Sample records for t4 endonuclease ii

  1. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.

    PubMed

    Warner, H R; Persson, M L; Bensen, R J; Mosbaugh, D W; Linn, S

    1981-11-25

    1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities.

  2. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.

    PubMed Central

    Warner, H R; Persson, M L; Bensen, R J; Mosbaugh, D W; Linn, S

    1981-01-01

    1-Methyl-9H-pyrido-[3,4-b]indole (harmane) inhibits the apurinic/apyrimidinic (AP) endonuclease activity of the UV endonuclease induced by phage T4, whereas it stimulates the pyrimidine dimer-DNA glycosylase activity of that enzyme. E. coli endonuclease IV, E. coli endonuclease VI (the AP endonuclease activity associated with E. coli exonuclease III), and E. coli uracil-DNA glycosylase were not inhibited by harmane. Human fibroblast AP endonucleases I and II also were only slightly inhibited. Therefore, harmane is neither a general inhibitor of AP endonucleases, nor a general inhibitor of Class I AP endonucleases which incise DNA on the 3'-side of AP sites. However, E. coli endonuclease III and its associated dihydroxythymine-DNA glycosylase activity were both inhibited by harmane. This observation suggests that harmane may inhibit only AP endonucleases which have associated glycosylase activities. PMID:6273822

  3. Phage T4 endonuclease SegD that is similar to group I intron endonucleases does not initiate homing of its own gene.

    PubMed

    Sokolov, Andrey S; Latypov, Oleg R; Kolosov, Peter M; Shlyapnikov, Michael G; Bezlepkina, Tamara A; Kholod, Natalia S; Kadyrov, Farid A; Granovsky, Igor E

    2018-02-01

    Homing endonucleases are a group of site-specific endonucleases that initiate homing, a nonreciprocal transfer of its own gene into a new allele lacking this gene. This work describes a novel phage T4 endonuclease, SegD, which is homologous to the GIY-YIG family of homing endonucleases. Like other T4 homing endonucleases SegD recognizes an extended, 16bp long, site, cleaves it asymmetrically to form 3'-protruding ends and digests both unmodified DNA and modified T-even phage DNA with similar efficiencies. Surprisingly, we revealed that SegD cleavage site was identical in the genomes of segD - and segD + phages. We found that segD gene was expressed during the T4 developmental cycle. Nevertheless, endonuclease SegD was not able to initiate homing of its own gene as well as genetic recombination between phages in its site inserted into the rII locus. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells in vivo. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, K.; Hayakawa, H.; Sekiguchi, M.

    1977-07-01

    The specific action of T4 endonuclease V on damaged DNA in xeroderma pigmentosum cells was examined using an in vivo assay system with hemagglutinating virus of Japan (Sendai virus) inactivated by uv light. A clear dose response was observed between the level of uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells and the amount of T4 endonuclease V activity added. The T4 enzyme was unstable in human cells, and its half-life was 3 hr. Fractions derived from an extract of Escherichia coli infected with T4v/sub 1/, a mutant defective in the endonuclease V gene, showed no ability to restore themore » uv-induced unscheduled DNA synthesis of xeroderma pigmentosum cells. However, fractions derived from an extract of T4D-infected E. coli with endonuclease V activity were effective. The T4 enzyme was effective in xeroderma pigmentosum cells on DNA damaged by uv light but not in cells damaged by 4-nitroquinoline 1-oxide. The results of these experiments show that the T4 enzyme has a specific action on human cell DNA in vivo. Treatment with the T4 enzyme increased the survival of group A xeroderma pigmentosum cells after uv irradiation.« less

  5. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    PubMed

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  6. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage

    PubMed Central

    Brok-Volchanskaya, Vera S.; Kadyrov, Farid A.; Sivogrivov, Dmitry E.; Kolosov, Peter M.; Sokolov, Andrey S.; Shlyapnikov, Michael G.; Kryukov, Valentine M.; Granovsky, Igor E.

    2008-01-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages. PMID:18281701

  7. Creation of a type IIS restriction endonuclease with a long recognition sequence

    PubMed Central

    Lippow, Shaun M.; Aha, Patti M.; Parker, Matthew H.; Blake, William J.; Baynes, Brian M.; Lipovšek, Daša

    2009-01-01

    Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases. PMID:19304757

  8. Single substitution in bacteriophage T4 RNase H alters the ratio between its exo- and endonuclease activities.

    PubMed

    Kholod, Natalia; Sivogrivov, Dmitry; Latypov, Oleg; Mayorov, Sergey; Kuznitsyn, Rafail; Kajava, Andrey V; Shlyapnikov, Mikhail; Granovsky, Igor

    2015-11-01

    The article describes substitutions in bacteriophage T4 RNase H which provide so called das-effect. Phage T4 DNA arrest suppression (das) mutations have been described to be capable of partially suppressing the phage DNA arrest phenotype caused by a dysfunction in genes 46 and/or 47 (also known as Mre11/Rad50 complex). Genetic mapping of das13 (one of the das mutations) has shown it to be in the region of the rnh gene encoding RNase H. Here we report that Das13 mutant of RNase H has substitutions of valine 43 and leucine 242 with isoleucines. To investigate the influence of these mutations on RNase H nuclease properties we have designed a novel in vitro assay that allows us to separate and quantify exo- or endonuclease activities of flap endonuclease. The nuclease assay in vitro showed that V43I substitution increased the ratio between exonuclease/endonuclease activities of RNase H whereas L242I substitution did not affect the nuclease activity of RNase H in vitro. However, both mutations were necessary for the full das effect in vivo. Molecular modelling of the nuclease structure suggests that V43I substitution may lead to disposition of H4 helix, responsible for the interaction with the first base pairs of 5'end of branched DNA. These structural changes may affect unwinding of the first base pairs of gapped or nicked DNA generating a short flap and therefore may stabilize the DNA-enzyme complex. L242I substitution did not affect the structure of RNase H and its role in providing das-effect remains unclear. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Analysis of class II (hydrolytic) and class I (beta-lyase) apurinic/apyrimidinic endonucleases with a synthetic DNA substrate.

    PubMed Central

    Levin, J D; Demple, B

    1990-01-01

    We have developed simple and sensitive assays that distinguish the main classes of apurinic/apyrimidinic (AP) endonucleases: Class I enzymes that cleave on the 3' side of AP sites by beta-elimination, and Class II enzymes that cleave by hydrolysis on the 5' side. The distinction of the two types depends on the use of a synthetic DNA polymer that contains AP sites with 5'-[32P]phosphate residues. Using this approach, we now show directly that Escherichia coli endonuclease IV and human AP endonuclease are Class II enzymes, as inferred previously on the basis of indirect assays. The assay method does not exhibit significant interference by nonspecific nucleases or primary amines, which allows the ready determination of different AP endonuclease activities in crude cell extracts. In this way, we show that virtually all of the Class II AP endonuclease activity in E. coli can be accounted for by two enzymes: exonuclease III and endonuclease IV. In the yeast Saccharomyces cerevisiae, the Class II AP endonuclease activity is totally dependent on a single enzyme, the Apn1 protein, but there are probably multiple Class I enzymes. The versatility and ease of our approach should be useful for characterizing this important class of DNA repair enzymes in diverse systems. PMID:1698278

  10. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria.

    PubMed

    Yoshihisa, Tohru; Yunoki-Esaki, Kaori; Ohshima, Chie; Tanaka, Nobuyuki; Endo, Toshiya

    2003-08-01

    Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.

  11. SLX4 Assembles a Telomere Maintenance Toolkit by Bridging Multiple Endonucleases with Telomeres

    PubMed Central

    Wan, Bingbing; Yin, Jinhu; Horvath, Kent; Sarkar, Jaya; Chen, Yong; Wu, Jian; Wan, Ke; Lu, Jian; Gu, Peili; Yu, Eun Young; Lue, Neal F.; Chang, Sandy

    2014-01-01

    Summary SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown. Here, we report the crystal structure of the TRF2-binding motif of SLX4 (SLX4TBM) in complex with the TRFH domain of TRF2 (TRF2TRFH) and map the interactions of SLX4 with endonucleases SLX1, XPF, and MUS81. TRF2 recognizes a unique HxLxP motif on SLX4 via the peptide-binding site in its TRFH domain. Telomeric localization of SLX4 and associated nucleases depend on the SLX4-endonuclease and SLX4-TRF2 interactions and the protein levels of SLX4 and TRF2. SLX4 assembles an endonuclease toolkit that negatively regulates telomere length via SLX1-catalyzed nucleolytic resolution of telomere DNA structures. We propose that the SLX4-TRF2 complex serves as a double-layer scaffold bridging multiple endonucleases with telomeres for recombination-based telomere maintenance. PMID:24012755

  12. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB.

    PubMed

    Liu, Guohong; Weston, Christopher Q; Pham, Long K; Waltz, Shannon; Barnes, Helen; King, Paula; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2016-01-01

    We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes.

  13. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    PubMed

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  14. The SalGI restriction endonuclease. Purification and properties

    PubMed Central

    Maxwell, Anthony; Halford, Stephen E.

    1982-01-01

    The type II restriction endonuclease SalGI has been purified to near homogeneity. At least 80% of the protein remaining after the final stage of the preparation is SalGI restriction endonuclease; no contaminating nucleases remain detectable. The principal form of the protein under both native and denaturing conditions is a monomer of Mr about 29000. The optimal conditions for both enzyme stability and enzyme activity have been determined. ImagesFig. 1. PMID:6285898

  15. Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.

    PubMed Central

    Shcherbakov, Victor; Granovsky, Igor; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Pyatkov, Konstantin; Shlyapnikov, Michael; Shubina, Olga

    2002-01-01

    A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed. PMID:12399370

  16. Focused genetic recombination of bacteriophage t4 initiated by double-strand breaks.

    PubMed

    Shcherbakov, Victor; Granovsky, Igor; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Pyatkov, Konstantin; Shlyapnikov, Michael; Shubina, Olga

    2002-10-01

    A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed.

  17. Genomic Disruption of VEGF-A Expression in Human Retinal Pigment Epithelial Cells Using CRISPR-Cas9 Endonuclease.

    PubMed

    Yiu, Glenn; Tieu, Eric; Nguyen, Anthony T; Wong, Brittany; Smit-McBride, Zeljka

    2016-10-01

    To employ type II clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease to suppress ocular angiogenesis by genomic disruption of VEGF-A in human RPE cells. CRISPR sequences targeting exon 1 of human VEGF-A were computationally identified based on predicted Cas9 on- and off-target probabilities. Single guide RNA (gRNA) cassettes with these target sequences were cloned into lentiviral vectors encoding the Streptococcuspyogenes Cas9 endonuclease (SpCas9) gene. The lentiviral vectors were used to infect ARPE-19 cells, a human RPE cell line. Frequency of insertion or deletion (indel) mutations was assessed by T7 endonuclease 1 mismatch detection assay; mRNA levels were assessed with quantitative real-time PCR; and VEGF-A protein levels were determined by ELISA. In vitro angiogenesis was measured using an endothelial cell tube formation assay. Five gRNAs targeting VEGF-A were selected based on the highest predicted on-target probabilities, lowest off-target probabilities, or combined average of both scores. Lentiviral delivery of the top-scoring gRNAs with SpCas9 resulted in indel formation in the VEGF-A gene at frequencies up to 37.0% ± 4.0% with corresponding decreases in secreted VEGF-A protein up to 41.2% ± 7.4% (P < 0.001), and reduction of endothelial tube formation up to 39.4% ± 9.8% (P = 0.02). No significant indel formation in the top three putative off-target sites tested was detected. The CRISPR-Cas9 endonuclease system may reduce VEGF-A secretion from human RPE cells and suppress angiogenesis, supporting the possibility of employing gene editing for antiangiogenesis therapy in ocular diseases.

  18. Homing endonucleases from mobile group I introns: discovery to genome engineering

    PubMed Central

    2014-01-01

    Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity. PMID:24589358

  19. A new endonuclease recognizing the deoxynucleotide sequence CCNNGG from the cyanobacterium Synechocystis 6701.

    PubMed

    Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A

    1985-09-25

    A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively.

  20. alpha-Putrescinylthymine and the sensitivity of bacteriophage phi W-14 DNA to restriction endonucleases.

    PubMed Central

    Miller, P B; Wakarchuk, W W; Warren, R A

    1985-01-01

    The modified base alpha-putrescinylthymine (putT) in phi W-14 DNA blocks cleavage of the DNA by 17 of 32 Type II restriction endonucleases. The enzymes cleaving the DNA do so to widely varying extents. The frequencies of cleavage of three altered forms of the DNA show that putT blocks recognition sites either when it occurs within the site or when it is in a sequence flanking the site. The blocking is dependent on both charge and steric factors. The charge effects can be greater than the steric effects for some of the enzymes tested. All the enzymes cleaving phi W-14 DNA release discrete fragments, showing that the distribution of putT is ordered. The cleavage frequencies for different enzymes suggest that the sequence CAputTG occurs frequently in the DNA. Only TaqI of the enzymes tested appeared not to be blocked by putT, but it was slowed down. TaqI generated fragments are joinable by T4 DNA ligase. PMID:2987859

  1. A new endonuclease recognizing the deoxynucleotide sequence CCNNGG from the cyanobacterium Synechocystis 6701.

    PubMed Central

    Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A

    1985-01-01

    A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively. Images PMID:2997722

  2. Beyond tRNA cleavage: novel essential function for yeast tRNA splicing endonuclease unrelated to tRNA processing

    PubMed Central

    Dhungel, Nripesh; Hopper, Anita K.

    2012-01-01

    Pre-tRNA splicing is an essential process in all eukaryotes. In yeast and vertebrates, the enzyme catalyzing intron removal from pre-tRNA is a heterotetrameric complex (splicing endonuclease [SEN] complex). Although the SEN complex is conserved, the subcellular location where pre-tRNA splicing occurs is not. In yeast, the SEN complex is located at the cytoplasmic surface of mitochondria, whereas in vertebrates, pre-tRNA splicing is nuclear. We engineered yeast to mimic the vertebrate cell biology and demonstrate that all three steps of pre-tRNA splicing, as well as tRNA nuclear export and aminoacylation, occur efficiently when the SEN complex is nuclear. However, nuclear pre-tRNA splicing fails to complement growth defects of cells with defective mitochondrial-located splicing, suggesting that the yeast SEN complex surprisingly serves a novel and essential function in the cytoplasm that is unrelated to tRNA splicing. The novel function requires all four SEN complex subunits and the catalytic core. A subset of pre-rRNAs accumulates when the SEN complex is restricted to the nucleus, indicating that the SEN complex moonlights in rRNA processing. Thus, findings suggest that selection for the subcellular distribution of the SEN complex may reside not in its canonical, but rather in a novel, activity. PMID:22391451

  3. Apoptotic depletion of CD4+ T cells in idiopathic CD4+ T lymphocytopenia.

    PubMed Central

    Laurence, J; Mitra, D; Steiner, M; Lynch, D H; Siegal, F P; Staiano-Coico, L

    1996-01-01

    Progressive loss of CD4+ T lymphocytes, accompanied by opportunistic infections characteristic of the acquired immune deficiency syndrome, ahs been reported in the absence of any known etiology. The pathogenesis of this syndrome, a subset of idiopathic CD4+ T lymphocytopenia (ICL), is uncertain. We report that CD4+ T cells from seven of eight ICL patients underwent accelerated programmed cell death, a process facilitated by T cell receptor cross-linking. Apoptosis was associated with enhanced expression of Fas and Fas ligand in unstimulated cell populations, and partially inhibited by soluble anti-Fas mAb. In addition, apoptosis was suppressed by aurintricarboxylic acid, an inhibitor of calcium-dependent endonucleases and proteases, in cells from four of seven patients, The in vivo significance of these findings was supported by three factors: the absence of accelerated apoptosis in persons with stable, physiologic CD4 lymphopenia without clinical immune deficiency; detection of serum antihistone H2B autoantibodies, one consequence of DNA fragmentation, in some patients; and its selectivity, with apoptosis limited to the CD4 population in some, and occurring among CD8+ T cells predominantly in those individuals with marked depletion of both CD4+ T lymphocytes linked to clinical immune suppression have evidence for accelerated T cell apoptosis in vitro that may be pathophysiologic and amenable to therapy with apoptosis inhibitors. PMID:8609222

  4. Evolution of I-SceI Homing Endonucleases with Increased DNA Recognition Site Specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Rakesh; Ho, Kwok Ki; Tenney, Kristen

    2013-09-18

    Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G{sub +4} base pair for the wild-type A:T{sub +4} base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T{sub +4} were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T{sub +4} or the C:G{submore » +4} base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G{sub +4} recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T{sub +4} target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G{sub +4} target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed -36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G{sub +4} substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.« less

  5. Ultrasensitive apurinic/apyrimidinic endonuclease 1 immunosensing based on self-enhanced electrochemiluminescence of a Ru(II) complex.

    PubMed

    Zhuo, Ying; Liao, Ni; Chai, Ya-Qin; Gui, Guo-Feng; Zhao, Min; Han, Jing; Xiang, Yun; Yuan, Ruo

    2014-01-21

    An alternative "signal on" immunosensor for ultrasensitive detection of apurinic/apyrimidinic endonuclease 1 (APE-1) was designed utilizing the self-enhanced electrochemiluminescence (ECL) of a novel Ru(II) complex functionalized coil-like nanocomposite as signal labels. The desirable self-enhanced ECL luminophore was achieved by combining the coreactant of poly(ethylenimine) (PEI) and the luminophor of bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) [Ru(bpy)2(5-NH2-1,10-phen)(2+)] to form one novel Ru(II) complex, which exhibited significantly enhanced ECL efficiency and stability. Moreover, the carbon nanotubes (CNTs) were employed as nanocarriers for self-enhanced Ru(II) complex loading via π-π stacking to obtain the coil-like nanocomposite to act as signal probe. Compared with traditional ECL immunoassay, our proposed strategy is simple and sensitive, avoiding the adding of any coreactant into testing solution for signal amplification, and shows a detection limit down to subfemtogram per milliliter level under the optimized experimental condition.

  6. Purification of Restriction Endonuclease EcoRII and its Co-Crystallization

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Chen, L.; Meehan, E.; Pusey, M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Restriction endonuclease EcoRII (EcoRII) is a homodimeric DNA-binding protein. It belongs to the type II family of restriction-modification enzymes (subclass IIe). EcoRII recognizes the nucleotide sequence 5'-CCWGG (W=A or T) and cleaves the phosphodiester bond preceding the first cytosine. Methylation at C5 of the second cytosine inhibits cleavage. The enzyme has a unique ability to search for the presence of two substrate sites before cleavage. To the best of our knowledge no other subclass IIe restriction endonuclease has been crystallized yet, without or with a DNA-substrate. We have recently grown and characterized the crystals of this enzyme (1) Here we report on the result of co-crystallization experiments of EcoRII with an 11 b.p. oligonucleotide substrate. The dissociation constant (Kd) EcoRII: 11 b.p. was determined earlier (unpublished results). The needle-like crystals of oligonucleotide-EcoRII protein complex were obtained with this substrate by the technique of vapor diffusion hanging drops. The crystals obtained were washed and dissolved in an aliquot of 10 mM Tris-HCl buffer, pH=7.5. Running a portion of this solution on the SDS-get indicated the presence of endonuclease in the solution. A UV-spectrophotometric test of a second portion confirmed the presence of DNA. We are now working on improvement of the DNA-EcoRII protein crystals. Results obtained from these and ongoing efforts will be reported.

  7. Structure of the MazF-mt9 toxin, a tRNA-specific endonuclease from Mycobacterium tuberculosis.

    PubMed

    Chen, Ran; Tu, Jie; Liu, Zhihui; Meng, Fanrong; Ma, Pinyun; Ding, Zhishan; Yang, Chengwen; Chen, Lei; Deng, Xiangyu; Xie, Wei

    2017-05-06

    Tuberculosis (TB) is a severe disease caused by Mycobacterium tuberculosis (M. tb) and the well-characterized M. tb MazE/F proteins play important roles in stress adaptation. Recently, the MazF-mt9 toxin has been found to display endonuclease activities towards tRNAs but the mechanism is unknown. We hereby present the crystal structure of apo-MazF-mt9. The enzyme recognizes tRNA Lys with a central UUU motif within the anticodon loop, but is insensitive to the sequence context outside of the loop. Based on our crystallographic and biochemical studies, we identified key residues for catalysis and proposed the potential tRNA-binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The complex between a four-way DNA junction and T7 endonuclease I

    PubMed Central

    Déclais, Anne-Cécile; Fogg, Jonathan M.; Freeman, Alasdair D.J.; Coste, Franck; Hadden, Jonathan M.; Phillips, Simon E.V.; Lilley, David M.J.

    2003-01-01

    The junction-resolving enzyme endonuclease I is selective for the structure of the DNA four-way (Holliday) junction. The enzyme binds to a four-way junction in two possible orientations, with a 4:1 ratio, opening the DNA structure at the centre and changing the global structure into a 90° cross of approximately coaxial helices. The nuclease cleaves the continuous strands of the junction in each orientation. Binding leads to pronounced regions of protection of the DNA against hydroxyl radical attack. Using all this information together with the known structure of the enzyme and the structure of the BglI–DNA complex, we have constructed a model of the complex of endonuclease I and a DNA junction. This shows how the enzyme is selective for the structure of a four-way junction, such that both continuous strands can be accommodated into the two active sites so that a productive resolution event is possible. PMID:12628932

  9. Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors

    DOE PAGES

    Jones, Jeremy C.; Kumar, Gyanendra; Barman, Subrata; ...

    2018-04-24

    ABSTRACT The clinical severity and annual occurrence of influenza virus epidemics, combined with the availability of just a single class of antivirals to treat infections, underscores the urgent need to develop new anti-influenza drugs. The endonuclease activity within the viral acidic polymerase (PA) protein is an attractive target for drug discovery due to the critical role it plays in viral gene transcription. RO-7 is a next-generation PA endonuclease inhibitor of influenza A and B viruses, but its drug resistance potential is unknown. Through serial passage of influenza A(H1N1) viruses in MDCK cells under selective pressure of RO-7, we identified anmore » I38T substitution within the PA endonuclease domain that conferred in vitro resistance to RO-7 (up to a 287-fold change in 50% effective concentration [EC 50 ]). I38T emerged between 5 and 10 passages, and when introduced into recombinant influenza A(H1N1) viruses, alone conferred RO-7 resistance (up to an 81-fold change in EC 50 ). Cocrystal structures of mutant and wild-type endonuclease domains with RO-7 provided the structural basis of resistance, where a key hydrophobic interaction between RO-7 and the Ile38 side chain is compromised when mutated to the polar threonine. While Ile38 does not have a crucial role in coordinating the endonuclease active site, the switch to threonine does affect the polymerase activity of some viruses and influences RO-7 affinity for the PA N target (i.e., the ≈200-residue N-terminal domain of PA). However, the change does not lead to a complete loss of replication activity in vitro . Our results predict that RO-7-resistant influenza viruses carrying the I38T substitution may emerge under treatment. This should be taken into consideration for clinical surveillance and in refinement of these drugs. IMPORTANCE The effectiveness of antiviral drugs can be severely compromised by the emergence of resistant viruses. Therefore, determination of the mechanisms by which viruses

  10. Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Jeremy C.; Kumar, Gyanendra; Barman, Subrata

    ABSTRACT The clinical severity and annual occurrence of influenza virus epidemics, combined with the availability of just a single class of antivirals to treat infections, underscores the urgent need to develop new anti-influenza drugs. The endonuclease activity within the viral acidic polymerase (PA) protein is an attractive target for drug discovery due to the critical role it plays in viral gene transcription. RO-7 is a next-generation PA endonuclease inhibitor of influenza A and B viruses, but its drug resistance potential is unknown. Through serial passage of influenza A(H1N1) viruses in MDCK cells under selective pressure of RO-7, we identified anmore » I38T substitution within the PA endonuclease domain that conferred in vitro resistance to RO-7 (up to a 287-fold change in 50% effective concentration [EC 50 ]). I38T emerged between 5 and 10 passages, and when introduced into recombinant influenza A(H1N1) viruses, alone conferred RO-7 resistance (up to an 81-fold change in EC 50 ). Cocrystal structures of mutant and wild-type endonuclease domains with RO-7 provided the structural basis of resistance, where a key hydrophobic interaction between RO-7 and the Ile38 side chain is compromised when mutated to the polar threonine. While Ile38 does not have a crucial role in coordinating the endonuclease active site, the switch to threonine does affect the polymerase activity of some viruses and influences RO-7 affinity for the PA N target (i.e., the ≈200-residue N-terminal domain of PA). However, the change does not lead to a complete loss of replication activity in vitro . Our results predict that RO-7-resistant influenza viruses carrying the I38T substitution may emerge under treatment. This should be taken into consideration for clinical surveillance and in refinement of these drugs. IMPORTANCE The effectiveness of antiviral drugs can be severely compromised by the emergence of resistant viruses. Therefore, determination of the mechanisms by which viruses

  11. Structure of the endonuclease IV homologue from Thermotoga maritima in the presence of active-site divalent metal ions

    PubMed Central

    Tomanicek, Stephen J.; Hughes, Ronny C.; Ng, Joseph D.; Coates, Leighton

    2010-01-01

    The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5′-phosphodiester bond at an AP site to generate a free 3′-­hydroxyl group and a 5′-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-­ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily. PMID:20823514

  12. Interaction of the E. coli DNA G:T-mismatch endonuclease (vsr protein) with oligonucleotides containing its target sequence.

    PubMed

    Turner, D P; Connolly, B A

    2000-12-15

    The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (CT[A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant (k(st)/K(D); k(st)=rate constant for single turnover, K(D)=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5'-3' orientation) composed of CT[A/T]GG and C(5Me)C[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d(5Me)C to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by "reverse-titration" (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1% of the vsr endonuclease was able to bind to the substrate. This was confirmed using "competitive titrations" (where competitor oligonucleotides are used to displace a (32)P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity. Copyright 2000 Academic Press.

  13. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species

    PubMed Central

    Posey, Karen L.; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S.

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 → T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites. PMID:15280510

  14. Evolution of divergent DNA recognition specificities in VDE homing endonucleases from two yeast species.

    PubMed

    Posey, Karen L; Koufopanou, Vassiliki; Burt, Austin; Gimble, Frederick S

    2004-01-01

    Homing endonuclease genes (HEGs) are mobile DNA elements that are thought to confer no benefit to their host. They encode site-specific DNA endonucleases that perpetuate the element within a species population by homing and disseminate it between species by horizontal transfer. Several yeast species contain the VMA1 HEG that encodes the intein-associated VMA1-derived endonuclease (VDE). The evolutionary state of VDEs from 12 species was assessed by assaying their endonuclease activities. Only two enzymes are active, PI-ZbaI from Zygosaccharomyces bailii and PI-ScaI from Saccharomyces cariocanus. PI-ZbaI cleaves the Z.bailii recognition sequence significantly faster than the Saccharomyces cerevisiae site, which differs at six nucleotide positions. A mutational analysis indicates that PI-ZbaI cleaves the S.cerevisiae substrate poorly due to the absence of a contact that is analogous to one made in PI-SceI between Gln-55 and nucleotides +9/+10. PI-ZbaI cleaves the Z.bailii substrate primarily due to a single base-pair substitution (A/T+5 --> T/A+5). Structural modeling of the PI-ZbaI/DNA complex suggests that Arg-331, which is absent in PI-SceI, contacts T/A+5, and the reduced activity observed in a PI-ZbaI R331A mutant provides evidence for this interaction. These data illustrate that homing endonucleases evolve altered specificity as they adapt to recognize alternative target sites.

  15. Cross index for improving cloning selectivity by partially filling in 5'-extensions of DNA produced by type II restriction endonucleases.

    PubMed Central

    Korch, C

    1987-01-01

    A cross index is presented for using the improved selectivity offered by the Hung and Wensink (Nucl. Acids Res. 12, 1863-1874, 1984) method of partially filling in 5'-extensions produced by type II restriction endonucleases. After this treatment, DNA fragments which normally cannot be ligated to one another, can be joined providing that complementary cohesive ends have been generated. The uses of this technique, which include the prevention of DNA fragments (both vector and insert) auto-annealing, are discussed. PMID:3033600

  16. [Definition of the specificity of DNA-methyltransferase M.Bsc4I in cell lysate by blocking of restriction endonucleases and computer modeling].

    PubMed

    Dedkov, V S

    2009-01-01

    The specificity of DNA-methyltransferase M.Bsc4I was defined in cellular lysate of Bacillus schlegelii 4. For this purpose, we used methylation sensitivity of restriction endonucleases, and also modeling of methylation. The modeling consisted in editing sequences of DNA using replacements of methylated bases and their complementary bases. The substratum DNA processed by M.Bsc4I also were used for studying sensitivity of some restriction endonucleases to methylation. Thus, it was shown that M.Bsc4I methylated 5'-Cm4CNNNNNNNGG-3' and the overlapped dcm-methylation blocked its activity. The offered approach can appear universal enough and simple for definition of specificity of DNA-methyltransferases.

  17. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  18. Selfish DNA: homing endonucleases find a home.

    PubMed

    Edgell, David R

    2009-02-10

    Self-splicing group I introns come in two flavours - those with a homing endonuclease to promote mobility of the intron, and those without an endonuclease. How homing endonucleases and self-splicing introns associate to form a composite selfish genetic element is a question of long-standing interest. Recent work has revealed that a shared characteristic of both introns and endonucleases, the targeting of conserved sequences, may provide the impetus for the evolution of composite mobile genetic elements.

  19. DNA Nucleotide Sequence Restricted by the RI Endonuclease

    PubMed Central

    Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.

    1972-01-01

    The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974

  20. A Sequence-Specific Nicking Endonuclease from Streptomyces: Purification, Physical and Catalytic Properties

    PubMed Central

    Somyoonsap, Peechapack; Kitpreechavanich, Vichein

    2013-01-01

    A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg2+ as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease. PMID:25937959

  1. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    PubMed

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Problem-Solving Test: Restriction Endonuclease Mapping

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    The term "restriction endonuclease mapping" covers a number of related techniques used to identify specific restriction enzyme recognition sites on small DNA molecules. A method for restriction endonuclease mapping of a 1,000-basepair (bp)-long DNA molecule is described in the fictitious experiment of this test. The most important fact needed to…

  3. An electrochemiluminescence biosensor for endonuclease EcoRI detection.

    PubMed

    Li, Yingjie; Li, Yuqin; Wu, Yaoyu; Lu, Fushen; Chen, Yaowen; Gao, Wenhua

    2017-03-15

    Endonucleases cleavage of DNA plays an important role in biological and medicinal chemistry. This work was going to develop a reliable and sensitive electrochemiluminescent (ECL) biosensor for detecting endonucleases by using gold nanoparticles graphene composite (GNPs-graphene) as a signal amplifier. Firstly, the GNPs and graphene were simultaneously deposited on the glassy carbon electrode (GCE) by cyclic voltammetry. Then a stem DNA was anchored on the surface of GCE. And with a modifying DNA introduced into the electrode by DNA assembly, a strong ECL signal was obtained. After a DNA modified with ferrocene assembly to the stem DNA, the ECL signal had a sharp decrease due to the quench effect of ferrocene to and the biosensor comes into being a "off" state. With the effect of endonuclease, the ECL signal had a recovery because of the ferrocene being released and the biosensor formed a "on" state. Moreover, the recovery of ECL signal was related to the concentration of endonucleases. Combining specific defined DNA and endonuclease, this method has a potential to detect different endonucleases. In this work, we took the EcoRI as an example to identify the feasibility of ECL biosensor in applying in sensitive detection of endonucleases using a GNPs-graphene signal amplifier. Under optimal condition, the proposed biosensor obtained a low limit of detection (LOD) 5.6×10 -5 UmL -1 . And the stability, selectivity and reproducibility of the biosensor also were researched. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases

    PubMed Central

    Kurian, P.; Dunston, G.; Lindesay, J.

    2015-01-01

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme’s displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations—a possible signature of quantum entanglement—may be explained by such a mechanism. PMID:26682627

  6. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    PubMed

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.

    PubMed

    Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu

    2015-01-01

    DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. CNG site-specific and methyl-sensitive endonuclease WEN1 from wheat seedlings.

    PubMed

    Fedoreyeva, L I; Vanyushin, B F

    2011-06-01

    Endonuclease WEN1 with apparent molecular mass about 27 kDa isolated from cytoplasmic vesicular fraction of aging coleoptiles of wheat seedlings has expressed site specificity action. This is a first detection and isolation of a site-specific endonuclease from higher eukaryotes, in general, and higher plants, in particular. The enzyme hydrolyzes deoxyribooligonucleotides of different composition on CNG (N is G, A, C, or T) sites by splitting the phosphodiester bond between C and N nucleotide residues in CNG sequence independent from neighbor nucleotide context except for CCCG. WEN1 prefers to hydrolyze methylated λ phage DNA and double-stranded deoxyribooligonucleotides containing 5-methylcytosine sites (m(5)CAG, m(5)CTG) compared with unmethylated substrates. The enzyme is also able to hydrolyze single-stranded substrates, but in this case it splits unmethylated substrates predominantly. Detection in wheat seedlings of WEN1 endonuclease that is site specific, sensitive to the substrate methylation status, and modulated with S-adenosyl-L-methionine indicates that in higher plants restriction--modification systems or some of their elements, at least, may exist.

  9. A model of EcoRII restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Kubareva, E. A.; Shabarova, Z. A.

    1999-01-01

    To elucidate the mechanism of interaction of restriction endonuclease EcoRII with DNA, we studied by native gel electrophoresis the binding of this endonuclease to a set of synthetic DNA-duplexes containing the modified or canonical recognition sequence 5'-d(CCA/TGG)-3'. All binding substrate or substrate analogues tested could be divided into two major groups: (i) duplexes that, at the interaction with endonuclease EcoRII, form two types of stable complexes on native gel in the absence of Mg2+ cofactor; (ii) duplexes that form only one type of complex, observed both in the presence and absence of Mg2+. Unlike the latter, duplexes under the first group can be hydrolyzed by endonuclease. Data obtained suggest that the active complex is most likely formed by one protein subunit and one DNA recognition sequence. A model of EcoRII endonuclease action is presented.

  10. Expression, functionality, and localization of apurinic/apyrimidinic endonucleases in replicative and non-replicative forms of Trypanosoma cruzi.

    PubMed

    Sepúlveda, S; Valenzuela, L; Ponce, I; Sierra, S; Bahamondes, P; Ramirez, S; Rojas, V; Kemmerling, U; Galanti, N; Cabrera, G

    2014-02-01

    Trypanosoma cruzi is the etiological agent of Chagas disease. The parasite has to overcome oxidative damage by ROS/RNS all along its life cycle to survive and to establish a chronic infection. We propose that T. cruzi is able to survive, among other mechanisms of detoxification, by repair of its damaged DNA through activation of the DNA base excision repair (BER) pathway. BER is highly conserved in eukaryotes with apurinic/apirimidinic endonucleases (APEs) playing a fundamental role. Previous results showed that T. cruzi exposed to hydrogen peroxide and peroxinitrite significantly decreases its viability when co-incubated with methoxyamine, an AP endonuclease inhibitor. In this work the localization, expression and functionality of two T. cruzi APEs (TcAP1, Homo sapiens APE1 orthologous and TcAP2, orthologous to Homo sapiens APE2 and to Schizosaccaromyces pombe Apn2p) were determined. These enzymes are present and active in the two replicative parasite forms (epimastigotes and amastigotes) as well as in the non-replicative, infective trypomastigotes. TcAP1 and TcAP2 are located in the nucleus of epimastigotes and their expression is constitutive. Epimastigote AP endonucleases as well as recombinant TcAP1 and TcAP2 are inhibited by methoxyamine. Overexpression of TcAP1 increases epimastigotes viability when they are exposed to acute ROS/RNS attack. This protective effect is more evident when parasites are submitted to persistent ROS/RNS exposition, mimicking nature conditions. Our results confirm that the BER pathway is involved in T. cruzi resistance to DNA oxidative damage and points to the participation of DNA AP endonucleases in parasite survival. © 2013 Wiley Periodicals, Inc.

  11. Intramolecular electron transfer in cyanide bridged adducts comprising Ru(II)/Ru(III) tetracarboxylate and [Mn(I)(CO)(CN)((t)BuNC)(4)] units.

    PubMed

    Imhof, Wolfgang; Sterzik, Anke; Krieck, Sven; Schwierz, Markus; Hoffeld, Thomas; Spielberg, Eike T; Plass, Winfried; Patmore, Nathan

    2010-07-21

    Reaction of mixed valence ruthenium tetracarboxylates [Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)Cl] (R(1) = Me, R(2) = 2,4,6-(i)Pr-Ph or R(1) = R(2) = (t)Bu) with two equivalents of the octahedral manganese complex [Mn(I)(CO)(CN)((t)BuNC)(4)] leads to the formation of cyanide bridged heteronuclear coordination compounds of the general formula {[Ru(2)(II,III)(R(1)COO)(2)(R(2)COO)(2)][Mn(I)(CO)(CN)((t)BuNC)(4)](2)}Cl. In solution an intramolecular electron transfer from manganese towards the multiply bonded Ru(2) core occurs that is verified by EPR and IR spectroscopy, magnetic measurements and DFT calculations. Nevertheless, disproportionation of an initially formed {Mn(I)-Ru(2)(II,III)-Mn(I)}(+) adduct into {Mn(II)-Ru(2)(II,III)-Mn(I)}(2+) and {Mn(I)-Ru(2)(II,II)-Mn(I)} species cannot be completely ruled out.

  12. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection.

    PubMed

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  13. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection

    PubMed Central

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D.; Ndung'u, Thumbi

    2017-01-01

    ABSTRACT Immune control of viral infections is heavily dependent on helper CD4+ T cell function. However, the understanding of the contribution of HIV-specific CD4+ T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4+ T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4+ T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4+ T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4+ T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4+ T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4+ T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4+ T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4+ T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4+ T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  14. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    PubMed

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Mechanisms regulating enhanced HLA class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol

    PubMed Central

    RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL

    2015-01-01

    Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084

  16. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla.

