrease in the PR-B levels caused by anti-sense oligomers or siRNA corresponded to the reduction in p27 levels. PR-B overexpression by adenovirus infection induced p27 and suppressed cell growth. Finally, we showed that PR-B modulation involved in the regulation of NIH3T3 cell proliferation was independent of nuclear estrogen receptor (ER) activity but dependent on non-genomic ER activity.

  3. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.

    PubMed

    Lone, Jameel; Choi, Jae Heon; Kim, Sang Woo; Yun, Jong Won

    2016-01-01

    Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity. PMID:26456563

  4. Lunasin-aspirin combination against NIH/3T3 cells transformation induced by chemical carcinogens.

    PubMed

    Hsieh, Chia-Chien; Hernández-Ledesma, Blanca; de Lumen, Ben O

    2011-06-01

    Carcinogenesis is a multistage process involving a number of molecular pathways sensitive to intervention. Chemoprevention is defined as the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. To achieve greater inhibitory effects on cancer cells, combination of two or more chemopreventive agents is commonly considered as a better preventive and/or therapeutic strategy. Lunasin is a promising cancer preventive peptide identified in soybean and other seeds. Its efficacy has been demonstrated by both in vitro and in vivo models. This peptide has been found to inhibit human breast cancer MDA-MB-231 cells proliferation, suppressing cell cycle progress and inducing cell apoptosis. Moreover, lunasin potentiates the effects on these cells of different synthetic and natural compounds, such as aspirin and anacardic acid. This study explored the role of lunasin, alone and in combination with aspirin and anacardic acid on cell proliferation and foci formation of transformed NIH/3T3 cells induced by chemical carcinogens 7,12-dimethylbenz[a]anthracene or 3-methylcholanthrene. The results revealed that lunasin, acting as a single agent, inhibits cell proliferation and foci formation. When combined with aspirin, these effects were significantly increased, indicating that this combination might be a promising strategy to prevent/treat cancer induced by chemical carcinogens. PMID:21562729

  5. Bone Morphogenetic Protein-2 Desensitizes MC3T3-E1 Osteoblastic Cells to Estrogen Through Transcriptional Downregulation of Estrogen Receptor 1

    PubMed Central

    2013-01-01

    Background Estrogens exert preferable effects on bone metabolism through two estrogen receptors (ERs), ER1 and ER2, which activate the transcription of a set of genes as ligand-dependent transcription factors. Thus, growth factors and hormones which modulate ER expression in the bone, if any, may possibly modulate the effect of estrogens on bone metabolism. However, research as to which of these molecules regulate the expression of ERs in osteoblasts has not been well documented. Methods A reporter assay system developed in this study was used to explore molecules that modulate ER1 expression in MC3T3-E1 osteoblastic cells. Gene expression was analyzed by reverse transcription-polymerase chain reaction. Results A pilot study using the reporter system revealed that bone morphogenetic protein (BMP)-2 negatively regulated ER1, but not ER2, expression in MC3T3-E1 cells. Consistently, estradiol-induced reporter activity via an estrogen responsive element was strongly suppressed in MC3T3-E1 cells pretreated with BMP-2. Conclusions BMP-2 desensitizes osteoblastic cells to estrogen through downregulation of ER1 expression. PMID:24524062

  6. Environmental Endocrine Disruptors Promote Adipogenesis in the 3T3-L1 Cell Line through Glucocorticoid Receptor Activation

    PubMed Central

    Sargis, Robert M.; Johnson, Daniel N.; Choudhury, Rashikh A.; Brady, Matthew J.

    2014-01-01

    The burgeoning obesity and diabetes epidemics threaten health worldwide, yet the molecular mechanisms underlying these phenomena are incompletely understood. Recently, attention has focused on the potential contributions of environmental pollutants that act as endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases. Because glucocorticoid signaling is central to adipocyte differentiation, the ability of EDCs to stimulate the glucocorticoid receptor (GR) and drive adipogenesis was assessed in the 3T3-L1 cell line. Various EDCs were screened for glucocorticoid-like activity using a luciferase reporter construct, and four (bisphenol A (BPA), dicyclohexyl phthalate (DCHP), endrin, and tolylfluanid (TF)) were shown to significantly stimulate GR without significant activation of the peroxisome proliferator-activated receptor-γ. 3T3-L1 preadipocytes were then treated with EDCs and a weak differentiation cocktail containing dehydrocorticosterone (DHC) in place of the synthetic dexamethasone. The capacity of these compounds to promote adipogenesis was assessed by quantitative oil red O staining and immunoblotting for adipocyte-specific proteins. The four EDCs increased lipid accumulation in the differentiating adipocytes and also upregulated the expression of adipocytic proteins. Interestingly, proadipogenic effects were observed at picomolar concentrations for several of the EDCs. Because there was no detectable adipogenesis when the preadipocytes were treated with compounds alone, the EDCs are likely promoting adipocyte differentiation by synergizing with agents present in the differentiation cocktail. Thus, EDCs are able to promote adipogenesis through the activation of the GR, further implicating these compounds in the rising rates of obesity and diabetes. PMID:19927138

  7. MC3T3-E1-conditioned medium-induced mineralization by clonal rat dental pulp cells.

    PubMed

    Ueno, A; Kitase, Y; Moriyama, K; Inoue, H

    2001-09-01

    Dental pulp is thought to participate in supplementary mineralization, such as reparative dentin and pulp stones, but no direct proof of this has been reported. To study this process at a molecular level, we investigated the matrix mineralization of dental pulp using a clonal cell line (RPC-C2A) derived from rat incisor dental pulp. Mineralized nodules in extracellular matrix were formed by RPC-C2A cells cultured in the presence of conditioned medium (CM) from confluent osteoblastic MC3T3-E1 cells. These nodules were stained by the von Kossa method and with alizarin red S and quantified by the measurement of acid-soluble calcium deposition. This CM was most effective when collected 3-6 days after confluency and added at 50% to the culture medium. The CM-treated RPC-C2A cells showed high alkaline phosphatase activity, a high mRNA level of osteocalcin and decreases in the mRNA levels of osteopontin and osteonectin, but undetectable levels of mRNA of dentin sialophosphoprotein by Northern blot analyses. A pan-specific anti-transforming growth factor (TGF)-beta antibody and a soluble form of receptor for bone morphogenetic protein (BMP)-2/-4 did not neutralize the CM-induced mineralization. These results suggest that some soluble factor(s) other than TGF-beta or BMP-2/-4 in the CM from MC3T3-E1 cells cause differentiation of RPC-C2A cells to osteoblast-like cells. PMID:11566269

  8. HeLa cell response proteome alterations induced by mammalian reovirus T3D infection

    PubMed Central

    2013-01-01

    Background Cells are exposed to multiple stressors that induce significant alterations in signaling pathways and in the cellular state. As obligate parasites, all viruses require host cell material and machinery for replication. Virus infection is a major stressor leading to numerous induced modifications. Previous gene array studies have measured infected cellular transcriptomes. More recently, mass spectrometry-based quantitative and comparative assays have been used to complement such studies by examining virus-induced alterations in the cellular proteome. Methods We used SILAC (stable isotope labeling with amino acids in cell culture), a non-biased quantitative proteomic labeling technique, combined with 2-D HPLC/mass spectrometry and reciprocal labeling to identify and measure relative quantitative differences in HeLa cell proteins in purified cytosolic and nuclear fractions after reovirus serotype 3 Dearing infection. Protein regulation was determined by z-score analysis of each protein’s label distribution. Results A total of 2856 cellular proteins were identified in cytosolic fractions by 2 or more peptides at >99% confidence and 884 proteins were identified in nuclear fractions. Gene ontology analyses indicated up-regulated host proteins were associated with defense responses, immune responses, macromolecular binding, regulation of immune effector processes, and responses to virus, whereas down-regulated proteins were involved in cell death, macromolecular catabolic processes, and tissue development. Conclusions These analyses identified numerous host proteins significantly affected by reovirus T3D infection. These proteins map to numerous inflammatory and innate immune pathways, and provide the starting point for more detailed kinetic studies and delineation of virus-modulated host signaling pathways. PMID:23799967

  9. Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca2+o)-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Butters, R. R. Jr; Sugimoto, T.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    1998-01-01

    The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca2+o) homeostasis in parathyroid gland and kidney. Osteoblasts appear at sites of osteoclastic bone resorption during bone remodeling in the "reversal" phase following osteoclastic resorption and preceding bone formation. Bone resorption produces substantial local increases in Ca2+o that could provide a signal for osteoblasts in the vicinity, leading us to determine whether such osteoblasts express the CaR. In this study, we used the mouse osteoblastic, clonal cell line MC3T3-E1. Both immunocytochemistry and Western blot analysis, using an antiserum specific for the CaR, detected CaR protein in MC3T3-E1 cells. We also identified CaR transcripts in MC3T3-E1 cells by Northern analysis using a CaR-specific riboprobe and by reverse transcription-polymerase chain reaction with CaR-specific primers, followed by nucleotide sequencing of the amplified products. Exposure of MC3T3-E1 cells to high Ca2+o (up to 4.8 mM) or the polycationic CaR agonists, neomycin and gadolinium (Gd3+), stimulated both chemotaxis and DNA synthesis in MC3T3-E1 cells. Therefore, taken together, our data strongly suggest that the osteoblastic cell line MC3T3-E1 possesses both CaR protein and mRNA very similar, if not identical, to those in parathyroid and kidney. Furthermore, the CaR in these osteoblasts could play a key role in regulating bone turnover by stimulating the proliferation and migration of such cells to sites of bone resorption as a result of local release of Ca2+o.

  10. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells.

    PubMed

    Kim, Sang Chon; Kim, Yoo Hoon; Son, Sung Wook; Moon, Eun-Yi; Pyo, Suhkneung; Um, Sung Hee

    2015-11-27

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a naturally found flavonol in many fruits and vegetables and is known to have anti-aging, anti-cancer and anti-viral effects. However, the effects of fisetin on early adipocyte differentiation and the epigenetic regulator controlling adipogenic transcription factors remain unclear. Here, we show that fisetin inhibits lipid accumulation and suppresses the expression of PPARγ in 3T3-L1 cells. Fisetin suppressed early stages of preadipocyte differentiation, and induced expression of Sirt1. Depletion of Sirt1 abolished the inhibitory effects of fisetin on intracellular lipid accumulation and on PPARγ expression. Mechanistically, fisetin facilitated Sirt1-mediated deacetylation of PPARγ and FoxO1, and enhanced the association of Sirt1 with the PPARγ promoter, leading to suppression of PPARγ transcriptional activity, thereby repressing adipogenesis. Lowering Sirt1 levels reversed the effects of fisetin on deacetylation of PPARγ and increased PPARγ transactivation. Collectively, our results suggest the effects of fisetin in increasing Sirt1 expression and in epigenetic control of early adipogenesis. PMID:26499075

  11. Characterization of a bombesin receptor on Swiss mouse 3T3 cells by affinity cross-linking

    SciTech Connect

    Sinnett-Smith, J.; Zachary, I.; Rozengurt, E.

    1988-12-01

    We have previously identified by chemical cross-linking a cell surface protein in Swiss 3T3 cells of apparent Mr 75,000-85,000, which may represent a major component of the receptor for peptides of the bombesin family in these cells. Because bombesin-like peptides may interact with other cell surface molecules, it was important to establish the correlation between receptor binding and functions of this complex and further characterize the Mr 75,000-85,000 cross-linked protein. Detailed time courses carried out at different temperatures demonstrated that the Mr 75,000-85,000 affinity-labelled band was the earliest cross-linked complex detected in Swiss 3T3 cells incubated with 125I-labelled gastrin-releasing peptide (125I-GRP). Furthermore, the ability of various nonradioactive bombesin agonists and antagonists to block the formation of the Mr 75,000-85,000 cross-linked complex correlated extremely well (r = 0.994) with the relative capacity of these peptides to inhibit 125I-GRP specific binding. Pretreatment with unlabelled GRP for up to 6 h caused only a slight decrease in both specific 125I-GRP binding and the affinity labelling of the Mr 75,000-85,000 protein. We also show that the cross-linked complex is a glycoprotein. First, solubilized affinity labelled Mr 75,000-85,000 complex applied to wheat germ lectin-sepharose columns was eluted by addition of 0.3 M N-acetyl-D-glucosamine. Second, treatment with endo-beta-N-acetylglucosaminidase F reduced the apparent molecular weight of the affinity-labelled band from 75,000-85,000 to 43,000, indicating the presence of N-linked oligosaccharide groups.

  12. Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

    PubMed Central

    Yang, Jung Yoon; Park, Min Young; Park, Sam Young; Yoo, Hong Il; Kim, Min Seok; Kim, Jae Hyung

    2015-01-01

    Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells. PMID:26557017

  13. Purple Sweet Potato Leaf Extract Induces Apoptosis and Reduces Inflammatory Adipokine Expression in 3T3-L1 Differentiated Adipocytes

    PubMed Central

    Lee, Shou-Lun; Chin, Ting-Yu; Tu, Ssu-Chieh; Wang, Yu-Jie; Hsu, Ya-Ting; Kao, Ming-Ching; Wu, Yang-Chang

    2015-01-01

    Background. Purple sweet potato leaves (PSPL) are widely grown and are considered a healthy vegetable in Taiwan. PSPL contain a high content of flavonoids, and the boiling water-extracted PSPL (PSPLE) is believed to prevent metabolic syndrome. However, its efficacy has not yet been verified. Therefore, we investigated the effect of PSPLE on adipocytes. Methods. The differentiated 3T3-L1 cells used in this study were derived from preadipocytes that were differentiated into adipocytes using an adipogenic agent (insulin, dexamethasone, and 3-isobutyl-1-methylxanthine); approximately 90% of the cells were differentiated using this method. Results. Treating the differentiated 3T3-L1 cells with PSPLE caused a dose-dependent decrease in the number of adipocytes rather than preadipocytes. In addition, treatment with PSPLE resulted in apoptosis of the differentiated 3T3-L1 cells as determined by DAPI analysis and flow cytometry. PSPLE also increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP). Furthermore, PSPLE induced downregulation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) gene expression in the differentiated 3T3-L1 cells. Conclusions. These results suggest that PSPLE not only induced apoptosis but also downregulated inflammation-associated genes in the differentiated 3T3-L1 cells. PMID:26170870

  14. Glucocorticoid Receptor and Sequential P53 Activation by Dexamethasone Mediates Apoptosis and Cell Cycle Arrest of Osteoblastic MC3T3-E1 Cells

    PubMed Central

    Li, Hui; Qian, Wenwei; Weng, Xisheng; Wu, Zhihong; Li, Huihua; Zhuang, Qianyu; Feng, Bin; Bian, Yanyan

    2012-01-01

    Glucocorticoids play a pivotal role in the proliferation of osteoblasts, but the underlying mechanism has not been successfully elucidated. In this report, we have investigated the molecular mechanism which elucidates the inhibitory effects of dexamethasone on murine osteoblastic MC3T3-E1 cells. It was found that the inhibitory effects were largely attributed to apoptosis and G1 phase arrest. Both the cell cycle arrest and apoptosis were dependent on glucocorticoid receptor (GR), as they were abolished by GR blocker RU486 pre-treatment and GR interference. G1 phase arrest and apoptosis were accompanied with a p53-dependent up-regulation of p21 and pro-apoptotic genes NOXA and PUMA. We also proved that dexamethasone can’t induce apoptosis and cell cycle arrest when p53 was inhibited by p53 RNA interference. These data demonstrate that proliferation of MC3T3-E1 cell was significantly and directly inhibited by dexamethasone treatment via aberrant GR activation and subsequently P53 activation. PMID:22719835

  15. A shift in the ligand responsiveness of thyroid hormone receptor alpha induced by heterodimerization with retinoid X receptor alpha.

    PubMed Central

    Claret, F X; Antakly, T; Karin, M; Saatcioglu, F

    1996-01-01

    Thyroid hormone (T3) receptors (T3Rs) are ligand-modulated transcription factors that bind to thyroid hormone response elements (T3REs) and mediate either positive or negative transcriptional regulation of target genes. In addition, in response to ligand binding, T3Rs can interfere with AP-1 activity and thereby inhibit transcription of AP-1-responsive genes. T3Rs were recently shown to form heterodimers with retinoid X receptors (RXRs), leading to increased binding to T3REs in vitro and potentiation of transcriptional responses in vivo. Here we demonstrate that T3R alpha forms stable heterodimers with RXR alpha in living cells. Most important, we describe a new role for RXR alpha in modulating ligand-dependent T3R alpha activity: heterodimerization with RXR alpha greatly increases transcriptional interference with AP-1 activity, augments T3-dependent transcriptional activation, and potentiates the reversal of ligand-independent activation by T3R alpha. In all three cases, the responses occur at substantially lower T3 concentrations when elicited by T3R alpha plus RXR alpha than by T3R alpha alone. In vitro, the binding of T3 decreases the DNA-binding activity of T3R alpha homodimers but does not affect DNA binding by T3R alpha:RXR alpha heterodimers. We provide evidence that increased activities of T3R alpha at lower T3 concentrations are not due to changes in its T3 binding properties. Instead, the altered response could be mediated by either RXR alpha-induced conformational changes, increased stability of heterodimers over homodimers, especially following T3 binding, or both. PMID:8524299

  16. Low doses of T3 induce a rapid metabolic response in young lambs.

    PubMed

    Lynch, M A; Andrews, J F; Moore, R E

    1985-02-01

    Injection of 1 microgram/kg T3 resulted in an increase in metabolic rate (VO2) within an hour of administration to lambs (aged 27 to 180 h). A larger dose of 5 micrograms/kg T3 initially caused a slight inhibition of VO2, which was followed in the second post-injection hour by a significant increase. The increase in VO2 during the second post-injection hour after either 1 microgram/kg or 5 micrograms/kg T3 represented a rise of 22% above pre-injection VO2. The increase persisted and was slightly enhanced during the third post-injection hour. These changes were significantly greater than the smaller changes which followed control injection (P less than 0.005). No significant changes in Tre or Tesk occurred after any treatment. This rapid response to low, physiological doses of T3 emphasises a possible role for thyroid hormones in the short-term control of metabolism in young animals. PMID:3988239

  17. Epidermal growth factor-nonresponsive 3T3 variants do not contain epidermal growth factor receptor-related antigens or mRNA

    SciTech Connect

    Schneider, C.A.; Lim, R.W.; Terwilliger, E.; Herschman, H.R.

    1986-01-01

    The authors have previously isolated three independent variants of Swiss 3T3 cells that are unable to generate a mitogenic response to epidermal growth factor (EGF). Each of the variants is unable to bind /sup 125/I-labeled EGF; each lacks a functional EGF receptor. They used an antiserum to murine EGF receptor to look for an EGF-receptor gene product in wild-type 3T3 cells and in the three EGF-nonresponsive variants. No cross-reactive material could be detected in any of the three variants, either in /sup 125/I-labeled cell extracts or in (/sup 35/S)methionine metabolically labeled cells. 3T3 cells contained mRNA molecules homologous to a cDNA probe for the human EGF-receptor coding region. In contrast, no homologous RNA could be detected in any of the three variants. Analysis of genomic Southern blots of the DNA from 3T3 cells and the three EGF-nonresponsive variants indicated sequences from the EGF-receptor gene are present in the DNA of all four cell lines. These EGF-nonresponsive lines, which demonstrate proliferative responses to a variety of mitogens, will be ideal recipients for structure-function studies of the EGF receptor by transfection of the cloned gene.

  18. High glucose induces autophagy of MC3T3-E1 cells via ROS-AKT-mTOR axis.

    PubMed

    Wang, Xiaoju; Feng, Zhengping; Li, Jiling; Chen, Lixue; Tang, Weixue

    2016-07-01

    In the present study, we investigate the function of ROS-AKT-mTOR axis on the apoptosis, proliferation and autophagy of MC3T3-E1 cells, and the proliferation of MC3T3-E1 cells after autophagy inhibition under high glucose conditions. MC3T3-E1 cells cultured in vitro were divided into the following groups: normal control group, N-acetylcysteine (NAC) group, 11.0 mM high glucose group, 11.0 mM high glucose + NAC group, 22.0 mM high glucose group, 22.0 mM high glucose + NAC group, CQ group, 22.0 mM high glucose + CQ group, 3-MA group and 3-MA + 22.0 mM high glucose group. ROS production was measured by DCFH-DA fluorescent probe. Cell proliferation was measured by MTT assay. Cells in different groups were stained with Annexin V-FITC/PI, and then apoptosis rate was detected by flow cytometry. Nucleus morphology was observed under fluorescence microscope after being incubated with Honchest33258. Protein expression was measured using Western blotting and immunofluorescence. Cell apoptosis and proliferation in high glucose group were increased and decreased, respectively, in a dose-dependent manner. Autophagy was significantly induced in high glucose group, even though different concentration of glucose induced autophagy in different stages of autophagy. ROS production in MC3T3-E1 cells was remarkably increased in high glucose group, but not in a dose-dependent manner. NAC, as an antioxidant, reduced ROS production and ameliorated cell apoptosis, proliferation abnormity and autophagy caused by high glucose. Expression of p-AKT and p-mTOR proteins were dramatically decreased in high glucose group, and NAC reversed their expression. In addition, 3-MA, an inhibitor of autophagy, significantly decreased the proliferation of MC3T3-E1 cells. When cocultured with 22.0 mM glucose that induced autophagy, proliferation of MC3T3-E1 cells was not affected compared to 22.0 mM high glucose group. Our present findings reveal that high glucose affects apoptosis, proliferation and autophagy of MC3T3-E1 cells through ROS-AKT-mTOR axis. In addition, autophagy inhibition does not affect the proliferation of MC3T3-E1 cells under high glucose conditions. PMID:27068641

  19. Uric acid induces oxidative stress via an activation of the renin-angiotensin system in 3T3-L1 adipocytes.

    PubMed

    Zhang, Jun-xia; Zhang, Yu-ping; Wu, Qi-nan; Chen, Bing

    2015-02-01

    Hyperuricemia is recently reported involving in various obesity-related cardiovascular disorders, especially hypertension. However, the underlying mechanisms are not completely understood. In the present study, we investigated whether uric acid upregulates renin-angiotensin system (RAS) expression in adipocytes. We also examined whether RAS activation plays a role in uric acid-induced oxidative stress in adipocytes. The adipocytes of different phenotypes were incubated with uric acid for 48 h, respectively. Losartan (10(-4) M) or captopril (10(-4) M) was used to block adipose tissue RAS activation. mRNA expressions of angiotensinogen (AGT), angiotensin-converting enzyme-1 (ACE-1), renin, angiotensin type 1 receptor (AT1R), and angiotensin type 2 receptor (AT2R) were evaluated with real-time PCR. Angiotensin II concentrations in supernatant were measured by ELISA. Intracellular reactive species (ROS) levels were measured by fluorescent probe DCFH-DA, DHR, or NBT assay. The uric acid upregulated both RAS (AGT, ACE1, renin, AT1R, and AT2R) mRNA expressions and angiotensin II protein secretion and caused a significant increase in ROS production in 3T3-L1 adipocytes. These effects could be prevented by RAS inhibitors, either losartan or captopril. RAS activation has been causally implicated in oxidative stress induced by uric acid in 3T3-L1 adipocytes, suggesting a plausible mechanism through which hyperuricemia contributes to the pathogenesis of obesity-related cardiovascular diseases. PMID:24671741

  20. FGF-2 signaling induces downregulation of TAZ protein in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Eda, Homare; Aoki, Katsuhiko; Marumo, Keishi; Fujii, Katsuyuki; Ohkawa, Kiyoshi

    2008-02-08

    Transcriptional coactivator with PDZ-binding motif (TAZ) protein is a coactivator of Runx2 and corepressor of PPAR{gamma}. It also induces differentiation of mesenchymal cells into osteoblasts. In this study, we found that FGF-2, which inhibits bone mineralization and stimulates cell proliferation, reduced the TAZ protein expression level in osteoblast-like cells, MC3T3-E1. This reduction was recovered by removing FGF-2 from the culture medium, which also restored the osteoblastic features of MC3T3-E1 cells. Furthermore, FGF-2-induced reduction of TAZ is blocked by a SAPK/JNK-specific inhibitor. These findings suggest that the expression of TAZ protein is involved in osteoblast proliferation and differentiation. This may help elucidate the discrepancies in the effect of FGF-2 and contribute to the understanding of FGF/FGFR-associated craniosynostosis syndrome etiology and treatment.

  1. The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice.

    PubMed Central

    Gold, D P; van Dongen, J J; Morton, C C; Bruns, G A; van den Elsen, P; Geurts van Kessel, A H; Terhorst, C

    1987-01-01

    The T3 complex is composed of three polypeptide chains that are both structurally and functionally associated with the receptor for antigen on the surface of human T lymphocytes. In a series of experiments utilizing both somatic cell hybrids and chromosomal hybridization in situ, the genes encoding two members of the human T3 complex, T3-delta and T3-epsilon, were found to reside on the long arm of chromosome 11 in band q23. The murine T3-epsilon gene was localized to chromosome 9. The location of the T3-delta and T3-epsilon genes with respect to the Hu-ets-1 gene, which is also located in 11q23, is discussed. Recent assignments of several genes, preferentially expressed in human cells of hematopoietic and neuroectodermal origins, to band q23 of human chromosome 11 and the murine equivalents to murine chromosome 9 may define a conserved gene cluster important in cell proliferation and differentiation. Images PMID:2882512

  2. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells.

    PubMed

    Hou, Qingxia; Wang, Minglian; Wu, Shuicai; Ma, Xuemei; An, Guangzhou; Liu, Huan; Xie, Fei

    2015-03-01

    To investigate the potential adverse effects of mobile phone radiation, we studied reactive oxygen species (ROS), DNA damage and apoptosis in mouse embryonic fibroblasts (NIH/3T3) after intermittent exposure (5 min on/10 min off, for various durations from 0.5 to 8 h) to an 1800-MHz GSM-talk mode electromagnetic radiation (EMR) at an average specific absorption rate of 2 W/kg. A 2',7'-dichlorofluorescin diacetate fluorescence probe was used to detect intracellular ROS levels, immunofluorescence was used to detect γH2AX foci as a marker for DNA damage, and flow cytometry was used to measure apoptosis. Our results showed a significant increase in intracellular ROS levels after EMR exposure and it reached the highest level at an exposure time of 1 h (p < 0.05) followed by a slight decrease when the exposure continued for as long as 8 h. No significant effect on the number of γH2AX was detected after EMR exposure. The percentage of late-apoptotic cells in the EMR-exposed group was significantly higher than that in the sham-exposed groups (p < 0.05). These results indicate that an 1800-MHz EMR enhances ROS formation and promotes apoptosis in NIH/3T3 cells. PMID:24665905

  3. Epidermal Growth Factor Receptor (EGFR) Test Utilization in the United States: A Case Study of T3 Translational Research

    PubMed Central

    Lynch, Julie A.; Khoury, Muin J.; Borzecki, Ann; Cromwell, Jerry; Hayman, Laura L.; Ponte, Pat Reid; Miller, Glenn A.; Lathan, Christopher S.

    2013-01-01

    Purpose We examined hospital use of the epidermal growth factor receptor (EGFR) assay for lung cancer patients. Our goal was to inform the development of a model to predict T3 translation of guideline-directed, molecular diagnostic tests. Methods This was a retrospective observational study. Using logistic regression, we analyzed the association between likelihood to order the EGFR assay and hospitals institutional and regional characteristics. Results Significant institutional predictors included: Affiliation with an academic medical center (odds ratio [OR], 1.48; 95% CI, 1.201.83), Participation in an NCI clinical research cooperative group (OR, 2.06, 1.662.55), PET scan (OR, 1.44, 1.071.94) and cardio thoracic surgery (OR, 1.90, 1.522.37) services. Significant regional predictors included: Metropolitan county (OR, 2.08, 1.48 to 2.91), Above average education (OR, 1.46, 1.09 to 1.96), Above average income (OR, 1.46, 1.042.05). Distance from an NCI cancer center was a negative predictor (OR, 0.996, 0.9950.998), a 34% decrease in likelihood for every 100 miles. Conclusion In 2010, 12% of US acute care hospitals ordered the EGFR assay, suggesting most lung cancer patients did not have access to this test. This case study illustrated the need for: 1) Increased dissemination and implementation research. 2) Interventions to improve adoption of guideline-directed, molecular diagnostic tests by community hospitals. PMID:23448725

  4. Functional proteomic analysis of long-term growth factor stimulation and receptor tyrosine kinase coactivation in Swiss 3T3 fibroblasts.

    PubMed

    Nagano, Kohji; Akpan, Akunna; Warnasuriya, Gayathri; Corless, Steven; Totty, Nick; Yang, Alice; Stein, Robert; Zvelebil, Marketa; Stensballe, Allan; Burlingame, Al; Waterfield, Michael; Cramer, Rainer; Timms, John F; Naaby-Hansen, Søren

    2012-12-01

    In Swiss 3T3 fibroblasts, long-term stimulation with PDGF, but not insulin-like growth factor 1 (IGF-1) or EGF, results in the establishment of an elongated migratory phenotype, characterized by the formation of retractile dendritic protrusions and absence of actin stress fibers and focal adhesion complexes. To identify receptor tyrosine kinase-specific reorganization of the Swiss 3T3 proteome during phenotypic differentiation, we compared changes in the pattern of protein synthesis and phosphorylation during long-term exposure to PDGF, IGF-1, EGF, and their combinations using 2DE-based proteomics after (35)S- and (33)P-metabolic labeling. One hundred and five differentially regulated proteins were identified by mass spectrometry and some of these extensively validated. PDGF stimulation produced the highest overall rate of protein synthesis at any given time and induced the most sustained phospho-signaling. Simultaneous activation with two or three of the growth factors revealed both synergistic and antagonistic effects on protein synthesis and expression levels with PDGF showing dominance over both IGF-1 and EGF in generating distinct proteome compositions. Using signaling pathway inhibitors, PI3K was identified as an early site for signal diversification, with sustained activity of the PI3K/AKT pathway critical for regulating late protein synthesis and phosphorylation of target proteins and required for maintaining the PDGF-dependent motile phenotype. Several proteins were identified with novel PI3K/Akt-dependent synthesis and phosphorylations including eEF2, PRS7, RACK-1, acidic calponin, NAP1L1, Hsp73, and fascin. The data also reveal induction/suppression of key F-actin and actomyosin regulators and chaperonins that enable PDGFR to direct the assembly of a motile cytoskeleton, despite simultaneous antagonistic signaling activities. Together, the study demonstrates that long-term exposure to different growth factors results in receptor tyrosine kinase-specific regulation of relatively small subproteomes, and implies that the strength and longevity of receptor tyrosine kinase-specific signals are critical in defining the composition and functional activity of the resulting proteome. PMID:22956732

  5. Functional Proteomic Analysis of Long-term Growth Factor Stimulation and Receptor Tyrosine Kinase Coactivation in Swiss 3T3 Fibroblasts*

    PubMed Central

    Nagano, Kohji; Akpan, Akunna; Warnasuriya, Gayathri; Corless, Steven; Totty, Nick; Yang, Alice; Stein, Robert; Zvelebil, Marketa; Stensballe, Allan; Burlingame, Al; Waterfield, Michael; Cramer, Rainer; Timms, John F.; Naaby-Hansen, Søren

    2012-01-01

    In Swiss 3T3 fibroblasts, long-term stimulation with PDGF, but not insulin-like growth factor 1 (IGF-1) or EGF, results in the establishment of an elongated migratory phenotype, characterized by the formation of retractile dendritic protrusions and absence of actin stress fibers and focal adhesion complexes. To identify receptor tyrosine kinase-specific reorganization of the Swiss 3T3 proteome during phenotypic differentiation, we compared changes in the pattern of protein synthesis and phosphorylation during long-term exposure to PDGF, IGF-1, EGF, and their combinations using 2DE-based proteomics after 35S- and 33P-metabolic labeling. One hundred and five differentially regulated proteins were identified by mass spectrometry and some of these extensively validated. PDGF stimulation produced the highest overall rate of protein synthesis at any given time and induced the most sustained phospho-signaling. Simultaneous activation with two or three of the growth factors revealed both synergistic and antagonistic effects on protein synthesis and expression levels with PDGF showing dominance over both IGF-1 and EGF in generating distinct proteome compositions. Using signaling pathway inhibitors, PI3K was identified as an early site for signal diversification, with sustained activity of the PI3K/AKT pathway critical for regulating late protein synthesis and phosphorylation of target proteins and required for maintaining the PDGF-dependent motile phenotype. Several proteins were identified with novel PI3K/Akt-dependent synthesis and phosphorylations including eEF2, PRS7, RACK-1, acidic calponin, NAP1L1, Hsp73, and fascin. The data also reveal induction/suppression of key F-actin and actomyosin regulators and chaperonins that enable PDGFR to direct the assembly of a motile cytoskeleton, despite simultaneous antagonistic signaling activities. Together, the study demonstrates that long-term exposure to different growth factors results in receptor tyrosine kinase-specific regulation of relatively small subproteomes, and implies that the strength and longevity of receptor tyrosine kinase-specific signals are critical in defining the composition and functional activity of the resulting proteome. PMID:22956732

  6. Zinc deficiency induced in Swiss 3T3 cells by a low-zinc medium impairs calcium entry and two mechanisms of entry are involved.

    PubMed

    O'Dell, Boyd L; Browning, Jimmy D

    2013-04-01

    Zinc deficiency in 3T3 cells induced by the use of diethylenetriaminepentaacetate (DTPA) has been shown to impair calcium entry associated with failure of proliferation when the cells are stimulated with polypeptide growth factors (GF). These functions of zinc have been evaluated here in the same clone of cells by simple depletion using a low-zinc medium (0.05 μmol/L zinc) without chelator. Confluent cells were maintained for 1 day in the low-zinc medium without GF, then loaded with Fluo-4, and stimulated with GF. Calcium entry was measured by the increase in sustained fluorescence. It was preceded by the release of stored calcium as observed in the previous study using DTPA. Zinc deprivation decreased calcium entry when calcium was added at 0 or 0.05 mmol/L but not when 0.1 mmol/L or higher. Cell proliferation reflected similar effects of zinc and calcium concentrations. In a newly acquired clone of 3T3 cells, GF did not induce internal calcium release but thapsigargin (TG) did. When added in a low-calcium medium, both agonists stimulated calcium entry when external calcium was added, suggesting that two different mechanisms of entry were impaired by zinc deficiency. Zinc deficiency produced by DTPA in the newer clones gave similar results, decreasing calcium entry induced by both agonists. The effects of GF and TG were not additive. The results confirm the earlier observation that zinc deficiency impairs calcium entry into 3T3 cells when stimulated by GF and show that the cells can take up calcium by either store-operated or receptor-operated mechanisms. PMID:23292302

  7. T3 and the thyroid hormone beta-receptor agonist GC-1 differentially affect metabolic capacity and oxidative damage in rat tissues.

    PubMed

    Venditti, P; Chiellini, G; Bari, A; Di Stefano, L; Zucchi, R; Columbano, A; Scanlan, T S; Di Meo, S

    2009-04-01

    We compared the changes in tissue aerobic metabolism and oxidative damage elicited by hypothyroid rat treatment with T3 and its analog GC-1. Aerobic capacities, evaluated by cytochrome oxidase activities, were increased more by T3 than by GC-1. Furthermore, the response of the tissues to T3 was similar, whereas the response to GC-1 was high in liver, low in muscle and scarce in heart. Both treatments induced increases in ADP-stimulated O2 consumption, which were consistent with those in aerobic capacities. However, unlike T3, GC-1 differentially affected pyruvate/malate- and succinate-supported respiration, suggesting that respiratory chain components do not respond as a unit to GC-1 stimulation. According to the positive relationship between electron carrier levels and rates of mitochondrial generation of oxidative species, the most extensive damage to lipids and proteins was found in T3-treated rats. Examination of antioxidant enzyme activities and scavenger levels did not clarify whether oxidative damage extent also depended on different antioxidant system effectiveness. Conversely, the analysis of parameters determining tissue susceptibility to oxidants showed that pro-oxidant capacity was lower in GC-1- than in T3-treated rats, while antioxidant capacity was similar in treatment groups. Interestingly, both agonists decreased serum cholesterol levels, but only GC-1 restored euthyroid values of heart rate and indices of tissue oxidative damage, indicating that GC-1 is able to lower cholesterolemia, bypassing detrimental effects of T3. PMID:19282495

  8. Protective effect of apocynin on antimycin A-induced cell damage in osteoblastic MC3T3-E1 cells.

    PubMed

    Choi, Eun Mi; Lee, Young Soon

    2012-09-01

    Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH-oxidase. In the present study, we investigated the protective effects of apocynin on antimycin A (AMA)-induced toxicicy in osteoblastic MC3T3-E1 cells. Exposure of MC3T3-E1 cells to AMA caused significant cell viability loss, as well as mitochondrial membrane potential (MMP) dissipation, complex IV inactivation, ATP loss, intracellular calcium ([Ca2+]i) elevation and oxidative stress. Pretreatment with apocynin prior to AMA exposure significantly reduced AMA-induced cell damage by preventing MMP dissipation, complex IV inactivation, ATP loss, [Ca2+]i elevation and oxidative stress. These results suggest that apocynin has a protective effect against AMA-induced cell damage by its antioxidant effects and the attenuation of mitochondrial dysfunction. Apocynin also induced the activation of PI3K (phosphoinositide 3-kinase), Akt (protein kinase B) and CREB (cAMP-response element-binding protein) inhibited by AMA. All these data indicate that apocynin may reduce or prevent osteoblasts degeneration in osteoporosis or other degenerative disorders. PMID:21538410

  9. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production

    PubMed Central

    Groeneveld, Matthijs P.; Brierley, Gemma V.; Rocha, Nuno M.; Siddle, Kenneth; Semple, Robert K.

    2016-01-01

    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike “common” insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a lentiviral system to knock down Insr or its substrates Irs1 and Irs2 conditionally in 3T3-L1 murine preadipocytes/adipocytes to assess whether acute loss of their expression has different consequences to withdrawal of insulin. Efficient knockdown of either Insr or Irs1/2 was achieved by conditional shRNA expression, severely attenuating insulin-stimulated AKT phosphorylation and glucose uptake. Dual knockdown of Irs1 and Irs2 but not Insr in preadipocytes impaired differentiation to adipocytes. Acute knockdown of Insr or both Irs1 and Irs2 in adipocytes increased Adipoq mRNA expression but reduced adiponectin secretion, assessed by immunoassay. Knockdown sustained for 14 days also reduced immunoassay-detected adiponectin secretion, and moreover induced delipidation of the cells. These findings argue against a distinct effect of Insr deficiency to promote adiponectin secretion as the explanation for paradoxical insulin receptoropathy-related hyperadiponectinaemia. PMID:26888756

  10. Acute knockdown of the insulin receptor or its substrates Irs1 and 2 in 3T3-L1 adipocytes suppresses adiponectin production.

    PubMed

    Groeneveld, Matthijs P; Brierley, Gemma V; Rocha, Nuno M; Siddle, Kenneth; Semple, Robert K

    2016-01-01

    Loss of function of the insulin receptor (INSR) in humans produces severe insulin resistance. Unlike "common" insulin resistance, this is associated with elevated plasma levels of the insulin-sensitising, adipose-derived protein adiponectin. The underlying mechanism for this paradox is unclear, and it is at odds with the acute stimulation of adiponectin secretion reported on insulin treatment of cultured adipocytes. Given recent evidence for ligand-independent actions of the INSR, we used a lentiviral system to knock down Insr or its substrates Irs1 and Irs2 conditionally in 3T3-L1 murine preadipocytes/adipocytes to assess whether acute loss of their expression has different consequences to withdrawal of insulin. Efficient knockdown of either Insr or Irs1/2 was achieved by conditional shRNA expression, severely attenuating insulin-stimulated AKT phosphorylation and glucose uptake. Dual knockdown of Irs1 and Irs2 but not Insr in preadipocytes impaired differentiation to adipocytes. Acute knockdown of Insr or both Irs1 and Irs2 in adipocytes increased Adipoq mRNA expression but reduced adiponectin secretion, assessed by immunoassay. Knockdown sustained for 14 days also reduced immunoassay-detected adiponectin secretion, and moreover induced delipidation of the cells. These findings argue against a distinct effect of Insr deficiency to promote adiponectin secretion as the explanation for paradoxical insulin receptoropathy-related hyperadiponectinaemia. PMID:26888756

  11. Traditional medicine yanggyuksanhwa-tang inhibits adipogenesis and suppresses proliferator-activated receptor-gamma expression in 3T3-L1 cells

    PubMed Central

    Jeong, Soo-Jin; Yoo, Sae-Rom; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2015-01-01

    Background: Yanggyuksanhwa-tang (YGSHT) is a specific traditional Korean herbal formula for Soyangin according to Sasang constitutional philosophy. Although its biological activities against inflammation and cerebral infarction have been reporting, there is no information about the adipogenic activity of YGSHT. In the present study, we investigated the anti-adipogenic activity of YGSHT to evaluate effects of YGSHT on adipogenesis in vitro. Materials and Methods: Using 3T3-L1 preadipocytes, we induced the cellular differentiation into adipocytes by adding insulin. Anti-adipogenic activity of YGSHT was measured by oil red O staining, triglyceride assay, glycerol-3-phosphate dehydrogenase (GPDH) activity test, and leptin assay. Results: YGSHT extract had no significant cytotoxicity in preadipocytes or differentiated adipocytes. YGSHT reduced the number of lipid droplets and content of triglyceride in adipose cells. YGSHT also significantly inhibited GPDH activity and decreased leptin production compared with control adipocytes. Down-regulation of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression at the messenger RNA level was observed in YGSHT-treated adipocytes. Conclusion: Taken together, our data suggest that YGSHT has potential as an anti-obesity drug candidate. PMID:26246724

  12. Characterization of the respiration of 3T3 cells by laser-induced fluorescence during a cyclic heating process

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Dressler, C.; Zabarylo, U.; Minet, O.

    2010-04-01

    The use of lasers in the near infrared spectral range for laser-induced tumor therapy (LITT) demands a new understanding of the thermal responses to repetitive heat stress. The analysis of laser-induced fluorescence during vital monitoring offers an excellent opportunity to solve many of the related issues in this field. The laser-induced fluorescence of the cellular coenzyme NADH was investigated for its time and intensity behavior under heat stress conditions. Heat was applied to vital 3T3 cells (from 22°C to 50°C) according to a typical therapeutical time regime. A sharp increase in temperature resulted in non-linear time behavior when the concentration of this vital coenzyme changed. There are indications that biological systems have a delayed reaction on a cellular level. These results are therefore important for further dosimetric investigations.

  13. Mannose-inhibitable adhesins and T3-T7 receptors of Klebsiella pneumoniae inhibit phagocytosis and intracellular killing by human polymorphonuclear leukocytes.

    PubMed Central

    Pruzzo, C; Debbia, E; Satta, G

    1982-01-01

    It has recently been shown that Klebsiella pneumoniae strains adhere to human epithelial cells and that adherence is mediated by mannose-inhibitable adhesins which are also receptors for coliphages T3 and T7. We have now found that Klebsiella strain K59, which adheres to human epithelial cells and carries the receptors for coliphages T3 and T7, adheres to human polymorphonuclear leukocytes (PMN) at 4 degrees C. Strains KRTT1 and KRTT2, which are spontaneous mutants unable to adsorb coliphages T3 and T7 and adhere to human epithelial cells, at this temperature did not adhere to PMN. Adherence of K59 cells to PMN at 4 degrees C was inhibited by D-mannose, by UV-inactivated T7 phages, and by pepsin-digested anti-K59 antibodies absorbed with KRTT1 cells. At 37 degrees C the number of PMN with KRTT bacteria associated was fourfold higher than at 4 degrees C. On the contrary, the number of PMN with K59 bacteria associated at this temperature was fourfold lower than at 4 degrees C. Phagocytosis and intracellular killing experiments performed at 37 degrees C showed that KRTT1 and KRTT2 were phagocytized and killed at a higher rate than K59. After blocking of the mannose-inhibitable adhesins and T3-T7 receptors (MIAT) by D-mannose, UV-inactivated bacteriophage T7, or specific antibodies, K59 cells became more sensitive to phagocytosis and intracellular killing at 37 degrees C. K59 cells lysogenic for prophage AP3 were approximately as sensitive to phagocytosis and intracellular killing by human PMN as strains KRTT1 and KRTT2. Unencapsulated Klebsiella strains isolated from clinical specimens were found to carry MIAT most often. Four such strains were found much more resistant to phagocytosis and intracellular killing than their spontaneous mutants resistant to bacteriophages T3 and T7. PMID:7047402

  14. Green Tea (-)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes.

    PubMed

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-03-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The -970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  15. Green Tea (−)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-01-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The −970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  16. Regulation of Apelin and Its Receptor Expression in Adipose Tissues of Obesity Rats with Hypertension and Cultured 3T3-L1 Adipocytes

    PubMed Central

    Wu, Hongxian; Cheng, Xian Wu; Hao, Changning; Zhang, Zhi; Yao, Huali; Murohara, Toyoaki; Dai, Qiuyan

    2014-01-01

    The apelin/APJ system has been implicated in obesity-related hypertension. We investigated the mechanism responsible for the pathogenesis of obesity-related hypertension with a special focus on the crosstalk between AngII/its type 1 receptor (AT1R) signaling and apelin/APJ expression. Sprague-Dawley rats fed a high-fat (obesity-related hypertension, OH) or normal-fat diet (NF) for 15 weeks were randomly assigned to one of two groups and administered vehicle or perindopril for 4 weeks. Compared to the NF rats, the OH rats showed lower levels of plasma apelin and apelin/APJ mRNAs of perirenal adipose tissues, and these changes were restored by perindopril. Administration of the AT1R antagonist olmesartan resulted in the restoration of the reduction of apelin and APJ expressions induced by AngII for 48 h in 3T3-L1 adipocytes. Among several inhibitors for extracellular signal-regulated kinases 1/2 (ERK1/2) PD98059, p38 mitogen-activated protein kinase (p38MAPK) SB203580 and phosphatidylinositol 3-kinase (PI3K) LY294002, the latter showed an additive effect on AngII-mediated inhibitory effects. In addition, the levels of p-Akt, p-ERK and p38MAPK proteins were decreased by long-term treatment with AngII (120 min), and these changes were restored by Olmesartan. Apelin/APJ appears to be impaired in obesity-related hypertension. The AngII inhibition-mediated beneficial effects are likely attributable, at least in part, to restoration of p38/ERK-dependent apelin/APJ expression in diet-induced obesity-related hypertension. PMID:24770651

  17. Platycodon grandiflorum A. De Candolle Ethanolic Extract Inhibits Adipogenic Regulators in 3T3-L1 Cells and Induces Mitochondrial Biogenesis in Primary Brown Preadipocytes.

    PubMed

    Kim, Hye-Lin; Park, Jinbong; Park, Hyewon; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; Jeong, Mi-Young; Um, Jae-Young

    2015-09-01

    This study was designed to evaluate the effects of Platycodon grandiflorum A. DC. ethanolic extract (PG) on obesity in brown/white preadipocytes. The effect of PG on the differentiation and mitochondrial biogenesis of brown adipocytes is still not examined. An in vivo study showed that PG induced weight loss in mice with high-fat-diet-induced obesity. PG successfully suppressed the differentiation of 3T3-L1 cells by down-regulating cellular induction of the peroxisome proliferators activated receptor γ (PPARγ), CCAAT enhancer binding protein α (C/EBPα), lipin-1, and adiponectin but increasing expression of silent mating type information regulation 2 homologue 1 (SIRT1) and the phosphorylation of AMP-activated protein kinase α (AMPKα). The effect of PG on the adipogenic factors was compared with that of its bioactive compound platycodin D. In addition, PG increased expressions of mitochondria-related genes, including uncoupling protein 1 (UCP1), peroxisome proliferator activated receptor-coactivator 1 α (PGC1α), PR domain containing 16 (PRDM16), SIRT3, nuclear respiratory factor (NRF), and cytochrome C (CytC) in primary brown adipocytes. These results indicate that PG stimulates the differentiation of brown adipocytes through modulation of mitochondria-related genes and could offer clinical benefits as a supplement to treat obesity. PMID:26244589

  18. Enhancement of ajoene-induced apoptosis by conjugated linoleic acid in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Hausman, Dorothy B; Baile, Clifton A

    2007-06-01

    Ajoene has been shown to induce apoptosis in 3T3-L1 adipocytes. In this report the effects on apoptosis of combinations of ajoene and trans-10, cis-12 conjugated linoleic acid (t10,c12CLA) in 3T3-L1 adipocytes were investigated. Although t10,c12CLA alone had no effect, ajoene plus t10,c12CLA reduced cell viability more than ajoene alone at 24 h (59.1 vs. 85.9% of control, respectively; p<0.05). Compared to treatment with t10,c12CLA, ajoene increased apoptosis 218% after 24 h (p<0.01), whereas ajoene plus t10,c12CLA increased apoptosis 122% over that caused by ajoene alone (p<0.01). Immunoblotting analysis also indicated that ajoene plus t10,c12CLA caused a greater increase in phosphorylation of c-Jun N-terminal kinase (JNK) and Bax expression and a greater release of mitochondrial proteins (cytochrome c, AIF) than additive responses to each compound alone. Ajoene plus t10,c12CLA also increased ROS production more than that resulting from ajoene treatment alone (264 vs 204% after 40 min, respectively; p<0.01). Furthermore, the antioxidant NAC prevented ROS generation and apoptosis by ajoene plus t10,c12CLA. Interestingly, the combination of ajoene and t10,c12CLA increased NF-kappaB activation and decreased the level of phosphorylated Akt more than each compound alone. Altogether, our observations indicate that t10,c12CLA potentiates the effect of ajoene on apoptosis in 3T3-L1 adipocytes. PMID:17318368

  19. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPAR-γ activation in 3T3-L1 adipocytes.

    PubMed

    Kim, Tae Kon; Park, Kyoung Sik

    2015-12-01

    Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses. PMID:26049170

  20. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  1. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  2. Macrophage-conditioned medium inhibits differentiation-induced Rb phosphorylation in 3T3-L1 preadipocytes

    SciTech Connect

    Yarmo, Michelle N.; Landry, Anne; Molgat, Andre S.D.; Gagnon, AnneMarie; Sorisky, Alexander

    2009-02-01

    This study examines the mechanisms underlying the anti-adipogenic effect of macrophage-secreted products. 3T3-L1 preadipocytes were induced to differentiate over 8 days in medium conditioned by murine J774 macrophages (MacCM). The inhibitory effect on lipid accumulation and expression of adipogenic markers was diminished when addition of MacCM was delayed to day 2 of differentiation. Clonal expansion, an early event required for 3T3-L1 adipogenesis, was reduced in the presence of MacCM (89%; n = 3; p < 0.001), and BrdU incorporation was impaired by 55% (n = 3; p < 0.01). Activation of ERK1/2 was not affected by MacCM, and neither was the expression of p27{sup kip1}, a cyclin-dependent kinase inhibitor. However, phosphorylation of the retinoblastoma protein (Rb), required for cell cycle progression, was impaired by MacCM (94% inhibition; n = 3; p < 0.01). Differentiation-dependent expression, nuclear localization, and DNA binding ability of C/EBP{beta} were not inhibited by MacCM. Alterations in cell cycle-associated proteins may be important with respect to the anti-adipogenic action of MacCM.

  3. Structure of the human receptor tyrosine phosphatase gamma gene (PTPRG) and relation to the familial RCC t(3;8) chromosome translocation

    SciTech Connect

    Kastury, K.; Ohta, M.; Druck, T.; Huebner, K.

    1996-03-01

    The receptor protein tyrosine phosphatase {gamma} gene, PTP{gamma} (locus name PTPRG), was previously mapped to chromosome region 3p14.2, within a 2- to 4-Mb region centromeric to the 3p14.2 breakpoint of the t(3;8) familial renal cell carcinoma (RCC)-associated constitutional chromosome translocation. Because of its chromosomal position, its enzymatic properties as a receptor phosphatase, which might oppose a growth activating kinase activity, its homozygous deletion in murine L cells, and its transcriptional activity in numerous normal tissues, including kidney, the PTP{gamma} gene was an attractive tumor suppressor gene candidate for renal cell carcinoma. To determine whether the PTP{gamma} gene was a target of loss of heterozygosity or mutation in RCCs and to determine its map position relative to the t(3;8) break at 3p14.2, we have isolated YAC and {lambda} genomic clones for the PTP{gamma} gene and other 3p14.2 markers and determined the relative positions of the t(3;8) break, a 3p14.2 de novo break possibly in a fragile site, and the 5{prime} end of the PTP{gamma} gene. Additionally, the genomic structure, position of the proximal promotor, and intron-exon border sequences of the 30-exon {approximately} 780-kb PTP{gamma} gene have been determined, which will facilitate analysis of the PTP{gamma} gene in tumors. 49 refs., 3 figs., 3 tabs.

  4. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions

    NASA Technical Reports Server (NTRS)

    Pavalko, F. M.; Chen, N. X.; Turner, C. H.; Burr, D. B.; Atkinson, S.; Hsieh, Y. F.; Qiu, J.; Duncan, R. L.

    1998-01-01

    Mechanical stimulation of bone induces new bone formation in vivo and increases the metabolic activity and gene expression of osteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission of mechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts caused reorganization of actin filaments into contractile stress fibers and involved recruitment of beta1-integrins and alpha-actinin to focal adhesions. Fluid shear also increased expression of two proteins linked to mechanotransduction in vivo, cyclooxygenase-2 (COX-2) and the early response gene product c-fos. Inhibition of actin stress fiber development by treatment of cells with cytochalasin D, by expression of a dominant negative form of the small GTPase Rho, or by microinjection into cells of a proteolytic fragment of alpha-actinin that inhibits alpha-actinin-mediated anchoring of actin filaments to integrins at the plasma membrane each blocked fluid-shear-induced gene expression in osteoblasts. We conclude that fluid shear-induced mechanical signaling in osteoblasts leads to increased expression of COX-2 and c-Fos through a mechanism that involves reorganization of the actin cytoskeleton. Thus Rho-mediated stress fiber formation and the alpha-actinin-dependent anchorage of stress fibers to integrins in focal adhesions may promote fluid shear-induced metabolic changes in bone cells.

  5. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1999-01-01

    In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.

  6. Atypical beta-adrenergic receptor in 3T3-F442A adipocytes. Pharmacological and molecular relationship with the human beta 3-adrenergic receptor.