    PubMed

    Stephen, Tom Li; Tikhonova, Anastasia; Riberdy, Janice M; Laufer, Terri M

    2009-11-01

    Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.

  17. Thermodynamics of DNA target site recognition by homing endonucleases

    PubMed Central

    Eastberg, Jennifer H.; Smith, Audrey McConnell; Zhao, Lei; Ashworth, Justin; Shen, Betty W.; Stoddard, Barry L.

    2007-01-01

    The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of ΔH and TΔS are not strongly correlated with the overall extent of DNA bending, unfavorable ΔHbinding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific ΔSbinding. PMID:17947319

  18. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.

    PubMed

    Morrish, Tammy A; Garcia-Perez, José Luis; Stamato, Thomas D; Taccioli, Guillermo E; Sekiguchi, JoAnn; Moran, John V

    2007-03-08

    Long interspersed element-1 (LINE-1 or L1) elements are abundant, non-long-terminal-repeat (non-LTR) retrotransposons that comprise approximately 17% of human DNA. The average human genome contains approximately 80-100 retrotransposition-competent L1s (ref. 2), and they mobilize by a process that uses both the L1 endonuclease and reverse transcriptase, termed target-site primed reverse transcription. We have previously reported an efficient, endonuclease-independent L1 retrotransposition pathway (EN(i)) in certain Chinese hamster ovary (CHO) cell lines that are defective in the non-homologous end-joining (NHEJ) pathway of DNA double-strand-break repair. Here we have characterized EN(i) retrotransposition events generated in V3 CHO cells, which are deficient in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and have both dysfunctional telomeres and an NHEJ defect. Notably, approximately 30% of EN(i) retrotransposition events insert in an orientation-specific manner adjacent to a perfect telomere repeat (5'-TTAGGG-3'). Similar insertions were not detected among EN(i) retrotransposition events generated in controls or in XR-1 CHO cells deficient for XRCC4, an NHEJ factor that is required for DNA ligation but has no known function in telomere maintenance. Furthermore, transient expression of a dominant-negative allele of human TRF2 (also called TERF2) in XRCC4-deficient XR-1 cells, which disrupts telomere capping, enables telomere-associated EN(i) retrotransposition events. These data indicate that L1s containing a disabled endonuclease can use dysfunctional telomeres as an integration substrate. The findings highlight similarities between the mechanism of EN(i) retrotransposition and the action of telomerase, because both processes can use a 3' OH for priming reverse transcription at either internal DNA lesions or chromosome ends. Thus, we propose that EN(i) retrotransposition is an ancestral mechanism of RNA-mediated DNA repair associated with non

  19. CD4 T Cells and Major Histocompatibility Complex Class II Expression Influence Worm Expulsion and Increased Intestinal Muscle Contraction during Trichinella spiralis Infection

    PubMed Central

    Vallance, Bruce A.; Galeazzi, Francesca; Collins, Stephen M.; Snider, Denis P.

    1999-01-01

    Expulsion of intestinal nematode parasites and the associated increased contraction by intestinal muscle are T cell dependent, since both are attenuated in athymic rodents. The CD4 T-cell subset has been strongly associated with worm expulsion; however, the relationship between these cells, antigen presentation, and worm expulsion is not definitive and the role of these factors in intestinal muscle hypercontractility has not been defined. We infected C57BL/6, athymic, CD4-deficient, CD8α-deficient, and major histocompatibility complex class II (MHC II)-deficient (C2d) mice with Trichinella spiralis larvae. We examined intestinal worm numbers, longitudinal muscle contraction, and MHC II expression. Numerous MHC II-positive cells were identified within the muscularis externa of infected but not uninfected C57BL/6 mice. C57BL/6 and CD8α-deficient mice developed large increases in muscle contraction, expelling the parasite by day 21. Athymic and C2d mice exhibited much smaller increases in muscle contraction and delayed parasite expulsion. CD4-deficient mice exhibited intermediate levels of muscle contraction and delayed parasite expulsion. To further examine the role of MHC II and CD4 T cells, we irradiated C2d mice and reconstituted them with C57BL/6 bone marrow alone or with C57BL/6 CD4 T cells. C57BL/6 bone marrow alone did not affect muscle function or worm expulsion in recipient C2d mice. Partial CD4 T-cell reconstitution was sufficient to restore increased muscle contraction but not worm expulsion. Thus, hematopoietic MHC II expression alone is insufficient for the development of muscle hypercontractility and worm expulsion, but the addition of even small numbers of CD4 T cells was sufficient to induce intestinal muscle pathophysiology. PMID:10531271

  20. CD4+ T cell-mediated rejection of MHC class II-positive tumor cells is dependent on antigen secretion and indirect presentation on host APCs.

    PubMed

    Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune

    2018-05-11

    Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.

  1. HLA Class II Defects in Burkitt Lymphoma: Bryostatin-1-Induced 17 kDa Protein Restores CD4+ T-Cell Recognition

    PubMed Central

    Hossain, Azim; God, Jason M.; Radwan, Faisal F. Y.; Amria, Shereen; Zhao, Dan; Bethard, Jennifer R.; Haque, Azizul

    2011-01-01

    While the defects in HLA class I-mediated Ag presentation by Burkitt lymphoma (BL) have been well documented, CD4+ T-cells are also poorly stimulated by HLA class II Ag presentation, and the reasons underlying this defect(s) have not yet been fully resolved. Here, we show that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. The observed defect was not associated with low levels of BL-expressed costimulatory molecules, as addition of external co-stimulation failed to result in BL-mediated CD4+ T-cell activation. We further demonstrate that BL cells express the components of the class II pathway, and the defect was not caused by faulty Ag/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Treatment of BL with broystatin-1, a potent modulator of protein kinase C, led to significant improvement of functional class II Ag presentation in BL. The restoration of immune recognition appeared to be linked with an increased expression of a 17 kDa peptidylprolyl-like protein. These results demonstrate the presence of a specific defect in HLA class II-mediated Ag presentation in BL and reveal that treatment with bryostatin-1 could lead to enhanced immunogenicity. PMID:22162713

  2. Unusual target site disruption by the rare-cutting HNH restriction endonuclease PacI

    PubMed Central

    Shen, Betty; Heiter, Daniel F.; Chan, Siu-Hong; Wang, Hua; Xu, Shuang-Yong; Morgan, Richard D.; Wilson, Geoffrey G.; Stoddard, Barry L.

    2010-01-01

    The crystal structure of the rare-cutting HNH restriction endonuclease PacI in complex with its eight base pair target recognition sequence 5'-TTAATTAA-3' has been determined to 1.9 Å resolution. The enzyme forms an extended homodimer, with each subunit containing two zinc-bound motifs surrounding a ββα-metal catalytic site. The latter is unusual in that a tyrosine residue likely initiates strand-cleavage. PacI dramatically distorts its target sequence from Watson-Crick duplex DNA basepairing, with every base separated from its original partner. Two bases on each strand are unpaired, four are engaged in non-canonical A:A and T:T base pairs, and the remaining two bases are matched with new Watson-Crick partners. This represents a highly unusual DNA binding mechanism for a restriction endonuclease, and implies that initial recognition of the target site might involve significantly different contacts from those visualized in the DNA-bound cocrystal structures. PMID:20541511

  3. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    PubMed Central

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  4. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases.

    PubMed

    Stephenson, F H; Ballard, B T; Boyer, H W; Rosenberg, J M; Greene, P J

    1989-12-21

    The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms.

  5. Mutations altering the cleavage specificity of a homing endonuclease

    PubMed Central

    Seligman, Lenny M.; Chisholm, Karen M.; Chevalier, Brett S.; Chadsey, Meggen S.; Edwards, Samuel T.; Savage, Jeremiah H.; Veillet, Adeline L.

    2002-01-01

    The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences. PMID:12202772

  6. Identification of ATM mutations using extended RT-PCR and restriction endonuclease fingerprinting, and elucidation of the repertoire of A-T mutations in Israel.

    PubMed

    Gilad, S; Khosravi, R; Harnik, R; Ziv, Y; Shkedy, D; Galanty, Y; Frydman, M; Levi, J; Sanal, O; Chessa, L; Smeets, D; Shiloh, Y; Bar-Shira, A

    1998-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, and radiation sensitivity. The responsible gene, ATM, has an extensive genomic structure and encodes a large transcript with a 9.2 kb open reading frame (ORF). A-T mutations are extremely variable and most of them are private. We streamlined a high throughput protocol for the search for ATM mutations. The entire ATM ORF is amplified in a single RT-PCR step requiring a minimal amount of RNA. The product can serve for numerous nested PCRs in which overlapping portions of the ORF are further amplified and subjected to restriction endonuclease fingerprinting (REF) analysis. Splicing errors are readily detectable during the initial amplification of each portion. Using this protocol, we identified 5 novel A-T mutations and completed the elucidation of the molecular basis of A-T in the Israeli population.

  7. Linear nicking endonuclease-mediated strand-displacement DNA amplification.

    PubMed

    Joneja, Aric; Huang, Xiaohua

    2011-07-01

    We describe a method for linear isothermal DNA amplification using nicking endonuclease-mediated strand displacement by a DNA polymerase. The nicking of one strand of a DNA target by the endonuclease produces a primer for the polymerase to initiate synthesis. As the polymerization proceeds, the downstream strand is displaced into a single-stranded form while the nicking site is also regenerated. The combined continuous repetitive action of nicking by the endonuclease and strand-displacement synthesis by the polymerase results in linear amplification of one strand of the DNA molecule. We demonstrate that DNA templates up to 5000 nucleotides can be linearly amplified using a nicking endonuclease with 7-bp recognition sequence and Sequenase version 2.0 in the presence of single-stranded DNA binding proteins. We also show that a mixture of three templates of 500, 1000, and 5000 nucleotides in length is linearly amplified with the original molar ratios of the templates preserved. Moreover, we demonstrate that a complex library of hydrodynamically sheared genomic DNA from bacteriophage lambda can be amplified linearly. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Linear nicking endonuclease-mediated strand displacement DNA amplification

    PubMed Central

    Joneja, Aric; Huang, Xiaohua

    2011-01-01

    We describe a method for linear isothermal DNA amplification using nicking endonuclease-mediated strand displacement by a DNA polymerase. The nicking of one strand of a DNA target by the endonuclease produces a primer for the polymerase to initiate synthesis. As the polymerization proceeds, the downstream strand is displaced into a single-stranded form while the nicking site is also regenerated. The combined continuous repetitive action of nicking by the endonuclease and strand displacement synthesis by the polymerase results in linear amplification of one strand of the DNA molecule. We demonstrate that DNA templates up to five thousand nucleotides can be linearly amplified using a nicking endonuclease with seven base-pair recognition sequence and Sequenase version 2.0 in the presence of single-stranded DNA binding proteins. We also show that a mixture of three templates of 500, 1000, and 5000 nucleotides in length are linearly amplified with the original molar ratios of the templates preserved. Moreover, we demonstrate that a complex library of hydrodynamically sheared genomic DNA from bacteriophage lambda can be amplified linearly. PMID:21342654

  9. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification.

    PubMed

    Li, Xia; Xu, Xiaowen; Song, Juan; Xue, Qingwang; Li, Chenzhong; Jiang, Wei

    2017-05-15

    T4 polynucleotide kinase (PNK) plays critical roles in regulating DNA phosphorylation modes during the repair of DNA lesions. The aberrant activity of T4 PNK has been proven to be associated with a variety of human pathologies. Sensitive detection of T4 PNK activity is critical to both clinical diagnosis and therapeutics. Herein, a background-eliminated fluorescence assay for sensitive detection of T4 PNK activity has been developed by multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification (HRCA). First, the streptavidin-magnetic nanobeads (MBs) were functionalized with the biotin modified hairpin probe (HP) with 3'-phosphoryl, forming multifunctional magnetic probes (HP-MBs). Then, in the presence of T4 PNK, the 3'-phosphoryl of HP-MBs was hydrolyzed to 3'-hydroxyl, thus serving as primers to initiate the polymerization extension and nicking endonuclease cleavage reaction. Next, the primers released from above "polymerization-nicking" cycles were separated out to trigger the subsequently HRCA process, producing plenty of dsDNA. Finally, the intercalating dye SYBR Green I (SG) was inserted into the dsDNA, generating enhanced fluorescence signals. In our design, the HP-MBs here serve together as the T4 PNK, DNA polymerase, and endonuclease recognition probe, and thus avoid the demands of utilizing multiple probes design. Moreover, it performed primary "polymerization-nicking" amplification and mediate secondary HRCA. In addition to, performing the separation function, the binding of HP-MBs and SG could be avoided while a low background was acquired. This method showed excellent sensitivity with a detection limit of 0.0436 mU/mL, and accomplished exceptional characterization T4 PNK activity in cell extracts, offering a powerful tool for biomedical research and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47 000 MW acid labile protein in CD4+ T-cell recognition

    PubMed Central

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-01-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4+ T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4+ T cells via the HLA class II pathway. This defect in CD4+ T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4+ T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II–peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4+ T-cell recognition. Biochemical analysis showed that these molecules were greater than 30 000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47 000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies. PMID:24628049

  11. Bacteriophage T4 capsid packaging and unpackaging of DNA and proteins.

    PubMed

    Mullaney, Julienne M; Black, Lindsay W

    2014-01-01

    Bacteriophage T4 has proven itself readily amenable to phage-based DNA and protein packaging, expression, and display systems due to its physical resiliency and genomic flexibility. As a large dsDNA phage with dispensable internal proteins and dispensable outer capsid proteins it can be adapted to package both DNA and proteins of interest within the capsid and to display peptides and proteins externally on the capsid. A single 170 kb linear DNA, or single or multiple copies of shorter linear DNAs, of any sequence can be packaged by the large terminase subunit in vitro into protein-containing proheads and give full or partially full capsids. The prohead receptacles for DNA packaging can also display peptides or full-length proteins from capsid display proteins HOC and SOC. Our laboratory has also developed a protein expression, packaging, and processing (PEPP) system which we have found to have advantages over mammalian and bacterial cell systems, including high yield, increased stability, and simplified downstream processing. Proteins that we have produced by the phage PEPP platform include human HIV-1 protease, micrococcal endonuclease from Staphylococcus aureus, restriction endonuclease EcoRI, luciferase, human granulocyte colony stimulating factor (GCSF), green fluorescent protein (GFP), and the 99 amino acid C-terminus of amyloid precursor protein (APP). Difficult to produce proteins that are toxic in mammalian protein expression systems are easily produced, packaged, and processed with the PEPP platform. APP is one example of such a highly refractory protein that has been produced successfully. The methods below describe the procedures for in vitro packaging of proheads with DNA and for producing recombinant T4 phage that carry a gene of interest in the phage genome and produce and internally package the corresponding protein of interest.

  12. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease

    USDA-ARS?s Scientific Manuscript database

    The Cas9 endonuclease of the Type II-a clustered regularly interspersed short palindromic repeats (CRISPR), of Streptococcus pyogenes (SpCas9) has been adapted as a widely used tool for genome editing and genome engineering. Herein, we describe a gene encoding a novel Cas9 ortholog (BpsuCas9) and th...

  13. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12.

    PubMed

    Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro

    2005-08-01

    When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-gamma. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8(+) T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-gamma produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells.

  14. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12

    PubMed Central

    Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro

    2005-01-01

    When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-γ. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8+ T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-γ produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells. PMID:16011514

  15. CgII cleaves DNA using a mechanism distinct from other ATP-dependent restriction endonucleases

    PubMed Central

    Toliusis, Paulius; Silanskas, Arunas; Szczelkun, Mark D.

    2017-01-01

    Abstract The restriction endonuclease CglI from Corynebacterium glutamicum recognizes an asymmetric 5′-GCCGC-3′ site and cleaves the DNA 7 and 6/7 nucleotides downstream on the top and bottom DNA strands, respectively, in an NTP-hydrolysis dependent reaction. CglI is composed of two different proteins: an endonuclease (R.CglI) and a DEAD-family helicase-like ATPase (H.CglI). These subunits form a heterotetrameric complex with R2H2 stoichiometry. However, the R2H2·CglI complex has only one nuclease active site sufficient to cut one DNA strand suggesting that two complexes are required to introduce a double strand break. Here, we report studies to evaluate the DNA cleavage mechanism of CglI. Using one- and two-site circular DNA substrates we show that CglI does not require two sites on the same DNA for optimal catalytic activity. However, one-site linear DNA is a poor substrate, supporting a mechanism where CglI complexes must communicate along the one-dimensional DNA contour before cleavage is activated. Based on experimental data, we propose that adenosine triphosphate (ATP) hydrolysis by CglI produces translocation on DNA preferentially in a downstream direction from the target, although upstream translocation is also possible. Our results are consistent with a mechanism of CglI action that is distinct from that of other ATP-dependent restriction-modification enzymes. PMID:28854738

  16. CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury.

    PubMed

    Mathes, Denise; Weirather, Johannes; Nordbeck, Peter; Arias-Loza, Anahi-Paula; Burkard, Matthias; Pachel, Christina; Kerkau, Thomas; Beyersdorf, Niklas; Frantz, Stefan; Hofmann, Ulrich

    2016-12-01

    The present study analyzed the effect of CD4 + Forkhead box protein 3 negative (Foxp3 - ) T-cells and Foxp3 + CD4 + T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4 + T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4 + T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4 + T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4 + T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4 + T-cells in CD4 KO mice increased the infarct size only when including the Foxp3 + CD25 + subset. Depletion of CD4 + Foxp3 + T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CD4 + Foxp3 + T-cells enhance myocardial ischemia-reperfusion injury. CD4 + T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    PubMed

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  18. Hepatocyte‐induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up‐regulation on hepatocytes and suppressible by regulatory T cells

    PubMed Central

    DeTemple, Daphne E.; Oldhafer, Felix; Falk, Christine S.; Chen‐Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael

    2018-01-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune‐mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte‐induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+CD25highCD127low Tregs were added to cocultures in single‐/trans‐well setups with/without supplementation of anti‐interferon γ (IFNγ) antibodies. Hepatocyte‐induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ‐induced major histocompatibility complex (MHC) class II up‐regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up‐regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte‐induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up‐regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407–419 2018 AASLD. PMID:29365365

  19. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET.

    PubMed

    Tutkus, Marijonas; Sasnauskas, Giedrius; Rutkauskas, Danielis

    2017-12-01

    Many type II restriction endonucleases require two copies of their recognition sequence for optimal activity. Concomitant binding of two DNA sites by such an enzyme produces a DNA loop. Here we exploit single-molecule Förster resonance energy transfer (smFRET) of surface-immobilized DNA fragments to study the dynamics of DNA looping induced by tetrameric endonuclease NgoMIV. We have employed a DNA fragment with two NgoMIV recognition sites and a FRET dye pair such that upon protein-induced DNA looping the dyes are brought to close proximity resulting in a FRET signal. The dynamics of DNA-NgoMIV interactions proved to be heterogeneous, with individual smFRET trajectories exhibiting broadly different average looped state durations. Distinct types of the dynamics were attributed to different types of DNA-protein complexes, mediated either by one NgoMIV tetramer simultaneously bound to two specific sites ("slow" trajectories) or by semi-specific interactions of two DNA-bound NgoMIV tetramers ("fast" trajectories), as well as to conformational heterogeneity of individual NgoMIV molecules. © 2017 Wiley Periodicals, Inc.

  20. Hepatocyte-induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up-regulation on hepatocytes and suppressible by regulatory T cells.

    PubMed

    DeTemple, Daphne E; Oldhafer, Felix; Falk, Christine S; Chen-Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael; Vondran, Florian W R

    2018-03-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4 + CD25 high CD127 low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4 + T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8 + T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4 + T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD. © 2018 The Authors. Liver Transplantation published by Wiley Periodicals, Inc

  1. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenzamore » H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.« less

  2. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements

    PubMed Central

    Gogarten, J Peter; Hilario, Elena

    2006-01-01

    Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones

  3. Characterization of Sulfolobus islandicus rod-shaped virus 2 gp19, a single-strand specific endonuclease.

    PubMed

    Gardner, Andrew F; Prangishvili, David; Jack, William E

    2011-09-01

    The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg(2+) for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection.

  4. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Min-Suk; Kumar, Gyanendra; Shadrick, William R.

    The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. Furthermore, these mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containingmore » the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. When using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.« less

  5. Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor

    DOE PAGES

    Song, Min-Suk; Kumar, Gyanendra; Shadrick, William R.; ...

    2016-03-14

    The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. Furthermore, these mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containingmore » the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. When using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.« less

  6. Cloning and Characterization of a Wheat Homologue of Apurinic/Apyrimidinic Endonuclease Ape1L

    PubMed Central

    Grin, Inga R.; Zharkov, Dmitry O.; Ishenko, Alexander A.; Tudek, Barbara; Bissenbaev, Amangeldy K.; Saparbaev, Murat

    2014-01-01

    Background Apurinic/apyrimidinic (AP) endonucleases are key DNA repair enzymes involved in the base excision repair (BER) pathway. In BER, an AP endonuclease cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases and/or oxidative damage. A Triticum aestivum cDNA encoding for a putative homologue of ExoIII family AP endonucleases which includes E. coli Xth, human APE1 and Arabidopsis thaliana AtApe1L has been isolated and its protein product purified and characterized. Methodology/Principal Findings We report that the putative wheat AP endonuclease, referred here as TaApe1L, contains AP endonuclease, 3′-repair phosphodiesterase, 3′-phosphatase and 3′→5′ exonuclease activities. Surprisingly, in contrast to bacterial and human AP endonucleases, addition of Mg2+ and Ca2+ (5–10 mM) to the reaction mixture inhibited TaApe1L whereas the presence of Mn2+, Co2+ and Fe2+ cations (0.1–1.0 mM) strongly stimulated all its DNA repair activities. Optimization of the reaction conditions revealed that the wheat enzyme requires low divalent cation concentration (0.1 mM), mildly acidic pH (6–7), low ionic strength (20 mM KCl) and has a temperature optimum at around 20°C. The steady-state kinetic parameters of enzymatic reactions indicate that TaApe1L removes 3′-blocking sugar-phosphate and 3′-phosphate groups with good efficiency (k cat/K M = 630 and 485 μM−1·min−1, respectively) but possesses a very weak AP endonuclease activity as compared to the human homologue, APE1. Conclusions/Significance Taken together, these data establish the DNA substrate specificity of the wheat AP endonuclease and suggest its possible role in the repair of DNA damage generated by endogenous and environmental factors. PMID:24667595

  7. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Fulcher, F Kent; Smith, Bethany T; Russ, Misty; Patel, Yashomati M

    2008-10-15

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.

  8. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty

    2008-10-15

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform viamore » MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.« less

  9. Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer.

    PubMed

    Yahara, Koji; Fukuyo, Masaki; Sasaki, Akira; Kobayashi, Ichizo

    2009-11-03

    Homing endonuclease genes are "selfish" mobile genetic elements whose endonuclease promotes the spread of its own gene by creating a break at a specific target site and using the host machinery to repair the break by copying and inserting the gene at this site. Horizontal transfer across the boundary of a species or population within which mating takes place has been thought to be necessary for their evolutionary persistence. This is based on the assumption that they will become fixed in a host population, where opportunities of homing will disappear, and become susceptible to degeneration. To test this hypothesis, we modeled behavior of a homing endonuclease gene that moves during meiosis through double-strand break repair. We mathematically explored conditions for persistence of the homing endonuclease gene and elucidated their parameter dependence as phase diagrams. We found that, if the cost of the pseudogene is lower than that of the homing endonuclease gene, the 2 forms can persist in a population through autonomous periodic oscillation. If the cost of the pseudogene is higher, 2 types of dynamics appear that enable evolutionary persistence: bistability dependent on initial frequency or fixation irrespective of initial frequency. The prediction of long persistence in the absence of horizontal transfer was confirmed by stochastic simulations in finite populations. The average time to extinction of the endonuclease gene was found to be thousands of meiotic generations or more based on realistic parameter values. These results provide a solid theoretical basis for an understanding of these and other extremely selfish elements.

  10. Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer

    PubMed Central

    Yahara, Koji; Fukuyo, Masaki; Sasaki, Akira; Kobayashi, Ichizo

    2009-01-01

    Homing endonuclease genes are “selfish” mobile genetic elements whose endonuclease promotes the spread of its own gene by creating a break at a specific target site and using the host machinery to repair the break by copying and inserting the gene at this site. Horizontal transfer across the boundary of a species or population within which mating takes place has been thought to be necessary for their evolutionary persistence. This is based on the assumption that they will become fixed in a host population, where opportunities of homing will disappear, and become susceptible to degeneration. To test this hypothesis, we modeled behavior of a homing endonuclease gene that moves during meiosis through double-strand break repair. We mathematically explored conditions for persistence of the homing endonuclease gene and elucidated their parameter dependence as phase diagrams. We found that, if the cost of the pseudogene is lower than that of the homing endonuclease gene, the 2 forms can persist in a population through autonomous periodic oscillation. If the cost of the pseudogene is higher, 2 types of dynamics appear that enable evolutionary persistence: bistability dependent on initial frequency or fixation irrespective of initial frequency. The prediction of long persistence in the absence of horizontal transfer was confirmed by stochastic simulations in finite populations. The average time to extinction of the endonuclease gene was found to be thousands of meiotic generations or more based on realistic parameter values. These results provide a solid theoretical basis for an understanding of these and other extremely selfish elements. PMID:19837694

  11. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    PubMed

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction.

    PubMed

    Rouhani, Sherin J; Eccles, Jacob D; Riccardi, Priscila; Peske, J David; Tewalt, Eric F; Cohen, Jarish N; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H

    2015-04-10

    Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.

  13. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction

    PubMed Central

    Rouhani, Sherin J.; Eccles, Jacob D.; Riccardi, Priscila; Peske, J. David; Tewalt, Eric F.; Cohen, Jarish N.; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H.

    2015-01-01

    Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3. PMID:25857745

  14. Critical role of the tumor suppressor tuberous sclerosis complex 1 in dendritic cell activation of CD4 T cells by promoting MHC class II expression via IRF4 and CIITA.

    PubMed

    Pan, Hongjie; O'Brien, Thomas F; Wright, Gabriela; Yang, Jialong; Shin, Jinwook; Wright, Kenneth L; Zhong, Xiao-Ping

    2013-07-15

    Dendritic cell (DC) maturation is characterized by upregulation of cell-surface MHC class II (MHC-II) and costimulatory molecules, and production of a variety of cytokines that can shape both innate and adaptive immunity. Paradoxically, transcription of the MHC-II genes, as well as its activator, CIITA, is rapidly silenced during DC maturation. The mechanisms that control CIITA/MHC-II expression and silencing have not been fully understood. We report in this article that the tumor suppressor tuberous sclerosis complex 1 (TSC1) is a critical regulator of DC function for both innate and adaptive immunity. Its deficiency in DCs results in increased mammalian target of rapamycin (mTOR) complex 1 but decreased mTORC2 signaling, altered cytokine production, impaired CIITA/MHC-II expression, and defective Ag presentation to CD4 T cells after TLR4 stimulation. We demonstrate further that IFN regulatory factor 4 can directly bind to CIITA promoters, and decreased IFN regulatory factor 4 expression is partially responsible for decreased CIITA/MHC-II expression in TSC1-deficient DCs. Moreover, we identify that CIITA/MHC-II silencing during DC maturation requires mTOR complex 1 activity. Together, our data reveal unexpected roles of TSC1/mTOR that control multifaceted functions of DCs.

  15. Homing endonucleases: from basics to therapeutic applications.

    PubMed

    Marcaida, Maria J; Muñoz, Inés G; Blanco, Francisco J; Prieto, Jesús; Montoya, Guillermo

    2010-03-01

    Homing endonucleases (HE) are double-stranded DNAses that target large recognition sites (12-40 bp). HE-encoding sequences are usually embedded in either introns or inteins. Their recognition sites are extremely rare, with none or only a few of these sites present in a mammalian-sized genome. However, these enzymes, unlike standard restriction endonucleases, tolerate some sequence degeneracy within their recognition sequence. Several members of this enzyme family have been used as templates to engineer tools to cleave DNA sequences that differ from their original wild-type targets. These custom HEs can be used to stimulate double-strand break homologous recombination in cells, to induce the repair of defective genes with very low toxicity levels. The use of tailored HEs opens up new possibilities for gene therapy in patients with monogenic diseases that can be treated ex vivo. This review provides an overview of recent advances in this field.

  16. Generation of genetically-engineered animals using engineered endonucleases.

    PubMed

    Lee, Jong Geol; Sung, Young Hoon; Baek, In-Jeoung

    2018-05-17

    The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.

  17. Fragment-Based Identification of Influenza Endonuclease Inhibitors

    PubMed Central

    2016-01-01

    The influenza virus is responsible for millions of cases of severe illness annually. Yearly variance in the effectiveness of vaccination, coupled with emerging drug resistance, necessitates the development of new drugs to treat influenza infections. One attractive target is the RNA-dependent RNA polymerase PA subunit. Herein we report the development of inhibitors of influenza PA endonuclease derived from lead compounds identified from a metal-binding pharmacophore (MBP) library screen. Pyromeconic acid and derivatives thereof were found to be potent inhibitors of endonuclease. Guided by modeling and previously reported structural data, several sublibraries of molecules were elaborated from the MBP hits. Structure–activity relationships were established, and more potent molecules were designed and synthesized using fragment growth and fragment merging strategies. This approach ultimately resulted in the development of a lead compound with an IC50 value of 14 nM, which displayed an EC50 value of 2.1 μM against H1N1 influenza virus in MDCK cells. PMID:27291165

  18. A new restriction endonuclease from Citrobacter freundii

    PubMed Central

    Janulaitis, A.A.; Stakenas, P.S.; Lebedenko, E.N.; Berlin, Yu.A.

    1982-01-01

    CfrI, a new restriction endonuclease of unique substrate specificity, has been isolated from a Citrobacter freundii strain. The enzyme recognizes a degenerated sequence PyGGCCPu in double-strand DNA and cleaves it between Py and G residues to yield 5′ -protruding tetranucleotide ends GGCC. Images PMID:6294607

  19. The Helicobacter pylori HpyAXII restriction–modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components

    PubMed Central

    Humbert, Olivier; Salama, Nina R.

    2008-01-01

    The naturally competent organism Helicobacter pylori encodes a large number of restriction–modification (R–M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R–M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R–M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R–M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel ‘half pipe’ structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model. PMID:18978016

  20. Crystal structure of metallo DNA duplex containing consecutive Watson-Crick-like T-Hg(II)-T base pairs.

    PubMed

    Kondo, Jiro; Yamada, Tom; Hirose, Chika; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2014-02-24

    The metallo DNA duplex containing mercury-mediated T-T base pairs is an attractive biomacromolecular nanomaterial which can be applied to nanodevices such as ion sensors. Reported herein is the first crystal structure of a B-form DNA duplex containing two consecutive T-Hg(II)-T base pairs. The Hg(II) ion occupies the center between two T residues. The N3-Hg(II) bond distance is 2.0 Å. The relatively short Hg(II)-Hg(II) distance (3.3 Å) observed in consecutive T-Hg(II)-T base pairs suggests that the metallophilic attraction could exist between them and may stabilize the B-form double helix. To support this, the DNA duplex is largely distorted and adopts an unusual nonhelical conformation in the absence of Hg(II). The structure of the metallo DNA duplex itself and the Hg(II)-induced structural switching from the nonhelical form to the B-form provide the basis for structure-based design of metal-conjugated nucleic acid nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases.

    PubMed Central

    McClelland, M; Nelson, M; Raschke, E

    1994-01-01

    Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes. PMID:7937074

  2. Comparison of genomes of malignant catarrhal fever-associated herpesviruses by restriction endonuclease analysis.

    PubMed

    Shih, L M; Zee, Y C; Castro, A E

    1989-01-01

    The restriction endonuclease DNA cleavage patterns of eight isolates of malignant catarrhal fever-associated herpesviruses were examined using the restriction endonucleases HindIII and EcoRI. The eight viruses could be assigned to two distinct groups. Virus isolates from a blue wildebeest, a sika deer and an ibex had restriction endonuclease DNA cleavage patterns that were in general similar to each other. The restriction pattern of these three viruses was distinct from the other five. Of these five, four were isolated from a greater kudu, a white tailed wildebeest, a white bearded wildebeest, and a cape hartebeest. The fifth isolate C500, was isolated from a domestic cow with malignant catarrhal fever. These five viruses had similar DNA cleavage patterns.

  3. Endonuclease from Micrococcus luteus Which Has Activity Toward Ultraviolet-Irradiated Deoxyribonucleic Acid: Its Action on Transforming Deoxyribonucleic Acid

    PubMed Central

    Setlow, R. B.; Setlow, Jane K.; Carrier, W. L.

    1970-01-01

    An endonuclease purified from Micrococcus luteus makes single-strand breaks in ultraviolet (UV)-irradiated, native deoxyribonucleic acid (DNA). The purified endonuclease is able to reactivate UV-inactivated transforming DNA of Haemophilus influenzae, especially when the DNA is assayed on a UV-sensitive mutant of H. influenzae. After extensive endonuclease action, there is a loss of transforming DNA when assayed on both UV-sensitive and -resistant cells. The endonuclease does not affect unirradiated DNA. The results indicate that the endonuclease function is involved in the repair of biological damage resulting from UV irradiation and that the UV-sensitive mutant is deficient in this step. We interpret the data as indicating that the various steps in the repair of DNA must be well coordinated if repair is to be effective. PMID:4314478

  4. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.

    2012-05-15

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized bymore » interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.« less

  5. Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids

    NASA Astrophysics Data System (ADS)

    Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.

    2012-05-01

    Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.

  6. Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment.

    PubMed

    Martin, Bruno; Bécourt, Chantal; Bienvenu, Boris; Lucas, Bruno

    2006-07-01

    The role of self-recognition in the maintenance of the peripheral CD4+ T-cell pool has been extensively studied, but no clear answer has so far emerged. Indeed, in studies of the role of self-major histocompatibility complex (MHC) molecules in CD4+ T-cell survival, several parameters must be taken into account when interpreting the results: (1) in a lymphopenic environment, observations are biased by concomitant proliferation of T cells arising in MHC-expressing mice; (2) the peripheral T-cell compartment is qualitatively and quantitatively different in nonlymphopenic, normal, and MHC class II-deficient mice; and (3) in C57BL/6 Abeta(-/-) mice (traditionally considered MHC class II-deficient), the Aalpha chain and the Ebeta chain associate to form a hybrid AalphaEbeta MHC class II molecule. In light of these considerations, we revisited the role of interactions with MHC class II molecules in the survival of peripheral CD4+ T cells. We found that the answer to the question "is self-recognition required for CD4+ T cells to survive?" is not a simple yes or no. Indeed, although long-term survival of CD4+ T cells does not depend on self-recognition in lymphopenic mice, interactions with MHC class II molecules are required for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment.

  7. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    PubMed

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  8. Quantitative impact of thymic selection on Foxp3+ and Foxp3- subsets of self-peptide/MHC class II-specific CD4+ T cells.

    PubMed

    Moon, James J; Dash, Pradyot; Oguin, Thomas H; McClaren, Jennifer L; Chu, H Hamlet; Thomas, Paul G; Jenkins, Marc K

    2011-08-30

    It is currently thought that T cells with specificity for self-peptide/MHC (pMHC) ligands are deleted during thymic development, thereby preventing autoimmunity. In the case of CD4(+) T cells, what is unclear is the extent to which self-peptide/MHC class II (pMHCII)-specific T cells are deleted or become Foxp3(+) regulatory T cells. We addressed this issue by characterizing a natural polyclonal pMHCII-specific CD4(+) T-cell population in mice that either lacked or expressed the relevant antigen in a ubiquitous pattern. Mice expressing the antigen contained one-third the number of pMHCII-specific T cells as mice lacking the antigen, and the remaining cells exhibited low TCR avidity. In mice lacking the antigen, the pMHCII-specific T-cell population was dominated by phenotypically naive Foxp3(-) cells, but also contained a subset of Foxp3(+) regulatory cells. Both Foxp3(-) and Foxp3(+) pMHCII-specific T-cell numbers were reduced in mice expressing the antigen, but the Foxp3(+) subset was more resistant to changes in number and TCR repertoire. Therefore, thymic selection of self-pMHCII-specific CD4(+) T cells results in incomplete deletion within the normal polyclonal repertoire, especially among regulatory T cells.

  9. Cytokines affecting CD4+T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4+T regulatory cells.

    PubMed

    Nomura, Masaru; Hodgkinson, Suzanne J; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2017-06-01

    CD4 + T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4 + T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4 + T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4 + T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4 + T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4 + T cells. Tolerant CD4 + CD25 + T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4 + CD25 + T cells to third-party Lewis. Tolerant CD4 + CD25 + T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4 + CD25 + T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Enzymatic characterization of a class II lysyl-tRNA synthetase, LysS, from Myxococcus xanthus.

    PubMed

    Oka, Manami; Takegawa, Kaoru; Kimura, Yoshio

    2015-08-01

    Lysyl-tRNA synthetases efficiently produce diadenosine tetraphosphate (Ap4A) from lysyl-AMP with ATP in the absence of tRNA. We characterized recombinant class II lysyl-tRNA synthetase (LysS) from Myxococcus xanthus and found that it is monomeric and requires Mn(2+) for the synthesis of Ap4A. Surprisingly, Zn(2+) inhibited enzyme activity in the presence of Mn(2+). When incubated with ATP, Mn(2+), lysine, and inorganic pyrophosphatase, LysS first produced Ap4A and ADP, then converted Ap4A to diadenosine triphosphate (Ap3A), and finally converted Ap3A to ADP, the end product of the reaction. Recombinant LysS retained Ap4A synthase activity without lysine addition. Additionally, when incubated with Ap4A (minus pyrophosphatase), LysS converted Ap4A mainly ATP and AMP, or ADP in the presence or absence of lysine, respectively. These results demonstrate that M. xanthus LysS has different enzymatic properties from class II lysyl-tRNA synthetases previously reported. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels.

    PubMed

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-05-01

    There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB.

  12. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels

    PubMed Central

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-01-01

    Background: There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. Objective: To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Materials and Methods: Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. Results: The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. Conclusion: These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB. PMID:25013255

  13. Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major.

    PubMed

    Vidal, Antonio E; Harkiolaki, Maria; Gallego, Claribel; Castillo-Acosta, Victor M; Ruiz-Pérez, Luis M; Wilson, Keith; González-Pacanowska, Dolores

    2007-11-02

    Apurinic/apyrimidinic endonucleases initiate the repair of abasic sites produced either spontaneously, from attack of bases by reactive oxygen species or as intermediates during base excision repair. The catalytic properties and crystal structure of Leishmania major apurinic/apyrimidinic endonuclease are described and compared with those of human APE1 and bacterial exonuclease III. The purified enzyme is shown to possess apurinic/apyrimidinic endonuclease activity of the same order as eukaryotic and prokaryotic counterparts and an equally robust 3'-phosphodiesterase activity. Consistent with this, expression of the L. major endonuclease confers resistance to both methyl methane sulphonate and H2O2 in Escherichia coli repair-deficient mutants while expression of the human homologue only reverts methyl methane sulphonate sensitivity. Structural analyses and modelling of the enzyme-DNA complex demonstrates a high degree of conservation to previously characterized homologues, although subtle differences in the active site geometry might account for the high 3'-phosphodiesterase activity. Our results confirm that the L. major's enzyme is a key element in mediating repair of apurinic/apyrimidinic sites and 3'-blocked termini and therefore must play an important role in the survival of kinetoplastid parasites after exposure to the highly oxidative environment within the host macrophage.

  14. Antigen-specific and non-specific CD4{sup +} T cell recruitment and proliferation during influenza infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Timothy J.; Castrucci, Maria R.; Padrick, Ryan C.

    To track epitope-specific CD4{sup +} T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA{sub 323-339} epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA{sub II}, replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4{sup +} T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4{sup +} T cells were recruited to the infected lung both in the presence and absence of the OVA{submore » 323-339} epitope. These data show that, when primed, CD4{sup +} T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.« less

  15. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance

    PubMed Central

    van Oers, Johanna M. M.; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Sellers, Rani S.; Modrich, Paul; Scharff, Matthew D.; Edelmann, Winfried

    2010-01-01

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2−/− mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression. PMID:20624957

  16. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  17. Physiological numbers of CD4+ T cells generate weak recall responses following influenza virus challenge.

    PubMed

    Thomas, Paul G; Brown, Scott A; Morris, Melissa Y; Yue, Wen; So, Jenny; Reynolds, Cory; Webby, Richard J; Doherty, Peter C

    2010-02-15

    Naive and recall CD4(+) T cell responses were probed with recombinant influenza A viruses incorporating the OVA OT-II peptide. The extent of OT-II-specific CD4(+) T cell expansion was greater following primary exposure, with secondary challenge achieving no significant increase in numbers, despite higher precursor frequencies. Adoptive transfer experiments with OT-II TCR-transgenic T cells established that the predominant memory set is CD62L(hi), whereas the CD62L(lo) precursors make little contribution to the recall response. Unlike the situation described by other investigators, in which the transfer of very large numbers of in vitro-activated CD4 effectors can modify the disease process, providing CD62L(hi) or CD62L(lo) OT-II-specific T cells at physiological levels neither enhanced virus clearance nor altered clinical progression. Some confounding effects of the transgenic model were observed, with decreasing primary expansion efficiency correlating with greater numbers of transferred cells. This was associated with increased levels of mRNA for the proapoptotic molecule Bim in cells recovered following high-dose transfer. However, even with very low numbers of transferred cells, memory T cells did not expand significantly following secondary challenge. A similar result was recorded in mice primed and boosted to respond to an endogenous IA(b)-restricted epitope derived from the influenza virus hemagglutinin glycoprotein. Depletion of CD8(+) T cells during secondary challenge generated an increased accumulation of OT-II-specific T cells but only at the site of infection. Taken together, significant expansion was not a feature of these secondary influenza-specific CD4 T cell responses and the recall of memory did not enhance recovery.

  18. Ultraviolet B Exposure Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Expanding CD4+Foxp3+ Regulatory T Cells.

    PubMed

    Hayashi, Tomohiro; Sasaki, Naoto; Yamashita, Tomoya; Mizoguchi, Taiji; Emoto, Takuo; Amin, Hilman Zulkifli; Yodoi, Keiko; Matsumoto, Takuya; Kasahara, Kazuyuki; Yoshida, Naofumi; Tabata, Tokiko; Kitano, Naoki; Fukunaga, Atsushi; Nishigori, Chikako; Rikitake, Yoshiyuki; Hirata, Ken-Ichi

    2017-08-31

    Pathogenic immune responses are known to play an important role in abdominal aortic aneurysm (AAA) development. Ultraviolet B (UVB) irradiation has been demonstrated to have therapeutic potential not only for cutaneous diseases but also for systemic inflammatory diseases in mice by suppressing immunoinflammatory responses. We investigated the effect of UVB irradiation on experimental AAA. We used an angiotensin II-induced AAA model in apolipoprotein E-deficient mice fed a high-cholesterol diet. Mice aged 10 weeks were irradiated with 5 kJ/m 2 UVB once weekly for 6 weeks (UVB-irradiated, n=38; nonirradiated, n=42) and were euthanized for evaluation of AAA formation at 16 weeks. Overall, 93% of angiotensin II-infused mice developed AAA, with 60% mortality possibly because of aneurysm rupture. UVB irradiation significantly decreased the incidence (66%) and mortality (29%) of AAA ( P =0.004 and P =0.006, respectively). UVB-irradiated mice had significantly smaller diameter AAA ( P =0.008) and fewer inflammatory cells in the aortic aneurysm tissue than nonirradiated mice, along with systemic expansion of CD4 + Foxp3 + regulatory T cells and decreased effector CD4 + CD44 high CD62L low T cells in para-aortic lymph nodes. Genetic depletion of regulatory T cells abrogated these beneficial effects of UVB treatment, demonstrating a critical role of regulatory T cells. Our data suggest that UVB-dependent expansion of regulatory T cells has beneficial effects on experimental AAA and may provide a novel strategy for the treatment of AAA. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Isoguanine quartets formed by d(T4isoG4T4): tetraplex identification and stability.

    PubMed Central

    Seela, F; Wei, C; Melenewski, A

    1996-01-01

    The self-aggregation of the oligonucleotide d(T4isoG4T4) (1) is investigated. Based on ion exchange HPLC experiments and CD spectroscopy, a tetrameric structure is identified. This structure was formed in the presence of sodium ions and shows almost the same chromatographic mobility on ion exchange HPLC as d(T4G4T4) (2). The ratio of aggregate versus monomer is temperature dependent and the tetraplex of [d(T4isoG4T4)]4 is more stable than that of [d(T4G4T4)]4. A mixture of d(T4isoG4T4) and d(T4G4T4) forms mixed tetraplexes containing strands of d(T4isoG4T4) and d(T4G4T4). PMID:9016664

  20. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    PubMed

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Lucanthone and Its Derivative Hycanthone Inhibit Apurinic Endonuclease-1 (APE1) by Direct Protein Binding

    PubMed Central

    Naidu, Mamta D.; Agarwal, Rakhi; Pena, Louis A.; Cunha, Luis; Mezei, Mihaly; Shen, Min; Wilson, David M.; Liu, Yuan; Sanchez, Zina; Chaudhary, Pankaj; Wilson, Samuel H.; Waring, Michael J.

    2011-01-01

    Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC50 values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 µM and 80 nM, respectively. The KD values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e.g., TRIS and DMSO

  2. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing.

    PubMed

    Certo, Michael T; Morgan, Richard A

    2016-03-01

    Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.

  3. Salient Features of Endonuclease Platforms for Therapeutic Genome Editing

    PubMed Central

    Certo, Michael T; Morgan, Richard A

    2016-01-01

    Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications. PMID:26796671

  4. Syntheses, topological analyses, and NLO-active properties of new Cd(II)/M(II) (M = Ca, Sr) metal-organic frameworks based on R-isophthalic acids (R = H, OH, and t-Bu).

    PubMed

    Lin, Jian-Di; Wu, Shu-Ting; Li, Zhi-Hua; Du, Shao-Wu

    2010-11-28

    Solvothermal syntheses of Cd(NO(3))(2)·4H(2)O and R-isophthalic acids (R = H, OH and t-Bu) in the presence of Ca(II) or Sr(II) lead to four new three-dimensional Cd(II)/Ca(II) or Cd(II)/Sr(II) heterometallic frameworks: [CdCa(m-BDC)(2)(DMF)(2)] (1), [CdSr(2)(m-BDC)(2)(NO(3))(2)(DMF)(4)] (2), [CdCa(OH-m-BDC)(2)(H(2)O)(2)]·2Me(2)NH (3), and (Me(2)NH(2))(2)[Cd(2)Ca(Bu(t)-m-BDC)(4)] (4) (m-H(2)BDC = isophthalate, OH-m-H(2)BDC = 5-hydroxyisophthalate and Bu(t)-m-H(2)BDC = 5-butylisophthalate). All of these compounds except for 4 crystallize in acentric (or chiral) space groups and the bulk materials for 1 and 3 display strong powder SHG efficiencies, approximately 1.54 and 2.31 times than that of a potassium dihydrogen phosphate (KDP) powder. Topological analyses show that 1 and 2 have structures with sxb and dia topologies, respectively, while both 3 and 4 exhibit pcu topological nets when the metal carboxylate clusters are viewed as nodes. The fluorescence properties and thermal stabilities for these compounds are also investigated.

  5. Structure, Assembly, and DNA Packaging of the Bacteriophage T4 Head

    PubMed Central

    Black, Lindsay W.; Rao, Venigalla B.

    2014-01-01

    The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging

  6. The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway

    PubMed Central

    Gros, Laurent; Ishchenko, Alexander A.; Ide, Hiroshi; Elder, Rhoderick H.; Saparbaev, Murat K.

    2004-01-01

    In nucleotide incision repair (NIR), an endonuclease nicks oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to the repair of the remaining 5′-dangling modified nucleotide. This mechanistic feature is distinct from DNA glycosylase-mediated base excision repair. Here we report that Ape1, the major apurinic/apyrimidinic endonuclease in human cells, is the damage- specific endonuclease involved in NIR. We show that Ape1 incises DNA containing 5,6-dihydro-2′-deoxyuridine, 5,6-dihydrothymidine, 5-hydroxy-2′-deoxyuridine, alpha-2′-deoxyadenosine and alpha-thymidine adducts, generating 3′-hydroxyl and 5′-phosphate termini. The kinetic constants indicate that Ape1-catalysed NIR activity is highly efficient. The substrate specificity and protein conformation of Ape1 is modulated by MgCl2 concentrations, thus providing conditions under which NIR becomes a major activity in cell-free extracts. While the N-terminal region of Ape1 is not required for AP endonuclease function, we show that it regulates the NIR activity. The physiological relevance of the mammalian NIR pathway is discussed. PMID:14704345

  7. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    PubMed Central

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  8. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease.

    PubMed

    Rogacheva, Maria V; Manhart, Carol M; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-02-28

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.

  9. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    PubMed

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  10. Efficacy and safety of neoadjuvant chemotherapy with oxaliplatin, 5-fluorouracil, and levofolinate for T3 or T4 stage II/III rectal cancer: the FACT trial.

    PubMed

    Koike, Junichi; Funahashi, Kimihiko; Yoshimatsu, Kazuhiko; Yokomizo, Hajime; Kan, Hayato; Yamada, Takeshi; Ishida, Hideyuki; Ishibashi, Keiichiro; Saida, Yoshihisa; Enomoto, Toshiyuki; Katsumata, Kenji; Hisada, Masayuki; Hasegawa, Hirotoshi; Koda, Keiji; Ochiai, Takumi; Sakamoto, Kazuhiro; Shiokawa, Hiroyuki; Ogawa, Shimpei; Itabashi, Michio; Kameoka, Shingo

    2017-03-01

    A multicenter phase II clinical study was performed in patients with T3 or T4 stage II/III rectal cancer to evaluate the efficacy and safety of neoadjuvant chemotherapy with 5-fluorouracil, levofolinate, and oxaliplatin (mFOLFOX6). Patients received four 2-week cycles of mFOLFOX6 therapy (oxaliplatin at 85 mg/m 2  + leucovorin at 200 mg/m 2  + fluorouracil as a 400 mg/m 2 bolus followed by infusion of 2400 mg/m 2 over 46 h, all on Day 1). They were evaluated by computed tomography after completion of the fourth cycle. If there was no disease progression, two additional cycles were administered and then surgery was performed. Adjuvant chemotherapy was generally administered for 6 months using appropriate regimens at the discretion of the physician. mFOLFOX6 therapy was given to 52 patients with locally advanced rectal cancer. The preoperative response rate was 48.8% and the operation rate was 80.8%. Serious adverse events of Grade 3-4 were neutropenia (n = 5), leukopenia (n = 1), thrombocytopenia (n = 1), febrile neutropenia (n = 1), nausea (n = 1), vomiting (n = 1), and peripheral neuropathy (n = 2). The R0 resection rate, pathologic complete response rate, and sphincter preservation rate were 91.0, 11.9, and 73.8%, respectively. Postoperative complications were tolerable. The present results suggested that neoadjuvant therapy with mFOLFOX6 is safe and effective, representing a reasonable treatment option for locally advanced rectal cancer.

  11. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    PubMed

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Peculiarities of Crystallization of the Restriction Endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpove, Elizaveta; Pusey, M.arc L.

    1998-01-01

    Nucleases interfere with most standard molecular biology procedures. We have purified and crystallized the restriction endonuclease EcoRII, which belongs to the type II of restriction- modification enzyme, to study the protein crystallization process using a "non standard" macromolecule. A procedure for the purification of EcoRII was developed and 99% pure protein as determined by SDS PAGE electrophoresis obtained. Light scattering experiments were performed to assist in screening protein suitable crystallization conditions. The second virial coefficient was determined as a function of precipitating salt concentration, using sodium chloride, ammonium sulfate, and sodium sulfate. Small (maximum size approximately 0.2 mm) well shaped crystals have been obtained. Larger poorly formed crystals (ca 0.5 mm) have also been obtained, but we have been unable to mount them for diff-raction analysis due to their extreme fragility. Crystallization experiments with PEG have shown that using this precipitant, the best crystals are obtained from slightly over-saturated solutions. Use of higher precipitant concentration leads to dendritic crystal formation. EcoRII is difficult to solubilize and meticulous attention must be paid to the presence of reducing agents.

  13. Studies of the Interaction of Influenza Virus RNA Polymerase PAN with Endonuclease Inhibitors.

    PubMed

    Dong, Li-Hua; Cao, Xiao-Rong

    2018-06-01

    Influenza virus is a major causative agent of respiratory viral infections, and RNA polymerase catalyzes its replication and transcription activities in infected cell nuclei. Since it is highly conserved in all virus strains, RNA polymerase becomes a key target of anti-influenza virus agents. Although experimental studies have revealed the good inhibitory activity of endonuclease inhibitors to RNA polymerase, the mechanism is still unclear. In this study, the docking and molecular dynamics simulations have been performed to explore the interaction of three kinds of endonuclease inhibitors with the subunit (PA N ) of RNA polymerase. Our calculations indicate that all these endonuclease inhibitors can bind to the binding pocket of PA N , in which the electronegative oxygen atoms of the inhibitors form a chelated structure with the two Mn 2+ cations of the active center. The most important interaction between these inhibitors and PA N is electrostatic interaction. The electron density of the chelate oxygen atoms determines the magnitude of the electrostatic energy, and the chelated structure and orientation of inhibitors depend largely on the distance between the chelate oxygen atoms.

  14. In Situ Detection of Autoreactive CD4 T Cells in Brain and Heart Using Major Histocompatibility Complex Class II Dextramers

    PubMed Central

    Massilamany, Chandirasegaran; Gangaplara, Arunakumar; Jia, Ting; Elowsky, Christian; Li, Qingsheng; Zhou, You; Reddy, Jay

    2014-01-01

    This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers+ cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IAs/PLP 139-151 dextramers (specific)/anti-CD4 and IAs/Theiler’s murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IAk/Myhc 334-352 dextramers/anti-CD4 and IAk/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer+ cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the ‘Z’ serial images. PMID:25145797

  15. Digital detection of endonuclease mediated gene disruption in the HIV provirus

    PubMed Central

    Sedlak, Ruth Hall; Liang, Shu; Niyonzima, Nixon; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Greninger, Alexander L.; Weber, Nicholas D.; Boissel, Sandrine; Scharenberg, Andrew M.; Cheng, Anqi; Magaret, Amalia; Bumgarner, Roger; Stone, Daniel; Jerome, Keith R.

    2016-01-01

    Genome editing by designer nucleases is a rapidly evolving technology utilized in a highly diverse set of research fields. Among all fields, the T7 endonuclease mismatch cleavage assay, or Surveyor assay, is the most commonly used tool to assess genomic editing by designer nucleases. This assay, while relatively easy to perform, provides only a semi-quantitative measure of mutation efficiency that lacks sensitivity and accuracy. We demonstrate a simple droplet digital PCR assay that quickly quantitates a range of indel mutations with detection as low as 0.02% mutant in a wild type background and precision (≤6%CV) and accuracy superior to either mismatch cleavage assay or clonal sequencing when compared to next-generation sequencing. The precision and simplicity of this assay will facilitate comparison of gene editing approaches and their optimization, accelerating progress in this rapidly-moving field. PMID:26829887

  16. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair

    PubMed Central

    Pluciennik, Anna; Dzantiev, Leonid; Iyer, Ravi R.; Constantin, Nicoleta; Kadyrov, Farid A.; Modrich, Paul

    2010-01-01

    MutLα (MLH1–PMS2) is a latent endonuclease that is activated in a mismatch-, MutSα-, proliferating cell nuclear antigen (PCNA)-, replication factor C (RFC)-, and ATP-dependent manner, with nuclease action directed to the heteroduplex strand that contains a preexisting break. RFC depletion experiments and use of linear DNAs indicate that RFC function in endonuclease activation is limited to PCNA loading. Whereas nicked circular heteroduplex DNA is a good substrate for PCNA loading and for endonuclease activation on the incised strand, covalently closed, relaxed circular DNA is a poor substrate for both reactions. However, covalently closed supercoiled or bubble-containing relaxed heteroduplexes, which do support PCNA loading, also support MutLα activation, but in this case cleavage strand bias is largely abolished. Based on these findings we suggest that PCNA has two roles in MutLα function: The clamp is required for endonuclease activation, an effect that apparently involves interaction of the two proteins, and by virtue of its loading orientation, PCNA determines the strand direction of MutLα incision. These results also provide a potential mechanism for activation of mismatch repair on nonreplicating DNA, an effect that may have implications for the somatic phase of triplet repeat expansion. PMID:20713735

  17. Modified Vaccinia Virus Ankara-Infected Dendritic Cells Present CD4+ T-Cell Epitopes by Endogenous Major Histocompatibility Complex Class II Presentation Pathways

    PubMed Central

    Thiele, Frank; Tao, Sha; Zhang, Yi; Muschaweckh, Andreas; Zollmann, Tina; Protzer, Ulrike; Abele, Rubert

    2014-01-01

    ABSTRACT CD4+ T lymphocytes play a central role in the immune system and mediate their function after recognition of their respective antigens presented on major histocompatibility complex II (MHCII) molecules on antigen-presenting cells (APCs). Conventionally, phagocytosed antigens are loaded on MHCII for stimulation of CD4+ T cells. Certain epitopes, however, can be processed directly from intracellular antigens and are presented on MHCII (endogenous MHCII presentation). Here we characterized the MHCII antigen presentation pathways that are possibly involved in the immune response upon vaccination with modified vaccinia virus Ankara (MVA), a promising live viral vaccine vector. We established CD4+ T-cell lines specific for MVA-derived epitopes as tools for in vitro analysis of MHCII antigen processing and presentation in MVA-infected APCs. We provide evidence that infected APCs are able to directly transfer endogenous viral proteins into the MHCII pathway to efficiently activate CD4+ T cells. By using knockout mice and chemical inhibitory compounds, we further elucidated the molecular basis, showing that among the various subcellular pathways investigated, proteasomes and autophagy are key players in the endogenous MHCII presentation during MVA infection. Interestingly, although proteasomal processing plays an important role, neither TAP nor LAMP-2 was found to be involved in the peptide transport. Defining the molecular mechanism of MHCII presentation during MVA infection provides a basis for improving MVA-based vaccination strategies by aiming for enhanced CD4+ T-cell activation by directing antigens into the responsible pathways. IMPORTANCE This work contributes significantly to our understanding of the immunogenic properties of pathogens by deciphering antigen processing pathways contributing to efficient activation of antigen-specific CD4+ T cells. We identified autophagosome formation, proteasomal activity, and lysosomal integrity as being crucial for

  18. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response

    PubMed Central

    Barinov, Aleksandr; Galgano, Alessia; Krenn, Gerald; Tanchot, Corinne; Vasseur, Florence

    2017-01-01

    CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation. PMID:28686740

  19. Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region.

    PubMed

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-03-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.

  20. Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

    PubMed Central

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-01-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991

  1. Defining the carbohydrate specificities of Abrus precatorius agglutinin as T (Gal beta 1----3GalNAc) greater than I/II (Gal beta 1----3/4GlcNAc).

    PubMed

    Wu, A M; Lin, S R; Chin, L K; Chow, L P; Lin, J Y

    1992-09-25

    The combining site of the nontoxic carbohydrate binding protein (Abrus precatorius agglutinin, APA) purified from the needs of Abrus precatorius (Jequirity bean), was studied by quantitative precipitin and precipitin-inhibition assays. Of 26 glycoproteins and polysaccharides tested, all, except sialic acid-containing glycoproteins and desialized ovine salivary glycoproteins, reacted strongly with the lectin, and precipitated over 70% of the lectin added, indicating that APA has a broad range of affinity and recognizes (internal) Gal beta 1----sequences of carbohydrate chains. The strong reaction with desialized porcine and rat salivary glycoproteins as well as pneumococcus type XIV polysaccharide suggests that APA has affinity for one or more of the following carbohydrate sequences: Thomsen-Friedenreich (T, Gal beta 1----3GalNAc), blood group precursor type I and/or type II (Gal beta 1----3/4GlcNAc) disaccharide determinants of complex carbohydrates. Among the oligosaccharides tested, the T structure was the best inhibitor; it was 2.4 and 3.2 times more active than type II and type I sequences, respectively. The blood group I Ma-active trisaccharide, Gal beta 1----4GlcNAc beta 1----6Gal, was about as active as the corresponding disaccharide (II). From the above results, we conclude that the size of the combining site of the A. precatorius agglutinin is probably as large as a disaccharide and most strongly complementary to the Gal beta 1----3GalNAc (T determinant) sequence. The carbohydrate specificities of this lectin will be further investigated once the related oligosaccharide structures become available.

  2. Theoretical Modeling of the Magnetic Behavior of Thiacalix[4]arene Tetranuclear Mn(II)2Gd(III)2 and Co(II)2Eu(III)2 Complexes.

    PubMed

    Aldoshin, Sergey M; Sanina, Nataliya A; Palii, Andrew V; Tsukerblat, Boris S

    2016-04-04

    In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.

  3. Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro

    PubMed Central

    McLaughlin, Kerry; Seago, Julian; Robinson, Lucy; Kelly, Charles; Charleston, Bryan

    2010-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock. PMID:20167197

  4. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers.

    PubMed

    Fonseca, A S; Campos, V M A; Magalhães, L A G; Paoli, F

    2015-10-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers.

  5. Nucleotide excision repair pathway assessment in DNA exposed to low-intensity red and infrared lasers

    PubMed Central

    Fonseca, A.S.; Campos, V.M.A.; Magalhães, L.A.G.; Paoli, F.

    2015-01-01

    Low-intensity lasers are used for prevention and management of oral mucositis induced by anticancer therapy, but the effectiveness of treatment depends on the genetic characteristics of affected cells. This study evaluated the survival and induction of filamentation of Escherichia coli cells deficient in the nucleotide excision repair pathway, and the action of T4endonuclease V on plasmid DNA exposed to low-intensity red and near-infrared laser light. Cultures of wild-type (strain AB1157) E. coli and strain AB1886 (deficient in uvrA protein) were exposed to red (660 nm) and infrared (808 nm) lasers at various fluences, powers and emission modes to study bacterial survival and filamentation. Also, plasmid DNA was exposed to laser light to study DNA lesions produced in vitro by T4endonuclease V. Low-intensity lasers:i) had no effect on survival of wild-type E. coli but decreased the survival of uvrA protein-deficient cells,ii) induced bacterial filamentation, iii) did not alter the electrophoretic profile of plasmids in agarose gels, andiv) did not alter the electrophoretic profile of plasmids incubated with T4 endonuclease V. These results increase our understanding of the effects of laser light on cells with various genetic characteristics, such as xeroderma pigmentosum cells deficient in nucleotide excision pathway activity in patients with mucositis treated by low-intensity lasers. PMID:26445337

  6. Immunophenotyping of rheumatoid arthritis reveals a linkage between HLA-DRB1 genotype, CXCR4 expression on memory CD4(+) T cells, and disease activity.

    PubMed

    Nagafuchi, Yasuo; Shoda, Hirofumi; Sumitomo, Shuji; Nakachi, Shinichiro; Kato, Rika; Tsuchida, Yumi; Tsuchiya, Haruka; Sakurai, Keiichi; Hanata, Norio; Tateishi, Shoko; Kanda, Hiroko; Ishigaki, Kazuyoshi; Okada, Yukinori; Suzuki, Akari; Kochi, Yuta; Fujio, Keishi; Yamamoto, Kazuhiko

    2016-07-07

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to destructive arthritis. Although the HLA class II locus is the strongest genetic risk factor for rheumatoid arthritis, the relationship between HLA class II alleles and lymphocyte activation remains unclear. We performed immunophenotyping of peripheral blood mononuclear cells on 91 HLA-DRB1-genotyped RA patients and 110 healthy donors. The frequency of memory CXCR4(+)CD4(+) T cells, and not Th1 and Th17 cells, was significantly associated with disease severity by multiple linear regression analysis. RA patients with one or more susceptible HLA-DR haplotypes (shared epitope: SE) displayed a significantly higher frequency of memory CXCR4(+)CD4(+) T cells. Moreover, the frequency of memory CXCR4(+)CD4(+) T cells significantly correlated with the expression level of HLA-DR on B cells, which was elevated in RA patients with SE. In vitro analysis and transcriptomic pathway analysis suggested that the interaction between HLA-DR and T cell receptors is an important regulator of memory CXCR4(+)CD4(+) T cells. Clinically, a higher frequency of memory CXCR4(+)CD4(+) T cells predicted a better response to CTLA4-Ig. Memory CXCR4(+)CD4(+) T cells may serve as a powerful biomarker for unraveling the linkage between HLA-DRB1 genotype and disease activity in RA.

  7. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*

    PubMed Central

    Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinert, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.

    2017-01-01

    Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks. PMID:28049724

  8. The binding of manganese(II) and zinc(II) to the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2. A 1H NMR study.

    PubMed

    Frøystein, N A; Sletten, E

    1991-03-01

    The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity.

  9. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome

    PubMed Central

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes. PMID:25482895

  10. Insights into the strategies used by related group II introns to adapt successfully for the colonisation of a bacterial genome.

    PubMed

    Martínez-Rodríguez, Laura; García-Rodríguez, Fernando M; Molina-Sánchez, María Dolores; Toro, Nicolás; Martínez-Abarca, Francisco

    2014-01-01

    Group II introns are self-splicing RNAs and site-specific mobile retroelements found in bacterial and organellar genomes. The group II intron RmInt1 is present at high copy number in Sinorhizobium meliloti species, and has a multifunctional intron-encoded protein (IEP) with reverse transcriptase/maturase activities, but lacking the DNA-binding and endonuclease domains. We characterized two RmInt1-related group II introns RmInt2 from S. meliloti strain GR4 and Sr.md.I1 from S. medicae strain WSM419 in terms of splicing and mobility activities. We used both wild-type and engineered intron-donor constructs based on ribozyme ΔORF-coding sequence derivatives, and we determined the DNA target requirements for RmInt2, the element most distantly related to RmInt1. The excision and mobility patterns of intron-donor constructs expressing different combinations of IEP and intron RNA provided experimental evidence for the co-operation of IEPs and intron RNAs from related elements in intron splicing and, in some cases, in intron homing. We were also able to identify the DNA target regions recognized by these IEPs lacking the DNA endonuclease domain. Our results provide new insight into the versatility of related group II introns and the possible co-operation between these elements to facilitate the colonization of bacterial genomes.

  11. In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis

    DTIC Science & Technology

    2016-01-01

    1 AWARD NUMBER: W81XWH-15-1-0004 TITLE: In-Depth Analysis of Citrulline-Specific CD4 T-Cells in Rheumatoid Arthritis PRINCIPAL INVESTIGATOR...present in rheumatoid arthritis (RA) patients exhibit a distinct cell surface phenotype and transcriptional signature that could be used to predict...and are on track to achieve our Year 2 goals 15. SUBJECT TERMS Rheumatoid arthritis ; CD4 T cells; citrulline; HLA class II tetramers; RNAseq

  12. Enhanced Vaccine-Induced CD8+ T Cell Responses to Malaria Antigen ME-TRAP by Fusion to MHC Class II Invariant Chain

    PubMed Central

    Spencer, Alexandra J.; Cottingham, Matthew G.; Jenks, Jennifer A.; Longley, Rhea J.; Capone, Stefania; Colloca, Stefano; Folgori, Antonella; Cortese, Riccardo; Nicosia, Alfredo; Bregu, Migena; Hill, Adrian V. S.

    2014-01-01

    The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required. PMID:24945248

  13. Human Fanconi Anemia Complementation Group A Protein Stimulates the 5’ Flap Endonuclease Activity of FEN1

    PubMed Central

    Qian, Liangyue; Yuan, Fenghua; Rodriguez-Tello, Paola; Padgaonkar, Suyog; Zhang, Yanbin

    2013-01-01

    In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5’ flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5’ flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that regulation of FEN1 by FANCA contributes to the maintenance of genomic stability. PMID:24349332

  14. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage

    PubMed Central

    Fu, Haiqing; Martin, Melvenia M.; Regairaz, Marie; Huang, Liang; You, Yang; Lin, Chi-Mei; Ryan, Michael; Kim, RyangGuk; Shimura, Tsutomu; Pommier, Yves; Aladjem, Mirit I.

    2015-01-01

    The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81 deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81 deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins. PMID:25879486

  15. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans.

    PubMed

    Manhart, Carol M; Ni, Xiaodan; White, Martin A; Ortega, Joaquin; Surtees, Jennifer A; Alani, Eric

    2017-04-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

  16. LAG-3 Represents a Marker of CD4+ T Cells with Regulatory Activity in Patients with Bone Fracture.

    PubMed

    Wang, Jun; Ti, Yunfan; Wang, Yicun; Guo, Guodong; Jiang, Hui; Chang, Menghan; Qian, Hongbo; Zhao, Jianning; Sun, Guojing

    2018-04-19

    The lymphocyte activation gene 3 (LAG-3) is a CD4 homolog with binding affinity to MHC class II molecules. It is thought that LAG-3 exerts a bimodal function, such that co-ligation of LAG-3 and CD3 could deliver an inhibitory signal in conventional T cells, whereas, on regulatory T cells, LAG-3 expression could promote their inhibitory function. In this study, we investigated the role of LAG-3 expression on CD4 + T cells in patients with long bone fracture. We found that LAG-3 + cells represented approximately 13% of peripheral blood CD4 + T cells on average. Compared to LAG-3 - CD4 + T cells, LAG-3 + CD4 + T cells presented significantly higher Foxp3 and CTLA-4 expression. Directly ex vivo or with TCR stimulation, LAG-3 + CD4 + T cells expressed significantly higher levels of IL-10 and TGF-β than LAG-3 - CD4 + T cells. Interestingly, blocking the LAG-3-MHC class II interaction actually increased the IL-10 expression by LAG-3 + CD4 + T cells. The frequency of LAG-3 + CD4 + T cell was positively correlated with restoration of healthy bone function in long bone fracture patients. These results together suggested that LAG-3 is a marker of CD4 + T cells with regulatory function; at the same time, LAG-3 might have limited the full suppressive potential of Treg cells.

  17. Identification of potential influenza virus endonuclease inhibitors through virtual screening based on the 3D-QSAR model.

    PubMed

    Kim, J; Lee, C; Chong, Y

    2009-01-01

    Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q(2) = 0.763, r(2) = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.

  18. Sustained Benefit Lasting One Year from T4 Instead of T3-T4 Sympathectomy for Isolated Axillary Hyperhidrosis

    PubMed Central

    Munia, Marco Antonio S.; Wolosker, Nelson; Kaufmann, Paulo; de Campos, José Ribas Milanes; Puech-Leão, Pedro

    2008-01-01

    INTRODUCTION Level T4 video-assisted thoracoscopic sympathectomy proved superior to T3-T4 treatment for controlling axillary hyperhidrosis at the initial and six-month follow-ups of these patients. OBJECTIVE To compare the results of two levels of sympathectomy (T3-T4 vs. T4) for treating axillary sudoresis over one year of follow-up. METHODS Sixty-four patients with axillary hyperhidrosis were randomized to denervation of T3-T4 or T4 alone and followed prospectively. All patients were examined preoperatively and were followed postoperatively for one year. Axillary hyperhidrosis treatment was evaluated, along with the presence, location, and severity of compensatory hyperhidrosis and self-reported quality of life. RESULTS According to patient reports after one year, all cases of axillary hyperhidrosis were successfully treated by surgery. There were no instances of treatment failure. After six months, compensatory hyperhidrosis was present in 27 patients of the T3-T4 group (87.1%) and in 16 patients of the T4 group (48.5%). After one year, all T3-T4 patients experienced some degree of compensatory hyperhidrosis, compared to only 14 patients in the T4 group (42.4%). In addition, compensatory hyperhidrosis was less severe in the T4 patients (p < 0.01). Quality of life was poor before surgery, and it improved in both groups at six months and one year of follow-up (p = 0.002). There were no cases of mortality, no significant postoperative complications, and no need for conversion to thoracotomy in either group. CONCLUSION Both techniques were effective for treating axillary hyperhidrosis, but the T4 group showed milder compensatory hyperhidrosis and greater patient satisfaction at the one-year follow-up. PMID:19060999

  19. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    PubMed

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss

  20. Magnesium-dependent RNA binding to the PA endonuclease domain of the avian influenza polymerase.

    PubMed

    Xiao, Shiyan; Klein, Michael L; LeBard, David N; Levine, Benjamin G; Liang, Haojun; MacDermaid, Christopher M; Alfonso-Prieto, Mercedes

    2014-01-30

    Influenza A viruses are highly pathogenic and pose an unpredictable public health danger to humans. An attractive target for developing new antiviral drugs is the PA N-terminal domain (PAN) of influenza polymerase, which is responsible for the endonuclease activity and essential for viral replication. Recently, the crystal structures of the holo form of PAN as well as PAN bound to different inhibitors have been reported, but the potency and selectivity of these inhibitors still need to be improved. New drug design can be guided by a better understanding of the endonuclease activity of PAN. However, this requires the structure of PAN in complex with the host mRNA, which has not been determined yet. In particular, divalent metal ions are known to be essential for RNA cleavage, but it is not clear whether there is either one or two Mg ions in the PAN active site. In the present work, we have modeled the complex of the PAN endonuclease domain with the host mRNA in the presence of either one or two Mg(2+) by using all-atom molecular dynamics. These simulations identify crucial interactions between the enzyme and the nucleic acid. Moreover, they validate a previous hypothesis that a second metal ion binds in the presence of the RNA substrate and therefore support a two-metal ion mechanism, in which K134 decreases the pKa of the nucleophilic water. Nevertheless, at low Mg concentrations an alternative, one-metal ion mechanism is possible, with K137 as the catalytic lysine and H41 as the general base, rationalizing previous unexpected mutagenesis results. The RNA-enzyme interactions determined here could likely be used to design more specific endonuclease inhibitors to fight influenza viral infections.

  1. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  2. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans

    PubMed Central

    Manhart, Carol M.; Ni, Xiaodan; White, Martin A.; Ortega, Joaquin; Surtees, Jennifer A.

    2017-01-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker’s yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA. PMID:28453523

  3. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro . The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  4. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  5. Synthesis and characterization of T[Ni(CN){sub 4}].2pyz with T=Fe, Ni; pyz=pyrazine: Formation of T-pyz-Ni bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Institute of Materials Science and Technology, University of Havana

    2011-08-15

    The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN){sub 4}].2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN){sub 4}].2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Moessbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to amore » monoclinic structure (P2{sub 1}/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN){sub 4}].2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN){sub 4}] layer. In the paramagnetic region for Ni[Ni(CN){sub 4}].2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected. - Graphical abstract: Rippled sheets structure for the pillared solids T[Ni(CN){sub 4}].2pyz. The pyrazine molecule is found forming T-pyz-Ni bridges between neighboring layers. Highlights: > Pillared 2D solids. > Inorganic-organic solids. > Assembling of molecular blocks. > From 1D and 2D building blocks to 3D solids.« less

  6. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity.

    PubMed

    Gattuso, Hugo; Durand, Elodie; Bignon, Emmanuelle; Morell, Christophe; Georgakilas, Alexandros G; Dumont, Elise; Chipot, Christophe; Dehez, François; Monari, Antonio

    2016-10-06

    In the present contribution, the interaction between damaged DNA and repair enzymes is examined by means of molecular dynamics simulations. More specifically, we consider clustered abasic DNA lesions processed by the primary human apurinic/apyrimidinic (AP) endonuclease, APE1. Our results show that, in stark contrast with the corresponding bacterial endonucleases, human APE1 imposes strong geometrical constraints on the DNA duplex. As a consequence, the level of recognition and, hence, the repair rate is higher. Important features that guide the DNA/protein interactions are the presence of an extended positively charged region and of a molecular tweezers that strongly constrains DNA. Our results are on very good agreement with the experimentally determined repair rate of clustered abasic lesions. The lack of repair for one particular arrangement of the two abasic sites is also explained considering the peculiar destabilizing interaction between the recognition region and the second lesion, resulting in a partial opening of the molecular tweezers and, thus, a less stable complex. This contribution cogently establishes the molecular bases for the recognition and repair of clustered DNA lesions by means of human endonucleases.