    PubMed

    Fève, B; Emorine, L J; Lasnier, F; Blin, N; Baude, B; Nahmias, C; Strosberg, A D; Pairault, J

    1991-10-25

    Expression of ligand binding properties for an atypical beta-adrenergic receptor (beta-AR) subtype was studied during the adipose differentiation of murine 3T3-F442A cells and compared with that of the human beta 3-AR expressed in Chinese hamster ovary cells stably transfected with the human beta 3-AR gene (CHO-beta 3 cells) Emorine, L. J., Marullo, S., Briend-Sutren, M. M., Patey, G., Tate, K., Delavier-Klutchko, C., and Strosberg, A. D. (1989) Science 245, 1118-1121). 3T3-F442A adipocytes exhibited high and low affinity binding sites for (-)-4-(3-t-butylamino-2-hydroxypropoxy) [5,7-3H]benzimidazole-2-one ((-)-[3H]CGP-12177) (KD = 1.2 and 38.3 nM) and (-)-[125I]iodocyanopindolol ([125I]CYP) (KD = 47 and 1,510 pM). The high affinity sites corresponded to the classical beta 1- and beta 2-AR subtypes whereas the KD values of the low affinity sites for the radioligands were similar to those measured in CHO-beta 3 cells (KD = 28 nM and 1,890 pM for (-)-[3H]CGP12177 and [125I]CYP, respectively). These low affinity sites were undetectable in preadipocytes but represented about 90% of total beta-ARs in adipocytes. The atypical beta-AR and the human beta 3-AR add similarly low affinities (Ki = 3-5 microM) for (+/-)-(2-(3-carbamoyl-4-hydroxyphenoxy)ethylamino-3)-(4-(1-methyl- 4- trifluormethyl-2-imidazolyl)-phenoxy)-2-propanol methane sulfonate (CGP20712A) or erythro-(+/-)-1-(7-methylindan-4-yloxy)-3-isopropylaminob utan-2-ol (ICI118551), highly selective beta 1- and beta 2-AR antagonists, respectively, in agreement with the poor inhibitory effect of the compounds on (-)-isoproterenol (IPR)-stimulated adenylate cyclase activity. Atypical beta-AR and beta 3-AR had an affinity about 10-50 times higher for sodium-4-(2-[2-hydroxy-2-(3-chlorophenyl)ethylamino]propyl)phenoxyace tate sesquihydrate (BRL37344) than the beta 1-AR subtype. This correlates with the potent lipolytic effect of BRL37344 in adipocytes. The rank order of potency of agonists in functional and binding studies was BRL37344 greater than IPR less than (-)-norepinephrine greater than (-)-epinephrine both in 3T3 adipocytes and CHO-beta 3 cells. As in CHO-beta 3 cells, the classical beta 1- and beta 2-antagonists CGP12177, oxprenolol, and pindolol were partial agonists in adipocytes. Although undetectable in preadipocytes, a major mRNA species of 2.3 kilobases (kb) and a minor one of 2.8 kb were observed in adipocytes by hybridization to a human beta 3-AR specific probe.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1682311

  7. Ultrastructural evidence for the accumulation of insulin in nuclei of intact 3T3-L1 adipocytes by an insulin-receptor mediated process

    SciTech Connect

    Smith, R.M.; Jarett, L.

    1987-01-01

    Monomeric ferritin-labeled insulin (F/sub m/-Ins), a biologically active, electron-dense marker of occupied insulin receptors, was used to characterize the internalization of insulin in 3T3-L1 adipocytes. F/sub m/-Ins bound specifically to insulin receptors and was internalized in a time- and temperature-dependent manner. In the nucleus, several F/sub m/-Ins particles usually were found in the same general location-near nuclear pores, associated with the periphery of the condensed chromatin. Addition of a 250-fold excess of unlabeled insulin or incubation at 15/sup 0/C reduced the number of F/sub m/-Ins particles found in nuclei after 90 min by 99% or 92%, respectively. Nuclear accumulation of unlabeled ferritin was only 2% of that found with F/sub m/-Ins after 90 min at 37/sup 0/C. Biochemical experiments utilizing /sup 125/I-labeled insulin and subcellular fractionation indicated that intact 3T3-L1 adipocytes internalized insulin rapidly and that approx. = 3% of the internalized ligand accumulated in nuclei after 1 hr. These data provide biochemical and high-resolution ultrastructural evidence that 3T3-L1 adipocytes accumulate potentially significant amounts of insulin in nuclei by an insulin receptor-mediated process. The transport of insulin or the insulin-receptor complex to nuclei in this cell or in others may be directly involved in the long-term biological effects of insulin - in particular, in the control of DNA and RNA synthesis.

  8. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter

    PubMed Central

    Atlas, Ella; Pope, Louise; Wade, Mike G; Kawata, Alice; Boudreau, Adele; Boucher, Jonathan G

    2014-01-01

    Environmental pollutants, such as bisphenol A (BPA), have the potential to affect the differentiation processes and the biology of the adipose tissue. The 3T3-L1 model is one of the murine cell models used extensively for the investigation of the molecular events that govern the differentiation of adipocytes from a committed preadipocyte to a mature, lipid laden adipocyte. Most of the studies investigating the effects of BPA on preadipocyte differentiation have investigated the effects of this chemical in the presence of an optimal differentiation cocktail containing high concentrations of the synthetic glucocorticoid dexamethasone, conditions that result in 90% to 100% of differentiated adipocytes. Our studies employed the 3T3-L1 cell model in the absence of exogenous glucocorticoids. We show that BPA is able to increase the differentiation of the 3T3-L1 cells under these conditions. Furthermore, the effect of BPA was observed in the absence of the synthetic glucocorticoid (dexamethasone), a hormone known to be required for the differentiation of the 3T3-L1 cells. In addition, BPA upregulated the mRNA expression and protein levels of the terminal marker of adipogenesis the fatty acid binding protein (aP2) in these cells. Interestingly, the known modulators of adipogenesis such as the peroxisome proliferator-activated receptor (PPAR) γ or CCAAT enhancer binding protein (C/EBP) α were not elevated at the mRNA or protein level in response to BPA. Furthermore, BPA upregulated the expression levels of the marker of adipogenesis aP2, through an effect on the transcriptional activity of C/EBPδ and the glucocorticoid receptor (GR) at its promoter. PMID:25068083

  9. γ-tocotrienol attenuates TNF-α-induced changes in secretion and gene expression of MCP-1, IL-6 and adiponectin in 3T3-L1 adipocytes

    PubMed Central

    MATSUNAGA, TETSURO; SHOJI, AYAE; GU, NING; JOO, ERINA; LI, SHIHO; ADACHI, TETSUYA; YAMAZAKI, HANAE; YASUDA, KOICHIRO; KONDOH, TAKASHI; TSUDA, KINSUKE

    2012-01-01

    Tocotrienols, members of the vitamin E family, have been shown to possess anti-inflammatory properties and display activity against a variety of chronic diseases, such as cancer, cardiovascular and neurological diseases. However, whether tocotrienols contribute to the prevention of inflammatory responses in adipose tissue remains to be elucidated. In this study, we examined the effects of γ-tocotrienol, the most common tocotrienol isomer, on tumor necrosis factor-α (TNF-α)-induced inflammatory responses by measuring the expression of the adipokines, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and adiponectin in 3T3-L1 adipocytes. Exposure to TNF-α (10 ng/ml) for 24 h increased MCP-1 and IL-6 secretion, and decreased adiponectin secretion and peroxisome proliferator-activated receptor-γ (PPARγ) mRNA expression. γ-tocotrienol effectively improved the TNF-α-induced adverse changes in MCP-1, IL-6 and adiponectin secretion, and in MCP-1, IL-6, adiponectin and PPARγ mRNA expression. Furthermore, TNF-α-mediated IκB-α phosphorylation and nuclear factor-κB (NF-κB) activation were significantly suppressed by the γ-tocotrienol treatment. Our results suggest that γ-tocotrienol may improve obesity-related functional abnormalities in adipocytes by attenuating NF-κB activation and the expression of inflammatory adipokines. PMID:22293775

  10. Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation.

    PubMed

    Torabi, Sheida; Mo, Huanbiao

    2016-03-01

    Based on our finding that depletion of mevalonate-derived metabolites inhibits adipocyte differentiation, we hypothesize that trans, trans-farnesol (farnesol), a mevalonate-derived sesquiterpene, induces adipocyte differentiation. Farnesol dose-dependently (25-75 μmol/L) increased intracellular triglyceride content of murine 3T3-F442A pre-adipocytes measured by AdipoRed™ Assay and Oil Red-O staining. Concomitantly, farnesol dose-dependently increased glucose uptake and glucose transport protein 4 (GLUT4) expression without affecting cell viability. Furthermore, quantitative real-time polymerase chain reaction and Western blot showed that farnesol increased the mRNA and protein levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, and the mRNA levels of PPARγ-regulated fatty acid-binding protein 4 and adiponectin; in contrast, farnesol downregulated Pref-1 gene, a marker of pre-adipocytes. GW9662 (10 µmol/L), an antagonist of PPARγ, reversed the effects of farnesol on cellular lipid content, suggesting that PPARγ signaling pathway may mediate the farnesol effect. Farnesol (25-75 μmol/L) did not affect the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in the mevalonate pathway. Farnesol may be the mevalonate-derived inducer of adipocyte differentiation and potentially an insulin sensitizer via activation of PPARγ and upregulation of glucose uptake. PMID:26660152

  11. Curcumin improves hypoxia induced dysfunctions in 3T3-L1 adipocytes by protecting mitochondria and down regulating inflammation.

    PubMed

    Priyanka, Ariyapalli; Anusree, Sasidharan Suseela; Nisha, Vijayakumar Marykutty; Raghu, Kozhiparambil Gopalan

    2014-01-01

    Obesity induced metabolic syndrome is increasing worldwide at an alarming rate. It is characterized by excessive expansion of white adipose tissue which leads to hypoxia and impairs normal metabolism. Recent studies reveal that hypoxia could be one of the factors for inflammation, insulin resistance and other obesity related complications. There is a high demand for anti-obese phytoceuticals to control and manage the complications resulting from obesity. In this study, we investigated how hypoxia affect the physiological functions of 3T3-L1 adipocytes emphasizing on oxidative stress, inflammation, and mitochondrial functions. We also evaluated the protective role of various doses of curcumin, a well-known dietary antioxidant, on hypoxia induced alterations. The results revealed that hypoxia significantly altered the vital parameters of adipocyte biology like HIF 1α expression (103.47% ↑), lactate, and glycerol release (184.34% and 69.1% ↑, respectively), reactive oxygen species production (432.53% ↑), lipid and protein oxidation (376.6% and 566.6% ↑, respectively), reduction in antioxidant enzymes (superoxide dismutase and catalase) status, secretion of inflammatory markers (TNF α, IL 6, IL 1β, and IFN γ), and mitochondrial functions (mitochondrial mass, membrane potential, permeability transition pore integrity, and superoxide generation). Curcumin substantially protected adipocytes from toxic effects of hypoxia in a dose dependent manner by protecting mitochondria and down regulating inflammation. Acriflavine is used as a positive control. A detailed investigation is required for the development of curcumin as an effective nutraceutical against obesity. PMID:25110893

  12. cis9, trans11-Conjugated Linoleic Acid Differentiates Mouse 3T3-L1 Preadipocytes into Mature Small Adipocytes through Induction of Peroxisome Proliferator-activated Receptor γ.

    PubMed

    Sakuma, Satoru; Nishioka, Yuki; Imanishi, Ryohta; Nishikawa, Kenji; Sakamoto, Hirotada; Fujisawa, Junji; Wada, Koichiro; Kamisaki, Yoshinori; Fujimoto, Yohko

    2010-09-01

    Dietary conjugated linoleic acid (CLA) has been reported to exhibit a number of therapeutic effects in animal models and patients, such as anti-hypertensive, anti-hyperlipidemic, anti-arteriosclerotic, anti-carcinogenic, and anti-diabetic effects. However, the underlying mechanism is not well-characterized. In the present study, the effects of cis(c)9, trans(t)11-CLA on the differentiation of mouse 3T3-L1 preadipocytes into mature adipocytes were examined. Treatment with c9, t11-CLA in the presence of insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine (differentiation cocktail) significantly stimulated the accumulation of triacylglycerol. The microscopic observation of cells stained by Oil Red O demonstrated that c9, t11-CLA increases the amount and proportion of small mature adipocytes secreting adiponectin, a benign adipocytokine, when compared to the differentiation cocktail alone. Furthermore, c9, t11-CLA increased bioactive peroxisome proliferator-activated receptor γ (PPARγ) levels in a nuclear extract of 3T3-L1 cells, suggesting the enhancing effect of this fatty acid on the nuclear transmission of PPARγ, a master regulator of adipocyte differentiation, in 3T3-L1 cells. These results suggest that the therapeutic effects of c9, t11-CLA on lifestyle-related diseases are partially due to the enhanced formation of small adipocytes from preadipocytes via PPARγ stimulation. PMID:20838573

  13. cis9, trans11-Conjugated Linoleic Acid Differentiates Mouse 3T3-L1 Preadipocytes into Mature Small Adipocytes through Induction of Peroxisome Proliferator-activated Receptor γ

    PubMed Central

    Sakuma, Satoru; Nishioka, Yuki; Imanishi, Ryohta; Nishikawa, Kenji; Sakamoto, Hirotada; Fujisawa, Junji; Wada, Koichiro; Kamisaki, Yoshinori; Fujimoto, Yohko

    2010-01-01

    Dietary conjugated linoleic acid (CLA) has been reported to exhibit a number of therapeutic effects in animal models and patients, such as anti-hypertensive, anti-hyperlipidemic, anti-arteriosclerotic, anti-carcinogenic, and anti-diabetic effects. However, the underlying mechanism is not well-characterized. In the present study, the effects of cis(c)9, trans(t)11-CLA on the differentiation of mouse 3T3-L1 preadipocytes into mature adipocytes were examined. Treatment with c9, t11-CLA in the presence of insulin, dexamethasone, and 3-isobutyl-1-methyl-xanthine (differentiation cocktail) significantly stimulated the accumulation of triacylglycerol. The microscopic observation of cells stained by Oil Red O demonstrated that c9, t11-CLA increases the amount and proportion of small mature adipocytes secreting adiponectin, a benign adipocytokine, when compared to the differentiation cocktail alone. Furthermore, c9, t11-CLA increased bioactive peroxisome proliferator-activated receptor γ (PPARγ) levels in a nuclear extract of 3T3-L1 cells, suggesting the enhancing effect of this fatty acid on the nuclear transmission of PPARγ, a master regulator of adipocyte differentiation, in 3T3-L1 cells. These results suggest that the therapeutic effects of c9, t11-CLA on lifestyle-related diseases are partially due to the enhanced formation of small adipocytes from preadipocytes via PPARγ stimulation. PMID:20838573

  14. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain.

    PubMed Central

    Mattingly, R R; Sorisky, A; Brann, M R; Macara, I G

    1994-01-01

    Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected. Images PMID:7969134

  15. Stimulation of sodium-dependent inorganic phosphate transport by activation of Gi/o-protein-coupled receptors by epinephrine in MC3T3-E1 osteoblast-like cells.

    PubMed

    Suzuki, A; Palmer, G; Bonjour, J P; Caverzasio, J

    2001-06-01

    Recent data have shown that activation of Gi-protein-coupled receptors in osteoblast-like cells enhances the proliferation and differentiation of these cells. In the present study, we investigated the effect of epinephrine, an agonist of Gi-protein-coupled receptors in MC3T3-E1 cells, on Pi transport, type III Pi transporter expression, and the signaling mechanism(s) involved in this response. Epinephrine time- and dose-dependently stimulated sodium-dependent Pi transport and this effect was dependent on RNA and protein synthesis. This effect was associated with a related time-dependent increase in Pit-1 mRNA expression. Kinetic analysis indicated that the change in Pi transport activity induced by epinephrine was due to alteration in the maximal rate of Pi transport. Investigation of Pi transport stimulation by several adrenergic agonists and its inhibition by spiperone suggest that the effect of epinephrine on Pi transport was mediated by alpha1-adrenergic receptors. Pertussis toxin, which inactivates Gi/o proteins, significantly blunted the stimulatory effect of epinephrine on Pi transport. Analysis of the signaling pathways involved in this response has suggested a major role of protein kinase C and a small contribution from the mitogen-activated protein kinase Erk (MAPK(erk)). The results show that, in MC3T3-E1 osteoblast-like cells, activation of Gi/o-protein-coupled receptors induces stimulation of Pi transport. This effect is mediated by activation of protein kinase C and the MAPK(erk) pathway and probably involves the synthesis of Pit-1 transporters. PMID:11425646

  16. Phenylenediamine derivatives induce GDF-15/MIC-1 and inhibit adipocyte differentiation of mouse 3T3-L1 cells.

    PubMed

    Yanagitai, Mika; Kitagawa, Tomomi; Okawa, Kyouji; Koyama, Hiroki; Satoh, Takumi

    2012-01-01

    Phenylenediamine derivatives can function as a hydrogen donor and reportedly exert various biological actions including cytoprotective effects against oxidative stress, possibly by acting as an antioxidant. Previous studies showed that feeding of such compounds to mice reduced their body weight, but the precise mechanism remains unknown at present. Here, we found that these compounds inhibited the in vitro differentiation of mouse preadipocytes, 3T3-L1 cells, into adipocytes, suggesting that, at least in part, reduced generation of adipocytes might contribute to the observed weight loss in mice. Next, we performed array analysis and found that the expression of GDF-15/MIC-1, which is a TGFβ superfamily cytokine, and Trib 3, an intracellular downstream effector of the cytokines, was up-regulated by these derivatives. Thus, we identified the compounds as inducers of GDF-15/MIC-1 and suggest that such induction may have led to inhibition of adipocyte differentiation, which could account for the weight-loss effect of these compounds. PMID:22155240

  17. PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway

    SciTech Connect

    Wang, Weirong; Lin, Qinqin; Lin, Rong; Zhang, Jiye; Ren, Feng; Zhang, Jianfeng; Ji, Meixi; Li, Yanxiang

    2013-06-10

    The ligand-activated transcription factor peroxisome proliferator-activated receptor-α (PPARα) participates in the regulation of cellular inflammation. More recent studies indicated that sirtuin1 (SIRT1), a NAD{sup +}-dependent deacetylase, regulates the inflammatory response in adipocytes. However, whether the role of PPARα in inflammation is mediated by SIRT1 remains unclear. In this study, we aimed to determine the effect of PPARα agonist fenofibrate on the expressions of SIRT1 and pro-inflammatory cytokine CD40 and underlying mechanisms in 3T3-L1 adipocytes. We found that fenofibrate inhibited CD40 expression and up-regulated SIRT1 expression in tumor necrosis factor-α (TNF-α)-stimulated adipocytes, and these effects of fenofibrate were reversed by PPARα antagonist GW6471. Moreover, SIRT1 inhibitors sirtinol/nicotinamide (NAM) or knockdown of SIRT1 could attenuate the effect of fenofibrate on TNF-α-induced CD40 expression in adipocytes. Importantly, NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) augmented the effect of fenofibrate on CD40 expression in adipocytes. Further study found that fenofibrate decreased the expression of acetylated-NF-κB p65 (Ac-NF-κB p65) in TNF-α-stimulated adipocytes, and the effect of fenofibrate was abolished by SIRT1 inhibition. In addition, fenofibrate up-regulated SIRT1 expression through AMPK in TNF-α-stimulated adipocytes. Taken together, these findings indicate that PPARα agonist fenofibrate inhibits TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway. -- Highlights: • Fenofibrate up-regulates SIRT1 expression in TNF-α-stimulated adipocytes. • Fenofibrate inhibits CD40 expression through SIRT1 in adipocytes. • The effects of fenofibrate on CD40 and SIRT1 expressions are dependent on PPARα. • Fenofibrate inhibits CD40 expression via SIRT1-dependent deacetylation of NF-κB. • Fenofibrate increases SIRT1 expression through PPARα and AMPK in adipocytes.

  18. Glycine suppresses TNF-α-induced activation of NF-κB in differentiated 3T3-L1 adipocytes.

    PubMed

    Blancas-Flores, Gerardo; Alarcón-Aguilar, Francisco J; García-Macedo, Rebeca; Almanza-Pérez, Julio C; Flores-Sáenz, José L; Román-Ramos, Rubén; Ventura-Gallegos, José L; Kumate, Jesús; Zentella-Dehesa, Alejandro; Cruz, Miguel

    2012-08-15

    Glycine strongly reduces the serum levels of pro-inflammatory cytokines and increases the levels of anti-inflammatory cytokines. Recently, glycine has been shown to decrease the expression and secretion of pro-inflammatory adipokines in monosodium glutamate-induced obese (MSG/Ob) mice. It has been postulated that these effects may be explained by a reduction in nuclear factor kappa B (NF-κB) activation. NF-κB is a transcription factor, which is crucial to the inflammatory response. Hasegawa et al. (2011 and 2012) recently reported a glycine-dependent reduction in NF-κB levels. Here, we have investigated the role of glycine in the regulation of NF-κB in differentiated 3T3-L1 adipocytes. The results revealed that pretreatment with glycine interfered with the activation of NF-κB, which has been shown to be stimulated by tumor necrosis factor-alpha (TNF-α). Glycine alone stimulated NF-κB activation in an unusual way such that the inhibitor κB-β (IκB-β) degradation was more significant than that of the inhibitor κB-α (IκB-α) and led to NF-κB complexes comprised of p50 and p65 subunits; IκB-ε degradation did not affect by glycine. These findings suggest that glycine could be used as an alternative treatment for chronic inflammation, which is a hallmark of obesity and other comorbidities, and is characterized by an elevated production of pro-inflammatory cytokines. PMID:22732655

  19. Regulation of the beta-adrenergic receptor-adenylate cyclase complex of 3T3-L1 fibroblasts by sodium butyrate

    SciTech Connect

    Stadel, J.M.; Poksay, K.S.; Nakada, M.T.; Crooke, S.T.

    1986-05-01

    Mouse 3T3-L1 fibroblasts contain beta-adrenergic receptors (BAR), predominantly of the B/sub 1/ subtype. Incubation of these cells with 2-10 mM sodium butyrate (SB) for 24-48 hr results in a switch in the BAR subtype from B/sub 1/ to B/sub 2/ and promotes a 1.5 to 2.5 fold increase in total BAR number. Other short chain acids were not as effective as SB in promoting changes in BAR. BAR were assayed in membranes prepared from the 3T3-L1 cells using the radiolabeled antagonist (/sup 125/I)-cyanopindolol and the B/sub 2/ selective antagonist ICI 118.551. BAR subtype switch was confirmed functionally by measuring cellular cAMP accumulation in response to agonists. The structure and amount of the alpha subunits of the guanine nucleotide regulatory proteins N/sub s/ and N/sub i/ were determined by ADP-ribosylation using /sup 32/P-NAD and either cholera toxin or pertussis toxin for labeling of the respective subunits. Preincubation of cells with 5 mM SB for 48 hr resulted in a 2-3 fold increase in the labeling of the alpha subunits of both N/sub s/ and N/sub i/. A protein of M/sub r/ = 44,000 showed enhanced labeling by cholera toxin following SB treatment of the cells. These data indicate SB concomitantly regulates expression of BAR subtype and components of the adenylate cyclase in 3T3-L1 cells.

  20. Overexpression of tumor necrosis factor receptor-associated protein 1 (TRAP1), leads to mitochondrial aberrations in mouse fibroblast NIH/3T3 cells

    PubMed Central

    Im, Chang-Nim; Seo, Jeong-Sun

    2014-01-01

    Cancer cells undergo uncontrolled proliferation, and aberrant mitochondrial alterations. Tumor necrosis factor receptorassociated protein 1 (TRAP1) is a mitochondrial heat shock protein. TRAP1 mRNA is highly expressed in some cancer cell lines and tumor tissues. However, the effects of its overexpression on mitochondria are unclear. In this study, we assessed mitochondrial changes accompanying TRAP1 overexpression, in a mouse cell line, NIH/3T3. We found that overexpression of TRAP1 leads to a series of mitochondrial aberrations, including increase in basal ROS levels, and decrease in mitochondrial biogenesis, together with a decrease in peroxisome proliferator-activated receptor gamma coactivator-1? (PGC-1?) mRNA levels. We also observed increased extracellular signal-regulated kinase (ERK) phosphorylation, and enhanced proliferation of TRAP1 overexpressing cells. This study suggests that overexpression of TRAP1 might be a critical link between mitochondrial disturbances and carcinogenesis. [BMB Reports 2014; 47(5): 280-285] PMID:24286320

  1. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    SciTech Connect

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.

  2. Inhibition by dexamethasone of beta 3-adrenergic receptor responsiveness in 3T3-F442A adipocytes. Evidence for a transcriptional mechanism.

    PubMed

    Fève, B; Baude, B; Krief, S; Strosberg, A D; Pairault, J; Emorine, L J

    1992-08-01

    Modulation of beta 3-adrenergic receptor (beta 3AR) expression by dexamethasone was investigated in the murine 3T3-F442A adipocytic cell line. In untreated cells, a major population of binding sites (62,000-114,000 sites/cell) of low affinity for (-)-[3H] CGP12177 and (-)-[125I]iodocyanopindolol (corresponding to the beta 3AR subtype) was present along with a minor population (6,500-8,000 sites/cell) of sites of high affinity for the radioligands (corresponding to a mixture of the beta 1 and beta 2AR subtypes). Long-term exposure of the cells to 250 nM dexamethasone led to a sharp decrease in beta 3AR density (less than 5,000 sites/cell) which paralleled a diminished potency of the beta 3AR-selective agonists BRL37344 and CGP12177 to stimulate the production of intracellular cAMP. Analysis of RNA by polymerase chain reaction and nuclear run-on assays indicated that dexamethasone inhibited the synthesis of beta 3AR mRNA, resulting in 4-8-fold decrease in the steady-state levels of this mRNA. The down-regulation of beta 3AR protein and cellular mRNA appeared to be mediated by the receptor for glucocorticoids as assessed by the antagonistic action of the anti-glucocorticoid RU38486. PMID:1379241

  3. Mos overexpression in Swiss 3T3 cells induces meiotic-like alterations of the mitotic spindle.

    PubMed Central

    Fukasawa, K; Vande Woude, G F

    1995-01-01

    High levels of mos protooncogene product are expressed during oocyte meiotic maturation and Mos has been implicated in formation of the spindle and spindle pole. Here, we show that in Swiss 3T3 cells with 4N DNA content, high levels of Mos lead to the production of binucleated cells. The Swiss 3T3 cells in mitosis, before binucleation occurs, are anastral and the spindle poles are juxtaposed to the cell membrane. These phenotypes may be related to the meiotic process of attachment of the spindle pole to the oocyte membrane during polar body formation. The production of binucleated somatic cells could result from attachment of the altered mitotic spindle pole to the cell membrane that interferes with cytokinesis but not karyokinesis. This can explain at least one form of genetic instability that leads to altered DNA content in tumor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7724579

  4. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts.

    PubMed

    Uboldi, Chiara; Urbán, Patricia; Gilliland, Douglas; Bajak, Edyta; Valsami-Jones, Eugenia; Ponti, Jessica; Rossi, François

    2016-03-01

    The wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials. In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size. PMID:26571344

  5. T3 test

    MedlinePlus

    ... Sometimes it can be useful to measure both T3 and T4 when evaluating thyroid function. For example, in some cases of hyperthyroidism , T3 may be increased but T4 may be normal. The T3 test measures the ...

  6. NOD1 activation induces proinflammatory gene expression and insulin resistance in 3T3-L1 adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic inflammation is associated with obesity and insulin resistance. However, the underlying mechanisms are not fully understood. Pattern recognition receptors Toll-like receptors and Nucleotide-oligomerization domain containing proteins play critical roles in innate immune response. Here we repo...

  7. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization.

    PubMed

    Parimala, Mabel; Debjani, M; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family - Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  8. Nymphaea nouchali Burm. f. hydroalcoholic seed extract increases glucose consumption in 3T3-L1 adipocytes through activation of peroxisome proliferator-activated receptor gamma and insulin sensitization

    PubMed Central

    Parimala, Mabel; Debjani, M.; Vasanthi, Hannah Rachel; Shoba, Francis Gricilda

    2015-01-01

    Nymphaea nouchali Burm. f. (Family – Nymphaeaceae) is a well-known medicinal plant used in the Indian ayurvedic system of medicine for treating diabetes. The seeds especially have been prescribed for diabetes. The hydroalcoholic extract of N. nouchali seeds has been demonstrated to possess anti-hyperglycemic effects in diabetic rats, but the functional mechanism remains unknown. The nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ) is noted to play an important role in glucose and lipid homeostasis. This study was hence focused in evaluating the effect of the extract on PPARγ activation, adipocyte differentiation, and glucose consumption in 3T3-L1 cells. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), followed by adipogenesis assay using Oil Red O technique. Glucose consumption of preadipocytes and adipocytes in the presence of the extract was also determined. Real-time polymerase chain reaction was performed to identify the expression of genes involved in glucose consumption in the adipocytes. MTT assay confirmed the extract to be nontoxic, and Oil Red O staining confirmed enhanced adipocyte differentiation of 3T3-L1 cells in a dose-dependent manner. The extract also increased the expression of PPARγ target gene, which in turn enhanced the expression of GLUT-4. The data, therefore, suggests that N. nouchali seed extract promotes adipocyte differentiation and glucose consumption by inducing PPARγ activation, which in turn increases mRNA GLUT-4 expression and subsequently enhances insulin-responsiveness in insulin target tissues. PMID:26605160

  9. Nano-hydroxyapatite particles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats

    NASA Astrophysics Data System (ADS)

    Wang, Liting; Zhou, Gang; Liu, Haifeng; Niu, Xufeng; Han, Jingyun; Zheng, Lisha; Fan, Yubo

    2012-04-01

    While the advantages of nanomaterials are being increasingly recognized, their potential toxicity is drawing more and more attention and concern. In this study, we explore the toxicity mechanism of 20-30 nm rod-shaped hydroxyapatite (HA) nanoparticles in vitro and in vivo. The nanoparticles were prepared by precipitation and characterized by IR, XRD and TEM. Concentrations of 0 μg mL-1, 10 μg mL-1, 100 μg mL-1, 1 mg mL-1, and 10 mg mL-1 were applied to the MC3T3-E1 cells for viability (MTT-test). Based on the characteristic differences of the two methods of cell death, the morphological features of the MC3T3-E1 cell line co-cultured with nano-hydroxyapatite (n-HA) (10 mg mL-1) for 24 h were also observed by TEM. Furthermore, important serum biochemical markers and histopathological examinations were used to evaluate the potential toxicological effect of n-HA on the major organs of SD rats injected intraperitoneally with n-HA (33.3 mg kg-1 body weight). In the results, we found cell growth inhibition and apoptosis in MC3T3-E1 cells co-cultured with n-HA. Moreover, apoptosis but not necrosis was illustrated in liver and renal tissue by using histopathology slices and serum biochemical markers. It suggests that apoptosis may be the possible mechanism of n-HA toxicity and provides a better understanding of the biocompatibility of nanomaterials applied in human bone repair.

  10. Expression of Estrogen Receptor Beta Predicts Oncologic Outcome of pT3 Upper Urinary Tract Urothelial Carcinoma Better Than Aggressive Pathological Features

    PubMed Central

    Luo, Hao Lun; Sung, Ming Tse; Tsai, Eing Mei; Lin, Chang Shen; Lee, Nai Lun; Chung, Yueh-Hua; Chiang, Po Hui

    2016-01-01

    Upper urinary tract urothelial carcinoma (UT-UC) is rare and treatment options or prognostic markers are limited. There is increasing evidence indicating that urothelial carcinoma may be an endocrine-related cancer. The aim of this study was to analyze the prognostic effect of estrogen receptor beta (ERβ) on the outcome of UT-UC. From 2005 to 2012, this study included 105 patients with pT3 UT-UC. Perioperative factors, pathological features, and ERβ immunostaining were reviewed and prognostic effects were examined by multivariate analysis. This study divided patients into either the ERβ-high (n = 52) or ERβ-low (n = 53) group and analyzed their oncologic outcomes. All pathological features except infiltrating tumor architecture (significantly higher incidence in ERβ-low group, p = 0.004) are symmetric in both groups. Low ERβ expression was significantly correlated with local recurrence and distant metastasis in univariate analysis (p = 0.035 and 0.004, respectively) and multivariate analysis (p = 0.05 and 0.008, respectively). Cell line study also proved that knock down of ERβ cause less UTUC proliferation and migration. In addition, ERβ agonist also enhanced the cytotoxic and migration inhibition effect of cisplatin and ERβ antagonist cause the UTUC cell more resistant to cisplatin. This result may help identify patients in need of adjuvant therapy or develop potential targeted therapy. PMID:27052470

  11. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes.

    PubMed

    Cao, Heping; Polansky, Marilyn M; Anderson, Richard A

    2007-03-15

    Cinnamon improves glucose and lipid profiles of people with type 2 diabetes. Water-soluble cinnamon extract (CE) and HPLC-purified cinnamon polyphenols (CP) with doubly linked procyanidin type-A polymers display insulin-like activity. The objective of this study was to investigate the effects of cinnamon on the protein and mRNA levels of insulin receptor (IR), glucose transporter 4 (GLUT4), and tristetraprolin (TTP/ZFP36) in mouse 3T3-L1 adipocytes. Immunoblotting showed that CP increased IRbeta levels and that both CE and CP increased GLUT4 and TTP levels in the adipocytes. Quantitative real-time PCR indicated that CE (100mug/ml) rapidly increased TTP mRNA levels by approximately 6-fold in the adipocytes. CE at higher concentrations decreased IRbeta protein and IR mRNA levels, and its effect on GLUT4 mRNA levels exhibited a biphasic pattern in the adipocytes. These results suggest that cinnamon exhibits the potential to increase the amount of proteins involved in insulin signaling, glucose transport, and anti-inflammatory/anti-angiogenesis response. PMID:17316549

  12. Activation of AMPK participates hydrogen sulfide-induced cyto-protective effect against dexamethasone in osteoblastic MC3T3-E1 cells.

    PubMed

    Yang, Ming; Huang, Yue; Chen, Jia; Chen, Yi-lei; Ma, Jian-jun; Shi, Pei-hua

    2014-11-01

    Long-time glucocorticoids (GCs) usage causes osteoporosis. In the present study, we explored the potential role of hydrogen sulfide (H2S) against dexamethasone (Dex)-induced osteoblast cell damage, and focused on the underlying mechanisms. We showed that two H2S-producing enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), were significantly downregulated in human osteonecrosis tissues as well as in Dex-treated osteoblastic MC3T3-E1 cells. H2S donor NaHS as well as the CBS activator S-adenosyl-l-methionine (SAM) inhibited Dex-induced viability reduction, death and apoptosis in MC3T3-E1 cells. NaHS activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling, which participated its cyto-protective activity. AMPK inhibition by its inhibitor (compound C) or reduction by targeted-shRNA suppressed its pro-survival activity against Dex in MC3T3-E1 cells. Further, we found that NaHS inhibited Dex-mediated reactive oxygen species (ROS) production and ATP depletion. Such effects by NaHS were again inhibited by compound C and AMPKα1-shRNA. In summary, we show that H2S inhibits Dex-induced osteoblast damage through activation of AMPK signaling. H2S signaling might be further investigated as a novel target for anti-osteoporosis treatment. PMID:25445596

  13. Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis.

    PubMed

    Ambati, Suresh; Yang, Jeong-Yeh; Rayalam, Srujana; Park, Hea Jin; Della-Fera, Mary Anne; Baile, Clifton A

    2009-04-01

    This paper describes effects of several sulfur-containing compounds from garlic on the cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. In both preadipocytes and mature adipocytes, 100 and 200 microM ajoene significantly decreased cell viability and increased apoptosis. The effect on apoptosis was further confirmed with Hoechst staining. In contrast, diallyl sulfide, diallyl disulfide, diallyl trisulfide, deoxyalliin, and allyl methyl sulfide had no significant effect on cell viability or apoptosis in either preadipocytes or mature adipocytes. In maturing preadipocytes ajoene significantly decreased lipid accumulation in a dose-dependent manner and these results were further confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. There was no significant change in lipid accumulation in maturing preadipocytes treated with other garlic derivatives. Thus, despite the same source of origin, garlic, ajoene was the only one with potent effects on cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. PMID:19051208

  14. Activation of AMP-Activated Protein Kinase Attenuates Tumor Necrosis Factor-α-Induced Lipolysis via Protection of Perilipin in 3T3-L1 Adipocytes

    PubMed Central

    Hong, Seok-Woo; Lee, Jinmi; Park, Se Eun; Rhee, Eun-Jung; Park, Cheol-Young; Oh, Ki-Won; Park, Sung-Woo

    2014-01-01

    Background Tumor necrosis factor (TNF)-α and AMP-activated protein kinase (AMPK) are known to stimulate and repress lipolysis in adipocytes, respectively; however, the mechanisms regulating these processes have not been completely elucidated. Methods The key factors and mechanism of action of TNF-α and AMPK in lipolysis were investigated by evaluating perilipin expression and activity of protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 α (eIF2α) by Western blot and an immunofluorescence assay in 24-hour TNF-α-treated 3T3-L1 adipocytes with artificial manipulation of AMPK activation. Results Enhancement of AMPK activity by the addition of activator minoimidazole carboxamide ribonucleotide (AICAR) suppressed TNF-α-induced lipolysis, whereas the addition of compound C, an inhibitor of AMPK phosphorylation, enhanced lipolysis. Perilipin, a lipid droplet-associated protein, was decreased by TNF-α and recovered following treatment with AICAR, showing a correlation with the antilipolytic effect of AICAR. Significant activation of PERK/eIF2α, a component of the unfolded protein response signaling pathway, was observed in TNF-α or vesicle-treated 3T3-L1 adipocytes. The antilipolytic effect and recovery of perilipin expression by AICAR in TNF-α-treated 3T3-L1 adipocytes were significantly diminished by treatment with 2-aminopurine, a specific inhibitor of eIF2α. Conclusion These data indicated that AICAR-induced AMPK activation attenuates TNF-α-induced lipolysis via preservation of perilipin in 3T3-L1 adipocytes. In addition, PERK/eIF2α activity is a novel mechanism of the anti-lipolytic effect of AICAR. PMID:25325265

  15. Blueberry Peel Extracts Inhibit Adipogenesis in 3T3-L1 Cells and Reduce High-Fat Diet-Induced Obesity

    PubMed Central

    Jang, Sun-Hee; Lee, Soo-Jung; Ko, Yeoung-Gyu; Kim, Gon-Sup; Cho, Jae-Hyeon

    2013-01-01

    This study examined the anti-obesity effect and mechanism of action of blueberry peel extracts (BPE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese rats. The levels of lipid accumulation were measured, along with the changes in the expression of genes and proteins associated with adipocyte differentiation in 3T3-L1 cells. Evidenced by Oil-red O staining and triglyceride assay, BPE dose-dependently inhibited lipid accumulation at concentrations of 0, 50, and 200 µg/ml. BPE decreased the expression of the key adipocyte differentiation regulator C/EBPβ, as well as the C/EBPα and PPARγ genes, during the differentiation of preadipocytes into adipocytes. Moreover, BPE down-regulated adipocyte-specific genes such as aP2 and FAS compared with control adipocytes. The specific mechanism mediating the effects of BP revealed that insulin-stimulated phosphorylation of Akt was strongly decreased, and its downstream substrate, phospho-GSK3β, was downregulated by BPE treatment in 3T3-L1 cells. Together, these data indicated that BP exerted anti-adipogenic activity by inhibiting the expression of PPARγ and C/EBPβ and the Akt signaling pathway in 3T3-L1 adipocytes. Next, we investigated whether BP extracts attenuated HFD-induced obesity in rats. Oral administration of BPE reduced HFD-induced body weight gain significantly without affecting food intake. The epididymal or perirenal adipose tissue weights were lower in rats on an HFD plus BPE compared with the tissue weights of HFD-induced obese rats. Total cholesterol and triglyceride levels in the rats fed BPE were modestly reduced, and the HDL-cholesterol level was significantly increased in HFD plus BP-fed rats compared with those of HFD-fed rats. Taken together, these results demonstrated an inhibitory effect of BP on adipogenesis through the down-regulation of C/EBPβ, C/EBPα, and PPARγ and the reduction of the phospho-Akt adipogenic factor in 3T3-L1 cells. Moreover, BPE reduced body weight gain and inhibited fat accumulation in an HFD-induced animal model of obesity. PMID:23936120

  16. The micosporine-like amino acids-rich aqueous methanol extract of laver (Porphyra yezoensis) inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes

    PubMed Central

    Kim, Hyunhee; Lee, Yunjung; Han, Taejun

    2015-01-01

    BACKGROUND/OBJECTIVES Increased mass of adipose tissue in obese persons is caused by excessive adipogenesis, which is elaborately controlled by an array of transcription factors. Inhibition of adipogenesis by diverse plant-derived substances has been explored. The aim of the current study was to examine the effects of the aqueous methanol extract of laver (Porphyra yezoensis) on adipogenesis and apoptosis in 3T3-L1 adipocytes and to investigate the mechanism underlying the effect of the laver extract. MATERIALS/METHODS 3T3-L1 cells were treated with various concentrations of laver extract in differentiation medium. Lipid accumulation, expression of adipogenic proteins, including CCAAT enhancer-binding protein α, peroxisome proliferator-activated receptor γ, fatty acid binding protein 4, and fatty acid synthase, cell viability, apoptosis, and the total content and the ratio of reduced to oxidized forms of glutathione (GSH/GSSG) were analyzed. RESULTS Treatment with laver extract resulted in a significant decrease in lipid accumulation in 3T3-L1 adipocytes, which showed correlation with a reduction in expression of adipogenic proteins. Treatment with laver extract also resulted in a decrease in the viability of preadipocytes and an increase in the apoptosis of mature adipocytes. Treatment with laver extract led to exacerbated depletion of cellular glutathione and abolished the transient increase in GSH/GSSG ratio during adipogenesis in 3T3-L1 adipocytes. CONCLUSION Results of our study demonstrated that treatment with the laver extract caused inhibition of adipogenesis, a decrease in proliferation of preadipocytes, and an increase in the apoptosis of mature adipocytes. It appears that these effects were caused by increasing oxidative stress, as demonstrated by the depletion and oxidation of the cellular glutathione pool in the extract-treated adipocytes. Our results suggest that a prooxidant role of laver extract is associated with its antiadipogenic and proapoptotic effects. PMID:26634047

  17. Mammalian target of rapamycin complex 1 (mTORC1) plays a role in Pasteurella multocida toxin (PMT)-induced protein synthesis and proliferation in Swiss 3T3 cells.

    PubMed

    Oubrahim, Hammou; Wong, Allison; Wilson, Brenda A; Chock, P Boon

    2013-01-25

    Pasteurella multocida toxin (PMT) is a potent mitogen known to activate several signaling pathways via deamidation of a conserved glutamine residue in the α subunit of heterotrimeric G-proteins. However, the detailed mechanism behind mitogenic properties of PMT is unknown. Herein, we show that PMT induces protein synthesis, cell migration, and proliferation in serum-starved Swiss 3T3 cells. Concomitantly PMT induces phosphorylation of ribosomal S6 kinase (S6K1) and its substrate, ribosomal S6 protein (rpS6), in quiescent 3T3 cells. The extent of the phosphorylation is time and PMT concentration dependent, and is inhibited by rapamycin and Torin1, the two specific inhibitors of the mammalian target of rapamycin complex 1 (mTORC1). Interestingly, PMT-mediated mTOR signaling activation was observed in MEF WT but not in Gα(q/11) knock-out cells. These observations are consistent with the data indicating that PMT-induced mTORC1 activation proceeds via the deamidation of Gα(q/11), which leads to the activation of PLCβ to generate diacylglycerol and inositol trisphosphate, two known activators of the PKC pathway. Exogenously added diacylglycerol or phorbol 12-myristate 13-acetate, known activators of PKC, leads to rpS6 phosphorylation in a rapamycin-dependent manner. Furthermore, PMT-induced rpS6 phosphorylation is inhibited by PKC inhibitor, Gö6976. Although PMT induces epidermal growth factor receptor activation, it exerts no effect on PMT-induced rpS6 phosphorylation. Together, our findings reveal for the first time that PMT activates mTORC1 through the Gα(q/11)/PLCβ/PKC pathway. The fact that PMT-induced protein synthesis and cell migration is partially inhibited by rapamycin indicates that these processes are in part mediated by the mTORC1 pathway. PMID:23223576

  18. Transcriptional modulation by n-butyric acid of beta 1-, beta 2-, and beta 3-adrenergic receptor balance in 3T3-F442A adipocytes.

    PubMed

    Krief, S; Fève, B; Baude, B; Zilberfarb, V; Strosberg, A D; Pairault, J; Emorine, L J

    1994-03-01

    3T3-F442A adipocytes, which express major beta 3-adrenergic receptors (beta 3-AR) (90%) and minor beta 1-AR (< 10%) and beta 2-AR (< 1%) populations, were used to investigate regulation by n-butyric acid of beta-AR subtype expression. Following butyrate treatment, EC50 values of beta 1- and beta 2-selective agonists, dobutamine and fenoterol, were decreased, whereas that of the beta 3-selective agonist BRL37344 was increased. Direct binding and competition of (-)-[125I]iodocyanopindolol binding by selective beta 1- and beta 2-AR antagonists, CGP20712A and ICI118551, and by the beta 3-AR agonist, BRL37344, revealed that both beta 1- and beta 2-AR were increased in butyrate-treated adipocytes, whereas beta 3-AR almost totally disappeared. In control adipocytes, beta 1-, beta 2-, and beta 3-AR transcripts (quantitated by a polymerase chain reaction assay) represented 6.5, 0.5, and 93% of total beta-AR mRNA, respectively. In butyrate-exposed cells, proportions of beta-AR proteins and mRNAs were, respectively, 87 and 94% for beta 1 and 9 and 1% for beta 2-AR. beta 3-ARs were barely detectable in binding assays and accounted for 4.5% of beta-AR transcripts. Variations of beta-AR protein and mRNA levels were accompanied by parallel changes in the transcription rates of the corresponding genes. The differential regulation of the three beta-ARs by n-butyric acid, a dietary factor produced from colonic fermentation, may have significant nutritional and energetic consequences. PMID:8120022

  19. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    PubMed

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells. PMID:25685661

  20. The β-SiC nanowires (~100 nm) induce apoptosis via oxidative stress in mouse osteoblastic cell line MC3T3-E1.

    PubMed

    Xie, Weili; Xie, Qi; Jin, Meishan; Huang, Xiaoxiao; Zhang, Xiaodong; Shao, Zhengkai; Wen, Guangwu

    2014-01-01

    Silicon carbide (SiC), a compound of silicon and carbon, with chemical formula SiC, the beta modification ( β-SiC), with a zinc blende crystal structure (similar to diamond), is formed at temperature below 1700°C. β-SiC will be the most suitable ceramic material for the future hard tissue replacement, such as bone and tooth. The in vitro cytotoxicity of β-SiC nanowires was investigated for the first time. Our results indicated that 100 nm long SiC nanowires could significantly induce the apoptosis in MC3T3-E1 cells, compared with 100 μm long SiC nanowires. And 100 nm long SiC nanowires increased oxidative stress in MC3T3-E1 cells, as determined by the concentrations of MDA (as a marker of lipid peroxidation) and 8-OHdG (indicator of oxidative DNA damage). Moreover, transmission electron microscopy (TEM) was performed to evaluate the morphological changes of MC3T3-E1 cells. After treatment with 100 nm long SiC nanowires, the mitochondria were swelled and disintegrated, and the production of ATP and the total oxygen uptake were also decreased significantly. Therefore, β-SiC nanowires may have limitations as medical material. PMID:24967352

  1. Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3-E1 cells

    SciTech Connect

    Matsumoto, T.; Igarashi, C.; Takeuchi, Y.; Harada, S.; Kikuchi, T.; Yamato, H.; Ogata, E. )

    1991-01-01

    Although vitamin D is essential for mineralization of bone, it is as yet unclear whether vitamin D has a direct stimulatory effect on the bone mineralization process. In the present study, the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro mineralization mediated by osteoblast-like MC3T3-E1 cells was examined. MC3T3-E1 cells continued to grow after they reached confluency, and DNA content and alkaline phosphatase activity increased linearly until about 16 days of culture, whereas 45Ca accumulation into cell and matrix layer remained low. After this period, DNA content plateaued, and 45Ca accumulation increased sharply. Histological examination by von Kossa staining revealed that calcium was accumulated into extracellular matrix. In addition, needle-shaped mineral crystals similar to hydroxyapatite crystals could be demonstrated in between collagen fibrils by electron microscopy. Thus, MC3T3-E1 cells differentiate in vitro into cells with osteoblastic phenotype and exhibit mineralization. When MC3T3-E1 cells were treated with 1,25(OH)2D3 at this stage of culture, there was a dose-dependent stimulation of 45Ca accumulation by 1,25(OH)2D3, and a significant stimulation of 45Ca accumulation was observed with 3 x 10(-10) M 1,25(OH)2D3. Although 1,25(OH)2D3 enhanced alkaline phosphatase activity and collagen synthesis at the early phase of culture, it did not affect any of these parameters at the late phase when 1,25(OH)2D3 stimulated mineralization. Neither 24,25-dihydroxyvitamin D3 nor human PTH(1-34) affected mineralization in the presence or absence of 1,25(OH)2D3. These results demonstrate that 1,25(OH)2D3 stimulates matrix mineralization induced by osteoblastic MC3T3-E1 cells, and are consistent with the possibility that 1,25(OH)2D3 has a direct stimulatory effect on bone mineralization process.

  2. Amelioration of Mitochondrial Dysfunction-Induced Insulin Resistance in Differentiated 3T3-L1 Adipocytes via Inhibition of NF-κB Pathways

    PubMed Central

    Hafizi Abu Bakar, Mohamad; Sarmidi, Mohamad Roji; Kai, Cheng Kian; Huri, Hasniza Zaman; Yaakob, Harisun

    2014-01-01

    A growing body of evidence suggests that activation of nuclear factor kappa B (NF-κB) signaling pathways is among the inflammatory mechanism involved in the development of insulin resistance and chronic low-grade inflammation in adipose tissues derived from obese animal and human subjects. Nevertheless, little is known about the roles of NF-κB pathways in regulating mitochondrial function of the adipose tissues. In the present study, we sought to investigate the direct effects of celastrol (potent NF-κB inhibitor) upon mitochondrial dysfunction-induced insulin resistance in 3T3-L1 adipocytes. Celastrol ameliorates mitochondrial dysfunction by altering mitochondrial fusion and fission in adipocytes. The levels of oxidative DNA damage, protein carbonylation and lipid peroxidation were down-regulated. Further, the morphology and quantification of intracellular lipid droplets revealed the decrease of intracellular lipid accumulation with reduced lipolysis. Moreover, massive production of the pro-inflammatory mediators tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were markedly depleted. Insulin-stimulated glucose uptake activity was restored with the enhancement of insulin signaling pathways. This study signified that the treatments modulated towards knockdown of NF-κB transcription factor may counteract these metabolic insults exacerbated in our model of synergy between mitochondrial dysfunction and inflammation. These results demonstrate for the first time that NF-κB inhibition modulates mitochondrial dysfunction induced insulin resistance in 3T3-L1 adipocytes. PMID:25474091

  3. Eucommia ulmoides Oliv. antagonizes H2O2-induced rat osteoblastic MC3T3-E1 apoptosis by inhibiting expressions of caspases 3, 6, 7, and 9*

    PubMed Central

    Lin, Jun; Fan, Yi-jing; Mehl, Christian; Zhu, Jia-jun; Chen, Hong; Jin, Ling-yan; Xu, Jing-hong; Wang, Hui-ming

    2011-01-01

    Eucommia ulmoides Oliv. (EuO), also known as Duzhong, native to China, has been reported to have antioxidative function, but its cellular mechanism is not fully examined yet. We investigated inhibitory effects of EuO leaf ethanol extracts on H2O2-induced apoptosis in rat osteoblastic MC3T3-E1 cells and underlying mechanisms. Locally-grown Duzhong leaves were extracted with ethanol. MC3T3-E1 cells were treated with EuO (6.25, 12.5, 25, 50, and 100 µg/ml) for 24 h, and then H2O2 (800 µmol/L) for an additional 24 h. Cell survival rate, percentage of apoptosis, and expressions of caspases 3, 6, 7, and 9 were examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, microscopic analysis, Western blotting, and reverse transcription polymerase chain reaction (RT-PCR). The final EuO leaf ethanol extract powder was detected to contain caffeotannic acid at 58 mg/g and geniposide at 3.45 mg/g by high performance liquid chromatography (HPLC). EuO remarkably restrained cell oxidative damage and increased cell survival rate in a dose-dependent manner: 0 µg/ml, 0.21; 6.25 µg/ml, 0. 28; 12.5 µg/ml, 0.31; 25 µg/ml, 0.48; 50 µg/ml, 0.54; and 100 µg/ml, 0.66 (P<0.05), with the half-effective concentration being around 25 µg/ml. MTT results were confirmed by microscopic analysis. Western blotting and RT-PCR analyses showed that the expressions of caspases 3, 6, 7, and 9 were significantly decreased in the EuO-treated cells compared with the control (EuO- and H2O2-free) (P<0.05), with the half-effective concentration of EuO ranging from 12.5 to 25 µg/ml. We conclude that the ethanol-extracted EuO leaf extracts promoted the growth of MC3T3-E1 cells, and suppressed the H2O2-induced apoptosis in a rat MC3T3-E1 osteogenic cell model, likely due to the inhibition of caspases’ activities. The results indicate that EuO is a potent antioxidant, which may contribute to its many cellular protective functions, including the promotion of bone growth. PMID:21194186

  4. Genome-wide analysis of thapsigargin-induced microRNAs and their targets in NIH3T3 cells

    PubMed Central

    Groenendyk, Jody; Fan, Xiao; Peng, Zhenling; Ilnytskyy, Yaroslav; Kurgan, Lukasz; Michalak, Marek

    2014-01-01

    Disruption of the endoplasmic reticulum (ER) homeostasis is the cause of ER stress. We performed microRNA (miRNA) analysis (deep sequencing) to search for coping responses (including signaling pathways) induced by disrupted ER Ca2 + homeostasis. Our focus was on a specific branch of UPR namely the bi-functional protein kinase/endoribonuclease inositol-requiring element 1α (IRE1α). Activated IRE1α undergoes autophosphorylation and oligomerization, leading to the activation of the endoribonuclease domain and splicing of the mRNA encoding XBP1 specific transcription factor. This processing changes the coding reading frame, producing a potent transcription factor termed XBP1s. We utilized the XBP1 splicing luciferase reporter to screen for modulators of the IRE1α branch of the unfolded protein response (UPR). Here, we describe a detailed experimental design and bioinformatics analysis of ER Ca2 + depletion (thapsigargin treated)-induced microRNA (deep sequencing) profile. The data can be access at the Gene Expression Omnibus (GEO), the National Center for Biotechnology Information (NCBI), reference number GSE57138. PMID:26484121

  5. Calcium phosphate nanoparticles carrying BMP-7 plasmid DNA induce an osteogenic response in MC3T3-E1 pre-osteoblasts.

    PubMed

    Hadjicharalambous, Chrystalleni; Kozlova, Diana; Sokolova, Viktoriya; Epple, Matthias; Chatzinikolaidou, Maria

    2015-12-01

    Functionalized calcium phosphate nanoparticles with osteogenic activity were prepared. Polyethyleneimine-stabilized calcium phosphate nanoparticles were coated with a shell of silica and covalently functionalized by silanization with thiol groups. Between the calcium phosphate surface and the outer silica shell, plasmid DNA which encoded either for bone morphogenetic protein 7 (BMP-7) or for enhanced green fluorescent protein was incorporated as cargo. The plasmid DNA-loaded calcium phosphate nanoparticles were used for the transfection of the pre-osteoblastic MC3T3-E1 cells. The cationic nanoparticles showed high transfection efficiency together with a low cytotoxicity. Their potential to induce an osteogenic response by transfection was demonstrated by measuring the alkaline phosphatase (ALP) activity and calcium deposition with alizarin red staining. The expression of the osteogenic markers Alp, Runx2, ColIa1 and Bsp was investigated by means of real-time quantitative polymerase chain reaction. It was shown that phBMP-7-loaded nanoparticles can provide a means of transient transfection and localized production of BMP-7 in MC3T3-E1 cells, with a subsequent increase of two osteogenic markers, specifically ALP activity and calcium accumulation in the extracellular matrix. Future strategies to stimulate bone regeneration focus into enhancing transfection efficiency and achieving higher levels of BMP-7 produced by the transfected cells. PMID:26097146

  6. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  7. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  8. Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling

    PubMed Central

    Pengjam, Yutthana; Madhyastha, Harishkumar; Madhyastha, Radha; Yamaguchi, Yuya; Nakajima, Yuichi; Maruyama, Masugi

    2016-01-01

    Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific. Alizarin red S staining revealed a significant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influence of aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influence of aloin on ALP activity, confirming that aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway. PMID:26869456

  9. Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling.

    PubMed

    Pengjam, Yutthana; Madhyastha, Harishkumar; Madhyastha, Radha; Yamaguchi, Yuya; Nakajima, Yuichi; Maruyama, Masugi

    2016-03-01

    Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific.Alizarin red S staining revealed a signifiant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influenceof aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influenceof aloin on ALP activity, confirmingthat aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway. PMID:26869456

  10. T3 (Triiodothyronine) Test

    MedlinePlus

    ... and may be affected by: Increases, decreases, and changes (inherited or acquired) in the proteins that bind T4 and T3 Pregnancy Estrogen and other drugs Liver disease Systemic illness Resistance to thyroid hormones Many medications—including estrogen, certain ...

  11. HSP110 expression is induced by cadmium exposure but is dispensable for cell survival of mouse NIH3T3 fibroblasts.

    PubMed

    Ridley, Wakako; Nishitai, Gen; Matsuoka, Masato

    2010-05-01

    The effects of cadmium exposure on the expression of HSP110 were examined in mouse NIH3T3 fibroblasts. Following exposure to cadmium chloride, the level of HSP110 and HSP70 proteins increased after 3h and remained elevated at 24h. Similarly, their mRNA levels increased markedly in response to cadmium exposure. Treatment with 10μM mercury chloride, another toxic metal compound, also induced expression of HSP110; however, HSP110 expression was not induced in cells exposed to the same concentration of manganese chloride, zinc chloride, or lead chloride for 6 or 24h. Silencing of HSP110 expression using short-interference RNA did not affect cadmium-induced cellular damage. These results show that cadmium exposure induces the expression of high molecular weight chaperone HSP110 as well as the well-known HSP70, but indicate that HSP110 does not play a major role in cell survival following cadmium exposure. PMID:21787611

  12. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    PubMed

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  13. Cinnamon Extract Enhances Glucose Uptake in 3T3-L1 Adipocytes and C2C12 Myocytes by Inducing LKB1-AMP-Activated Protein Kinase Signaling

    PubMed Central

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  14. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway

    PubMed Central

    Lee, Ji-Hye; Kim, Taesoo; Lee, Jung-Jin; Lee, Kwang Jin; Kim, Hyun-Kyu; Yun, Bora; Jeon, Jongwook; Kim, Sang Kyum; Ma, Jin Yeul

    2015-01-01

    The aim of this study was to investigate whether a novel formulation of an herbal extract, KBH-1, has an inhibitory effect on obesity. To determine its anti-obesity effects and its underlying mechanism, we performed anti-obesity-related experiments in vitro and in vivo. 3T3-L1 preadipocytes were analyzed for lipid accumulation as well as the protein and gene expression of molecular targets involved in fatty acid synthesis. To determine whether KBH-1 oral administration results in a reduction in high-fat diet (HFD)-induced obesity, we examined five groups (n = 9) of C57BL/6 mice as follows: 10% kcal fat diet-fed mice (ND), 60% kcal fat diet-fed mice (HFD), HFD-fed mice treated with orlistat (tetrahydrolipstatin, marketed under the trade name Xenical), HFD-fed mice treated with 150 mg/kg KBH-1 (KBH-1 150) and HFD-fed mice treated with 300 mg/kg KBH-1 (KBH-1 300). During adipogenesis of 3T3-L1 cells in vitro, KBH-1 significantly reduced lipid accumulation and down-regulated the expression of master adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP) β, C/EBP α and peroxisome proliferation-activity receptor (PPAR) γ, which led to the suppression of the expression of several adipocyte-specific genes and proteins. KBH-1 also markedly phosphorylated the adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). In addition, KBH-1-induced the inhibition effect on lipid accumulation and AMPK-mediated signal activation were decreased by blocking AMPK phosphorylation using AMPK siRNA. Furthermore, daily oral administration of KBH-1 resulted in dose-dependent decreases in body weight, fat pad mass and fat tissue size without systemic toxicity. These results suggest that KBH-1 inhibits lipid accumulation by down-regulating the major transcription factors of the adipogenesis pathway by regulating the AMPK pathway in 3T3-L1 adipocytes and in mice with HFD-induced obesity. These results implicate KBH-1, a safe herbal extract, as a potential anti-obesity therapeutic agent. PMID:26649747

  15. SPARC is over-expressed in adipose tissues of diet-induced obese rats and causes insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Shen, Yang; Zhao, Yuyan; Yuan, Lizhi; Yi, Wei; Zhao, Rui; Yi, Qianru; Yong, Tongwu

    2014-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a secretory multifunctional matricellular glycoprotein. High circulating levels of SPARC have been reported to be associated with obesity and insulin resistance. The aim of the present study was to investigate whether SPARC induces insulin resistance and mitochondrial dysfunction in adipocytes. Our results showed that feeding high fat diet to rats for 12 weeks significantly increased SPARC expression in adipose tissues at both mRNA and protein levels. Moreover, SPARC overexpression in stably transfected 3T3-L1 cells induced insulin resistance and mitochondrial dysfunction, as evidenced by inhibition of insulin-stimulated glucose transport, lower ATP synthesis and mitochondrial membrane potential, reduced expression of glucose transporter 4 (GLUT4), and increased levels of reactive oxygen species (ROS) in mature adipocytes. Finally, overexpression of SPARC also modulated the expression levels of several inflammatory cytokines, which play important roles in insulin resistance, glucose and lipid metabolism during adipogenesis. In conclusion, our data suggest that SPARC is involved in obesity-induced adipose insulin resistance and may serve as a potential target in the treatment of obesity and obesity-related insulin resistance. PMID:23910024

  16. Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid beta-oxidation and glucose.

    PubMed

    Vankoningsloo, Sbastien; Piens, Marie; Lecocq, Christophe; Gilson, Audrey; De Pauw, Aurlia; Renard, Patricia; Demazy, Catherine; Houbion, Andre; Raes, Martine; Arnould, Thierry

    2005-06-01

    Mitochondrial cytopathy has been associated with modifications of lipid metabolism in various situations, such as the acquisition of an abnormal adipocyte phenotype observed in multiple symmetrical lipomatosis or triglyceride (TG) accumulation in muscles associated with the myoclonic epilepsy with ragged red fibers syndrome. However, the molecular signaling leading to fat metabolism dysregulation in cells with impaired mitochondrial activity is still poorly understood. Here, we found that preadipocytes incubated with inhibitors of mitochondrial respiration such as antimycin A (AA) accumulate TG vesicles but do not acquire specific markers of adipocytes. Although the uptake of TG precursors is not stimulated in 3T3-L1 cells with impaired mitochondrial activity, we found a strong stimulation of glucose uptake in AA-treated cells mediated by calcium and phosphatidylinositol 3-kinase/Akt1/glycogen synthase kinase 3beta, a pathway known to trigger the translocation of glucose transporter 4 to the plasma membrane in response to insulin. TG accumulation in AA-treated cells is mediated by a reduced peroxisome proliferator-activated receptor gamma activity that downregulates muscle carnitine palmitoyl transferase-1 expression and fatty acid beta-oxidation, and by a direct conversion of glucose into TGs accompanied by the activation of carbohydrate-responsive element binding protein, a lipogenic transcription factor. Taken together, these results could explain how mitochondrial impairment leads to the multivesicular phenotype found in some mitochondria-originating diseases associated with a dysfunction in fat metabolism. PMID:15741651

  17. Cucumis melo ssp. Agrestis var. Agrestis Ameliorates High Fat Diet Induced Dyslipidemia in Syrian Golden Hamsters and Inhibits Adipogenesis in 3T3-L1 Adipocytes

    PubMed Central

    Shankar, Kripa; Singh, Sumit K.; Kumar, Durgesh; Varshney, Salil; Gupta, Abhishek; Rajan, Sujith; Srivastava, Ankita; Beg, Muheeb; Srivastava, Anurag Kumar; Kanojiya, Sanjeev; Mishra, Dipak K.; Gaikwad, Anil N.

    2015-01-01

    Background: Cucumis melo ssp. agrestis var. agrestis (CMA) is a wild variety of C. melo. This study aimed to explore anti-dyslipidemic and anti-adipogenic potential of CMA. Materials and Methods: For initial anti-dyslipidemic and antihyperglycemic potential of CMA fruit extract (CMFE), male Syrian golden hamsters were fed a chow or high-fat diet with or without CMFE (100 mg/kg). Further, we did fractionation of this CMFE into two fractions namely; CMA water fraction (CMWF) and CMA hexane fraction (CMHF). Phytochemical screening was done with liquid chromatography-mass spectrometry LC- (MS)/MS and direct analysis in real time-MS to detect active compounds in the fractions. Further, high-fat diet fed dyslipidemic hamsters were treated with CMWF and CMHF at 50 mg/kg for 7 days. Results: Oral administration of CMFE and both fractions (CMWF and CMHF) reduced the total cholesterol, triglycerides, low‐density lipoprotein cholesterol, and very low‐density lipoprotein-cholesterol levels in high fat diet-fed dyslipidemic hamsters. CMHF also modulated expression of genes involved in lipogenesis, lipid metabolism, and reverse cholesterol transport. Standard biochemical diagnostic tests suggested that neither of fractions causes any toxicity to hamster liver or kidneys. CMFE and CMHF also decreased oil-red-O accumulation in 3T3-L1 adipocytes. Conclusion: Based on these results, it is concluded that CMA possesses anti-dyslipidemic and anti-hyperglycemic activity along with the anti-adipogenic activity. SUMMARY The oral administration of Cucumis melo agrestis fruit extract (CMFE) and its fractions (CMWF and CMHF) improved serum lipid profile in HFD fed dyslipidemic hamsters.CMFE, CMWF and CMHF significantly attenuated body weight gain and eWAT hypertrophy.The CMHF decreased lipogenesis in both liver and adipose tissue.CMFE and CMHF also inhibited adipogenesis in 3T3-L1 adipocytes. Abbreviation used: CMA: Cucumis melo ssp. agrestis var. agrestis, CMFE: CMA fruit extract, CMWF: CMA water fraction, CMHF: CMA hexane fraction, FAS: Fatty acid synthase, SREBP1c: Sterol regulatory element binding protein 1c, ACC: Acetyl CoA carboxylase, LXR α: Liver X receptor α. PMID:27013786

  18. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway

    NASA Technical Reports Server (NTRS)

    Hatton, Jason P.; Pooran, Milad; Li, Chai-Fei; Luzzio, Chris; Hughes-Fulford, Millie

    2003-01-01

    Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.

  19. Anti-Obesity Effects of Soy Leaf via Regulation of Adipogenic Transcription Factors and Fat Oxidation in Diet-Induced Obese Mice and 3T3-L1 Adipocytes.

    PubMed

    Li, Hua; Kang, Ji-Hyun; Han, Jong-Min; Cho, Moon-Hee; Chung, Young-Jin; Park, Ki Hun; Shin, Dong-Ha; Park, Ho-Yong; Choi, Myung-Sook; Jeong, Tae-Sook

    2015-08-01

    The anti-obesity effects of extracts from soy leaves (SLE) cultivated for 8 weeks (8W) or 16 weeks (16W) were investigated in diet-induced obese mice. The effects of kaempferol, an aglycone of the kaempferol glycosides that are the major component of 8W-SLE, and coumestrol, the major component of 16W-SLE, were also investigated in 3T3-L1 adipocytes. Eight-week-old male C57BL/6J mice were randomly divided into normal diet, high-fat diet (HFD), 8W-SLE (HFD+8W-SLE 50 mg kg(-1) day(-1)), 16W-SLE (HFD+16W-SLE 50 mg kg(-1) day(-1)), and Garcinia cambogia extracts (GE) (HFD+GE 50 mg kg(-1) day(-1)) groups. Body weight gain and fat accumulation of white adipose tissue (WAT) were highly suppressed by daily oral administration of 8W-SLE and 16W-SLE for 10 weeks. Supplementing a HFD with 8W-SLE and 16W-SLE regulated the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (c/EBPα), sterol regulatory element-binding protein-1 (SREBP-1), adipocyte protein 2, and fatty acid synthase (FAS), which are related to adipogenesis, in addition to hormone-sensitive lipase (HSL), carnitine palmitoyl transferase 1 (CPT-1), and uncoupling protein 2 (UCP2), which are related to fat oxidation in WAT. In 3T3-L1 adipocytes, kaempferol and coumestrol exhibited anti-adipogenic effects via downregulation of PPARγ, c/EBPα, SREBP-1, and FAS. Kaempferol and coumestrol increased the expression of HSL, CPT-1, and UCP2. PMID:25826408

  20. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A/sub 2/

    SciTech Connect

    Burch, R.M.; Axelrod, J.

    1987-09-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E/sub 2/ (PGE/sub 2/) synthesis. The EC/sub 50/ values for stimulation of PGE/sub 2/ synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-(..gamma..-thio)triphosphate stimulated PGE/sub 2/ synthesis and InsP formation, and guanosine-5'-(..beta..-thio)diphosphate inhibited both PGE/sub 2/ synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE/sub 2/ synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE/sub 2/ synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE/sub 2/ synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE/sub 2/ synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with (/sup 3/H) choline, the phospholipase A/sub 2/ products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A/sub 2/ and that phospholipase A/sub 2/ is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis.

  1. The role of LFA-1 in osteoclast development induced by co-cultures of mouse bone marrow cells and MC3T3-G2/PA6 cells.

    PubMed

    Tani-Ishii, N; Penninger, J M; Matsumoto, G; Teranaka, T; Umemoto, T

    2002-06-01

    Interactions between leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) influence the development of osteoclasts. However, little is known about how these adhesion molecules are involved in the process of osteoclast development. This study evaluated the role of LFA-1 and its ligands in osteoclast development and bone resorption. Co-cultures of bone marrow cells from LFA-1-deficient mice and MC3T3-G2/PA6 (PA6) cells were cultured in the presence of 1alpha,25(OH)2D3 and dexamethasone for 7 days. The number of TRAP-positive cells that were generated by bone marrow cells from LFA-1-deficient mice was smaller than that generated by bone marrow cells from wild-type mice. In addition, the bone-resorbing activity of osteoclast-like cells that were generated from LFA-1-deficient mice was lower than that generated by osteoclast-like cells from wild-type mice. Immunofluorescence flow cytometry showed that osteoclast stromal PA6 cells expressed the cell adhesion molecules, ICAM-1 and VCAM-1. When monoclonal antibodies to mice VCAM-1, CD11b or CD18 were added separately to the co-culture system, the number of TRAP-positive cells that were generated from LFA-1-deficient mice was 20-30% smaller than that generated from wild-type mice. The formation of TRAP-positive cells from both LFA-1 deficient and wild-type mice was especially inhibited by anti-CD18 antibody, in comparison to the addition of normal IgG serum. These results suggest that LFA-1 adhesion molecules play a role in osteoclast development by affecting adhesion between stromal cells and osteoclast progenitors before the occurrence of ODF-ODF receptor signaling. CD18 appears to be a key adhesion molecule in cell-to-cell contacts during the early stage of osteoclast development. PMID:12113552

  2. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    SciTech Connect

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content approx. 50-fold and their carboxypeptidase. A content approx. 100-fold, and augment approx. their biosynthesis of proteoglycans bearing /sup 35/S-labeled haparin relative to /sup 35/S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment.

  3. Stinging Nettle (Urtica dioica L.) Attenuates FFA Induced Ceramide Accumulation in 3T3-L1 Adipocytes in an Adiponectin Dependent Manner

    PubMed Central

    Obanda, Diana N.; Zhao, Peng; Richard, Allison J.; Ribnicky, David; Cefalu, William T.; Stephens, Jacqueline M.

    2016-01-01

    Objective Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes. Research Design We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid) induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined. Results As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation. Conclusions In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial. PMID:26939068

  4. Amiodarone is a dose-dependent noncompetitive and competitive inhibitor of T3 binding to thyroid hormone receptor subtype beta 1, whereas disopyramide, lignocaine, propafenone, metoprolol, dl-sotalol, and verapamil have no inhibitory effect.

    PubMed

    Drvota, V; Carlsson, B; Häggblad, J; Sylvén, C

    1995-08-01

    The cardiovascular and electrophysiological effects of amiodarone resemble those of hypothyroidism. The drug has a structural resemblance to thyroid hormone (T3). Previous studies indicate that amiodarone exerts its major effect through antagonism of T3, probably as a result of inhibition of ligand binding to the thyroid hormone receptor (ThR). There are five subtypes of ThR, of which the beta 1 is the most prominent in the human heart. Our first aim was to investigate whether ThR is involved in a general antiarrhythmic mechanism for antiarrhythmic drugs or whether this action is specific for amiodarone. Therefore, we studied the affinity of one antiarrhythmic drug from every Vaughan-Williams group on T3 binding to human ThR beta 1 (hThR beta 1). Second, we wished to investigate whether amiodarone is a competitive or noncompetitive inhibitor. hThR beta 1, expressed in insect cells using a recombinant baculovirus, was used in regular binding competition assays. Disopyramide, lignocaine, propafenone, metoprolol, dl-sotalol, and verapamil had no effect on T3 binding to hThR beta 1. Amiodarone showed a noncompetitive binding pattern at low concentrations (0.25-2 microM) and a competitive binding at high concentrations (2-8 microM). Among the antiarrhythmics tested, only amiodarone had affinity for hThR beta 1. This may represent a novel type of antiarrhythmic mechanism. The finding that amiodarone, in concentrations corresponding to therapeutic range in plasma, shifts from a noncompetitive to a competitive inhibitor, is of clinical interest in comparisons of low- and high-dose treatment. PMID:7475046

  5. Distinct patterns of transmembrane calcium flux and intracellular calcium mobilization after differentiation antigen cluster 2 (E rosette receptor) or 3 (T3) stimulation of human lymphocytes.

    PubMed Central

    June, C H; Ledbetter, J A; Rabinovitch, P S; Martin, P J; Beatty, P G; Hansen, J A

    1986-01-01

    We evaluated CD2 (E rosette) and CD3 (T3)-triggered activation of resting lymphocytes by measuring the intracellular free calcium concentration ([Ca2+]i) of individual cells. The [Ca2+]i of indo-1-loaded cells was measured by flow cytometry and responses were correlated with cell surface phenotype. Stimulation with anti-CD3 antibody caused an increase in [Ca2+]i in greater than 90% of CD3+ cells within 1 min, and furthermore, the response was restricted to cells bearing the CD3 marker. In contrast, stimulation of cells with anti-CD2 antibodies produced a biphasic response pattern with an early component in CD3- cells and a late component in CD3+ cells. Thus, the CD2 response does not require cell surface expression of CD3. In addition, stimulation of a single CD2 epitope was sufficient for activation of CD3- cells, whereas stimulation of two CD2 epitopes was required for activation of CD3+ cells. Both the CD2 and CD3 responses were diminished in magnitude and duration by EGTA. However, approximately 50% of T cells still had a brief response in the presence of EGTA, indicating that the increased [Ca2+]i results in part from intracellular calcium mobilization, and furthermore demonstrates that extracellular calcium is required for a full and sustained response. Our results support the concept that CD2 represents the trigger for a distinct pathway of activation both for T cells that express the CD3 molecular complex and for large granular lymphocytes that do not. PMID:2420827

  6. Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K(+) channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR

    NASA Technical Reports Server (NTRS)

    Ye, C. P.; Yamaguchi, T.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    The existence in osteoblasts of the G-protein-coupled extracellular calcium (Ca(o)(2+))-sensing receptor (CaR) that was originally cloned from parathyroid and kidney remains controversial. In our recent studies, we utilized multiple detection methods to demonstrate the expression of CaR transcripts and protein in several osteoblastic cell lines, including murine MC3T3-E1 cells. Although we and others have shown that high Ca(o)(2+) and other polycationic CaR agonists modulate the function of MC3T3-E1 cells, none of these actions has been unequivocally shown to be mediated by the CaR. Previous investigations using neurons and lens epithelial cells have shown that activation of the CaR stimulates Ca(2+)-activated K(+) channels. Because osteoblastic cells express a similar type of channel, we have examined the effects of specific "calcimimetic" CaR activators on the activity of a Ca(2+)-activated K(+) channel in MC3T3-E1 cells as a way of showing that the CaR is not only expressed in those cells but is functionally active. Patch-clamp analysis in the cell-attached mode showed that raising Ca(o)(2+) from 0.75 to 2.75 mmol/L elicited about a fourfold increase in the open state probability (P(o)) of an outward K(+) channel with a conductance of approximately 92 pS. The selective calcimimetic CaR activator, NPS R-467 (0.5 micromol/L), evoked a similar activation of the channel, while its less active stereoisomer, NPSS-467 (0.5 micromol/L), did not. Thus, the CaR is not only expressed in MC3T3-E1 cells, but is also functionally coupled to the activity of a Ca(2+)-activated K(+) channel. This receptor, therefore, could transduce local or systemic changes in Ca(o)(2+) into changes in the activity of this ion channel and related physiological processes in these and perhaps other osteoblastic cells.

  7. PDGF-induces the glutathione-dependent enzyme PGH2/PGE2 isomerase in NIH3T3 and pEJ transformed fibroblasts.

    PubMed

    Kelner, M J; Uglik, S F

    1994-01-14

    Exposure of NIH3T3 and pEJ serum-starved cells to platelet derived growth factor results in a 16 fold increase in the glutathione-dependent enzyme prostaglandin H2/prostaglandin E2 isomerase activity (EC 5.3.99.3). The response is rapid as a detectable increase in NIH3T3 cells occurs after only 7 minutes of exposure to the growth factor. Only a mild increase in another microsomal glutathione-dependent enzyme, microsomal glutathione transferase (EC 2.5.1.18), was detected after a 2 hour exposure to the growth factor. PMID:8292033

  8. RACK1, a Receptor for Activated C Kinase and a Homolog of the β Subunit of G Proteins, Inhibits Activity of Src Tyrosine Kinases and Growth of NIH 3T3 Cells

    PubMed Central

    Chang, Betty Y.; Conroy, Karen B.; Machleder, Eric M.; Cartwright, Christine A.

    1998-01-01

    To isolate and characterize proteins that interact with the unique domain and SH3 and SH2 domains of Src and potentially regulate Src activity, we used the yeast two-hybrid assay to screen a human lung fibroblast cDNA library. We identified RACK1, a receptor for activated C kinase and a homolog of the β subunit of G proteins, as a Src-binding protein. Using GST-Src fusion proteins, we determined that RACK1 binds to the SH2 domain of Src. Coimmunoprecipitation of Src and RACK1 was demonstrated with NIH 3T3 cells. Purified GST-RACK1 inhibited the in vitro kinase activity of Src in a concentration-dependent manner. GST-RACK1 (2 μM) inhibited the activities of purified Src and Lck tyrosine kinases by 40 to 50% but did not inhibit the activities of three serine/threonine kinases that we tested. Tyrosine phosphorylation on many cellular proteins decreased in 293T cells that transiently overexpressed RACK1. Src activity and cell growth rates decreased by 40 to 50% in NIH 3T3 cells that stably overexpressed RACK1. Flow cytometric analyses revealed that RACK1-overexpressing cells do not show an increased rate of necrosis or apoptosis but do spend significantly more time in G0/G1 than do wild-type cells. Prolongation of G0/G1 could account for the increased doubling time of RACK1-overexpressing cells. We suggest that RACK1 exerts its effect on the NIH 3T3 cell cycle in part by inhibiting Src activity. PMID:9584165

  9. Sucrose Ingestion Induces Rapid AMPA Receptor Trafficking

    PubMed Central

    Tukey, David S.; Ferreira, Jainne M.; Antoine, Shannon O.; Damour, James A.; Ninan, Ipe; de Vaca, Soledad Cabeza; Incontro, Salvatore; Wincott, Charlotte; Horwitz, Julian K.; Hartner, Diana T.; Guarini, Carlo B.; Khatri, Latika; Goffer, Yossef; Xu, Duo; Titcombe, Roseann F.; Khatri, Megna; Marzan, Dave S.; Mahajan, Shahana S.; Wang, Jing; Froemke, Robert C.; Carr, Kenneth D.; Aoki, Chiye; Ziff, Edward B.

    2013-01-01

    The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPA receptors containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca2+-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPA receptors. Electrophysiological, biochemical and quantitative electron microscopy studies revealed that sucrose training (7 days) induced a stable (>24 hr) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 hr) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7-day protocol of daily ingestion of a 3% solution of saccharin, a non-caloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multi-step GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose. PMID:23554493

  10. Inhibition of MMP-13 prevents diet-induced obesity in mice and suppresses adipogenesis in 3T3-L1 preadipocytes.

    PubMed

    Shih, Chia-Li M; Ajuwon, Kolapo M

    2015-07-01

    Adipose tissue remodeling by the matrix metalloproteases (MMPs) is critical for tissue hypertrophy and obesity. MMP-13 is an important protein that is highly expressed in adipose tissue but whose potential role in adipose tissue expansion is poorly characterized. We investigated the effect of pharmacological inhibition of MMP-13 with a selective inhibitor, CP-544439, on adipose tissue mass in mice on a high fat diet, and determined the effect of the inhibitor during in vitro adipocyte differentiation of 3T3-L1 cells. CP-544439 was administered for 6 weeks to mice on a high fat diet. Body adiposity and glucose tolerance was determined. Differentiating 3T3-L1 adipocytes were also treated with the inhibitor for a maximum of 8 days and adipogenesis assessed. Treatment of mice with the inhibitor resulted in reduction in body adiposity and improvement in glucose clearance. Histological examination of epididymal adipose showed reduced adipocyte hypertrophy accompanied by increased staining for collagen in the inhibitor treated mice. Treatment of differentiating 3T3-L1 cells with the inhibitor resulted in reduced adipocyte differentiation. Knockdown of MMP-13 using small interfering RNA in differentiating 3T3-L1 cells reduced adipocyte differentiation indicated by reduced expression of PPAR?. These results suggest that MMP-13 may play a major role in adipose development and its inhibition could be a potential strategy to prevent obesity. PMID:25682268

  11. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L.) Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells.

    PubMed

    Rao, Yerra Koteswara; Lee, Meng-Jen; Chen, Keru; Lee, Yi-Ching; Wu, Wen-Shi; Tzeng, Yew-Min

    2011-01-01

    Citrus grandis (L.) Osbeck (red wendun) leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w). In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1-5 μM and 1-20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation. PMID:20008903

  12. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L.) Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    PubMed Central

    Rao, Yerra Koteswara; Lee, Meng-Jen; Chen, Keru; Lee, Yi-Ching; Wu, Wen-Shi; Tzeng, Yew-Min

    2011-01-01

    Citrus grandis (L.) Osbeck (red wendun) leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w). In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation. PMID:20008903

  13. Sucrose ingestion induces rapid AMPA receptor trafficking.

    PubMed

    Tukey, David S; Ferreira, Jainne M; Antoine, Shannon O; D'amour, James A; Ninan, Ipe; Cabeza de Vaca, Soledad; Incontro, Salvatore; Wincott, Charlotte; Horwitz, Julian K; Hartner, Diana T; Guarini, Carlo B; Khatri, Latika; Goffer, Yossef; Xu, Duo; Titcombe, Roseann F; Khatri, Megna; Marzan, Dave S; Mahajan, Shahana S; Wang, Jing; Froemke, Robert C; Carr, Kenneth D; Aoki, Chiye; Ziff, Edward B

    2013-04-01

    The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose. PMID:23554493

  14. Luteolin protects osteoblastic MC3T3-E1 cells from antimycin A-induced cytotoxicity through the improved mitochondrial function and activation of PI3K/Akt/CREB.

    PubMed

    Choi, Eun Mi

    2011-12-01

    Luteolin is a flavonoid found in many herbal extracts including celery, green pepper, parsley, perilla leaf and seeds, and chamomile. Antimycin A (AMA) is an inhibitor of the mitochondrial electron transport chain. In the present study, the protective effect of luteolin on AMA-induced cell damage was investigated in osteoblastic MC3T3-E1 cells. Luteolin significantly increased the viability of MC3T3-E1 cells in the presence of AMA and the effect of luteolin in increasing cell viability was completely prevented by the presence of LY294002, Akt inhibitor, or auranofin, suggesting that the effect of luteolin might be partly mediated from PI3K, Akt, and thioredoxin reductase. Pre-treatment with luteolin prior to AMA exposure significantly prevented mitochondrial membrane potential dissipation, ATP loss, inactivation of complex I and IV, ROS production, inactivation of thioredoxin reductase, intracellular calcium elevation, and cytochrome c release induced by AMA. Moreover, luteolin increased activities of PI3K (phosphoinositide 3-kinase) and Akt (protein kinase B), and CREB (cAMP-response element-binding protein) phosphorylation inhibited by AMA treatment. Collectively, these results suggest that luteolin protects MC3T3-E1 cells from AMA-induced cell damage through the improved mitochondrial function and activation of PI3K/Akt/CREB. PMID:21782929

  15. Cellular regulation of poly ADP-ribosylation of proteins: II. Augmentation of poly(ADP-ribose) polymerase in SV40 3T3 cells following methotrexate-induced G1/S inhibition of cell cycle progression

    SciTech Connect

    Sooki-Toth, A.; Asghari, F.; Kirsten, E.; Kun, E. )

    1987-05-01

    SV40-3T3 cells were exposed in monolayer cultures to 5{times}10{sup {minus}7} M methotrexate (MTX), that inhibited thymidylate synthetase, arrested cell growth without cell killing in 24 h and did not induce single- (ss) or double-strand (ds) breaks in DNA. Following 24, up to 72 h, the poly(ADP-ribose) polymerase content of attached cells was induced by 5{times}10{sup {minus}7} MTX and the augmentation of the enzyme increased with the time of exposure to the drug. Inhibition of protein or RNA synthesis abolished augmentation of enzymatic activity; so too did the initiation of maximal cell growth by thymidine + hypoxanthine, by-passing the inhibitory site of MTX. Isolation of the ADP-ribosylated enzyme protein by gel electrophoresis identified poly(ADP-ribose) polymerase protein as the molecule that was induced by 5{times}10{sup {minus}7} M MTX. Under identical conditions, the poly(ADP-ribose) polymerase induction in 3T3 cells could not be demonstrated. A possible cell-cycle dependent biosynthesis of the enzyme protein is proposed in SV40 3T3 cells.

  16. Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells.

    PubMed

    Maldonado-Cervantes, Enrique; Jeong, Hyung Jin; León-Galván, Fabiola; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; González de Mejia, Elvira; de Lumen, Ben O; Barba de la Rosa, Ana P

    2010-09-01

    Because an unbalanced diet is an important risk factor for several illnesses, interest has increased in finding novel health-promoting foods. Amaranth produces seeds that not only have substantial nutritional properties but that also contain phytochemical compounds as rutin and nicotiflorin and peptides with antihypertensive and anticarcinogenic activities. We report that a cancer-preventive peptide in amaranth has activities similar to those of soybean lunasin. The amaranth lunasin-like peptide, however, requires less time than the soybean lunasin to internalize into the nucleus of NIH-3T3 cells, and inhibits histone acetylation (H(3) and H(4) in a 70 and 77%, respectively). The amaranth lunasin-like peptide inhibited the transformation of NIH-3T3 cells to cancerous foci. The open reading frame (ORF) of amaranth lunasin corresponds to a bifunctional inhibitor/lipid-transfer protein (LTP). LTPs are a family of proteins that in plants are implicated in different functions, albeit all linked to developmental processes and biotic and abiotic stress resistance. Our results open new intriguing questions about the function of lunasin in plants and support that amaranth is a food alternative containing natural peptides with health-promoting benefits. PMID:20599579

  17. Thyroid hormone deiodination in brain, liver, gill, heart and muscle of Atlantic salmon (Salmo salar) during photoperiodically-induced parr-smolt transformation. II. Outer- and inner-ring 3,5,3'-triiodo-L-thyronine and 3,3',5'-triiodo-L-thyronine (reverse T3) deiodination.

    PubMed

    Eales, J G; Morin, P P; Tsang, P; Hara, T J

    1993-05-01

    Outer-ring deiodinase (ORD) and inner-ring deiodinase (IRD) pathways for 3,5,3'-triiodo-L-thyronine (T3) and 3,3',5'-T3 (reverse T3, rT3) were examined in microsomal fractions of liver, heart, gill, brain, and skeletal muscle of 20-month-old Atlantic salmon induced to undergo parr-smolt transformation (PST) in late February and March by imposing a 16-hr photoperiod. All tissues showed negligible T3ORD activity. T3IRD activity was detected in both the liver (Km = 0.65 nM; Vmax = 15.5 pmol T3 deiodinated.hr-1.mg microsomal protein-1) and brain of smolts, but not in gill, heart, or skeletal muscle. rT3ORD was detected in liver, brain, and muscle, and at very low levels in gill and heart. rT3IRD activity occurred to some extent in all tissues except brain. T3IRD activity changed in brain during PST, and was low in brain and liver of post-smolts examined in late October. We conclude that (i) deiodination of T3 proceeds exclusively through an IRD pathway, which may permit regulation of T3 degradation independently of the ORD pathway responsible for T3 formation; (ii) deiodination of rT3 proceeds mainly through an ORD pathway but rT3IRD activity does occur in some tissues; and (iii) the altered brain T3IRD activity during PST suggests regulation of T3 turnover in the brain at this time. PMID:8319873

  18. L-4F Inhibits Oxidized Low-density Lipoprotein-induced Inflammatory Adipokine Secretion via Cyclic AMP/Protein Kinase A-CCAAT/Enhancer Binding Protein β Signaling Pathway in 3T3-L1 Adipocytes

    PubMed Central

    Xie, Xiang-Zhu; Huang, Xin; Zhao, Shui-Ping; Yu, Bi-Lian; Zhong, Qiao-Qing; Cao, Jian

    2016-01-01

    Background: Adipocytes behave like a rich source of pro-inflammatory cytokines including monocyte chemoattractant protein-1 (MCP-1). Oxidized low-density lipoprotein (oxLDL) participates in the local chronic inflammatory response, and high-density lipoprotein could counterbalance the proinflammatory function of oxLDL, but the underlying mechanism is not completely understood. This study aimed to evaluate the effect of apolipoprotein A-I mimetic peptide L-4F on the secretion and expression of MCP-1 in fully differentiated 3T3-L1 adipocytes induced by oxLDL and to elucidate the possible mechanisms. Methods: Fully differentiated 3T3-L1 adipocytes were incubated in the medium containing various concentration of L-4F (0–50 μg/ml) with oxLDL (50 μg/ml) stimulated, with/without protein kinase A (PKA) inhibitor H-89 (10 μmol/L) preincubated. The concentrations of MCP-1 in the supernatant, the mRNA expression of MCP-1, the levels of CCAAT/enhancer binding protein α (C/EBPα), and CCAAT/enhancer binding protein β (C/EBPβ) were evaluated. The monocyte chemotaxis assay was performed by micropore filter method using a modified Boyden chamber. Results: OxLDL stimulation induced a significant increase of MCP-1 expression and secretion in 3T3-L1 adipocytes, which were inhibited by L-4F preincubation in a dose-dependent manner. PKA inhibitor H-89 markedly reduced the oxLDL-induced MCP-1 expression, but no further decrease was observed when H-89 was used in combination with L-4F (50 μg/ml) (P > 0.05). OxLDL stimulation showed no significant effect on C/EBPα protein level but increased C/EBPβ protein level in a time-dependent manner. H-89 and L-4F both attenuated C/EBPβ protein level in oxLDL-induced 3T3-L1 adipocytes. Conclusions: OxLDL induces C/EBPβ protein synthesis in a time-dependent manner and enhances MCP-1 secretion and expression in 3T3-L1 adipocytes. L-4F dose-dependently counterbalances the pro-inflammatory effect of oxLDL, and cyclic AMP/PKA-C/EBPβ signaling pathway may participate in it. PMID:27098798

  19. Trans-Cinnamic Acid Increases Adiponectin and the Phosphorylation of AMP-Activated Protein Kinase through G-Protein-Coupled Receptor Signaling in 3T3-L1 Adipocytes

    PubMed Central

    Kopp, Christina; Singh, Shiva P.; Regenhard, Petra; Müller, Ute; Sauerwein, Helga; Mielenz, Manfred

    2014-01-01

    Adiponectin and intracellular 5′adenosine monophosphate-activated protein kinase (AMPK) are important modulators of glucose and fat metabolism. Cinnamon exerts beneficial effects by improving insulin sensitivity and blood lipids, e.g., through increasing adiponectin concentrations and AMPK activation. The underlying mechanism is unknown. The Gi/Go-protein-coupled receptor (GPR) 109A stimulates adiponectin secretion after binding its ligand niacin. Trans-cinnamic acid (tCA), a compound of cinnamon is another ligand. We hypothesize whether AMPK activation and adiponectin secretion by tCA is transmitted by GPR signaling. Differentiated 3T3-L1 cells were incubated with pertussis toxin (PTX), an inhibitor of Gi/Go-protein-coupling, and treated with different tCA concentrations. Treatment with tCA increased adiponectin and the pAMPK/AMPK ratio (p ≤ 0.001). PTX incubation abolished the increased pAMPK/AMPK ratio and adiponectin secretion. The latter remained increased compared to controls (p ≤ 0.002). tCA treatment stimulated adiponectin secretion and AMPK activation; the inhibitory effect of PTX suggests GPR is involved in tCA stimulated signaling. PMID:24557583

  20. CORRIGENDUM: Light-induced fractal energy spectrum of ultracold fermions on the two-dimensional optical lattice with Script T3 symmetry Light-induced fractal energy spectrum of ultracold fermions on the two-dimensional optical lattice with Script T3 symmetry

    NASA Astrophysics Data System (ADS)

    Hou, J. M.

    2010-01-01

    The reference list should be extended to cite two additional references [22] and [23] in which the Aharonov-Bohm cages of magnetic flux in the two-dimensional Script T3 and Script T4 lattices were investigated by Vidal et al. The Script T3 butterfly-like energy spectrum was first obtained in reference [22]. References [22] Vidal J, Mosseri R and Douçot B 1998 Phys. Rev. Lett. 81 5888 [23] Vidal J, Butaud P, Douçot B and Mosseri R 2001 Phys. Rev. B 64 155306

  1. Glucose- and Triglyceride-lowering Dietary Penta-O-galloyl-α-D-Glucose Reduces Expression of PPARγ and C/EBPα, Induces p21-Mediated G1 Phase Cell Cycle Arrest, and Inhibits Adipogenesis in 3T3-L1 Preadipocytes.

    PubMed

    Liu, X; Malki, A; Cao, Y; Li, Y; Qian, Y; Wang, X; Chen, X

    2015-05-01

    Plant polyphenols, such as hydrolysable tannins, are present in the human diet and known to exhibit anti-diabetic and anti-obesity activity. We previously reported that the representative hydrolysable tannin compound α-penta-galloyl-glucose (α-PGG) is a small molecule insulin mimetic that, like insulin, binds to insulin receptor (IR) and activates the IR-Akt-GLUT4 signaling pathway to trigger glucose transport and reduce blood glucose levels in db/db and ob/ob diabetic mice. However, its effects on adipogenesis and lipid metabolism were not known. In this study, high fat diet (HFD)-induced diabetic and obese mice were treated with α-PGG to determine its effects on blood glucose and triglycerides. 3T3-L1 preadipocytes were used as a cell model for identifying the anti-adipogenic activity of α-PGG at molecular and cellular levels as a first step in elucidating the mechanism of action of the compound. In vivo, oral administration of α-PGG significantly reduced levels of blood glucose, triglyceride, and insulin in HFD-induced diabetic/obese mice (P<0.05). In vitro, α-PGG inhibited the differentiation of 3T3-L1 preadipocytes into mature adipocytes. α-PGG suppressed the expression of positive adipogenic factors PPARγ C/EBPα and mTOR and augmented the negative adipogenic factor Pref-1. Furthermore, α-PGG induced upregulation of p21 and G1 phase cell cycle arrest. In contrast, adipogenic signaling pathways mediated by insulin, the cAMP response element binding protein (CREB) and glucocorticoid receptor (GR), were not inhibited. RNAi knockdown of p21 led to a 4-fold increase in triglyceride level in 3T3-L1 preadipocytes treated with MDI and α-PGG compared to regular preadipocytes. These results indicate, for the first time, that α-PGG is blood triglyceride- and glucose-lowering in HFD-induced obese and diabetic mice. It selectively inhibited some but not all major adipogenic pathways as well as the mTOR-p21-mediated cell cycle regulatory pathway. It is very likely that these apparently diverse but coordinated activities together inhibited adipogenesis. These results expand our knowledge on how PGG works in adipocytes and further confirm that α-PGG functions as an orally-deliverable natural insulin mimetic with adipogenetic modulatory functions. PMID:25988880

  2. Muscarinic M1 receptor and cannabinoid CB1 receptor do not modulate paraoxon-induced seizures

    PubMed Central

    Kow, Rebecca L; Cheng, Eugene M; Jiang, Kelly; Le, Joshua H; Stella, Nephi; Nathanson, Neil M

    2015-01-01

    One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon. PMID:25692018

  3. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    SciTech Connect

    Chang, Young-Chae; Cho, Hyun-Ji

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.

  4. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    SciTech Connect

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki; Takahashi, Noriko

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  5. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Division of Gastroenterology and Hematology Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  6. 2-Methoxy-4-vinylphenol can induce cell cycle arrest by blocking the hyper-phosphorylation of retinoblastoma protein in benzo[a]pyrene-treated NIH3T3 cells

    SciTech Connect

    Jeong, Jin Boo; Jeong, Hyung Jin

    2010-10-01

    Research highlights: {yields} 2M4VP activated the expression of p21 and p15 protein, and down-regulated the expression of cyclin D1 and cyclin E. {yields} 2M4VP inhibited hyper-phosphorylation of Rb protein. {yields} 2M4VP induced cell cycle arrest from G1 to S. {yields} 2M4VP inhibited hyper-proliferation of the cells in BaP-treated cells. {yields} 2M4VP induces growth arrest of BaP-treated cells by blocking hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins. -- Abstract: Benzo[a]pyrene (BaP) is an environment carcinogen that can enhance cell proliferation by disturbing the signal transduction pathways in cell cycle regulation. In this study, the effects of 2M4VP on cell proliferation, cell cycle and cell cycle regulatory proteins were studied in BaP-treated NIH 3T3 cells to establish the molecular mechanisms of 2M4VP as anti-proliferative agents. 2M4VP exerted a dose-dependent inhibitory effect on cell growth correlated with a G1 arrest. Analysis of G1 cell cycle regulators expression revealed 2M4VP increased expression of CDK inhibitor, p21Waf1/Cip1 and p15 INK4b, decreased expression of cyclin D1 and cyclin E, and inhibited kinase activities of CDK4 and CDK2. However, 2M4VP did not affect the expression of CDK4 and CDK2. Also, 2M4VP inhibited the hyper-phosphorylation of Rb induced by BaP. Our results suggest that 2M4VP induce growth arrest of BaP-treated NIH 3T3 cells by blocking the hyper-phosphorylation of Rb via regulating the expression of cell cycle-related proteins.

  7. Conformational changes of human beta 1 thyroid hormone receptor induced by binding of 3,3',5-triiodo-L-thyronine.

    PubMed

    Bhat, M K; Parkison, C; McPhie, P; Liang, C M; Cheng, S Y

    1993-08-31

    To understand the structural basis in the hormone-dependent transcriptional regulation of human beta 1 thyroid hormone receptor (h-TR beta 1), we studied the conformational changes of h-TR beta 1 induced by binding of 3,3',5-triiodo-L-thyronine (T3). h-TR beta 1 was treated with trypsin alone or in the presence of T3, thyroid hormone response element (TRE) or T3 together with TREs. Without T3, h-TR beta 1 was completely digested by trypsin. Binding of TREs had no effect on the tryptic digestion pattern. However, T3-bound h-TR beta 1 became resistant to tryptic digestion and yielded trypsin-resistant peptide fragments with molecular weight of 28,000 and 24,000. Chymotryptic digestion also yielded a T3-protected 24 Kd peptide fragment. Using anti-h-TR beta 1 antibodies and amino acid sequencing, the 28 Kd fragment was identified to be Ser202-Asp456. The 24 Kd tryptic fragments were found to be Lys239-Asp456 and Phe240-Asp456. The 24 Kd chymotryptic fragment was identified to be Lys235-Asp456. The structural changes as a result of T3 binding could serve as a transducing signal to modulate the gene regulating activity of h-TR beta 1. PMID:8363616

  8. Different effects of carbon ion and gamma-irradiation on expression of receptor activator of NF-kB ligand in MC3T3-E1 osteoblast cells.

    PubMed

    Sawajiri, Masahiko; Nomura, Yuji; Bhawal, Ujjal Kumar; Nishikiori, Ryo; Okazaki, Masayuki; Mizoe, Jun'etsu; Tanimoto, Keiji

    2006-11-01

    We investigated the effects of carbon ion and gamma-irradiation on osteoblastic MC3T3-E1 cells by comparing mRNA expression levels for RANKL and osteoprotegerin by RT-PCR. MC3T3-E1 cells were irradiated with 2, 4, or 6 Gy of carbon ions or gamma-rays, and total RNA was harvested 1, 2, 3, 5, or 7 days after irradiation. The RANKL mRNA/OPG mRNA ratio in carbon ion-irradiated MC3T3-E1 cells was lower, while in gamma-irradiated MC3T3-E1 cells this ratio was higher than in non-irradiated cells. To evaluate osteoclastogenesis of MC3T3-E1 cells, carbon ion- or gamma-irradiated cells were co-cultured with non-irradiated cells from murine bone marrow. Staining for tartrate-resistant acid phosphatase (TRAP) in co-cultures showed that carbon ion irradiation suppressed osteoclastogenesis. This result is consistent with the lower RANKL/OPG mRNA ratio for carbon ion-irradiated cells. These results suggest that carbon ion irradiation acts primarily on osteoblastic cells, leading to a decrease in the RANKL/OPG mRNA ratio. This effect, in turn, leads to a decrease in osteoclastogenesis and osteoclast activity, which results in an increase in bone volume. PMID:17415477

  9. Mediator subunit MED1 is a T3-dependent and T3-independent coactivator on the thyrotropin β gene promoter

    SciTech Connect

    Matsui, Keiji; Oda, Kasumi; Mizuta, Shumpei; Ishino, Ruri; Urahama, Norinaga; Hasegawa, Natsumi; Roeder, Robert G.; Ito, Mitsuhiro; Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065; Department of Family and Community Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 654-0142; Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555

    2013-10-11

    Highlights: •MED1 is a bona fide T3-dependent coactivator on TSHB promoter. •Mice with LxxLL-mutant MED1 have attenuated TSHβ mRNA and thyroid hormone levels. •MED1 activates TSHB promoter T3-dependently in cultured cells. •T3-dependent MED1 action is enhanced when SRC1/SRC2 or HDAC2 is downregulated. •MED1 is also a T3-independent GATA2/Pit1 coactivator on TSHB promoter. -- Abstract: The MED1 subunit of the Mediator transcriptional coregulator complex is a nuclear receptor-specific coactivator. A negative feedback mechanism of thyroid-stimulating hormone (TSH, or thyrotropin) expression in the thyrotroph in the presence of triiodothyronine (T3) is employed by liganded thyroid hormone receptor β (TRβ) on the TSHβ gene promoter, where conventional histone-modifying coactivators act as corepressors. We now provide evidence that MED1 is a ligand-dependent positive cofactor on this promoter. TSHβ gene transcription was attenuated in MED1 mutant mice in which the nuclear receptor-binding ability of MED1 was specifically disrupted. MED1 stimulated GATA2- and Pit1-mediated TSHβ gene promoter activity in a ligand-independent manner in cultured cells. MED1 also stimulated transcription from the TSHβ gene promoter in a T3-dependent manner. The transcription was further enhanced when the T3-dependent corepressors SRC1, SRC2, and HDAC2 were downregulated. Hence, MED1 is a T3-dependent and -independent coactivator on the TSHβ gene promoter.

  10. The thyroid hormone receptor β induces DNA damage and premature senescence.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-01

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism. PMID:24395638

  11. Down-regulation of cellular platelet-derived growth factor receptors induced by an activated neu receptor tyrosine kinase.

    PubMed Central

    Lehtola, L; Nistér, M; Hölttä, E; Westermark, B; Alitalo, K

    1991-01-01

    The functional integration of growth factor signaling occurs at several levels in target cells. One of the most proximal mechanisms is receptor transmodulation, by which one activated receptor can regulate the expression of other receptors in the same cells. Well-established transregulatory loops involve platelet-derived growth factor (PDGF) down-regulation of epidermal growth factor (EGF) receptors and beta-type transforming growth factors modulation of PDGF receptors. We have studied the relationship between neu tyrosine kinase activation and the expression of the PDGF receptors in transfected NIH/3T3 cells. Expression of the neu oncogene, but not of the neu proto-oncogene, was associated with a decrease of PDGF alpha- and beta-receptors on the cell surface, as measured by [125-I]PDGF-AA and -BB binding. These results were corroborated by metabolic labeling and immunoprecipitation of the PDGF beta-receptors. PDGF alpha- and beta-receptor mRNAs were strongly decreased in the neu oncogene-transformed cells in comparison with control cells expressing the neu proto-oncogene. Down-regulation of the PDGF receptors and their mRNAs was also observed after EGF treatment of cells expressing a chimeric EGF receptor/neu receptor, where the neu tyrosine kinase is activated by EGF binding. These results show that the neu tyrosine kinase can down-modulate PDGF receptor expression, and the effect is mediated via decreased PDGF receptor mRNA levels. Images PMID:1685673

  12. [Inactivation of choline receptors induced by membrane depolarization].

    PubMed

    Kazachenko, V N; Kislov, A N

    1982-01-01

    It was found that membrane depolarization of Lymnaea stagnalis neurons inhibited the conductance induced by acetylcholine (ACh). This phenomenon (cholinoreceptor inactivation) was shown to be connected with a potential influence on none of the following characteristics: reversal potential (Er) of the ACh-induced currents, affinity of ACh to the receptors, ACh concentration near the receptive membrane surface, and desensitization rate. PMID:7074150

  13. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  14. Liganded Thyroid Hormone Receptor Inhibits Phorbol 12-O-Tetradecanoate-13-Acetate-Induced Enhancer Activity via Firefly Luciferase cDNA

    PubMed Central

    Misawa, Hiroko; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Iwaki, Hiroyuki; Matsunaga, Hideyuki; Suzuki, Shingo; Ishizuka, Keiko; Oki, Yutaka; Nakamura, Hirotoshi

    2012-01-01

    Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity, which is inhibited by T3/TR. PMID:22253701

  15. Antiobesity Effects of an Edible Halophyte Nitraria retusa Forssk in 3T3-L1 Preadipocyte Differentiation and in C57B6J/L Mice Fed a High Fat Diet-Induced Obesity

    PubMed Central

    Zar Kalai, Feten; Han, Junkyu; Ksouri, Riadh; El Omri, Abdelfatteh; Abdelly, Chedly; Isoda, Hiroko

    2013-01-01

    Nitraria retusa is an edible halophyte, used in Tunisia for several traditional medicine purposes. The present study investigated the antiobesity effects of Nitraria retusa ethanol extract (NRE) in 3T3-L1 cells using different doses and in high-fat diet-induced obesity in mice. Male C57B6J/L mice were separately fed a normal diet (ND) or a high-fat diet (HFD) and daily administrated with NRE (50, 100 mg/kg) or one for 2 days with Naringenin (10 mg/kg). NRE administration significantly decreased body weight gain, fat pad weight, serum glucose, and lipid levels in HFD-induced obese mice. To elucidate the mechanism of action of NRE, the expression of genes involved in lipid and carbohydrate metabolism were measured in liver. Results showed that mice treated with NRE demonstrated a significant decrease in cumulative body weight and fat pad weight, a significant lowering in glucose and triglycerides serum levels, and an increase in the HDL-cholesterol serum level. Moreover mRNA expression results showed an enhancement of the expression of genes related to liver metabolism. Our findings suggest that NRE treatment had a protective or controlling effect against a high fat diet-induced obesity in C57B6J/L mice through the regulation of expression of genes involved in lipolysis and lipogenesis and thus the enhancement of the lipid metabolism in liver. PMID:24367387

  16. Lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol on 3T3-L1 adipocytes and high fat and fructose diet induced obese C57/BL6J mice.

    PubMed

    Saravanan, Munisankar; Pandikumar, Perumal; Saravanan, Subramaniam; Toppo, Erenius; Pazhanivel, Natesan; Ignacimuthu, Savarimuthu

    2014-10-01

    Aegle marmelos Correa., (Rutaceae) is a medium sized tree distributed in South East Asia and used traditionally for the management of obestiy and diabetes. In this study the lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol (Hfn) isolated from leaves of A. marmelos have been investigated. Intracellular lipid accumulation was measured by oil red O staining and glycerol secretion. The expression of genes related to adipocyte differentiation was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). Hfn decreased intracellular triglyceride accumulation and increased glycerol release in a dose dependent manner (5-20 μg/ml) in differentiated 3T3-L1 adipocytes. In high fat diet fed C57/BL 6J mice, treatment with Hfn for four weeks reduced plasma glucose, insulin and triglyceride levels and showed a significant reduction in total adipose tissue mass by 37.85% and visceral adipose tissue mass by 62.99% at 50mg/kg b.w. concentration. RT-PCR analyses indicated that Hfn decreased the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding protein α (CEBPα) and increased the expression of sterol regulatory enzyme binding protein (SREBP-1c), peroxisome proliferator-activated receptor α (PPARα), Adiponectin and Glucose transporter protein 4 (GLUT4) compared to the high fat diet group. These results suggested that Hfn decreased adipocyte differentiation and stimulated lipolysis of adipocytes. This study justifies the folklore medicinal uses and claims about the therapeutic values of this plant for the management of insulin resistance and obesity. PMID:24952133

  17. Chemotactic migration of human mesenchymal stem cells and MC3T3-E1 osteoblast-like cells induced by COS-7 cell line expressing rhBMP-7.