  7. IUE observations of pre-main-sequence stars. I - Mg II and Ca II resonance line fluxes for T Tauri stars

    NASA Technical Reports Server (NTRS)

    Giampapa n, M. S.

    1981-01-01

    IUE satellite and Lick 3 m reflector image tube scanner measurements of the Mg II and Ca II resonance lines in a sample of T Tauri stars are the basis of a discussion of the Mg II h and k line emission and the Ca II H and K line emission, within the context of stellar chromospheres. Corroborative evidence is presented for the chromospheric origin of these resonance lines, and chromospheric radiative loss rates in the Mg II and Ca II resonance lines are derived. It is found that the degree of nonradiative heating present in the outer atmospheres of T Tauri stars generally exceeds that of the RS CVn systems, as well as the dMe stars and other active chromospheric dwarfs, and it is inferred that the surfaces of such pre-main sequence stars are covered by regions similar to solar plages. The mean chromospheric electron density of T Tauri stars is determined as 10 to the 11th/cu cm.

  8. Interaction of polyethyleneimine-anchored copper(II) complexes with tRNA studied by spectroscopy methods and biological activities.

    PubMed

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Gandi, Devadas A; Thirunalasundari, Thyagarajan; Vignesh, Sivanandham; James, Rathinam A

    2017-05-01

    Ultraviolet-visible, emission and circular dichroism spectroscopic methods were used in transfer RNA (tRNA) interaction studies performed for polyethyleneimine-copper(II) complexes [Cu(phen)(l-Tyr)BPEI]ClO 4 (where phen =1,10-phenanthroline, l-Tyr = l-tyrosine and BPEI = branched polyethyleneimine) with various degrees of coordination (x = 0.059, 0.149, 0.182) in the polymer chain. The results indicated that polyethyleneimine-copper(II) complexes bind with tRNA mostly through surface binding, although other binding modes, such as hydrogen bonding and van der Waals interactions, might also be present. Dye-exclusion, sulforhodamine B and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays of a polyethyleneimine-copper(II) complex with a higher degree of coordination against different cancer cell lines proved that the complex exhibited cytotoxic specificity and a significant cancer cell inhibition rate. Antimicrobial screening showed activity against some human pathogens. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Endonuclease G promotes mitochondrial genome cleavage and replication

    PubMed Central

    Wiehe, Rahel Stefanie; Gole, Boris; Chatre, Laurent; Walther, Paul; Calzia, Enrico; Ricchetti, Miria; Wiesmüller, Lisa

    2018-01-01

    Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis. PMID:29719607

  10. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication.

    PubMed

    Guan, Guohua; Pinochet-Barros, Azul; Gaballa, Ahmed; Patel, Sarju J; Argüello, José M; Helmann, John D

    2015-11-01

    Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4 -type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild-type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini-ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4 -type ATPases previously implicated in bacterial pathogenesis. © 2015 John Wiley & Sons Ltd.

  11. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    PubMed

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  12. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    PubMed

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londei, M.; Savill, C.M.; Verhoef, A.

    Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovialmore » tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis.« less

  14. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.

    PubMed

    Yang, Hui; Patel, Dinshaw J

    2017-07-06

    Prokaryotic CRISPR-Cas adaptive immune systems utilize sequence-specific RNA-guided endonucleases to defend against infection by viruses, bacteriophages, and mobile elements, while these foreign genetic elements evolve diverse anti-CRISPR proteins to overcome the CRISPR-Cas-mediated defense of the host. Recently, AcrIIA2 and AcrIIA4, encoded by Listeria monocytogene prophages, were shown to block the endonuclease activity of type II-A Streptococcus pyogene Cas9 (SpyCas9). We now report the crystal structure of AcrIIA4 in complex with single-guide RNA-bound SpyCas9, thereby establishing that AcrIIA4 preferentially targets critical residues essential for PAM duplex recognition, as well as blocks target DNA access to key catalytic residues lining the RuvC pocket. These structural insights, validated by biochemical assays on key mutants, demonstrate that AcrIIA4 competitively occupies both PAM-interacting and non-target DNA strand cleavage catalytic pockets. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms for inactivating SpyCas9, thereby broadening the applicability of CRISPR-Cas regulatory tools for genome editing. Published by Elsevier Inc.

  15. TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting

    PubMed Central

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308

  16. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.

    PubMed

    Lin, Jianfei; Chen, He; Luo, Ling; Lai, Yongrong; Xie, Wei; Kee, Kehkooi

    2015-01-01

    To correct a DNA mutation in the human genome for gene therapy, homology-directed repair (HDR) needs to be specific and have the lowest off-target effects to protect the human genome from deleterious mutations. Zinc finger nucleases, transcription activator-like effector nuclease (TALEN) and CRISPR-CAS9 systems have been engineered and used extensively to recognize and modify specific DNA sequences. Although TALEN and CRISPR/CAS9 could induce high levels of HDR in human cells, their genotoxicity was significantly higher. Here, we report the creation of a monomeric endonuclease that can recognize at least 33 bp by fusing the DNA-recognizing domain of TALEN (TALE) to a re-engineered homing endonuclease I-SceI. After sequentially re-engineering I-SceI to recognize 18 bp of the human β-globin sequence, the re-engineered I-SceI induced HDR in human cells. When the re-engineered I-SceI was fused to TALE (TALE-ISVB2), the chimeric endonuclease induced the same HDR rate at the human β-globin gene locus as that induced by TALEN, but significantly reduced genotoxicity. We further demonstrated that TALE-ISVB2 specifically targeted at the β-globin sequence in human hematopoietic stem cells. Therefore, this monomeric endonuclease has the potential to be used in therapeutic gene targeting in human cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. True and masked three-coordinate T-shaped platinum(II) intermediates.

    PubMed

    Ortuño, Manuel A; Conejero, Salvador; Lledós, Agustí

    2013-01-01

    Although four-coordinate square-planar geometries, with a formally 16-electron counting, are absolutely dominant in isolated Pt(II) complexes, three-coordinate, 14-electron Pt(II) complexes are believed to be key intermediates in a number of platinum-mediated organometallic transformations. Although very few authenticated three-coordinate Pt(II) complexes have been characterized, a much larger number of complexes can be described as operationally three-coordinate in a kinetic sense. In these compounds, which we have called masked T-shaped complexes, the fourth position is occupied by a very weak ligand (agostic bond, solvent molecule or counteranion), which can be easily displaced. This review summarizes the structural features of the true and masked T-shaped Pt(II) complexes reported so far and describes synthetic strategies employed for their formation. Moreover, recent experimental and theoretical reports are analyzed, which suggest the involvement of such intermediates in reaction mechanisms, particularly C-H bond-activation processes.

  18. Spectroscopic and mycological studies of Co(II), Ni(II) and Cu(II) complexes with 4-aminoantipyrine derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-10-01

    Complexes of the type [M(L)X 2], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.

  19. A domain in human EXOG converts apoptotic endonuclease to DNA-repair exonuclease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymanski, Michal R.; Yu, Wangsheng; Gmyrek, Aleksandra M.

    Human EXOG (hEXOG) is a 5'-exonuclease that is crucial for mitochondrial DNA repair; the enzyme belongs to a nonspecific nuclease family that includes the apoptotic endonuclease EndoG. Here we report biochemical and structural studies of hEXOG, including structures in its apo form and in a complex with DNA at 1.81 and 1.85 Å resolution, respectively. A Wing domain, absent in other ββα-Me members, suppresses endonuclease activity, but confers on hEXOG a strong 5'-dsDNA exonuclease activity that precisely excises a dinucleotide using an intrinsic ‘tape-measure’. The symmetrical apo hEXOG homodimer becomes asymmetrical upon binding to DNA, providing a structural basis formore » how substrate DNA bound to one active site allosterically regulates the activity of the other. These properties of hEXOG suggest a pathway for mitochondrial BER that provides an optimal substrate for subsequent gap-filling synthesis by DNA polymerase γ.« less

  20. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  1. Lipidated promiscuous peptide augments the expression of MHC-II molecules on dendritic cells and activates T cells

    PubMed Central

    Gowthaman, Uthaman; Rai, Pradeep K.; Zeng, Weiguang; Jackson, David C.; Agrewala, Javed N.

    2013-01-01

    Background & objectives: In spite of the fact that BCG is the most widely used vaccine, tuberculosis (TB) continues to be a major killer disease in TB-endemic regions. Recently, many emerging evidences from the published literature indicate the role of environmental mycobacteria in blocking the processing and presentation of BCG antigens and thereby impairing with suboptimal generation of protective T cells. To surmount this problem associated with BCG, we constructed a novel lipopeptide (L91) by conjugating a promiscuous peptide consisting of CD4+ T-helper epitope of sequence of 91-110 of 16 kDa antigen of Mycobacterium tuberculosis to Pam2Cys, an agonist of Toll-like receptor-2. Methods: Mice were immunized subcutaneously with 20 nmol of L91, followed by a booster with 10 nmol, after an interval of 21 days of primary immunization. Animals were sacrificed after seven days of post-booster immunization. L91 induced immune response was characterized by the expression of MHC-II and CD74 on the surface of dendritic cells (DCs) by flowcytometry. Cytokines (IL-4, IL-10, IFN-γ) secretion and anti-peptide antibodies were measured by ELISA. Results: Self-adjuvanting lipopeptide vaccine (L91) was directly bound to MHC-II molecules and without requiring extensive processing for its presentation to T cells. It stimulated and activated dendritic cells and augmented the expression of MHC-II molecules. Further, it activated effector CD4 T cells to mainly secrete interferon (IFN)-γ but not interleukin (IL)-4 and IL-10. L91 did not elicit anti-peptide antibodies. Interpretation & conclusions: The findings suggest that L91 evokes maturation and upregulation of MHC class II molecules and promotes better antigen presentation and, therefore, optimum activation of T cells. L91 mainly induces effector Th1 cells, as evidenced by predominant release of IFN-γ, consequently can mount favourable immune response against M. tuberculosis. As L91 does not provoke the generation of anti

  2. Tolerance induction of IgG+ memory B cells by T cell-independent type II antigens.

    PubMed

    Haniuda, Kei; Nojima, Takuya; Ohyama, Kyosuke; Kitamura, Daisuke

    2011-05-15

    Memory B cells generated during a T cell-dependent immune response rapidly respond to a secondary immunization by producing abundant IgG Abs that bind cognate Ag with high affinity. It is currently unclear whether this heightened recall response by memory B cells is due to augmented IgG-BCR signaling, which has only been demonstrated in the context of naive transgenic B cells. To address this question, we examined whether memory B cells can respond in vivo to Ags that stimulate only through BCR, namely T cell-independent type II (TI-II) Ags. In this study, we show that the TI-II Ag (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll cannot elicit the recall response in mice first immunized with the T cell-dependent Ag NP-chicken γ-globulin. Moreover, the NP-Ficoll challenge in vivo as well as in vitro significantly inhibits a subsequent recall response to NP-chicken γ-globulin in a B cell-intrinsic manner. This NP-Ficoll-mediated tolerance is caused by the preferential elimination of IgG(+) memory B cells binding to NP with high affinity. These data indicate that BCR cross-linking with a TI-II Ag does not activate IgG(+) memory B cells, but rather tolerizes them, identifying a terminal checkpoint of memory B cell differentiation that may prevent autoimmunity.

  3. The differentiation and protective function of cytolytic CD4 T cells in influenza infection

    USDA-ARS?s Scientific Manuscript database

    CD4 T cells that recognize peptide antigen in the context of Class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity play a role in chronic, as well as, acute infections...

  4. HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses

    PubMed Central

    Wang, Mingjun; Larsen, Mette V.; Nielsen, Morten; Harndahl, Mikkel; Justesen, Sune; Dziegiel, Morten H.; Buus, Søren; Tang, Sheila T.; Lund, Ole; Claesson, Mogens H.

    2010-01-01

    Background Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from influenza virus is of importance for the development of new effective peptide-based vaccines. Methodology/Principal Findings In the present work, bioinformatics was used to predict 9mer peptides derived from available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay. Influenza-specific T cell responses towards the peptides were quantified using IFNγ ELISPOT assays with peripheral blood mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that 8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC depleted of CD4+ or CD8+ T cells prior to the ELISPOT culture revealed that effectors are either CD4+ (the majority of reactivities) or CD8+ T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4+ T cells showed binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical assay. Conclusions/Significance HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4+ T cell responses restricted by HLA-II molecules. PMID:20479886

  5. Assigning Cytomegalovirus (CMV) Status in Children Awaiting Organ Transplant: Viral Shedding, CMV-Specific T-cells and CD27-CD28-CD4+ T-cells.

    PubMed

    Burton, Catherine E; Sester, Martina; Robinson, Joan L; Eurich, Dean T; Preiksaitis, Jutta K; Urschel, Simon

    2018-05-24

    Passive antibodies, maternal or transfusion-acquired, make serologic determination of pre-transplant cytomegalovirus (CMV) status unreliable. We evaluated 3 assays un-affected by passive antibodies, in assignment of CMV infection status in children awaiting solid organ transplant and in controls: i) CMV Nucleic Acid Amplification Testing (NAAT), quantification of ii) CMV-specific CD4+T-cells, and iii) CD27-CD28-CD4+T-cells. Our results highlight that CMV NAAT, from urine and oropharynx, is useful in confirming positive CMV status. Detection of CMV-specific CD4+T-cells was sensitive and specific in children >18 months but was less sensitive in children <12 months. CD27-CD28- CD4+T-cells are not likely useful in CMV risk-stratification in children.

  6. Purification and characterization of the restriction endonuclease RsrI, an isoschizomer of EcoRI.

    PubMed

    Greene, P J; Ballard, B T; Stephenson, F; Kohr, W J; Rodriguez, H; Rosenberg, J M; Boyer, H W

    1988-08-15

    Rhodobacter sphaeroides strain 630 produces restriction enzyme RsrI which is an isoschizomer of EcoRI. We have purified this enzyme and initiated a comparison with the EcoRI endonuclease. The properties of RsrI are consistent with a reaction mechanism similar to that of EcoRI: the position of cleavage within the -GAATTC-site is identical, the MgCl2 optimum for the cleavage is identical, and the pH profile is similar. Methylation of the substrate sequence by the EcoRI methylase protects the site from cleavage by the RsrI endonuclease. RsrI cross-reacts strongly with anti-EcoRI serum indicating three-dimensional structural similarities. We have determined the sequence of 34 N terminal amino acids for RsrI and this sequence possesses significant similarity to the EcoRI N terminus.

  7. Synthesis, Biological Evaluation and Structure-Activity Relationships of a Novel Class of Apurinic/Apyrimidinic Endonuclease 1 Inhibitors

    PubMed Central

    Rai, Ganesha; Vyjayanti, Vaddadi N.; Dorjsuren, Dorjbal; Simeonov, Anton; Jadhav, Ajit; Wilson, David M.; Maloney, David J.

    2012-01-01

    APE1 is an essential protein that operates in the base excision repair (BER) pathway and is responsible for ≥95% of the total apurinic/apyrimidinic (AP) endonuclease activity in human cells. BER is a major pathway that copes with DNA damage induced by several anti-cancer agents, including ionizing radiation and temozolomide. Overexpression of APE1 and enhanced AP endonuclease activity has been linked to increased resistance of tumor cells to treatment with monofunctional alkylators, implicating inhibition of APE1 as a valid strategy for cancer therapy. We report herein the results of a focused medicinal chemistry effort around a novel APE1 inhibitor, N-(3-(benzo[d]thiazol-2-yl)-6-isopropyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl)acetamide (3). Compound 3 and related analogs exhibit single-digit µM activity against the purified APE1 enzyme, comparable activity in HeLa whole cell extract assays, and potentiate the cytotoxicity of the alkylating agents methylmethane sulfonate and temozolomide. Moreover, this class of compounds possesses a generally favorable in vitro ADME profile, along with good exposure levels in plasma and brain following intraperitoneal dosing (30 mg/kg body weight) in mice. PMID:22455312

  8. Purification and characterization of an endonuclease from calf thymus acting on irradiated DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchetti, S.; Benne, R.

    1974-01-01

    An endonuclease acting on DNA exposed to ultraviolet light or gamma-rays was extensively purified from calf thymus. The enzyme has a pH optimum at pH 7.0 to 7.5, acts with equal efficiency in the presence of EDTA or divalent cations (Mg 2+ or Ca 2+), is inhibited by NaC1 and tRNA and is inactivated by incubation at 50 C. Its molecular weight, determined by Sephadex chromatography or SDS-gel electrophoresis, is + or - 30,000. The enzyme catalyzes the formation of single-strand breaks with 5'-phosphate termini in double-stranded DNA irradiated with ultraviolet or gamma-rays. It does not act on unirradiated DNAmore » or denatured DNA. The enzymatic activity on ultraviolet- and gamma-irradiated DNA is associated with the same protein. The site of action of the enzyme in ultraviolet-irradiated DNA is a photoproduct other than pyrimidine dimers, and can also be induced by irradiation of the DNA in vivo. (Author) (GRA)« less

  9. Simultaneous observations of Ca II K and Mg II k in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Calvet, N.; Basri, G.; Imhoff, C. L.; Giampapa, M. S.

    1985-01-01

    The first simultaneous, calibrated observations of the Ca II K and Mg II k resonance lines in T Tauri stars are presented. It is found that for T Tauri stars with mass greater than 1.5 solar mass, which have radiative cores and tend to be fast rotators, the k line seems to arise in an extended region (probably also responsible for the H-alpha emission), whereas the K line apparently originates closer to the highly inhomogeneous stellar surface. The lower mass stars, which are fully convective and tend to be slow rotators, are more easily described by a largely chromospheric model, consistent with main-sequence activity structures but at greater values of the nonradiative flux. The strongest emission-line stars in the low-mass group, however, are also likely to have extended k line regions.

  10. A detailed experimental study of a DNA computer with two endonucleases.

    PubMed

    Sakowski, Sebastian; Krasiński, Tadeusz; Sarnik, Joanna; Blasiak, Janusz; Waldmajer, Jacek; Poplawski, Tomasz

    2017-07-14

    Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro's group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity - increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effect of the number of states, the length of input data, and the nondeterminism on the computing process. We also tested different automata (with three, four, and six states) running on various accepted input words of different lengths such as ab, aab, aaab, ababa, and of an unaccepted word ba. Moreover, this article presents the reaction optimization and the methods of eliminating certain biochemical problems occurring in the implementation of a biomolecular DNA automaton based on two endonucleases.

  11. In vitro Peptide Immunization ofTargetTax Protein HumanT-Cell Leukemia Virus Type 1 – Specific CD4+ Helper T Lymphocytes

    PubMed Central

    Kobayashi, Hiroya; Ngato, Toshihiro; Sato, Keisuke; Aoki, Naoko; Kimura, Shoji; Tanaka, Yuetsu; Aizawa, Hitoshi; Tateno, Masatoshi; Celis, Esteban

    2006-01-01

    Purpose Adult T-cell leukemia/lymphoma induced by human T-cell leukemia virus type 1 (HTLV-1) is usually a fatal lymphoproliferative malignant disease. HTLV-1 Tax protein plays a critical role in HTLV-1-associated leukemogenesis and is an attractive target for vaccine development. Although HTLV-1Tax is the most dominant antigen for HTLV-1-specific CD8+ CTLs in HTLV-1-infected individuals, few epitopes recognized by CD4+ helper T lymphocytes in HTLV-1Tax protein have been described.The aim of the present study was to study T-helper-cell responses to HTLV-1 Tax and to identify naturally processed MHC class II – restricted epitopes that could be used for vaccine development. Experimental Design An MHC class II binding peptide algorithm was used to predict potential T-helper cell epitope peptides from HTLV-1 Tax. We assessed the ability of the corresponding peptides to elicit helper T-cell responses by in vitro vaccination of purified CD4+ T lymphocytes. Results Peptides Tax191–205 and Tax305–319 were effective in inducingT-helper-cell responses. Although Tax191–205 was restricted by the HLA-DR1 and DR9 alleles, responses to Tax305–319 were restricted by either DR15 or DQ9. Both these epitopes were found to be naturally processed by HTLV-1+ T-cell lymphoma cells and by autologous antigen-presenting cells that were pulsed with HTLV-1Tax+ tumor lysates. Notably, the two newly identified helper T-cell epitopes are found to lie proximal to known CTL epitopes, which will facilitate the development of prophylactic peptide – based vaccine capable of inducing simultaneous CTL andT-helper responses. Conclusion Our data suggest that HTLV-1 Tax protein could serve as tumor-associated antigen for CD4+ helper T cells and that the present epitopes might be used for T-cell-based immunotherapy against tumors expressing HTLV-1. PMID:16778109

  12. Subcellular distribution of Lck during CD4 T-cell maturation in the thymic medulla regulates the T-cell activation threshold.

    PubMed

    Stephen, Tom Li; Wilson, Bridget S; Laufer, Terri M

    2012-05-08

    Mature peripheral T cells respond to foreign but not to self-antigens. During development in the thymus, deletion of high-affinity self-reactive immature thymocytes contributes to tolerance of mature T cells. However, double-positive thymocytes are positively selected to survive if they respond to self-peptide-MHC complexes; thus, there must be mechanisms to prevent overt reactivity to those same complexes in the periphery. "Developmental tuning" is the active process through which T-cell receptor (TCR)-associated signaling pathways of single-positive (SP) thymocytes are attenuated to respond appropriately to self-peptide-MHC complexes in the periphery. We previously showed that MHC class II expression in the thymic medulla was necessary to tune CD4(+) SP (CD4 SP) thymocytes. CD4 SP thymocytes from mice lacking medullary MHC class II expression had inappropriately enhanced proximal TCR signaling to low-affinity self-ligands that was associated with altered cellular distribution of the tyrosine kinase Lck. Now, we report that activation of both tuned and untuned CD4 SP thymocytes is Lck-dependent. Untuned CD4 SP cells contain a pool of Lck with increased basal phosphorylation that is not associated with the CD4 coreceptor. Phosphorylation of this pool of Lck decreases with tuning. Immunogold transmission electron microscopy of membrane sheets permitted direct visualization of Lck. In the absence of tuning, a significant proportion of Lck and the TCR subunit CD3ζ are expressed on the same protein island; this close association of Lck and the TCR probably explains the enhanced activation of untuned CD4 SP cells. Thus, changes in membrane topography during thymic maturation determine the set point for TCR responsiveness.

  13. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II.

    PubMed

    Ilchmann, Anne; Burgdorf, Sven; Scheurer, Stephan; Waibler, Zoe; Nagai, Ryoji; Wellner, Anne; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Henle, Thomas; Kurts, Christian; Kalinke, Ulrich; Vieths, Stefan; Toda, Masako

    2010-01-01

    The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  14. CD4+ T-cell engagement by both wild-type and variant HCV peptides modulates the conversion of viral clearing helper T cells to Tregs

    PubMed Central

    Cusick, Matthew F; Libbey, Jane E; Cox Gill, Joan; Fujinami, Robert S; Eckels, David D

    2013-01-01

    Aim To determine whether modulation of T-cell responses by naturally occurring viral variants caused an increase in numbers of Tregs in HCV-infected patients. Patients, materials & methods Human peripheral blood mononuclear cells, having proliferative responses to a wild-type HCV-specific CD4+ T-cell epitope, were used to quantify, via proliferative assays, flow cytometry and class II tetramers, the effects of naturally occurring viral variants arising in the immunodominant epitope. Results In combination, the wild-type and variant peptides led to enhanced suppression of an anti-HCV T-cell response. The variant had a lower avidity for the wild-type-specific CD4+ T cell. Variant-stimulated CD4+ T cells had increased Foxp3, compared with wild-type-stimulated cells. Conclusion A stable viral variant from a chronic HCV subject was able to induce Tregs in multiple individuals that responded to the wild-type HCV-specific CD4+ T-cell epitope. PMID:24421862

  15. L-Asparaginase II Produced by Salmonella Typhimurium Inhibits T Cell Responses and Mediates Virulence

    PubMed Central

    Kullas, Amy L.; McClelland, Michael; Yang, Hee-Jeong; Tam, Jason W.; Torres, AnnMarie; Porwollik, Steffen; Mena, Patricio; McPhee, Joseph B.; Bogomolnaya, Lydia; Andrews-Polymenis, Helene; van der Velden, Adrianus W.M.

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses. PMID:23245323

  16. The Polyomavirus BK Large T-Antigen-Derived Peptide Elicits an HLA-DR Promiscuous and Polyfunctional CD4+ T-Cell Response▿

    PubMed Central

    Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S.

    2011-01-01

    BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+ T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+ T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols. PMID:21367979

  17. The polyomavirus BK large T-antigen-derived peptide elicits an HLA-DR promiscuous and polyfunctional CD4+ T-cell response.

    PubMed

    Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S

    2011-05-01

    BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4(+) T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4(+) T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.

  18. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells. © 2013 John Wiley & Sons Ltd.

  19. Induction of cross-priming of naive CD8+ T lymphocytes by recombinant bacillus Calmette-Guerin that secretes heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2009-11-15

    Because Mycobacterium bovis bacillus Calmette-Guérin (BCG) unconvincingly activates human naive CD8(+) T cells, a rBCG (BCG-70M) that secretes a fusion protein comprising BCG-derived heat shock protein (HSP)70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed to potentiate the ability of activating naive CD8(+) T cells through dendritic cells (DC). BCG-70M secreted HSP70-MMP-II fusion protein in vitro, which stimulated DC to produce IL-12p70 through TLR2. BCG-70M-infected DC activated not only memory and naive CD8(+) T cells, but also CD4(+) T cells of both types to produce IFN-gamma. The activation of these naive T cells by BCG-70M was dependent on the MHC and CD86 molecules on BCG-70M-infected DC, and was significantly inhibited by pretreatment of DC with chloroquine. Both brefeldin A and lactacystin significantly inhibited the activation of naive CD8(+) T cells by BCG-70M through DC. Thus, the CD8(+) T cell activation may be induced by cross-presentation of Ags through a TAP- and proteosome-dependent cytosolic pathway. When naive CD8(+) T cells were stimulated by BCG-70M-infected DC in the presence of naive CD4(+) T cells, CD62L(low)CD8(+) T cells and perforin-producing CD8(+) T cells were efficiently produced. MMP-II-reactive CD4(+) and CD8(+) memory T cells were efficiently produced in C57BL/6 mice by infection with BCG-70M. These results indicate that BCG-70M activated DC, CD4(+) T cells, and CD8(+) T cells, and the combination of HSP70 and MMP-II may be useful for inducing better T cell activation.

  20. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial.

    PubMed

    Ensoli, Barbara; Nchabeleng, Maphoshane; Ensoli, Fabrizio; Tripiciano, Antonella; Bellino, Stefania; Picconi, Orietta; Sgadari, Cecilia; Longo, Olimpia; Tavoschi, Lara; Joffe, Daniel; Cafaro, Aurelio; Francavilla, Vittorio; Moretti, Sonia; Pavone Cossut, Maria Rosaria; Collacchi, Barbara; Arancio, Angela; Paniccia, Giovanni; Casabianca, Anna; Magnani, Mauro; Buttò, Stefano; Levendal, Elise; Ndimande, John Velaphi; Asia, Bennett; Pillay, Yogan; Garaci, Enrico; Monini, Paolo

    2016-06-09

    Although combined antiretroviral therapy (cART) has saved millions of lives, it is incapable of full immune reconstitution and virus eradication. The transactivator of transcription (Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus replication and transmission. Tat is expressed and released extracellularly by infected cells also under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat antibodies represents a pathogenesis-driven intervention to block progression and to intensify cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. To assess whether B-clade Tat immunization would be effective also in patients with different genetic background and infecting virus, a phase II trial was conducted in South Africa. The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 μg) given intradermally, three times at 4-week intervals, in 200 HIV-infected adults on effective cART (randomised 1:1) with CD4(+) T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade anti-Tat antibodies, neutralization, CD4(+) T-cell counts and therapy compliance. Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-clade antibodies in 97 % vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and neutralized Tat-mediated entry of oligomeric B-clade and C-clade envelope in dendritic cells (24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat

  1. AtlasT4SS: a curated database for type IV secretion systems.

    PubMed

    Souza, Rangel C; del Rosario Quispe Saji, Guadalupe; Costa, Maiana O C; Netto, Diogo S; Lima, Nicholas C B; Klein, Cecília C; Vasconcelos, Ana Tereza R; Nicolás, Marisa F

    2012-08-09

    The type IV secretion system (T4SS) can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC) design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive), one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH) relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and evolutionary relationships: (i) F-T4SS, (ii) P-T4SS, (iii

  2. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    PubMed

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P < 0.05), and the correlation between Olive TM and reactive oxygen species was better than other parameters (r = 0.77, P < 0.05). This study indicates that FPG-comet assay

  3. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis

    PubMed Central

    Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.

    2016-01-01

    Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875

  4. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The Efficiency of Delone Coverings of the Canonical Tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) -> T^*(D6)

    NASA Astrophysics Data System (ADS)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering T}(*(A_4)}) -> C^sT^*(A4) of the 2-dimensional decagonal tiling T}(*(A_4)) -> T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6), T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  6. Homing endonuclease genes: the rise and fall and rise again of a selfish element.

    PubMed

    Burt, Austin; Koufopanou, Vassiliki

    2004-12-01

    Homing endonuclease genes (HEGs) are selfish genetic elements that spread by first cleaving chromosomes that do not contain them and then getting copied across to the broken chromosome as a byproduct of the repair process. The success of this strategy will depend on the opportunities for homing--in other words, the frequency with which HEG(+) and HEG(-) chromosomes come into contact--which varies widely among host taxa. HEGs are also unusual in that the selection pressure for endonuclease function disappears if they become fixed in a population, which makes them susceptible to degeneration and imposes a need for regular horizontal transmission between species. HEGs will be selected to reduce the harm done to the host organism, and this is expected to influence the evolution of their sequence specificity and maturase functions. HEGs may also be domesticated by their hosts, and are currently being put to human uses.

  7. Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms

    PubMed Central

    Taylor, Gregory K.; Stoddard, Barry L.

    2012-01-01

    Homing endonucleases (HEs) are highly specific DNA-cleaving enzymes that are encoded by invasive DNA elements (usually mobile introns or inteins) within the genomes of phage, bacteria, archea, protista and eukaryotic organelles. Six unique structural HE families, that collectively span four distinct nuclease catalytic motifs, have been characterized to date. Members of each family display structural homology and functional relationships to a wide variety of proteins from various organisms. The biological functions of those proteins are highly disparate and include non-specific DNA-degradation enzymes, restriction endonucleases, DNA-repair enzymes, resolvases, intron splicing factors and transcription factors. These relationships suggest that modern day HEs share common ancestors with proteins involved in genome fidelity, maintenance and gene expression. This review summarizes the results of structural studies of HEs and corresponding proteins from host organisms that have illustrated the manner in which these factors are related. PMID:22406833

  8. Mechanical Properties of Shock Treated Aluminium Alloy Al 2024-T4

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Mukhopadhyay, A. K.; Dey, A.; Rav, Amit S.; Biswas, S.; Gupta, Satish C.

    2012-07-01

    Plate impact experiment has been carried out on Al 2024-T4 alloy using single stage gas gun. The dynamic yield strength and spall strength of Al 2024-T4 sample has been determined to be 0.35 GPa and 1.43 GPa, respectively, from free surface velocity history measured using VISAR. The sample recovered after unloading from peak shock pressure of 4.4 GPa along with an unshocked sample is analyzed for mechanical properties using nano-indentation and scanning electron microscopy (SEM). The nano-indentation measurements reveal that the hardness and Young's modulus for unshocked sample remains unchanged as a function of load (equivalently depth), however, the same for shocked sample decreases monotonically with increase of load up to ~40 mN and on further increase of load it remains unchanged, suggesting the (i) increase in hardness of shock loaded sample; (ii) the increase in hardness is limited to certain depth, which in our case is 845.12 ± 43.16 nm.

  9. Control of Established Colon Cancer Xenografts Using a Novel Humanized Single Chain Antibody-Streptococcal Superantigen Fusion Protein Targeting the 5T4 Oncofetal Antigen

    PubMed Central

    Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661

  10. Treatment with cyclophosphamide supported by various dendritic cell-based vaccines induces diversification in CD4+ T cell response against MC38 colon carcinoma

    PubMed Central

    WOJAS-TUREK, JUSTYNA; SZCZYGIEŁ, AGNIESZKA; KICIELIŃSKA, JAGODA; ROSSOWSKA, JOANNA; PIASECKI, EGBERT; PAJTASZ-PIASECKA, ELŻBIETA

    2016-01-01

    The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/ Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue. Whereas, the division of these cell population in spleen was not observed. Depending on the nature of DC-based vaccines and number of their applications, both tumor infiltrating cells and spleen cells were able to produce various amount of IFN-γ, IL-4 and IL-10 after mitogenic ex vivo stimulation. The administration of CY followed by BM-DC/TAgTNF-α and genetically modified JAWS II cells, increased the percentage of CD4+T-bet+ and CD4+GATA3+ cells and decreased the percentage of CD4+RORγt+ and CD4+FoxP3+ lymphocytes. However, the most intensive response against tumor was noted after the ternary treatment with CY + BM-DC/TAgTNF-α + JAWS II/IL-2 cells. Thus, the administration of various DC-based vaccines was responsible for generation of the diversified antitumor response. These findings demonstrate that the determination of the size of particular CD4+ T cell subpopulations may become a prognostic factor and be the basis for future development of anticancer therapy. PMID:26648160

  11. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability

    PubMed Central

    Woodward, Jessica; Taylor, Gillian C.; Soares, Dinesh C.; Boyle, Shelagh; Sie, Daoud; Read, David; Chathoth, Keerthi; Vukovic, Milica; Tarrats, Nuria; Jamieson, David; Campbell, Kirsteen J.; Blyth, Karen; Acosta, Juan Carlos; Ylstra, Bauke; Arends, Mark J.; Kranc, Kamil R.; Jackson, Andrew P.; Bickmore, Wendy A.

    2016-01-01

    Chromosomal instability is a hallmark of cancer, but mitotic regulators are rarely mutated in tumors. Mutations in the condensin complexes, which restructure chromosomes to facilitate segregation during mitosis, are significantly enriched in cancer genomes, but experimental evidence implicating condensin dysfunction in tumorigenesis is lacking. We report that mice inheriting missense mutations in a condensin II subunit (Caph2nes) develop T-cell lymphoma. Before tumors develop, we found that the same Caph2 mutation impairs ploidy maintenance to a different extent in different hematopoietic cell types, with ploidy most severely perturbed at the CD4+CD8+ T-cell stage from which tumors initiate. Premalignant CD4+CD8+ T cells show persistent catenations during chromosome segregation, triggering DNA damage in diploid daughter cells and elevated ploidy. Genome sequencing revealed that Caph2 single-mutant tumors are near diploid but carry deletions spanning tumor suppressor genes, whereas P53 inactivation allowed Caph2 mutant cells with whole-chromosome gains and structural rearrangements to form highly aggressive disease. Together, our data challenge the view that mitotic chromosome formation is an invariant process during development and provide evidence that defective mitotic chromosome structure can promote tumorigenesis. PMID:27737961

  12. TCR revision generates functional CD4+ T cells.

    PubMed

    Hale, J Scott; Wubeshet, Maramawit; Fink, Pamela J

    2010-12-01

    CD4(+)Vβ5(+) peripheral T cells in C57BL/6 mice respond to encounter with a peripherally expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. Although postrevision CD4(+)Vβ5(-)TCRβ(+) T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli and thus may benefit the host. We demonstrate in this study that postrevision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ, and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, postrevision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of postrevision cells is not driven by the transgene-encoded receptor. Postrevision cells proliferate extensively to commensal bacterial Ags and can generate I-A(b)-restricted responses to Ag by producing IFN-γ following Listeria monocytogenes challenge. These data show that rescued postrevision T cells are responsive to homeostatic signals and recognize self- and foreign peptides in the context of self-MHC and are thus useful to the host.

  13. The RNA-induced silencing complex is a Mg2+-dependent endonuclease.

    PubMed

    Schwarz, Dianne S; Tomari, Yukihide; Zamore, Phillip D

    2004-05-04

    In the Drosophila and mammalian RNA interference (RNAi) pathways, target RNA destruction is catalyzed by the siRNA-guided, RNA-induced silencing complex (RISC). RISC has been proposed to be an siRNA-directed endonuclease, catalyzing cleavage of a single phosphodiester bond on the RNA target. Although 5' cleavage products are readily detected for RNAi in vitro, only 3' cleavage products have been observed in vivo. Proof that RISC acts as an endonuclease requires detection of both 5' and 3' cleavage products in a single experimental system. Here, we show that siRNA-programmed RISC generates both 5' and 3' cleavage products in vitro; cleavage requires Mg(2+), but not Ca(2+), and the cleavage product termini suggest a role for Mg(2+) in catalysis. Moreover, a single phosphorothioate in place of the scissile phosphate blocks cleavage; the phosphorothioate effect can be rescued by the thiophilic cation Mn(2+), but not by Ca(2+) or Mg(2+). We propose that during catalysis, a Mg(2+) ion is bound to the RNA substrate through a nonbridging oxygen of the scissile phosphate. The mechanism of endonucleolytic cleavage is not consistent with the mechanisms of the previously identified RISC nuclease, Tudor-SN. Thus, the RISC-component that mediates endonucleolytic cleavage of the target RNA remains to be identified.

  14. The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid - Synthesis and structural studies

    NASA Astrophysics Data System (ADS)

    Drzewiecka-Antonik, Aleksandra; Ferenc, Wiesława; Wolska, Anna; Klepka, Marcin T.; Cristóvão, Beata; Sarzyński, Jan; Rejmak, Paweł; Osypiuk, Dariusz

    2017-01-01

    The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were synthesized and structurally characterized. The geometry of metal-ligand interaction was refined using XAFS and DFT studies. The Co(2,4-D)2·6H2O and Ni(2,4-D)2·4H2O complexes have octahedral geometry with two carboxylate groups of 2,4-D anions and four water molecules in the coordination sphere. The square planar geometry around metal cations formed by the carboxylate groups from two monodentate ligands and two water molecules, is observed for Cu(2,4-D)2·4H2O complex. In the recrystallized Ni(II) complex dinuclear 'Chinese lantern' structures with bridging carboxylate groups of 2,4-D were observed.

  15. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea.

    PubMed

    Triques, Karine; Sturbois, Bénédicte; Gallais, Stéphane; Dalmais, Marion; Chauvin, Stéphanie; Clepet, Christian; Aubourg, Sébastien; Rameau, Catherine; Caboche, Michel; Bendahmane, Abdelhafid

    2007-09-01

    Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.

  16. Biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5.

    PubMed

    Wang, Yuxiao; Zhang, Likui; Zhu, Xinyuan; Li, Yuting; Shi, Haoqiang; Oger, Philippe; Yang, Zhihui

    2018-05-22

    Endonuclease V (Endo V) is an important enzyme for repairing deoxyinosine in DNA. While bacterial and eukaryotic endo Vs have been well studied, knowledge of archaeal endo Vs is limited. Here, we first presented biochemical characterization of a thermostable endonuclease V from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba endo V). The recombinant enzyme possessed optimal endonuclease activity for cleaving deoxyinosine-containing DNA at 70-90 °C. Furthermore, Tba endo V can withstand 100 °C for 120 min without significant loss of its activity, suggesting the enzyme is thermostable. Tba endo V exhibited varying cleavage efficiencies at various pH levels from 6.0 to 11.0, among which an optimal pH for the enzyme was 8.0-9.0. In addition, a divalent metal ion was required for the enzyme to cleave DNA. Mn 2+ and Mg 2+ were optimal ions for the enzyme's activity whereas Ca 2+ , Zn 2+ and Co 2+ inhibited the enzyme activity. Moreover, the enzyme activity was suppressed by high NaCl concentration. Tba endo V bound to all DNA substrates; however, the enzyme exhibited a higher affinity for binding to deoxyinosine-containing DNA than normal DNA. Our work provides valuable information for revealing the role of Tba endo V in the base excision repair pathway for deoxyinosine repair in Thermococcus. Copyright © 2018. Published by Elsevier B.V.

  17. Recent results of high p(T) physics at the CDF II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuno, Soushi; /Okayama U.

    2005-02-01

    The Tevatron Run II program has been in progress since 2001. The CDF experiment has accumulated roughly five times as much data as did Run I, with much improved detectors. Preliminary results from the CDF experiment are presented. The authors focus on recent high p{sub T} physics results in the Tevatron Run II program.

  18. Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo.

    PubMed

    Connor, Lisa M; Tang, Shiau-Choot; Camberis, Mali; Le Gros, Graham; Ronchese, Franca

    2014-09-15

    Dendritic cells (DC) are critical for the initiation of immune responses; however, their role in priming IL-4-producing Th2 cells in vivo is not fully understood. We used a model of intradermal injection with fluorescent-labeled, nonviable larvae from the helminth parasite nonviable Nippostrongylus brasiliensis L3 larvae (Nb), a strong inducer of Th2 responses, together with IL-4-GFP reporter mice that enable a sensitive detection of IL-4 production to examine the contribution of DC to the priming of IL-4-producing CD4(+) T cells in vivo. We found that parasite material is taken up by two distinct DC populations in draining lymph nodes: a mostly CD11c(int)MHC class II (MHCII)(hi)CD11b(+)Ly6C(-) dermal DC population and a CD11c(hi)MHCII(int)CD11b(+)Ly6C(+) monocyte-derived DC population. After Nb treatment, these two DC populations appeared in the draining lymph nodes in comparable numbers and with similar kinetics; however, treatment with pertussis toxin blocked the migration of dermal DC and the priming of IL-4-producing T cells, but only partially affected monocyte-derived DC numbers. In line with this observation, transfer of OVA-loaded CD11c(int)MHCII(hi) DC from Nb-treated mice into naive hosts could sensitize OVA-specific CD4(+) T cells to IL-4 production, whereas transfer of CD11c(int)MHCII(hi) DC from naive mice, or CD11c(hi)MHCII(int) DC from Nb-treated or naive mice, induced CD4(+) T cell expansion but no IL-4 production. Phenotypic analysis of Nb-loaded CD11c(int)MHCII(hi) DC revealed expression of programmed death ligand 2, CD301b, IFN regulatory factor 4, and moderate upregulation of OX40 ligand. However, thymic stromal lymphopoietin and OX40 ligand were not required for Th2 priming. Thus, our data suggest that appropriate stimuli can induce DC to express the unique signals sufficient to direct CD4(+) T cells to Th2 differentiation. Copyright © 2014 by The American Association of Immunologists, Inc.

  19. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    PubMed

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  20. The Enzymatic Release of O6-methylguanine and 3-methyladenine from DNA Reacted with the Carcinogen N-methyl-N-nitrosourea

    PubMed Central

    Kirtikar, D. M.; Goldthwait, D. A.

    1974-01-01

    Endonuclease II (deoxyribonucleate oligonucleotidohydrolase, EC 3.1.4.30) of Escherichia coli has been shown to break phosphodiester bonds in alkylated DNA and depurinated DNA. The hypothesis that depurination is a step in the mechanism of the reaction with alkylated DNA is supported by in vitro experiments with DNA reacted with N-methyl-N-nitrosourea. Endonuclease II releases O6-methylguanine and 3-methyladenine, but not 7-methylguanine, from DNA that has been methylated by the carcinogen N-methyl-N-nitrosourea. PMID:4600266

  1. Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease.

    PubMed

    Repanas, Kostas; Zingler, Nora; Layer, Liliana E; Schumann, Gerald G; Perrakis, Anastassis; Weichenrieder, Oliver

    2007-01-01

    The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for approximately 28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons.

  2. Structural and functional characterization of two unusual endonuclease III enzymes from Deinococcus radiodurans.

    PubMed

    Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin

    2015-08-01

    While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. T-6A Texan II Systems Engineering Case Study

    DTIC Science & Technology

    2010-01-01

    response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...Appendix C. T-6 Type Certificate Data Sheet….……………………………...……….....74 Appendix D. Amendment……………….………………...………………...………….….78 T-6A Texan II...DOCUMENT (SRD) ANTHROPOMETRY , REQUIRED VERSUS DESIRED

  4. Sensitive radioimmunoassay of total thyroxine (T4) in horses using a simple extraction method.

    PubMed

    Tangyuenyong, Siriwan; Nambo, Yasuo; Nagaoka, Kentaro; Tanaka, Tomomi; Watanabe, Gen

    2017-07-28

    Most thyroid hormone determinations in animals are based on immunoassays adapted from those used to test human samples, which may not reflect the actual values of thyroid hormone in horses because of the presence of binding proteins. The aims of the present study were i) to establish a novel radioimmunoassay (RIA) using a more simple and convenient method to separate binding proteins for the measurement of total thyroxine (T4) in horses and ii) to validate the assay by comparing total T4 concentrations in yearling horses raised in different climates. Blood samples were collected from trained yearlings in Hokkaido (temperate climate) and Miyazaki (subtropical climate) in Japan and from adult horses in estrus and diestrus. T4 was extracted from both serum and plasma using modified acid ethanol cryo-precipitation and sodium acetate ethanol methods. Circulating total T4 concentrations were determined by RIA. T4 concentration by sodium acetate ethanol was appropriately detectable rather than sodium salicylate method and was the same as for acid ethanol method. Furthermore, this sodium acetate ethanol method required fewer extraction steps than the other methods. Circulating T4 concentrations in yearlings were 225.98 ± 20.89 ng/ml, which was higher than the previous reference values. With respect to climate, T4 levels in Hokkaido yearlings tended to be higher than those in Miyazaki yearlings throughout the study period. These results indicated that this RIA protocol using a modified sodium acetate ethanol separation technique might be an appropriate tool for specific measurement of total T4 in horses.

  5. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI.

    PubMed

    Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V

    2014-08-01

    In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    PubMed

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  7. Endogenous antigen processing drives the primary CD4+ T cell response to influenza

    PubMed Central

    Miller, Michael A.; Ganesan, Asha Purnima V.; Luckashenak, Nancy; Mendonca, Mark; Eisenlohr, Laurence C.

    2015-01-01

    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with MHC class II molecules. Alternative pathways of epitope production have been identified but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome, and gamma-interferon inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses. PMID:26413780

  8. Interstrand disulfide crosslinking of DNA bases supports a double nucleotide unpairing mechanism for flap endonucleases.

    PubMed

    Beddows, Amanda; Patel, Nikesh; Finger, L David; Atack, John M; Williams, David M; Grasby, Jane A

    2012-09-14

    Flap endonucleases (FENs) are proposed to select their target phosphate diester by unpairing the two terminal nucleotides of duplex. Interstrand disulfide crosslinks, introduced by oxidation of thiouracil and thioguanine bases, abolished the specificity of human FEN1 for hydrolysis one nucleotide into the 5'-duplex.

  9. Nitric Oxide and KLF4 Protein Epigenetically Modify Class II Transactivator to Repress Major Histocompatibility Complex II Expression during Mycobacterium bovis Bacillus Calmette-Guérin Infection*

    PubMed Central

    Ghorpade, Devram Sampat; Holla, Sahana; Sinha, Akhauri Yash; Alagesan, Senthil Kumar; Balaji, Kithiganahalli Narayanaswamy

    2013-01-01

    Pathogenic mycobacteria employ several immune evasion strategies such as inhibition of class II transactivator (CIITA) and MHC-II expression, to survive and persist in host macrophages. However, precise roles for specific signaling components executing down-regulation of CIITA/MHC-II have not been adequately addressed. Here, we demonstrate that Mycobacterium bovis bacillus Calmette-Guérin (BCG)-mediated TLR2 signaling-induced iNOS/NO expression is obligatory for the suppression of IFN-γ-induced CIITA/MHC-II functions. Significantly, NOTCH/PKC/MAPK-triggered signaling cross-talk was found critical for iNOS/NO production. NO responsive recruitment of a bifunctional transcription factor, KLF4, to the promoter of CIITA during M. bovis BCG infection of macrophages was essential to orchestrate the epigenetic modifications mediated by histone methyltransferase EZH2 or miR-150 and thus calibrate CIITA/MHC-II expression. NO-dependent KLF4 regulated the processing and presentation of ovalbumin by infected macrophages to reactive T cells. Altogether, our study delineates a novel role for iNOS/NO/KLF4 in dictating the mycobacterial capacity to inhibit CIITA/MHC-II-mediated antigen presentation by infected macrophages and thereby elude immune surveillance. PMID:23733190

  10. Human CD4+ T-cell response to hepatitis delta virus: identification of multiple epitopes and characterization of T-helper cytokine profiles.

    PubMed Central

    Nisini, R; Paroli, M; Accapezzato, D; Bonino, F; Rosina, F; Santantonio, T; Sallusto, F; Amoroso, A; Houghton, M; Barnaba, V

    1997-01-01

    The T-cell-mediated immune response plays a crucial role in defense against hepatotropic viruses as well as in the pathogenesis of viral chronic hepatitides. However, very little is known about the role of specific T cells during hepatitis delta virus (HDV) infection in humans. In this study, the T-cell response to HDV in chronic hepatitis B virus (HBV) carriers with HDV superinfection was investigated at different levels. Analysis of peripheral blood mononuclear cell (PBMC) proliferation in response to a recombinant form of large hepatitis delta antigen (HDAg) revealed that 8 of 30 patients studied (27%) specifically responded to HDAg. By employing synthetic peptides spanning the entire HDAg sequence, we found that T-cell recognition was directed against different antigenic determinants, with patient-to-patient variation in the pattern of response to peptides. Interestingly, all responders had signs of inactive HDV-induced disease, while none of the patients with active disease and none of the control subjects showed any significant proliferation. More accurate information about the specific T-cell response was obtained at the clonal level. A panel of HDAg-specific CD4+ T-cell clones from three HDV-infected individuals and fine-specificity analysis revealed that the clones tested individually recognized four epitopes corresponding to amino acids (aa) 26 to 41, 50 to 65, 66 to 81, or 106 to 121 of HDAg sequence. The study of human leukocyte antigen (HLA) restriction revealed that peptides 50 to 65 and 106 to 121 were presented to specific T cells in association with multiple class II molecules. In addition, peptide 26 to 41 was efficiently generated after processing of HDAg through the endogenous processing pathway. Cytokine secretion analysis showed that all the CD4+ T-cell clones assayed were able to produce high levels of gamma interferon (IFN-gamma), belonging either to T helper-1 (Th1) or Th0 subsets and that some of them were cytotoxic in a specific assay

  11. Activating autoantibodies to the angiotensin II type I receptor play an important role in mediating hypertension in response to adoptive transfer of CD4+ T lymphocytes from placental ischemic rats.

    PubMed

    Novotny, Sarah Richards; Wallace, Kedra; Heath, Judith; Moseley, Janae; Dhillon, Pushpinder; Weimer, Abram; Wallukat, Gerd; Herse, Florian; Wenzel, Katrin; Martin, James N; Dechend, Ralf; Lamarca, Babbette

    2012-05-15

    Hypertension in rats with chronic placental ischemia (reduced uterine perfusion pressure, RUPP) is associated with elevated inflammatory cytokines, agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA) and CD4(+) T cells; all of which are elevated in preclamptic women. Additionally, we have shown that adoptive transfer of RUPP CD4(+) T cells increases blood pressure, inflammatory cytokines, and sFlt-1. The objective of this study was to determine the long-term effects of RUPP CD4(+) T cells on AT1-AA, renal and systemic hemodynamics in pregnant rats. To answer this question CD4(+) T splenocytes were magnetically isolated on day 19 of gestation from control RUPP and normal pregnant (NP) rats and injected into a new group of NP rats at day 13 of gestation. On day 19 of gestation mean arterial pressure (MAP) and renal function (glomerular filtration rates, GFR) were analyzed and serum collected for AT1-AA analysis. To determine a role for AT1-AA to mediate RUPP CD4(+) T cell-induced blood pressure increases, MAP was analyzed in a second group of rats treated with AT1 receptor blockade losartan (10 mg·kg(-1)·day(-1)) and in a third group of rats treated with rituximab, a B cell-depleting agent (250 mg/kg) we have shown previously to decrease AT1-AA production in RUPP rats. MAP increased from 101 ± 2 mmHg NP to 126 ± 2 mmHg in RUPP rats (P < 0.001) and to 123 ± 1 mmHg in NP rats injected with RUPP CD4(+) T cells (NP+RUPP CD4(+)T cells) (P < 0.001). Furthermore, GFR decreased from 2.2 ml/min (n = 7) in NP rats to 1.0 ml/min (n = 5) NP+RUPP CD4(+)T cell. Circulating AT1-AA increased from 0.22 ± 0.1 units in NP rats to 13 ± 0.7 (P < 0.001) units in NP+RUPP CD4(+)T cell-treated rats but decreased to 8.34 ± 1 beats/min in NP+RUPP CD4(+) T cells chronically treated with rituximab. Hypertension in NP+RUPP CD4(+)T cell group was attenuated by losartan (102 ± 4 mmHg) and with B cell depletion (101 ± 5 mmHg). Therefore, we conclude that one mechanism

  12. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant

    NASA Astrophysics Data System (ADS)

    Moe, Elin; Rollo, Filipe; Silveira, Célia M.; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2018-01-01

    Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII2). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex.

  13. Dominant Mutations in S. cerevisiae PMS1 Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway

    PubMed Central

    Smith, Catherine E.; Mendillo, Marc L.; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S.; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2013-01-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. PMID:24204293

  14. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    PubMed

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  15. T-4G Simulator and T-4 Ground Training Devices in USAF Undergraduate Pilot Training.

    ERIC Educational Resources Information Center

    Woodruff, Robert R.; Smith, James F.

    The objective of the project was to investigate the utility of using an A/F37A-T4G T-37 flight simulator within the context of Air Force undergraduate pilot training. Twenty-one subjects, selected from three undergraduate pilot training classes, were given contact flight training in a TP4G/EPT simulator before going to T-37 aircraft for further…

  16. Engagement of Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4) Induces Transforming Growth Factor β (TGF-β) Production by Murine CD4+ T Cells

    PubMed Central

    Chen, Wanjun; Jin, Wenwen; Wahl, Sharon M.

    1998-01-01

    Evidence indicates that cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) may negatively regulate T cell activation, but the basis for the inhibitory effect remains unknown. We report here that cross-linking of CTLA-4 induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. CD4+ T helper type 1 (Th1), Th2, and Th0 clones all secrete TGF-β after antibody cross-linking of CTLA-4, indicating that induction of TGF-β by CTLA-4 signaling represents a ubiquitous feature of murine CD4+ T cells. Stimulation of the CD3–T cell antigen receptor complex does not independently induce TGF-β, but is required for optimal CTLA-4–mediated TGF-β production. The consequences of cross-linking of CTLA-4, together with CD3 and CD28, include inhibition of T cell proliferation and interleukin (IL)-2 secretion, as well as suppression of both interferon γ (Th1) and IL-4 (Th2). Moreover, addition of anti–TGF-β partially reverses this T cell suppression. When CTLA-4 was cross-linked in T cell populations from TGF-β1 gene–deleted (TGF-β1−/−) mice, the T cell responses were only suppressed 38% compared with 95% in wild-type mice. Our data demonstrate that engagement of CTLA-4 leads to CD4+ T cell production of TGF-β, which, in part, contributes to the downregulation of T cell activation. CTLA-4, through TGF-β, may serve as a counterbalance for CD28 costimulation of IL-2 and CD4+ T cell activation. PMID:9815262

  17. The CD4(+) AT2R(+) T cell subpopulation improves post-infarction remodelling and restores cardiac function.

    PubMed

    Skorska, Anna; von Haehling, Stephan; Ludwig, Marion; Lux, Cornelia A; Gaebel, Ralf; Kleiner, Gabriela; Klopsch, Christian; Dong, Jun; Curato, Caterina; Altarche-Xifró, Wassim; Slavic, Svetlana; Unger, Thomas; Steinhoff, Gustav; Li, Jun; David, Robert

    2015-08-01

    Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4(+) AT2R(+) cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4(+) AT2R(+) T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4(+) cells. CD4(+) AT2R(+) T cells within blood CD4(+) T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4(+) AT2R(+) T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4(+) AT2R(+) T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4(+) AT2R(+) cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4(+) AT2R(+) cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. The CD4+AT2R+ T cell subpopulation improves post-infarction remodelling and restores cardiac function

    PubMed Central

    Skorska, Anna; von Haehling, Stephan; Ludwig, Marion; Lux, Cornelia A; Gaebel, Ralf; Kleiner, Gabriela; Klopsch, Christian; Dong, Jun; Curato, Caterina; Altarche-Xifró, Wassim; Slavic, Svetlana; Unger, Thomas; Steinhoff, Gustav; Li, Jun; David, Robert

    2015-01-01

    Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4+ AT2R+ cells in the rat heart and spleen post-infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4+ AT2R+ T cells in circulating blood, post-infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4+ cells. CD4+ AT2R+ T cells within blood CD4+ T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4+ AT2R+ T cells which expressed regulatory FoxP3, secreted interleukin-10 and other inflammatory-related cytokines. Furthermore, intramyocardial injection of MI-induced splenic CD4+ AT2R+ T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4+ AT2R+ cells as a T cell subset improving heart function post-MI corresponding with reduced infarction size in a rat MI-model. Our results indicate CD4+ AT2R+ cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof. PMID:25991381

  19. VizieR Online Data Catalog: BEST-II catalog of variables: CoRoT SRc02 field (Klagyivik+, 2016)

    NASA Astrophysics Data System (ADS)

    Klagyivik, P.; Csizmadia, S.; Pasternacki, T.; Cabrera, J.; Chini, R.; Eigmuller, P.; Erikson, A.; Fruth, T.; Kabath, P.; Lemke, R.; Murphy, M.; Rauer, H.; Titz-Weider, R.

    2018-03-01

    The observations were performed with the BEST II telescope located at the Universitats-sternwarte Bochum near the Observatorio Cerro Armazones in Chile. The system consists of a Takahashi 25 cm Baker-Ritchey-Chretien telescope equipped with a 4kx4k Finger Lakes CCD. The corresponding field of view is 1.7°x1.7°, with an angular resolution of 1.5"/pixel. In order to maximize the photon yield and to get more accurate photometry of the fainter stars, no filter was used. The exposure time was 120 s for all of the images. BEST II observed the CoRoT target field SRc02 during a total of 32 nights between 2009 May 4 and July 28. (3 data files).

  20. Combination L-T3 and L-T4 therapy for hypothyroidism.

    PubMed

    Wartofsky, Leonard

    2013-10-01

    Because of the longstanding controversy regarding whether hypothyroid patients can be optimally replaced by treatment with levothyroxine (L-T4) alone, numerous studies have addressed potential benefits of combined therapy of triiodothyronine (T3) with L-T4. Results of these studies have failed to support a potential benefit of combined therapy. A strong argument for the addition of L-T3 to L-T4 monotherapy has been lacking until recent genetic studies indicated a rationale for such therapy among a small fraction of the hypothyroid patient population. Interest in this issue has focused on the importance of the deiodinases in maintaining the euthyroid state and the role of genetic polymorphisms in the deiodinase genes that would affect thyroid hormone concentrations in both blood and tissues. One such polymorphism in the D2 gene, Thr92Ala, is associated with reduced T4 to T3 activation in skeletal muscle and thyroid, linked to obesity and alterations in thyroid-pituitary feedback, and in responses to thyroid hormone treatment. Although our professional organizations continue to recommend L-T4 alone for the treatment of hypothyroidism, the possibility of a D2 gene polymorphism should be considered in patients on L-T4 monotherapy who continue to complain of fatigue in spite of dosage achieving low normal serum thyroid stimulating hormone levels. A suggestive clue to the presence of this polymorphism could be a higher than normal free T4/free T3 ratio. Clinicians could consider adding T3 as a therapeutic trial in selected patients. Future well controlled clinical trials will be required to more fully resolve the controversy.

  1. Protein complexes formed during the incision reaction catalyzed by the Escherichia coli UvrABC endonuclease.

    PubMed Central

    Yeung, A T; Mattes, W B; Grossman, L

    1986-01-01

    An examination has been made into the nature of the nucleoprotein complexes formed during the incision reaction catalyzed by the Escherichia coli UvrABC endonuclease when acting on a pyrimidine dimer-containing fd RF-I DNA species. The complexes of proteins and DNA form in unique stages. The first stage of binding involves an ATP-stimulated interaction of the UvrA protein with duplex DNA containing pyrimidine dimer sites. The UvrB protein significantly stabilizes the UvrA-pyrimidine dimer containing DNA complex which, in turn, provides a foundation for the binding of UvrC to activate the UvrABC endonuclease. The binding of one molecule of UvrC to each UvrAB-damaged DNA complex is needed to catalyze incision in the vicinity of pyrimidine dimer sites. The UvrABC-DNA complex persists after the incision event suggesting that the lack of UvrABC turnover may be linked to other activities in the excision-repair pathway beyond the initial incision reaction. PMID:3960727

  2. TCR revision generates functional CD4+ T cells1

    PubMed Central

    Hale, J. Scott; Wubeshet, Maramawit; Fink, Pamela J.

    2010-01-01

    CD4+Vβ5+ peripheral T cells in B6 mice respond to encounter with a peripherally-expressed endogenous superantigen by undergoing either deletion or TCR revision. In this latter process, cells lose surface Vβ5 expression and undergo RAG-dependent rearrangement of endogenous TCRβ genes, driving surface expression of novel TCRs. While post-revision CD4+Vβ5−TCRβ+ T cells accumulate with age in Vβ5 transgenic mice and bear a diverse TCR Vβ repertoire, it is unknown whether they respond to homeostatic and antigenic stimuli, and thus may benefit the host. We now demonstrate that post-revision cells are functional. These cells have a high rate of steady-state homeostatic proliferation in situ and they undergo extensive MHC class II-dependent lymphopenia-induced proliferation. Importantly, post-revision cells do not proliferate in response to the tolerizing superantigen, implicating TCR revision as a mechanism of tolerance induction and demonstrating that TCR-dependent activation of post-revision cells is not driven by the transgene-encoded receptor. Post-revision cells proliferate extensively to commensal bacterial Ags and can generate I-Ab-restricted responses to Ag by producing IFNγ following Listeria monocytogenes challenge. These data show that rescued post-revision T cells are responsive to homeostatic signals and recognize self and foreign peptides in the context of self MHC, and are thus useful to the host. PMID:20971922

  3. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions.

    PubMed

    Graser, R T; DiLorenzo, T P; Wang, F; Christianson, G J; Chapman, H D; Roopenian, D C; Nathenson, S G; Serreze, D V

    2000-04-01

    Previous work has indicated that an important component for the initiation of autoimmune insulin-dependent diabetes mellitus (IDDM) in the NOD mouse model entails MHC class I-restricted CD8 T cell responses against pancreatic beta cell Ags. However, unless previously activated in vitro, such CD8 T cells have previously been thought to require helper functions provided by MHC class II-restricted CD4 T cells to exert their full diabetogenic effects. In this study, we show that IDDM development is greatly accelerated in a stock of NOD mice expressing TCR transgenes derived from a MHC class I-restricted CD8 T cell clone (designated AI4) previously found to contribute to the earliest preclinical stages of pancreatic beta cell destruction. Importantly, these TCR transgenic NOD mice (designated NOD.AI4alphabeta Tg) continued to develop IDDM at a greatly accelerated rate when residual CD4 helper T cells were eliminated by introduction of the scid mutation or a functionally inactivated CD4 allele. In a previously described stock of NOD mice expressing TCR transgenes derived from another MHC class I-restricted beta cell autoreactive T cell clone, IDDM development was retarded by elimination of residual CD4 T cells. Hence, there is variability in the helper dependence of CD8 T cells contributing to the development of autoimmune IDDM. The AI4 clonotype represents the first CD8 T cell with a demonstrated ability to progress from a naive to functionally activated state and rapidly mediate autoimmune IDDM development in the complete absence of CD4 T cell helper functions.

  5. Inhibitory Phenotype of HBV-Specific CD4+ T-Cells Is Characterized by High PD-1 Expression but Absent Coregulation of Multiple Inhibitory Molecules

    PubMed Central

    Kurktschiev, Peter; Schraut, Winfried; Zachoval, Reinhart; Wendtner, Clemens; Wächtler, Martin; Spannagl, Michael; Denk, Gerald; Ulsenheimer, Axel; Bengsch, Bertram; Pircher, Hanspeter; Diepolder, Helmut M.; Grüner, Norbert H.; Jung, Maria-Christina

    2014-01-01

    Background T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure. Methods The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production. Results CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control. Conclusion HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation. PMID:25144233

  6. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed Central

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-01-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis. Images PMID:1647408

  7. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-05-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis.

  8. TCR signaling by conventional CD4+ T cells is required for optimal maintenance of peripheral regulatory T cell numbers.

    PubMed

    Leichner, Theresa M; Satake, Atsushi; Kambayashi, Taku

    2016-06-01

    To maintain immune tolerance, regulatory T cell (Treg) numbers must be closely indexed to the number of conventional T cells (Tconvs) so that an adequate Treg:Tconv ratio can be maintained. Two factors important in this process are the cytokine interleukin-2 (IL-2) and T cell receptor (TCR) stimulation by major histocompatibility complex class II (MHC-II). Here, we report that in addition to TCR stimulation of Tregs themselves, the maintenance of Tregs also requires TCR signaling by Tconvs. We found that Tconvs produce IL-2 in response to self-peptide-MHC-II complexes and that Tconvs possessing more highly self-reactive TCRs express more IL-2 at baseline. Furthermore, selective disruption of TCR signaling in Tconvs led to a trend toward decreased expression of IL-2 and attenuated their ability to maintain Treg numbers. These data suggest that in order to maintain an adequate Treg:Tconv ratio, Tregs are continuously indexed to self-peptide-MHC-II-induced TCR signaling of Tconvs. These results have implications in attempts to modulate immune tolerance, as Treg numbers adjust to the self-reactivity, and ultimately IL-2 production by the T cells around them.

  9. Leishmania-infected MHC class IIhigh dendritic cells polarize CD4+ T cells toward a nonprotective T-bet+ IFN-γ+ IL-10+ phenotype.

    PubMed

    Resende, Mariana; Moreira, Diana; Augusto, Jorge; Cunha, Joana; Neves, Bruno; Cruz, Maria Teresa; Estaquier, Jérôme; Cordeiro-da-Silva, Anabela; Silvestre, Ricardo

    2013-07-01

    A differential behavior among infected and bystander dendritic cells (DCs) has been explored in different infection models. We have analyzed both populations sorted on contact with visceral Leishmania infantum on a susceptible mice model evaluating the subsequent repercussions on adaptive immune response. Our results demonstrate a clear dichotomy between the immunomodulatory abilities of bystander and infected DCs. The bystander population presents increased levels of IL-12p40 and costimulatory molecules being capable to induce CD4(+) T cell activation with immune protective capabilities. In contrast, infected DCs, which express lower costimulatory molecules and higher levels of IL-10, promote the development of Leishmania Ag-specific, nonprotective T-bet(+)IFN-γ(+)IL-10(+) CD4(+) T cells with an effector phenotype. This specific polarization was found to be dependent on IL-12p70. Splenic infected DCs recovered from chronic infected animals are similarly capable to polarize ex vivo syngeneic naive CD4(+) T cells toward a T-bet(+)IFN-γ(+)IL-10(+) phenotype. Further analysis revealed that only MHC class II(high)-infected DCs were responsible for this polarization. The adoptive transfer of such polarized CD4(+) T cells facilitates visceral leishmaniasis in BALB/c mice in a clear contrast with their counterpart generated with bystander DCs that significantly potentiate protection. Further, we demonstrated that CD4(+) T cells primed by infected DCs in an IL-10 free system, thus deprived of T-bet(+)IFN-γ(+)IL-10(+) population, restore the immune response and reduce parasite load, supporting a deleterious role of IFN-γ(+)IL-10(+) T cells in the maintenance of infection. Overall, our results highlight novel subversion mechanisms by which nonprotective T-bet(+)IFN-γ(+)IL-10(+) T cells are associated with chronicity and prolonged parasite persistence.

  10. Searching for “LiCr{sup II}PO{sub 4}”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosymow, E.; Glaum, R., E-mail: rglaum@uni-bonn.de; Kremer, R.K.

    The two new phosphates LiCr{sup II}{sub 4}(PO{sub 4}){sub 3} and Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4} are discovered as equilibrium phases (ϑ=800 °C) in the quarternary system Li/Cr/P/O. Their crystal structures have been determined from single-crystal X-ray diffraction data (LiCr{sup II}{sub 4}(PO{sub 4}){sub 3}: violet-blue, Pnma (no. 62), Z=4, a=6.175(1) Å, b=14.316(3) Å, c=10.277(2) Å, 100 parameters, R{sub 1}=0.028, wR{sub 2}=0.08, 2060 unique reflections with F{sub o}>4σ(F{sub o}); Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4}: greyish-green, P1{sup ¯} (no. 2), Z=1, a=4.9379(7) Å, b=7.917(2) Å, c=8.426(2) Å, α=109.98(2)°, β=90.71(1)°, γ=104.91(1)°, 131 parameters, R{sub 1}=0.022, wR{sub 2}=0.067, 1594 unique reflectionsmore » with F{sub o}>4σ(F{sub o})). Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4} adopts an hitherto unknown structure type. The crystal structure of LiCr{sup II}{sub 4}(PO{sub 4}){sub 3} is isotypic to that of NaCd{sup II}{sub 4}(PO{sub 4}){sub 3} and related to that of the mineral silicocarnotite Ca{sub 5}(PO{sub 4}){sub 2}(SiO{sub 4}). Significant disorder between Li{sup +} and Cr{sup 2+} is observed for both crystal structures. The oxidation states assigned to chromium in these two phosphates are in agreement with UV/vis/NIR absorption spectra and magnetic susceptibility data recorded for both compounds. Instead of “LiCr{sup II}PO{sub 4}” mixtures of LiCr{sup II}{sub 4}(PO{sub 4}){sub 3}, Li{sub 5}Cr{sup II}{sub 2}Cr{sup III}(PO{sub 4}){sub 4}, Cr{sub 2}O{sub 3}, and CrP are observed at equilibrium. Instead of “Li{sub 2}Cr{sup II}P{sub 2}O{sub 7}” four-phase mixtures consisting of Li{sub 9}Cr{sup III}{sub 3}(P{sub 2}O{sub 7}){sub 3}(PO{sub 4}){sub 2}, Li{sub 3}Cr{sup III}{sub 2}(PO{sub 4}){sub 3}, LiCrP{sub 2}O{sub 7}, and CrP were obtained. - Graphical abstract: Investigations on the equilibrium relations in the system Li/Cr/P/O revealed the two hitherto unknown phosphates

  11. Combination Chemotherapy and Lenalidomide in Treating Patients With Newly Diagnosed Stage II-IV Peripheral T-cell Non-Hodgkin's Lymphoma

    ClinicalTrials.gov

    2017-07-07

    Anaplastic Large Cell Lymphoma, ALK-Negative; Anaplastic Large Cell Lymphoma, ALK-Positive; Hepatosplenic T-Cell Lymphoma; Peripheral T-Cell Lymphoma, Not Otherwise Specified; Stage II Angioimmunoblastic T-cell Lymphoma; Stage II Enteropathy-Associated T-Cell Lymphoma; Stage III Angioimmunoblastic T-cell Lymphoma; Stage III Enteropathy-Associated T-Cell Lymphoma; Stage IV Angioimmunoblastic T-cell Lymphoma; Stage IV Enteropathy-Associated T-Cell Lymphoma

  12. Inhibition of Cav3.2 T-type Calcium Channels by Its Intracellular I-II Loop*

    PubMed Central

    Monteil, Arnaud; Chausson, Patrick; Boutourlinsky, Katia; Mezghrani, Alexandre; Huc-Brandt, Sylvaine; Blesneac, Iulia; Bidaud, Isabelle; Lemmers, Céline; Leresche, Nathalie; Lambert, Régis C.; Lory, Philippe

    2015-01-01

    Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels. PMID:25931121

  13. Spectroelectrochemical insights into structural and redox properties of immobilized endonuclease III and its catalytically inactive mutant.

    PubMed

    Moe, Elin; Rollo, Filipe; Silveira, Célia M; Sezer, Murat; Hildebrandt, Peter; Todorovic, Smilja

    2018-01-05

    Endonuclease III is a Fe-S containing bifunctional DNA glycosylase which is involved in the repair of oxidation damaged DNA. Here we employ surface enhanced IR spectroelectrochemistry and electrochemistry to study the enzyme from the highly radiation- and desiccation-resistant bacterium Deinococcus radiodurans (DrEndoIII 2 ). The experiments are designed to shed more light onto specific parameters that are currently proposed to govern damage search and recognition by endonucleases III. We demonstrate that electrostatic interactions required for the redox activation of DrEndoIII 2 may result in high electric fields that alter its structural and thermodynamic properties. Analysis of inactive DrEndoIII 2 (K132A/D150A double mutant) interacting with undamaged DNA, and the active enzyme interacting with damaged DNA also indicate that the electron transfer is modulated by subtle differences in the protein-DNA complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. An open reading frame in intron seven of the sea urchin DNA-methyltransferase gene codes for a functional AP1 endonuclease.

    PubMed

    Cioffi, Anna Valentina; Ferrara, Diana; Cubellis, Maria Vittoria; Aniello, Francesco; Corrado, Marcella; Liguori, Francesca; Amoroso, Alessandro; Fucci, Laura; Branno, Margherita

    2002-08-01

    Analysis of the genome structure of the Paracentrotus lividus (sea urchin) DNA methyltransferase (DNA MTase) gene showed the presence of an open reading frame, named METEX, in intron 7 of the gene. METEX expression is developmentally regulated, showing no correlation with DNA MTase expression. In fact, DNA MTase transcripts are present at high concentrations in the early developmental stages, while METEX is expressed at late stages of development. Two METEX cDNA clones (Met1 and Met2) that are different in the 3' end have been isolated in a cDNA library screening. The putative translated protein from Met2 cDNA clone showed similarity with Escherichia coli endonuclease III on the basis of sequence and predictive three-dimensional structure. The protein, overexpressed in E. coli and purified, had functional properties similar to the endonuclease specific for apurinic/apyrimidinic (AP) sites on the basis of the lyase activity. Therefore the open reading frame, present in intron 7 of the P. lividus DNA MTase gene, codes for a functional AP endonuclease designated SuAP1.

  15. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of streptococcus pneumontae

    DOEpatents

    Lacks, Sanford A.

    1990-01-01

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252.

  16. X-ray study of the hetero ring flexibility in 5,6-tri-, 5,6-tetra- and 5,6-penta-methylene-2,3,5,6-tetrahydro-1,3-oxazin-4-ones. The structures of 2-spiropentamethylene- cis-5,6-tetramethylene-2,3,5,6-tetrahydro-1,3-oxazin-4-one (I), 2-spiropentamethylene- cis-5,6-pentamethylene-2,3,5,6-tetrahydro-1,3-oxazin-4-one ( c-II) and 2-spiropentamethylene- trans-5,6-pentamethylene-2,3,5,6-tetrahydro-1,3-oxazin-4-one ( t-II)

    NASA Astrophysics Data System (ADS)

    Ribár, B.; Kapor, Á.; Kálmán, A.; Argay, Gy.; Fülöp, F.; Bernáth, G.