    PubMed

    Lee, Dong Hee; Park, Bong Joo; Lee, Min-Sub; Lee, Jin Woo; Kim, Jeong Koo; Yang, Hyeong-Cheol; Park, Jong-Chul

    2006-06-01

    During bone development, remodeling, and repair, bone morphogenetic proteins (BMPs) induce the differentiation of mesenchymal progenitor cells (MPCs) that enter into the osteoblastic lineage, and enhance the recruitment of MPCs and osteogenic cells. The process of migration is believed to be regulated, in part, by growth factors stored within the bone matrix, which are released by bone resorption. In this study, primary human mesenchymal stem cells (hMSCs) and MC3T3-E1 osteoblasts were examined for chemotaxis in response to recombinant human BMP-7 (rhBMP-7) produced in COS-7 cells (co-culture system). In order to produce BMP-7 transfected cells (BTCs), which serve as suppliers of rhBMP-7 under in vitro culture conditions, the encoding DNA was transferred into the pTARGET expression vector and introduced into COS-7 cells by conventional genetic engineering techniques. In cell culture studies, the rhBMP-7 produced in BTCs stimulated the specific activity of ALP, the production of cAMP in response to PTH, and the synthesis of osteocalcin. Migration assays were conducted with a computer-aided time-lapse video-microscopy system, to allow the rapid and precise analysis of cell migration and for the dynamic measurement of cell position and morphology. The migration distance and speed of the MC3T3-E1 cells, or hMSCs, co-cultured with BTCs, using a band-type seeding method, were significantly increased (p < 0.001), compared to those of the MC3T3-E1 cells (or hMSCs) only. In conclusion, these studies revealed that rhBMP-7 plays a role in the migration of bone-forming cells, and that the co-culture model (co-culture of bone-forming cells with BMP-7-producing cells) using a computer-aided, time-lapse video-microscopy system, is useful for the chemotactic migration assay of other chemotactic growth factors. PMID:16846353

  18. Mutations of CpG dinucleotides located in the triiodothyronine (T3)-binding domain of the thyroid hormone receptor (TR) beta gene that appears to be devoid of natural mutations may not be detected because they are unlikely to produce the clinical phenotype of resistance to thyroid hormone.

    PubMed Central

    Hayashi, Y; Sunthornthepvarakul, T; Refetoff, S

    1994-01-01

    Thyroid hormone receptor (TR) beta gene mutations identified in patients with resistance to thyroid hormone (RTH) revealed two clusters ("hot" areas) of mutations (RTHmut) in the triiodothyronine (T3)-binding domain. Furthermore, 45% of RTHmuts and 90% of recurring mutations are located in CpG dinucleotides ("hot spots"). To investigate why the region between the two hot areas lacks RTHmuts, we produced 10 artificial mutant TR beta s (ARTmut) in this "cold" region according to the hot spot rule (C-->T or G-->A substitutions in CpGs). The properties of ARTmuts were compared with those of six RTHmuts. Among all RTHmuts, R320H manifesting a mild form of RTH showed the least impairment of T3-binding affinity (Ka). In contrast, Ka was normal in six ARTmuts (group A), reduced to a lesser extent than R320H in three (group B), and one that was truncated (R410X) did not bind T3. All RTHmuts had impaired ability to transactivate T3-responsive elements and exhibited a strong dominant negative effect on cotransfected wild-type TR beta. Group B and A ARTmuts had minimally impaired or normal transactivation and weak or no dominant negative effect, respectively. R410X showed neither transactivation nor dominant negative effect. Natural mutations expected to occur in the cold region of TR beta should fail to manifest as RTH (group A) or should escape detection (group B) since the serum thyroid hormone levels required to compensate for the reduced binding affinity should be inferior to those found in subjects with R320H. R410X would manifest RTH only in the homozygote state. The cold region of the putative T3-binding domain is relatively insensitive to amino acid changes and, thus, may not be involved in a direct interaction with T3. Images PMID:8040316

  19. Prostaglandin E2-induced up-regulation of c-fos messenger ribonucleic acid is primarily mediated by 3',5'-cyclic adenosine monophosphate in MC3T3-E1 osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Dietz, T. J.; Hughes-Fulford, M.

    2000-01-01

    The mechanism by which the proto-oncogene, c-fos, is up-regulated in response to PGE2 in the mouse osteoblastic (MC3T3-E1) cell line was investigated using RT-PCR. c-fos messenger RNA up-regulation by dmPGE2 is rapid, starting 10 min post stimulation, and transient. The specific protein kinase A (PKA) inhibitor, H89, inhibited c-fos induction. Moreover, down-regulation of protein kinase C (PKC) activity by chronic TPA treatment had no effect on the induction of c-fos by dmPGE2. We conclude that up-regulation of c-fos by dmPGE2 is primarily dependent on PKA in MC3T3-E1 osteoblasts. In S49 lymphoma wild-type but not S49 cyc- cells, which are deficient in cAMP signaling, dmPGE2 up-regulates c-fos and increases cell growth compared with unstimulated cells. Thus in S49 lymphoma cells, c-fos induction by PGE2 is also dependent on cAMP signaling. The minimal c-fos promoter region required for dmPGE2-induced expression was identified by transfecting c-fos promoter deletion constructs coupled to the chloramphenicol acetyltransferase (CAT) reporter gene into Vero cells. Transfection of a plasmid containing 99 bp c-fos proximal promoter was sufficient to direct c-fos/CAT expression following stimulation with dmPGE2. Because induction of c-fos is mediated by cAMP, these data are consistent with activation of c-fos via the CRE/ATF cis element.

  20. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus. PMID:25920352

  1. TRPV1 receptors mediate particulate matter-induced apoptosis.

    PubMed

    Agopyan, N; Head, J; Yu, S; Simon, S A

    2004-03-01

    Exposure to airborne particulate matter (PM) is a world-wide health problem mainly because it produces adverse cardiovascular and respiratory effects that frequently result in morbidity. Despite many years of epidemiological and basic research, the mechanisms underlying PM toxicity remain largely unknown. To understand some of these mechanisms, we measured PM-induced apoptosis and necrosis in normal human airway epithelial cells and sensory neurons from both wild-type mice and mice lacking TRPV1 receptors using Alexa Fluor 488-conjugated annexin V and propidium iodide labeling, respectively. Exposure of environmental PMs containing residual oil fly ash and ash from Mount St. Helens was found to induce apoptosis, but not necrosis, as a consequence of sustained calcium influx through TRPV1 receptors. Apoptosis was completely prevented by inhibiting TRPV1 receptors with capsazepine or by removing extracellular calcium or in sensory neurons from TRPV1(-/-) mice. Binding of either one of the PMs to the cell membrane induced a capsazepine-sensitive increase in cAMP. PM-induced apoptosis was augmented upon the inhibition of PKA. PKA inhibition on its own also induced apoptosis, thereby suggesting that this pathway may be endogenously protective against apoptosis. In summary, it was found that inhibiting TRPV1 receptors prevents PM-induced apoptosis, thereby providing a potential mechanism to reduce their toxicity. PMID:14633515

  2. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways.

    PubMed

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen; Yayi, Xia

    2016-05-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. PMID:27060196

  3. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking

    PubMed Central

    Guntupalli, Sumasri; Widagdo, Jocelyn; Anggono, Victor

    2016-01-01

    Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ. PMID:27073700

  4. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    SciTech Connect

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai; Yang, Ying; Shen, Weili

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  5. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor

    PubMed Central

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S.; Buchan, Alice; Brodermann, Maximillian H.; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J.; Greaves, David R.

    2015-01-01

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field. PMID:26033291

  6. Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal.

    PubMed

    Krishnapuram, Rashmi; Dhurandhar, Emily J; Dubuisson, Olga; Hegde, Vijay; Dhurandhar, Nikhil V

    2013-01-01

    Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin. PMID:23544159

  7. Unliganded T3R, but not its oncogenic variant, v-erbA, suppresses RAR-dependent transactivation by titrating out RXR.

    PubMed Central

    Barettino, D; Bugge, T H; Bartunek, P; Vivanco Ruiz, M D; Sonntag-Buck, V; Beug, H; Zenke, M; Stunnenberg, H G

    1993-01-01

    V-erbA is thought to be an antagonist of thyroid hormone receptor (T3R) function. Here we show that unliganded T3R, but not v-erbA, suppresses retinoic acid (RA)-dependent induction of the RAR-beta 2 promoter by competing for the common dimerization partner, the retinoid X receptor (RXR). Firstly, T3R suppression can be alleviated by co-transfection of RXR. Secondly, T3R, but not v-erbA, competes with RAR for RXR and causes the dissociation of a preformed RAR/RXR-RARE ternary complex in vitro. A single point mutation located in the dimerization interface of v-erbA (Pro349 to Ser) abolishes the transdominant phenotype when introduced at the respective position in T3R. The hypertransforming v-erbA variant r12, in which this mutation is reversed (Ser349 to Pro) suppresses RA-induced differentiation in chicken erythroid progenitors, while v-erbA does not. Our data thus suggest that unliganded T3R and v-erbA act as dominant suppressors through mechanistically distinct pathways. Images PMID:8096810

  8. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation

    PubMed Central

    Kunkler, Phillip Edward; Ballard, Carrie Jo; Oxford, Gerry Stephen; Hurley, Joyce Harts

    2010-01-01

    The TRPA1 receptor is a member of the transient receptor potential (TRP) family of ion channels expressed in nociceptive neurons. TRPA1 receptors are targeted by pungent compounds from mustard and garlic and environmental irritants such as formaldehyde and acrolein. Ingestion or inhalation of these chemical agents causes irritation and burning in the nasal and oral mucosa and respiratory lining. Headaches have been widely reported to be induced by inhalation of environmental irritants, but it is unclear how these agents produce headache. Stimulation of trigeminal neurons releases CGRP and substance P and induces neurogenic inflammation associated with the pain of migraine. Here we test the hypothesis that activation of TRPA1 receptors are the mechanistic link between environmental irritants and peptide mediated neurogenic inflammation. Known TRPA1 agonists and environmental irritants stimulate CGRP release from dissociated rat trigeminal ganglia neurons and this release is blocked by a selective TRPA1 antagonist, HC-030031. Further, TRPA1 agonists and environmental irritants increase meningeal blood flow following intranasal administration. Prior dural application of the CGRP antagonist, CGRP8–37, or intranasal or dural administration of HC-030031, blocks the increases in blood flow elicited by environmental irritants. Together these results demonstrate that TRPA1 receptor activation by environmental irritants stimulates CGRP release and increases cerebral blood flow. We suggest that these events contribute to headache associated with environmental irritants. PMID:21075522

  9. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation.

    PubMed

    Kunkler, Phillip Edward; Ballard, Carrie Jo; Oxford, Gerry Stephen; Hurley, Joyce Harts

    2011-01-01

    The TRPA1 receptor is a member of the transient receptor potential (TRP) family of ion channels expressed in nociceptive neurons. TRPA1 receptors are targeted by pungent compounds from mustard and garlic and environmental irritants such as formaldehyde and acrolein. Ingestion or inhalation of these chemical agents causes irritation and burning in the nasal and oral mucosa and respiratory lining. Headaches have been widely reported to be induced by inhalation of environmental irritants, but it is unclear how these agents produce headache. Stimulation of trigeminal neurons releases CGRP and substance P and induces neurogenic inflammation associated with the pain of migraine. Here we test the hypothesis that activation of TRPA1 receptors is the mechanistic link between environmental irritants and peptide-mediated neurogenic inflammation. Known TRPA1 agonists and environmental irritants stimulate CGRP release from dissociated rat trigeminal ganglia neurons and this release is blocked by a selective TRPA1 antagonist, HC-030031. Further, TRPA1 agonists and environmental irritants increase meningeal blood flow following intranasal administration. Prior dural application of the CGRP antagonist, CGRP(8-37), or intranasal or dural administration of HC-030031, blocks the increases in blood flow elicited by environmental irritants. Together these results demonstrate that TRPA1 receptor activation by environmental irritants stimulates CGRP release and increases cerebral blood flow. We suggest that these events contribute to headache associated with environmental irritants. PMID:21075522

  10. Stress Induces Pain Transition by Potentiation of AMPA Receptor Phosphorylation

    PubMed Central

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A.

    2014-01-01

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. PMID:25297100

  11. The Dual Orexin Receptor Antagonist Almorexant Induces Sleep and Decreases Orexin-Induced Locomotion by Blocking Orexin 2 Receptors

    PubMed Central

    Mang, Géraldine M.; Dürst, Thomas; Bürki, Hugo; Imobersteg, Stefan; Abramowski, Dorothee; Schuepbach, Edi; Hoyer, Daniel; Fendt, Markus; Gee, Christine E.

    2012-01-01

    Study Objectives: Orexin peptides activate orexin 1 and orexin 2 receptors (OX1R and OX2R), regulate locomotion and sleep-wake. The dual OX1R/OX2R antagonist almorexant reduces activity and promotes sleep in multiple species, including man. The relative contributions of the two receptors in locomotion and sleep/wake regulation were investigated in mice. Design: Mice lacking orexin receptors were used to determine the contribution of OX1R and OX2R to orexin A-induced locomotion and to almorexant-induced sleep. Setting: N/A. Patients or Participants: C57BL/6J mice and OX1R+/+, OX1R-/-, OX2R+/+, OX2R-/- and OX1R-/-/OX2R-/- mice. Interventions: Intracerebroventricular orexin A; oral dosing of almorexant. Measurements and Results: Almorexant attenuated orexin A-induced locomotion. As in other species, almorexant dose-dependently increased rapid eye movement sleep (REM) and nonREM sleep in mice. Almorexant and orexin A were ineffective in OX1R-/-/OX2R-/- mice. Both orexin A-induced locomotion and sleep induction by almorexant were absent in OX2R-/- mice. Interestingly, almorexant did not induce cataplexy in wild-type mice under conditions where cataplexy was seen in mice lacking orexins and in OX1R-/-/OX2R-/- mice. Almorexant dissociates very slowly from OX2R as measured functionally and in radioligand binding. Under non equilibrium conditions in vitro, almorexant was a dual antagonist whereas at equilibrium, almorexant became OX2R selective. Conclusions: In vivo, almorexant specifically inhibits the actions of orexin A. The two known orexin receptors mediate sleep induction by almorexant and orexin A-induced locomotion. However, OX2R activation mediates locomotion induction by orexin A and antagonism of OX2R is sufficient to promote sleep in mice. Citation: Mang GM; Dürst T; Bürki H; Imobersteg S; Abramowski D; Schuepbach E; Hoyer D; Fendt M; Gee CE. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin 2 receptors. SLEEP 2012;35(12):1625-1635. PMID:23204605

  12. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    SciTech Connect

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing Liao, Er-Yuan

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1 cells. • Both Akt and ERK are critical adaptor molecules to mediate the effects of ghrelin.

  13. Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation.

    PubMed

    Panneerselvam, Mathivadhani; Tsutsumi, Yasuo M; Bonds, Jacqueline A; Horikawa, Yousuke T; Saldana, Michelle; Dalton, Nancy D; Head, Brian P; Patel, Piyush M; Roth, David M; Patel, Hemal H

    2010-11-01

    Epicatechin, a flavonoid, is a well-known antioxidant linked to a variety of protective effects in both humans and animals. In particular, its role in protection against cardiovascular disease has been demonstrated by epidemiologic studies. Low-dose epicatechin, which does not have significant antioxidant activity, is also protective; however, the mechanism by which low-dose epicatechin induces this effect is unknown. Our laboratory tested the hypothesis that low-dose epicatechin mediates cardiac protection via opioid receptor activation. C57BL/6 mice were randomly assigned to 1 of 10 groups: control, epicatechin, naloxone (nonselective opioid receptor antagonist), epicatechin + naloxone, naltrindole (δ-specific opioid receptor antagonist), epicatechin + naltrindole, norbinaltorphimine (nor-BNI, κ-specific opioid receptor antagonist), epicatechin + nor-BNI, 5-hydroxydecanoic acid [5-HD, ATP-sensitive potassium channel antagonist], and epicatechin + 5-HD. Epicatechin (1 mg/kg) or other inhibitors (5 mg/kg) were administered by oral gavage or intraperitoneal injection, respectively, daily for 10 days. Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion, and infarct size was determined via planimetry. Whole heart homogenates were assayed for downstream opioid receptor signaling targets. Infarct size was significantly reduced in epicatechin- and epicatechin + nor-BNI-treated mice compared with control mice. This protection was blocked by naloxone, naltrindole, and 5-HD. Epicatechin and epicatechin + nor-BNI increased the phosphorylation of Src, Akt, and IκBα, while simultaneously decreasing the expression of c-Jun NH(2)-terminal kinase and caspase-activated DNase. All signaling effects are consistent with opioid receptor stimulation and subsequent cardiac protection. Naloxone, naltrindole, and 5-HD attenuated these effects. In conclusion, epicatechin acts via opioid receptors and more specifically through the δ-opioid receptor to produce cardiac protection from ischemia-reperfusion injury. PMID:20833967

  14. A primer on cytokines: sources, receptors, effects, and inducers.

    PubMed Central

    Curfs, J H; Meis, J F; Hoogkamp-Korstanje, J A

    1997-01-01

    Protection against pathogens is a prerequisite for survival of most organisms. To cope with this continuous challenge, complex defense mechanisms have evolved. The construction, adaptation, and maintenance of these mechanisms are under control of an extensive network of regulatory proteins called cytokines. A great number of cytokines have been described over the last 2 decades. This review consists of an overview of cytokines that are involved in immune responses and describes some historical and general aspects as well as prospective clinical applications. Major biological effects together with information on cytokine receptors, producers, inducers, and biochemical and molecular characteristics are listed in tables. In addition, some basic information is given on cytokine receptor signal transduction. Finally, the recent discoveries of cytokine receptors functioning as coreceptors in the pathogenesis of human immunodeficiency virus are summarized. PMID:9336671

  15. Estradiol induces proliferation of keratinocytes via a receptor mediated mechanism.

    PubMed

    Verdier-Sevrain, S; Yaar, M; Cantatore, J; Traish, A; Gilchrest, B A

    2004-08-01

    In this study, we investigated the effects of estradiol on the proliferation of neonatal keratinocytes, the expression of estrogen receptor isoforms, and the signaling mechanisms by which estradiol mediates cell growth. We demonstrate that estradiol binds neonatal keratinocytes with high affinity (Kd=5.2nM) and limited capacity (Bmax of 14.2fmol/mg of protein), confirming the presence of estrogen binding sites. Using specific antibodies, we demonstrate that keratinocytes express both estrogen receptor (ER)-alpha and ER-beta. At physiological concentrations, estradiol up-regulates the level of ER-alpha receptors in keratinocytes and induces keratinocyte proliferation. The proliferative effect of estradiol requires the availability of functional estrogen receptors, as it is abrogated by anti-estrogen administration. Estradiol effect on keratinocyte proliferation is most likely mediated in part by activation of a nongenomic, membrane-associated, signaling pathway involving activation of the extracellular signal regulated kinases 1 and 2 and in part by the genomic signaling pathway through activation of nuclear receptors. PMID:15208259

  16. Vasoactive Intestinal Polypeptide and Muscarinic Receptors: Supersensitivity Induced by Long-Term Atropine Treatment

    NASA Astrophysics Data System (ADS)

    Hedlund, Britta; Abens, Janis; Bartfai, Tamas

    1983-04-01

    Long-term treatment of rats with atropine induced large increases in the numbers of muscarinic receptors and receptors for vasoactive intestinal polypeptide in the salivary glands. Since receptors for vasoactive intestinal polypeptide coexist with muscarinic receptors on the same neurons in this preparation, the results suggest that a drug that alters the sensitivity of one receptor may also affect the sensitivity of the receptor for a costored transmitter and in this way contribute to the therapeutic or side effects of the drug.

  17. The orphan nuclear receptor estrogen receptor-related receptor gamma negatively regulates BMP2-induced osteoblast differentiation and bone formation.

    PubMed

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-05-22

    Estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRalpha is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRgamma in osteoblast differentiation. Here, we showed that ERRgamma is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRgamma reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRgamma expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRgamma plays an important role in osteoblast differentiation. In addition, ERRgamma significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRgamma physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRgamma strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRgamma is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  18. The Orphan Nuclear Receptor Estrogen Receptor-related Receptor γ Negatively Regulates BMP2-induced Osteoblast Differentiation and Bone Formation*

    PubMed Central

    Jeong, Byung-Chul; Lee, Yong-Soo; Park, Yun-Yong; Bae, In-Ho; Kim, Don-Kyu; Koo, Seung-Hoi; Choi, Hong-Ran; Kim, Sun-Hun; Franceschi, Renny T.; Koh, Jeong-Tae; Choi, Hueng-Sik

    2009-01-01

    Estrogen receptor-related receptor γ (ERRγ/ERR3/NR3B3) is a member of the orphan nuclear receptor with important functions in development and homeostasis. Recently it has been reported that ERRα is involved in osteoblast differentiation and bone formation. In the present study we examined the role of ERRγ in osteoblast differentiation. Here, we showed that ERRγ is expressed in osteoblast progenitors and primary osteoblasts, and its expression is increased temporarily by BMP2. Overexpression of ERRγ reduced BMP2-induced alkaline phosphatase activity and osteocalcin production as well as calcified nodule formation, whereas inhibition of ERRγ expression significantly enhanced BMP2-induced osteogenic differentiation and mineralization, suggesting that endogenous ERRγ plays an important role in osteoblast differentiation. In addition, ERRγ significantly repressed Runx2 transactivity on osteocalcin and bone sialoprotein promoters. We also observed that ERRγ physically interacts with Runx2 in vitro and in vivo and competes with p300 to repress Runx2 transactivity. Notably, intramuscular injection of ERRγ strongly inhibited BMP2-induced ectopic bone formation in a dose-dependent manner. Taken together, these results suggest that ERRγ is a novel negative regulator of osteoblast differentiation and bone formation via its regulation of Runx2 transactivity. PMID:19324883

  19. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  20. PET imaging of dopamine receptors in MPTP-induced parkinsonism

    SciTech Connect

    Larson, S.M.; DiChiro, G.; Burns, R.S.; Dannals, R.F.; Kopin, I.J.; Brooks, R.A.; Kessler, R.M.; Wagner, R.F.; Eckelman, W.C.; Margolin, R.A.

    1984-01-01

    MPTP(N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces parkinsonism in animals and man by selectively destroying dopaminergic neurons in the pars compacta of the substantia nigra. The postsynaptic neurons (and presumably the dopamine receptors) are intact. The authors have imaged dopamine receptors in a patient with MPTP induced parkinsonism, using /sup 11/CMS (3-N(/sup 11/C) methylspiperone. Seven and 9 mCi's, respectively, were injected at one week intervals while the patient was first off, and then on, L-dopa. As measured by NeuroPET (NIH), putamen to cerebellum concentration ratios rose progressively to 5.5:1, by 90 min. after injection. At this time the concentration of /sup 11/CMS was 10 picomole/cc (off L-dopa), and 14 picomole/cc (on L-dopa). The Duvoisin scale was used to assess the severity of the patient's parkinsonism immediately prior and at the end of PET imaging. On both occasions, despite the small mass amount of /sup 11/CMS injected, (1.1 g/kg), a transient worsening of symptoms was seen. The effect of L-Dopa was almost completely reversed by the /sup 11/CMS. In contrast, off L-Dopa the patients severe basal state was worsened only slightly. The PET scans suggested that dopamine receptors are not reduced in MPTP-induced parkinsonism. The findings were consistent with the hypotheses that PET may identify patients who will benefit from L-Dopa, and that expression of parkinsonian symptoms reflects desaturation of dopamine receptors in striatum.

  1. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    PubMed Central

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  2. The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors.

    PubMed

    Sun, Yongjun; Chen, You; Zhan, Liying; Zhang, Linan; Hu, Jie; Gao, Zibin

    2016-04-01

    Protein tyrosine phosphorylation is one of the primary modes of regulation of N-methyl-d-aspartate (NMDA) receptors. The non-receptor tyrosine kinases are one of the two types of protein tyrosine kinases that are involved in this process. The overactivation of NMDA receptors is a primary reason for neuron death following cerebral ischemia. Many studies have illustrated the important role of non-receptor tyrosine kinases in ischemia insults. This review introduces the roles of Src, Fyn, focal adhesion kinase, and proline-rich tyrosine kinase 2 in the excitotoxicity induced by the overactivation of NMDA receptors following cerebral ischemia. PMID:26540220

  3. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    SciTech Connect

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  4. AMPA receptor potentiation can prevent ethanol-induced intoxication.

    PubMed

    Jones, Nicholas; Messenger, Marcus J; O'Neill, Michael J; Oldershaw, Anna; Gilmour, Gary; Simmons, Rosa M A; Iyengar, Smriti; Libri, Vincenzo; Tricklebank, Mark; Williams, Steve C R

    2008-06-01

    We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication. PMID:17851540

  5. Nuclear Receptors: Mediators And Modifiers Of Inflammation-Induced Cholestasis

    PubMed Central

    Mulder, Jaap; Karpen, Saul J.; Tietge, Uwe J.F.; Kuipers, Folkert

    2014-01-01

    Inflammation-induced cholestasis (IIC) is a frequently occurring phenomenon. A central role in its pathogenesis is played by nuclear receptors (NRs). These ligand-activated transcription factors not only regulate basal expression of hepatobiliary transport systems, but also mediate adaptive responses and possess anti-inflammatory characteristics. The latter two functions may be exploited in the search for new treatments for IIC and likely for cholestasis in general as well. Current knowledge of the pathogenesis of IIC and the dual role NRs in this process are reviewed. Special interest is given to the use of NRs as potential targets for intervention. PMID:19273222

  6. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  7. Activation of type 5 metabotropic glutamate receptors attenuates deficits in cognitive flexibility induced by NMDA receptor blockade

    PubMed Central

    Stefani, Mark R.; Moghaddam, Bita

    2010-01-01

    Metabotropic glutamate (mGlu) receptors provide a mechanism by which the function of NMDA glutamate receptors can be modulated. As NMDA receptor hypofunction is implicated in the etiology of psychiatric disorders, including schizophrenia, the pharmacological regulation of mGlu receptor activity represents a promising therapeutic approach. We examined the effects of the positive allosteric mGlu5 receptor modulator 3- cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), alone and in combination with the NMDA receptor antagonist MK-801, on a task measuring cognitive set-shifting ability. This task measures NMDA receptor-dependent cognitive abilities analogous to those impaired in schizophrenia. Systemic administration of CDPPB (10 & 30 mg/kg i.p) blocked MK-801 (0.1 mg/kg, i.p.)-induced impairments in set-shifting ability. The effect on learning was dose-dependent, with the 30 mg/kg dose having a greater effect than the 10 mg/kg dose across all trials. This ameliorative effect of CDPPB reflected a reduction in MK-801-induced perseverative responding. These results add to the evidence that mGlu5 receptors interact functionally with NMDA receptors to regulate behavior, and suggest that positive modulators of mGlu5 receptors may have therapeutic potential in the treatment of disorders, like schizophrenia, characterized by impairments in cognitive flexibility and memory. PMID:20371234

  8. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Maddaloni, Ernesto; Sørensen, Ditte; Rasmussen, Lars Melholt; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe−/− mice (Irs1/Apoe−/−) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE−/− mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE−/− mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr−/− and Irs1/Ldlr−/− mice decreased NO production and accelerated atherosclerosis, compared with Ldlr−/− mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  9. Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation.

    PubMed

    Imamura, Osamu; Arai, Masaaki; Dateki, Minori; Ogata, Toru; Uchida, Ryuji; Tomoda, Hiroshi; Takishima, Kunio

    2015-12-01

    Oligodendrocytes are the myelin-forming cells of the central nervous system (CNS). Failure of myelin development and oligodendrocyte loss results in serious human disorders, including multiple sclerosis. Here, we show that donepezil, an acetlycholinesterase inhibitor developed for the treatment of Alzheimer's disease, can stimulate oligodendrocyte differentiation and maturation of neural stem cell-derived oligodendrocyte progenitor cells without affecting proliferation or cell viability. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase, and MOG, in addition to transcription factors that regulate oligodendrocyte differentiation and myelination, were rapidly increased after treatment with donepezil. Furthermore, luciferase assays confirmed that both MAG and MBP promoters display increased activity upon donepezil-induced oligodendrocytes differentiation, suggesting that donepezil increases myelin gene expression mainly through enhanced transcription. We also found that the increase in the number of oligodendrocytes observed following donepezil treatment was significantly inhibited by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, but not by the muscarinic acetylcholine receptor antagonist scopolamine. Moreover, donepezil-induced myelin-related gene expression was suppressed by mecamylamine at both the mRNA and protein level. These results suggest that donepezil stimulates oligodendrocyte differentiation and myelin-related gene expression via nAChRs in neural stem cell-derived oligodendrocyte progenitor cells. We show that donepezil, a drug for the treatment of Alzheimer disease, can stimulate oligodendrocyte differentiation and maturation of oligodendrocyte progenitor cells. Transcripts for essential myelin-associated genes, such as PLP, MAG, MBP, CNPase and MOG in addition to transcripton factors that regulate oligodendrocyte differentiation and myelination were rapidly increased after treatment with donepezil. These effects were partly dependent on nicotinic acetylcholine receptor (nAChR). PMID:26315944

  10. Autocrine, Mitogenic Pheromone Receptor Loop of the Ciliate Euplotes raikovi: Pheromone-Induced Receptor Internalization

    PubMed Central

    Vallesi, Adriana; Ballarini, Patrizia; Di Pretoro, Barbara; Alimenti, Claudio; Miceli, Cristina; Luporini, Pierangelo

    2005-01-01

    The ciliate Euplotes raikovi produces a family of diffusible signal proteins (pheromones) that function as prototypic growth factors. They may either promote cell growth, by binding to pheromone receptors synthesized by the same cells from which they are secreted (autocrine activity), or induce a temporary cell shift from the growth stage to a mating (sexual) one by binding to pheromone receptors of other, conspecific cells (paracrine activity). In cells constitutively secreting the pheromone Er-1, it was first observed that the expression of the Er-1 receptor “p15,” a type II membrane protein of 130 amino acids, is quantitatively correlated with the extracellular concentration of secreted pheromone. p15 expression on the cell surface rapidly and markedly increased after the removal of secreted Er-1 and gradually decreased in parallel with new Er-1 secretion. It was then shown that p15 is internalized through endocytic vesicles following Er-1 binding and that the internalization of p15/Er-1 complexes is specifically blocked by the paracrine p15 binding of Er-2, a pheromone structurally homologous to, and thus capable of fully antagonizing, Er-1. Based on previous findings that the p15 pheromone-binding site is structurally equivalent to Er-1 and that Er-1 molecules polymerize in crystals following a pattern of cooperative interaction, it was proposed that p15/Er-1 complexes are internalized as a consequence of their unique property (not shared by p15/Er-2 complexes) of undergoing clustering. PMID:16002648

  11. Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors.

    PubMed

    Abdelhamid, Ramy E; Kovacs, Katalin J; Pasley, Jeffrey D; Nunez, Myra G; Larson, Alice A

    2013-09-01

    The exacerbation of musculoskeletal pain by stress in humans is modeled by the musculoskeletal hyperalgesia in rodents following a forced swim. We hypothesized that stress-sensitive corticotropin releasing factor (CRF) receptors and transient receptor vanilloid 1 (TRPV1) receptors are responsible for the swim stress-induced musculoskeletal hyperalgesia. We confirmed that a cold swim (26 °C) caused a transient, morphine-sensitive decrease in grip force responses reflecting musculoskeletal hyperalgesia in mice. Pretreatment with the CRF2 receptor antagonist astressin 2B, but not the CRF1 receptor antagonist NBI-35965, attenuated this hyperalgesia. Desensitizing the TRPV1 receptor centrally or peripherally using desensitizing doses of resiniferatoxin (RTX) failed to prevent the musculoskeletal hyperalgesia produced by cold swim. SB-366791, a TRPV1 antagonist, also failed to influence swim-induced hyperalgesia. Together these data indicate that swim stress-induced musculoskeletal hyperalgesia is mediated, in part, by CRF2 receptors but is independent of the TRPV1 receptor. PMID:23624287

  12. Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors

    PubMed Central

    Abdelhamid, Ramy E.; Kovacs, Katalin J.; Pasley, Jeff D.; Nunez, Myra G.; Larson, Alice A.

    2013-01-01

    The exacerbation of musculoskeletal pain by stress in humans is modeled by the musculoskeletal hyperalgesia in rodents following a forced swim. We hypothesized that stress-sensitive corticotropin releasing factor (CRF) receptors and transient receptor vanilloid 1 (TRPV1) receptors are responsible for the swim stress-induced musculoskeletal hyperalgesia. We confirmed that a cold swim (26°C) caused a transient, morphine-sensitive decrease in grip force responses reflecting musculoskeletal hyperalgesia in mice. Pretreatment with the CRF2 receptor antagonist astressin 2B, but not the CRF1 receptor antagonist NBI-35965, attenuated this hyperalgesia. Desensitizing the TRPV1 receptor centrally or peripherally using desensitizing doses of resiniferatoxin (RTX) failed to prevent the musculoskeletal hyperalgesia produced by cold swim. SB-366791, a TRPV1 antagonist, also failed to influence swim-induced hyperalgesia. Together these data indicate that swim stress-induced musculoskeletal hyperalgesia is mediated, in part, by CRF2 receptors but is independent of the TRPV1 receptor. PMID:23624287

  13. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury

    PubMed Central

    Yang, Y.; Yang, H.; Wang, Z.; Varadaraj, K.; Kumari, S.S.; Mergler, S.; Okada, Y.; Saika, S.; Kingsley, P.J.; Marnett, L.J.; Reinach, P.S.

    2013-01-01

    Cannabinoid receptor type 1 (CB1)-induced suppression of transient receptor potential vanilloid type 1 (TRPV1) activation provides a therapeutic option to reduce inflammation and pain in different animal disease models through mechanisms involving dampening of TRPV1 activation and signaling events. As we found in both mouse corneal epithelium and human corneal epithelial cells (HCEC) that there is CB1 and TRPV1 expression colocalization based on overlap of coimmunostaining, we determined in mouse corneal wound healing models and in human corneal epithelial cells (HCEC) if they interact with one another to reduce TRPV1-induced inflammatory and scarring responses. Corneal epithelial debridement elicited in vivo a more rapid wound healing response in wildtype (WT) than in CB1−/− mice suggesting functional interaction between CB1 and TRPV1. CB1 activation by injury is tenable based on the identification in mouse corneas of 2-arachidonylglycerol (2-AG) with tandem LC–MS/MS, a selective endocannabinoid CB1 ligand. Suppression of corneal TRPV1 activation by CB1 is indicated since following alkali burning, CB1 activation with WIN55,212-2 (WIN) reduced immune cell stromal infiltration and scarring. Western blot analysis of coimmunoprecipitates identified protein–protein interaction between CB1 and TRPV1. Other immunocomplexes were also identified containing transforming growth factor kinase 1 (TAK1), TRPV1 and CB1. CB1 siRNA gene silencing prevented suppression by WIN of TRPV1-induced TAK1–JNK1 signaling. WIN reduced TRPV1-induced Ca2+ transients in fura2-loaded HCEC whereas pertussis toxin (PTX) preincubation obviated suppression by WIN of such rises caused by capsaicin (CAP). Whole cell patch clamp analysis of HCEC showed that WIN blocked subsequent CAP-induced increases in nonselective outward currents. Taken together, CB1 activation by injury-induced release of endocannabinoids such as 2-AG downregulates TRPV1 mediated inflammation and corneal opacification. Such suppression occurs through protein–protein interaction between TRPV1 and CB1 leading to declines in TRPV1 phosphorylation status. CB1 activation of the GTP binding protein, Gi/o contributes to CB1 mediated TRPV1 dephosphorylation leading to TRPV1 desensitization, declines in TRPV1-induced increases in currents and pro-inflammatory signaling events. PMID:23142606

  14. α-Melanocyte stimulating hormone attenuates dexamethasone-induced osteoblast damages through activating melanocortin receptor 4-SphK1 signaling.

    PubMed

    Guo, Shiguang; Xie, Yue; Fan, Jian-bo; Ji, Feng; Wang, Shouguo; Fei, Haodong

    2016-01-01

    Long-term glucocorticoid (GC) usage may cause non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) is shown to exert potent cytotoxic effect to osteoblasts. Here, we investigated the potential activity of α-melanocyte stimulating hormone (α-MSH) against the process. Our data revealed that pretreatment of α-MSH significantly inhibited Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Melanocortin receptor 4 (MC4R) acts as the receptor of α-MSH in mediating its actions in osteoblasts. The MC4R antagonist SHU9119, or shRNA-mediated knockdown of MC4R, almost abolished α-MSH-induced activation of downstream signalings (Akt and Erk1/2) and its pro-survival effect in osteoblasts. Further studies showed that α-MSH activated MC4R downstream sphingosine kinase 1 (SphK1) and increased cellular sphingosine-1-phosphate (S1P) content in MC3T3-E1 cells and primary murine osteoblasts, which were blocked by SHU9119 or MC4R shRNAs. SphK1 inhibition by the its inhibitor N,N-dimethylsphingosine (DMS), or SphK1 knockdown by targeted-shRNAs, largely attenuated α-MSH-mediated osteoblast protection against Dex. Together, these results suggest that α-MSH alleviates Dex-induced damages to cultured osteoblasts through activating MC4R-SphK1 signaling. PMID:26631960

  15. T3DB: the toxic exposome database

    PubMed Central

    Wishart, David; Arndt, David; Pon, Allison; Sajed, Tanvir; Guo, An Chi; Djoumbou, Yannick; Knox, Craig; Wilson, Michael; Liang, Yongjie; Grant, Jason; Liu, Yifeng; Goldansaz, Seyed Ali; Rappaport, Stephen M.

    2015-01-01

    The exposome is defined as the totality of all human environmental exposures from conception to death. It is often regarded as the complement to the genome, with the interaction between the exposome and the genome ultimately determining one's phenotype. The toxic exposome is the complete collection of chronically or acutely toxic compounds to which humans can be exposed. Considerable interest in defining the toxic exposome has been spurred on by the realization that most human injuries, deaths and diseases are directly or indirectly caused by toxic substances found in the air, water, food, home or workplace. The Toxin-Toxin-Target Database (T3DB - www.t3db.ca) is a resource that was specifically designed to capture information about the toxic exposome. Originally released in 2010, the first version of T3DB contained data on nearly 2900 common toxic substances along with detailed information on their chemical properties, descriptions, targets, toxic effects, toxicity thresholds, sequences (for both targets and toxins), mechanisms and references. To more closely align itself with the needs of epidemiologists, toxicologists and exposome scientists, the latest release of T3DB has been substantially upgraded to include many more compounds (>3600), targets (>2000) and gene expression datasets (>15 000 genes). It now includes extensive data on normal toxic compound concentrations in human biofluids as well as detailed chemical taxonomies, informative chemical ontologies and a large number of referential NMR, MS/MS and GC-MS spectra. This manuscript describes the most recent update to the T3DB, which was previously featured in the 2010 NAR Database Issue. PMID:25378312

  16. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Liu, Xueqing; Kim, Jae-kyung; Li, Yunsheng; Li, Jing; Liu, Fang; Chen, Xiaozhuo

    2005-02-01

    Obesity is a major risk factor for Syndrome X and type II diabetes (T2D). However, most antidiabetic drugs that are hypoglycemic also promote weight gain, thus alleviating one symptom of T2D while aggravating a major risk factor that leads to T2D. Adipogenesis, the differentiation and proliferation of adipocytes, is a major mechanism leading to weight gain and obesity. It is highly desirable to develop pharmaceuticals and treatments for T2D that reduce blood glucose levels without inducing adipogenesis in patients. Previously, we reported that an extract from Lagerstroemia speciosa L. (banaba) possessed activities that both stimulated glucose transport and inhibited adipocyte differentiation in 3T3-L1 cells. Using glucose uptake assays and Western/Northern blot analyses as major tools and 3T3-L1 cells as a model, we showed that the banaba extract (BE) with tannin removed was devoid of the 2 activities, and tannic acid (TA), a major component of tannins, had the same 2 activities as BE. Inhibitors known to abolish insulin-induced glucose transport also blocked TA-induced glucose transport. We further detected that TA induced phosphorylation of the insulin receptor (IR) and Akt, as well as translocation of glucose transporter 4 (GLUT 4), the protein factors involved in the signaling pathway of insulin-mediated glucose transport. We also demonstrated that TA inhibited the expression of key genes for adipogenesis. Differences between samples with or without TA in all of the quantitative assays were significant (P < 0.05). These results suggest that TA may be useful for the prevention and treatment of T2D and its associated obesity. TA may have the potential to become the lead compound in the development of new types of antidiabetic pharmaceuticals that are able to reduce blood glucose levels without increasing adiposity. PMID:15671208

  17. 5-HT2A receptor activation is necessary for CO2-induced arousal.

    PubMed

    Buchanan, Gordon F; Smith, Haleigh R; MacAskill, Amanda; Richerson, George B

    2015-07-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT(2A) receptors dose-dependently blocked CO2-induced arousal. The 5-HT(2C) receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1b(f/f/p)) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT(2A), but not 5-HT(2C), receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT(2A) receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  18. Aspartame downregulates 3T3-L1 differentiation.

    PubMed

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity. PMID:24961835

  19. Valsartan, independently of AT1 receptor or PPARγ, suppresses LPS-induced macrophage activation and improves insulin resistance in cocultured adipocytes.

    PubMed

    Iwashita, Misaki; Sakoda, Hideyuki; Kushiyama, Akifumi; Fujishiro, Midori; Ohno, Haruya; Nakatsu, Yusuke; Fukushima, Toshiaki; Kumamoto, Sonoko; Tsuchiya, Yoshihiro; Kikuchi, Takako; Kurihara, Hiroki; Akazawa, Hiroshi; Komuro, Issei; Kamata, Hideaki; Nishimura, Fusanori; Asano, Tomoichiro

    2012-02-01

    Macrophages are integrated into adipose tissues and interact with adipocytes in obese subjects, thereby exacerbating adipose insulin resistance. This study aimed to elucidate the molecular mechanism underlying the insulin-sensitizing effect of the angiotensin II receptor blocker (ARB) valsartan, as demonstrated in clinical studies. Insulin signaling, i.e., insulin receptor substrate-1 and Akt phosphorylations, in 3T3-L1 adipocytes was impaired markedly by treatment with tumor necrosis factor-α (TNFα) or in the culture medium of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages, and valsartan had no effects on these impairments. However, in contrast, when cocultured with RAW 264.7 cells using a transwell system, the LPS-induced insulin signaling impairment in 3T3-L1 adipocytes showed almost complete normalization with coaddition of valsartan. Furthermore, valsartan strongly suppressed LPS-induced productions of cytokines such as interleukin (IL)-1β, IL-6, and TNFα with nuclear factor-κB activation and c-Jun NH(2)-terminal kinase phosphorylation in RAW 264.7 and primary murine macrophages. Very interestingly, this effect of valsartan was also observed in THP-1 cells treated with angiotensin II type 1 (AT1) siRNA or a peroxisome proliferator-activated receptor-γ (PPARγ) antagonist as well as macrophages from AT1a receptor-knockout mice. We conclude that valsartan suppresses the inflammatory response of macrophages, albeit not via PPARγ or the AT1a receptor. This suppression appears to secondarily improve adipose insulin resistance. PMID:22045314

  20. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Induces Death Receptor 5 Networks That Are Highly Organized*

    PubMed Central

    Valley, Christopher C.; Lewis, Andrew K.; Mudaliar, Deepti J.; Perlmutter, Jason D.; Braun, Anthony R.; Karim, Christine B.; Thomas, David D.; Brody, Jonathan R.; Sachs, Jonathan N.

    2012-01-01

    Recent evidence suggests that TNF-related apoptosis-inducing ligand (TRAIL), a death-inducing cytokine with anti-tumor potential, initiates apoptosis by re-organizing TRAIL receptors into large clusters, although the structure of these clusters and the mechanism by which they assemble are unknown. Here, we demonstrate that TRAIL receptor 2 (DR5) forms receptor dimers in a ligand-dependent manner at endogenous receptor levels, and these receptor dimers exist within high molecular weight networks. Using mutational analysis, FRET, fluorescence microscopy, synthetic biochemistry, and molecular modeling, we find that receptor dimerization relies upon covalent and noncovalent interactions between membrane-proximal residues. Additionally, by using FRET, we show that the oligomeric structure of two functional isoforms of DR5 is indistinguishable. The resulting model of DR5 activation should revise the accepted architecture of the functioning units of DR5 and the structurally homologous TNF receptor superfamily members. PMID:22496450

  1. Zinc-chelated Vitamin C Stimulates Adipogenesis of 3T3-L1 Cells

    PubMed Central

    Ghosh, Chiranjit; Yang, Seung Hak; Kim, Jong Geun; Jeon, Tae-Il; Yoon, Byung Hyun; Lee, Jai Young; Lee, Eun Young; Choi, Seok Geun; Hwang, Seong Gu

    2013-01-01

    Adipose tissue development and function play a critical role in the regulation of energy balance, lipid metabolism, and the pathophysiology of metabolic syndromes. Although the effect of zinc ascorbate supplementation in diabetes or glycemic control is known in humans, the underlying mechanism is not well described. Here, we investigated the effect of a zinc-chelated vitamin C (ZnC) compound on the adipogenic differentiation of 3T3-L1 preadipocytes. Treatment with ZnC for 8 d significantly promoted adipogenesis, which was characterized by increased glycerol-3-phosphate dehydrogenase activity and intracellular lipid accumulation in 3T3-L1 cells. Meanwhile, ZnC induced a pronounced up-regulation of the expression of glucose transporter type 4 (GLUT4) and the adipocyte-specific gene adipocyte protein 2 (aP2). Analysis of mRNA and protein levels further showed that ZnC increased the sequential expression of peroxisome proliferator-activated receptor gamma (PPAR?) and CCAAT/enhancer-binding protein alpha (C/EBP?), the key transcription factors of adipogenesis. These results indicate that ZnC could promote adipogenesis through PPAR? and C/EBP?, which act synergistically for the expression of aP2 and GLUT4, leading to the generation of insulin-responsive adipocytes and can thereby be useful as a novel therapeutic agent for the management of diabetes and related metabolic disorders. PMID:25049900

  2. Enterohepatic circulation of triiodothyronine (T3) in rats: Importance of the microflora for the liberation and reabsorption of T3 from biliary T3 conjugates

    SciTech Connect

    Rutgers, M.; Heusdens, F.A.; Bonthuis, F.; de Herder, W.W.; Hazenberg, M.P.; Visser, T.J. )

    1989-12-01

    In normal rats, T3 glucuronide (T3G) is the major biliary T3 metabolite, but excretion of T3 sulfate (T3S) is greatly increased after inhibition of type I deiodinase, e.g. with 6-propyl-2-thiouracil (PTU). In this study, the fate of the T3 conjugates excreted with bile was studied to assess the significance of a putative enterohepatic circulation of T3 in rats. Conventional (CV) or intestine-decontaminated (ID) rats received iv (125I)T3G or (125I)T3S, the latter usually after pretreatment with PTU (1 mg/100 g BW). Radioactivity in plasma and bile or feces was analyzed by Sephadex LH-20 chromatography and HPLC. Within 1 h, 88% of injected T3G was excreted in bile of CV or ID rats, independent of PTU. About 75% of the injected T3S was excreted within 4 h in PTU-treated rats, in contrast to only 20% in controls. Up to 13 h after iv administration of T3G or T3S (+PTU) to intact ID and CV rats, fecal radioactivity consisted of more than 90% T3 in all CV rats, 95% of T3S in T3S-injected ID rats, and 30% T3 and 67% T3G in T3G-injected ID rats. In overnight-fasted CV rats injected with T3G, total plasma radioactivity rapidly declined until a nadir of 0.10% dose/ml at about 2.5 h, but radioactivity reappeared with a broad maximum of 0.12% dose/ml between 5.5-10 h. In the latter phase, plasma radioactivity consisted of predominantly I- and T3 in a ratio of 2:1. Reabsorption was diminished in fed CV rats and prevented in ID rats. Plasma T3 4-10 h after iv T3G injection to overnight-fasted CV rats was 12, 2, and 3 times higher than that in bile-diverted rats, fed CV rats, and ID rats, respectively, and similar to that 4 h after the injection of T3 itself. Total plasma radioactivity as well as plasma T3 6-13 h after iv administration T3S in PTU-treated rats were significantly increased in CV vs. ID rats, e.g. T3 0.016% vs. 0.005% dose/ml.

  3. Guggulsterone activates multiple nuclear receptors and induces CYP3A gene expression through the pregnane X receptor.

    PubMed

    Brobst, Dan E; Ding, Xunshan; Creech, Katrina L; Goodwin, Bryan; Kelley, Brian; Staudinger, Jeff L

    2004-08-01

    Gugulipid is an extract of the guggul tree, Commiphora mukul, that is used to treat hyperlipidemia in humans. The lipid-lowering activity is found in the stereoisomers and plant sterols Z-guggulsterone and E-guggulsterone. The molecular basis for the lipid-lowering action of guggulsterone has been suggested to be antagonism of the farnesoid X receptor, a member of the nuclear receptor superfamily of ligand-activated transcription factors. To determine whether guggulsterone has the ability to function as an agonist of other nuclear receptor family members, we screened a panel of these proteins for their ability to transactivate reporter genes. Here, we show that guggulsterones activate the estrogen receptor alpha isoform, progesterone receptor, and pregnane X receptor. Concentration-response analysis using reporter gene assays indicate that guggulsterones activate these three receptors with EC(50) values in the low micromolar range. Furthermore, we show that guggulsterone-mediated activation of the pregnane X receptor induces the expression of CYP3A genes in both rodent and human hepatocytes. Protein interaction assays indicate that guggulsterones interact directly with pregnane X receptor, thereby modulating interaction with protein cofactors. We introduce a novel method to screen herbal remedies for their ability to activate pregnane X receptor. Pregnane X receptor activation is known to cause herb-drug interactions, and our data suggest that gugulipid therapy should be used cautiously in patients taking prescription medications that are metabolized by CYP3A family members. Moreover, our data suggest the need for additional studies of guggulsterones agonist activity against estrogen receptor alpha isoform and the progesterone receptor. PMID:15075359

  4. Effect of retinoic acid on murine preosteoblastic MC3T3-E1 cells.

    PubMed

    Nagasawa, Hiroyuki; Takahashi, Shu; Kobayashi, Akira; Tazawa, Hiroshi; Tashima, Yohtalou; Sato, Kozo

    2005-10-01

    Retinoic acid (RA) plays an important role in bone metabolism in vivo through osteoclast activation and bone resorption. Retinoid X-activated receptor beta (RXRbeta) has been implicated in the genetic spinal defect of ossification of the posterior longitudinal ligament (OPLL). In this study, we examined the effects of 9-cis RA and all-trans RA (ATRA) on the proliferation, differentiation, and RXRbeta expression of the murine preosteoblastic cell line MC3T3-E1. Both 9-cis RA and ATRA dose-dependently inhibited the increase in total soluble protein content at concentrations of 10 and 100 nM after 4 and 8 d co-culture with MC3T3-E1 cells. The inhibitory effect of 9-cis RA was slightly stronger than that of ATRA. Histone H4 mRNA expression was dose-dependently suppressed by both RAs on day 1. Alkaline phosphatase activity was increased by both RAs at 10 and 100 nM concentrations on day 4, with 9-cis RA-induced activity slightly stronger than that of ATRA. Osteopontin mRNA expression was increased by both RAs on day 1, but was suppressed on day 4. Bone Gla protein mRNA expression was inhibited by 10 and 100 nM 9-cis RA and by 100 nM ATRA on day 14. RXRbeta mRNA expression was increased by 9-cis RA, an RXRbeta ligand, in a dose-dependent manner. Our results suggested that while both RAs suppressed proliferation and stimulated the maturation of preosteoblastic MC3T3-E1 cells, 9-cis RA was slightly more potent than ATRA. It also appeared that RAs may contribute to the development of heterotopic ossification, including OPLL. PMID:16392701

  5. Involvement of matrix metalloproteinases in the adipose conversion of 3T3-L1 preadipocytes.

    PubMed Central

    Croissandeau, Gilles; Chrétien, Michel; Mbikay, Majambu

    2002-01-01

    When mouse 3T3-L1 preadipocytes are induced to differentiate into adipocytes, they change from an extended fibroblast-like morphology to a rounded one. This change most likely occurs through extracellular matrix remodelling, a process known to be mediated in part by matrix metalloproteinases (MMPs). In this study, we have shown by semi-quantitative reverse transcriptase-PCR, zymographic and immunoblot analysis that MMP-2, MMP-9 and membrane type 1 (MT1)-MMP are regulated during adipose conversion. To assess the importance of MMPs for adipocytic differentiation we have used MMP-specific inhibitors as well as neutralizing antibodies. Treatment of 3T3-L1 preadipocytes with the broad MMP inhibitor Ilomastat or the more restricted MMP-2 Inhibitor I prevented their differentiation into adipocytes in a dose-dependent manner, as evidenced by absence of triglyceride accumulation. Inhibitor treatment prevented the fibronectin-network degradation, as well as the induction of the genes for peroxisome-proliferator-activated receptor gamma and adipsin, two adipocyte phenotype markers. Inhibitor treatment was effective when applied during the early stages of adipocytic conversion, whereas inhibitor treatment during later stages had little effect. Inhibitor treatment did not inhibit clonal mitotic expansion; nor did it affect the expression pattern of the adipogenic transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) or its nuclear translocation. It did, however, markedly reduce C/EBPbeta DNA-binding capacity. Taken together, these results suggest that MMPs, and notably MMP-2 and MMP-9, may be necessary mediators of adipocytic differentiation of 3T3-L1 cells. PMID:12049638

  6. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1.

    PubMed

    Vacchelli, Erika; Ma, Yuting; Baracco, Elisa E; Sistigu, Antonella; Enot, David P; Pietrocola, Federico; Yang, Heng; Adjemian, Sandy; Chaba, Kariman; Semeraro, Michaela; Signore, Michele; De Ninno, Adele; Lucarini, Valeria; Peschiaroli, Francesca; Businaro, Luca; Gerardino, Annamaria; Manic, Gwenola; Ulas, Thomas; Günther, Patrick; Schultze, Joachim L; Kepp, Oliver; Stoll, Gautier; Lefebvre, Céline; Mulot, Claire; Castoldi, Francesca; Rusakiewicz, Sylvie; Ladoire, Sylvain; Apetoh, Lionel; Bravo-San Pedro, José Manuel; Lucattelli, Monica; Delarasse, Cécile; Boige, Valérie; Ducreux, Michel; Delaloge, Suzette; Borg, Christophe; André, Fabrice; Schiavoni, Giovanna; Vitale, Ilio; Laurent-Puig, Pierre; Mattei, Fabrizio; Zitvogel, Laurence; Kroemer, Guido

    2015-11-20

    Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1(-/-) mice due to impaired antitumor immunity. Fpr1-deficient dendritic cells failed to approach dying cancer cells and, as a result, could not elicit antitumor T cell immunity. Experiments performed in a microfluidic device confirmed that FPR1 and its ligand, annexin-1, promoted stable interactions between dying cancer cells and human or murine leukocytes. Altogether, these results highlight the importance of FPR1 in chemotherapy-induced anticancer immune responses. PMID:26516201

  7. Attenuation of D-1 antagonist-induced D-1 receptor upregulation by conccomitant D-2 receptor blockade

    SciTech Connect

    Parashos, S.A.; Barone, P.; Tucci, I.; Chase, T.N.

    1987-11-16

    The effect of chronic selective D-1 and/or D-2 dopamine receptor blockade on regional D-1 receptor binding was studied in rat brain following chronic treatment with the specific D-1 antagonist SCH 23390 and/or the predominantly D-2 antagonist haloperidol. D-1 receptor density and affinity were evaluated by quantitative autoradiography using /sup 125/I-SCH 23982. Chronic SCH 23390 treatment increased D-1 receptor density by 30 to 40% in the striatum, accumbens and tuberculum olfactorium; receptor affinity remained unchanged. Haloperidol had no effect on D-1 receptor Bmax or Kd values, although, when administered with SCH 23390, reduced the D-1 receptor upregulation induced by the D-1 antagonist in striatum and tuberculum olfactorium, but not in nucleus accumbens, These results may be attributable to D-1/D-2 dopamine receptor interactions occurring in the striatum and tuberculum olfactorium and may have implications for the prevention and treatment of drug-induced extrapyramidal disorders. 34 references, 1 figure, 2 tables.