    1989-01-01

    The structures of the title compounds were established by X-ray crystallography by means of direct methods. Crystals of compound I (C 12H 19NO 2) are monoclinic, space group P2 1/ n, with a = 11.365(3), b = 10.343(4), c = 10.343(2) Å, β = 110.25(3)°, Z = 4 and Dc = 1.218 g cm -3. Crystals of compound c- II (C 13H 21NO 2) are monoclinic, space group C2/ c, with a = 20.830(8), b = 6.594(4), c = 17.944(8) Å, β = 95.83(2)°, Z = 8 and Dc = 1.209 g cm -3. Crystals of t- II (C 13H 21NO 2) are also monoclinic, space group P2 1/ n, with a = 14.268(4), b = 6.112(3), c = 14.041(7) Å, β = 93.63(3)°, Z = 4 and Dc = 1.210 g cm -3. The structures were refined to R = 0.059 for 1697 reflections of I, R = 0.052 for 1718 reflections of c- II, and R = 0.057 for 2178 reflections of t- II. The conformations of the 1,3-oxazin-4-one moieties in the title compounds were compared with those found earlier in related compounds. As shown by an analysis of the puckering parameters (D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354), they cluster in a random distribution around the 1H 6 half-chair form. Marked deviation from this canonical form towards the 1E envelope was observed only under the influence of the cyclopentane ring.

  17. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    PubMed Central

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  18. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection.

    PubMed

    Zhang, Z Q; Notermans, D W; Sedgewick, G; Cavert, W; Wietgrefe, S; Zupancic, M; Gebhard, K; Henry, K; Boies, L; Chen, Z; Jenkins, M; Mills, R; McDade, H; Goodwin, C; Schuwirth, C M; Danner, S A; Haase, A T

    1998-02-03

    Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1.

  19. Analysis of the Intrinsically Disordered N-Terminus of the DNA Junction-Resolving Enzyme T7 Endonuclease I: Identification of Structure Formed upon DNA Binding

    PubMed Central

    2016-01-01

    The four-way (Holliday) DNA junction of homologous recombination is processed by the symmetrical cleavage of two strands by a nuclease. These junction-resolving enzymes bind to four-way junctions in dimeric form, distorting the structure of the junction in the process. Crystal structures of T7 endonuclease I have been determined as free protein, and the complex with a DNA junction. In neither crystal structure was the N-terminal 16-amino acid peptide visible, yet deletion of this peptide has a marked effect on the resolution process. Here we have investigated the N-terminal peptide by inclusion of spin-label probes at unique sites within this region, studied by electron paramagnetic resonance. Continuous wave experiments show that these labels are mobile in the free protein but become constrained on binding a DNA junction, with the main interaction occurring for residues 7–10 and 12. Distance measurements between equivalent positions within the two peptides of a dimer using PELDOR showed that the intermonomeric distances for residues 2–12 are long and broadly distributed in the free protein but are significantly shortened and become more defined on binding to DNA. These results suggest that the N-terminal peptides become more organized on binding to the DNA junction and nestle into the minor grooves at the branchpoint, consistent with the biochemical data indicating an important role in the resolution process. This study demonstrates the presence of structure within a protein region that cannot be viewed by crystallography. PMID:27387136

  20. Crystallization and preliminary X-ray diffraction analysis of restriction endonuclease EcoRII

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Meehan, E.; Pusey, M. L.; Chen, L.

    1999-01-01

    Crystals of the restriction endonuclease EcoRII have been obtained by the vapor-diffusion technique in the presence of ammonium sulfate or polyethylene glycol. The best crystals were grown with ammonium sulfate as a precipitant. Crystals with dimensions of up to 0.6 x 0. 6 x 0.6 mm have been observed. The crystals diffract to about 4.0 A resolution at a cryo-temperature of 100 K using a rotating-anode X-ray source and a Rigaku R-AXIS IV imaging-plate detector. The space group has been determined to be either I23 or I2(1)3, with unit-cell parameters a = b = c = 160.3 A, alpha = beta = gamma = 90 degrees. The crystal asymmetric unit contains two protein molecules, and self-rotation function analysis shows a pseudo-twofold symmetry relating the two monomers. Attempts to improve the resolution of crystal diffraction and to search for heavy-atom derivatives are under way.

  1. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Yadav, Deepak

    2015-06-15

    A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthesis and structure of the extended phosphazane ligand [(1,4-C6H4){N(μ-PN(t)Bu)2N(t)Bu}2](4).

    PubMed

    Sevilla, Raquel; Less, Robert J; García-Rodríguez, Raúl; Bond, Andrew D; Wright, Dominic S

    2016-02-07

    The reaction of the phenylene-bridged precursor (1,4-C6H4)[N(PCl2)2]2 with (t)BuNH2 in the presence of Et3N gives the new ligand precursor (1,4-C6H4)[N(μ-N(t)Bu)2(PNH(t)Bu)2]2, deprotonation of which with Bu2Mg gives the novel tetraanion [(1,4-C6H4){N(μ-N(t)Bu)2(PN(t)Bu)2}2](4-).

  3. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    PubMed

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-06

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  4. Structure and spectroscopic investigations of a bi-dentate N‧-[(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide and its Co(II), Ni(II), Cu(II) and Cd(II) complexes: Insights relevant to biological properties

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Krishna, P. Murali; Shantha Kumar, S. S.; Patil, Yogesh P.; Nethaji, Munirathinam

    2017-06-01

    The present paper describes the synthesis of novel ligand, N‧-[(4-ethylphenyl)methylidene]-4-hydroxy benzohydrazide (HL) and its Co(II), Ni(II), Cu(II) and Cd(II) complexes. The ligand (HL) crystallizes in orthorhombic lattice in P212121 space group with a = 7.9941 (7) Å, b = 11.6154 (10) Å, c = 15.2278 (13) Å, α = β = γ = 90°. Spectroscopic data gives the strong evidence that ligand is coordinated through azomethine nitrogen and enolic oxygen with metal ion. The DNA binding studies revealed that the complexes bind to CT-DNA via intercalation/electrostatic interaction. All the targeted compounds showed more pronounced DNA cleavage activity in the presence of H2O2 and also inhibit the growth of in vitro antibacterial activity against Gram-positive and Gram-negative bacteria.

  5. Effects of potassium iodide in concentrations of TSH, tT3 and tT4 in serum of subjects with sporotrichosis.

    PubMed

    Ramírez Soto, Max Carlos

    2014-08-01

    The saturated potassium iodide solution (SSKI) as treatment for sporotrichosis may cause hypothyroidism by suppressing the synthesis of thyroid hormones (tT3 and tT4 ) and the iodine excess could lead to thyrotoxicosis. Evaluating the changes in serum levels of TSH, tT3 and tT4 in euthyroid patients with sporotrichosis treated with SSKI. For the selection of euthyroid patients, TSH, tT3 and tT4 concentrations were measured for those adults and children diagnosed with sporotrichosis. Each paediatric patient was administered SSKI orally in increasing doses of 2-20 drops/3 times/day and 4-40 drops/3 times/day in adults. Serum concentrations of TSH, tT3 and tT4 were measured 20 days after started the treatment and 15 days posttreatment. Eight euthyroid patients aged between 2 to 65 years old were included. After 20 days of treatment, two suffered subclinical hypothyroidism, one developed subclinical hyperthyroidism, and one hyperthyroxinaemia euthyroid. At 15 days posttreatment only four patients were evaluated and all serum levels of TSH, tT3 and tT4 were normal. Some euthyroid patients with sporotrichosis can develop hyperthyroidism or subclinical iodine-induced hypothyroidism, during the administration of 3 or 6 g SSKI/day. © 2014 Blackwell Verlag GmbH.

  6. Limited CD4+ T cell proliferation leads to preservation of CD4+ T cell counts in SIV-infected sooty mangabeys.

    PubMed

    Chan, Ming Liang; Petravic, Janka; Ortiz, Alexandra M; Engram, Jessica; Paiardini, Mirko; Cromer, Deborah; Silvestri, Guido; Davenport, Miles P

    2010-12-22

    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, 'natural hosts' of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to 'fuel the fire' of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection.

  7. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    PubMed

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  8. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    PubMed

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    PubMed Central

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  10. Geographically diverse Australian isolates of Melissococcus pluton exhibit minimal genotypic diversity by restriction endonuclease analysis.

    PubMed

    Djordjevic, S P; Smith, L A; Forbes, W A; Hornitzky, M A

    1999-04-15

    Melissococcus pluton, the causative agent of European foulbrood is an economically significant disease of honey bees (Apis mellifera) across most regions of the world and is prevalent throughout most states of Australia. 49 Isolates of M. pluton recovered from diseased colonies or honey samples in New South Wales, Queensland, South Australia, Tasmania and Victoria were compared using SDS-PAGE, Western immunoblotting and restriction endonuclease analyses. DNA profiles of all 49 geographically diverse isolates showed remarkably similar AluI profiles although four isolates (one each from Queensland, South Australia, New South Wales and Victoria) displayed minor profile variations compared to AluI patterns of all other isolates. DNA from a subset of the 49 Australian and three isolates from the United Kingdom were digested separately with the restriction endonucleases CfoI, RsaI and DraI. Restriction endonuclease fragment patterns generated using these enzymes were also similar although minor variations were noted. SDS-PAGE of whole cell proteins from 13 of the 49 isolates from different states of Australia, including the four isolates which displayed minor profile variations (AluI) produced indistinguishable patterns. Major immunoreactive proteins of approximate molecular masses of 21, 24, 28, 30, 36, 40, 44, 56, 60, 71, 79 and 95 kDa were observed in immunoblots of whole cell lysates of 22 of the 49 isolates and reacted with rabbit hyperimmune antibodies raised against M. pluton whole cells. Neither SDS-PAGE or immunoblotting was capable of distinguishing differences between geographically diverse isolates of M. pluton. Collectively these data confirm that Australian isolates of M. pluton are genetically homogeneous and that this species may be clonal. Plasmid DNA was not detected in whole cell DNA profiles of any isolate resolved using agarose gel electrophoresis.

  11. Mn(II) based T1 and T2 potential MRI contrast agent appended with tryptamine: Recognition moiety for Aβ-plaques.

    PubMed

    Rastogi, Neeraj; Tyagi, Nidhi; Singh, Ovender; Hemanth Kumar, B S; Singh, Udai P; Ghosh, Kaushik; Roy, Raja

    2017-12-01

    We report the synthesis and characterization of manganese(II) complexes having pentadentate ligands L 1 (2,6-bis(1-(2-phenyl-2-(pyridin-2-yl)hydrazono)ethyl)pyridine), L 2 (methyl 2,6-bis((E)-1-(2-phenyl-2-(pyridin-2yl)hydrazono)ethyl)isonicotinate), L 3 (N-(2-(1H-indol-3-yl)ethyl)-2,6-bis((E)-1-(2-phenyl-2-(pyridin2yl)hydrazono)ethyl)isonicotiamide) and their application as dual contrast agents for simultaneous T 1 and T 2 weighted magnetic resonance imaging. Single crystal analysis of all the complexes [Mn II L 1 , Mn II L 2 and Mn II L 3 ] confirm the formation of novel seven-coordinate manganese complexes with an inner sphere water and perchlorate ion. The Magnetic Resonance Imaging (MRI) contrast agent [MnL 2 ] was further modified by incorporating tryptamine as a binding moiety specific to Amyloid Beta-fibrils (Aβ-fibrils) in Alzhiemer's disease (AD) and it's in vitro evaluation for specific binding with Aβ-fibrils indicated as a bio-marker of AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae.

    PubMed

    Gimble, F S; Thorner, J

    1993-10-15

    The 119-kDa primary translation product of the VMA1 gene of Saccharomyces cerevisiae undergoes a self-catalyzed rearrangement ("protein splicing") that excises an internal 50-kDa segment of the polypeptide and joins the amino-terminal and carboxyl-terminal segments to generate the 69-kDa subunit of the vacuolar membrane-associated H(+)-ATPase. We have shown previously that the internal segment is a site-specific endonuclease (Gimble, F. S., and Thorner, J. (1992) Nature 357, 301-306). Here we describe methods for the high level expression and purification to near homogeneity of both the authentic VMA1-derived endonuclease (or VDE) from yeast (yield 18%) and a recombinant form of VDE made in bacteria (yield 29%). Detailed characterization of these preparations demonstrated that the yeast-derived and bacterially produced enzymes were indistinguishable, as judged by: (a) behavior during purification; (b) apparent native molecular mass (50 kDa); (c) immunological reactivity; and (d) catalytic properties (specific activity; cleavage site recognition; and optima for pH, temperature, divalent cation and ionic strength). The minimal site required for VDE cleavage was delimited to a 30-base pair sequence within its specific substrate (the VMA1 delta vde allele).

  13. Recombinant plasmids for encoding restriction enzymes DpnI and DpnII of Streptococcus pneumontae

    DOEpatents

    Lacks, S.A.

    1990-10-02

    Chromosomal DNA cassettes containing genes encoding either the DpnI or DpnII restriction endonucleases from Streptococcus pneumoniae are cloned into a streptococcal vector, pLS101. Large amounts of the restriction enzymes are produced by cells containing the multicopy plasmids, pLS202 and pLS207, and their derivatives pLS201, pLS211, pLS217, pLS251 and pLS252. 9 figs.

  14. Bianchi Type-II String Cosmological Model with Magnetic Field in f ( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Sharma, N. K.; Singh, J. K.

    2014-09-01

    The spatially homogeneous and totally anisotropic Bianchi type-II cosmological solutions of massive strings have been investigated in the presence of the magnetic field in the framework of f( R, T) gravity proposed by Harko et al. (Phys Rev D 84:024020, 2011). With the help of special law of variation for Hubble's parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) cosmological model is obtained in this theory. We consider f( R, T) model and investigate the modification R+ f( T) in Bianchi type-II cosmology with an appropriate choice of a function f( T)= μ T. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.

  15. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm

    PubMed Central

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.

    2014-01-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  16. A molecular switch sensor for detection of PRSS1 genotype based on site-specific DNA cleavage of restriction endonuclease.

    PubMed

    Liu, Qicai; Gao, Feng; Weng, Shaohuang; Peng, Huaping; Lin, Liqing; Zhao, Chengfei; Lin, Xinhua

    2015-01-01

    PRSS1 mutations or polymorphism in the peripheral blood of patients can be used as susceptible molecular markers to pancreatic cancer. A sensor for selective electrochemical detection of PRSS1 genotypes was developed based on site-specific DNA cleavage of restriction endonuclease EcoRI. A mercapto-modified hairpin probe was immobilized on a gold electrode. The probe's neck can be cleaved by EcoRI in the absence of rs10273639 C/C of PRSS1 genotype, but it cannot be cleaved in the presence of T/T. The difference in quantity of electric charge was monitored by biosensors before and after enzymatic cleavage. Electrochemical signals are generated by differential pulse voltammetry interrogation of methylene blue (MB) that quantitatively binds to surface-confined hairpin probe via electrostatic interactions. The results suggested this method had a good specificity in distinguishing PRSS1 genotypes. There was a good linear relationship between the charge and the logarithmic function of PRSS1 rs10273639 T/T type DNA concentration (current=120.6303+8.8512log C, R=0.9942). The detection limit was estimated at 0.5 fM. The molecular switch sensor has several advantages, and it is possible to qualitatively, quantitatively, and noninvasively detect PRSS1 genotypes in the blood of patients with pancreatic cancer. © 2015 by the Association of Clinical Scientists, Inc.

  17. Limited CD4+ T cell proliferation leads to preservation of CD4+ T cell counts in SIV-infected sooty mangabeys

    PubMed Central

    Chan, Ming Liang; Petravic, Janka; Ortiz, Alexandra M.; Engram, Jessica; Paiardini, Mirko; Cromer, Deborah; Silvestri, Guido; Davenport, Miles P.

    2010-01-01

    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections result in chronic virus replication and progressive depletion of CD4+ T cells, leading to immunodeficiency and death. In contrast, ‘natural hosts’ of SIV experience persistent infection with high virus replication but no severe CD4+ T cell depletion, and remain AIDS-free. One important difference between pathogenic and non-pathogenic infections is the level of activation and proliferation of CD4+ T cells. We analysed the relationship between CD4+ T cell number and proliferation in HIV, pathogenic SIV in macaques, and non-pathogenic SIV in sooty mangabeys (SMs) and mandrills. We found that CD4+ T cell proliferation was negatively correlated with CD4+ T cell number, suggesting that animals respond to the loss of CD4+ T cells by increasing the proliferation of remaining cells. However, the level of proliferation seen in pathogenic infections (SIV in rhesus macaques and HIV) was much greater than in non-pathogenic infections (SMs and mandrills). We then used a modelling approach to understand how the host proliferative response to CD4+ T cell depletion may impact the outcome of infection. This modelling demonstrates that the rapid proliferation of CD4+ T cells in humans and macaques associated with low CD4+ T cell levels can act to ‘fuel the fire’ of infection by providing more proliferating cells for infection. Natural host species, on the other hand, have limited proliferation of CD4+ T cells at low CD4+ T cell levels, which allows them to restrict the number of proliferating cells susceptible to infection. PMID:20591864

  18. Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.

    PubMed

    Weber, U; Beier, H; Gross, H J

    1996-06-15

    The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.

  19. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    PubMed Central

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  20. Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Hökelek, Tuncer

    2017-02-01

    Three new cadmium(II)-metal(II) cyanide complexes, [Cd(4aepy)2(H2O)2][Ni(CN)4] (1), [Cd(4aepy)2(H2O)2][Pd(CN)4] (2) and [Cd(4aepy)2(H2O)2][Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine], have been synthesized and characterized by elemental, thermal, FT-IR and Raman spectral analyses. The crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction technique, in which they crystallize in the monoclinic system and C2/c space group. The M(II) [M(II) = Ni(II), Pd(II) and Pt(II)] ions are coordinated with the carbon atoms of the four cyanide groups in the square planar geometries and the [M(CN)4]2- ions act as counter ions. The Cd(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. 3D supramolecular structures of 1 and 2 were occurred by M⋯π and hydrogen bonding (Nsbnd H⋯N and Osbnd H⋯N) interactions. Vibrational assignments of all the observed bands were given and the spectral properties were also supported the crystal structures of the complexes. A possible decompositions of the complexes were investigated in the temperature range 30-800 °C in the static atmosphere.

  1. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    PubMed

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  2. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection

    PubMed Central

    Zhang, Zhi-Qiang; Notermans, Daan W.; Sedgewick, Gerald; Cavert, Winston; Wietgrefe, Stephen; Zupancic, Mary; Gebhard, Kristin; Henry, Keith; Boies, Lawrence; Chen, Zongming; Jenkins, Marc; Mills, Roger; McDade, Hugh; Goodwin, Carolyn; Schuwirth, Caspar M.; Danner, Sven A.; Haase, Ashley T.

    1998-01-01

    Potent combinations of antiretroviral drugs diminish the turnover of CD4+ T lymphocytes productively infected with HIV-1 and reduce the large pool of virions deposited in lymphoid tissue (LT). To determine to what extent suppression of viral replication and reduction in viral antigens in LT might lead correspondingly to repopulation of the immune system, we characterized CD4+ T lymphocyte populations in LT in which we previously had quantitated viral load and turnover of infected cells before and after treatment. We directly measured by quantitative image analysis changes in total CD4+ T cell counts, the CD45RA+ subset, and fractions of proliferating or apoptotic CD4+ T cells. Compared with normal controls, we documented decreased numbers of CD4+ T cells and increased proliferation and apoptosis. After treatment, proliferation returned to normal levels, and total CD4+ T and CD45RA+ cells increased. We discuss the effects of HIV-1 on this subset based on the concept that renewal mechanisms in the adult are operating at full capacity before infection and cannot meet the additional demand imposed by the loss of productively infected cells. The slow increases in the CD45RA+ CD4+ T cells are consistent with the optimistic conclusions that (i) renewal mechanisms have not been damaged irreparably even at relatively advanced stages of infection and (ii) CD4+ T cell populations can be partially restored by control of active replication without eradication of HIV-1. PMID:9448301

  3. Roles of Two Shewanella oneidensis MR-1 Extracellular Endonucleases ▿ †

    PubMed Central

    Gödeke, Julia; Heun, Magnus; Bubendorfer, Sebastian; Paul, Kristina; Thormann, Kai M.

    2011-01-01

    The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. PMID:21705528

  4. Neoadjuvant FOLFOX 4 versus FOLFOX 4 with Cetuximab versus immediate surgery for high-risk stage II and III colon cancers: a multicentre randomised controlled phase II trial--the PRODIGE 22--ECKINOXE trial.

    PubMed

    Karoui, Mehdi; Rullier, Anne; Luciani, Alain; Bonnetain, Franck; Auriault, Marie-Luce; Sarran, Antony; Monges, Geneviève; Trillaud, Hervé; Le Malicot, Karine; Leroy, Karen; Sobhani, Iradj; Bardier, Armelle; Moreau, Marie; Brindel, Isabelle; Seitz, Jean François; Taieb, Julien

    2015-07-10

    In patients with high risk stage II and stage III colon cancer (CC), curative surgery followed by adjuvant FOLFOX-4 chemotherapy has become the standard of care. However, for 20 to 30% of these patients, the current curative treatment strategy of surgical excision followed by adjuvant chemotherapy fails either to clear locoregional spread or to eradicate distant micrometastases, leading to disease recurrence. Preoperative chemotherapy is an attractive concept for these CCs and has the potential to impact upon both of these causes of failure. Optimum systemic therapy at the earliest possible opportunity may be more effective at eradicating distant metastases than the same treatment given after the delay and immunological stress of surgery. Added to this, shrinking the primary tumor before surgery may reduce the risk of incomplete surgical excision, and the risk of tumor cell shedding during surgery. PRODIGE 22--ECKINOXE is a multicenter randomized phase II trial designed to evaluate efficacy and feasibility of two chemotherapy regimens (FOLFOX-4 alone and FOLFOX-4 + Cetuximab) in a peri-operative strategy in patients with bulky CCs. Patients with CC deemed as high risk T3, T4 and/or N2 on initial abdominopelvic CT scan are randomized to either colectomy and adjuvant chemotherapy (control arm), or 4 cycles of neoadjuvant chemotherapy with FOLFOX-4 (for RAS mutated patients). In RAS wild-type patients a third arm testing FOLFOX+ cetuximab has been added prior to colectomy. Patients in the neoadjuvant chemotherapy arms will receive postoperative treatment for 4 months (8 cycles) to complete their therapeutic schedule. The primary endpoint of the study is the histological Tumor Regression Grade (TRG) as defined by Ryan. The secondary endpoints are: treatment strategy safety (toxicity, primary tumor related complications under chemotherapy, peri-operative morbidity), disease-free and recurrence free survivals at 3 years, quality of life, carcinologic quality and

  5. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2.

    PubMed

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Osterby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.

  6. Identification and HLA-Tetramer-Validation of Human CD4+ and CD8+ T Cell Responses against HCMV Proteins IE1 and IE2

    PubMed Central

    Braendstrup, Peter; Mortensen, Bo Kok; Justesen, Sune; Østerby, Thomas; Rasmussen, Michael; Hansen, Andreas Martin; Christiansen, Claus Bohn; Hansen, Morten Bagge; Nielsen, Morten; Vindeløv, Lars; Buus, Søren; Stryhn, Anette

    2014-01-01

    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy. PMID:24760079

  7. Low levels of SIV infection in sooty mangabey central-memory CD4+ T-cells is associated with limited CCR5 expression

    PubMed Central

    Paiardini, Mirko; Cervasi, Barbara; Reyes-Aviles, Elane; Micci, Luca; Ortiz, Alexandra M.; Chahroudi, Ann; Vinton, Carol; Gordon, Shari N.; Bosinger, Steven E.; Francella, Nicholas; Hallberg, Paul L.; Schlub, Timothy; Chan, Ming Liang; Riddick, Nadeene E.; Collman, Ronald G.; Apetrei, Cristian; Pandrea, Ivona; Else, James; Munch, Jan; Kirchhoff, Frank; Davenport, Miles P.; Brenchley, Jason M.; Silvestri, Guido

    2011-01-01

    Naturally SIV-infected sooty mangabeys (SMs) do not progress to AIDS despite high-level virus replication. We previously showed that the fraction of CD4+CCR5+ T-cells is lower in SMs compared to humans and macaques. Here we found that, after in vitro stimulation, SM CD4+ T-cells fail to up-regulate CCR5, and that this phenomenon is more pronounced in CD4+ central-memory T-cells (TCM). CD4+ T-cell activation was similarly uncoupled from CCR5 expression in SMs in vivo during (i) acute SIV infection and (ii) following antibody-mediated CD4+ T-cell depletion. Remarkably, CD4+ TCM of SMs that express low levels of CCR5 demonstrated reduced susceptibility to SIV infection both in vivo and in vitro when compared to CD4+ TCM of RMs. These data suggest that low CCR5 expression on SM CD4+ T-cells favors the preservation of CD4+ T-cell homeostasis and promotes an AIDS-free status by protecting CD4+ TCM from direct virus infection. PMID:21706028

  8. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients.

    PubMed

    Widenmeyer, Melanie; Griesemann, Heinrich; Stevanović, Stefan; Feyerabend, Susan; Klein, Reinhild; Attig, Sebastian; Hennenlotter, Jörg; Wernet, Dorothee; Kuprash, Dmitri V; Sazykin, Alexei Y; Pascolo, Steve; Stenzl, Arnulf; Gouttefangeas, Cécile; Rammensee, Hans-Georg

    2012-07-01

    CD4(+) T cells have been shown to be crucial for the induction and maintenance of cytotoxic T cell responses and to be also capable of mediating direct tumor rejection. Therefore, the anticancer therapeutic efficacy of peptide-based vaccines may be improved by addition of HLA class II epitopes to stimulate T helper cells. Survivin is an apoptosis inhibiting protein frequently overexpressed in tumors. Here we describe the first immunological evaluation of a survivin-derived CD4(+) T cell epitope in a multipeptide immunotherapy trial for prostate carcinoma patients. The survivin peptide is promiscuously presented by several human HLA-DRB1 molecules and, most importantly, is naturally processed by dendritic cells. In vaccinated patients, it was able to induce frequent, robust and multifunctional CD4(+) T cell responses, as monitored by IFN-γ ELISPOT and intracellular cytokine staining. Thus, this HLA-DR restricted epitope is broadly immunogenic and should be valuable for stimulating T helper cells in patients suffering from a wide range of tumors. Copyright © 2011 UICC.

  9. Functional characterization of two flap endonuclease-1 homologues in rice.

    PubMed

    Kimura, Seisuke; Furukawa, Tomoyuki; Kasai, Nobuyuki; Mori, Yoko; Kitamoto, Hiroko K; Sugawara, Fumio; Hashimoto, Junji; Sakaguchi, Kengo

    2003-09-18

    Flap endonuclease-1 (FEN-1) is an important enzyme involved in DNA replication and repair. Previously, we isolated and characterized a complementary DNA (cDNA) from rice (Oryza sativa) encoding a protein which shows homology with the eukaryotic flap endonuclease-1 (FEN-1). In this report, we found that rice (O. sativa L. cv. Nipponbare) possessed two FEN-1 homologues designated as OsFEN-1a and OsFEN-1b. The OsFEN-1a and OsFEN-1b genes were mapped to chromosome 5 and 3, respectively. Both genes contained 17 exons and 16 introns. Alignment of OsFEN-1a protein with OsFEN-1b protein showed a high degree of sequence similarity, particularly around the N and I domains. Northern hybridization and in situ hybridization analysis demonstrated preferential expression of OsFEN-1a and OsFEN-1b in proliferating tissues such as the shoot apical meristem or young leaves. The levels of OsFEN-1a and OsFEN-1b expression were significantly reduced when cell proliferation was temporarily halted by the removal of sucrose from the growth medium. When the growth-halted cells began to regrow following the addition of sucrose to the medium, both OsFEN-1a and OsFEN-1b were again expressed at high level. These results suggested that OsFEN-1a and OsFEN-1b are required for cell proliferation. Functional complementation assay suggested that OsFEN-1a cDNA had the ability to complement Saccharomyces cerevisiae rad27 null mutant. On the other hand, OsFEN-1b cDNA could not complement the rad27 mutant. The roles of OsFEN-1a and OsFEN-1b in plant DNA replication and repair are discussed.

  10. Effect of Osmotic Shock and Low Salt Concentration on Survival and Density of Bacteriophages T4B and T4Bo1

    PubMed Central

    Leibo, Stanley P.; Mazur, Peter

    1966-01-01

    Measurements of survival and buoyant densities of bacteriophages T4B, T4Bo1, and T4D have demonstrated the following: (a) After suspension in a concentrated salt solution, T4B and T4D are sensitive both to osmotic shock and to subsequent exposure to low monovalent salt concentrations. (b) Sensitivity of T4B to dilution from a concentrated salt solution is dependent on dilution rate, that of T4D is less dependent, and that of T4Bo1 is independent. (c) Sensitivity of all three phages to low salt concentrations depends on initial salt concentrations to a variable extent. (d) Density gradient profiles indicate that nearly half of osmotically shocked T4B retain their DNA. Similar analysis demonstrates that few, if any, T4Bo1 lose DNA when subjected to a treatment causing 90% loss of infectivity. (e) The effective buoyant densities of T4B and T4Bo1 depend significantly on the dilution treatments to which the phages are subjected prior to centrifugation in CsCl gradients. These data are explicable in terms of the different relative permeabilities of the phages to water and solutes, and of alterations in the counterion distribution surrounding the DNA within the phage heads. PMID:5972376

  11. CD4+ T cell epitopes of FliC conserved between strains of Burkholderia: implications for vaccines against melioidosis and cepacia complex in cystic fibrosis.

    PubMed

    Musson, Julie A; Reynolds, Catherine J; Rinchai, Darawan; Nithichanon, Arnone; Khaenam, Prasong; Favry, Emmanuel; Spink, Natasha; Chu, Karen K Y; De Soyza, Anthony; Bancroft, Gregory J; Lertmemongkolchai, Ganjana; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M; Robinson, John H

    2014-12-15

    Burkholderia pseudomallei is the causative agent of melioidosis characterized by pneumonia and fatal septicemia and prevalent in Southeast Asia. Related Burkholderia species are strong risk factors of mortality in cystic fibrosis (CF). The B. pseudomallei flagellar protein FliC is strongly seroreactive and vaccination protects challenged mice. We assessed B. pseudomallei FliC peptide binding affinity to multiple HLA class II alleles and then assessed CD4 T cell immunity in HLA class II transgenic mice and in seropositive individuals in Thailand. T cell hybridomas were generated to investigate cross-reactivity between B. pseudomallei and the related Burkholderia species associated with Cepacia Complex CF. B. pseudomallei FliC contained several peptide sequences with ability to bind multiple HLA class II alleles. Several peptides were shown to encompass strong CD4 T cell epitopes in B. pseudomallei-exposed individuals and in HLA transgenic mice. In particular, the p38 epitope is robustly recognized by CD4 T cells of seropositive donors across diverse HLA haplotypes. T cell hybridomas against an immunogenic B. pseudomallei FliC epitope also cross-reacted with orthologous FliC sequences from Burkholderia multivorans and Burkholderia cenocepacia, important pathogens in CF. Epitopes within FliC were accessible for processing and presentation from live or heat-killed bacteria, demonstrating that flagellin enters the HLA class II Ag presentation pathway during infection of macrophages with B. cenocepacia. Collectively, the data support the possibility of incorporating FliC T cell epitopes into vaccination programs targeting both at-risk individuals in B. pseudomallei endemic regions as well as CF patients. Copyright © 2014 by The American Association of Immunologists, Inc.

  12. A comparative study of cold- and warm-adapted Endonucleases A using sequence analyses and molecular dynamics simulations.

    PubMed

    Michetti, Davide; Brandsdal, Bjørn Olav; Bon, Davide; Isaksen, Geir Villy; Tiberti, Matteo; Papaleo, Elena

    2017-01-01

    The psychrophilic and mesophilic endonucleases A (EndA) from Aliivibrio salmonicida (VsEndA) and Vibrio cholera (VcEndA) have been studied experimentally in terms of the biophysical properties related to thermal adaptation. The analyses of their static X-ray structures was no sufficient to rationalize the determinants of their adaptive traits at the molecular level. Thus, we used Molecular Dynamics (MD) simulations to compare the two proteins and unveil their structural and dynamical differences. Our simulations did not show a substantial increase in flexibility in the cold-adapted variant on the nanosecond time scale. The only exception is a more rigid C-terminal region in VcEndA, which is ascribable to a cluster of electrostatic interactions and hydrogen bonds, as also supported by MD simulations of the VsEndA mutant variant where the cluster of interactions was introduced. Moreover, we identified three additional amino acidic substitutions through multiple sequence alignment and the analyses of MD-based protein structure networks. In particular, T120V occurs in the proximity of the catalytic residue H80 and alters the interaction with the residue Y43, which belongs to the second coordination sphere of the Mg2+ ion. This makes T120V an amenable candidate for future experimental mutagenesis.

  13. Parasite Fate and Involvement of Infected Cells in the Induction of CD4+ and CD8+ T Cell Responses to Toxoplasma gondii

    PubMed Central

    Dupont, Christopher D.; Christian, David A.; Selleck, Elizabeth M.; Pepper, Marion; Leney-Greene, Michael; Harms Pritchard, Gretchen; Koshy, Anita A.; Wagage, Sagie; Reuter, Morgan A.; Sibley, L. David; Betts, Michael R.; Hunter, Christopher A.

    2014-01-01

    During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses. PMID:24722202

  14. Frameshift Suppression in SACCHAROMYCES CEREVISIAE. IV. New Suppressors among Spontaneous Co-Revertants of the Group II HIS4-206 and LEU2-3 Frameshift Mutations

    PubMed Central

    Gaber, Richard F.; Culbertson, Michael R.

    1982-01-01

    ICR-induced frameshift mutations at the his4 locus in Saccharomyces cerevisiae have been classified into several groups on the basis of their reversion and suppression properties. One group of externally suppressible his4 mutations, designated Group II, have been shown to contain +1 G:C insertions in glycine codons and are suppressed by any one of five suppressor mutations described previously (SUF1, SUF3, SUF4, SUF5, and SUF6). The suppressor genes are believed to encode glycine tRNAs containing four base anticodons.—An analysis of spontaneous co-revertants of the Group II frameshift mutations his4-206 and leu2-3 has revealed the existence of eleven new Group II-specific suppressor genes (SUF15 through SUF25). The locations of the new suppressor loci on the yeast genetic map have been determined.—By comparing the ability or inability of Group II-specific suppressors mapping at 16 different loci to suppress different Group II his4 mutations, two subclasses of suppressors have been defined. One subclass suppresses his4-38 and his4-519, which contain the altered four base mRNA codons 5'-GGGU-3' and 5'-GGGG-3', respectively. The other subclass suppresses his4-38, but fails to suppress his4-519. The mechanism of tRNA-mediated frameshift suppression and the molecular basis for this division of the suppressors into two subclasses is discussed. PMID:6757051

  15. Apurinic/Apyrimidinic Endonuclease 1 Is the Essential Nuclease during Immunoglobulin Class Switch Recombination

    PubMed Central

    Masani, Shahnaz; Han, Li

    2013-01-01

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID) that catalyzes numerous DNA cytosine deaminations within switch regions. The resulting uracils are processed by uracil base excision and/or mismatch repair enzymes that ultimately generate switch region DNA double-strand breaks (DSBs). Uracil glycosylase 2 (UNG2) is required for CSR, most likely by removing uracils to generate abasic sites. Although it is presumed that the apurinic/apyrimidinic endonuclease 1 (APE1) generates DNA strand incisions (a prerequisite for CSR) at these abasic sites, a direct test of the requirement for APE1 in CSR has been difficult because of the embryonic lethality of APE1 ablation in mice. Here, we report the successful deletion of the APE1 gene in a mouse B cell line (CH12F3) capable of robust CSR in vitro. In contrast to the general assumption that APE1 is essential for cellular viability, deletion of APE1 in CH12F3 cells has no apparent effect on cell viability or growth. Moreover, CSR in APE1-null CH12F3 cells is drastically reduced, providing direct evidence for an essential role for APE1 in switch region cleavage and CSR. Finally, deletion of AP endonuclease 2 (APE2) has no effect on CSR in either APE1-proficient or -deficient cells. PMID:23382073

  16. Rat eosinophils stimulate the expansion of Cryptococcus neoformans-specific CD4+ and CD8+ T cells with a T-helper 1 profile

    PubMed Central

    Garro, Ana P; Chiapello, Laura S; Baronetti, José L; Masih, Diana T

    2011-01-01

    Experimental Cryptococcus neoformans infection in rats has been shown to have similarities with human cryptococcosis, revealing a strong granulomatous response and a low susceptibility to dissemination. Moreover, it has been shown that eosinophils are components of the inflammatory response to C. neoformans infections. In this in vitro study, we demonstrated that rat peritoneal eosinophils phagocytose opsonized live yeasts of C. neoformans, and that the phenomenon involves the engagement of FcγRII and CD18. Moreover, our results showed that the phagocytosis of opsonized C. neoformans triggers eosinophil activation, as indicated by (i) the up-regulation of major histocompatibility complex (MHC) class I, MHC class II and costimulatory molecules, and (ii) an increase in interleukin (IL)-12, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production. However, nitric oxide (NO) and hydrogen peroxide (H2O2) synthesis by eosinophils was down-regulated after interaction with C. neoformans. Furthermore, this work demonstrated that CD4+ and CD8+ T lymphocytes isolated from spleens of infected rats and cultured with C. neoformans-pulsed eosinophils proliferate in an MHC class II- and class I-dependent manner, respectively, and produce important amounts of T-helper 1 (Th1) type cytokines, such as TNF-α and IFN-γ, in the absence of T-helper 2 (Th2) cytokine synthesis. In summary, the present study demonstrates that eosinophils act as fungal antigen-presenting cells and suggests that C. neoformans-loaded eosinophils might participate in the adaptive immune response. PMID:21039463

  17. Monitoring α4β7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T cell loss in SIV infection

    PubMed Central

    Wang, Xiaolei; Xu, Huanbin; Gill, Amy F.; Pahar, Bapi; Kempf, Doty; Rasmussen, Terri; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Intestinal CD4+ T cells are rapidly and profoundly depleted in HIV-infected patients and SIV-infected macaques. However, monitoring intestinal cells in humans is difficult, and identifying surrogate markers in the blood, which correlate with loss or restoration of intestinal CD4+ T cells could be helpful in monitoring the success of therapeutic strategies and vaccine candidates. Recent studies indicate HIV utilizes the intestinal homing molecule α4β7 for attachment and signaling of CD4+ T cells, suggesting this molecule may play a central role in HIV pathogenesis. Here we compared β7HIGH integrin expression on CD4+ T cells in blood with loss of CD4+ T cells in the intestine of macaques throughout SIV infection. The loss of β7HIGH CD4+ T cells in blood closely paralleled the loss of intestinal CD4+ T cells, and proved to be a more reliable marker of intestinal CD4+ T cell loss than monitoring CCR5+ memory CD4+ T cells. These data are consistent with a recent hypothesis that α4β7 plays a role in the selective depletion of intestinal CD4+ T cells, and indicate that monitoring β7HIGH expression on CD4+ T cells in the blood may be a useful surrogate for estimating intestinal CD4+ T cell loss and restoration in HIV-infected patients. PMID:19710637

  18. Modeling alternative binding registers of a minimal immunogenic peptide on two class II major histocompatibility complex (MHC II) molecules predicts polarized T-cell receptor (TCR) contact positions.

    PubMed

    Murray, J S; Fois, S D S; Schountz, T; Ford, S R; Tawde, M D; Brown, J C; Siahaan, T J

    2002-03-01

    Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.

  19. Dentate gyrus-cornu ammonis (CA) 4 volume is decreased and associated with depressive episodes and lipid peroxidation in bipolar II disorder: Longitudinal and cross-sectional analyses.

    PubMed

    Elvsåshagen, Torbjørn; Zuzarte, Pedro; Westlye, Lars T; Bøen, Erlend; Josefsen, Dag; Boye, Birgitte; Hol, Per K; Malt, Ulrik F; Young, L Trevor; Andreazza, Ana C

    2016-12-01

    Reduced dentate gyrus volume and increased oxidative stress have emerged as potential pathophysiological mechanisms in bipolar disorder. However, the relationship between dentate gyrus volume and peripheral oxidative stress markers remains unknown. Here, we examined dentate gyrus-cornu ammonis (CA) 4 volume longitudinally in patients with bipolar II disorder (BD-II) and healthy controls and investigated whether BD-II is associated with elevated peripheral levels of oxidative stress. We acquired high-resolution structural 3T-magnetic resonance imaging (MRI) images and quantified hippocampal subfield volumes using an automated segmentation algorithm in individuals with BD-II (n=29) and controls (n=33). The participants were scanned twice, at study inclusion and on average 2.4 years later. In addition, we measured peripheral levels of two lipid peroxidation markers (4-hydroxy-2-nonenal [4-HNE] and lipid hydroperoxides [LPH]). First, we demonstrated that the automated hippocampal subfield segmentation technique employed in this work reliably measured dentate gyrus-CA4 volume. Second, we found a decreased left dentate gyrus-CA4 volume in patients and that a larger number of depressive episodes between T1 and T2 predicted greater volume decline. Finally, we showed that 4-HNE was elevated in BD-II and that 4-HNE was negatively associated with left and right dentate gyrus-CA4 volumes in patients. These results are consistent with a role for the dentate gyrus in the pathophysiology of bipolar disorder and suggest that depressive episodes and elevated oxidative stress might contribute to hippocampal volume decreases. In addition, these findings provide further support for the hypothesis that peripheral lipid peroxidation markers may reflect brain alterations in bipolar disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Atypical myxomatosis--virus isolation, experimental infection of rabbits and restriction endonuclease analysis of the isolate.

    PubMed

    Psikal, I; Smíd, B; Rodák, L; Valícek, L; Bendová, J

    2003-08-01

    Atypical form of myxomatosis, which caused non-lethal and clinically mild disease in domestic rabbits 1 month after immunization with a commercially available vaccine MXT, is described. The isolated myxoma virus designated as Litovel 2 (Li-2) did not induce systemic disease following subcutaneous and intradermal applications in susceptible experimental rabbits but led to the immune response demonstrated by ELISA. No severe disease was induced in those Li-2 inoculated rabbits by challenge with the virulent strains Lausanne (Lu) or Sanar (SA), while the control animals showed nodular form of myxomatosis with lethal course of the illness. Restriction fragment length polymorphism (RFLP) of genomic DNA with KpnI and BamHI endonucleases was used for genetic characterization of the Li-2 isolate, the vaccine strain MXT and both virulent strains Lu and SA, respectively. In general, RFLP analysis has shown to be informative for inferring genetic relatedness between myxoma viruses. Based on restriction endonuclease DNA fragment size distribution, it was evident that the pathogenic strain SA is genetically related to the reference strain Lu and the isolate Li-2 is more related, but not identical, to the vaccination strain MXT.

  1. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  2. Multidimensional analysis of intracellular bacteriophage T7 DNA: effects of amber mutations in genes 3 and 19.

    PubMed Central

    Serwer, P; Watson, R H; Hayes, S J

    1987-01-01

    By use of rate-zonal centrifugation, followed by either one- or two-dimensional agarose gel electrophoresis, the forms of intracellular bacteriophage T7 DNA produced by replication, recombination, and packaging have been analyzed. Previous studies had shown that at least some intracellular DNA with sedimentation coefficients between 32S (the S value of mature T7 DNA) and 100S is concatemeric, i.e., linear and longer than mature T7 DNA. The analysis presented here confirmed that most of this DNA is linear, but also revealed a significant amount of circular DNA. The data suggest that these circles are produced during DNA packaging. It is proposed that circles are produced after a capsid has bound two sequential genomes in a concatemer. The size distribution of the linear, concatemeric DNA had peaks at the positions of dimeric and trimeric concatemers. Restriction endonuclease analysis revealed that most of the mature T7 DNA subunits of concatemers were joined left end to right end. However, these data also suggest that a comparatively small amount of left-end to left-end joining occurs, possibly by blunt-end ligation. A replicating form of T7 DNA that had an S value greater than 100 (100S+ DNA) was also found to contain concatemers. However, some of the 100S+ DNA, probably the most branched component, remained associated with the origin after agarose gel electrophoresis. It has been found that T7 protein 19, known to be required for DNA packaging, was also required to prevent loss, probably by nucleolytic degradation, of the right end of all forms of intracellular T7 DNA. T7 gene 3 endonuclease, whose activity is required for both recombination of T7 DNA and degradation of host DNA, was required for the formation of the 32S to 100S molecules that behaved as concatemers during gel electrophoresis. In the absence of gene 3 endonuclease, the primary accumulation product was origin-associated 100S+ DNA with properties that suggest the accumulation of branches, primarily

  3. Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2018-06-27

    Adult T Acute Lymphoblastic Leukemia; Ann Arbor Stage II Adult Lymphoblastic Lymphoma; Ann Arbor Stage II Childhood Lymphoblastic Lymphoma; Ann Arbor Stage III Adult Lymphoblastic Lymphoma; Ann Arbor Stage III Childhood Lymphoblastic Lymphoma; Ann Arbor Stage IV Adult Lymphoblastic Lymphoma; Ann Arbor Stage IV Childhood Lymphoblastic Lymphoma; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  4. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    PubMed

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bacterial persistence by RNA endonucleases

    PubMed Central

    Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn

    2011-01-01

    Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497

  6. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals

    PubMed Central

    Ramana, Chilakamarti V.; Boldogh, Istvan; Izumi, Tadahide; Mitra, Sankar

    1998-01-01

    Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3′-phosphoesterase activity removes 3′ blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by other genotoxicants—e.g., UV light and alkylating agents. Increased expression of APE mRNA and protein was observed both in the HeLa S3 tumor line and in WI 38 primary fibroblasts, and it was accompanied by translocation of the endonuclease to the nucleus. ROS-treated cells showed a significant increase in resistance to the cytotoxicity of such ROS generators as H2O2 and bleomycin, but not to UV light. This “adaptive response” appears to result from enhanced repair of cytotoxic DNA lesions due to an increased activity of APE-1, which may be limiting in the base excision repair process for ROS-induced toxic lesions. PMID:9560228

  7. Prognostic Significance of Human Apurinic/Apyrimidinic Endonuclease (APE/Ref-1) Expression in Rectal Cancer Treated With Preoperative Radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jun-Sang, E-mail: k423j@cnu.ac.kr; Cancer Research Institute, Chungnam National University, Daejeon; Kim, Jin-Man

    Purpose: Human apurinic endonuclease/redox factor 1 (APE/Ref-1) mediates repair of radiation-induced DNA lesions and regulates transcription via redox-based activation. We investigated the predictive and prognostic significance of APE/Ref-1 expression in pretreatment biopsy specimens in locally advanced rectal cancer (LARC) (cT3-T4 or N+). Methods and Materials: APE/Ref-1 expression was analyzed by immunohistochemistry in pretreatment biopsy specimens obtained from 83 patients with LARC. Patients received preoperative radiotherapy of 50.4 Gy in 28 fractions, combined with oral capecitabine and leucovorin chemotherapy, followed by curative surgery. The prognostic significance of various clinicopathologic characteristics, including APE/Ref-1 protein expression, was evaluated. Results: APE/Ref-1 was expressed inmore » 97% of patient samples. Exclusive APE/Ref-1 nuclear staining was observed in 49 of 83 samples (59%), and mixed nuclear and cytoplasmic staining was observed in 31 samples (37%). APE/Ref-1 nuclear expression levels were low in 49 patients (59%) and high in 34 patients (41%). The level of APE/Ref-1 nuclear expression was not a prognostic factor for overall and disease-free survival. Cytoplasmic expression of APE/Ref-1 was a borderline-significant predictive factor for pathologic tumor response (p = 0.08) and a significant prognostic factor for disease-free survival, as shown by univariate analysis (p = 0.037). Multivariate analysis confirmed that cytoplasmic localization of APE/Ref-1 is a significant predictor of disease-free survival (hazard ratio, 0.45; p = 0.046). Conclusions: APE/Ref-1 was expressed in a majority of pretreatment biopsy specimens from patients with LARC. The level of APE/Ref-1 nuclear expression was not a significant predictive and prognostic factor; however, cytoplasmic localization of the protein was negatively associated with disease-free survival. These results indicate that cytoplasmic expression of APE/Ref-1 represents an

  8. The Use of Bacterial Repair Endonucleases in the Comet Assay.

    PubMed

    Collins, Andrew R

    2017-01-01

    The comet assay is a sensitive electrophoretic method for measuring DNA breaks at the level of single cells, used widely in genotoxicity experiments, in biomonitoring, and in fundamental research. Its sensitivity and range of application are increased by the incorporation of an extra step, after lysis of agarose-embedded cells, in which the DNA is digested with lesion-specific endonucleases (DNA repair enzymes of bacterial or phage origin). Enzymes with specificity for oxidized purines, oxidized pyrimidines, alkylated bases, UV-induced cyclobutane pyrimidine dimers, and misincorporated uracil have been employed. The additional enzyme-sensitive sites, over and above the strand breaks detected in the standard comet assay, give a quantitative estimate of the number of specific lesions present in the cells.

  9. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage

    PubMed Central

    Takeuchi, Arata; Badr, Mohamed El Sherif Gadelhaq; Miyauchi, Kosuke; Ishihara, Chitose; Onishi, Reiko; Guo, Zijin; Sasaki, Yoshiteru; Ike, Hiroshi; Takumi, Akiko; Tsuji, Noriko M.; Murakami, Yoshinori; Katakai, Tomoya; Kubo, Masato

    2016-01-01

    Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene. PMID:26694968

  10. Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia).

    PubMed

    Celis, Juan Sebastián; Edgell, David R; Stelbrink, Björn; Wibberg, Daniel; Hauffe, Torsten; Blom, Jochen; Kalinowski, Jörn; Wilke, Thomas

    2017-01-01

    Group I introns and homing endonuclease genes (HEGs) are mobile genetic elements, capable of invading target sequences in intron-less genomes. LAGLIDADG HEGs are the largest family of endonucleases, playing a key role in the mobility of group I introns in a process known as 'homing'. Group I introns and HEGs are rare in metazoans, and can be mainly found inserted in the COXI gene of some sponges and cnidarians, including stony corals (Scleractinia) and mushroom corals (Corallimorpharia). Vertical and horizontal intron transfer mechanisms have been proposed as explanations for intron occurrence in cnidarians. However, the central role of LAGLIDADG motifs in intron mobility mechanisms remains poorly understood. To resolve questions regarding the evolutionary origin and distribution of group I introns and HEGs in Scleractinia and Corallimorpharia, we examined intron/HEGs sequences within a comprehensive phylogenetic framework. Analyses of LAGLIDADG motif conservation showed a high degree of degradation in complex Scleractinia and Corallimorpharia. Moreover, the two motifs lack the respective acidic residues necessary for metal-ion binding and catalysis, potentially impairing horizontal intron mobility. In contrast, both motifs are highly conserved within robust Scleractinia, indicating a fully functional endonuclease capable of promoting horizontal intron transference. A higher rate of non-synonymous substitutions (Ka) detected in the HEGs of complex Scleractinia and Corallimorpharia suggests degradation of the HEG, whereas lower Ka rates in robust Scleractinia are consistent with a scenario of purifying selection. Molecular-clock analyses and ancestral inference of intron type indicated an earlier intron insertion in complex Scleractinia and Corallimorpharia in comparison to robust Scleractinia. These findings suggest that the lack of horizontal intron transfers in the former two groups is related to an age-dependent degradation of the endonuclease activity. Moreover

  11. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    PubMed

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO

  12. Alternative Nucleophilic Substrates for the Endonuclease Activities of Human Immunodeficiency Virus Type 1 Integrase

    PubMed Central

    Ealy, Julie B.; Sudol, Malgorzata; Krzeminski, Jacek; Amin, Shantu; Katzman, Michael

    2012-01-01

    Retroviral integrase can use water or some small alcohols as the attacking nucleophile to nick DNA. To characterize the range of compounds that human immunodeficiency virus type 1 integrase can accommodate for its endonuclease activities, we tested 45 potential electron donors (having varied size and number or spacing of nucleophilic groups) as substrates during site-specific nicking at viral DNA ends and during nonspecific nicking reactions. We found that integrase used 22 of the 45 compounds to nick DNA, but not all active compounds were used for both activities. In particular, 13 compounds were used for site-specific and nonspecific nicking, 5 only for site-specific nicking, and 4 only for nonspecific nicking; 23 other compounds were not used for either activity. Thus, integrase can accommodate a large number of nucleophilic substrates but has selective requirements for its different activities, underscoring its dynamic properties and providing new information for modeling and understanding integrase. PMID:22910593

  13. Role of T cells in the B-cell response: glutaraldehyde-fixed T-helper hybridoma cells synergize with the lymphokine IL-4 to induce B-cell activation and proliferation.

    PubMed

    Kubota, E; McKenzie, D T; Dutton, R W; Swain, S L

    1991-01-01

    Antigen-unselected helper T-cell hybridomas (Th) which activate normal resting B cells to RNA synthesis and proliferation in the presence of concanavalin A (Con A) have been developed. The response is completely Th cell dependent, and not restricted by the haplotype of the B-cell major histocompatibility complex (MHC). Culture supernatants from the Con A-stimulated Th hybridomas contain interleukin-4 (IL-4) and IL-2, but undetectable level of IL-5. The supernatant alone, however, does not induce B-cell activation or proliferation. Although the Con A-mediated Th cell-dependent B-cell response occurs in an MHC-unrestricted manner, the response of resting B cells can be blocked by monoclonal Ia antibody specific for the surface class II molecules of the responding B cell. The response is also blocked by monoclonal antibody to L3T4. Significant activation and proliferation of resting B cells can also be triggered by glutaraldehyde-fixed Th hybridomas and Con A when exogenous IL-4 is added. The stimulation with fixed Th hybridomas plus IL-4 can be inhibited by monoclonal anti-L3T4 or anti-Ia. These results suggest that maximal B-cell activation requires a direct helper T cell-B cell interaction which depends on availability of Ia on the B cell and L3T4 on the T cell, even when Con A overcomes the requirement for MHC-restricted T-cell recognition. We suggest that this signal, in conjunction with T-cell produced lymphokine IL-4, is responsible for the activation and subsequent proliferation of the B cells which occurs following interaction with T cells.

  14. 78 FR 13742 - BB&T Capital Partners Mezzanine Fund II, L.P.; Notice Seeking Exemption Under Section 312 of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... SMALL BUSINESS ADMINISTRATION [License No. 04/04-0311] BB&T Capital Partners Mezzanine Fund II, L... Interest Notice is hereby given that BB&T Capital Partners Mezzanine Fund II, L.P., 101 N. Cherry Street... Interest of the Small Business Administration (``SBA'') Rules and Regulations (13 CFR 107.730). BB&T...

  15. 36 CFR 30.4 - Recreation District II.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Recreation District II. 30.4 Section 30.4 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR... promote conservation of soil, water, and vegetation, including reforestation and tree stand improvement...

  16. Direct ex vivo detection of HLA-DR3-restricted cytomegalovirus- and Mycobacterium tuberculosis-specific CD4+ T cells.

    PubMed

    Bronke, Corine; Palmer, Nanette M; Westerlaken, Geertje H A; Toebes, Mireille; van Schijndel, Gijs M W; Purwaha, Veenu; van Meijgaarden, Krista E; Schumacher, Ton N M; van Baarle, Debbie; Tesselaar, Kiki; Geluk, Annemieke

    2005-09-01

    In order to detect epitope-specific CD4+ T cells in mycobacterial or viral infections in the context of human class II major histocompatibility complex protein human leukocyte antigen (HLA)-DR3, two HLA-DR3 tetrameric molecules were successfully produced. One contained an immunodominant HLA-DR3-restricted T-cell epitope derived from the 65-kDa heat-shock protein of Mycobacterium tuberculosis, peptide 1-13. For the other tetramer, we used an HLA-DR3-restricted T-cell epitope derived from cytomegalovirus (CMV) pp65 lower matrix protein, peptide 510-522, which induced high levels of interferon (IFN)-gamma-producing CD4+ T cells in three of four HLA-DR3-positive CMV-seropositive individuals up to 0.84% of CD4+ T cells by intracellular cytokine staining. In peripheral blood mononuclear cells from M. tuberculosis-exposed, Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated, or CMV-seropositive individuals, we were able to directly detect with both tetramers epitope-specific T cells up to 0.62% and 0.45% of the CD4+ T-cell population reactive to M. tuberculosis and CMV, respectively. After a 6-day culture with peptide p510-522, the frequency of CMV-specific tetramer-binding T cells was expanded up to 9.90% tetramer+ CFSElow (5,6-carboxyfluorescein diacetate succinimidyl ester) cells within the CD4+ T-cell population, further confirming the specificity of the tetrameric molecules. Thus, HLA-DR3/peptide tetrameric molecules can be used to investigate HLA-DR3-restricted antigen-specific CD4+ T cells in clinical disease or after vaccination.

  17. Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification.

    PubMed

    Liu, Zhongyuan; Zhang, Wei; Zhu, Shuyun; Zhang, Ling; Hu, Lianzhe; Parveen, Saima; Xu, Guobao

    2011-11-15

    Combining the advantages of signal-on strategy and nicking endonuclease assisted electrochemistry signal amplification (NEAESA), a new sensitive and signal-on electrochemical DNA biosensor for the sequence specific DNA detection based on NEAESA has been developed for the first time. A Hairpin-shape probe (HP), containing the target DNA recognition sequence, is thiol-modified at 5' end and immobilized on gold electrode via Au-S bonding. Subsequently, the HP modified electrode is hybridized with target DNA to form a duplex. Then the nicking endonuclease is added and nicks the HP strand in the duplex. After nicking, 3'-ferrocene (Fc)-labeled part complementary probe (Fc-PCP) is introduced on the electrode surface by hybridizing with the thiol-modified HP fragment, which results in the generation of electrochemical signal. Hence, the DNA biosensor is constructed successfully. The present DNA biosensor shows a wide linear range of 5.0×10(-13)-5.0×10(-8)M for detecting target DNA, with a low detection limit of 0.167pM. The proposed strategy does not require any amplifying labels (enzymes, DNAzymes, nanoparticles, etc.) for biorecognition events, which avoids false-positive results to occur frequently. Moreover, the strategy has the benefits of simple preparation, convenient operation, good selectivity, and high sensitivity. With the advantages mentioned above, this simple and sensitive strategy has the potential to be integrated in portable, low cost and simplified devices for diagnostic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a small Cas9 endonuclease.

    PubMed

    Ivanov, Yury V; Shariat, Nikki; Register, Karen B; Linz, Bodo; Rivera, Israel; Hu, Kai; Dudley, Edward G; Harvill, Eric T

    2015-10-26

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) are widely distributed among bacteria. These systems provide adaptive immunity against mobile genetic elements specified by the spacer sequences stored within the CRISPR. The CRISPR-Cas system has been identified using Basic Local Alignment Search Tool (BLAST) against other sequenced and annotated genomes and confirmed via CRISPRfinder program. Using Polymerase Chain Reactions (PCR) and Sanger DNA sequencing, we discovered CRISPRs in additional bacterial isolates of the same species of Bordetella. Transcriptional activity and processing of the CRISPR have been assessed via RT-PCR. Here we describe a novel Type II-C CRISPR and its associated genes-cas1, cas2, and cas9-in several isolates of a newly discovered Bordetella species. The CRISPR-cas locus, which is absent in all other Bordetella species, has a significantly lower GC-content than the genome-wide average, suggesting acquisition of this locus via horizontal gene transfer from a currently unknown source. The CRISPR array is transcribed and processed into mature CRISPR RNAs (crRNA), some of which have homology to prophages found in closely related species B. hinzii. Expression of the CRISPR-Cas system and processing of crRNAs with perfect homology to prophages present in closely related species, but absent in that containing this CRISPR-Cas system, suggest it provides protection against phage predation. The 3,117-bp cas9 endonuclease gene from this novel CRISPR-Cas system is 990 bp smaller than that of Streptococcus pyogenes, the 4,017-bp allele currently used for genome editing, and which may make it a useful tool in various CRISPR-Cas technologies.

  19. Analysis of Endonuclease R·EcoRI Fragments of DNA from Lambdoid Bacteriophages and Other Viruses by Agarose-Gel Electrophoresis

    PubMed Central

    Helling, Robert B.; Goodman, Howard M.; Boyer, Herbert W.

    1974-01-01

    By means of agarose-gel electrophoresis, endonuclease R·EcoRI-generated fragments of DNA from various viruses were separated, their molecular weights were determined, and complete or partial fragment maps for lambda, φ80, and hybrid phages were constructed. Images PMID:4372397

  20. Iron(II) supramolecular helicates condense plasmid DNA and inhibit vital DNA-related enzymatic activities.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2015-07-27

    The dinuclear iron(II) supramolecular helicates [Fe2 L3 ]Cl4 (L=C25 H20 N4 ) bind to DNA through noncovalent (i.e., hydrogen-bonding, electrostatic) interactions and exhibit antimicrobial and anticancer effects. In this study, we show that the helicates condense plasmid DNA with a much higher potency than conventional DNA-condensing agents. Notably, molecules of DNA in the presence of the M enantiomer of [Fe2 L3 ]Cl4 do not form intermolecular aggregates typically formed by other condensing agents, such as spermidine or spermine. The helicates inhibit the activity of several DNA-processing enzymes, such as RNA polymerase, DNA topoisomerase I, deoxyribonuclease I, and site-specific restriction endonucleases. However, the results also indicate that the DNA condensation induced by the helicates does not play a crucial role in these inhibition reactions. The mechanisms for the inhibitory effects of [Fe2 L3 ]Cl4 helicates on DNA-related enzymatic activities have been proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Phenotypic analysis of perennial airborne allergen-specific CD4+ T cells in atopic and non-atopic individuals.

    PubMed

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2011-11-01

    Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.

  2. Neutral Ni(II), Pd(II) and Pt(II) ONS-pincer complexes of 5-acetylbarbituric-4N-dimethylthiosemicarbazone: synthesis, characterization and properties.

    PubMed

    Castiñeiras, Alfonso; Fernández-Hermida, Nuria; García-Santos, Isabel; Gómez-Rodríguez, Lourdes

    2012-11-21

    Octahedral 1:1 Ni(II) and square-planar 1:1 Pd(II) and Pt(II) complexes of formulae [Ni(HAcb4DM)(AcO)(H2O)2]·H2O (1), [Pd(HAcb4DM)Cl]·5H2O (2) and [Pt(HAcb4DM)Cl]·3H2O (3), where H2Acb4DM = 5-acetylbarbituric-4N-dimethylthiosemicarbazone (H2 denoting its two dissociable protons, one enolic and one thiolic), have been synthesized and characterized by elemental analysis and by 1H and 13C NMR, UV-vis, and IR spectroscopy. Crystallisation of compounds 1–3 from DMSO afforded complexes of formulae [Ni(HAcb4DM)2]·2H2O (1a), [Pd(Acb4DM)(DMSO)]·DMSO (2a) and [Pt(Acb4DM)(DMSO)]·DMSO (3a), the molecular and crystal structures of which were determined by X-ray diffractometry. The thiosemicarbazone in 1a coordinates to the metal ions in an ONS-tridentate manner in the O-enolate/S-thione form, but in complexes 2a and 3a the thiosemicarbazone binds Pd(II) or Pt(II) as an ONS-pincer ligand in the O-enolate/S-thiolate form. The 195Pt NMR spectrum of 3 shows a signal at −2950 ppm along with two new signals at −3348 and −2731 ppm, indicating the presence of solvolysis products. The catalytic activity of complex 2a has been explored in aryl–aryl Suzuki cross-coupling reactions. H2Acb4DM and complexes 2 and 3 were screened for in vitro cytotoxicity against a human tumour cell line (HeLa-229), with the clinically employed drug cisplatin as a reference.

  3. A novel differentiation pathway from CD4+ T cells to CD4T cells for maintaining immune system homeostasis

    PubMed Central

    Zhao, X; Sun, G; Sun, X; Tian, D; Liu, K; Liu, T; Cong, M; Xu, H; Li, X; Shi, W; Tian, Y; Yao, J; Guo, H; Zhang, D

    2016-01-01

    CD4+ T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4+ T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4−CD8−NK1.1− double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4+ rather than CD8+ T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4+ T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases. PMID:27077809

  4. BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence.

    PubMed Central

    Vitkute, J; Maneliene, Z; Petrusyte, M; Janulaitis, A

    1997-01-01

    Bcg I and Bcg I-like restriction endonucleases cleave double stranded DNA specifically on both sides of their asymmetric recognition sequences which are interrupted by several ambiguous base pairs. Their heterosubunit structure, bifunctionality and stimulation by AdoMet make them different from other classified restriction enzymes. Here we report on a new Bcg I-like restriction endonuclease, Bpl I from Bacillus pumilus , which in contrast to all other Bcg I-like enzymes, recognizes a symmetric interrupted sequence, and which, like Bcg I, cleaves double stranded DNA upstream and downstream of its recognition sequence (8/13)GAGN5CTC(13/8). Like Bcg I, Bpl I is a bifunctional enzyme revealing both DNA cleavage and methyltransferase activities. There are two polypeptides in the homogeneous preparation of Bpl I with molecular masses of approximately 74 and 37 kDa. The sizes of the Bpl I subunits are close to those of Bcg I, but the proportion 1:1 in the final preparation is different from that of 2:1 in Bcg I. Low activity observed with Mg2+increases >100-fold in the presence of AdoMet. Even with AdoMet though, specific cleavage is incomplete. S -adenosylhomocysteine (AdoHcy) or sinefungin can replace AdoMet in the cleavage reaction. AdoHcy activated Bpl I yields complete cleavage of DNA. PMID:9358150

  5. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  6. T4 category revision enhances the accuracy and significance of stage III breast cancer.

    PubMed

    Güth, Uwe; Singer, Gad; Langer, Igor; Schötzau, Andreas; Herberich, Linda; Holzgreve, Wolfgang; Wight, Edward

    2006-06-15

    Because of the considerable heterogeneity in breast carcinoma with noninflammatory skin involvement (T4b/Stage IIIB), a revision was proposed of the TNM staging system that would classify these tumors exclusively based on their tumor size and lymph node status. In the current study, the authors evaluated how implementation of this proposal will affect Stage III noninflammatory breast cancer. Two hundred seven patients who were classified with noninflammatory Stage III breast cancer were treated consecutively between 1990 and 1999 at the University Hospital Basel, Switzerland. To assess the extent of T4b/Stage IIIB tumors independent of the clinicopathologic feature of skin involvement, the reclassification was undertaken. Of 68 patients who had nonmetastatic T4b breast cancer, 37 patients (54.4%) had a tumor extent in accordance with Stage I/II and had improved disease-specific survival (DSS) compared with patients who had Stage III breast cancer (P = .008). Excluding those patients from Stage III led to a 17.9% reduction of the number of patients in this group (n = 170 patients). The 10-year DSS declined from 48.5% to 42.9%. Considerable numbers of patients who are classified with noninflammatory Stage IIIB breast cancer show only a limited disease extent. Through a revision of the T4 category, these low-risk patients were excluded from the highest nonmetastatic TNM stage, and overstaging could be avoided. This procedure decreased the degree of heterogeneity of the entire Stage III group and may result in a more precise assessment of this disease entity. Copyright 2006 American Cancer Society.

  7. Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis.

    PubMed

    Guo, Rey-Ting; Chong, Yeeting E; Guo, Min; Yang, Xiang-Lei

    2009-10-16

    Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed.

  8. Crystal Structures and Biochemical Analyses Suggest a Unique Mechanism and Role for Human Glycyl-tRNA Synthetase in Ap4A Homeostasis*

    PubMed Central

    Guo, Rey-Ting; Chong, Yeeting E.; Guo, Min; Yang, Xiang-Lei

    2009-01-01

    Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed. PMID:19710017

  9. Diverse Small Molecule Inhibitors of Human Apurinic/Apyrimidinic Endonuclease APE1 Identified from a Screen of a Large Public Collection

    PubMed Central

    Dorjsuren, Dorjbal; Kim, Daemyung; Vyjayanti, Vaddadi N.; Maloney, David J.; Jadhav, Ajit; Wilson, David M.; Simeonov, Anton

    2012-01-01

    The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment. PMID:23110144

  10. Diverse small molecule inhibitors of human apurinic/apyrimidinic endonuclease APE1 identified from a screen of a large public collection.

    PubMed

    Dorjsuren, Dorjbal; Kim, Daemyung; Vyjayanti, Vaddadi N; Maloney, David J; Jadhav, Ajit; Wilson, David M; Simeonov, Anton

    2012-01-01

    The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment.

  11. Structure-based prediction and identification of 4-epimerization activity of phosphate sugars in class II aldolases.

    PubMed

    Lee, Seon-Hwa; Hong, Seung-Hye; An, Jung-Ung; Kim, Kyoung-Rok; Kim, Dong-Eun; Kang, Lin-Woo; Oh, Deok-Kun

    2017-05-16

    Sugar 4-epimerization reactions are important for the production of rare sugars and their derivatives, which have various potential industrial applications. For example, the production of tagatose, a functional sweetener, from fructose by sugar 4-epimerization is currently constrained because a fructose 4-epimerase does not exist in nature. We found that class II D-fructose-1,6-bisphosphate aldolase (FbaA) catalyzed the 4-epimerization of D-fructose-6-phosphate (F6P) to D-tagatose-6-phosphate (T6P) based on the prediction via structural comparisons with epimerase and molecular docking and the identification of the condensed products of C3 sugars. In vivo, the 4-epimerization activity of FbaA is normally repressed. This can be explained by our results showing the catalytic efficiency of D-fructose-6-phosphate kinase for F6P phosphorylation was significantly higher than that of FbaA for F6P epimerization. Here, we identified the epimerization reactions and the responsible catalytic residues through observation of the reactions of FbaA and L-rhamnulose-1-phosphate aldolases (RhaD) variants with substituted catalytic residues using different substrates. Moreover, we obtained detailed potential epimerization reaction mechanism of FbaA and a general epimerization mechanism of the class II aldolases L-fuculose-1-phosphate aldolase, RhaD, and FbaA. Thus, class II aldolases can be used as 4-epimerases for the stereo-selective synthesis of valuable carbohydrates.

  12. Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium.

    PubMed

    Ogata, Yuka; Toyama, Tadashi; Yu, Ning; Wang, Xuan; Sei, Kazunari; Ike, Michihiko

    2013-04-01

    Although 4-tert-butylphenol (4-t-BP) is a serious aquatic pollutant, its biodegradation in aquatic environments has not been well documented. In this study, 4-t-BP was obviously and repeatedly removed from water from four different environments in the presence of Spirodela polyrrhiza, giant duckweed, but 4-t-BP persisted in the environmental waters in the absence of S. polyrrhiza. Also, 4-t-BP was not removed from autoclaved pond water with sterilized S. polyrrhiza. These results suggest that the 4-t-BP removal from the environmental waters was caused by biodegradation stimulated by the presence of S. polyrrhiza rather than by uptake by the plant. Moreover, Sphingobium fuliginis OMI capable of utilizing 4-t-BP as a sole carbon and energy source was isolated from the S. polyrrhiza rhizosphere. Strain OMI degraded 4-t-BP via a meta-cleavage pathway, and also degraded a broad range of alkylphenols with linear or branched alkyl side chains containing two to nine carbon atoms. Root exudates of S. polyrrhiza stimulated 4-t-BP degradation and cell growth of strain OMI. Thus, the stimulating effects of S. polyrrhiza root exudates on 4-t-BP-degrading bacteria might have contributed to 4-t-BP removal in the environmental waters with S. polyrrhiza. These results demonstrate that the S. polyrrhiza-bacteria association may be applicable to the removal of highly persistent 4-t-BP from wastewaters or polluted aquatic environments.

  13. Crystal structure of NucB, a biofilm-degrading endonuclease

    PubMed Central

    Baslé, Arnaud; Hewitt, Lorraine; Koh, Alan; Lamb, Heather K; Thompson, Paul; Burgess, J Grant; Hall, Michael J; Hawkins, Alastair R; Murray, Heath

    2018-01-01

    Abstract Bacterial biofilms are a complex architecture of cells that grow on moist interfaces, and are held together by a molecular glue of extracellular proteins, sugars and nucleic acids. Biofilms are particularly problematic in human healthcare as they can coat medical implants and are thus a potential source of disease. The enzymatic dispersal of biofilms is increasingly being developed as a new strategy to treat this problem. Here, we have characterized NucB, a biofilm-dispersing nuclease from a marine strain of Bacillus licheniformis, and present its crystal structure together with the biochemistry and a mutational analysis required to confirm its active site. Taken together, these data support the categorization of NucB into a unique subfamily of the ββα metal-dependent non-specific endonucleases. Understanding the structure and function of NucB will facilitate its future development into an anti-biofilm therapeutic agent. PMID:29165717

  14. Characteristics of Prevotella intermedia-specific CD4+ T cell clones from peripheral blood of a chronic adult periodontitis patient

    PubMed Central

    Wassenaar, A; Reinhardus, C; Abraham-Inpijn, L; Snijders, A; Kievits, F

    1998-01-01

    Periodontitis is a chronic destructive inflammatory disease associated with periodontopathic bacteria. In addition, autoantigens such as collagen and heat shock proteins (hsp) have been suggested to play a role. Established periodontal lesions are characterized by dense infiltrations of immune cells such as cytokine-producing CD4+ and CD8+ T cells. CD4+ T cells specific for Prevotella intermedia can be isolated from lesional gingiva, suggesting an active role for CD4+ T cells in the response to this bacterium. We therefore investigated the characteristics of a panel of 13 P. intermedia-specific CD4+ T cells generated from the peripheral blood of a patient with chronic adult periodontitis. All 13 P. intermedia-specific CD4+ T cells recognized the antigens in the context of HLA-DR. The T cell clones were mainly classified as Th0, producing comparable amounts of interferon-gamma (IFN-γ) and IL-4, and Th2, producing high amounts of IL-4 and almost no IFN-γ. None of the P. intermedia-specific T cell clones recognized antigens of the periodontopathic bacteria Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis and of the autoantigens collagen and hsp. The reactivity profile of the T cell clones to size-fractionated cell envelope antigens of P. intermedia indicated that P. intermedia-specific CD4+ T cell clones recognize probably five different antigen specificities in the context of the MHC class II molecules, DR7 or DR15. These results suggest that a broad panel of cell-associated protein antigens play a role in the induction of P. intermedia-specific CD4+ T cell response. PMID:9697992

  15. IFN-Gamma-Dependent and Independent Mechanisms of CD4⁺ Memory T Cell-Mediated Protection from Listeria Infection.

    PubMed

    Meek, Stephanie M; Williams, Matthew A

    2018-02-13

    While CD8⁺ memory T cells can promote long-lived protection from secondary exposure to intracellular pathogens, less is known regarding the direct protective mechanisms of CD4T cells. We utilized a prime/boost model in which mice are initially exposed to an acutely infecting strain of lymphocytic choriomeningitis virus (LCMV), followed by a heterologous rechallenge with Listeria monocytogenes recombinantly expressing the MHC Class II-restricted LCMV epitope, GP 61-80 (Lm-gp61). We found that heterologous Lm-gp61 rechallenge resulted in robust activation of CD4⁺ memory T cells and that they were required for rapid bacterial clearance. We further assessed the relative roles of TNF and IFNγ in the direct anti-bacterial function of CD4⁺ memory T cells. We found that disruption of TNF resulted in a complete loss of protection mediated by CD4⁺ memory T cells, whereas disruption of IFNγ signaling to macrophages results in only a partial loss of protection. The protective effect mediated by CD4T cells corresponded to the rapid accumulation of pro-inflammatory macrophages in the spleen and an altered inflammatory environment in vivo. Overall, we conclude that protection mediated by CD4⁺ memory T cells from heterologous Listeria challenge is most directly dependent on TNF, whereas IFNγ only plays a minor role.