  8. GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion.

    PubMed

    Zhu, Pei; Yuen, Jacky M L; Sham, Kathy W Y; Cheng, Christopher H K

    2013-11-01

    G-protein-coupled estrogen receptor 1 (GPER) mediates non-genomic signaling of estrogenic events. Here we showed for the first time that Gper/GPER is expressed in Swiss 3T3 mouse embryo preadipocytes 3T3-L1, and that Gper/GPER is up-regulated during differentiation of the cells induced by monocyte differentiation-inducing (MDI) cocktail. Activation of GPER by the natural ligand 17β-estradiol (E2), and the specific agonist G1, was shown to inhibit lipid accumulation in 3T3-L1 cells, while such inhibition was reversed upon knockdown of GPER using specific siRNA. GPER was also found to mediate perturbation of mitotic clonal expansion (MCE) in these cells by inhibiting cell cycle arrest during MDI cocktail-induced differentiation. Persistent activation of cell cycle regulating factors cyclin-dependant kinase (CDK) 4, CDK6 and cyclin D1, and phosphorylation of retinoblastoma (Rb) protein at serine 795 was observed in the G1-treated cells. Taken together, our results indicate that E2-GPER signaling leads to an inhibition of adipogenesis in 3T3-L1 cells via perturbation of MCE. PMID:23871778

  9. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2015-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. PMID:23994061

  10. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  11. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation

    PubMed Central

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X.; Zamponi, Gerald W.; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  12. Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator–Activated Receptor Gamma-Independent Mechanism

    PubMed Central

    Chamorro-García, Raquel; Kirchner, Séverine; Li, Xia; Janesick, Amanda; Casey, Stephanie C.; Chow, Connie

    2012-01-01

    Background: Bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE), used in manufacturing coatings and resins, leach from packaging materials into food. Numerous studies suggested that BPA and BADGE may have adverse effects on human health, including the possibility that exposure to such chemicals can be superimposed on traditional risk factors to initiate or exacerbate the development of obesity. BPA is a suspected obesogen, whereas BADGE, described as a peroxisome proliferator–activated receptor gamma (PPARγ) antagonist, could reduce weight gain. Objectives: We sought to test the adipogenic effects of BADGE in a biologically relevant cell culture model. Methods: We used multipotent mesenchymal stromal stem cells (MSCs) to study the adipogenic capacity of BADGE and BPA and evaluated their effects on adipogenesis, osteogenesis, gene expression, and nuclear receptor activation. Discussion: BADGE induced adipogenesis in human and mouse MSCs, as well as in mouse 3T3-L1 preadipocytes. In contrast, BPA failed to promote adipogenesis in MSCs, but induced adipogenesis in 3T3-L1 cells. BADGE exposure elicited an adipogenic gene expression profile, and its ability to induce adipogenesis and the expression of adipogenic genes was not blocked by known PPARγ antagonists. Neither BADGE nor BPA activated or antagonized retinoid “X” receptor (RXR) or PPARγ in transient transfection assays. Conclusions: BADGE can induce adipogenic differentiation in both MSCs and in preadipocytes at low nanomolar concentrations comparable to those that have been observed in limited human biomonitoring. BADGE probably acts through a mechanism that is downstream of, or parallel to, PPARγ. PMID:22763116

  13. Vaspin promotes 3T3-L1 preadipocyte differentiation.

    PubMed

    Liu, Ping; Li, Guoliang; Wu, Jine; Zhou, Xin; Wang, Liping; Han, Wenqi; Lv, Ying; Sun, Chaofeng

    2015-11-01

    Vaspin, a novel adipocyte factor secreted from visceral adipose tissues, is associated with obesity and insulin resistance and can regulate glucose and lipid metabolism, increase insulin sensitivity, and suppress inflammation; however, the underlying mechanisms remain unknown. Proliferation and maladaptive differentiation are important pathological mechanisms underlying obesity. This study aimed to evaluate the effects of vaspin on the proliferation and differentiation of preadipocyte 3T3-L1 cells and to explore the likely mechanisms responsible for 3T3-L1 differentiation. Vaspin was added to cultured 3T3-L1 cells, and the differentiation of adipocytes was evaluated using Oil Red O staining. The AKT signaling pathway and specific differentiation factors related to the differentiation of preadipocyte 3T3-L1 cells, peroxisome proliferator-activated γ and the CCAAT/enhancer-binding protein (C/EBP) family, were evaluated using reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses during the early phase of differentiation. Additionally, adiponectin mRNA, interleukin-6 mRNA (IL-6 mRNA), and glucose transporter-4 (GLUT4) protein levels were measured in the differentiated adipocytes. The results indicated that vaspin promotes the intracellular accumulation of lipids and increases differentiation-related factors, including peroxisome proliferator-activated receptor γ, C/EBPα, and free fatty acid-binding protein 4 (FABP4), in a dose-dependent manner. Additionally, vaspin (200 ng/mL) increased the mRNA and protein levels of C/EBPβ, peroxisome proliferator-activated γ, C/EBPα, and FABP4. Moreover, compared with the control, significantly smaller eight-day differentiated adipocytes were observed, and these cells exhibited decreased IL-6 mRNA and increased GLUT4 mRNA levels; these results also indicated the potential of vaspin to promote the insulin-mediated AKT signaling pathway during the early phase of differentiation. In conclusion, vaspin is able to promote the differentiation of 3T3-L1 preadipocytes and may increase their sensitivity to insulin and suppress obesity. PMID:25585626

  14. 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity.

    PubMed

    Charron, Alexandra; Hage, Cynthia El; Servonnet, Alice; Samaha, Anne-Noël

    2015-12-01

    Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity. PMID:26508706

  15. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury

    PubMed Central

    Li, Yang; Liu, Yong; Peng, XiangPing; Liu, Wei; Zhao, FeiYan; Feng, DanDan; Han, JianZhong; Huang, YanHong; Luo, SiWei; Li, Lian; Yue, Shao Jie; Cheng, QingMei; Huang, XiaoTing; Luo, ZiQiang

    2015-01-01

    Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice. PMID:25942563

  16. Development of a peptide-based inducer of nuclear receptors degradation.

    PubMed

    Demizu, Yosuke; Ohoka, Nobumichi; Nagakubo, Takaya; Yamashita, Hiroko; Misawa, Takashi; Okuhira, Keiichiro; Naito, Mikihiko; Kurihara, Masaaki

    2016-06-01

    A peptide-based protein knockdown system for inducing nuclear receptors degradation via the ubiquitin-proteasome system was developed. Specifically, the designed molecules were composed of two biologically active scaffolds: a peptide that binds to the estrogen receptor α (ERα) surface and an MV1 molecule that binds to cellular inhibitors of apoptosis proteins (IAP: cIAP1/cIAP2/XIAP) to induce ubiquitylation of the ERα. The hybrid peptides induced IAP-mediated ubiquitylation followed by proteasomal degradation of the ERα. Those peptides were also applicable for inducing androgen receptor (AR) degradation. PMID:27086122

  17. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    PubMed

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-01

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor. PMID:26272024

  18. Activation of retinoid X receptors induces apoptosis in HL-60 cell lines.

    PubMed Central

    Nagy, L; Thomázy, V A; Shipley, G L; Fésüs, L; Lamph, W; Heyman, R A; Chandraratna, R A; Davies, P J

    1995-01-01

    Retinoids induce myeloblastic leukemia (HL-60) cells to differentiate into granulocytes, which subsequently die by apoptosis. Retinoid action is mediated through at least two classes of nuclear receptors: retinoic acid receptors, which bind both all-trans retinoic acid and 9-cis retinoic acid, and retinoid X receptors, which bind only 9-cis retinoic acid. Using receptor-selective synthetic retinoids and HL-60 cell sublines with different retinoid responsiveness, we have investigated the contribution that each class of receptors makes to the processes of cellular differentiation and death. Our results demonstrate that ligand activation of retinoic acid receptors is sufficient to induce differentiation, whereas ligand activation of retinoid X receptors is essential for the induction of apoptosis in HL-60 cell lines. PMID:7791761

  19. Cannabinoid Receptor Type I Modulates Alcohol-Induced Liver Fibrosis

    PubMed Central

    Patsenker, Eleonora; Stoll, Matthias; Millonig, Gunda; Agaimy, Abbas; Wissniowski, Till; Schneider, Vreni; Mueller, Sebastian; Brenneisen, Rudolf; Seitz, Helmut K; Ocker, Matthias; Stickel, Felix

    2011-01-01

    The cannabinoid system (CS) is implicated in the regulation of hepatic fibrosis, steatosis and inflammation, with cannabinoid receptors 1 and 2 (CB1 and CB2) being involved in regulation of pro- and antifibrogenic effects. Daily cannabis smoking is an independent risk factor for the progression of fibrosis in chronic hepatitis C and a mediator of experimental alcoholic steatosis. However, the role and function of CS in alcoholic liver fibrosis (ALF) is unknown so far. Thus, human liver samples from patients with alcoholic liver disease (ALD) were collected for analysis of CB1 expression. In vitro, hepatic stellate cells (HSC) underwent treatment with acetaldehyde, Δ9-tetrahydrocannabinol H2O2, endo- and exocannabinoids (2-arachidonoylglycerol (2-AG) and [THC]), and CB1 antagonist SR141716 (rimonabant). In vivo, CB1 knockout (KO) mice received thioacetamide (TAA)/ethanol (EtOH) to induce fibrosis. As a result, in human ALD, CB1 expression was restricted to areas with advanced fibrosis only. In vitro, acetaldehyde, H2O2, as well as 2-AG and THC, alone or in combination with acetaldehyde, induced CB1 mRNA expression, whereas CB1 blockage with SR141716 dose-dependently inhibited HSC proliferation and downregulated mRNA expression of fibrosis-mediated genes PCα1(I), TIMP-1 and MMP-13. This was paralleled by marked cytotoxicity of SR141716 at high doses (5–10 μmol/L). In vivo, CB1 knockout mice showed marked resistance to alcoholic liver fibrosis. In conclusion, CB1 expression is upregulated in human ALF, which is at least in part triggered by acetaldehyde (AA) and oxidative stress. Inhibition of CB1 by SR141716, or via genetic knock-out protects against alcoholic-induced fibrosis in vitro and in vivo. PMID:21863215

  20. Hindbrain CART induces hypothermia mediated by GLP-1 receptors

    PubMed Central

    Skibicka, Karolina P.; Alhadeff, Amber L.; Grill, Harvey J.

    2009-01-01

    Cocaine- and amphetamine-regulated transcript peptides (CART) are widely distributed throughout the neuraxis, including regions associated with energy balance. CART’s classification as a catabolic neuropeptide is based on its inhibitory effects on feeding, co-expression with arcuate nucleus POMC neurons, and on limited analysis of its energy expenditure effects. Here we investigate whether: 1) caudal brainstem delivery of CART produces energetic, cardiovascular and glycemic effects, 2) forebrain – caudal brainstem neural communication is required for those effects and 3) GLP-1 receptors (GLP-1R) contribute to the mediation of CART-induced effects. Core temperature (Tc), heart rate (HR), activity and blood glucose were measured in rats injected 4th v. with CART (0.1, 1.0 and 2.0µg). Food was withheld during physiologic recording and returned for overnight measurement of intake and body weight. CART induced a long-lasting (> 6h); hypothermia; a 1.5°C and 1.6°C drop in TC for the 1.0 and 2.0µg doses. Hindbrain CART application reduced food intake and body weight and increased blood glucose levels; no change in HR or activity was observed. Supracollicular decerebration eliminated the hypothermic response observed in intact rats to hindbrain ventricular CART, suggesting that forebrain processing is required for hypothermia. Pretreatment with the GLP-1R antagonist (exendin-9-39) in control rats attenuated CART hypothermia and hypophagia, indicating that GLP-1R activation contributes to hypothermic and hypophagic effects of hindbrain CART while CART-induced hyperglycemia was not altered by GLP-1R blockade. Data reveal a novel function of CART in temperature regulation and open possibilities for future studies on the clinical potential of the hypothermic effect. PMID:19474324

  1. Thyroid active agents T3 and PTU differentially affect immune gene transcripts in the head kidney of rainbow trout (Oncorynchus mykiss).

    PubMed

    Quesada-García, Alba; Encinas, Paloma; Valdehita, Ana; Baumann, Lisa; Segner, Helmut; Coll, Julio M; Navas, José M

    2016-05-01

    In mammals, numerous reports describe an immunomodulating effect of thyroid-active compounds. In contrast, only few reports have been published on this subject in fish. We previously demonstrated that immune cells of rainbow trout (Oncorhynchus mykiss) possess thyroid hormone receptors (THRs) and that exposure of trout to the thyroid hormone 3,3',5-triiodo-l-thyronine (T3) or the antithyroid drug propylthiouracil (PTU) alters immune cell transcript levels of THR and several immune genes. The present study aims to further characterize the immunomodulating action of thyroid-active compounds in trout immune cells. We report here the use of a custom-designed 60-mer oligo immune-targeted microarray for rainbow trout to analyze the gene expression profiles induced in the head kidney by T3 and PTU. Morphometric analyses of the thyroid showed that PTU exposure increased the size of the epithelial cells, whereas T3 induced no significant effects. Both T3 and PTU had diverse and partly contrasting effects on immune transcript profiles. The strongest differential effects of T3 and PTU on gene expressions were those targeting the Mitogen Associated Protein Kinase (MAPK), NFkB, Natural Killer (NK) and Toll-Like Receptor (TLR) pathways, a number of multipath genes (MPG) such as those encoding pleiotropic transcription factors (atf1, junb, myc), as well as important pro-inflammatory genes (tnfa, tnf6, il1b) and interferon-related genes (ifng, irf10). With these results we show for the first time in a fish species that the in vivo thyroidal status modulates a diversity of immune genes and pathways. This knowledge provides the basis to investigate both mechanisms and consequences of thyroid hormone- and thyroid disruptor-mediated immunomodulation for the immunocompetence of fish. PMID:26963519

  2. A Herbal Formula HT048, Citrus unshiu and Crataegus pinnatifida, Prevents Obesity by Inhibiting Adipogenesis and Lipogenesis in 3T3-L1 Preadipocytes and HFD-Induced Obese Rats.

    PubMed

    Lee, Yoon Hee; Kim, Young-Sik; Song, Mikyung; Lee, Minsu; Park, Juyeon; Kim, Hocheol

    2015-01-01

    HT048 is a combination composed of Crataegus pinnatifida leaf and Citrus unshiu peel extracts. This study aimed to investigate potential anti-obesity effect of the combination. The 3T3-L1 adipocytes were treated with different doses of HT048 and triglyceride accumulation, glycerol release and adipogenesis-related genes were analyzed. For in vivo study, male Sprague Dawley rats were divided according to experimental diets: the chow diet group, the high-fat diet (HFD) group, the HFD supplemented with orlistat group, the HFD supplemented with HT048 group (0.2% or 0.4%) for 12 weeks. We measured the body weight, serum lipid levels and the expression of genes involved lipid metabolism. HT048 treatment dose-dependently suppressed adipocyte differentiation and stimulated glycerol release. The expressions of PPARγ and C/EBPα mRNA were decreased by HT048 treatment in adipocytes. HT048 supplementation significantly reduced the body and fat weights in vivo. Serum lipid levels were significantly lower in the HT048 supplemented groups than those of the HFD group. Expression of the hepatic lipogenesis-related genes were decreased and expression of the β-oxidation-related genes were increased in rats fed HT048 compared to that of animals fed HFD. These results suggest that HT048 has a potential benefit in preventing obesity through the inhibition of lipogenesis and adipogenesis. PMID:26016552

  3. Single Bout Short Duration Fluid Shear Stress Induces Osteogenic Differentiation of MC3T3-E1 Cells via Integrin β1 and BMP2 Signaling Cross-Talk

    PubMed Central

    Zhang, Jinglan; Chen, Lin; Liang, Huangyou; Bai, Ding; Yan, Guangmei; Ai, Hong

    2013-01-01

    Fluid shear stress plays an important role in bone osteogenic differentiation. It is traditionally believed that pulsed and continuous stress load is more favorable for fracture recovery and bone homeostasis. However, according to our clinical practice, we notice that one single stress load is also sufficient to trigger osteogenic differentiation. In the present study, we subject osteoblast MC3T3-E1 cells to single bout short duration fluid shear stress by using a parallel plate flow system. The results show that 1 hour of fluid shear stress at 12 dyn/cm2 promotes terminal osteogenic differentiation, including rearrangement of F-actin stress fiber, up-regulation of osteogenic genes expression, elevation of alkaline phosphatase activity, secretion of type I collagen and osteoid nodule formation. Moreover, collaboration of BMP2 and integrin β1 pathways plays a significant role in such differentiation processes. Our findings provide further experimental evidence to support the notion that single bout short duration fluid shear stress can promote osteogenic differentiation. PMID:23593489

  4. Breeder Reactor Program: T-3 cask

    SciTech Connect

    Krupar, J.J.; Berger, J.D.; Berg, J.D.; Weber, E.T.

    1980-01-01

    A shipping cask system was developed for shipment of irradiated fuels and materials from the Fast Flux Test Facility (FFTF) to participating Hot Cell Examination Facilities. The development work included techniques for remote packaging and cask loading of the materials prior to shipment. The remote handling systems were developed for both horizontal and vertical loading/unloading of various payloads. The T-3 cask was licensed by the United States Nuclear Regulatory Commmission (US NRC) showing compliance with Title 10 of the Code of Federal Regulations, Part 71 (10-CFR-71).

  5. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    PubMed

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea. PMID:26833256

  6. Suppressive Effects of Barley β-Glucans with Different Molecular Weight on 3T3-L1 Adipocyte Differentiation.

    PubMed

    Zhu, Yingying; Yao, Yang; Gao, Yue; Hu, Yibo; Shi, Zhenxing; Ren, Guixing

    2016-03-01

    In this study, 2 β-glucans with different molecular weight were prepared and purified from hull-less barley bran. The aim was to evaluate their effects on the differentiation of 3T3-L1 pre-adipocytes. Results showed that barley β-glucans inhibited the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, the suppressive effect of high-molecular-weight barley β-glucans (552 kDa, BGH) was stronger (P < 0.05) than that of low-molecular-weight barley β-glucan (32 kDa, BGL), evidenced by the significantly decrease (P < 0.05) of Oil-red O staining and intracellular triglyceride content in the mature adipocytes. Besides, gene expression analysis and Western Blot analysis revealed that both BGH and BGL inhibited the mRNA and protein levels of adipogenesis related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα) which are principal regulators of adipogenesis. Furthermore, the mRNA and protein expression levels of PPARγ target genes in adipose tissue including adipocyte fatty acid binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose-transporter 4 (Glut4) in 3T3-L1 cells was also markedly downregulated (P < 0.05). These findings were anticipated to help develop barley β-glucans based functional food for the management of obesity. PMID:26860768

  7. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes

    PubMed Central

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea PMID:26833256

  8. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05). PMID:26494490

  9. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  10. Do T3 levels in incubating eiders reflect the cost of incubation among clutch sizes?

    PubMed

    Criscuolo, François; Raclot, Thierry; Le Maho, Yvon; Gabrielsen, Geir Wing

    2003-01-01

    Complete development of avian eggs requires external heat, inducing in most species an energetic cost of incubation for the parents. Triiodothyronine (T(3)) has been implicated in the control of the metabolic rate and is decreased during fasting in most bird species. This raises the question of the regulation of T(3) during reproduction when incubation (thus heat production) is associated with fasting (and energy sparing). In this study, plasma concentrations of T(3) were studied for different clutch sizes in incubating, as well as in nonincubating, fasting female eiders. Our results show that the T(3) levels decrease during fasting in nonincubating birds, whereas they were maintained during the incubation fast. T(3) levels increased in female eiders at hatching. The plasma T(3) level did not vary among natural clutch sizes in eiders but did so when manipulated. T(3) levels increased when eggs were added (to a maximum of six eggs, i.e., the biggest natural clutch size) or removed (to two eggs, i.e., the smallest natural clutch size). Our results suggest that (1) high T(3) levels during incubation may participate to a threshold of heat production and incubation metabolic rate in eiders despite the fact that they are fasting; (2) since T(3) is associated with the energy expenditure in birds, incubating an enlarged or reduced clutch size may lead to a higher energetic cost of incubation in eiders; and (3) the energy demand of the ducklings at hatching is probably important, as the female T(3) concentrations are then at their highest levels. Thus, any modification of the natural clutch size leads to a rise in the T(3) level of the incubating female, suggesting an additional cost of incubation. Knowing that there is no variation of T(3) levels among natural clutch sizes, this study suggests that a female eider produces a number of eggs corresponding to the energy she can invest in incubation. PMID:12794673

  11. Adipose cells induce phospho-Thr-172 AMPK production by epinephrine or CL316243 in mouse 3T3-L1 adipocytes or MAPK activation and G protein-associated PI3K responses induced by CL316243 or aluminum fluoride in rat white adipocytes.

    PubMed

    Ohsaka, Y; Nishino, H; Nomura, Y

    2014-01-01

    Responses of adipose cells to adrenoceptor regulation, including that of β-adrenoceptor (AR), and the signalling machinery involved in these responses are not sufficiently understood; information that is helpful for elucidating the adrenoceptor (adrenergic and β-AR)-responsive machinery is insufficient. We examined phospho-Thr-172 AMPK production in mouse-derived 3T3-L1 adipocytes treated with epinephrine or CL316243 (a β3-AR agonist) for 15 min. We also examined MAPK activation or G protein-associated PI3K activation or -associated PI3K p85 complex formation in rat epididymal (white) adipocytes treated with CL316243 for 15 min or aluminum fluoride (a G-protein signalling activator) for 20 min. Furthermore, we examined the effect of PTX (a trimeric G-protein inactivator) on p85 complex formation induced by aluminum fluoride treatment. Western blot analysis revealed that epinephrine or CL316243 treatment increased the phospho- Thr-172 AMPK (an active form of AMPK) level in 3T3-L1 adipocytes. Activated kinase analysis with a specific substrate showed that CL316243 or aluminum fluoride treatment activated MAPK in rat adipocytes. Immunoprecipitation experiments with a G-protein β subunit (Gβ) antibody showed that treatment of rat adipocytes with CL316243 activated PI3K and increased the PI3K p85 level in the Gβ antibody immunoprecipitates. Such an increase in the p85 level was similarly elicited by aluminum fluoride treatment in a PTX-sensitive manner. Our results provide possible clues for clarifying the signalling machinery involved in adrenoceptor responses, including those of β3-AR, in mouse-derived adipocytes and rat white adipocytes. Our findings advance the understanding of responses to adrenoceptor regulation in adipose cells and of the cellular signalling machinery present in the cells. PMID:25152050

  12. Purinergic P2Y6 receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II-induced hypertension.

    PubMed

    Nishimura, Akiyuki; Sunggip, Caroline; Tozaki-Saitoh, Hidetoshi; Shimauchi, Tsukasa; Numaga-Tomita, Takuro; Hirano, Katsuya; Ide, Tomomi; Boeynaems, Jean-Marie; Kurose, Hitoshi; Tsuda, Makoto; Robaye, Bernard; Inoue, Kazuhide; Nishida, Motohiro

    2016-01-01

    The angiotensin (Ang) type 1 receptor (AT1R) promotes functional and structural integrity of the arterial wall to contribute to vascular homeostasis, but this receptor also promotes hypertension. In our investigation of how Ang II signals are converted by the AT1R from physiological to pathological outputs, we found that the purinergic P2Y6 receptor (P2Y6R), an inflammation-inducible G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR), promoted Ang II-induced hypertension in mice. In mice, deletion of P2Y6R attenuated Ang II-induced increase in blood pressure, vascular remodeling, oxidative stress, and endothelial dysfunction. AT1R and P2Y6R formed stable heterodimers, which enhanced G protein-dependent vascular hypertrophy but reduced ?-arrestin-dependent AT1R internalization. Pharmacological disruption of AT1R-P2Y6R heterodimers by the P2Y6R antagonist MRS2578 suppressed Ang II-induced hypertension in mice. Furthermore, P2Y6R abundance increased with age in vascular smooth muscle cells. The increased abundance of P2Y6R converted AT1R-stimulated signaling in vascular smooth muscle cells from ?-arrestin-dependent proliferation to G protein-dependent hypertrophy. These results suggest that increased formation of AT1R-P2Y6R heterodimers with age may increase the likelihood of hypertension induced by Ang II. PMID:26787451

  13. Echinacea purpurea root extract enhances the adipocyte differentiation of 3T3-L1 cells.

    PubMed

    Shin, Dong-Mi; Choi, Kyeong-Mi; Lee, Youn-Sun; Kim, Wonkyun; Shin, Kyong-Oh; Oh, Seikwan; Jung, Jae-Chul; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2014-06-01

    Echinacea purpurea has been shown to have anti-diabetic activities; for example, it activates peroxisome proliferator-activated receptor γ (PPARγ) and increases insulin-stimulated glucose uptake. Adipogenesis has been used to study the insulin signaling pathway and to screen anti-diabetic compounds. The present study was conducted to investigate the effects of an ethanol extract of E. purpurea (EEEP) and its constituents on the insulin-induced adipocyte differentiation of 3T3-L1 preadipocytes. When adipocyte differentiation was induced with insulin plus 3-isobutyl-1-methylxanthine and dexamethasone, the accumulation of lipid droplets and the cellular triglyceride content were significantly increased by EEEP. The expressions of PPARγ and C/EBPα in adipocytes treated with EEEP were gradually increased as compared with control cells. Fat accumulation and triglyceride content of adipocytes treated with dodeca-2(E),4(E)-dienoic acid isobutylamide were significantly increased as compared with control cells. The expressions of PPARγ and C/EBPα in adipocytes treated with dodeca-2(E),4(E)-dienoic acid isobutylamide were significantly higher than in control cells. These results suggest EEEP promotes the adipogenesis that is partially induced by insulin and that dodeca-2(E),4(E)-dienoic acid isobutylamide appears to be responsible for EEEP-enhanced adipocyte differentiation. PMID:24085629

  14. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  15. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  16. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes.

    PubMed Central

    Kallen, C B; Lazar, M A

    1996-01-01

    Lack of leptin (ob) protein causes obesity in mice. The leptin gene product is important for normal regulation of appetite and metabolic rate and is produced exclusively by adipocytes. Leptin mRNA was induced during the adipose conversion of 3T3-L1 cells, which are useful for studying adipocyte differentiation and function under controlled conditions. We studied leptin regulation by antidiabetic thiazolidinedione compounds, which are ligands for the adipocyte-specific nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) that regulates the transcription of other adipocyte-specific genes. Remarkably, leptin gene expression was dramatically repressed within a few hours after thiazolidinedione treatment. The ED50 for inhibition of leptin expression by the thiazolidinedione BRL49653 was between 5 and 50 nM, similar to its Kd for binding to PPARgamma. The relatively weak, nonthiazolidinedione PPAR activator WY 14,643 also inhibited leptin expression, but was approximately 1000 times less potent than BRL49653. These results indicate that antidiabetic thiazolidinediones down-regulate leptin gene expression with potencies that correlate with their abilities to bind and activate PPARgamma. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8650171

  17. Pregnane X receptor and drug-induced liver injury

    PubMed Central

    Wang, Yue-Ming; Chai, Sergio C.; Brewer, Christopher T; Chen, Taosheng

    2014-01-01

    Introduction The liver plays a central role in transforming and clearing foreign substances. The continuous exposure of the liver to xenobiotics sometimes leads to impaired liver function, referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) tightly regulates the expression of genes in the hepatic drug-clearance system and its undesired activation plays a role in DILI. Areas covered This review focuses on the recent progress in understanding PXR-mediated DILI and highlights the efforts made to assess and manage PXR-mediated DILI during drug development. Expert opinion Future efforts are needed to further elucidate the mechanisms of PXR-mediated liver injury, including the epigenetic regulation and polymorphisms of PXR. Novel in vitro models containing functional PXR could improve our ability to predict and assess DILI during drug development. PXR inhibitors may provide chemical tools to validate the potential of PXR as a therapetic target and to develop drugs to be used in the clinic to manage PXR-mediated DILI. PMID:25252616

  18. The effects of acute and repeated administration of T3 to mice on 5-HT1 and 5-HT2 function in the brain and its influence on the actions of repeated electroconvulsive shock.

    PubMed

    Heal, D J; Smith, S L

    1988-12-01

    The effects of the administration of L-triiodothyronine (T3) On the function of 5-HT in the CNS and its influence on the actions of electroconvulsive shock have been examined in mice. A single injection of T3 (100 micrograms/kg) had no effect 24 hr later on either 5-HT1A-mediated hypothermia, induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.5 mg/kg) or the 5-HT1B-mediated locomotor response to 5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl) 1-H-indole (RU 24969; 50 ng i.c.v.). This treatment increased 5-HT2-induced head-twitches, produced by 5-methoxy-N,N'-dimethyltryptamine (5-MeODMT; 2 mg/kg), but did not alter 5-HT2 receptors in the frontal cortex, suggesting that this potentiation was mediated indirectly through a modulatory neurotransmitter. One injection of T3 had no effect on the concentration of 5-HT in the forebrain or mid/hindbrain, but increased 5-HIAA in the latter region. Daily injections of T3 for 10 days attenuated the responses to both 8-OH-DPAT and RU 24969. Furthermore, 5-MeODMT-induced head-twitches returned to control values and this was accompanied by a 10% decrease in 5-HT2 receptors in the cortex. Repeated administration of T3 increased levels of 5-HT in mid/hindbrain and concentrations of 5-HIAA both here and in forebrain. Hence, treatment with T3 attenuated the function of 5-HT1A and 5-HT1B receptors, but increased 5-HT2-mediated responses, although the time-courses for these effects were different. Triiodothyronine also enhanced the synthesis and turnover of 5-HT in the brain of the mouse. Repeated electroconvulsive shock (90 V, 1 sec) decreased the hypothermia induced by 8-OH-DPAT. However, 5-MeODMT-induced head-twitches were enhanced by acute and repeated electroconvulsive shock. Administration of T3 together with electroconvulsive shock did not alter the effects of electroconvulsive shock on 5-HT1A-mediated hypothermia, but markedly potentiated its actions on 5-HT2-mediated responses. These findings provide possible pharmacological evidence for the suggested antidepressant effects of T3 and the potentiation of antidepressant therapy by this thyroid hormone. PMID:2977427

  19. Topiramate effects lipolysis in 3T3-L1 adipocytes

    PubMed Central

    MARTINS, GABRIELA POLTRONIERI CAMPAGNARO; SOUZA, CAMILA OLIVEIRA; MARQUES, SCHEROLIN; LUCIANO, THAIS FERNANDES; DA SILVA PIERI, BRUNO LUIZ; ROSA, JOSÉ CÉSAR; DA SILVA, ADELINO SANCHEZ RAMOS; PAULI, JOSÉ RODRIGO; CINTRA, DENNYS ESPER; ROPELLE, EDUARDO ROCHETE; RODRIGUES, BRUNO; DE LIRA, FABIO SANTOS; DE SOUZA, CLAUDIO TEODORO

    2015-01-01

    Studies have shown that topiramate (TPM)-induced weight loss can be dependent on the central nervous system (CNS). However, the direct action of TPM on adipose tissue has not been tested previously. Thus, the present study aimed to examine whether TPM modulates lipolysis in 3T3-L1. The 3T3-L1 cells were incubated in 50 µM TPM for 30 min. The β-adrenergic stimulator, isoproterenol, was used as a positive control. The release of lactate dehydrogenase, non-esterified fatty acid, glycerol and incorporation of 14C-palmitate to lipid were analyzed. The phosphorylation of protein kinase A (PKA), hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL) and perilipin A, as well as the protein levels of comparative genetic identification 58 (CGI-58) were assessed. The levels of glycerol and non-esterified fatty acid increased markedly when the cells were treated with TPM. The TPM effects were similar to the isoproterenol positive control. Additionally, TPM reduced lipogenesis. These results were observed without any change in cell viability. Finally, the phosphorylation of PKA, HSL, ATGL and perilipin A, as well as the protein levels of CGI-58 were increased compared to the control cells. These results were similar to those observed in the cells treated with isoproterenol. The present results show that TPM increased the phosphorylation of pivotal lipolytic enzymes, which induced lipolysis in 3T3-L1 adipocytes, suggesting that this drug may act directly in the adipose tissue independent from its effect on the CNS. PMID:26623024

  20. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    PubMed Central

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  1. Involvement of ryanodine receptors in sphingosylphosphorylcholine-induced calcium release from brain microsomes.

    PubMed

    Dettbarn, C; Betto, R; Salviati, G; Sabbadini, R; Palade, P

    1995-01-01

    Sphingosylphosphorylcholine (SPC) releases Ca2+ from brain microsomes. SPC-induced CA2+ release differs from IP3-induced Ca2+ release in that it is more extensive in the cerebrum than in the cerebellum. SPC has little effect on [3H] IP3 binding but enhances [3H] ryanodine binding, as expected for an activator of ryanodine receptors. SPC-induced Ca2+ release is inhibited by ryanodine receptor blockers but not by selective blockers of IP3 receptors. We conclude that SPC releases Ca2+ from brain microsomes by activating ryanodine receptors rather than IP3 receptors. Activation of an additional SPC-sensitive pathway for releasing Ca2+ is not precluded. PMID:7712168

  2. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells.

    PubMed

    Liu, F; Kim, J; Li, Y; Liu, X; Li, J; Chen, X

    2001-09-01

    The effects of extracts isolated from Lagerstroemia speciosa L. (banaba) on glucose transport and adipocyte differentiation in 3T3-L1 cells were studied. Glucose uptake-inducing activity of banaba extract (BE) was investigated in differentiated adipocytes using a radioactive assay, and the ability of BE to induce differentiation in preadipocytes was examined by Northern and Western blot analyses. The hot water BE and the banaba methanol eluent (BME) stimulated glucose uptake in 3T3-L1 adipocytes with an induction time and a dose-dependent response similar to those of insulin. Furthermore, there were no additive or synergistic effects found between BE and insulin on glucose uptake, and the glucose uptake activity of insulin could be reduced to basal levels by adding increasing amounts of BE. Unlike insulin, BE did not induce adipocyte differentiation in the presence of 3-isobutyl-1-methylxanthine (IBMX) and dexamethasone (DEX). BE inhibited the adipocyte differentiation induced by insulin plus IBMX and DEX (IS-IBMX-DEX) of 3T3-L1 preadipocytes in a dose-dependent manner. The differences in the glucose uptake and differentiation inhibitory activities between untreated cells and those treated with BE were significant (P < 0.01). The inhibitory activity was further demonstrated by drastic reductions of peroxisome proliferator-activated receptor gamma2 (PPARgamma2) mRNA and glucose transporter-4 (GLUT4) protein in cells induced from preadipocytes with IS-IBMX-DEX in the presence of BE. The unique combination of a glucose uptake stimulatory activity, the absence of adipocyte differentiation activity and effective inhibition of adipocyte differentiation induced by IS-IBMX-DEX in 3T3-L1 cells suggest that BE may be useful for prevention and treatment of hyperglycemia and obesity in type II diabetics. PMID:11533261

  3. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch

    PubMed Central

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM) could also induce a dose-dependent increase in intracellular Ca2+ ([Ca2+]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+ responses. In addition, immepip-induced [Ca2+]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation. PMID:26819760

  4. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    PubMed

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation. PMID:26819760

  5. MODULATION OF ACETAMINOPHEN-INDUCED HEPATOTOXICITY BY THE XENOBIOTIC RECEPTOR CAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have identified the xenobiotic receptor CAR (constitutive androstane receptor) as a key regulator of acetaminophen metabolism and hepatotoxicity. Known CAR activators as well as high doses of acetaminophen induced expression of three acetaminophen-metabolizing enzymes in wild-type but not in CAR-...

  6. Peripheral neurosteroids enhance P2X receptor-induced mechanical allodynia via a sigma-1 receptor-mediated mechanism.

    PubMed

    Kwon, Soon-Gu; Yoon, Seo-Yeon; Roh, Dae-Hyun; Choi, Sheu-Ran; Choi, Hoon-Seong; Moon, Ji-Young; Kang, Suk-Yun; Beitz, Alvin J; Lee, Jang-Hern

    2016-03-01

    The role of peripheral neurosteroids and their related mechanisms on nociception have not been thoroughly investigated. Based on emerging evidence in the literature indicating that neurosteroids and their main target receptors, i.e., sigma-1, GABAA and NMDA, affect P2X-induced changes in neuronal activity, this study was designed to investigate the effect of peripherally injected dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulfate (PREGS) on P2X receptor-mediated mechanical allodynia in rats. Intraplantar injection of either neurosteroids alone did not produced any detectable changes in paw withdrawal frequency to the innocuous mechanical stimulation in naïve rats. However, When DHEAS or PREGS were co-injected with a sub-effective dose of αβmeATP, mechanical allodynia was developed and this was dose dependently blocked by pre-injection of the P2X antagonist, TNP-ATP. These results demonstrates that DHEAS and PREGS potentiate the activity of P2X receptors which results in the enhancement of αβmeATP-induced mechanical allodynia. In order to investigate the potential role of peripheral sigma-1, GABAA and NMDA receptors in this facilitatory action, we pretreated animals with BD-1047 (a sigma-1 antagonist), muscimol (a GABAA agonist) or MK-801 (a NMDA antagonist) prior to DHEAS or PREGS+αβmeATP injection. Only BD-1047 effectively prevented the facilitatory effects induced by neurosteroids on αβmeATP-induced mechanical allodynia. Collectively, we have shown that peripheral neurosteroids potentiate P2X-induced mechanical allodynia and that this action is mediated by sigma-1, but not by GABAA nor NMDA, receptors. PMID:26876754

  7. Brain CB1 receptor expression following lipopolysaccharide-induced inflammation

    PubMed Central

    Hu, Huangming; Ho, Winnie; Mackie, Ken; Pittman, Quentin J.; Sharkey, Keith A.

    2012-01-01

    Cannabinoid 1 receptors (CB1) are highly expressed on presynaptic terminals in the brain where they are importantly involved in the control of neurotransmitter release. Alteration of CB1 expression is associated with a variety of neurological and psychiatric disorders. There is now compelling evidence that peripheral inflammatory disorders are associated with depression and cognitive impairments. These can be modeled in rodents with peripheral administration of lipopolysaccharide (LPS), but central effects of this treatment remain to be fully elucidated. As a reduction in endocannabinoid tone is thought to contribute to depression, we asked whether the expression of CB1 in the central nervous system (CNS) is altered following LPS treatment. CD1 mice received LPS (0.1–1 mg/kg, ip) and 6 hours later activated microglial cells were observed only in circumventricular organs and only at the higher dose. At 24 hours, activated microglial cells were identified in other brain regions, including the hippocampus, a structure implicated in some mood disorders. Immunohistochemistry and real-time PCR were utilized to evaluate the change of CB1 expression 24 hours after inflammation. LPS induced an increase of CB1 mRNA in hippocampus and brainstem. Subsequent immunohistochemical analysis revealed reduced CB1 in hippocampus, especially in CA3 pyramidal layer. Analysis of co-localization with markers of excitatory and inhibitory terminals indicated that the decrease in CB1 expression was restricted to glutamatergic terminals. Despite widespread microglial activation, these results suggest that peripheral LPS treatment leads to limited changes in CB1 expression in the brain. PMID:23041513

  8. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    SciTech Connect

    Lai, Peng-Yeh; Tsai, Chong-Bin; Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC ; Tseng, Min-Jen

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  9. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  10. Role of N-methyl-D-aspartate receptors in gastric mucosal blood flow induced by histamine.

    PubMed

    Tsai, Li Hsueh; Lee, Yih-Jing; Wu, Jang-Yen

    2004-09-01

    Ionotropic N-methyl-D-aspartate (NMDA) receptor agonists, L-aspartic acid (L-Asp) and NMDA, have been shown to inhibit histamine-stimulated acid secretion, but their effect on gastric mucosal blood flow (GMBF) is largely unknown. The aim of this study was to investigate whether L-Asp and NMDA inhibit histamine-stimulated GMBF and to examine the expression patterns of NMDA receptor subunits NR1, NR2A, and NR2B in rat stomach. Laser Doppler flowmetry was used to measure gastric blood flow in anesthetized rats. The GMBF was assessed during an intravenous infusion of histamine in the presence of tripelennamine. The effects of L-Asp and NMDA on histamine-induced gastric blood flow were examined. In addition, the distribution patterns of NR1-, NR2A-, and NR2B-contaning NMDA receptors in rat stomach were determined immunohistochemically by using specific antibodies against NR1, NR2A, and NR2B. Histamine-induced enhancement of GMBF depended on acid secretion and the activation of H(2)-receptors. Neither L-Asp nor NMDA had an effect on the spontaneous GMBF. However, L-Asp and NMDA reduced the histamine-induced increase in GMBF. DL-2-amino-5-phosphonopentanoic acid (AP-5), an NMDA receptor antagonist; and prazosin, an alpha(1)-receptor antagonist; but not propanolol, a beta(2)-receptor antagonist; or yohimbine, a alpha(2)-receptor antagonist; reversed the inhibitory effect of L-Asp and NMDA on the histamine-induced increase in GMBF. Therefore, L-Asp and NMDA inhibit histamine-induced GMBF via a mechanism involving the activation of NMDA receptors and alpha(1)- adrenoceptors. The fact that NMDA receptor subunits NR1, NR2A, and NR2B were found to be localized in the rat stomach as visualized immunohistochemically with specific antibodies against NR1, NR2A, and NR2B is consistent with this hypothesis. PMID:15352220

  11. Roles of parathyroid hormone (PTH) receptor and reactive oxygen species in hyperlipidemia-induced PTH resistance in preosteoblasts.

    PubMed

    Li, Xin; Garcia, Jamie; Lu, Jinxiu; Iriana, Sidney; Kalajzic, Ivo; Rowe, David; Demer, Linda L; Tintut, Yin

    2014-01-01

    Bioactive lipids initiate inflammatory reactions leading to pathogenesis of atherosclerosis. Evidence shows that they also contribute to bone loss by inhibiting parathyroid hormone receptor (PTH1R) expression and differentiation of osteoblasts. We previously demonstrated that bone anabolic effects of PTH(1-34) are blunted in hyperlipidemic mice and that these PTH effects are restored by antioxidants. However, it is not clear which osteoblastic cell developmental stage is targeted by bioactive lipids. To investigate the effects of hyperlipidemia at the cellular level, hyperlipidemic Ldlr(-/-) mice were bred with Col3.6GFPtpz mice, in which preosteoblasts/osteoblasts carry a topaz fluorescent label, and with Col2.3GFPcyan mice, in which more mature osteoblasts/osteocytes carry a cyan fluorescent label. Histological analyses of trabecular bone surfaces in femoral as well as calvarial bones showed that intermittent PTH(1-34) increased fluorescence intensity in WT-Tpz mice, but not in Tpz-Ldlr(-/-) mice. In contrast, PTH(1-34) did not alter fluorescence intensity in femoral cortical envelopes of either WT-Cyan or Ldlr(-/-)-Cyan mice. To test the mechanism of PTH1R downregulation, preosteoblastic MC3T3-E1 cells were treated with bioactive lipids and the antioxidant Trolox. Results showed that inhibitory effects of PTH1R levels by bioactive lipids were rescued by pretreatment with Trolox. The inhibitory effects on expression of PTH1R as well as on PTH-induced osteoblastic genes were mimicked by xanthine/xanthine oxidase, a known generator of reactive oxygen species. These findings suggest an important role of the preosteoblastic development stage as the target and downregulation of PTH receptor expression mediated by intracellular oxidant stress as a mechanism in hyperlipidemia-induced PTH resistance. PMID:24038594

  12. The μ-opioid receptor agonist morphine, but not agonists at δ- or κ-opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors

    PubMed Central

    da Fonseca Pacheco, D; Klein, A; de Castro Perez, A; da Fonseca Pacheco, C M; de Francischi, J N; Duarte, I D G

    2008-01-01

    Background and purpose: Although participation of opioids in antinociception induced by cannabinoids has been documented, there is little information regarding the participation of cannabinoids in the antinociceptive mechanisms of opioids. The aim of the present study was to determine whether endocannabinoids could be involved in peripheral antinociception induced by activation of μ-, δ- and κ-opioid receptors. Experimental approach: Nociceptive thresholds to mechanical stimulation of rat paws treated with intraplantar prostaglandin E2 (PGE2, 2 μg) to induce hyperalgesia were measured 3 h after injection using an algesimetric apparatus. Opioid agonists morphine (200 μg), (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80) (80 μg), bremazocine (50 μg); cannabinoid receptor antagonists N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (20–80 μg), 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl(4-methoxyphenyl) methanone (AM630) (12.5–100 μg); and an inhibitor of methyl arachidonyl fluorophosphonate (MAFP) (1–4 μg) were also injected in the paw. Key results: The CB1-selective cannabinoid receptor antagonist AM251 completely reversed the peripheral antinociception induced by morphine in a dose-dependent manner. In contrast, the CB2-selective cannabinoid receptor antagonist AM630 elicited partial antagonism of this effect. In addition, the administration of the fatty acid amide hydrolase inhibitor, MAFP, enhanced the antinociception induced by morphine. The cannabinoid receptor antagonists AM251 and AM630 did not modify the antinociceptive effect of SNC80 or bremazocine. The antagonists alone did not cause any hyperalgesic or antinociceptive effect. Conclusions and implications: Our results provide evidence for the involvement of endocannabinoids, in the peripheral antinociception induced by the μ-opioid receptor agonist morphine. The release of cannabinoids appears not to be involved in the peripheral antinociceptive effect induced by κ- and δ-opioid receptor agonists. PMID:18469844

  13. Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts.

    PubMed Central

    Goruppi, S; Ruaro, E; Varnum, B; Schneider, C

    1997-01-01

    Gas6 is a secreted protein previously identified as the ligand of the Axl receptor tyrosine kinase. We have shown that Gas6 is able to induce cell cycle reentry of serum-starved NIH 3T3 cells and to efficiently prevent apoptosis after complete growth factor removal, a survival effect uncoupled from Gas6-induced mitogenesis. Here we report that the mitogenic effect of Gas6 requires phosphatidylinositol 3-kinase (PI3K) activity since it is abrogated both by the specific inhibitor wortmannin and by overexpression of the dominant negative P13K p85 subunit. Consistently, Gas6 activates the P13K downstream targets S6K and Akt, whose activation is abrogated by addition of wortmannin. Moreover, rapamycin treatment blocks Gas6-induced entry into the S phase of serum-starved NIH 3T3 cells. We also demonstrate the requirement of Src tyrosine kinase for Gas6 signalling since stable or transient expression of a catalytically inactive form of Src significantly inhibited Gas6-stimulated entry into the S phase. Accordingly, Gas6 addition to serum-starved NIH 3T3 cells causes activation of the intrinsic Src kinase activity. When specifically analyzed in a survival assay, these elements were found to be required for the survival effect of Gas6. Taken together, the evidence presented here identifies elements involved in the Gas6 transduction pathway that are responsible for its antiapoptotic effect and suggests that Src is involved in the events regulating cell survival. PMID:9234702

  14. Chemokine network during adipogenesis in 3T3-L1 cells

    PubMed Central

    Kabir, Syeda M; Lee, Eun-Sook; Son, Deok-Soo

    2014-01-01

    Obesity is recognized as a low-grade chronic inflammatory state which involves a chemokine network contributing to a variety of diseases. As a first step toward understanding the roles of the obesity-driven chemokine network, we used a 3T3-L1 cell differentiation model to identify the chemokine profiles elicited during adipogenesis and how this profile is modified by epidermal growth factor (EGF) and tumor necrosis factor-α (TNF) as a growth and proinflammatory factor, respectively. The chemokine network was monitored using PCR arrays and qRT-PCR while main signaling pathways of EGF and TNF were measured using immunoblotting. The dominant chemokines in preadipocytes were CCL5, CCL8, CXCL1, and CXCL16, and in adipocytes CCL6 and CXCL13. The following chemokines were found in both preadipocytes and adipocytes: CCL2, CCL7, CCL25, CCL27, CXCL5, CXCL12, and CX3CL1. Among chemokine receptors, CXCR7 was specific for preadipocytes and CXCR2 for adipocytes. These findings indicate the development of a CXCL12–CXCR7 axis in preadipocytes and a CXCL5–CXCR2 axis in adipocytes. In addition to induction of CCL2 and CCL7 in both preadipocytes and adipocytes, EGF enhanced specifically CXCL1 and CXCL5 in adipocytes, indicating the potentiation of CXCR2-mediated pathway in adipocytes. TNF induced CCL2, CCL7, and CXCL1 in preadipocytes but had no response in adipocytes. EGFR downstream activation was dominant in adipocytes whereas NFκB activation was dominant in preadipocytes. Taken together, the adipocyte-driven chemokine network in the 3T3-L1 cell differentiation model involves CXCR2-mediated signaling which appears more potentiated to growth factors like EGF than proinflammatory factors like TNF. PMID:24719782

  15. Modest hypoxia significantly reduces triglyceride content and lipid droplet size in 3T3-L1 adipocytes

    SciTech Connect

    Hashimoto, Takeshi; Yokokawa, Takumi; Endo, Yuriko; Iwanaka, Nobumasa; Higashida, Kazuhiko; Faculty of Sport Science, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192 ; Taguchi, Sadayoshi

    2013-10-11

    Highlights: •Long-term hypoxia decreased the size of LDs and lipid storage in 3T3-L1 adipocytes. •Long-term hypoxia increased basal lipolysis in 3T3-L1 adipocytes. •Hypoxia decreased lipid-associated proteins in 3T3-L1 adipocytes. •Hypoxia decreased basal glucose uptake and lipogenic proteins in 3T3-L1 adipocytes. •Hypoxia-mediated lipogenesis may be an attractive therapeutic target against obesity. -- Abstract: Background: A previous study has demonstrated that endurance training under hypoxia results in a greater reduction in body fat mass compared to exercise under normoxia. However, the cellular and molecular mechanisms that underlie this hypoxia-mediated reduction in fat mass remain uncertain. Here, we examine the effects of modest hypoxia on adipocyte function. Methods: Differentiated 3T3-L1 adipocytes were incubated at 5% O{sub 2} for 1 week (long-term hypoxia, HL) or one day (short-term hypoxia, HS) and compared with a normoxia control (NC). Results: HL, but not HS, resulted in a significant reduction in lipid droplet size and triglyceride content (by 50%) compared to NC (p < 0.01). As estimated by glycerol release, isoproterenol-induced lipolysis was significantly lowered by hypoxia, whereas the release of free fatty acids under the basal condition was prominently enhanced with HL compared to NC or HS (p < 0.01). Lipolysis-associated proteins, such as perilipin 1 and hormone-sensitive lipase, were unchanged, whereas adipose triglyceride lipase and its activator protein CGI-58 were decreased with HL in comparison to NC. Interestingly, such lipogenic proteins as fatty acid synthase, lipin-1, and peroxisome proliferator-activated receptor gamma were decreased. Furthermore, the uptake of glucose, the major precursor of 3-glycerol phosphate for triglyceride synthesis, was significantly reduced in HL compared to NC or HS (p < 0.01). Conclusion: We conclude that hypoxia has a direct impact on reducing the triglyceride content and lipid droplet size via decreased glucose uptake and lipogenic protein expression and increased basal lipolysis. Such an hypoxia-induced decrease in lipogenesis may be an attractive therapeutic target against lipid-associated metabolic diseases.

  16. T3-release from autonomously functioning thyroid nodules in vitro.

    PubMed

    Poertl, S; Kirner, J; Saller, B; Mann, K; Hoermann, R

    1998-01-01

    Toxic thyroid nodules have been shown to be of clonal origin. In a portion of them, point mutations affecting either the gene of the TSH receptor (TSHr) or the alpha-subunit of stimulating G-protein, consecutively leading to enhanced cAMP levels, which may enhance growth or functional activity of the thyrocyte or both, were recently found. To complement these studies, we evaluated hormone response (i.e. T3 release) in vitro from tissues derived from toxic thyroid nodules as compared directly to the surrounding paranodular tissues as well as tissues derived from euthyroid goiter and from patients with Graves' disease. Experiments were conducted in the presence and absence of bTSH or Graves' immunoglobulines. Tissues obtained during surgery were incubated over 5 h, followed by equilibrium dialysis for 24 h, and determination of free T3 in an aliquot by RIA. Basal T3 release in nodular tissues (n = 10) was significantly higher (median: 7.3 ng/l) compared to paranodular tissues (3.2 ng/l; P < 0.01), tissues derived from euthyroid goiter (1.3 ng/l; n = 12; P < 0.001) and thyroid tissues derived from patients with Graves' disease (2.5 ng/l; n = 6; P < 0.001). Upon stimulation with bTSH (1 IU/l), median T3 concentrations markedly increased to 11.5 ng/l (P < 0.05), 7.3 ng/l (P < 0.05), 4.2 ng/l (P < 0.01) and 3.2 ng/l (P = N.S.), respectively. Stimulation over basal values was 1.6-fold in nodular tissues, 2.3-fold in paranodular tissues, 3.2-fold in euthyroid goiter and 1.3-fold in Graves' disease. In toxic thyroid nodules basal hormone-releasing activities were stimulated by fifteen out of twenty (75%) Graves' sera tested. For comparison, stimulation in other tissues occurred in 45% (paranodular), 80% (euthyroid goiter) and 35% (Graves' disease), respectively. In conclusion, tissue derived from toxic thyroid nodules exhibits enhanced basal hormone release as compared to both, the surrounding paranodular tissues and tissues from euthyroid goiter in vitro, which may reflect constitutional activation of TSHr, alpha-subunit of stimulating G-protein or other so far unknown intermediate by point mutations affecting the respective genes. Hyperactivities in toxic thyroid nodules may be even further enhanced by external stimulators such as TSH or TSH receptor antibodies. The first stimulator may have clinical relevance in patients with toxic thyroid nodules and not yet suppressed TSH; the latter could play a role in the rare Marine Lenhart syndrome. PMID:10079030

  17. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity. PMID:27067870

  18. Free Fatty Acids Activate Renin-Angiotensin System in 3T3-L1 Adipocytes through Nuclear Factor-kappa B Pathway

    PubMed Central

    Sun, Jia; Luo, Jinhua; Ruan, Yuting; Xiu, Liangchang; Fang, Bimei; Zhang, Hua; Wang, Ming; Chen, Hong

    2016-01-01

    The activity of a local renin-angiotensin system (RAS) in the adipose tissue is closely associated with obesity-related diseases. However, the mechanism of RAS activation in adipose tissue is still unknown. In the current study, we found that palmitic acid (PA), one kind of free fatty acid, induced the activity of RAS in 3T3-L1 adipocytes. In the presence of fetuin A (Fet A), PA upregulated the expression of angiotensinogen (AGT) and angiotensin type 1 receptor (AT1R) and stimulated the secretion of angiotensin II (ANG II) in 3T3-L1 adipocytes. Moreover, the activation of RAS in 3T3-L1 adipocytes was blocked when we blocked Toll-like receptor 4 (TLR4) signaling pathway using TAK242 or NF-κB signaling pathway using BAY117082. Together, our results have identified critical molecular mechanisms linking PA/TLR4/NF-κB signaling pathway to the activity of the local renin-angiotensin system in adipose tissue. PMID:26881238

  19. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats.

    PubMed

    Mandhane, S N; Chopde, C T; Ghosh, A K

    1997-06-11

    The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease. PMID:9218695

  20. The role of estrogen receptor, androgen receptor and growth factors in diethylstilbestrol-induced programming of prostate differentiation.

    PubMed

    Gupta, C

    2000-08-01

    Recently, others and we have demonstrated that prenatal exposure to an extremely low dose of diethylstilbestrol (DES) and other estrogenic compounds produces a significant effect on mouse prostate development in vivo and in vitro in the presence and absence of androgen. In this study, we investigated the mechanism by which DES produces this effect and determined the role of its estrogenic activity on the growth and branching, induced by DES in the 17-day-old fetal prostate in culture. Additionally, we investigated whether the androgen receptor (AR) plays a role and whether any of the growth factors, namely, EGF and IGF-1 which are known to modulate the estrogen receptor (ER) and androgen receptor (AR)-dependent process, mediate the DES-induced effects. Using the organ culture bioassay of prostate development, we demonstrate that DES enhanced the growth and branching of the prostate at both 0.1 and 0.5 pg/ml dosages, thus, confirming a previous report of ours. An anti-estrogen, ICI164,387 blocked both of the effect of DES, suggesting that both of these two effects are ER dependent. Anti-androgen, flutamide also blocked both branching and prostatic growth induced by DES, while cyproterone acetate blocked only the branching effect, suggesting a role for AR in the DES-induced effects. Depletion of EGF by anti-EGF antibody blocked the DES-induced effects and this was reversed following EGF replacement in the organ culture system. Anti-IGF-1 antibody, on the other hand, only blocked the branching effect, but produced no effect on the prostatic growth, induced by DES. Estrogenic chemicals, bisphenol A and DES enhanced EGF-mRNA level of the cultured prostates. Taken together, it appears that DES-induced prostatic enlargement involves enhancement of ER-dependent EGF and IGF-1 synthesis, mediating prostatic enlargement and androgen action. PMID:11011959

  1. Oligomerization-induced conformational change in the C-terminal region of Nel-like molecule 1 (NELL1) protein is necessary for the efficient mediation of murine MC3T3-E1 cell adhesion and spreading.

    PubMed

    Nakamura, Yoko; Hasebe, Ai; Takahashi, Kaneyoshi; Iijima, Masumi; Yoshimoto, Nobuo; Maturana, Andrés D; Ting, Kang; Kuroda, Shun'ichi; Niimi, Tomoaki

    2014-04-01

    NELL1 is a large oligomeric secretory glycoprotein that functions as an osteoinductive factor. NELL1 contains several conserved domains, has structural similarities to thrombospondin 1, and supports osteoblastic cell adhesion through integrins. To define the structural requirements for NELL1-mediated cell adhesion, we prepared a series of recombinant NELL1 proteins (intact, deleted, and cysteine-mutant) from a mammalian expression system and tested their activities. A deletion analysis demonstrated that the C-terminal cysteine-rich region of NELL1 is critical for the cell adhesion activity of NELL1. Reducing agent treatment decreased the cell adhesion activity of full-length NELL1 but not of its C-terminal fragments, suggesting that the intramolecular disulfide bonds within this region are not functionally necessary but that other disulfide linkages in the N-terminal region of NELL1 may be involved in cell adhesion activity. By replacing cysteine residues with serines around the coiled-coil domain of NELL1, which is responsible for oligomerization, we created a mutant NELL1 protein that was unable to form homo-oligomers, and this monomeric mutant showed substantially lower cell adhesion activity than intact NELL1. These results suggest that an oligomerization-induced conformational change in the C-terminal region of NELL1 is important for the efficient mediation of cell adhesion and spreading by NELL1. PMID:24563467

  2. Oligomerization-induced Conformational Change in the C-terminal Region of Nel-like Molecule 1 (NELL1) Protein Is Necessary for the Efficient Mediation of Murine MC3T3-E1 Cell Adhesion and Spreading*

    PubMed Central

    Nakamura, Yoko; Hasebe, Ai; Takahashi, Kaneyoshi; Iijima, Masumi; Yoshimoto, Nobuo; Maturana, Andrés D.; Ting, Kang; Kuroda, Shun'ichi; Niimi, Tomoaki

    2014-01-01

    NELL1 is a large oligomeric secretory glycoprotein that functions as an osteoinductive factor. NELL1 contains several conserved domains, has structural similarities to thrombospondin 1, and supports osteoblastic cell adhesion through integrins. To define the structural requirements for NELL1-mediated cell adhesion, we prepared a series of recombinant NELL1 proteins (intact, deleted, and cysteine-mutant) from a mammalian expression system and tested their activities. A deletion analysis demonstrated that the C-terminal cysteine-rich region of NELL1 is critical for the cell adhesion activity of NELL1. Reducing agent treatment decreased the cell adhesion activity of full-length NELL1 but not of its C-terminal fragments, suggesting that the intramolecular disulfide bonds within this region are not functionally necessary but that other disulfide linkages in the N-terminal region of NELL1 may be involved in cell adhesion activity. By replacing cysteine residues with serines around the coiled-coil domain of NELL1, which is responsible for oligomerization, we created a mutant NELL1 protein that was unable to form homo-oligomers, and this monomeric mutant showed substantially lower cell adhesion activity than intact NELL1. These results suggest that an oligomerization-induced conformational change in the C-terminal region of NELL1 is important for the efficient mediation of cell adhesion and spreading by NELL1. PMID:24563467

  3. Cocaine-induced kindling is associated with elevated NMDA receptor binding in discrete mouse brain regions.

    PubMed

    Itzhak, Y; Martin, J L

    2000-01-01

    The present study was undertaken to investigate the involvement of N-methyl-D-aspartate (NMDA) type of glutamate receptors in the induction and maintenance of kindling generated by daily cocaine (35 mg/kg) injections to Swiss Webster mice. In addition, the regulation of NMDA receptor binding following the development of sensitization to horizontal locomotor activity produced by daily injections of a low dose of cocaine (15 mg/kg for 5 days) was investigated. Three days following the administration of the high dose of cocaine (35 mg/kg) a marked augmentation in cocaine-induced horizontal and vertical activities was observed (induction phase). Subsequently, after 10 days of cocaine administration, mice developed stage 5 seizures (Racine scale). Binding of [3H]CGP 39653 to the NMDA receptors revealed a marked increase in receptor densities in the striatum, amygdala and hippocampus associated with the induction phase. The elevation of NMDA receptor binding in the striatum and amygdala was sustained for 10 days following the induction phase. The pattern of altered NMDA receptor binding following the expression of cocaine kindled seizures was different. One day after the expression of kindled seizures NMDA receptor binding was elevated in striatum, amygdala, hippocampus and frontal cortex. However, only the elevation of NMDA receptor binding in the amygdala and hippocampus was sustained for 10 days following the expression of cocaine kindled seizures. In the brains of mice sensitized to the low dose of cocaine (15 mg/kg) no change in NMDA receptor binding was observed compared with control values. The present findings suggest the following: (a) The induction of cocaine kindling is associated with increased NMDA receptor binding activity in the striatum, amygdala and hippocampus; (b) the maintenance of cocaine kindling depends on increased NMDA receptor binding in the amygdala and hippocampus; (c) sensitization to cocaine-induced horizontal locomotor activity may be independent of elevation in NMDA receptor binding. PMID:10665817

  4. Canavanine induces insulin release via activation of imidazoline I3 receptors.

    PubMed

    Yang, Ting-Ting; Niu, Ho-Shan; Chen, Li-Jen; Ku, Po-Ming; Lin, Kao-Chang; Cheng, Juei-Tang

    2015-03-01

    The aim of the present study was to identify the effect of canavanine on the imidazoline receptor because canavanine is a guanidinium derivative that has a similar structure to imidazoline receptor ligands. Transfected Chinese hamster ovary-K1 cells expressing imidazoline receptors (nischarin (NISCH)-CHO-K1 cells) were used to elucidate the direct effects of canavanine on imidazoline receptors. In addition, the imidazoline I3 receptor has been implicated in stimulation of insulin secretion from pancreatic β-cells. Wistar rats were used to investigate the effects of canavanine (0.1, 1 and 2.5 mg/kg, i.v.) on insulin secretion. In addition the a specific I3 receptor antagonist KU14R (4 or 8 mg/kg, i.v.) was used to block I3 receptors. Canavanine decreased blood glucose by increasing plasma insulin in rats. In addition, canavanine increased calcium influx into NISCH-CHO-K1 cells in a manner similar to agmatine, the endogenous ligand of imidazoline receptors. Moreover, KU12R dose-dependently attenuated canavanine-induced insulin secretion in HIT-T15 pancreatic β-cells and in the plasma of rats. The data suggest that canavanine is an agonist of I3 receptors both in vivo and in vitro. Thus, canavanine would be a useful tool in imidazoline receptor research. PMID:25482045

  5. Gamma-hydroxybutyrate (GHB) induces cognitive deficits and affects GABAB receptors and IGF-1 receptors in male rats.

    PubMed

    Johansson, Jenny; Grnbladh, Alfhild; Hallberg, Mathias

    2014-08-01

    In recent years, the abuse of the club drug gamma-hydroxybutyrate (GHB) has become increasingly popular among adolescents. The drug induces euphoria but can also result in sedation, anaesthesia as well as short-term amnesia. In addition, the abuse of GHB causes cognitive impairments and the mechanism by which GHB induces these impairments is not clarified. The present study investigates the impact of GHB treatment on spatial learning and memory using a water maze (WM) test in rats. Furthermore, the behavioural data is combined with an autoradiographic analysis of the GABAB and the IGF-1 receptor systems. The results demonstrate that the animals administered with GHB display an impaired performance in the WM test as compared to controls. In addition, significant alterations in GABAB and IGF-1 receptor density as well as GABAB receptor functionality, were observed in several brain regions associated with cognitive functions e.g. hippocampus. To conclude, our findings suggest that GHB treatment can affect spatial learning and memory, and that this outcome at least to some extent is likely to involve both GABAB and IGF-1 receptors. PMID:24786330

  6. Functional Relevance of the Switch of VEGF Receptors/Co-Receptors during Peritoneal Dialysis-Induced Mesothelial to Mesenchymal Transition

    PubMed Central

    Pérez-Lozano, María Luisa; Sandoval, Pilar; Rynne-Vidal, Ángela; Aguilera, Abelardo; Jiménez-Heffernan, José Antonio; Albar-Vizcaíno, Patricia; Majano, Pedro L.; Sánchez-Tomero, José Antonio; Selgas, Rafael; López-Cabrera, Manuel

    2013-01-01

    Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF. PMID:23585849

  7. The Effect of OSM on MC3T3-E1 Osteoblastic Cells in Simulated Microgravity with Radiation.

    PubMed

    Goyden, Jake; Tawara, Ken; Hedeen, Danielle; Willey, Jeffrey S; Oxford, Julia Thom; Jorcyk, Cheryl L

    2015-01-01

    Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, there has been scant examination of the connections between microgravity, radiation, and inflammatory stimuli in bone. Our lab and others have shown that the IL-6 class cytokine oncostatin M (OSM) is an important regulator of bone remodeling. We hypothesize that simulated microgravity alters osteoblast OSM signaling, contributing to the decoupling of osteolysis and osteogenesis in bone homeostasis. To test this hypothesis, we induced OSM signaling in murine MC3T3-E1 pre-osteoblast cells cultured in modeled microgravity using a rotating wall vessel bioreactor with and without exposure to radiation typical of a solar particle event. We measured effects on inflammatory signaling, osteoblast activity, and mineralization. Results indicated time dependent interactions among all conditions in the regulation of IL-6 production. Furthermore, OSM induced the transcription of OSM receptor ß, IL 6 receptor α subunits, collagen α1(I), osteocalcin, sclerostin, RANKL, and osteoprotegerin. Measurements of osteoid mineralization suggest that the spatial organization of the osteoblast environment is an important consideration in understanding bone formation. Taken together, these results support a role for altered OSM signaling in the mechanism of microgravity-induced bone loss. PMID:26030441

  8. The Effect of OSM on MC3T3-E1 Osteoblastic Cells in Simulated Microgravity with Radiation

    PubMed Central

    Goyden, Jake; Tawara, Ken; Hedeen, Danielle; Willey, Jeffrey S.; Thom Oxford, Julia; Jorcyk, Cheryl L.

    2015-01-01

    Bone deterioration is a challenge in long-term spaceflight with significant connections to patients experiencing disuse bone loss. Prolonged unloading and radiation exposure, defining characteristics of space travel, have both been associated with changes in inflammatory signaling via IL-6 class cytokines in bone. While there is also evidence for perturbed IL-6 class signaling in spaceflight, there has been scant examination of the connections between microgravity, radiation, and inflammatory stimuli in bone. Our lab and others have shown that the IL-6 class cytokine oncostatin M (OSM) is an important regulator of bone remodeling. We hypothesize that simulated microgravity alters osteoblast OSM signaling, contributing to the decoupling of osteolysis and osteogenesis in bone homeostasis. To test this hypothesis, we induced OSM signaling in murine MC3T3-E1 pre-osteoblast cells cultured in modeled microgravity using a rotating wall vessel bioreactor with and without exposure to radiation typical of a solar particle event. We measured effects on inflammatory signaling, osteoblast activity, and mineralization. Results indicated time dependent interactions among all conditions in the regulation of IL-6 production. Furthermore, OSM induced the transcription of OSM receptor ß, IL 6 receptor α subunits, collagen α1(I), osteocalcin, sclerostin, RANKL, and osteoprotegerin. Measurements of osteoid mineralization suggest that the spatial organization of the osteoblast environment is an important consideration in understanding bone formation. Taken together, these results support a role for altered OSM signaling in the mechanism of microgravity-induced bone loss. PMID:26030441

  9. Effects of BDNF, T3, and corticosterone on expression of the hypothalamic obesity gene network in vivo and in vitro.

    PubMed

    Byerly, Mardi S; Simon, Jean; Lebihan-Duval, Elisabeth; Duclos, Michel J; Cogburn, Larry A; Porter, Tom E

    2009-04-01

    Hypothalamic neuropeptides, neurotrophins, and systemic hormones modulate food intake and body composition. Although advances toward elucidating these interactions have been made, many aspects of the underlying mechanisms remain vague. Hypothalami from fat and lean chicken lines were assessed for differential expression of anabolic/orexigenic and catabolic/anorexigenic genes. Effects of triiodothyronine (T(3)), corticosterone (Cort), and brain-derived neurotrophic factor (BDNF) on expression of anabolic/orexigenic and catabolic/anorexigenic genes were tested in cultures of hypothalamic neurons. From this, we found that BDNF increased and T(3) decreased gene expression for BDNF, leptin receptor (LEPR), pro-opiomelanocortin (POMC), thyrotropin releasing hormone (TRH), and agouti-related protein (AGRP). Thyroid hormone levels were manipulated during development to show that T(3) inhibited BDNF, TRH, and BDNF receptor gene expression. Delivery of T(3), Cort, T(3) plus Cort, or vehicle in vivo continuously for 72 h indicated that Cort and T(3) have overlapping roles in regulating TRH, LEPR, and POMC gene expression and that Cort and T(3) regulate BDNF, neuropeptide Y, and AGRP in opposite directions. Collectively, these findings suggest that interactions between the neuropeptide BDNF and the hormones T(3) and/or Cort may constitute a homeostatic mechanism that links hypothalamic energy regulation controlling body composition. PMID:19158410

  10. Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway

    PubMed Central

    He, Yonghan; Li, Ying; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Background Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. Objective As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. Methods and Results The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. Conclusions Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity. PMID:23922935

  11. How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis

    PubMed Central

    Morshed, Syed A.; Ma, Risheng; Latif, Rauf; Davies, Terry F.

    2013-01-01

    Thyroid stimulating hormone (TSH) activates two major G-protein arms, Gsα and Gq leading to initiation of down-stream signaling cascades for survival, proliferation and production of thyroid hormones. Antibodies to the TSH receptor (TSHR-Abs), found in patients with Graves’ disease, may have stimulating, blocking, or neutral actions on the thyroid cell. We have shown previously that such TSHR-Abs are distinct signaling imprints after binding to the TSHR and that such events can have variable functional consequences for the cell. In particular, there is a great contrast between stimulating (S) TSHR-Abs, which induce thyroid hormone synthesis and secretion as well as thyroid cell proliferation, compared to so called “neutral” (N) TSHR-Abs which may induce thyroid cell apoptosis via reactive oxygen species (ROS) generation. In the present study, using a rat thyrocyte (FRTL-5) ex vivo model system, our hypothesis was that while N-TSHR-Abs can induce apoptosis via activation of mitochondrial ROS (mROS), the S-TSHR-Abs are able to stimulate cell survival and avoid apoptosis by actively suppressing mROS. Using fluorescent microscopy, fluorometry, live cell imaging, immunohistochemistry and immunoblot assays, we have observed that S-TSHR-Abs do indeed suppress mROS and cellular stress and this suppression is exerted via activation of the PKA/CREB and AKT/mTOR/S6K signaling cascades. Activation of these signaling cascades, with the suppression of mROS, initiated cell proliferation. In sharp contrast, a failure to activate these signaling cascades with increased activation of mROS induced by N-TSHR-Abs resulted in thyroid cell apoptosis. Our current findings indicated that signaling diversity induced by different TSHR-Abs regulated thyroid cell fate. While S-TSHR-Abs may rescue cells from apoptosis and induce thyrocyte proliferation, N-TSHR-Abs aggravate the local inflammatory infiltrate within the thyroid gland, or in the retro-orbit, by inducing cellular apoptosis; a phenomenon known to activate innate and by-stander immune-reactivity via DNA release from the apoptotic cells. PMID:23958398

  12. How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis.

    PubMed

    Morshed, Syed A; Ma, Risheng; Latif, Rauf; Davies, Terry F

    2013-12-01

    Thyroid stimulating hormone (TSH) activates two major G-protein arms, Gsα and Gq leading to initiation of down-stream signaling cascades for survival, proliferation and production of thyroid hormones. Antibodies to the TSH receptor (TSHR-Abs), found in patients with Graves' disease, may have stimulating, blocking, or neutral actions on the thyroid cell. We have shown previously that such TSHR-Abs are distinct signaling imprints after binding to the TSHR and that such events can have variable functional consequences for the cell. In particular, there is a great contrast between stimulating (S) TSHR-Abs, which induce thyroid hormone synthesis and secretion as well as thyroid cell proliferation, compared to so called "neutral" (N) TSHR-Abs which may induce thyroid cell apoptosis via reactive oxygen species (ROS) generation. In the present study, using a rat thyrocyte (FRTL-5) ex vivo model system, our hypothesis was that while N-TSHR-Abs can induce apoptosis via activation of mitochondrial ROS (mROS), the S-TSHR-Abs are able to stimulate cell survival and avoid apoptosis by actively suppressing mROS. Using fluorescent microscopy, fluorometry, live cell imaging, immunohistochemistry and immunoblot assays, we have observed that S-TSHR-Abs do indeed suppress mROS and cellular stress and this suppression is exerted via activation of the PKA/CREB and AKT/mTOR/S6K signaling cascades. Activation of these signaling cascades, with the suppression of mROS, initiated cell proliferation. In sharp contrast, a failure to activate these signaling cascades with increased activation of mROS induced by N-TSHR-Abs resulted in thyroid cell apoptosis. Our current findings indicated that signaling diversity induced by different TSHR-Abs regulated thyroid cell fate. While S-TSHR-Abs may rescue cells from apoptosis and induce thyrocyte proliferation, N-TSHR-Abs aggravate the local inflammatory infiltrate within the thyroid gland, or in the retro-orbit, by inducing cellular apoptosis; a phenomenon known to activate innate and by-stander immune-reactivity via DNA release from the apoptotic cells. PMID:23958398

  13. Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells

    EPA Science Inventory

    This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...

  14. Presynaptic inhibition of optogenetically identified VGluT3+ sensory fibres by opioids and baclofen

    PubMed Central

    Honsek, Silke D.; Seal, Rebecca P.; Sandkühler, Jürgen

    2014-01-01

    Distinct subsets of sensory nerve fibres are involved in mediating mechanical and thermal pain hypersensitivity. They may also differentially respond to analgesics. Heat-sensitive C-fibres, for example, are thought to respond to µ-opioid receptor (MOR) activation while mechanoreceptive fibres are supposedly sensitive to δ-opioid receptor (DOR) or GABAB receptor (GABABR) activation. The suggested differential distribution of inhibitory neurotransmitter receptors on different subsets of sensory fibres is, however, heavily debated. We now quantitatively compared the degree of presynaptic inhibition exerted by opioids and the GABABR agonist baclofen on 1) vesicular glutamate transporter subtype 3 positive (VGluT3+) non-nociceptive primary afferent fibres and 2) putative nociceptive C-fibres. To investigate VGluT3+ sensory fibres, we evoked excitatory postsynaptic currents with blue light at the level of the dorsal root ganglion (DRG) in spinal cord slices of mice, expressing channelrhodopsin-2. Putative nociceptive C-fibres were explored in VGluT3-knockout mice via electrical stimulation. The MOR agonist DAMGO strongly inhibited both VGluT3+ and VGluT3− C-fibres innervating lamina I neurons but generally had less influence on fibres innervating lamina II neurons. The DOR agonist SNC80 did not have any pronounced effect on synaptic transmission in any fibre type tested. Baclofen, in striking contrast, powerfully inhibited all fibre populations investigated. In summary, we report optogenetic stimulation of DRG neurons in spinal slices as capable approach for the subtype-selective investigation of primary afferent nerve fibres. Overall, the pharmacological accessibility of different subtypes of sensory fibres considerably overlaps, indicating that MOR, DOR and GABABR expression is not substantially segregated between heat and mechanosensitive fibres. PMID:25599445

  15. Presynaptic inhibition of optogenetically identified VGluT3+ sensory fibres by opioids and baclofen.

    PubMed

    Honsek, Silke D; Seal, Rebecca P; Sandkühler, Jürgen

    2015-02-01

    Distinct subsets of sensory nerve fibres are involved in mediating mechanical and thermal pain hypersensitivity. They may also differentially respond to analgesics. Heat-sensitive C-fibres, for example, are thought to respond to μ-opioid receptor (MOR) activation while mechanoreceptive fibres are supposedly sensitive to δ-opioid receptor (DOR) or GABAB receptor (GABABR) activation. The suggested differential distribution of inhibitory neurotransmitter receptors on different subsets of sensory fibres is, however, heavily debated. In this study, we quantitatively compared the degree of presynaptic inhibition exerted by opioids and the GABABR agonist baclofen on (1) vesicular glutamate transporter subtype 3-positive (VGluT3) non-nociceptive primary afferent fibres and (2) putative nociceptive C-fibres. To investigate VGluT3 sensory fibres, we evoked excitatory postsynaptic currents with blue light at the level of the dorsal root ganglion (DRG) in spinal cord slices of mice, expressing channelrhodopsin-2. Putative nociceptive C-fibres were explored in VGluT3-knockout mice through electrical stimulation. The MOR agonist DAMGO strongly inhibited both VGluT3 and VGluT3 C-fibres innervating lamina I neurons but generally had less influence on fibres innervating lamina II neurons. The DOR agonist SNC80 did not have any pronounced effect on synaptic transmission in any fibre type tested. Baclofen, in striking contrast, powerfully inhibited all fibre populations investigated. In summary, we report optogenetic stimulation of DRG neurons in spinal slices as a capable approach for the subtype-selective investigation of primary afferent nerve fibres. Overall, pharmacological accessibility of different subtypes of sensory fibres considerably overlaps, indicating that MOR, DOR, and GABABR expressions are not substantially segregated between heat and mechanosensitive fibres. PMID:25599445

  16. Endothelial cell transforming growth factor-β receptor activation causes tacrolimus-induced renal arteriolar hyalinosis

    PubMed Central

    Chiasson, Valorie L.; Jones, Kathleen A.; Kopriva, Shelley E.; Mahajan, Ashutosh; Young, Kristina J.; Mitchell, Brett M.

    2012-01-01

    Arteriolar hyalinosis is a common histological finding in renal transplant recipients treated with the calcineurin inhibitor tacrolimus; however, the pathophysiologic mechanisms remain unknown. In addition to increasing transforming growth factor (TGF)-β levels, tacrolimus inhibits calcineurin by binding to FK506 binding protein 12 (FKBP12). FKBP12 alone also inhibits TGF-β receptor activation. Here we tested whether tacrolimus binding to FKBP12 removes an inhibition of the TGF-β receptor, allowing ligand binding, ultimately leading to receptor activation and arteriolar hyalinosis. We found that specific deletion of FKBP12 from endothelial cells was sufficient to activate endothelial TGF-β receptors and induce renal arteriolar hyalinosis in these knockout mice, similar to that induced by tacrolimus. Tacrolimus-treated and knockout mice exhibited significantly increased levels of aortic TGF-β receptor activation as evidenced by SMAD2/3 phosphorylation, along with increased collagen and fibronectin expression compared to controls. Treatment of isolated mouse aortas with tacrolimus increased TGF-β receptor activation, collagen and fibronectin expression. These effects were independent of calcineurin, absent in endothelial denuded aortic rings, and could be prevented by the small molecule TGF-β receptor inhibitor SB-505124. Thus endothelial cell TGF-β receptor activation is sufficient to cause vascular remodeling and renal arteriolar hyalinosis. PMID:22495293

  17. Ligand-induced Trafficking of the Sphingosine-1-phosphate Receptor EDG-1

    PubMed Central

    Liu, Catherine H.; Thangada, Shobha; Lee, Menq-Jer; Van Brocklyn, James R.; Spiegel, Sarah; Hla, Timothy

    1999-01-01

    The endothelial-derived G-protein–coupled receptor EDG-1 is a high-affinity receptor for the bioactive lipid mediator sphingosine-1-phosphate (SPP). In the present study, we constructed the EDG-1–green fluorescent protein (GFP) chimera to examine the dynamics and subcellular localization of SPP–EDG-1 interaction. SPP binds to EDG-1–GFP and transduces intracellular signals in a manner indistinguishable from that seen with the wild-type receptor. Human embryonic kidney 293 cells stably transfected with the EDG-1–GFP cDNA expressed the receptor primarily on the plasma membrane. Exogenous SPP treatment, in a dose-dependent manner, induced receptor translocation to perinuclear vesicles with a τ1/2 of ∼15 min. The EDG-1–GFP–containing vesicles are distinct from mitochondria but colocalize in part with endocytic vesicles and lysosomes. Neither the low-affinity agonist lysophosphatidic acid nor other sphingolipids, ceramide, ceramide-1-phosphate, or sphingosylphosphorylcholine, influenced receptor trafficking. Receptor internalization was completely inhibited by truncation of the C terminus. After SPP washout, EDG-1–GFP recycles back to the plasma membrane with a τ1/2 of ∼30 min. We conclude that the high-affinity ligand SPP specifically induces the reversible trafficking of EDG-1 via the endosomal pathway and that the C-terminal intracellular domain of the receptor is critical for this process. PMID:10198065

  18. Regulatory role of the cannabinoid CB2 receptor in stress-induced neuroinflammation in mice

    PubMed Central

    Zoppi, S; Madrigal, J L; Caso, J R; García-Gutiérrez, M S; Manzanares, J; Leza, J C; García-Bueno, B

    2014-01-01

    Background and Purpose Stress exposure produces excitotoxicity and neuroinflammation, contributing to the cellular damage observed in stress-related neuropathologies. The endocannabinoids provide a homeostatic system, present in stress-responsive neural circuits. Here, we have assessed the possible regulatory role of cannabinoid CB2 receptors in stress-induced excitotoxicity and neuroinflammation. Experimental Approach We used wild type (WT), transgenic overexpressing CB2 receptors (CB2xP) and CB2 receptor knockout (CB2-KO) mice exposed to immobilization and acoustic stress (2 h·day−1 for 4 days). The CB2 receptor agonist JWH-133 was administered daily (2 mg·kg−1, i.p.) to WT and CB2-KO animals. Glutamate uptake was measured in synaptosomes from frontal cortex; Western blots and RT-PCR were used to measure proinflammatory cytokines, enzymes and mediators in homogenates of frontal cortex. Key Results Increased plasma corticosterone induced by stress was not modified by manipulating CB2 receptors. JWH-133 treatment or overexpression of CB2 receptors increased control levels of glutamate uptake, which were reduced by stress back to control levels. JWH-133 prevented the stress-induced increase in proinflammatory cytokines (TNF-α and CCL2), in NF-κB, and in NOS-2 and COX-2 and in the consequent cellular oxidative and nitrosative damage (lipid peroxidation). CB2xP mice exhibited anti-inflammatory or neuroprotective actions similar to those in JWH-133 pretreated animals. Conversely, lack of CB2 receptors (CB2-KO mice) exacerbated stress-induced neuroinflammatory responses and confirmed that effects of JWH-133 were mediated through CB2 receptors. Conclusions and Implications Pharmacological manipulation of CB2 receptors is a potential therapeutic strategy for the treatment of stress-related pathologies with a neuroinflammatory component, such as depression. PMID:24467609

  19. Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder

    PubMed Central

    Chatterjee, Anindya; Ghosh, Joydeep; Kapur, Reuben

    2015-01-01

    Although more than 90% systemic mastocytosis (SM) patients express gain of function mutations in the KIT receptor, recent next generation sequencing has revealed the presence of several additional genetic and epigenetic mutations in a subset of these patients, which confer poor prognosis and inferior overall survival. A clear understanding of how genetic and epigenetic mutations cooperate in regulating the tremendous heterogeneity observed in these patients will be essential for designing effective treatment strategies for this complex disease. In this review, we describe the clinical heterogeneity observed in patients with mastocytosis, the nature of relatively novel mutations identified in these patients, therapeutic strategies to target molecules downstream from activating KIT receptor and finally we speculate on potential novel strategies to interfere with the function of not only the oncogenic KIT receptor but also epigenetic mutations seen in these patients. PMID:26158763

  20. Lassa virus entry requires a trigger-induced receptor switch

    PubMed Central

    Jae, Lucas T.; Raaben, Matthijs; Herbert, Andrew S.; Kuehne, Ana I.; Wirchnianski, Ariel S.; Soh, Timothy; Stubbs, Sarah H.; Janssen, Hans; Damme, Markus; Saftig, Paul; Whelan, Sean P.; Dye, John M.; Brummelkamp, Thijn R.

    2014-01-01

    Lassa virus spreads from rodents to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported to resist infection thirty years ago. We show that Lassa virus readily engaged its cell surface receptor ?-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo. PMID:24970085

  1. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors

    PubMed Central

    Tunaru, Sorin; Althoff, Till F.; Nüsing, Rolf M.; Diener, Martin; Offermanns, Stefan

    2012-01-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP3 prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP3 receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP3 receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP3 receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP3 prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP3 receptor as a target to induce laxative effects. PMID:22615395

  2. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    PubMed

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects. PMID:22615395

  3. Compound 21 induces vasorelaxation via an endothelium- and angiotensin II type 2 receptor-independent mechanism.

    PubMed

    Verdonk, Koen; Durik, Matej; Abd-Alla, Nalina; Batenburg, Wendy W; van den Bogaerdt, Antoon J; van Veghel, Richard; Roks, Anton J M; Danser, A H Jan; van Esch, Joep H M

    2012-09-01

    Angiotensin II type 2 (AT(2)) receptor stimulation has been linked to vasodilation. Yet, AT(2) receptor-independent hypertension and hypotension (or no effect on blood pressure) have been observed in vivo after application of the AT(2) receptor agonist compound 21 (C21). We, therefore, studied its effects in vitro, using preparations known to display AT(2) receptor-mediated responses. Hearts of Wistar rats, spontaneously hypertensive rats (SHRs), C57Bl/6 mice, and AT(2) receptor knockout mice were perfused according to Langendorff. Mesenteric and iliac arteries of these animals, as well as coronary microarteries from human donor hearts, were mounted in Mulvany myographs. In the coronary vascular bed of Wistar rats, C57Bl/6 mice, and AT(2) receptor knockout mice, C21 induced constriction followed by dilation. SHR hearts displayed enhanced constriction and no dilation. Irbesartan (angiotensin II type 1 receptor blocker) abolished the constriction and enhanced or (in SHRs) reintroduced dilation, and PD123319 (AT(2) receptor blocker) did not block the latter. C21 relaxed preconstricted vessels of all species, and this did not depend on angiotensin II receptors, the endothelium, or the NO-guanylyl cyclase-cGMP pathway. C21 constricted SHR iliac arteries but none of the other vessels, and irbesartan prevented this. C21 shifted the concentration-response curves to U46619 (thromboxane A(2) analog) and phenylephrine (?-adrenoceptor agonist) but not ionomycine (calcium ionophore) to the right. In conclusion, C21 did not cause AT(2) receptor-mediated vasodilation. Yet, it did induce vasodilation by blocking calcium transport into the cell and constriction via angiotensin II type 1 receptor stimulation. The latter effect is enhanced in SHRs. These data may explain the varying effects of C21 on blood pressure in vivo. PMID:22802221

  4. Cyclin Y inhibits plasticity-induced AMPA receptor exocytosis and LTP

    PubMed Central

    Cho, Eunsil; Kim, Dong-Hyun; Hur, Young-Na; Whitcomb, Daniel J.; Regan, Philip; Hong, Jung-Hwa; Kim, Hanna; Ho Suh, Young; Cho, Kwangwook; Park, Mikyoung

    2015-01-01

    Cyclin Y (CCNY) is a member of the cyclin protein family, known to regulate cell division in proliferating cells. Interestingly, CCNY is expressed in neurons that do not undergo cell division. Here, we report that CCNY negatively regulates long-term potentiation (LTP) of synaptic strength through inhibition of AMPA receptor trafficking. CCNY is enriched in postsynaptic fractions from rat forebrain and is localized adjacent to postsynaptic sites in dendritic spines in rat hippocampal neurons. Using live-cell imaging of a pH-sensitive AMPA receptor, we found that during LTP-inducing stimulation, CCNY inhibits AMPA receptor exocytosis in dendritic spines. Furthermore, CCNY abolishes LTP in hippocampal slices. Taken together, our findings demonstrate that CCNY inhibits plasticity-induced AMPA receptor delivery to synapses and thereby blocks LTP, identifying a novel function for CCNY in post-mitotic cells. PMID:26220330

  5. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    SciTech Connect

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  6. Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins.

    PubMed

    Prasad, Sahdeo; Ravindran, Jayaraj; Sung, Bokyung; Pandey, Manoj K; Aggarwal, Bharat B

    2010-04-01

    Whether garcinol, the active component of Garcinia indica, can modulate the sensitivity of cancer cells to TRAIL, a cytokine currently in phase II clinical trial, was investigated. We found that garcinol potentiated TRAIL-induced apoptosis of cancer cells as indicated by intracellular esterase activity, DNA strand breaks, accumulation of the membrane phospholipid phosphatidylserine, mitochondrial activity, and activation of caspase-8, -9, and -3. We found that garcinol, independent of the cell type, induced both of the TRAIL receptors, death receptor 4 (DR4) and DR5. Garcinol neither induced the receptors on normal cells nor sensitized them to TRAIL. Deletion of DR5 or DR4 by small interfering RNA significantly reduced the apoptosis induced by TRAIL and garcinol. In addition, garcinol downregulated various cell survival proteins including survivin, bcl-2, XIAP, and cFLIP, and induced bid cleavage, bax, and cytochrome c release. Induction of death receptors by garcinol was found to be independent of modulation of CCAAT/enhancer-binding protein-homologous protein, p53, bax, extracellular signal-regulated kinase, or c-Jun-NH(2)-kinase. The effect of garcinol was mediated through the generation of reactive oxygen species, in as much as induction of both death receptors, modulation of antiapoptotic and proapoptotic proteins, and potentiation of TRAIL-induced apoptosis were abolished by N-acetyl cysteine and glutathione. Interestingly, garcinol also converted TRAIL-resistant cells into TRAIL-sensitive cells. Overall, our results indicate that garcinol can potentiate TRAIL-induced apoptosis through upregulation of death receptors and downregulation of antiapoptotic proteins. Mol Cancer Ther; 9(4); 856-68. (c)2010 AACR. PMID:20371723

  7. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    PubMed

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid. PMID:24333477

  8. Modulation of Kit/stem cell factor receptor-induced signaling by protein kinase C.

    PubMed

    Blume-Jensen, P; Rnnstrand, L; Gout, I; Waterfield, M D; Heldin, C H

    1994-08-26

    The Kit/stem cell factor receptor (Kit/SCF-R) is a transmembrane tyrosine kinase receptor of importance for the normal development of hemopoietic cells, melanoblasts, and germ cells. We recently reported that protein kinase C (PKC) is involved in a negative feedback loop regulating the Kit/SCF-R by direct phosphorylation on serine residues in the receptor. Inhibition of PKC led to increased SCF-induced tyrosine kinase activity and mitogenicity, but PKC was necessary for SCF-induced motility. In this report we have further examined the modulatory role of PKC on SCF-induced signaling. The ligand-activated Kit/SCF-R associated weakly with GRB2 and induced only little tyrosine phosphorylation of phospholipase C-gamma in porcine aortic endothelial cells transfected with Kit/SCF-R. In contrast, the SCF-stimulated Kit/SCF-R associated efficiently with, and induced tyrosine phosphorylation of, the p85 alpha regulatory subunit of phosphatidyl inositide-3'-kinase (PI-3'-kinase). Both receptor association and tyrosine phosphorylation of p85 alpha were increased after inhibition of PKC, while its serine phosphorylation was decreased. Concomitantly, the specific activity of receptor-associated PI-3'-kinase activity was increased. Inhibition of PI-3'-kinase with wortmannin inhibited SCF-induced mitogenicity. SCF-induced phosphorylation of Raf-1 and activation of ERK2 still occurred after PKC inhibition but was not increased. In conclusion, SCF-induced PI-3'-kinase activation paralleled the increased SCF-induced mitogenicity after inhibition of PKC. PMID:7520444

  9. Curcumin prevents corticosterone-induced neurotoxicity and abnormalities of neuroplasticity via 5-HT receptor pathway.

    PubMed

    Xu, Ying; Li, Shan; Vernon, Matthew M; Pan, Jianchun; Chen, Ling; Barish, Philip A; Zhang, Yuan; Acharya, Abhinav P; Yu, Jie; Govindarajan, Subramaniam S; Boykin, Erin; Pan, Xiaoyu; O'Donnell, James M; Ogle, William O

    2011-09-01

    Curcumin, a major active component of Curcuma longa, possesses antioxidant and neuroprotective activities. The present study explores the mechanisms underlying the neuroprotective effect of curcumin against corticosterone and its relation to 5-hydroxy tryptamine (5-HT) receptors. Exposure of cortical neurons to corticosterone results in decreased mRNA levels for three 5-HT receptor subtypes, 5-HT(1A), 5-HT(2A) and 5-HT(4), but 5-HT(1B,) 5-HT(2B), 5-HT(2C), 5-HT(6) and 5-HT(7) receptors remain unchanged. Pre-treatment with curcumin reversed this effect on mRNA for the 5-HT(1A) and 5-HT(4) receptors, but not for the 5-HT(2A) receptor. Moreover, curcumin exerted a neuroprotective effect against corticosterone-induced neuronal death. This observed effect of curcumin was partially blocked by either 5-HT(1A) receptor antagonist p-MPPI or 5-HT(4) receptor antagonist RS 39604 alone; whereas, the simultaneous application of both antagonists completely reversed the effect. Curcumin was also found to regulate corticosterone-induced morphological changes such as increases in soma size, dendritic branching and dendritic spine density, as well as elevate synaptophysin expression in cortical neurons. p-MPPI and RS 39604 reversed the effect of curcumin-induced change in neuronal morphology and synaptophysin expression of corticosterone-treated neurons. In addition, an increase in cyclic adenosine monophosphate (cAMP) level was observed after curcumin treatment, which was further prevented by RS 39604, but not by p-MPPI. However, curcumin-induced elevation in protein kinase A activity and phosphorylation of cAMP response element-binding protein levels were inhibited by both p-MPPI and RS 39604. These findings suggest that the neuroprotection and modulation of neuroplasticity exhibited by curcumin might be mediated, at least in part, via the 5-HT receptor-cAMP-PKA-CREB signal pathway. PMID:21689105

  10. Interleukin 11 signaling in 3T3-L1 adipocytes.

    PubMed

    Tenney, Raleigh; Stansfield, Karrie; Pekala, Phillip H

    2005-01-01

    Interleukin 11 (IL-11) is an anti-inflammatory cytokine with receptors located on most cell types and tissues throughout the body. Its anti-inflammatory properties are mediated through suppression of cytokine synthesis, in large part by prevention of NF-kappaB activation. As adipose tissue synthesizes and secretes cytokines involved in establishing insulin resistance and due to the ability of IL-11 to suppress cytokine synthesis, we initiated an investigation to determine the signal transduction pathways initiated by IL-11 in adipose tissue. Using the 3T3-L1 adipocyte cell culture model we demonstrate the rapid activation of the p44/42MAP kinase, PI3-kinase, and STATs 1 and 3. Activation of MAP kinase is demonstrated to lead to the downstream activation of p90 RSK (ribosomal S6 kinase) as well as ATF-1 and CREB. PI3-kinase appears to activate the downstream target of p70 S6 kinase resulting in phosphorylation of ribosomal protein S6. STAT phosphorylation appears to be initiated through PI3-kinase and to a lesser degree through p44/42 MAP kinase. These studies demonstrate the activation of three major signaling pathways and support a role for IL-11 in the regulation of both transcription and protein synthesis in fully differentiated adipocytes. PMID:15389536

  11. Blockade of Sphingosine 1-Phosphate Receptor 2 Signaling Attenuates High-Fat Diet-Induced Adipocyte Hypertrophy and Systemic Glucose Intolerance in Mice.

    PubMed

    Kitada, Yoshihiko; Kajita, Kazuo; Taguchi, Koichiro; Mori, Ichiro; Yamauchi, Masahiro; Ikeda, Takahide; Kawashima, Mikako; Asano, Motochika; Kajita, Toshiko; Ishizuka, Tatsuo; Banno, Yoshiko; Kojima, Itaru; Chun, Jerold; Kamata, Shotaro; Ishii, Isao; Morita, Hiroyuki

    2016-05-01

    Sphingosine 1-phosphate (S1P) is known to regulate insulin resistance in hepatocytes, skeletal muscle cells, and pancreatic β-cells. Among its 5 cognate receptors (S1pr1-S1pr5), S1P seems to counteract insulin signaling and confer insulin resistance via S1pr2 in these cells. S1P may also regulate insulin resistance in adipocytes, but the S1pr subtype(s) involved remains unknown. Here, we investigated systemic glucose/insulin tolerance and phenotypes of epididymal adipocytes in high-fat diet (HFD)-fed wild-type and S1pr2-deficient (S1pr2(-/-)) mice. Adult S1pr2(-/-) mice displayed smaller body/epididymal fat tissue weights, but the differences became negligible after 4 weeks with HFD. However, HFD-fed S1pr2(-/-) mice displayed better scores in glucose/insulin tolerance tests and had smaller epididymal adipocytes that expressed higher levels of proliferating cell nuclear antigen than wild-type mice. Next, proliferation/differentiation of 3T3-L1 and 3T3-F442A preadipocytes were examined in the presence of various S1pr antagonists: JTE-013 (S1pr2 antagonist), VPC-23019 (S1pr1/S1pr3 antagonist), and CYM-50358 (S1pr4 antagonist). S1P or JTE-013 treatment of 3T3-L1 preadipocytes potently activated their proliferation and Erk phosphorylation, whereas VPC-23019 inhibited both of these processes, and CYM-50358 had no effects. In contrast, S1P or JTE-013 treatment inhibited adipogenic differentiation of 3T3-F442A preadipocytes, whereas VPC-23019 activated it. The small interfering RNA knockdown of S1pr2 promoted proliferation and inhibited differentiation of 3T3-F442A preadipocytes, whereas that of S1pr1 acted oppositely. Moreover, oral JTE-013 administration improved glucose tolerance/insulin sensitivity in ob/ob mice. Taken together, S1pr2 blockade induced proliferation but suppressed differentiation of (pre)adipocytes both in vivo and in vitro, highlighting a novel therapeutic approach for obesity/type 2 diabetes. PMID:26943364

  12. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes.

    PubMed

    Mitsuhashi, Kazuteru; Senmaru, Takafumi; Fukuda, Takuya; Yamazaki, Masahiro; Shinomiya, Katsuhiko; Ueno, Morio; Kinoshita, Shigeru; Kitawaki, Jo; Katsuyama, Masato; Tsujikawa, Muneo; Obayashi, Hiroshi; Nakamura, Naoto; Fukui, Michiaki

    2016-01-01

    Decreases in serum testosterone concentrations in aging men are associated with metabolic disorders. Testosterone has been reported to increase GLUT4-dependent glucose uptake in skeletal muscle cells and cardiomyocytes. However, studies on glucose uptake occurring in response to testosterone stimulation in adipocytes are currently not available. This study was designed to determine the effects of testosterone on glucose uptake in adipocytes. Glucose uptake was assessed with 2-[(3)H] deoxyglucose in 3T3-L1 adipocytes. GLUT4 translocation was evaluated in plasma membrane (PM) sheets and PM fractions by immunofluorescence and immunoblotting, respectively. Activation of GLUT4 translocation-related protein kinases, including Akt, AMPK, LKB1, CaMKI, CaMKII, and Cbl was followed by immunoblotting. Expression levels of androgen receptor (AR) mRNA and AR translocation to the PM were assessed by real-time RT-PCR and immunoblotting, respectively. The results showed that both high-dose (100 nM) testosterone and testosterone-BSA increased glucose uptake and GLUT4 translocation to the PM, independently of the intracellular AR. Testosterone and testosterone-BSA stimulated the phosphorylation of AMPK, LKB1, and CaMKII. The knockdown of LKB1 by siRNA attenuated testosterone- and testosterone-BSA-stimulated AMPK phosphorylation and glucose uptake. These results indicate that high-dose testosterone and testosterone-BSA increase GLUT4-dependent glucose uptake in 3T3-L1 adipocytes by inducing the LKB1/AMPK signaling pathway. PMID:26100787

  13. Protein-bound uremic toxins induce tissue remodeling by targeting the EGF receptor.

    PubMed

    Sun, Chiao-Yin; Young, Guang-Huar; Hsieh, Yu-Ting; Chen, Yau-Hung; Wu, Mai-Szu; Wu, Vin-Cent; Lee, Jia-Hung; Lee, Chin-Chan

    2015-02-01

    Indoxyl sulfate and p-cresol sulfate have been suggested to induce kidney tissue remodeling. This study aimed to clarify the molecular mechanisms underlying this tissue remodeling using cultured human proximal renal tubular cells and half-nephrectomized mice treated with indoxyl sulfate or p-cresol sulfate as study models. Molecular docking results suggested that indoxyl sulfate and p-cresol sulfate dock on a putative interdomain pocket of the extracellular EGF receptor. In vitro spectrophotometric analysis revealed that the presence of a synthetic EGF receptor peptide significantly decreased the spectrophotometric absorption of indoxyl sulfate and p-cresol sulfate. In cultured cells, indoxyl sulfate and p-cresol sulfate activated the EGF receptor and downstream signaling by enhancing receptor dimerization, and increased expression of matrix metalloproteinases 2 and 9 in an EGF receptor-dependent manner. Treatment of mice with indoxyl sulfate or p-cresol sulfate significantly activated the renal EGF receptor and increased the tubulointerstitial expression of matrix metalloproteinases 2 and 9. In conclusion, indoxyl sulfate and p-cresol sulfate may induce kidney tissue remodeling through direct binding and activation of the renal EGF receptor. PMID:25012179

  14. RIC-3 differentially modulates α4β2 and α7 nicotinic receptor assembly, expression, and nicotine-induced receptor upregulation

    PubMed Central

    2013-01-01

    Background Recent work has shown that the chaperone resistant to inhibitors of acetylcholinesterase (RIC-3) is critical for the folding, maturation and functional expression of a variety of neuronal nicotinic acetylcholine receptors. α7 nicotinic receptors can only assemble and functionally express in select lines of cells, provided that RIC-3 is present. In contrast, α4β2 nicotinic receptors can functionally express in many cell lines even without the presence of RIC-3. Depending on the cell line, RIC-3 has differential effects on α4β2 receptor function – enhancement in mammalian cells but inhibition in Xenopus oocytes. Other differences between the two receptor types include nicotine-induced upregulation. When expressed in cell lines, α4β2 receptors readily and robustly upregulate with chronic nicotine exposure. However, α7 nicotinic receptors appear more resistant and require higher concentrations of nicotine to induce upregulation. Could the coexpression of RIC-3 modulate the extent of nicotine-induced upregulation not only for α7 receptors but also α4β2 receptors? We compared and contrasted the effects of RIC-3 on assembly, trafficking, protein expression and nicotine-induced upregulation on both α7 and α4β2 receptors using fluorescent protein tagged nicotinic receptors and Förster resonance energy transfer (FRET) microscopy imaging. Results RIC-3 increases assembly and cell surface trafficking of α7 receptors but does not alter α7 protein expression in transfected HEK293T cells. In contrast, RIC-3 does not affect assembly of α4β2 receptors but increases α4 and β2 subunit protein expression. Acute nicotine (30 min exposure) was sufficient to upregulate FRET between α4 and β2 subunits. Surprisingly, when RIC-3 was coexpressed with α4β2 receptors nicotine-induced upregulation was prevented. α7 receptors did not upregulate with acute nicotine in the presence or absence of RIC-3. Conclusions These results provide interesting novel data that RIC-3 differentially regulates assembly and expression of different nicotinic receptor subunits. These results also show that nicotine-mediated upregulation of α4β2 receptors can be dynamically regulated by the presence of the chaperone, RIC-3. This could explain a novel mechanism why high affinity α4β2 receptors are upregulated in specific neuronal subtypes in the brain and not others. PMID:23586521

  15. Mechanism of the prostanoid TP receptor agonist U46619 for inducing emesis in the ferret.

    PubMed

    Kan, Kelvin K W; Ngan, Man P; Wai, Man K; Rudd, John A

    2008-12-01

    U46619 is a potent thromboxane A(2) mimetic with emesis-inducing actions that are mediated via prostanoid TP receptors. We investigated its emetic mechanism of action in more detail using the ferret as model animal. The emesis induced by U46619 (30 microg/kg, intraperitoneal) was antagonized significantly by (+)-(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine hydrochloride (CP-99,994; 1 and 10 mg/kg; P < 0.05) and metoclopramide (0.3 and 3 mg/kg), but not by domperidone (3 mg/kg), sulpiride (0.1 mg/kg), ondansetron (0.1 and 1 mg/kg) alone or combined with droperidol (3 mg/kg), GR125487 (1 mg/kg), promethazine (3 mg/kg), or scopolamine (3 mg/kg); GR 125487 (1 mg/kg) prevented the anti-emetic action of metoclopramide (3 mg/kg). U46619 0.3 microg administered into the fourth ventricle rapidly induced emesis. However, bilateral abdominal vagotomy was ineffective in reducing the emetic response (P > 0.05). Our data suggests that U46619 induces emesis via an extra-abdominal mechanism, probably within the brain. Metoclopramide probably has a mechanism of action to prevent U46619-induced emesis via 5-HT(4) receptor activation and NK(1) tachykinin receptor antagonists could be useful to prevent emesis induced by TP receptor activation in man. PMID:18618098

  16. Optimal T-cell receptor affinity for inducing autoimmunity.

    PubMed

    Koehli, Sabrina; Naeher, Dieter; Galati-Fournier, Virginie; Zehn, Dietmar; Palmer, Ed

    2014-12-01

    T-cell receptor affinity for self-antigen has an important role in establishing self-tolerance. Three transgenic mouse strains expressing antigens of variable affinity for the OVA transgenic-I T-cell receptor were generated to address how TCR affinity affects the efficiency of negative selection, the ability to prime an autoimmune response, and the elimination of the relevant target cell. Mice expressing antigens with an affinity just above the negative selection threshold exhibited the highest risk of developing experimental autoimmune diabetes. The data demonstrate that close to the affinity threshold for negative selection, sufficient numbers of self-reactive T cells escape deletion and create an increased risk for the development of autoimmunity. PMID:25411315

  17. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  18. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    SciTech Connect

    Shimada, Koichi; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo ; Ikeda, Kyoko; Ito, Koichi; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo

    2009-12-18

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1. To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-{alpha} stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-{alpha}-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-{alpha} and BMP signaling pathways.

  19. Basis for defective responses of rheumatoid arthritis synovial fluid lymphocytes to anti-CD3 (T3) antibodies.

    PubMed Central

    Lotz, M; Tsoukas, C D; Robinson, C A; Dinarello, C A; Carson, D A; Vaughan, J H

    1986-01-01

    Synovial fluid mononuclear cells (SFMC) from patients with active rheumatoid arthritis characteristically respond poorly to mitogens. In this study, mitogenic antibodies reactive with the CD3(T3) antigen on human T lymphocytes were used to analyze the basis for the deficiency. OKT3-induced proliferation and release of interleukin 1 (IL-1) and interleukin 2 (IL-2) from SFMC were depressed in all patients. Purified IL-1 or recombinant IL-2 restored proliferative responses in SFMC and increased IL-2 receptor density. Exogenous IL-1 also enhanced IL-2 release. Fractionation of SFMC supernatants on phosphocellulose columns revealed the presence of IL-1 and a potent IL-1 inhibitor. The monocyte-derived IL-1 inhibitor blocked IL-1-dependent responses of normal peripheral blood lymphocytes to OKT3, but had no effect on IL-2-dependent events. These results suggest that IL-1 inhibitor(s) in SFMC impair(s) OKT3-induced mitogenesis by interfering with the effects of IL-1 on T lymphocytes. The net result is deficient IL-2 secretion, IL-2 receptor expression, and impaired cellular proliferation. This novel inhibitory circuit provides a rational explanation for the diminished function of synovial fluid T lymphocytes in rheumatoid arthritis patients. PMID:3091636

  20. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    PubMed

    Grastilleur, Sbastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a ?-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context. PMID:23324378

  1. Development of estradiol-induced progestin receptor immunoreactivity in the hypothalamus of female guinea pigs.

    PubMed

    Olster, D H; Blaustein, J D

    1991-03-01

    The inability of young female guinea pigs to display progesterone-facilitated lordosis has been attributed, in part, to a deficiency in the concentration of hypothalamic estradiol-induced progestin receptors, as measured by in vitro binding assays. An immunocytochemical technique was used to ascertain where, within the mediobasal hypothalamus, estradiol-induced progestin receptor levels are lower in immature than in adult females. Adult (greater than 7 weeks) and juvenile (3 weeks) ovariectomized females received 10 micrograms estradiol benzoate, a dose that primes adult, but not immature females to respond behaviorally to progesterone. Progestin receptor-immunoreactive (PR-IR) cells were counted in the arcuate nucleus (ARC) and ventrolateral hypothalamus (VLH), the two regions containing the densest populations of estradiol-induced progestin receptors in the mediobasal hypothalamus. There was no age difference in the number of PR-IR cells in the rostral or caudal VLH, but immunostaining was darker in the rostral VLH of juveniles as compared to adults. We found similar numbers of PR-IR cells in the rostral and mid-ARC, but 35% fewer immunostained cells in the caudal ARC of immature, as compared to adult females. Furthermore, staining intensity was weaker in the mid- and caudal ARC of the juvenile females. These data suggest that the ARC, not the VLH, is a site of fewer estradiol-induced progestin receptors in immature females. PMID:2030342

  2. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat

    PubMed Central

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity. PMID:26770021

  3. Probable involvement of the 5-hydroxytryptamine(4) receptor in methotrexate-induced delayed emesis in dogs.

    PubMed

    Yamakuni, H; Sawai, H; Maeda, Y; Imazumi, K; Sakuma, H; Matsuo, M; Mutoh, S; Seki, J

    2000-03-01

    Delayed emesis in cancer patients undergoing chemotherapy remains a significant problem. The pathogenesis of delayed emesis is still obscure. It was recently demonstrated that methotrexate (MTX), an anticancer drug, evoked delayed emesis in dogs in a manner similar to its actions in humans. We evaluated the antiemetic activity of FK1052, a potent antagonist for both the 5-hydroxytryptamine (HT)(3) and 5-HT(4) receptors, on delayed emesis induced by MTX in beagle dogs. Animal behavior was recorded for 3 days using a video camera. Delayed emesis lasting up to 72 h was observed in dogs treated with MTX (2.5 mg/kg i.v.), but acute emesis did not occur. The following antiemetics, at the dose that prevents cisplatin-induced acute emesis in dogs, were administered i.v. as multiple injections every 12 h during days 2 to 3. FK1052 (1 and 3.2 mg/kg) significantly reduced the emetic episodes caused by MTX, whereas ondansetron (1 mg/kg), a selective 5-HT(3) receptor antagonist, was not effective. The emetic episodes induced by MTX were also inhibited by another 5-HT(3/4) receptor antagonist, tropisetron (1 mg/kg). CP-122,721 (0. 1 mg/kg), a potent selective tachykinin NK(1) receptor antagonist, significantly reduced the emetic responses to MTX. Copper sulfate-induced emesis in dogs was also prevented by FK1052, tropisetron, and CP-122,721 but not by ondansetron. FK1052, tropisetron, and ondansetron had negligible affinity for the NK(1) receptor at 1 microM. These results suggest that the 5-HT(4) receptor may be in part involved in the production of delayed emesis induced by MTX in dogs and that FK1052 may be a useful drug against both acute and delayed emesis induced by cancer chemotherapy. PMID:10688616

  4. Activation of GABA-A Receptor Ameliorates Homocysteine-Induced MMP-9 Activation by ERK Pathway

    PubMed Central

    TYAGI, NEETU; GILLESPIE, WILLIAM; VACEK, JONATHAN C.; SEN, UTPAL; TYAGI, SURESH C.; LOMINADZE, DAVID

    2010-01-01

    Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase-9 (MMP-9), which degrades the matrix and leads to blood–brain barrier dysfunction. Hcy competitively binds to γ-aminbutyric acid (GABA) receptors, which are excitatory neurotransmitter receptors. However, the role of GABA-A receptor in Hcy-induced cerebrovascular remodeling is not clear. We hypothesized that Hcy causes cerebrovascular remodeling by increasing redox stress and MMP-9 activity via the extracellular signal-regulated kinase (ERK) signaling pathway and by inhibition of GABA-A receptors, thus behaving as an inhibitory neurotransmitter. Hcy-induced reactive oxygen species production was detected using the fluorescent probe, 2′–7′-dichlorodihydrofluorescein diacetate. Hcy increased nicotinamide adenine dinucleotide phosphate-oxidase-4 concomitantly suppressing thioredoxin. Hcy caused activation of MMP-9, measured by gelatin zymography. The GABA-A receptor agonist, muscimol ameliorated the Hcy-mediated MMP-9 activation. In parallel, Hcy caused phosphorylation of ERK and selectively decreased levels of tissue inhibitors of metalloproteinase-4 (TIMP-4). Treatment of the endothelial cell with muscimol restored the levels of TIMP-4 to the levels in control group. Hcy induced expression of iNOS and decreased eNOS expression, which lead to a decreased NO bioavailability. Furthermore muscimol attenuated Hcy-induced MMP-9 via ERK signaling pathway. These results suggest that Hcy competes with GABA-A receptors, inducing the oxidative stress transduction pathway and leading to ERK activation. PMID:19308943

  5. Inhibitory signaling blocks activating receptor clustering and induces cytoskeletal retraction in natural killer cells

    PubMed Central

    Abeyweera, Thushara P.; Merino, Ernesto

    2011-01-01

    Natural killer (NK) lymphocytes use a variety of activating receptors to recognize and kill infected or tumorigenic cells during an innate immune response. To prevent targeting healthy tissue, NK cells also express numerous inhibitory receptors that signal through immunotyrosine-based inhibitory motifs (ITIMs). Precisely how signals from competing activating and inhibitory receptors are integrated and resolved is not understood. To investigate how ITIM receptor signaling impinges on activating pathways, we developed a photochemical approach for stimulating the inhibitory receptor KIR2DL2 during ongoing NK cell–activating responses in high-resolution imaging experiments. Photostimulation of KIR2DL2 induces the rapid formation of inhibitory receptor microclusters in the plasma membrane and the simultaneous suppression of microclusters containing activating receptors. This is followed by the collapse of the peripheral actin cytoskeleton and retraction of the NK cell from the source of inhibitory stimulation. These results suggest a cell biological basis for ITIM receptor signaling and establish an experimental framework for analyzing it. PMID:21339333

  6. Effects of dexamethasone on antigen-induced airway eosinophilia and M(2) receptor dysfunction.

    PubMed

    Evans, C M; Jacoby, D B; Fryer, A D

    2001-05-01

    In antigen-challenged guinea pigs, airway hyperreactivity is due to recruitment of eosinophils to the airway nerves and dysfunction of M(2) muscarinic receptors. M(2) receptor dysfunction is caused by eosinophil major basic protein, which is an allosteric antagonist at the receptor. Because glucocorticoids inhibit airway hyperreactivity in humans and in animal models of asthma, we tested whether dexamethasone treatment (6 microg. kg(-)(1). d(-)(1) for 3 d, intraperitoneal) before antigen challenge prevents M(2) receptor dysfunction and airway hyperreactivity. Guinea pigs were sensitized to ovalbumin via intraperitoneal injections, and were challenged with ovalbumin via inhalation. Twenty-four hours later, hyperreactivity and M(2) receptor function were tested. Antigen-challenged animals were hyperreactive to vagal stimulation, and demonstrated loss of M(2) receptor function. Dexamethasone pretreatment prevented hyperreactivity and M(2) receptor dysfunction in antigen-challenged guinea pigs. Antigen challenge resulted in recruitment of eosinophils to the airways and to the airway nerves. Dexamethasone prevented recruitment of eosinophils to the airway nerves but did not affect total eosinophil influx into the airways. These results demonstrate that dexamethasone prevents antigen-induced hyperreactivity by protecting neuronal M(2) muscarinic receptors from antagonism by eosinophil major basic protein, and this protective mechanism appears to be by specifically inhibiting eosinophil recruitment to the airway nerves. PMID:11371422

  7. Oxysterol 22(R)-Hydroxycholesterol Induces the Expression of the Bile Salt Export Pump through Nuclear Receptor Farsenoid X Receptor but Not Liver X Receptor

    PubMed Central

    Deng, Ruitang; Yang, Dongfang; Yang, Jian; Yan, Bingfang

    2014-01-01

    Oxysterols are intermediates in the synthesis of bile acids and steroid hormones from cholesterol and function as ligands for liver X receptor (LXR). Bile salt export pump (BSEP) is responsible for canalicular secretion of bile acids and is tightly regulated by its substrates bile acids through nuclear receptor farnesoid X receptor (FXR). In a microarray study using human hepatocytes, BSEP was markedly induced not only by chenodeoxycholic acid (CDCA) but also by oxysterol 22(R)-hydroxycholesterol [22(R)-OHC]. We hypothesized that the expression of BSEP was induced by oxysterols through activation of LXR. To test the hypothesis, human primary hepatocytes or hepatoma cells were treated with 22(R)-OHC, and expression of BSEP was determined. The level of BSEP mRNA was increased as much as 5-fold upon oxysterol induction. In contrast to our hypothesis, the oxysterol-induced up-regulation of BSEP is mediated through FXR but not LXR. BSEP promoter activity was markedly induced by 22(R)-OHC in the presence of FXR but not LXRs. Mutation of the FXR element IR1 in the BSEP promoter significantly reduced its ability to respond to oxysterol induction. To determine whether 22(R)-OHC and CDCA bind to similar structural features of FXR, site-directed mutagenesis was performed in the FXR ligand binding domain. Mutation of residues R331 and I352 abolished activation mediated by CDCA and 22(R)-OHC. In contrast, substitution of residues L340 and R351 differentiated CDCA- and 22(R)-OHC-mediated activation. In conclusion, oxysterol 22(R)-OHC functions as an FXR ligand to induce BSEP expression and differs in the binding with FXR from CDCA. PMID:16371446

  8. ZnO Nanoparticles Upregulates Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Pandurangan, Muthuraman; Jin, Bong Yeon; Kim, Doo Hwan

    2016-03-01

    The present study was aimed to investigate the effect of zinc oxide (ZnO) nanoparticles on 3T3-L1 cell differentiation, by quantitating peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), sterol regulatory element-binding transcription factor 1 (SREBP1), and serine-threonine kinase cyclin-dependent kinase 4 (cdk4), which are critical for adipogenesis. 3T3-L1 preadipocyte cells were cultured and differentiated with the standard differentiation medium. Sulforhodamine B (SRB) assay determined 3T3-L1 cell viability. ZnO nanoparticles increased the lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. The quantitative PCR (qPCR) analysis showed that the PPARγ, FABP4, C/EBPα, and SREBP1 messenger RNA (mRNA) expression was significantly increased in the ZnO nanoparticle-treated 3T3-L1 adipocytes. Western blot analysis showed increased PPARγ, FABP4, C/EBPα, and SREBP1 protein expression compared to their respective controls. Also, the immunofluorescence study showed the increased cdk4 and PPARγ expression in the nanoparticle-treated cells. Taking all these data together, it is concluded that ZnO nanoparticles may be a potent substance to alter 3T3-L1 preadipocyte differentiation and adipogenesis. PMID:26271306

  9. Counterregulation of nuclear 3,5,3'-triiodo-L-thyronine (T3) binding by oxidized and reduced-nicotinamide adenine dinucleotide phosphates in the presence of cytosolic T3-binding protein in vitro

    SciTech Connect

    Hashizume, K.; Miyamoto, T.; Yamauchi, K.; Ichikawa, K.; Kobayashi, M.; Ohtsuka, H.; Sakurai, A.; Suzuki, S.; Yamada, T.

    1989-04-01

    The role of cytosolic T3-binding protein (CTBP) in the regulation of nuclear T3 binding was studied in vitro. Nuclear (125I)T3 binding was observed in the presence of 1.0 mM dithiothreitol (DTT). When the nuclei prepared from rat kidney were incubated with inactive form of CTBP which was also prepared from rat kidney, (125I)T3 binding to nuclei was not affected. When the nuclei were incubated with inactive form of CTBP in the presence of NADP, (125I)T3 binding to nuclei was increased, whereas binding was diminished when nuclei were incubated with CTBP in the presence of NADPH. The inactive form of CTBP was activated by NADPH. NADP also activated CTBP in the presence of DTT. Both active forms of CTBP were again inactivated by extraction with charcoal, and these inactive forms were reactivated by NADPH or by NADP and DTT, but not by NADP alone. Although the nuclei treated with 0.3 M NaCl lost the binding activity for (125I)T3 in the absence of NADP, the nuclei retained the binding activity for (125I)T3 in the presence of NADP and the inactive form of CTBP. Treatment of the nuclei with 0.5 M NaCl lost the binding activity for (125I)T3 not only in the absence but also in the presence of NADP and CTBP. These results suggested that NADP and NADPH play roles as counterregulatory factors for nuclear T3 binding in the presence of CTBP. Further, it was speculated that binding sites for the T3-CTBP complex, which is generated in the presence of NADP and DTT, are present in nuclei, and that binding sites for the complex are different from nuclear T3 receptors.

  10. Overexpression of the dopamine D3 receptor in the rat dorsal striatum induces dyskinetic behaviors.

    PubMed

    Cote, Samantha R; Chitravanshi, Vineet C; Bleickardt, Carina; Sapru, Hreday N; Kuzhikandathil, Eldo V

    2014-04-15

    L-DOPA-induced dyskinesias (LID) are motor side effects associated with treatment of Parkinson's disease (PD). The etiology of LID is not clear; however, studies have shown that the dopamine D3 receptor is upregulated in the basal ganglia of mice, rats and non-human primate models of LID. It is not known if the upregulation of D3 receptor is a cause or result of LID. In this paper we tested the hypothesis that overexpression of the dopamine D3 receptor in dorsal striatum, in the absence of dopamine depletion, will elicit LID. Replication-deficient recombinant adeno-associated virus-2 expressing the D3 receptor or enhanced green fluorescent protein (EGFP) were stereotaxically injected, unilaterally, into the dorsal striatum of adult rats. Post-hoc immunohistochemical analysis revealed that ectopic expression of the D3 receptor was limited to neurons near the injection sites in the dorsal striatum. Following a 3-week recovery period, rats were administered saline, 6 mg/kg L-DOPA, 0.1 mg/kg PD128907 or 10 mg/kg ES609, i.p., and motor behaviors scored. Rats overexpressing the D3 receptor specifically exhibited contralateral axial abnormal involuntary movements (AIMs) following administration of L-DOPA and PD128907 but not saline or the novel agonist ES609. Daily injection of 6 mg/kg L-DOPA to the rats overexpressing the D3 receptor also caused increased vacuous chewing behavior. These results suggest that overexpression of the D3 receptor in the dorsal striatum results in the acute expression of agonist-induced axial AIMs and chronic L-DOPA-induced vacuous chewing behavior. Agonists such as ES609 might provide a novel therapeutic approach to treat dyskinesia. PMID:24462727

  11. Endothelial Cell-specific Deficiency of AngII Type 1a Receptors Attenuates AngII-induced Ascending Aortic Aneurysms in LDL Receptor −/− Mice

    PubMed Central

    Rateri, Debra L.; Moorleghen, Jessica J.; Balakrishnan, Anju; Owens, A. Phillip; Howatt, Deborah A.; Subramanian, Venkateswaran; Poduri, Aruna; Charnigo, Richard; Cassis, Lisa A.; Daugherty, Alan

    2011-01-01

    Rationale Human studies and mouse models have provided evidence for angiotensin II (AngII)-based mechanisms as an underlying cause of aneurysms localized to the ascending aorta. In agreement with this associative evidence, we have published recently that AngII infusion induces aneurysmal pathology in the ascending aorta. Objective The aim of this study was to define the role of angiotensin II type 1a (AT1a) receptors and their cellular location in AngII-induced ascending aortic aneurysms (AAs). Methods and Results Male LDL receptor −/− mice were fed a saturated fat-enriched diet for 1 week prior to osmotic mini-pump implantation and infused with either saline or AngII (1,000 ng/kg/min) for 28 days. Intimal surface areas of ascending aortas were measured to quantify ascending AAs. Whole body AT1a receptor deficiency ablated AngII-induced ascending AAs (P<0.001). To determine the role of AT1a receptors on leukocytes, LDL receptor −/− x AT1a receptor +/+ or −/− mice were irradiated and repopulated with bone marrow-derived cells isolated from either AT1a receptor +/+ or −/− mice. Deficiency of AT1a receptors in bone marrow-derived cells had no effect on AngII-induced ascending AAs. To determine the role of AT1a receptors on vascular wall cells, we developed AT1a receptor floxed mice with depletion on either smooth muscle (SMC) or endothelial cells using Cre driven by either SM22 or Tek, respectively. AT1a receptor deletion in SMCs had no effect on ascending AAs. In contrast, endothelial-specific depletion attenuated this pathology. Conclusions AngII infusion promotes aneurysms in the ascending aorta via stimulation of AT1a receptors that are expressed on endothelial cells. PMID:21252156

  12. Angiotensin II AT1 receptor blocker candesartan prevents the fast up-regulation of cerebrocortical benzodiazepine-1 receptors induced by acute inflammatory and restraint stress.

    PubMed

    Snchez-Lemus, Enrique; Honda, Masaru; Saavedra, Juan M

    2012-06-15

    Centrally acting Angiotensin II AT(1) receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 ?g/kg) with or without 3 days of pretreatment with the ARB candesartan (1mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ(1) receptors and reduced mRNA expression of the GABA(A) receptor ?(2) subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ(1) receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ(1) binding, and decreased ?(2) subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF(1) receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF(2) receptor binding was undetectable, but CRF(2) mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ(1) receptor expression; and that the stress-induced BZ(1) receptor expression is under the control of AT(1) receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ(1) receptors. PMID:22503782

  13. Angiotensin II AT1 receptor blocker candesartan prevents the fast up-regulation of cerebrocortical benzodiazepine-1 receptors induced by acute inflammatory and restraint stress

    PubMed Central

    Sánchez-Lemus, Enrique; Honda, Masaru; Saavedra, Juan M.

    2012-01-01

    Centrally acting Angiotensin II AT1 receptor blockers (ARBs) protect from stress-induced disorders and decrease anxiety in a model of inflammatory stress, the systemic injection of bacterial endotoxin lipopolysaccharide (LPS). In order to better understand the anxiolytic effect of ARBs, we treated rats with LPS (50 µg/kg) with or without three days of pretreatment with the ARB candesartan (1 mg/kg/day), and studied cortical benzodiazepine (BZ) and corticotrophin-releasing factor (CRF) receptors. We compared the cortical BZ and CRF receptors expression pattern induced by LPS with that produced in restraint stress. Inflammation stress produced a generalized increase in cortical BZ1 receptors and reduced mRNA expression of the GABAA receptor γ2 subunit in cingulate cortex; changes were prevented by candesartan pretreatment. Moreover, restraint stress produced similar increases in cortical BZ1 receptor binding, and candesartan prevented these changes. Treatment with candesartan alone increased cortical BZ1 binding, and decreased γ2 subunit mRNA expression in the cingulate cortex. Conversely, we did not find changes in CRF1 receptor expression in any of the cortical areas studied, either after inflammation or restraint stress. Cortical CRF2 receptor binding was undetectable, but CRF2 mRNA expression was decreased by inflammation stress, a change prevented by candesartan. We conclude that stress promotes rapid and widespread changes in cortical BZ1 receptor expression; and that the stress-induced BZ1 receptor expression is under the control of AT1 receptor activity. The results suggest that the anti-anxiety effect of ARBs may be associated with their capacity to regulate stress-induced alterations in cortical BZ1 receptors. PMID:22503782

  14. Mitigative Effect of Erythromycin on PMMA Challenged Preosteoblastic MC3T3-E1 Cells

    PubMed Central

    Shen, Yi; Wang, Weili; Li, Xiaomiao; Markel, David C.; Ren, Weiping

    2014-01-01

    Background. Aseptic loosening (AL) is a major complication of total joint replacement. Recent approaches to limiting AL have focused on inhibiting periprosthetic inflammation and osteoclastogenesis. Questions/Purposes. The purpose of this study was to determine the effects of erythromycin (EM) on polymethylmethacrylate (PMMA) particle-challenged MC3T3 osteoblast precursor cells. Methods. MC3T3 cells were pretreated with EM (0–10 μg/mL) and then stimulated with PMMA (1 mg/mL). Cell viability was evaluated by both a lactate dehydrogenase (LDH) release assay and cell counts. Cell differentiation was determined by activity of alkaline phosphatase (ALP). Gene expression was measured via real-time quantitative RT-PCR. Results. We found that exposure to PMMA particles reduced cellular viability and osteogenetic potential in MC3T3 cell line. EM treatment mitigated the effects of PMMA particles on the proliferation, viability and differentiation of MC3T3 cells. PMMA decreased the gene expression of Runx2, osterix and osteocalcin, which can be partially restored by EM treatment. Furthermore, EM suppressed PMMA- induced increase of NF-κB gene expression. Conclusions. These data demonstrate that EM mitigates the effects of PMMA on MC3T3 cell viability and differentiation, in part through downregulation of NF-κB pathway. EM appeared to represent an anabolic agent on MC3T3 cells challenged with PMMA particles. PMID:25110723

  15. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    SciTech Connect

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  16. Constitutive and ligand-induced nuclear localization of oxytocin receptor.

    PubMed

    Kinsey, Conan G; Bussolati, Gianni; Bosco, Martino; Kimura, Tadashi; Pizzorno, Marie C; Chernin, Mitchell I; Cassoni, Paola; Novak, Josef F

    2007-01-01

    Oxytocin receptor (OTR) is a membrane protein known to mediate oxytocin (OT) effects, in both normal and neoplastic cells. We report here that human osteosarcoma (U2OS, MG63, OS15 and SaOS2), breast cancer (MCF7), and primary human fibroblastic cells (HFF) all exhibit OTR not only on the cell membrane, but also in the various nuclear compartments including the nucleolus. Both an OTR-GFP fusion protein and the native OTR appear to be localized to the nucleus as detected by transfection and/or confocal immunofluorescence, respectively. Treatment with oxytocin causes internalization of OTR and the resulting vesicles accumulate in the vicinity of the nucleus and some of the perinuclear OTR enters the nucleus. Western blots indicate that OTR in the nucleus and on the plasma membrane are likely to be the same biochemical and immunological entities. It appears that OTR is first visible in the nucleoli and subsequently disperses within the nucleus into 4-20 spots while some of the OTR diffuses throughout the nucleoplasm. The behaviour and kinetics of OTR-GFP and OTR are different, indicating interference by GFP in both OTR entrance into the nucleus and subsequent relocalization of OTR within the nucleus. There are important differences among the tested cells, such as the requirement of a ligand for transfer of OTR in nuclei. A constitutive internalization of OTR was found only in osteosarcoma cells, while the nuclear localization in all other tested cells was dependent on ligand binding. The amount of OTR-positive material within and in the vicinity of the nucleus increased following a treatment with oxytocin in both constitutive and ligand-dependent type of cells. The evidence of OTR compartmentalization at the cell nucleus (either ligand-dependent or constitutive) in different cell types suggests still unknown biological functions of this protein or its ligand and adds this G-protein-coupled receptor to other heptahelical receptors displaying this atypical and unexpected nuclear localization. PMID:17367504

  17. Opposite effects of GABAA and NMDA receptor antagonists on ethanol-induced behavioral sleep in rats.

    PubMed

    Beleslin, D B; Djokanović, N; Jovanović Mićić, D; Samardzić, R

    1997-01-01

    The effects of the GABAA receptor antagonists, pentylenetetrazol, bicuculline, and picrotoxin, the glycine antagonist, strychnine, and the NMDA receptor antagonist, memantine, on ethanol-induced behavioral sleep and body temperature were investigated. Pentylenetetrazol, bicuculline, and picrotoxin given prior and following ethanol reduced the behavioral sleep and potentiated the hypothermia caused by ethanol. However, convulsions appeared when bicuculline, but not pentylenetetrazol and picrotoxin, were given following ethanol. After the reversal of unconsciousness in rats without convulsions the animals remained awake throughout the experiments without motor incoordination, hyperexcitability, and sedation, but they were in hypothermia within 12 h. The glycine antagonist, strychnine, given prior or after ethanol had virtually no effect on ethanol-induced behavioral sleep and hypothermia. Ethanol given prior or following strychnine failed to antagonize strychnine-induced convulsions. The NMDA receptor antagonist, memantine, given following ethanol potentiated the behavioral sleep and had virtually no effect on hypothermia induced by ethanol. It is suggested that the ethanol-induced behavioral sleep may be attributed to its ability to enhance the GABAergic mechanisms and to inhibit NMDA-mediated excitatory responses. However, the ethanol-induced hypothermia may be ascribed solely to the facilitation of GABAergic transmission. Further, it is postulated that a bidirectional inhibitory system subserves the regulation of behavioral sleep and convulsions. However, one-way inhibitory system underlies the ethanol-induced hypothermia. PMID:9085718

  18. Protein Kinase Cζ Mediates μ-Opioid Receptor-induced Cross-desensitization of Chemokine Receptor CCR5*

    PubMed Central

    Song, Changcheng; Rahim, Rahil T.; Davey, Penelope C.; Bednar, Filip; Bardi, Giuseppe; Zhang, Lily; Zhang, Ning; Oppenheim, Joost J.; Rogers, Thomas J.

    2011-01-01

    We have previously shown that the μ-opioid receptor (MOR) is capable of mediating cross-desensitization of several chemokine receptors including CCR5, but the biochemical mechanism of this process has not been fully elucidated. We have carried out a series of functional and biochemical studies and found that the mechanism of MOR-induced cross-desensitization of CCR5 involves the activation of PKCζ. Inhibition of PKCζ by its pseudosubstrate inhibitor, or its siRNA, or dominant negative mutants suppresses the cross-desensitization of CCR5. Our results further indicate that the activation of PKCζ is mediated through a pathway involving phosphoinositol-dependent kinase-1 (PDK1). In addition, activation of MOR elevates the phosphorylation level and kinase activity of PKCζ. The phosphorylation of PKCζ can be suppressed by a dominant negative mutant of PDK1. We observed that following MOR activation, the interaction between PKCζ and PDK1 is immediately increased based on the analysis of fluorescent resonance energy transfer in cells with the expression of PKCζ-YFP and PDK1-CFP. In addition, cells expressing PKCζ kinase motif mutants (Lys-281, Thr-410, Thr-560) fail to exhibit full MOR-induced desensitization of CCR5 activity. Taken together, we propose that upon DAMGO treatment, MOR activates PKCζ through a PDK1-dependent signaling pathway to induce CCR5 phosphorylation and desensitization. Because CCR5 is a highly proinflammatory receptor, and a critical coreceptor for HIV-1, these results may provide a novel approach for the development of specific therapeutic agents to treat patients with certain inflammatory diseases or AIDS. PMID:21454526

  19. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    SciTech Connect

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-05-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of (/sup 32/P)-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions.

  20. Protein-Bound Uremic Toxins Induce Tissue Remodeling by Targeting the EGF Receptor

    PubMed Central

    Sun, Chiao-Yin; Young, Guang-Huar; Hsieh, Yu-Ting; Chen, Yau-Hung; Wu, Mai-Szu; Wu, Vin-Cent; Lee, Jia-Hung

    2015-01-01

    Indoxyl sulfate and p-cresol sulfate have been suggested to induce kidney tissue remodeling. This study aimed to clarify the molecular mechanisms underlying this tissue remodeling using cultured human proximal renal tubular cells and half-nephrectomized mice treated with indoxyl sulfate or p-cresol sulfate as study models. Molecular docking results suggested that indoxyl sulfate and p-cresol sulfate dock on a putative interdomain pocket of the extracellular EGF receptor. In vitro spectrophotometric analysis revealed that the presence of a synthetic EGF receptor peptide significantly decreased the spectrophotometric absorption of indoxyl sulfate and p-cresol sulfate. In cultured cells, indoxyl sulfate and p-cresol sulfate activated the EGF receptor and downstream signaling by enhancing receptor dimerization, and increased expression of matrix metalloproteinases 2 and 9 in an EGF receptor–dependent manner. Treatment of mice with indoxyl sulfate or p-cresol sulfate significantly activated the renal EGF receptor and increased the tubulointerstitial expression of matrix metalloproteinases 2 and 9. In conclusion, indoxyl sulfate and p-cresol sulfate may induce kidney tissue remodeling through direct binding and activation of the renal EGF receptor. PMID:25012179

  1. Agonist-induced morphologic decrease in cellular D1A dopamine receptor staining.

    PubMed

    Ariano, M A; Sortwell, C E; Ray, M; Altemus, K L; Sibley, D R; Levine, M S

    1997-12-01

    The distribution of D1A dopamine (DA) receptor proteins was assessed by using subtype specific antireceptor antisera after acute DA exposure. The immunofluorescent staining of D1A DA receptor protein expression was examined in (1) stably transfected Chinese hamster ovary (CHO) cells, (2) primary striatal cell cultures, and (3) rat striatal brain slices. After agonist exposure as brief as 2 min and as long as 60 min, profound loss of immunofluorescent D1A receptor protein staining occurred in each paradigm. Additionally in the tissue slice, immunofluorescent neuropil staining for the receptor protein also was attenuated. The DA-induced alteration in receptor protein staining was blocked by the antagonist (+)-butaclamol and by the selective D1-family antagonist SCH 23390. Receptor staining patterns reverted back to the control immunofluorescent distribution within 15 min after removing the agonist from the bath. Immunofluorescence for the second-messenger cyclic AMP increased at all DA exposure times in the three experimental paradigms, was blocked by D1-family antagonists, and decreased to basal staining after brief recovery periods. This demonstrated the functional integrity of the D1A receptor in target cells. Pretreatment with the mitogenic plant lectin concanavalin A blocked the immunofluorescent decrease in receptor staining but not the elevation of the second messenger, indicating a morphologic distinction in these two events, parallel to other biochemical reports. The data suggested that a morphologic basis of acute homologous D1A DA receptor desensitization may be transposition of membrane-surface receptors to a transiently unavailable, intracellular compartment. This finding is supported by specific fluorescence incorporation of FM1-43, used as a marker of endocytosis, in CHO cells treated with DA. PMID:9372554

  2. Effect of T(3) treatment and food ration on hepatic deiodination and conjugation of thyroid hormones in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Finnson, K W; Eales, J G

    1999-09-01

    We studied the 7-day effects of 3,5,3'-triiodothyronine (T(3)) hyperthyroidism (induced by 12 ppm T(3) in food) and food ration (0, 0.5, or 2% body weight/day) on in vitro hepatic glucuronidation, sulfation, and deiodination of thyroxine (T(4)), T(3), and 3,3', 5'-triiodothyronine (rT(3)). T(3) treatment doubled plasma T(3) with no change in plasma T(4), depressed hepatic low-K(m) (1 nM) outer-ring deiodination (ORD) of T(4), induced low-K(m) (1 nM) inner-ring deiodination (IRD) of both T(4) and T(3) but did not alter high-K(m) (1 microM) rT(3)ORD, glucuronidation, or sulfation of T(4), T(3), or rT(3). Plasma T(4) levels were greater for 0 and 2% rations than for a 0.5% ration. Fasting decreased low-K(m) T(4)ORD activity and increased high-K(m) rT(3)ORD activity but did not alter T(4)IRD or T(3)IRD activities. T(4), T(3), and rT(3) glucuronidation were greater for 0 and 0.5% rations than for a 2% ration. T(3) glucuronidation was greater for a 0.5% ration than for a 0% ration. T(3) and rT(3) sulfation were greater for a 2% ration than for a 0 or a 0.5% ration; ration did not change T(4) sulfation. We conclude that (i) modest experimental T(3) hyperthyroidism induces T(3) autoregulation by adjusting hepatic low-K(m) ORD and IRD activities but not high-K(m) rT(3)ORD or conjugation activities; (ii) in contrast, ration level changes both deiodination and conjugation pathways, suggesting that the response to ration does not solely reflect altered T(3) production; (iii) deiodination and conjugation appear complementary in regulating thyroidal status in response to ration; and (iv) high-K(m) rT(3)ORD in trout differs from rat type I deiodination in that it does not respond to T(3) hyperthyroidism and it increases, rather than decreases, its activity during fasting. PMID:10480989

  3. RET/PTC-induced cell growth is mediated in part by epidermal growth factor receptor (EGFR) activation: evidence for molecular and functional interactions between RET and EGFR.

    PubMed

    Croyle, Michelle; Akeno, Nagako; Knauf, Jeffrey A; Fabbro, Doriano; Chen, Xu; Baumgartner, Jacqueline E; Lane, Heidi A; Fagin, James A

    2008-06-01

    RET/PTC rearrangements are one of the genetic hallmarks of papillary thyroid carcinomas. RET/PTC oncoproteins lack extracellular or transmembrane domains, and activation takes place through constitutive dimerization mediated through coiled-coil motifs in the NH(2) terminus of the chimeric protein. Based on the observation that the epidermal growth factor receptor (EGFR) kinase inhibitor PKI166 decreased RET/PTC kinase autophosphorylation and activation of downstream effectors in thyroid cells, despite lacking activity on the purified RET kinase, we proceeded to examine possible functional interactions between RET/PTC and EGFR. Conditional activation of RET/PTC oncoproteins in thyroid PCCL3 cells markedly induced expression and phosphorylation of EGFR, which was mediated in part through mitogen-activated protein kinase signaling. RET and EGFR were found to coimmunoprecipitate. The ability of RET to form a complex with EGFR was not dependent on recruitment of Shc or on their respective kinase activities. Ligand-induced activation of EGFR resulted in phosphorylation of a kinase-dead RET, an effect that was entirely blocked by PKI166. These effects were biologically relevant, as the EGFR kinase inhibitors PKI166, gefitinib, and AEE788 inhibited cell growth induced by various constitutively active mutants of RET in thyroid cancer cells as well as NIH3T3 cells. These data indicate that EGFR contributes to RET kinase activation, signaling, and growth stimulation and may therefore be an attractive therapeutic target in RET-induced neoplasms. PMID:18519677

  4. M₃muscarinic receptors mediate acetylcholine-induced pulmonary vasodilation in pulmonary hypertension.

    PubMed

    Orii, Ryo; Sugawara, Yasuhiko; Sawamura, Shigehito; Yamada, Yoshitsugu

    2010-10-01

    Information about the muscarinic receptor subtype(s) mediating pulmonary circulatory vasodilator responses to acetylcholine (ACh) is limited. The aim of this study was to pharmacologically characterize the muscarinic receptors associated with ACh-induced pulmonary vasodilation in a pulmonary hypertension model. Vasodilation of rabbit isolated buffer-perfused lungs in which pulmonary hypertension was induced with the thromboxane A₂ analogue U-46619 was evoked by ACh at a just maximally effective concentration (2 x 10⁻⁷ M). The effects of cumulative concentrations of three specific muscarinic receptor subtype antagonists [pirenzepine (M₁), methoctramine (M₂), and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, M₃] on ACh-induced pulmonary vasodilation were determined. Double vascular occlusion pressure was recorded to locate the muscarinic receptors within the pulmonary vasculature. Based on the 50% inhibitory concentrations (IC₅₀), the rank of order of antagonist potency was 4-DAMP > pirenzepine > methoctramine. The vascular effects of all three inhibitors were localized to the precapillary segment. These findings suggest that the vasodilator action of ACh on rabbit isolated perfused U-46619 pretreated lungs is mediated by M₃ muscarinic receptors located in the pulmonary arterial bed. PMID:21068480

  5. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis

    PubMed Central

    Meng, Xiangzong; Zhou, Jinggeng; Tang, Jiao; Li, Bo; de Oliveira, Marcos V. V.; Chai, Jijie; He, Ping; Shan, Libo

    2016-01-01

    SUMMARY Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation. PMID:26854226

  6. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction

    PubMed Central

    Wang, Huaibin; Min, Guangwei; Glockshuber, Rudi; Sun, Tung-Tien; Kong, Xiang-Peng

    2009-01-01

    Urinary tract infection (UTI) is the second most common infectious disease, and is caused predominantly by type 1-fimbriated uropathogenic E. coli (UPEC). UPEC initiates infection by attaching to uroplakin Ia, its urothelial surface receptor, via the FimH adhesins capping the distal end of its fimbriae. Uroplakin Ia, together with uroplakins Ib, II and IIIa, forms a 16 nm receptor complex that is assembled into hexagonally packed two-dimensional crystals (urothelial plaques) covering >90% of the urothelial apical surface. Recent studies indicate that FimH is the invasin of UPEC as its attachment to the urothelial surface can induce cellular signaling events including calcium elevation and the phosphorylation of the uroplakin IIIa cytoplasmic tail, leading to cytoskeletal rearrangements and bacterial invasion. However, it remains unknown how the binding of FimH to the uroplakin receptor triggers a signal that can be transmitted through the highly impermeable urothelial apical membrane. We show here by cryo-electron microscopy that FimH-binding to the extracellular domain of UPIa induces global conformational changes in the entire uroplakin receptor complex, including a coordinated movement of the tightly bundled transmembrane helices. This movement of the transmembrane helix bundles can cause a corresponding lateral translocation of the uroplakin cytoplasmic tails, which can be sufficient to trigger downstream signaling events. Our results suggest a novel pathogen-induced transmembrane signal transduction mechanism that plays a key role in the initial stages of UPEC invasion and receptor-mediated bacterial invasion in general. PMID:19577575

  7. Dopamine receptors and the persistent neurovascular dysregulation induced by methamphetamine self-administration in rats.

    PubMed

    Kousik, Sharanya M; Napier, T Celeste; Ross, Ryan D; Sumner, D Rick; Carvey, Paul M

    2014-11-01

    Recently abstinent methamphetamine (Meth) abusers showed neurovascular dysregulation within the striatum. The factors that contribute to this dysregulation and the persistence of these effects are unclear. The current study addressed these knowledge gaps. First, we evaluated the brains of rats with a history of Meth self-administration following various periods of forced abstinence. Micro-computed tomography revealed a marked reduction in vessel diameter and vascular volume uniquely within the striatum between 1 and 28 days after Meth self-administration. Microvessels showed a greater impairment than larger vessels. Subsequently, we determined that dopamine (DA) D2 receptors regulated Meth-induced striatal vasoconstriction via acute noncontingent administration of Meth. These receptors likely regulated the response to striatal hypoxia, as hypoxia inducible factor 1α was elevated. Acute Meth exposure also increased striatal levels of endothelin receptor A and decreased neuronal nitric oxide synthase. Collectively, the data provide novel evidence that Meth-induced striatal neurovascular dysregulation involves DA receptor signaling that results in vasoconstriction via endothelin receptor A and nitric oxide signaling. As these effects can lead to hypoxia and trigger neuronal damage, these findings provide a mechanistic explanation for the selective striatal toxicity observed in the brains of Meth-abusing humans. PMID:25185214

  8. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8.

    PubMed

    Spanjer, Anita I R; Baarsma, Hoeke A; Oostenbrink, Lisette M; Jansen, Sepp R; Kuipers, Christine C; Lindner, Michael; Postma, Dirkje S; Meurs, Herman; Heijink, Irene H; Gosens, Reinoud; Königshoff, Melanie

    2016-05-01

    TGF-β is important in lung injury and remodeling processes. TGF-β and Wingless/integrase-1 (WNT) signaling are interconnected; however, the WNT ligand-receptor complexes involved are unknown. Thus, we aimed to identify Frizzled (FZD) receptors that mediate TGF-β-induced profibrotic signaling. MRC-5 and primary human lung fibroblasts were stimulated with TGF-β1, WNT-5A, or WNT-5B in the presence and absence of specific pathway inhibitors. Specific small interfering RNA was used to knock down FZD8. In vivo studies using bleomycin-induced lung fibrosis were performed in wild-type and FZD8-deficient mice. TGF-β1 induced FZD8 specifically via Smad3-dependent signaling in MRC-5 and primary human lung fibroblasts. It is noteworthy that FZD8 knockdown reduced TGF-β1-induced collagen Iα1, fibronectin, versican, α-smooth muscle (sm)-actin, and connective tissue growth factor. Moreover, bleomycin-induced lung fibrosis was attenuated in FZD8-deficient mice in vivo Although inhibition of canonical WNT signaling did not affect TGF-β1-induced gene expression in vitro, noncanonical WNT-5B mimicked TGF-β1-induced fibroblast activation. FZD8 knockdown reduced both WNT-5B-induced gene expression of fibronectin and α-sm-actin, as well as WNT-5B-induced changes in cellular impedance. Collectively, our findings demonstrate a role for FZD8 in TGF-β-induced profibrotic signaling and imply that WNT-5B may be the ligand for FZD8 in these responses.-Spanjer, A. I. R., Baarsma, H. A., Oostenbrink, L. M., Jansen, S. R., Kuipers, C. C., Lindner, M., Postma, D. S., Meurs, H., Heijink, I. H., Gosens, R., Königshoff, M. TGF-β-induced profibrotic signaling is regulated in part by the WNT receptor Frizzled-8. PMID:26849959

  9. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity.

    PubMed

    Holst, P J; Rosenkilde, M M; Manfra, D; Chen, S C; Wiekowski, M T; Holst, B; Cifire, F; Lipp, M; Schwartz, T W; Lira, S A

    2001-12-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines. PMID:11748262

  10. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    PubMed Central

    Holst, Peter J.; Rosenkilde, Mette M.; Manfra, Denise; Chen, Shu-Cheng; Wiekowski, Maria T.; Holst, Birgitte; Cifire, Felix; Lipp, Martin; Schwartz, Thue W.; Lira, Sergio A.

    2001-01-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein–coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines. PMID:11748262

  11. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity.

    PubMed

    Brassai, A; Suvanjeiev, R-G; Bán, E-Gy; Lakatos, M

    2015-03-01

    In acute ischaemic brain injury and chronic neurodegeneration, the first step leading to excitotoxicity and cell death is the excessive release of Glu and the prolonged activation of Glu receptors, followed by intracellular calcium overload. There is apparent agreement that glutamatergic transmission via synaptic NMDA receptors (composed of GluN2A subunits) is neuroprotective, whereas transmission via non-synaptic NMDA receptors (composed of GluN2B subunits) is excitotoxic. Extrasynaptic NMDARs activate cell death pathways and may play a key role in Glu-induced excitotoxic neurodegeneration and apoptosis. Accordingly, the function of protective pathways may be impaired by the concomitant blockade of GluN2A-containing receptors. In contrast, the selective inhibition of non-synaptic GluN2B-containing NMDARs may be beneficial in neuroprotection because it can prevent neuronal cell death and thus maintain protective pathways. PMID:25540918

  12. Methacholine-induced decrease in the cholinergic muscarinic receptor content in the perfused working rat heart.

    PubMed

    Reinhardt, R R; Roskoski, R

    1983-07-01

    The regulation of the muscarinic receptor by the agonist methacholine was investigated in the perfused working rat heart. After 2.5 hr of perfusion with 4 microM methacholine, the number of (-)-[3H]-quinuclidinyl benzilate binding sites was significantly reduced (10-18%) in the right and left atria and left ventricle when compared with controls (2.5 hr of perfusion in the absence of methacholine). Scatchard analysis revealed that there was no change in the apparent dissociation constant for quinuclidinyl benzilate. Furthermore, when hearts were perfused for 2.5 hr with methacholine in the presence of (-)-scopolamine, a muscarinic receptor antagonist, no significant loss of receptor was observed. After perfusing with methacholine for 2.5 hr followed by 2.5 hr in the absence of agonist, the number of quinuclidinyl benzilate binding sites returned to control levels. These results suggest that agonist-induced receptor decreases or down regulation requires receptor activation and not just simple receptor occupancy. This decrease, moreover, is reversible. The perfused working rat heart represents a physiological system in which the mechanisms of muscarinic receptor regulation can be studied. PMID:6345753

  13. A2B Adenosine Receptors Protect against Sepsis-Induced Mortality by Dampening Excessive Inflammation

    PubMed Central

    Csóka, Balázs; Németh, Zoltán H.; Rosenberger, Peter; Eltzschig, Holger K.; Spolarics, Zoltán; Pacher, Pál; Selmeczy, Zsolt; Koscsó, Balázs; Himer, Leonóra; Vizi, E. Sylvester; Blackburn, Michael R.; Deitch, Edwin A.; Haskó, György

    2010-01-01

    Despite intensive research, efforts to reduce the mortality of septic patients have failed. Adenosine is a potent extracellular signaling molecule, and its levels are elevated in sepsis. Adenosine signals through G-protein–coupled receptors and can regulate the host’s response to sepsis. In this study, we studied the role of A2B adenosine receptors in regulating the mortality and inflammatory response of mice following polymicrobial sepsis. Genetic deficiency of A2B receptors increased the mortality of mice suffering from cecal ligation and puncture-induced sepsis. The increased mortality of A2B knockout mice was associated with increased levels of inflammatory cytokines and chemokines and augmented NF-κB and p38 activation in the spleen, heart, and plasma in comparison with wild-type animals. In addition, A2B receptor knockout mice showed increased splenic apoptosis and phosphatase and tensin homolog activation and decreased Akt activation. Experiments using bone-marrow chimeras revealed that it is the lack of A2B receptors on nonhematopoietic cells that is primarily responsible for the increased inflammation of septic A2B receptor-deficient mice. These results indicate that A2B receptor activation may offer a new therapeutic approach for the management of sepsis. PMID:20505145

  14. Receptor heteromers in Parkinson's disease and L-DOPA-induced dyskinesia.

    PubMed

    Fiorentini, Chiara; Savoia, Paola; Savoldi, Daria; Missale, Cristina

    2013-12-01

    Parkinson's disease (PD) and L-DOPA-induced dyskinesia, a major complication of treatment of PD, are associated with molecular and functional alterations occurring into the medium spiny neurons (MSNs) of the dorsal striatum, a key areas involved in the control of motor activity. MSNs are regulated by several neurotransmitter systems including dopamine, glutamate and adenosine via activation of distinct receptors. Increasing evidence suggest that interactions among systems are mediated by different mechanisms including the formation of receptor heterodimers. The current view of G protein-coupled receptors organization, in fact, assumes that they do not work as monomeric units, but are part of heterodimeric complexes or of high order heteromers, where other receptors and ancillary proteins are coclustered. This organization implies that the pharmacological and signalling properties of these receptors may depend on the molecular composition of the receptor heteromers where they are clustered and may be differentially modulated in physiological or pathological conditions. Here, we provide an overview of the functional implications of physical interactions among dopamine, glutamate and adenosine receptors, their relevance for striatal MSNs activity and their involvement in the physiopathology of PD and dyskinesia. PMID:24040823

  15. Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling.

    PubMed

    Nasreen, Najmunnisa; Khodayari, Nazli; Sriram, Peruvemba S; Patel, Jawaharlal; Mohammed, Kamal A

    2014-06-15

    Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that mediate various cellular and developmental processes. The degrees of expression of these key molecules control the cell-cell interactions. Although the role of Eph receptors and their ligand Ephrins is well studied in developmental processes, their function in tobacco smoke (TS)-induced epithelial barrier dysfunction is unknown. We hypothesized that TS may induce permeability in bronchial airway epithelial cell (BAEpC) monolayer by modulating receptor EphA2 expression, actin cytoskeleton, adherens junction, and focal adhesion proteins. Here we report that in BAEpCs, acute TS exposure significantly upregulated EphA2 and EphrinA1 expression, disrupted the actin filaments, decreased E-cadherin expression, and increased protein permeability, whereas the focal adhesion protein paxillin was unaffected. Silencing the receptor EphA2 expression with silencing interference RNA (siRNA) significantly attenuated TS-induced hyperpermeability in BAEpCs. In addition, when BAEpC monolayer was transfected with EphA2-expressing plasmid and treated with recombinant EphrinA1, the transepithelial electrical resistance decreased significantly. Furthermore, TS downregulated E-cadherin expression and induced hyperpermeability across BAEpC monolayer in a Erk1/Erk2, p38, and JNK MAPK-dependent manner. TS induced hyperpermeability in BAEpC monolayer by targeting cell-cell adhesions, and interestingly cell-matrix adhesions were unaffected. The present data suggest that TS causes significant damage to the BAEpCs via induction of EphA2 and downregulation of E-cadherin. Induction of EphA2 in the BAEpCs exposed to TS may be an important signaling event in the pathogenesis of TS-induced epithelial injury. PMID:24717580

  16. Effects of olopatadine hydrochloride, a histamine h(1) receptor antagonist, on histamine-induced skin responses.

    PubMed

    Hashimoto, Takashi; Ishii, Norito; Hamada, Takahiro; Dainichi, Teruki; Karashima, Tadashi; Nakama, Takekuni; Yasumoto, Shinichiro

    2010-01-01

    Effects of olopatadine hydrochloride, a histamine H(1) receptor antagonist, on histamine-induced skin responses were evaluated in 10 healthy subjects in comparison with placebo, fexofenadine hydrochloride, and bepotastine besilate. Olopatadine significantly suppressed histamine-induced wheal, flare, and itch, starting 30 minutes after oral administration. Olopatadine was more effective than fexofenadine and bepotastine. None of the drugs studied impaired performance of word processing tasks. These results suggest that olopatadine can suppress skin symptoms caused by histamine soon after administration. PMID:20886023

  17. Cortical ionotropic glutamate receptor antagonism protects against methamphetamine-induced striatal neurotoxicity.

    PubMed

    Gross, N B; Duncker, P C; Marshall, J F

    2011-12-29

    Binge administration of the psychostimulant drug, methamphetamine (mAMPH), produces long-lasting structural and functional abnormalities in the striatum. mAMPH binges produce nonexocytotic release of dopamine (DA), and mAMPH-induced activation of excitatory afferent inputs to cortex and striatum is evidenced by elevated extracellular glutamate (GLU) in both regions. The mAMPH-induced increases in DA and GLU neurotransmission are thought to combine to injure striatal DA nerve terminals of mAMPH-exposed brains. Systemic pretreatment with either competitive or noncompetitive N-methyl-D-aspartic acid (NMDA) antagonists protects against mAMPH-induced striatal DA terminal damage, but the locus of these antagonists' effects has not been determined. Here, we applied either the NMDA receptor antagonist, (dl)-amino-5-phosphonovaleric acid (AP5), or the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, dinitroquinoxaline-2,3-dione (DNQX), directly to the dura mater over frontoparietal cortex to assess their effects on mAMPH-induced cortical and striatal immediate-early gene (c-fos) expression. In a separate experiment we applied AP5 or DNQX epidurally in the same cortical location of rats during a binge regimen of mAMPH and assessed mAMPH-induced striatal dopamine transporter (DAT) depletions 1 week later. Our results indicate that both ionotropic glutamate receptor antagonists reduced the mAMPH-induced Fos expression in cerebral cortex regions near the site of epidural application and reduced Fos immunoreactivity in striatal regions innervated by the affected cortical regions. Also, epidural application of the same concentration of either antagonist during a binge mAMPH regimen blunted the mAMPH-induced striatal DAT depletions with a topography similar to its effects on Fos expression. These findings demonstrate that mAMPH-induced dopaminergic injury depends upon cortical NMDA and AMPA receptor activation and suggest the involvement of the corticostriatal projections in mAMPH neurotoxicity. PMID:21946008

  18. Androgen- and Estrogen-Receptor Content in Spontaneous and Experimentally Induced Canine Prostatic Hyperplasia

    PubMed Central

    Trachtenberg, John; Hicks, L. Louise; Walsh, Patrick C.

    1980-01-01

    To gain insight into the mechanism by which steroidal hormones influence the development of canine prostatic hyperplasia, nuclear and cytosolic androgen- and estrogen-receptor content, as measured under exchange conditions by the binding of [3H]R1881 (methyltrienolone) and [3H]estradiol, respectively, were quantitated in the prostates of purebred beagles of known age. In young dogs with spontaneously arising and experimentally induced (androstanediol plus estradiol treatment) prostatic hyperplasia, nuclear, but not cytosolic, prostatic androgen-receptor content was significantly greater than that determined in the normal prostates of age-matched dogs (3,452±222 and 4,035±274 fmol/mg DNA vs. 2,096±364 fmol/mg DNA, respectively). No differences were observed between the androgen-receptor content of the normal prostates of young dogs and the hyperplastic prostates of old dogs. The cytosolic and nuclear estrogen-receptor content of spontaneously arising prostatic hyperplasia in both young and old animals was similar to that found in normal prostates. The administration of estradiol plus androstanediol to castrate dogs significantly increased the prostatic nuclear androgen-receptor content over that found in dogs treated only with androstanediol. This estradiol-associated increase in nuclear androgen-receptor content was accompanied by the development of benign prostatic hyperplasia. Estradiol treatment of castrate dogs resulted in an increase in prostatic nuclear estrogen-receptor content, in the appearance of a putative prostatic cytosolic progesterone receptor, and in an alteration of the epithelium of the prostate to one characterized by squamous metaplasia. Treatment of castrate dogs with both estradiol and androstanediol resulted in a reduction in prostatic nuclear estrogen-receptor content, disappearance of the progesterone receptor, and loss of squamous metaplasia. An increase in nuclear androgen-receptor content, thus, appears to be an important event in the development of both spontaneously arising and experimentally induced canine prostatic hyperplasia. The mechanism of androgen-estrogen synergism in the experimental induction of canine benign prostatic hyperplasia may be explained by estradiol-mediated increases in nuclear androgen-receptor content. Because androstanediol blocked certain estradiol-mediated events within the prostate, a negative feedback mechanism may exist in which the response of the canine prostate to estrogens is modulated by rising levels of androgen. PMID:6154062

  19. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    SciTech Connect

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  20. Retinoid X receptor α overexpression alleviates mitochondrial dysfunction-induced insulin resistance through transcriptional regulation of insulin receptor substrate 1.

    PubMed

    Lee, Seung Eun; Koo, Young Do; Lee, Ji Seon; Kwak, Soo Heon; Jung, Hye Seung; Cho, Young Min; Park, Young Joo; Chung, Sung Soo; Park, Kyong Soo

    2015-04-01

    Mitochondrial dysfunction is associated with insulin resistance and diabetes. We previously showed that retinoid X receptor α (RXRα) played an important role in transcriptional regulation of oxidative phosphorylation (OXPHOS) genes in cells with mitochondrial dysfunction caused by mitochondrial DNA mutation. In this study, we investigated whether mitochondrial dysfunction induced by incubation with OXPHOS inhibitors affects insulin receptor substrate 1 (IRS1) mRNA and protein levels and whether RXRα activation or overexpression can restore IRS1 expression. Both IRS1 and RXRα protein levels were significantly reduced when C2C12 myotubes were treated with the OXPHOS complex inhibitors, rotenone and antimycin A. The addition of RXRα agonists, 9-cis retinoic acid (9cRA) and LG1506, increased IRS1 transcription and protein levels and restored mitochondrial function, which ultimately improved insulin signaling. RXRα overexpression also increased IRS1 transcription and mitochondrial function. Because RXRα overexpression, knock-down, or activation by LG1506 regulated IRS1 transcription mostly independently of mitochondrial function, it is likely that RXRα directly regulates IRS1 transcription. Consistent with the hypothesis, we showed that RXRα bound to the IRS1 promoter as a heterodimer with peroxisome proliferator-activated receptor δ (PPARδ). These results suggest that RXRα overexpression or activation alleviates insulin resistance by increasing IRS1 expression. PMID:25728751

  1. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    SciTech Connect

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-05-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with (/sup 3/H)-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with (/sup 3/H)-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension.

  2. Constitutive and ligand-induced nuclear localization of oxytocin receptor

    PubMed Central

    Kinsey, Conan G; Bussolati, Gianni; Bosco, Martino; Kimura, Tadashi; Pizzorno, Marie C; Chernin, Mitchell I; Cassoni, Paola; Novak, Josef F

    2007-01-01

    Abstract Oxytocin receptor (OTR) is a membrane protein known to mediate oxytocin (OT) effects, in both normal and neoplastic cells. We report here that human osteosarcoma (U2OS, MG63, OS15 and SaOS2), breast cancer (MCF7), and primary human fibroblastic cells (HFF) all exhibit OTR not only on the cell membrane, but also in the various nuclear compartments including the nucleolus. Both an OTR-GFP fusion protein and the native OTR appear to be localized to the nucleus as detected by transfection and/or confocal immunofluorescence, respectively. Treatment with oxytocin causes internalization of OTR and the resulting vesicles accumulate in the vicinity of the nucleus and some of the perinuclear OTR enters the nucleus. Western blots indicate that OTR in the nucleus and on the plasma membrane are likely to be the same biochemical and immunological entities. It appears that OTR is first visible in the nucleoli and subsequently disperses within the nucleus into 4–20 spots while some of the OTR diffuses throughout the nucleoplasm.The behaviour and kinetics of OTR-GFP and OTR are different, indicating interference by GFP in both OTR entrance into the nucleus and subsequent relocalization of OTR within the nucleus. There are important differences among the tested cells, such as the requirement of a ligand for transfer of OTR in nuclei. A constitutive internalization of OTR was found only in osteosarcoma cells, while the nuclear localization in all other tested cells was dependent on ligand binding. The amount of OTR-positive material within and in the vicinity of the nucleus increased following a treatment with oxytocin in both constitutive and ligand-dependent type of cells. The evidence of OTR compartmentalization at the cell nucleus (either ligand-dependent or constitutive) in different cell types suggests still unknown biological functions of this protein or its ligand and adds this G-protein-coupled receptor to other heptahelical receptors displaying this atypical and unexpected nuclear localization. PMID:17367504

  3. Antiadopogenic effects of rice hull smoke extract in 3T3-L1 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigates the inhibitory effects of a rice hull smoke extract (RHSE) against adipogenesis in 3T3-L1 pre-adipocyte cells. At concentrations of 0.1% and 0.5% RHSE, MDI-induced cells were shown to reduce their cellular lipid content by about 72% and 88%, respectively, compared to ...

  4. The IL-36 receptor pathway regulates Aspergillus fumigatus-induced Th1 and Th17 responses.

    PubMed

    Gresnigt, Mark S; Rsler, Berenice; Jacobs, Cor W M; Becker, Katharina L; Joosten, Leo A B; van der Meer, Jos W M; Netea, Mihai G; Dinarello, Charles A; van de Veerdonk, Frank L

    2013-02-01

    IL-1 drives Th responses, particularly Th17, in host defense. Sharing the same co-receptor, the IL-1 family member IL-36 exhibits properties similar to those of IL-1. In the present study, we investigated the role of IL-36 in Aspergillus fumigatus-induced human Th responses. We observed that different morphological forms of A. fumigatus variably increase steady-state mRNA of IL-36 subfamily members. IL-36? is not significantly induced by any morphological form of Aspergillus. Most strikingly, IL-36? is significantly induced by live A. fumigatus conidia and heat-killed hyphae, whereas IL-36Ra (IL-36 receptor antagonist) is significantly induced by heat-killed conidia, hyphae, and live conidia. We also observed that IL-36? expression is dependent on the dectin-1/Syk and TLR4 signaling pathway. In contrast, TLR2 and CR3 inhibit IL-36? expression. The biological relevance of IL-36 induction by Aspergillus is demonstrated by experiments showing that inhibition of the IL-36 receptor by IL-36Ra reduces Aspergillus-induced IL-17 and IFN-?. These data describe that IL-36-dependent signals are a novel cytokine pathway that regulates Th responses induced by A. fumigatus, and demonstrate a role for TLR4 and dectin-1 in the induction of IL-36?. PMID:23147407

  5. Garlic (Allium sativum) Extracts Inhibits Lipopolysaccharide-Induced Toll-Like Receptor 4 Dimerization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Garlic has been used as a folk medicine for a long history. Numerous studies demonstrated that garlic extracts and its sulfur-containing compounds inhibit nuclear factor-kappa B (NF-kB) activation induced by various receptor agonist including lipopolysaccharide (LPS). These effects suggest that garl...

  6. HIGH GLUCOSE INDUCES TOLL-LIKE RECEPTOR EXPRESSION IN HUMAN MONOCYTES: MECHANISM OF ACTIVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Hyperglycemia induced inflammation is central in diabetes complications and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses as well as inflammation. However, there is a paucity of data examining the expression a...

  7. Toll Like Receptor-4 Mediates Vascular Inflammation and Insulin Resistance in Diet-Induced Obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular dysfunction is a major complication of metabolic disorders such as diabetes and obesity. The current studies were undertaken to determine if inflammatory responses are activated in the vasculature of mice with diet-induced obesity (DIO), and if so, whether Toll Like Receptor-4 (TLR4), a ke...

  8. Cinnamamides, Novel Liver X Receptor Antagonists that Inhibit Ligand-Induced Lipogenesis and Fatty Liver.

    PubMed

    Sim, Woo-Cheol; Kim, Dong Gwang; Lee, Kyeong Jin; Choi, You-Jin; Choi, Yeon Jae; Shin, Kye Jung; Jun, Dae Won; Park, So-Jung; Park, Hyun-Ju; Kim, Jiwon; Oh, Won Keun; Lee, Byung-Hoon

    2015-12-01

    Liver X receptor (LXR) is a member of the nuclear receptor superfamily, and it regulates various biologic processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver diseases. In the present study, we evaluated the effects of three cinnamamide derivatives on ligand-induced LXRα activation and explored whether these derivatives could attenuate steatosis in mice. N-(4-trifluoromethylphenyl) 3,4-dimethoxycinnamamide (TFCA) decreased the luciferase activity in LXRE-tk-Luc-transfected cells and also suppressed ligand-induced lipid accumulation and expression of the lipogenic genes in murine hepatocytes. Furthermore, it significantly attenuated hepatic neutral lipid accumulation in a ligand-induced fatty liver mouse system. Modeling study indicated that TFCA inhibited activation of the LXRα ligand-binding domain by hydrogen bonding to Arg305 in the H5 region of that domain. It regulated the transcriptional control exerted by LXRα by influencing coregulator exchange; this process involves dissociation of the thyroid hormone receptor-associated proteins (TRAP)/DRIP coactivator and recruitment of the nuclear receptor corepressor. These results show that TFCA has the potential to attenuate ligand-induced lipogenesis and fatty liver by selectively inhibiting LXRα in the liver. PMID:26384859

  9. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  10. Muscarinic Type 3 Receptor Induces Cytoprotective Signaling in Salivary Gland Cells through Epidermal Growth Factor Receptor Transactivation

    PubMed Central

    Kajiya, Mikihito; Ichimonji, Isao; Min, Christine; Zhu, Tongbo; Jin, Jun-O; Yu, Qing; Almazrooa, Soulafa A.; Cha, Seunghee

    2012-01-01

    Muscarinic type 3 receptor (M3R) plays a pivotal role in the induction of glandular fluid secretions. Although M3R is often the target of autoantibodies in Sjögren's syndrome (SjS), chemical agonists for M3R are clinically used to stimulate saliva secretion in patients with SjS. Aside from its activity in promoting glandular fluid secretion, however, it is unclear whether activation of M3R is related to other biological events in SjS. This study aimed to investigate the cytoprotective effect of chemical agonist-mediated M3R activation on apoptosis induced in human salivary gland (HSG) cells. Carbachol (CCh), a muscarinic receptor-specific agonist, abrogated tumor necrosis factor α/interferon γ-induced apoptosis through pathways involving caspase 3/7, but its cytoprotective effect was decreased by a M3R antagonist, a mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) inhibitor, a phosphatidylinositol 3-kinase/Akt inhibitor, or an epidermal growth factor receptor (EGFR) inhibitor. Ligation of M3R with CCh transactivated EGFR and phosphorylated ERK and Akt, the downstream targets of EGFR. Inhibition of intracellular calcium release or protein kinase C δ, both of which are involved in the cell signaling of M3R-mediated fluid secretion, did not affect CCh-induced ERK or Akt phosphorylation. CCh stimulated Src phosphorylation and binding to EGFR. A Src inhibitor attenuated the CCh/M3R-induced cytoprotective effect and EGFR transactivation cascades. Overall, these results indicated that CCh/M3R induced transactivation of EGFR through Src activation leading to ERK and Akt phosphorylation, which in turn suppressed caspase 3/7-mediated apoptotic signals in HSG cells. This study, for the first time, proposes that CCh-mediated M3R activation can promote not only fluid secretion but also survival of salivary gland cells in the inflammatory context of SjS. PMID:22511543

  11. Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson's disease-associated GPR37 receptor-dependent.

    PubMed

    Ganda, Jorge; Morat, Xavier; Stagljar, Igor; Fernndez-Dueas, Vctor; Ciruela, Francisco

    2015-07-15

    GPR37, also known as parkin associated endothelin-like receptor (Pael-R), is an orphan GPCR that aggregates intracellularly in a juvenile form of Parkinson's disease. However, little is known about the function of this orphan receptor. Here, using a model for parkisonian tremor, the pilocarpine-induced tremulous jaw movements (TJMs), we show that the deletion of GPR37 attenuated the TJMs in response to this cholinomimetic. Interestingly, the control that adenosine A2A receptor exerted over TJMs was lost in the absence of GPR37, thus pointing to a pivotal role of this orphan receptor in the adenosinergic control of parkinsonian tremor. PMID:25862943

  12. Toll-like receptors in Borrelia burgdorferi-induced inflammation.

    PubMed

    Singh, S K; Girschick, H J

    2006-08-01

    Lyme arthritis, the most common manifestation of late Lyme disease, has been associated with the presence of Borellia burgdorferi in the joint. However, it is still unclear whether the pathogen itself is able to elicit such a sustained inflammatory response, or whether an aberrant immunological reaction of the host is the main driving force. Borrelia antigens, including lipoproteins, flagellin and DNA, are ligands of Toll-like receptors, and can thus elicit a strong stimulation of host cells, such as neutrophils, mononuclear cells and resident tissue cells. Understanding the molecular basis of the signalling events caused by Borrelia lipoproteins will lead to a greater understanding of inflammation in Lyme arthritis and, hopefully, new treatment strategies for chronic antibiotic-resistant disease. PMID:16842565

  13. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  14. Antigen-Specific Binding of Multivalent Soluble Antigen Arrays Induces Receptor Clustering and Impedes B Cell Receptor Mediated Signaling.

    PubMed

    Hartwell, Brittany L; Martinez-Becerra, Francisco J; Chen, Jun; Shinogle, Heather; Sarnowski, Michelle; Moore, David S; Berkland, Cory

    2016-03-14

    A pressing need exists for autoimmune disease therapies that act in an antigen-specific manner while avoiding global immunosuppression. Multivalent soluble antigen arrays (SAgAPLP:LABL), designed to induce tolerance to a specific multiple sclerosis autoantigen, consist of a flexible hyaluronic acid (HA) polymer backbone cografted with multiple copies of autoantigen peptide (PLP) and cell adhesion inhibitor peptide (LABL). Previous in vivo studies revealed copresentation of both signals on HA was necessary for therapeutic efficacy. To elucidate therapeutic cellular mechanisms, in vitro studies were performed in a model B cell system to evaluate binding and specificity. Compared to HA and HA arrays containing only grafted PLP or LABL, SAgAPLP:LABL displaying both PLP and LABL exhibited greatly enhanced B cell binding. Furthermore, the binding avidity of SAgAPLP:LABL was primarily driven by the PLP antigen, determined via flow cytometry competitive dissociation studies. Fluorescence microscopy showed SAgAPLP:LABL induced mature receptor clustering that was faster than other HA arrays with only one type of grafted peptide. SAgAPLP:LABL molecules also reduced and inhibited IgM-stimulated signaling as discerned by a calcium flux assay. The molecular mechanisms of enhanced antigen-specific binding, mature receptor clustering, and dampened signaling observed in B cells may contribute to SAgAPLP:LABL therapeutic efficacy. PMID:26771518

  15. H1-receptor stimulation induces hyperalgesia through activation of the phospholipase C-PKC pathway.

    PubMed

    Galeotti, Nicoletta; Malmberg-Aiello, Petra; Bartolini, Alessandro; Schunack, Walter; Ghelardini, Carla

    2004-08-01

    The supraspinal cellular events involved in H(1)-mediated hyperalgesia were investigated in a condition of acute thermal pain by means of the mouse hot-plate test. I.c.v. administration of the phospholipase C (PLC) inhibitors U-73122 and neomycin antagonized the hyperalgesia induced by the selective H(1) agonist FMPH. By contrast, U-73343, an analogue of U-73122 used as negative control, was unable to modify the reduction of the pain threshold induced by FMPH. In mice undergoing treatment with LiCl, which impairs phosphatidylinositol synthesis, or treatment with heparin, an IP(3)-receptor antagonist, the hyperalgesia induced by the H(1)-receptor agonist remained unchanged. Similarly, pretreatment with D-myo inositol did not alter the H(1)-induced hypernociceptive response. Neither i.c.v. pretreatment with TMB-8, a blocker of Ca(2+) release from intracellular stores, nor pretreatment with thapsigargin, a depletor of Ca(2+) intracellular stores, prevented the decrease of pain threshold induced by FMPH. On the other hand, i.c.v. pretreatment with the selective protein kinase C (PKC) inhibitors calphostin C and chelerytrine resulted in a dose-dependent prevention of the H(1)-receptor agonist-induced hyperalgesia. The administration of PKC activators, such as PMA and PDBu, did not produce any effect on FMPH effect. The pharmacological treatments employed did not produce any behavioral impairment of mice as revealed by the rota-rod and hole-board tests. These results indicate a role for the PLC-PKC pathway in central H(1)-induced hyperalgesia in mice. Furthermore, activation of PLC-IP(3) did not appear to play a major role in the modulation of pain perception by H(1)-receptor agonists. PMID:15223308

  16. Early role of the ? opioid receptor in ethanol-induced reinforcement.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Acevedo, Ma Beln; Spear, Norman E

    2012-03-20

    Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by ? and ? opioid receptors, whereas ? but not ? receptors are involved in the motor stimulant effects of ethanol during early development. The involvement of the ? opioid receptor (KOR) system in the motivational effects of ethanol has been much less explored. The present study assessed, in preweanling (infant) rats, the modulatory role of the KOR system in several paradigms sensitive to ethanol-induced reinforcement. Kappa opioid activation and blockade were examined in second-order conditioned place preference with varied timing before conditioning and with varied ethanol doses. The role of KOR on ethanol-induced locomotion and ethanol-induced taste conditioning was also explored. The experiments were based on the assumption that ethanol concurrently induces appetitive and aversive effects and that the latter may be mediated by activation of kappa receptors. The main result was that blockade of kappa function facilitated the expression of appetitive ethanol reinforcement in terms of tactile and taste conditioning. The effects of kappa activation on ethanol conditioning seemed to be independent from ethanol's stimulant effects. Kappa opioid activation potentiated the motor depressing effects of ethanol but enhanced motor activity in control subjects. Overall, the results support the hypothesis that a reduced function of the KOR system in nondependent subjects should attenuate the aversive consequences of ethanol. PMID:22261437

  17. Bioconversion of Citrus unshiu peel extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells

    PubMed Central

    Lim, Heejin; Yeo, Eunju; Song, Eunju; Chang, Yun-Hee; Han, Bok-Kyung; Choi, Hyuk-Joon

    2015-01-01

    BACKGROUND/OBJECTIVES Citrus flavonoids have a variety of physiological properties such as anti-oxidant, anti-inflammation, anti-cancer, and anti-obesity. We investigated whether bioconversion of Citrus unshiu with cytolase (CU-C) ameliorates the anti-adipogenic effects by modulation of adipocyte differentiation and lipid metabolism in 3T3-L1 cells. MATERIALS/METHODS Glycoside forms of Citrus unshiu (CU) were converted into aglycoside forms with cytolase treatment. Cell viability of CU and CU-C was measured at various concentrations in 3T3L-1 cells. The anti-adipogenic and lipolytic effects were examined using Oil red O staining and free glycerol assay, respectively. We performed real time-polymerase chain reaction and western immunoblotting assay to detect mRNA and protein expression of adipogenic transcription factors, respectively. RESULTS Treatment with cytolase decreased flavanone rutinoside forms (narirutin and hesperidin) and instead, increased flavanone aglycoside forms (naringenin and hesperetin). During adipocyte differentiation, 3T3-L1 cells were treated with CU or CU-C at a dose of 0.5 mg/ml. Adipocyte differentiation was inhibited in CU-C group, but not in CU group. CU-C markedly suppressed the insulin-induced protein expression of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ) as well as the mRNA levels of CEBPα, PPARγ, and sterol regulatory element binding protein 1c (SREBP1c). Both CU and CU-C groups significantly increased the adipolytic activity with the higher release of free glycerol than those of control group in differentiated 3T3-L1 adipocytes. CU-C is particularly superior in suppression of adipogenesis, whereas CU-C has similar effect to CU on stimulation of lipolysis. CONCLUSIONS These results suggest that bioconversion of Citrus unshiu peel extracts with cytolase enhances aglycoside flavonoids and improves the anti-adipogenic metabolism via both inhibition of key adipogenic transcription factors and induction of adipolytic activity. PMID:26634048

  18. The activation of liver X receptors inhibits toll-like receptor-9-induced foam cell formation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Chen, Shuang; Bonavita, Eduardo; Pinto, Aldo

    2010-04-01

    Toll-like receptors (TLRs) are related to foam cell formation (FCF), key event in the establishment/progression of atherosclerosis. The activation of TLR2 and TLR4 can increase FCF. The aim of this study was to evaluate the role of TLR9 in FCF. Murine macrophages were treated with CpG-ODN, TLR9 agonist, and oxidized particles of LDL (Paz-PC) and FCF was analyzed by means of Oil Red O staining. The administration of CpG-ODN plus Paz-PC onto macrophages increased the amount of lipid droplets, correlated to increased levels of tumor necrosis factor (TNF)-alpha, IFNbeta, and IP-10. The underlying mechanism by which TLR9 ligation influenced Paz-PC in the FCF was NF-kappaB- and IRF7-dependent, as observed by higher levels of phosphorylated IkappaBalpha, increased nuclear translocation of the p65 subunit, lower levels of the total IKKalpha protein and higher release of interferon-dependent cytokines, such as IP-10. Liver X receptors (LXRs) regulate lipid cellular transport and negatively modulate TLR-dependent signaling pathways. Indeed, the addition of GW3965, synthetic LXRs agonist, significantly reduced FCF after CpG-ODN plus Paz-PC stimulation. In this condition, we observed decreased levels of the nuclear translocation of the p65 subunit, related to the higher presence of LXRalpha into the nucleus. TNF-alpha, IP-10, and IFNbeta levels were reduced by the administration of GW3965 following CpG-ODN and Paz-PC treatment. In conclusion, the activation of TLR9 facilitates the formation of foam cells in an NF-kappaB- and IRF7-dependent manner, countered by the activation of LXRs. This study further support LXRs as potential anti-atherosclerotic target. PMID:20049870

  19. AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction.

    PubMed

    Kwon, Oh Sung; Smuder, Ashley J; Wiggs, Michael P; Hall, Stephanie E; Sollanek, Kurt J; Morton, Aaron B; Talbert, Erin E; Toklu, Hale Z; Tumer, Nihal; Powers, Scott K

    2015-11-15

    Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481

  20. NK1-receptor activation prevents hydrocarbon-induced lung injury in mice.

    PubMed

    Robledo, R F; Witten, M L

    1999-02-01

    Recent evidence suggests that neurokinin (NK)-receptor activation may have a protective role in maintaining lung integrity when challenged by airborne toxicants such as sulfur dioxide, ozone, acrolein, or hydrocarbons. To investigate the effect of NK1-receptor activation on hydrocarbon-induced lung injury, B6.A.D. (Ahr d/Nats) mice received subchronic exposures to JP-8 jet fuel (JP-8). Lung injury was assessed by the analysis of pulmonary physiology, bronchoalveolar lavage fluid, and morphology. Hydrocarbon exposure to target JP-8 concentrations of 50 mg/m3, with saline treatment, was characterized by enhanced respiratory permeability to 99mTc-labeled diethylenetriaminepentaacetic acid, alveolar macrophage toxicity, and bronchiolar epithelial damage. Mice administered [Sar9,Met(O2)11]substance P, an NK1-receptor agonist, after each JP-8 exposure had the appearance of normal pulmonary values and tissue morphology. In contrast, endogenous NK1-receptor antagonism by CP-96345 administration exacerbated JP-8-enhanced permeability, alveolar macrophage toxicity, and bronchiolar epithelial injury. These data indicate that NK1-receptor activation may have a protective role in preventing the development of hydrocarbon-induced lung injury, possibly through the modulation of bronchiolar epithelial function. PMID:9950884

  1. Interleukin-4-induced macrophage fusion is prevented by inhibitors of mannose receptor activity.

    PubMed Central

    McNally, A. K.; DeFife, K. M.; Anderson, J. M.

    1996-01-01

    A potential role for the macrophage mannose receptor in human monocyte-derived macrophage fusion was explored by testing the effects of previously described inhibitors of its activity on the formation of interleukin-4-induced foreign body giant cells in vitro Giant cell formation was prevented or reduced in the presence of alpha-man-nan and synthetic neoglycoprotein conjugates according to the following pattern of relative inhibition: mannose-bovine serum albumin (BSA) > N-acetylgucosamine-BSA congruent to glucose-BSA. Laminarin (beta-glucan) or galactose-BSA were not inhibitory. Swainsonine and castanospermine, inhibitors of glycoprotein processing that interfere with the arrival of newly synthesized mannose receptors at the cell surface, also attenuated macrophage fusion and the formation of giant cells, whereas another glycosidase inhibitor, deoxymannojirimycin, was without effect. Mannose receptors were confirmed to be specifically up-regulated by interleukin-4 in this culture system and also demonstrated to be present and concentrated at macrophage fusion interfaces. These data suggest that the macrophage mannose receptor may be an essential participant in the mechanism of interleukin-4-induced macrophage fusion and implicate a novel function for this endocytic/phagocytic receptor in mediating foreign body giant cell formation at sites of chronic inflammation. Images Figure 1 Figure 4 PMID:8780401

  2. P2X7 receptors induce degranulation in human mast cells.

    PubMed

    Wareham, Kathryn J; Seward, Elizabeth P

    2016-06-01

    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated. PMID:26910735

  3. Role of direct estrogen receptor signaling in wear particle-induced osteolysis

    PubMed Central

    Nich, Christophe; Rao, Allison J.; Valladares, Roberto D.; Li, Chenguang; Christman, Jane E.; Antonios, Joseph K.; Yao, Zhenyu; Zwingenberger, Stefan; Petite, Hervé; Hamadouche, Moussa; Goodman, Stuart B.

    2014-01-01

    Estrogen withdrawal following surgical ovariectomy was recently shown to mitigate particle-induced osteolysis in the murine calvarial model. Currently, we hypothesize that estrogen receptors (ERs) were involved in this paradoxical phenomenon. To test this hypothesis, we first evaluated polyethylene (PE) particle-induced osteolysis in the murine calvarial model, using wild type (WT) C57BL6J female mice, ERα deficient (ERαKO) mice, and WT mice either treated with 17β-estradiol (E2) or with the ER pan-antagonist ICI 182,780. According to micro-CT and histomorphometry, we showed that bone resorption was consistently altered in both ERαKO and ICI 182,780 treated mice as compared to WT and E2 groups. Then, we demonstrated that ER disruption consistently decreased both PE and polymethylmethacrylate (PMMA) particle-induced production of TNF-α by murine macrophages in vitro. Similar results were obtained following ER blockade using ICI 182,780 in RAW 264.7 and WT macrophages. ER disruption and pre treatment with ICI 182,780 resulted in a consistent down-regulation of particle-induced TNF-α mRNA expression relative to WT macrophages or untreated RAW cells. These results indicate that the response to wear particles involves estrogen receptors in female mice, as part of macrophage activation. Estrogen receptors may be considered as a future therapeutic target for particle-induced osteolysis. PMID:23113918

  4. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  5. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  6. Calcium-sensing receptor induces rat neonatal ventricular cardiomyocyte apoptosis

    SciTech Connect

    Sun Yihua; Liu Meina; Li Hong; Shi Sa; Zhao Yajun; Wang Rui; Xu Changqing . E-mail: syh200415@yahoo.com.cn

    2006-12-01

    The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, Physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl{sub 3}) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca{sup 2+}]{sub i}) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl{sub 3} increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal protein kinases (JNK), and p38. GdCl{sub 3} also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca{sup 2+}]{sub i}. In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.

  7. Regulation of cell differentiation by hNUDC via a Mpl-dependent mechanism in NIH 3T3 cells

    SciTech Connect

    Zhang Yuping; Tang Yongsong; Chen Xushen; Xu Peilin

    2007-09-10

    Thrombopoietin receptor (Mpl) belongs to the cytokine receptor surperfamily with a large extracellular N-terminal portion responsible for cytokine recognition and binding. Thrombopoietin (TPO) has so far been the only widely studied cytokine for Mpl. However we have recently identified human NUDC (hNUDC), previously described as a human homolog of a fungal nuclear migration protein, as another putative binding partner of Mpl. The purpose of this study is to test the extent of the functioning of hNUDC by identifying protein-protein interactions with Mpl in mammalian cells. The full-length cDNAs encoding Mpl and hNUDC were cloned into pEGFP-N1 and pDsRed2-N1 respectively which were subsequently expressed as Mpl-EGFP (green) and hNUDC-DsRed (red) fusion proteins. Using ELISA and immunofluorescence studies, we have demonstrated the direct binding of hNUDC to cell surface-captured Mpl. We also observed that hNUDC induced significant changes in cellular morphology in NIH 3T3 cells stably transfected with pMpl-EGFP. Interestingly, these morphological changes were characteristic of cells undergoing megakaryocyte differentiation. Extracellular-signal-regulated protein kinases 1 and 2 (ERK1/2) have been shown to mediate such megakaryocyte-like differentiation. In addition, co-expression of Mpl-EGFP and hNUDC-DsRed led to the release of hNUDC-DsRed into the culture medium.

  8. Sensitization of Cutaneous, Neuronal Purinergic Receptors Contributes to Endothelin-1-Induced Mechanical Hypersensitivity

    PubMed Central

    Barr, Travis P.; Hrnjic, Alen; Khodorova, Alla; Sprague, Jared M.; Strichartz, Gary R.

    2014-01-01

    Endothelin (ET-1), an endogenous peptide with a prominent role in cutaneous pain, causes mechanical hypersensitivity in the rat hind paw, partly through mechanisms involving local release of algogenic molecules in the skin. The present study investigated involvement of cutaneous ATP, which contributes to pain in numerous animal models. Pre-exposure of ND7/104 immortalized sensory neurons to ET-1 (30 nM) for 10 min increased the proportion of cells responding to ATP (2 μM) with an increase in intracellular calcium, an effect prevented by the ETA receptor-selective antagonist BQ-123. ET-1 (3 nM) pre-exposure also increased the proportion of isolated mouse DRG neurons responding to ATP (0.2-0.4 μM). Blocking ET-1-evoked increases in intracellular calcium with the IP3 receptor antagonist 2-APB did not inhibit sensitization to ATP, indicating a mechanism independent of ET-1-mediated intracellular calcium increases. ET-1-sensitized ATP calcium responses were largely abolished in the absence of extracellular calcium, implicating ionotropic P2X receptors. Experiments using qPCR and receptor-selective ligands in ND7/104 showed that ET-1-induced sensitization most likely involves the P2X4 receptor subtype. ET-1-sensitized calcium responses to ATP were strongly inhibited by broad spectrum (TNP-ATP) and P2X4-selective (5-BDBD) antagonists, but not antagonists for other P2X subtypes. TNP-ATP and 5-BDBD also significantly inhibited ET-1-induced mechanical sensitization in the rat hind paw, supporting a role for purinergic receptor sensitization in vivo. These data provide evidence that mechanical hypersensitivity caused by cutaneous ET-1 involves an increase in the neuronal sensitivity to ATP in the skin, possibly due to sensitization of P2X4 receptors. PMID:24569146

  9. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation.

    PubMed

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-06-22

    We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation. PMID:22659743

  10. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    PubMed

    Banerjee, S; Poddar, M K

    2016-04-01

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. PMID:26808776

  11. Thyroid of lake sturgeon, Acipenser fulvescens. II. Deiodination properties, distribution, and effects of diet, growth, and a T3 challenge.

    PubMed

    Plohman, James C; Dick, Terry A; Eales, J Geoffrey

    2002-01-01

    The authors studied the properties and tissue distribution of thyroid hormone (TH) deiodination activities measured in vitro at subnanomolar substrate levels for cultured 2-year-old lake sturgeon held at 12 to 15 degrees. We also studied the deiodination responses to an exogenous 3,5,3'-triiodothyronine (T3) challenge and to a diet-induced growth suppression. Thyroxine (T4) outer-ring deiodination (T4ORD), T4 inner-ring deiodination (T4IRD), T3IRD, and 3,3',5'-triiodothyronine (rT3)ORD activities were evident in liver and intestine. Their properties resembled those of teleosts. T3IRD and T4IRD activities predominated in brain. Low or negligible deiodination in any form occurred in gill, skeletal muscle, kidney, notochord, or immature gonad. Only T4ORD activity was evident in the thyroid, suggesting that it secretes some T3. T3ORD and rT3IRD activities were undetectable in any tissues. Hepatic T4ORD activity varied during the photophase and was highest during late morning. A dietary T3 challenge that doubled plasma T3 levels decreased hepatic T4ORD activity without altering any other deiodination pathways in liver, intestine, or brain. A diet change from trout pellets to ocean zooplankton reduced somatic growth and plasma T3 levels and increased hepatic and intestinal T3IRD activities and hepatic rT3ORD activity but did not alter hepatic or intestinal T4ORD activity. The authors conclude that plasma T3 in lake sturgeon can be derived both from the thyroid and from hepatic (and intestinal) T4ORD activity, which varies with sampling time and downregulates in response to a T3 challenge. However, a reduction in plasma T3 accompanying a change in diet and reduced growth was not due to a decrease in T4ORD activity; rather, it was due to an increase in hepatic and intestinal T3IRD activities. These results suggest a difference in emphasis in thyroidal regulation between sturgeon and certain teleosts. PMID:11825035

  12. Treatment of opioid-induced constipation: focus on the peripheral μ-opioid receptor antagonist methylnaltrexone.

    PubMed

    Rauck, Richard L

    2013-08-01

    Most prescribed opioids exert their analgesic effects via activation of central μ-opioid receptors. However, μ-opioid receptors are also located in the gastrointestinal (GI) tract, and activation of these receptors by opioids can lead to GI-related adverse effects, in particular opioid-induced constipation (OIC). OIC has been associated with increased use of healthcare resources, increased healthcare costs, and decreased quality of life for patients. Nonpharmacologic (e.g., increased fiber uptake) and pharmacologic agents (e.g., laxatives) may be considered for the treatment and prevention of OIC. However, many interventions, such as laxatives alone, are generally insufficient to reverse OIC because they do not target the underlying cause of OIC, opioid activation of μ-opioid receptors in the GI tract. Therefore, there has been keen interest in antagonism of the μ-opioid receptor in the periphery to inhibit the effects of opioids in the GI tract. In this review, currently available pharmacologic therapies for the treatment and prevention of OIC are summarized briefly, with a primary focus on the administration of the peripheral μ-opioid receptor antagonist methylnaltrexone bromide in patients with OIC and advanced illness who are receiving palliative care. Also, clinical trial data of methylnaltrexone treatment in patients with OIC and other pain conditions (i.e., chronic noncancer pain and pain after orthopedic surgery) are reviewed. Data support that methylnaltrexone is efficacious for the treatment of OIC and has a favorable tolerability profile. PMID:23881667

  13. Agonists and protein kinase C-activation induce phosphorylation and internalization of FFA1 receptors.

    PubMed

    Sosa-Alvarado, Carla; Hernández-Méndez, Aurelio; Romero-Ávila, M Teresa; Sánchez-Reyes, Omar B; Takei, Yoshinori; Tsujimoto, Gozoh; Hirasawa, Akira; García-Sáinz, J Adolfo

    2015-12-01

    FFA1 (previously known as GPR40) is a free fatty acid receptor involved in the regulation of inflammatory processes and insulin secretion. The cellular actions resulting from FFA1 activation have received considerable attention. However, little is known on the regulation of the receptor function. In the present work, using cells transfected with this receptor, docosahexaenoic acid and α-linolenic acid increased intracellular calcium concentration and ERK 1/2 phosphorylation. It was also observed that FFA1 is a phosphoprotein whose phosphorylation state was increased (2- to 3-fold) by agonists (i.e., free fatty acids) and also by phorbol myristate acetate. Agonist- and phorbol ester-mediated FFA1 phosphorylation was markedly reduced by inhibitors of protein kinase C. Receptor stimulation by free fatty acids and protein kinase C activation also induced receptor internalization as evidenced by confocal microscopy. In summary, our data show that FFA1 is a phosphoprotein whose phosphorylation state is modulated by agonists and protein kinase C activation; such covalent modification is associated with receptor internalization. PMID:26526350

  14. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC.

    PubMed

    Batchelor, Joseph D; Zahm, Jacob A; Tolia, Niraj H

    2011-08-01

    Plasmodium vivax and Plasmodium knowlesi invasion depends on the parasite Duffy-binding protein DBL domain (RII-PvDBP or RII-PkDBP) engaging the Duffy antigen receptor for chemokines (DARC) on red blood cells. Inhibition of this key interaction provides an excellent opportunity for parasite control. There are competing models for whether Plasmodium ligands engage receptors as monomers or dimers, a question whose resolution has profound implications for parasite biology and control. We report crystallographic, solution and functional studies of RII-PvDBP showing that dimerization is required for and driven by receptor engagement. This work provides a unifying framework for prior studies and accounts for the action of naturally acquired blocking antibodies and the mechanism of immune evasion. We show that dimerization is conserved in DBL-domain receptor engagement and propose that receptor-mediated ligand dimerization drives receptor affinity and specificity. Because dimerization is prevalent in signaling, our studies raise the possibility that induced dimerization may activate pathways for invasion. PMID:21743458

  15. Structural insights into ligand-induced activation of the insulin receptor

    SciTech Connect

    Ward, C.; Lawrence, M.; Streltsov, V.; Garrett, T.; McKern, N.; Lou, M.-Z.; Lovrecz, G.; Adams, T.

    2008-04-29

    The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review deals with a description of the receptor structure and how it explains much of the large body of biochemical data in the literature on insulin binding and receptor activation.

  16. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    PubMed Central

    Rasmussen, Jeppe Grøndahl; Riis, Simone Elkjær; Frøbert, Ole; Yang, Sufang; Kastrup, Jens; Zachar, Vladimir; Simonsen, Ulf; Fink, Trine

    2012-01-01

    Background Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible factor 1(HIF-1). The present study hypothesized that PAR2 stimulation through activation of kinase signaling cascades lead to induction of HIF-1 and secretion of VEGF. Methodology/Principal Findings Immunohistochemistry revealed the expression of PAR2 receptors on the surface of hASCs. Blocking the PAR2 receptors with a specific antibody prior to trypsin treatment showed these receptors are involved in trypsin-evoked increase in VEGF secretion from hASCs. Blocking with specific kinase inhibitors suggested that that activation of MEK/ERK and PI3-kinase/Akt pathways are involved in trypsin-eveoked induction of VEGF. The effect of the trypsin treatment on the transcription of VEGF peaked at 6 hours after the treatment and was comparable to the activation observed after keeping hASCs for 24 hours at 1% oxygen. In contrast to hypoxia, trypsin alone failed to induce HIF-1 measured with ELISA, while the combination of trypsin and hypoxia had an additive effect on both VEGF transcription and secretion, results which were confirmed by Western blot. Conclusion In hASCs trypsin and hypoxia induce VEGF expression through separate pathways. PMID:23049945

  17. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    PubMed

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil. PMID:27034964

  18. ACTIVATION OF PPAR GAMMA RECEPTORS REDUCES LEVODOPA-INDUCED DYSKINESIAS IN 6-OHDA-LESIONED RATS

    PubMed Central

    Martinez, A. A.; Morgese, M. G.; Pisanu, A.; Macheda, T.; Paquette, M. A.; Seillier, A.; Cassano, T.; Carta, A.R.; Giuffrida, A.

    2014-01-01

    Long-term administration of L-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinson’s disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb and oro-facial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) [1]. In this study, we showed that stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268 and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa antiparkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID. PMID:25486547

  19. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    PubMed Central

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil. PMID:27034964

  20. Growth changes of 3T3 cells in the presence of mineral fibers

    SciTech Connect

    Dumas, L.; Page, M.

    1986-01-01

    The relationship between exposure to asbestos fibers and the development of mesothelioma or bronchial carcinoma prompted many countries to ban its use from commercial products. The biological mechanism by which asbestos induces or promotes mesothelioma or carcinoma is still unknown. In order to study the influence of fibers on the cell surface, 3T3 fibroblasts were cultured in the presence of various mineral fibers. The acute cytotoxicity produced by mineral fibers was evaluated by the trypan blue dye exclusion method; growth of 3T3 cells was measured as well as the maximum cell density at saturation. It was found that growth of 3T3 cells was slower in the presence of chrysotile while light microscopy revealed an increased cellular chromogenicity and a modification of the cell-cell arrangement in the presence of this fiber. An assay is described in which chrysotile causes an increase in the maximum cell density at saturation.

  1. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia

    PubMed Central

    Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77–534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general anesthesia. PMID:23221866

  2. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    PubMed Central

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae. PMID:22392969

  3. Optical Properties of the α-T3 Model

    NASA Astrophysics Data System (ADS)

    Illes, Emilia; Carbotte, Jules; Nicol, Elisabeth

    The α-T3 model, recently introduced by Raoux et. al, provides a continuous evolution between the honeycomb lattice of graphene and the T3 or dice lattice. It is characterized by a variable Berry phase that changes continuously from π to 0. We present our calculations of optical properties of the α-T3 model, including the Hall quantization and optical conductivity, with an emphasis on the effect of the variable Berry's phase of the model. In particular, we describe the continuous evolution of the Hall quantization from a relativistic to a non-relativistic regime.

  4. Dopaminergic Activation of Estrogen Receptors Induces Fos Expression within Restricted Regions of the Neonatal Female Rat Brain

    PubMed Central

    Olesen, Kristin M.; Auger, Anthony P.

    2008-01-01

    Steroid receptor activation in the developing brain influences a variety of cellular processes that endure into adulthood, altering both behavior and physiology. Recent data suggests that dopamine can regulate expression of progestin receptors within restricted regions of the developing rat brain by activating estrogen receptors in a ligand-independent manner. It is unclear whether changes in neuronal activity induced by dopaminergic activation of estrogen receptors are also region specific. To investigate this question, we examined where the dopamine D1-like receptor agonist, SKF 38393, altered Fos expression via estrogen receptor activation. We report that dopamine D1-like receptor agonist treatment increased Fos protein expression within many regions of the developing female rat brain. More importantly, prior treatment with an estrogen receptor antagonist partially reduced D1-like receptor agonist-induced Fos expression only within the bed nucleus of the stria terminalis and the central amygdala. These data suggest that dopaminergic activation of estrogen receptors alters neuronal activity within restricted regions of the developing rat brain. This implies that ligand-independent activation of estrogen receptors by dopamine might organize a unique set of behaviors during brain development in contrast to the more wide spread ligand activation of estrogen receptors by estrogen. PMID:18478050

  5. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes.

    PubMed

    Miller, Colette N; Yang, Jeong-Yeh; England, Emily; Yin, Amelia; Baile, Clifton A; Rayalam, Srujana

    2015-01-01

    Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1), enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM) following standard differentiation supplemented with thyroid hormone (T3; 1 nM). The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1) were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s. PMID:26390217

  6. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression.

    PubMed

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X; Walterscheid, Jeffrey P; Ullrich, Stephen E

    2004-03-15

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependent manner. The release of biological response modifiers, particularly prostaglandin E2 (PGE2), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE2 secretion. Jet fuel-induced PGE2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin. PMID:15020195

  7. Heterologous downregulation of vasopressin type 2 receptor is induced by transferrin

    PubMed Central

    Nunes, Paula; Andriopoulos, Billy; McLaughlin, Margaret; Webber, Matthew J.; Lin, Herbert Y.; Babitt, Jodie L.; Gardella, Thomas J.; Ausiello, Dennis A.; Brown, Dennis

    2013-01-01

    Vasopressin (VP) binds to the vasopressin type 2 receptor (V2R) to trigger physiological effects including body fluid homeostasis and blood pressure regulation. Signaling is terminated by receptor downregulation involving clathrin-mediated endocytosis and V2R degradation. We report here that both native and epitope-tagged V2R are internalized from the plasma membrane of LLC-PK1 kidney epithelial cells in the presence of another ligand, transferrin (Tf). The presence of iron-saturated Tf (holo-Tf; 4 h) reduced V2R binding sites at the cell surface by up to 33% while iron-free (apo-Tf) had no effect. However, no change in green fluorescent protein-tagged V2R distribution was observed in the presence of bovine serum albumin, atrial natriuretic peptide, or ANG II. Conversely, holo-Tf did not induce the internalization of another G protein-coupled receptor, the parathyroid hormone receptor. In contrast to the effect of VP, Tf did not increase intracellular cAMP or modify aquaporin-2 distribution in these cells, although addition of VP and Tf together augmented VP-induced V2R internalization. Tf receptor coimmunoprecipitated with V2R, suggesting that they interact closely, which may explain the additive effect of VP and Tf on V2R endocytosis. Furthermore, Tf-induced V2R internalization was abolished in cells expressing a dominant negative dynamin (K44A) mutant, indicating the involvement of clathrin-coated pits. We conclude that Tf can induce heterologous downregulation of the V2R and this might desensitize VP target cells without activating downstream V2R signaling events. It also provides new insights into urine-concentrating defects observed in rat models of hemochromatosis. PMID:23235478

  8. NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors.

    PubMed

    Wong, H; Kang, I; Dong, X-D; Christidis, N; Ernberg, M; Svensson, P; Cairns, B E

    2014-06-01

    Intramuscular injection of nerve growth factor (NGF) in healthy humans mimics some of the symptoms of myofascial temporomandibular disorders (M-TMD). We hypothesized that NGF induces a prolonged myofascial mechanical sensitization by increasing peripheral N-methyl-d-aspartate (NMDA) receptor expression, leading to an enhanced response of muscle nociceptors to endogenous glutamate. Behavioral experiments with an injection of NGF (25 μg/ml, 10 μl) into the masseter muscle reduced the mechanical withdrawal threshold for 1 day in male rats and 5 days in female rats. These results mirror the sex-related differences found in NGF-induced mechanical sensitization in humans. Intramuscular injection with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV, 0.020 g/ml, 10 μl) reversed the mechanical sensitization in male but not in female rats. NGF increased the number of NMDA receptor subtype 2B (NR2B)-expressing rat trigeminal masseter ganglion neurons in both sexes, which peaked at 3 days post injection. There was an association between the levels of NR2B expression and NGF-induced mechanical sensitization. The average soma size of NR2B-expressing neurons increased significantly. Increased expression of neuropeptides (CGRP and SP) was observed in NR2B-expressing masseter ganglion neurons in female but not in male rats. In healthy men and women, comparable basal expression levels of NR2B and SP were found in peripheral fibers from masseter muscle microbiopsies. This study suggests that NGF-induced sensitization of masseter nociceptors is mediated, in part, by enhanced peripheral NMDA receptor expression. Measurement of peripheral NMDA receptor expression may be useful as a biomarker for M-TMD pain. PMID:24704516

  9. Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes

    PubMed Central

    Lee, Kyung-Hee; Song, Jia-Le; Park, Eui-Seong; Ju, Jaehyun; Kim, Hee-Young; Park, Kun-Young

    2015-01-01

    The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-γ, CCAAT/enhance-binding protein (C/EBP)-α, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-γ, C/EBP-α, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes. PMID:26770918

  10. Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes.

    PubMed

    Lee, Kyung-Hee; Song, Jia-Le; Park, Eui-Seong; Ju, Jaehyun; Kim, Hee-Young; Park, Kun-Young

    2015-12-01

    The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-γ, CCAAT/enhance-binding protein (C/EBP)-α, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-γ, C/EBP-α, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes. PMID:26770918

  11. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and systemic factors, such as corticosterone and ANP, thus participating in homeostatic responses to altered extracellular volume and plasma tonicity. PMID:22211674

  12. MDM2-related responses in 3T3-L1 adipocytes exposed to cooling and subsequent rewarming.

    PubMed

    Ohsaka, Yasuhito; Nishino, Hoyoku

    2010-12-01

    Insulin-like growth factor-I and insulin induce the production of phospho-Ser-166 MDM2, a target of Akt, and influence the formation of the MDM2 complex. The glycolipid hormone insulin differentially activates phosphatidylinositol 3-kinase (PI3K)/Akt pathways in 3T3-L1 (L1) adipocytes incubated at 19 °C. Responses of L1 adipocytes to different temperature changes and their regulatory mechanisms are poorly understood. We exposed L1 adipocytes to cooling and subsequent rewarming in the presence or absence of wortmannin, a PI3K inhibitor, or mithramycin A, a transcription inhibitor, and examined the induction of phospho-Ser-166 MDM2 and MDM2 and the subcellular formation of the MDM2 complex using western blot analysis. Exposure to 28 and 18 °C induced phospho-MDM2 in cells and increased the level of MDM2 in the plasma membrane of cells. These temperatures did not affect the total MDM2 level. Similar results were obtained when the cells were treated with insulin. Exposure to 4 °C increased the total MDM2 level and did not induce phospho-MDM2, which was induced by rewarming at 37 °C after cooling at 4°C without any alteration in the protein level. Mithramycin A (10 μM) did not alter the increase in protein level induced at 4 °C. The induction of phospho-molecules at 28 and 18 °C was impaired slightly by 1 μM of wortmannin but not by 0.1 μM of wortmannin. This low concentration of wortmannin completely blocked the induction of phospho-MDM2 by rewarming. Our results indicate that temperature changes induce MDM2-related responses, including those that are stimulated by receptor responses and dependent on a kinase inhibitor, in L1 adipocytes. PMID:21034728

  13. Effects of intermedin on proliferation, apoptosis and the expression of OPG/RANKL/M-CSF in the MC3T3-E1 osteoblast cell line

    PubMed Central

    REN, HONGFEI; REN, HONGYU; LI, XUE; YU, DONGDONG; MU, SHUAI; CHEN, ZHIGUANG; FU, QIN

    2015-01-01

    Bone remodeling is a vital physiological process of healthy bone tissue in humans. It is characterized by the formation of bone by osteoblasts and its resorption by osteoclasts, and the bone resorbed by osteoclasts is replaced through the differentiation and activity of osteoblasts. Imbalances in this vital process lead to pathological conditions, including osteoporosis. Intermedin (IMD) as a newly discovered peptide in the calcitonin (CT) family of peptides, which shares similar functions with CT, calcitonin gene-related peptide and amylin in bone resorption. However, the mechanism underlying its effect remains to be elucidated. This was investigated in the present study using the osteoblastic MC3T3-E1 cell line, which was treated with different doses of IMD (0, 1, 10 and 100 nM). Cell proliferation, apoptosis and the expression of receptor activator of NF-?B ligand (RANKL), osteoprotegerin (OPG) and macrophage colony-stimulating factor (M-CSF) were measured following treatment using multiple detection techniques, including an MTT assay, flow cytometry, reverse transcription-quantitative polymerase chain reaction and western blot analysis. The resulting data demonstrated that IMD significantly inhibited the apoptosis of MC3T3-E1 cells induced by serum-free culture and dexamethasone, however, no significant effects on MC3T3-E1 cell proliferation were observed. IMD had additional functions on the MC3T3-E1 cells, including inhibition of the expression of RANKL and M-CSF, and promotion of the expression of OPG. Previous studies have also demonstrated that RANKL and M-CSF are two vital factor produced by osteoblasts to promote the maturation and differentiation of osteoclasts, and it has been reported that IMD can inhibit the osteoclast formation stimulated by RANKL and M-CSF. Together with these findings, the present study concluded that IMD reduces bone resorption by inhibiting osteoblast apoptosis, decreasing the RANKL/OPG ratio and the expression of M-CSF, and inhibiting osteoclast maturation and differentiation. PMID:26398911

  14. Comparison of transferrin receptor-mediated endocytosis and drug-induced endocytosis in human neonatal and adult RBCs.

    PubMed

    Thatte, H S; Schrier, S L

    1988-11-01

    Neonatal RBCs can undergo receptor-mediated endocytosis; normal adult RBCs cannot. Previously, we showed that drug-induced endocytosis, which can occur in adult RBCs exposed to amphipathic cations like primaquine, is greatly enhanced in all density-defined fractions of neonatal RBCs. To investigate the similarities and differences between receptor-mediated endocytosis and drug-induced endocytosis, we characterized transferrin receptor-mediated endocytosis in neonatal RBCs and compared it with drug-induced endocytosis. Primaquine drug-induced endocytosis is dependent on RBC ATP levels, is invariably preceded by stomatocytosis, and is inhibited by vanadate. In contrast, receptor-mediated endocytosis of transferrin is not preceded by stomatocytosis, is not nearly so dependent on ATP levels as is drug-induced endocytosis, and is not inhibited by vanadate. Furthermore, receptor-mediated endocytosis is quantitatively blocked by preincubation of neonatal RBCs with sodium cyanide, whereas cyanide does not inhibit drug-induced endocytosis in either adult or neonatal RBCs. Morphologic observation of the neonatal RBCs established the fact that only puckered RBCs that exhibited brilliant cresyl blue staining reticulum were capable of undergoing receptor-mediated endocytosis of transferrin. These characteristics identify them as motile R-1 reticulocytes. Reticulocytes in normal adult RBCs were incapable of exhibiting this phenomenon. Thus, receptor-mediated endocytosis, a property of motile reticulocytes in neonatal RBCs, differs from drug-induced endocytosis in its energy requirements, response to inhibitors, and morphologic concomitants. PMID:3179445

  15. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

    PubMed Central

    Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

    2014-01-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

  16. Studies on the role of the Ah receptor in hexachloro-benzene-induced porphyria

    SciTech Connect

    Hahn, M.E.

    1987-01-01

    Many of the effects of hexachlorobenzene (HCB) resemble those of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), whose effects are initiated by its binding to the AH receptor, the regulatory gene product of the Ah locus. I investigated the ability of HCB to interact with the AH receptor and the involvement of this protein in HCB-induced porphyria. The induction of two cytochrome P450 isozymes regulated by the Ah locus was also examined in light of their possible role in the pathogenesis of HCB- and TCDD-induced porphyria. HCB competitively inhibited the in vitro specific binding of ({sup 3}H)-TCDD to the rat hepatic Ah receptor (K{sub I} = 2.1 {mu}M) without affecting the solubility of ({sup 3}H)TCDD. Following the administration of HCB to rats, the number of ({sup 3}H)TCDD specific binding sites was reduced by up to 40%. HCB induced cytochromes P450b, P450e, P450c, and P450d, confirming that it is a mixed-type P450 inducer. The presence of porphyria in mice was assessed by measuring urinary and hepatic porphyrins and hepatic uroporphyrinogen decarboxylase activity.

  17. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways.

    PubMed

    Yu, Yunli; Hao, Gang; Zhang, Quanying; Hua, Wenyan; Wang, Meng; Zhou, Wenjia; Zong, Shunlin; Huang, Ming; Wen, Xiaozhou

    2015-09-15

    Our previous studies revealed that berberine-mediated GLP-1 secretion was a possible mechanism for berberine exerting good effects on hyperglycemia. This study was designed to ascertain whether berberine-induced secretion of GLP-1 was related with activation of bitter taste receptors expressed in gastrointestinal tract. Western blotting results showed that TAS2R38, a subtype of bitter taste receptor, was expressed on human enteroendocrine NCI-H716 cells. GLP-1 secretion induced by berberine from NCI-H716 cells was inhibited by incubation with anti-TAS2R38 antibody. We further performed gene silencing using siRNA to knockdown TAS2R38 from NCI-H716 cells, which showed that siRNA knockdown of the TAS2R38 reduced berberine-mediated GLP-1 secretion. We adopted inhibitors of PLC and TRPM5 known to be involved in bitter taste transduction to investigate the underlying pathways mediated in berberine-induced GLP-1 secretion. It was found that PLC inhibitor U73122 inhibited berberine-induced GLP-1 release in NCI-H716 cells, while TRPM5 blocker quinine failed to attenuate berberine-induced secretion of GLP-1. The present results demonstrated that berberine stimulated GLP-1 secretion via activation of gut-expressed bitter taste receptors in a PLC-dependent manner. Because berberine was found to be a ligand of bitter taste receptor, the results of present study may provide an explanation for some bitter taste substance obtain hypoglycemic effect. PMID:26206195

  18. Fenretinide-induced apoptosis of Huh-7 hepatocellular carcinoma is retinoic acid receptor β dependent

    PubMed Central

    Bu, Pengli; Wan, Yu-Jui Yvonne

    2007-01-01

    Background Retinoids are used to treat several types of cancer; however, their effects on liver cancer have not been fully characterized. To investigate the therapeutic potential of retinoids on hepatocellular carcinoma (HCC), the present study evaluates the apoptotic effect of a panel of natural and synthetic retinoids in three human HCC cell lines as well as explores the underlying mechanisms. Methods Apoptosis was determined by caspase-3 cleavage using western blot, DNA double-strand breaks using TUNEL assay, and phosphatidylserine translocation using flow cytometry analysis. Gene expression of nuclear receptors was assessed by real-time PCR. Transactivation assay and chromatin immunoprecipitation (ChIP) were conducted to evaluate the activation of RXRα/RARβ pathway by fenretinide. Knockdown of RARβ mRNA expression was achieved by siRNA transfection. Results Our data revealed that fenretinide effectively induces apoptosis in Huh-7 and Hep3B cells. Gene expression analysis of nuclear receptors revealed that the basal and inducibility of retinoic acid receptor β (RARβ) expression positively correlate with the susceptibility of HCC cells to fenretinide treatment. Furthermore, fenretinide transactivates the RXRα/RARβ-mediated pathway and directly increases the transcriptional activity of RARβ. Knockdown of RARβ mRNA expression significantly impairs fenretinide-induced apoptosis in Huh-7 cells. Conclusion Our findings reveal that endogenous expression of retinoids receptor RARβ gene determines the susceptibility of HCC cells to fenretinide-induced apoptosis. Our results also demonstrate fenretinide directly activates RARβ and induces apoptosis in Huh-7 cells in a RARβ-dependent manner. These findings suggest a novel role of RARβ as a tumor suppressor by mediating the signals of certain chemotherapeutic agents. PMID:18166136

  19. Dopamine D1-like receptor activation induces brain-derived neurotrophic factor protein expression.

    PubMed

    Williams, Stacey N; Undieh, Ashiwel S

    2009-04-22

    Recent studies showed that dopamine or D1 receptor-selective agonists increased brain-derived neurotrophic factor (BDNF) mRNA and protein expression in neuronal cultures, and this action was blocked by SCH23390. Moreover, SKF38393 activated Trk receptors and downstream signaling in striatal neurons. This study examined whether dopamine agonists induce the expression of BDNF protein in rat brain tissue. Acute slice preparations were incubated with dopamine agonists in Hibernate A medium and BDNF protein was measured by a sensitive enzyme-linked immunosorbent assay. Results showed that dopamine increased BDNF in tissue slices after 24 h of incubation. Furthermore, SKF38393 produced a significant increase in BDNF protein in striatal and hippocampal tissue slices. These findings suggest that the induction of BDNF expression may constitute a downstream response to D1-like dopamine receptor activation. PMID:19295451

  20. Receptor-dependent mechanisms of glucocorticoid and dioxin-induced cleft palate

    SciTech Connect

    Pratt, R.M.

    1985-09-01

    Glucocorticoids (triamcinolone) and dioxins (TCDD) are highly specific teratogens in the mouse, in that cleft palate is the major malformation observed. Glucocorticoids and TCDD both readily cross the yolk sac and placenta and appear in the developing secondary palate. Structure-activity relationships for glucocorticoid- and TCDD-induced cleft palate suggest a receptor involvement. Receptors for glucocorticoids and TCDD are present in the palate and their levels in various mouse strains are highly correlated with their sensitivity to cleft palate induction. Receptors for glucocorticoids appear to be more prevalent in the palatal mesenchymal cells whereas those for TCDD are probably located in the palatal epithelial cells. Glucocorticoids exert their teratogenic effect on the palate by inhibiting the growth of the palatal mesenchymal cells whereas