  16. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    PubMed

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Enforced OX40 Stimulation Empowers Booster Vaccines to Induce Effective CD4+ and CD8+ T Cell Responses against Mouse Cytomegalovirus Infection

    PubMed Central

    Panagioti, Eleni; Boon, Louis; Arens, Ramon; van der Burg, Sjoerd H.

    2017-01-01

    There is an imperative need for effective preventive vaccines against human cytomegalovirus as it poses a significant threat to the immunologically immature, causing congenital disease, and to the immune compromised including transplant recipients. In this study, we examined the efficacy of synthetic long peptides (SLPs) as a CD4+ and CD8+ T cell-eliciting preventive vaccine approach against mouse CMV (MCMV) infection. In addition, the use of agonistic OX40 antibodies to enhance vaccine efficacy was explored. Immunocompetent C57BL/6 mice were vaccinated in a prime-boost vaccination regiment with SLPs comprising various MHC class I- and II-restricted peptide epitopes of MCMV-encoded antigens. Enforced OX40 stimulation resulted in superior MCMV-specific CD4+ as CD8+ T cell responses when applied during booster SLP vaccination. Vaccination with a mixture of SLPs containing MHC class II epitopes and OX40 agonistic antibodies resulted in a moderate reduction of the viral titers after challenge with lytic MCMV infection. Markedly, the combination of SLP vaccines containing both MHC class I and II epitopes plus OX40 activation during booster vaccination resulted in polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD4+ and CD8+ T cell responses that were even higher in magnitude when compared to those induced by the virus, and this resulted in the best containment of virus dissemination. Our results show that the induction of strong T cell responses can be a fundamental component in the design of vaccines against persistent viral infections. PMID:28265272

  18. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin.

    PubMed

    Bhattacharjee, Amlan J; Ahluwalia, Karan; Taylor, Scott; Jin, Ou; Nicoludis, John M; Buscaglia, Robert; Brad Chaires, J; Kornfilt, David J P; Marquardt, David G S; Yatsunyk, Liliya A

    2011-08-01

    G-quadruplexes (GQ) are formed by the association of guanine-rich stretches of DNA. Certain small molecules can influence kinetics and thermodynamics of this association. Understanding the mechanism of ligand-assisted GQ folding is necessary for the design of more efficient cancer therapeutics. The oligonucleotide d(TAGGG)(2) forms parallel bimolecular GQ in the presence of ≥66 mM K(+); GQs are not formed under Na(+), Li(+) or low K(+) conditions. The thermodynamic parameters for GQ folding at 60 μM oligonucleotide and 100 mM KCl are ΔH = -35 ± 2 kcal mol(-1) and ΔG(310) = -1.4 kcal mol(-1). Quadruplex [d(TAGGG)(2)](2) binds 2-3 K(+) ions with K(d) of 0.5 ± 0.2 mM. Our work addresses the question of whether metal free 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) and its Zn(II), Cu(II), and Pt(II) derivatives are capable of facilitating GQ folding of d(TAGGG)(2) from single stranded, or binding to preformed GQ, using UV-vis and circular dichroism (CD) spectroscopies. ZnTMPyP4 is unique among other porphyrins in its ability to induce GQ structure of d(TAGGG)(2), which also requires at least a low amount of potassium. ZnTMPyP4 binds with 2:1 stoichiometry possibly in an end-stacking mode with a ~10(6) M(-1) binding constant, determined through UV-vis and ITC titrations. This process is entropically driven and has ΔG(298) of -8.0 kcal mol(-1). TMPyP4 binds with 3:1 stoichiometry and K(a) of ~10(6) M(-1). ZnTMPyP4 and TMPyP4 are efficient stabilizers of [d(TAGGG)(2)](2) displaying ΔT(1/2) of 13.5 and 13.8 °C, respectively, at 1:2 GQ to porphyrin ratio; CuTMPyP4 shows a much weaker effect (ΔT(1/2) = 4.7 °C) and PtTMPyP4 is weakly destabilizing (ΔT(1/2) = -2.9 °C). The selectivity of ZnTMPyP4 for GQ versus dsDNA is comparable to that of TMPyP4. The ability of ZnTMPyP4 to bind and stabilize GQ, to induce GQ formation, and speed up its folding may suggest an important biological activity for this molecule. Copyright © 2011 Elsevier Masson SAS

  19. Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.

    PubMed Central

    Olson, N J; Marchin, G L

    1984-01-01

    A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly. PMID:6374167

  20. CD4+ T Cells Mediate Aspergillosis Vaccine Protection.

    PubMed

    Diaz-Arevalo, Diana; Kalkum, Markus

    2017-01-01

    Adaptive effector CD4 + T cells play essential roles in the defense against fungal infections, especially against invasive aspergillosis (IA). Such protective CD4 + T cells can be generated through immunization with specialized antifungal vaccines, as has been demonstrated for pulmonary Aspergillus fumigatus infections in mouse experiments. Adaptive transfer of fungal antigen-specific CD4 + T cells conferred protection onto non-immunized naive mice, an experimental approach that could potentially become a future treatment option for immunosuppressed IA patients, focusing on the ultimate goal to improve their otherwise dim chances for survival. Here, we describe the different techniques to analyze CD4 + T cell immune responses after immunization with a recombinant fungal protein. We present three major methods that are used to analyze the role of CD4 + T cells in protection against A. fumigatus challenge. They include (1) transplantation of CD4 + T cells from vaccinated mice into immunosuppressed naive mice, observing increasing protection of the cell recipients, (2) depletion of CD4 + T cells from vaccinated mice, which abolishes vaccine protection, and (3) T cell proliferation studies following stimulation with overlapping synthetic peptides or an intact protein vaccine. The latter can be used to validate immunization status and to identify protective T cell epitopes in vaccine antigens. In the methods detailed here, we used versions of the well-studied Asp f3 protein expressed in a bacterial host, either as the intact full length protein or its N-terminally truncated version, comprised of residues 15-168. However, these methods are generally applicable and can well be adapted to study other protein-based subunit vaccines.

  1. T-4G Methodology: Undergraduate Pilot Training T-37 Phase.

    ERIC Educational Resources Information Center

    Woodruff, Robert R.; And Others

    The report's brief introduction describes the application of T-4G methodology to the T-37 instrument phase of undergraduate pilot training. The methodology is characterized by instruction in trainers, proficiency advancement, a highly structured syllabus, the training manager concept, early exposure to instrument training, and hands-on training.…

  2. A T3 and T7 Recombinant Phage Acquires Efficient Adsorption and a Broader Host Range

    PubMed Central

    Lin, Tiao-Yin; Lo, Yi-Haw; Tseng, Pin-Wei; Chang, Shun-Fu; Lin, Yann-Tsyr; Chen, Ton-Seng

    2012-01-01

    It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress. PMID:22347414

  3. A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range.

    PubMed

    Lin, Tiao-Yin; Lo, Yi-Haw; Tseng, Pin-Wei; Chang, Shun-Fu; Lin, Yann-Tsyr; Chen, Ton-Seng

    2012-01-01

    It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress.

  4. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  5. Type III restriction endonucleases are heterotrimeric: comprising one helicase–nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    PubMed Central

    Butterer, Annika; Pernstich, Christian; Smith, Rachel M.; Sobott, Frank; Szczelkun, Mark D.; Tóth, Júlia

    2014-01-01

    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism. PMID:24510100

  6. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    NASA Astrophysics Data System (ADS)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  7. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme.

    PubMed

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-15

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50ngmL -1 with the limit detection of 9.899ngmL -1 . Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 10 3 to 10 8 CFUmL -1 in real samples with a detection limit of 320CFUmL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  9. Cloning and Characterization of the Lactococcal Plasmid-Encoded Type II Restriction/Modification System, LlaDII

    PubMed Central

    Madsen, Annette; Josephsen, Jytte

    1998-01-01

    The LlaDII restriction/modification (R/M) system was found on the naturally occurring 8.9-kb plasmid pHW393 in Lactococcus lactis subsp. cremoris W39. A 2.4-kb PstI-EcoRI fragment inserted into the Escherichia coli-L. lactis shuttle vector pCI3340 conferred to L. lactis LM2301 and L. lactis SMQ86 resistance against representatives of the three most common lactococcal phage species: 936, P335, and c2. The LlaDII endonuclease was partially purified and found to recognize and cleave the sequence 5′-GC↓NGC-3′, where the arrow indicates the cleavage site. It is thus an isoschizomer of the commercially available restriction endonuclease Fnu4HI. Sequencing of the 2.4-kb PstI-EcoRI fragment revealed two open reading frames arranged tandemly and separated by a 105-bp intergenic region. The endonuclease gene of 543 bp preceded the methylase gene of 954 bp. The deduced amino acid sequence of the LlaDII R/M system showed high homology to that of its only sequenced isoschizomer, Bsp6I from Bacillus sp. strain RFL6, with 41% identity between the endonucleases and 60% identity between the methylases. The genetic organizations of the LlaDII and Bsp6I R/M systems are identical. Both methylases have two recognition sites (5′-GCGGC-3′ and 5′-GCCGC-3′) forming a putative stem-loop structure spanning part of the presumed −35 sequence and part of the intervening region between the −35 and −10 sequences. Alignment of the LlaDII and Bsp6I methylases with other m5C methylases showed that the protein primary structures possessed the same organization. PMID:9647810

  10. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-11-22

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital.

  11. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed Central

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-01-01

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital. PMID:811313

  12. Water Oxidation Catalysis by Co(II) Impurities in Co(III) 4O 4 Cubanes

    DOE PAGES

    Ullman, Andrew M.; Liu, Yi; Huynh, Michael; ...

    2014-11-18

    Here, the observed water oxidation activity of the compound class Co 4O 4(OAc) 4(Py–X) 4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co 4O 4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials andmore » demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.« less

  13. Naive T cells are dispensable for memory CD4+ T cell homeostasis in progressive simian immunodeficiency virus infection.

    PubMed

    Okoye, Afam A; Rohankhedkar, Mukta; Abana, Chike; Pattenn, Audrie; Reyes, Matthew; Pexton, Christopher; Lum, Richard; Sylwester, Andrew; Planer, Shannon L; Legasse, Alfred; Park, Byung S; Piatak, Michael; Lifson, Jeffrey D; Axthelm, Michael K; Picker, Louis J

    2012-04-09

    The development of AIDS in chronic HIV/simian immunodeficiency virus (SIV) infection has been closely linked to progressive failure of CD4(+) memory T cell (T(M)) homeostasis. CD4(+) naive T cells (T(N)) also decline in these infections, but their contribution to disease progression is less clear. We assessed the role of CD4(+) T(N) in SIV pathogenesis using rhesus macaques (RMs) selectively and permanently depleted of CD4(+) T(N) before SIV infection. CD4(+) T(N)-depleted and CD4(+) T(N)-repleted RMs were created by subjecting juvenile RMs to thymectomy versus sham surgery, respectively, followed by total CD4(+) T cell depletion and recovery from this depletion. Although thymectomized and sham-treated RMs manifested comparable CD4(+) T(M) recovery, only sham-treated RMs reconstituted CD4(+) T(N). CD4(+) T(N)-depleted RMs responded to SIVmac239 infection with markedly attenuated SIV-specific CD4(+) T cell responses, delayed SIVenv-specific Ab responses, and reduced SIV-specific CD8(+) T cell responses. However, CD4(+) T(N)-depleted and -repleted groups showed similar levels of SIV replication. Moreover, CD4(+) T(N) deficiency had no significant effect on CD4(+) T(M) homeostasis (either on or off anti-retroviral therapy) or disease progression. These data demonstrate that the CD4(+) T(N) compartment is dispensable for CD4(+) T(M) homeostasis in progressive SIV infection, and they confirm that CD4(+) T(M) comprise a homeostatically independent compartment that is intrinsically capable of self-renewal.

  14. Effects of Altering Levothyroxine (L-T4) Doses on Quality of Life, Mood, and Cognition in L-T4 Treated Subjects.

    PubMed

    Samuels, Mary H; Kolobova, Irina; Niederhausen, Meike; Janowsky, Jeri S; Schuff, Kathryn G

    2018-05-01

    The brain is a critical target organ for thyroid hormone, but it is unclear whether variations in thyroid function within and near the reference range affect quality of life, mood, or cognition. A total of 138 subjects with levothyroxine (L-T4)-treated hypothyroidism and normal thyrotropin (TSH) levels underwent measures of quality of life (36-Item Short Form Health Survey, Underactive Thyroid-Dependent Quality of Life Questionnaire), mood (Profile of Mood States, Affective Lability Scale), and cognition (executive function, memory). They were then randomly assigned to receive an unchanged, higher, or lower L-T4 dose in double-blind fashion, targeting one of three TSH ranges (0.34 to 2.50, 2.51 to 5.60, or 5.61 to 12.0 mU/L). Doses were adjusted every 6 weeks based on TSH levels. Baseline measures were reassessed at 6 months. At the end of the study, by intention to treat, mean L-T4 doses were 1.50 ± 0.07, 1.32 ± 0.07, and 0.78 ± 0.08 μg/kg (P < 0.001), and mean TSH levels were 1.85 ± 0.25, 3.93 ± 0.38, and 9.49 ± 0.80 mU/L (P < 0.001), respectively, in the three arms. There were minor differences in a few outcomes between the three arms, which were no longer significant after correction for multiple comparisons. Subjects could not ascertain how their L-T4 doses had been adjusted (P = 0.55) but preferred L-T4 doses they perceived to be higher (P < 0.001). Altering L-T4 doses in hypothyroid subjects to vary TSH levels in and near the reference range does not affect quality of life, mood, or cognition. L-T4-treated subjects prefer perceived higher L-T4 doses despite a lack of objective benefit. Adjusting L-T4 doses in hypothyroid patients based on symptoms in these areas may not result in significant clinical improvement.

  15. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease.

    PubMed

    Krenger, W; Snyder, K M; Byon, J C; Falzarano, G; Ferrara, J L

    1995-07-15

    Acute graft-vs-host disease (GVHD) is thought to be mediated by alloreactive T cells with a type 1 cytokine phenotype. To prevent the development of acute GVHD, we have successfully polarized mature donor T cells toward a type 2 cytokine phenotype ex-vivo by incubating them with murine rIL-4 in a primary MLC. Polarized type 2 T cells were then transplanted with T cell-depleted bone marrow cells into irradiated recipients across either MHC class II (bm12-->C57BL/6) or class I (bm1-->C57BL/6) barriers, and the intensity of GVHD was measured by assessment of several in vitro and in vivo parameters. The injection of polarized type 2 T cells abrogated the mitogen-induced production of IFN-gamma by splenocytes from transplanted hosts on day 13 after bone marrow transplantation (BMT). Injection of polarized type 2 T cells failed to induce secretion of the effector phase cytokine TNF-alpha by splenocytes stimulated with LPS both in vitro and in vivo, and survival of transplanted mice after i.v. injection with LPS was significantly improved. Furthermore, cell-mixing experiments revealed that polarized type 2 T cells were able to inhibit type 1 cytokine responses induced by naive T cells after BMT. These data demonstrate that both polarized CD4+ and CD8+ type 2 alloreactive donor T cells can be generated in vitro from mature T cell populations. These cells function in vivo to inhibit type 1 T cell responses, and such inhibition attenuates the systemic morbidity of GVHD after BMT across both MHC class II or class I barriers in mice.

  16. 3d-4f {Co(II)3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts.

    PubMed

    Evangelisti, Fabio; Moré, René; Hodel, Florian; Luber, Sandra; Patzke, Greta Ricarda

    2015-09-02

    Although the {CaMn4O5} oxygen evolving complex (OEC) of photosystem II is a major paradigm for water oxidation catalyst (WOC) development, the comprehensive translation of its key features into active molecular WOCs remains challenging. The [Co(II)3Ln(hmp)4(OAc)5H2O] ({Co(II)3Ln(OR)4}; Ln = Ho-Yb, hmp = 2-(hydroxymethyl)pyridine) cubane WOC series is introduced as a new springboard to address crucial design parameters, ranging from nuclearity and redox-inactive promoters to operational stability and ligand exchange properties. The {Co(II)3Ln(OR)4} cubanes promote bioinspired WOC design by newly combining Ln(3+) centers as redox-inactive Ca(2+) analogues with flexible aqua-/acetate ligands into active and stable WOCs (max. TON/TOF values of 211/9 s(-1)). Furthermore, they open up the important family of 3d-4f complexes for photocatalytic applications. The stability of the {Co(II)3Ln(OR)4} WOCs under photocatalytic conditions is demonstrated with a comprehensive analytical strategy including trace metal analyses and solution-based X-ray absorption spectroscopy (XAS) investigations. The productive influence of the Ln(3+) centers is linked to favorable ligand mobility, and the experimental trends are substantiated with Born-Oppenheimer molecular dynamics studies.

  17. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization.

    PubMed

    Zhou, Qinghua; Li, Haimin; Li, Hanzeng; Nakagawa, Akihisa; Lin, Jason L J; Lee, Eui-Seung; Harry, Brian L; Skeen-Gaar, Riley Robert; Suehiro, Yuji; William, Donna; Mitani, Shohei; Yuan, Hanna S; Kang, Byung-Ho; Xue, Ding

    2016-07-22

    Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development. Copyright © 2016, American Association for the Advancement of Science.

  18. Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154.

    PubMed

    Kunnath-Velayudhan, Shajo; Goldberg, Michael F; Saini, Neeraj K; Johndrow, Christopher T; Ng, Tony W; Johnson, Alison J; Xu, Jiayong; Chan, John; Jacobs, William R; Porcelli, Steven A

    2017-10-01

    Analysis of Ag-specific CD4 + T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4 + T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4 + T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4 + T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154 + cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4 + CD154 + cells was distinct from that of CD154 - cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4 + T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4 + T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. 76 FR 55720 - BB&T Capital Partners Mezzanine Fund II, L.P.; Notice Seeking Exemption Under Section 312 of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... SMALL BUSINESS ADMINISTRATION [License No. 04/04-0311] BB&T Capital Partners Mezzanine Fund II, L.P.; Notice Seeking Exemption Under Section 312 of the Small Business Investment Act, Conflicts of Interest Notice is hereby given that BB&T Capital Partners Mezzanine Fund II, 101 N. Cherry Street, Suite...

  20. Novel Mouse Xenograft Models Reveal a Critical Role of CD4+ T Cells in the Proliferation of EBV-Infected T and NK Cells

    PubMed Central

    Arai, Ayako; Nakazawa, Atsuko; Kawano, Fuyuko; Ichikawa, Sayumi; Shimizu, Norio; Yamamoto, Naoki; Morio, Tomohiro; Ohga, Shouichi; Nakamura, Hiroyuki; Ito, Mamoru; Miura, Osamu; Komano, Jun; Fujiwara, Shigeyoshi

    2011-01-01

    Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγnull strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases. PMID:22028658

  1. Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells.

    PubMed

    Imadome, Ken-ichi; Yajima, Misako; Arai, Ayako; Nakazawa, Atsuko; Kawano, Fuyuko; Ichikawa, Sayumi; Shimizu, Norio; Yamamoto, Naoki; Morio, Tomohiro; Ohga, Shouichi; Nakamura, Hiroyuki; Ito, Mamoru; Miura, Osamu; Komano, Jun; Fujiwara, Shigeyoshi

    2011-10-01

    Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγ(null) strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases.

  2. CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells

    PubMed Central

    Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2013-01-01

    The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942

  3. VizieR Online Data Catalog: MgII/FeII absorption profile for 0.34 galaxies (Rubin+, 2014)

    NASA Astrophysics Data System (ADS)

    Rubin, K. H. R.; Prochaska, J. X.; Koo, D. C.; Phillips, A. C.; Martin, C. L.; Winstrom, L. O.

    2017-05-01

    In this work, we use rest-frame near-UV spectroscopy of a sample of 105 galaxies at 0.34 to examine the kinematics of cool (T<~104K) gas traced by Mg II λλ2796, 2803 and Fe II λλ2586, 2600 absorption. This sample, drawn from redshift surveys of the GOODS and EGS fields (e.g., Wirth et al. 2004, J/AJ/127/3121; Davis et al. 2003SPIE.4834..161D; Le Fevre et al. 2005A&A...439..845L; Szokoly et al. 2004, J/ApJS/155/271), fully covers the SFR-M* parameter space occupied by star-forming galaxies with logM*/Msun>~9.6 down to a SFR limit>~2 Msun/yr at z~0.5, permitting exploration of outflow properties over the entire breadth of the star-forming sequence at z>0.3 for the first time. Our galaxy sample is drawn from pre-existing photometric and spectroscopic redshift surveys in fields with deep imaging taken with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). (3 data files).

  4. Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA

    PubMed Central

    Montoya, Guillermo; Stella, Stefano

    2017-01-01

    Bacteria and archaea use the CRISPR–Cas system as an adaptive response against infection by foreign nucleic acids. Owing to its remarkable flexibility, this mechanism has been harnessed and adopted as a powerful tool for genome editing. The CRISPR–Cas system includes two classes that are subdivided into six types and 19 subtypes according to conservation of the cas gene and loci organization. Recently, a new protein with endonuclease activity belonging to class 2 type V has been identified. This endonuclease, termed Cpf1, in complex with a single CRISPR RNA (crRNA) is able to recognize and cleave a target DNA preceded by a 5′-TTN-3′ protospacer-adjacent motif (PAM) complementary to the RNA guide. To obtain structural insight into the inner workings of Cpf1, the crystallization of an active complex containing the full extent of the crRNA and a 31-nucleotide dsDNA target was attempted. The gene encoding Cpf1 from Francisella novicida was cloned, overexpressed and purified. The crRNA was transcribed and purified in vitro. Finally, the ternary FnCpf1–crRNA–DNA complex was assembled and purified by preparative electrophoresis before crystallization. Crystals belonging to space group C2221, with unit-cell parameters a = 85.2, b = 137.6, c = 320.5 Å, were obtained and subjected to preliminary diffraction experiments. PMID:28695850

  5. Cd(II) complexes with different nuclearity and dimensionality based on 3-hydrazino-4-amino-1,2,4-triazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cai-Xia; Zhang, Jian-Guo, E-mail: zjgbit@bit.edu.cn; Yin, Xin

    2015-03-15

    A series of zero- to two-dimensional Cd(II) coordination compounds have been synthesized by the reaction of Cd(II) salts and 3-hydrazino-4-amino-1,2,4-triazole di-hydrochloride (HATr·2HCl). [CdCl{sub 2}(HATr){sub 2}] (1) and [Cd{sub 2}Cl{sub 4}(HATr){sub 2}(H{sub 2}O){sub 2}] (2) have discrete mononuclear and binuclear structures, respectively. [Cd(HATr){sub 2}(ClO{sub 4}){sub 2}]{sub n} (3) presents polymeric 1-D chain and [Cd{sub 2}(NO{sub 3}){sub 2}Cl{sub 2}(HATr){sub 2}]{sub n} (4) shows 2-D frameworks. All Cd(II) ions exhibit distorted octahedral configurations in 1–3, whilst both hexa and heptacoordinated Cd(II) are formed in 4. The HATr ligands adopt chelating coordinated mode in 1, while tri-dentate bridging–chelating mode in 2–4. The chloride ionmore » is a mono-coordinated ligand in 1 and 2, but it bridges two adjacent metal ions in 4. Furthermore, thermal behaviors have been investigated and the results reveal that all complexes have good thermal stability. The impact sensitivity test indicates that complex 3 is sensitive to impact stimuli. - Graphical abstract: Four Cd(II) complexes based on 3-hydrazino-4-amino-1,2,4-triazole ligands exhibit diverse structures from mononuclear to 2D networks. - Highlights: • Cd(II) complexes containing 3-hydrazino-4-amino-1,2,4-triazole ligands. • Mononuclear, binuclear, 1-D and 2-D structures. • Good thermal stability. • Thermal decomposition kinetics.« less

  6. Progressive engineering of a homing endonuclease genome editing reagent for the murine X-linked immunodeficiency locus

    PubMed Central

    Wang, Yupeng; Khan, Iram F.; Boissel, Sandrine; Jarjour, Jordan; Pangallo, Joseph; Thyme, Summer; Baker, David; Scharenberg, Andrew M.; Rawlings, David J.

    2014-01-01

    LAGLIDADG homing endonucleases (LHEs) are compact endonucleases with 20–22 bp recognition sites, and thus are ideal scaffolds for engineering site-specific DNA cleavage enzymes for genome editing applications. Here, we describe a general approach to LHE engineering that combines rational design with directed evolution, using a yeast surface display high-throughput cleavage selection. This approach was employed to alter the binding and cleavage specificity of the I-Anil LHE to recognize a mutation in the mouse Bruton tyrosine kinase (Btk) gene causative for mouse X-linked immunodeficiency (XID)—a model of human X-linked agammaglobulinemia (XLA). The required re-targeting of I-AniI involved progressive resculpting of the DNA contact interface to accommodate nine base differences from the native cleavage sequence. The enzyme emerging from the progressive engineering process was specific for the XID mutant allele versus the wild-type (WT) allele, and exhibited activity equivalent to WT I-AniI in vitro and in cellulo reporter assays. Fusion of the enzyme to a site-specific DNA binding domain of transcription activator-like effector (TALE) resulted in a further enhancement of gene editing efficiency. These results illustrate the potential of LHE enzymes as specific and efficient tools for therapeutic genome engineering. PMID:24682825

  7. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  8. Long-term increases in lymphocytes and platelets in human T-lymphotropic virus type II infection

    PubMed Central

    Bartman, Melissa T.; Kaidarova, Zhanna; Hirschkorn, Dale; Sacher, Ronald A.; Fridey, Joy; Garratty, George; Gibble, Joan; Smith, James W.; Newman, Bruce; Yeo, Anthony E.

    2008-01-01

    Human T-lymphotropic viruses types I and II (HTLV-I and HTLV-II) cause chronic infections of T lymphocytes that may lead to leukemia and myelopathy. However, their long-term effects on blood counts and hematopoiesis are poorly understood. We followed 151 HTLV-I–seropositive, 387 HTLV-II–seropositive, and 799 HTLV-seronegative former blood donors from 5 U.S. blood centers for a median of 14.0 years. Complete blood counts were performed every 2 years. Multivariable repeated measures analyses were conducted to evaluate the independent effect of HTLV infection and potential confounders on 9 hematologic measurements. Participants with HTLV-II had significant (P < .05) increases in their adjusted lymphocyte counts (+126 cells/mm3; approximately +7%), hemoglobin (+2 g/L [+0.2 g/dL]) and mean corpuscular volume (MCV; 1.0 fL) compared with seronegative participants. Participants with HTLV-I and HTLV-II had higher adjusted platelet counts (+16 544 and +21 657 cells/mm3; P < .05) than seronegatives. Among all participants, time led to decreases in platelet count and lymphocyte counts, and to increases in MCV and monocytes. Sex, race, smoking, and alcohol consumption all had significant effects on blood counts. The HTLV-II effect on lymphocytes is novel and may be related to viral transactivation or immune response. HTLV-I and HTLV-II associations with higher platelet counts suggest viral effects on hematopoietic growth factors or cytokines. PMID:18755983

  9. Role of IL-4 receptor α-positive CD4(+) T cells in chronic airway hyperresponsiveness.

    PubMed

    Kirstein, Frank; Nieuwenhuizen, Natalie E; Jayakumar, Jaisubash; Horsnell, William G C; Brombacher, Frank

    2016-06-01

    TH2 cells and their cytokines are associated with allergic asthma in human subjects and with mouse models of allergic airway disease. IL-4 signaling through the IL-4 receptor α (IL-4Rα) chain on CD4(+) T cells leads to TH2 cell differentiation in vitro, implying that IL-4Rα-responsive CD4(+) T cells are critical for the induction of allergic asthma. However, mechanisms regulating acute and chronic allergen-specific TH2 responses in vivo remain incompletely understood. This study defines the requirements for IL-4Rα-responsive CD4(+) T cells and the IL-4Rα ligands IL-4 and IL-13 in the development of allergen-specific TH2 responses during the onset and chronic phase of experimental allergic airway disease. Development of acute and chronic ovalbumin (OVA)-induced allergic asthma was assessed weekly in CD4(+) T cell-specific IL-4Rα-deficient BALB/c mice (Lck(cre)IL-4Rα(-/lox)) and respective control mice in the presence or absence of IL-4 or IL-13. During acute allergic airway disease, IL-4 deficiency did not prevent the onset of TH2 immune responses and OVA-induced airway hyperresponsiveness or goblet cell hyperplasia, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. In contrast, deficiency of IL-13 prevented allergic asthma, irrespective of the presence or absence of IL-4Rα-responsive CD4(+) T cells. Importantly, chronic allergic inflammation and airway hyperresponsiveness were dependent on IL-4Rα-responsive CD4(+) T cells. Deficiency in IL-4Rα-responsive CD4(+) T cells resulted in increased numbers of IL-17-producing T cells and, consequently, increased airway neutrophilia. IL-4-responsive T helper cells are dispensable for acute OVA-induced airway disease but crucial in maintaining chronic asthmatic pathology. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    PubMed

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  11. Intracavitary 'T4 immunotherapy' of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells.

    PubMed

    Klampatsa, Astero; Achkova, Daniela Y; Davies, David M; Parente-Pereira, Ana C; Woodman, Natalie; Rosekilly, James; Osborne, Georgina; Thayaparan, Thivyan; Bille, Andrea; Sheaf, Michael; Spicer, James F; King, Juliet; Maher, John

    2017-05-01

    Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4 + T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)

    Integrated Risk Information System (IRIS)

    2,4,5 - Trichlorophenoxyacetic acid ( 2,4,5 - T ) ; CASRN 93 - 76 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard

  13. Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.

    2018-07-01

    A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.

  14. Probing the Gaseous Disk of T Tau N with CN 5-4 Lines

    NASA Technical Reports Server (NTRS)

    Podio, L.; Kamp, I.; Codella, C.; Nisini, B.; Aresu, G.; Brittain, S.; Cabrit, S.; Dougados, C.; Grady, C.; Meijerink, R.; hide

    2014-01-01

    We present spectrally resolved observations of the young multiple system T Tau in atomic and molecular lines obtained with the Heterodyne Instrument for the Far Infrared on board Herschel. While CO, H2O, [C ii], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km s(exp -1) with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R(sub out) = 110(+10/-20) AU) and its inclination (i = 25 deg +/- 5 deg). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.

  15. States of phage T3/T7 capsids: buoyant density centrifugation and cryo-EM.

    PubMed

    Serwer, Philip; Wright, Elena T; Demeler, Borries; Jiang, Wen

    2018-04-01

    Mature double-stranded DNA bacteriophages have capsids with symmetrical shells that typically resist disruption, as they must to survive in the wild. However, flexibility and associated dynamism assist function. We describe biochemistry-oriented procedures used to find previously obscure flexibility for capsids of the related phages, T3 and T7. The primary procedures are hydration-based buoyant density ultracentrifugation and purified particle-based cryo-electron microscopy (cryo-EM). We review the buoyant density centrifugation in detail. The mature, stable T3/T7 capsid is a shell flexibility-derived conversion product of an initially assembled procapsid (capsid I). During DNA packaging, capsid I expands and loses a scaffolding protein to form capsid II. The following are observations made with capsid II. (1) The in vivo DNA packaging of wild type T3 generates capsid II that has a slight (1.4%), cryo-EM-detected hyper-expansion relative to the mature phage capsid. (2) DNA packaging in some altered conditions generates more extensive hyper-expansion of capsid II, initially detected by hydration-based preparative buoyant density centrifugation in Nycodenz density gradients. (3) Capsid contraction sometimes occurs, e.g., during quantized leakage of DNA from mature T3 capsids without a tail.

  16. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

    PubMed Central

    Hohl, Tobias M.; Collins, Nichole; Leiner, Ingrid; Gallegos, Alena; Saijo, Shinobu; Coward, Jesse W.; Iwakura, Yoichiro

    2011-01-01

    Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation. PMID:21242294

  17. A water-soluble and water-coordinated Mn(II) complex: synthesis, characterization and phantom MRI image study.

    PubMed

    Phukan, Bedika; Patel, Anant B; Mukherjee, Chandan

    2015-08-07

    Ligand H4bedik was reacted with MnCl2·4H2O at pH ∼ 6.5 to give a highly water-soluble and water-coordinated Mn(ii) complex (). The complex was found to show r1 = 3.11 mM(-1) s(-1) per Mn(ii) at 1.4 T and 6.26 mM(-1) s(-1) per Mn(ii) at 14.1 T at 25 °C, pH = 7.4. In addition to r1, the r2 at 14.1 T was found to be 132.78 mM(-1) s(-1) per Mn(ii) at 25 °C, pH = 7.4.

  18. Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI.

    PubMed Central

    Chater, K F; Wilde, L C

    1976-01-01

    The bacteriophage Pa16, isolated from soil on Streptomyces albus G, was restricted when transferred from an alternative host back to S. albus G. Extracted unmodified Pa16 deoxyribonucleic acid was cleaved at a single site by a cell-free extract of S. albus G. Fractions cleaving Pal6 deoxyribonucleic acid contained the endonuclease SalI first described by J. Arrand, P. Myers, and R. J. Roberts (unpublished data). A mutant of S. albus G was isolated which was defective in both restriction and modification of Pal6. This mutant lacked SalI activity. It is concluded that SalI is the agent of restriction of Pal6 by S. albus G. Images PMID:977549

  19. Modeling and Simulation. II. Specificity Models for Visual Cortex Development.

    DTIC Science & Technology

    1986-12-12

    136; 1978. .1. Barlow, 11. B . and WV. 1H. Levick , The mechanism of directionallv-select ive units In rabbit’s retina, J. Physiol 178, 477d-501; 1965. 5...RESEAR.. UNCLRSSIFIED A B SAUL ET AL. 12 DEC B6 TR-35 F/G 6/16 EEEEEEEEEEEEE EEEEEEEEEEEEEEIEEIIIIIIIIIIIIIl k-0 1.2 33 4.p p ’.r11.P ’.4 % INN’* 8... b ( iiquiet eel Is’ . GAHA~. is 1 rlm hlv thie t ra nsmiitt er for tIi ese nienron" 82, and tIi ei r ,y imap,-es are loea.t e(l ofl (it her t he

  20. HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells

    PubMed Central

    Araya, Natsumi; Sato, Tomoo; Ando, Hitoshi; Tomaru, Utano; Yoshida, Mari; Coler-Reilly, Ariella; Yagishita, Naoko; Yamauchi, Junji; Hasegawa, Atsuhiko; Kannagi, Mari; Hasegawa, Yasuhiro; Takahashi, Katsunori; Kunitomo, Yasuo; Tanaka, Yuetsu; Nakajima, Toshihiro; Nishioka, Kusuki; Utsunomiya, Atae; Jacobson, Steven; Yamano, Yoshihisa

    2014-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is linked to multiple diseases, including the neuroinflammatory disease HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma. Evidence suggests that HTLV-1, via the viral protein Tax, exploits CD4+ T cell plasticity and induces transcriptional changes in infected T cells that cause suppressive CD4+CD25+CCR4+ Tregs to lose expression of the transcription factor FOXP3 and produce IFN-γ, thus promoting inflammation. We hypothesized that transformation of HTLV-1–infected CCR4+ T cells into Th1-like cells plays a key role in the pathogenesis of HAM/TSP. Here, using patient cells and cell lines, we demonstrated that Tax, in cooperation with specificity protein 1 (Sp1), boosts expression of the Th1 master regulator T box transcription factor (T-bet) and consequently promotes production of IFN-γ. Evaluation of CSF and spinal cord lesions of HAM/TSP patients revealed the presence of abundant CD4+CCR4+ T cells that coexpressed the Th1 marker CXCR3 and produced T-bet and IFN-γ. Finally, treatment of isolated PBMCs and CNS cells from HAM/TSP patients with an antibody that targets CCR4+ T cells and induces cytotoxicity in these cells reduced both viral load and IFN-γ production, which suggests that targeting CCR4+ T cells may be a viable treatment option for HAM/TSP. PMID:24960164

  1. 1D and 2D assembly structures by imidazole···chloride hydrogen bonds of iron(II) complexes [Fe(II)(HL(n-Pr))3]Cl·Y (HL(n-Pr) = 2-methylimidazol-4-yl-methylideneamino-n-propyl; Y = AsF6, BF4) and their spin states.

    PubMed

    Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki

    2011-12-07

    Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.

  2. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE PAGES

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.; ...

    2017-02-14

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  3. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  4. 26 CFR 1.846-4T - Effective dates (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Effective dates (temporary). 1.846-4T Section 1.846-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Other Insurance Companies § 1.846-4T Effective dates (temporary). (a) [Reserved...

  5. STAT4 and T-bet control follicular helper T cell development in viral infections.

    PubMed

    Weinstein, Jason S; Laidlaw, Brian J; Lu, Yisi; Wang, Jessica K; Schulz, Vincent P; Li, Ningcheng; Herman, Edward I; Kaech, Susan M; Gallagher, Patrick G; Craft, Joe

    2018-01-02

    Follicular helper T (Tfh) cells promote germinal center (GC) B cell survival and proliferation and guide their differentiation and immunoglobulin isotype switching by delivering contact-dependent and soluble factors, including IL-21, IL-4, IL-9, and IFN-γ. IL-21 and IFN-γ are coexpressed by Tfh cells during viral infections, but transcriptional regulation of these cytokines is not completely understood. In this study, we show that the T helper type 1 cell (Th1 cell) transcriptional regulators T-bet and STAT4 are coexpressed with Bcl6 in Tfh cells after acute viral infection, with a temporal decline in T-bet in the waning response. T-bet is important for Tfh cell production of IFN-γ, but not IL-21, and for a robust GC reaction. STAT4, phosphorylated in Tfh cells upon infection, is required for expression of T-bet and Bcl6 and for IFN-γ and IL-21. These data indicate that T-bet is expressed with Bcl6 in Tfh cells and is required alongside STAT4 to coordinate Tfh cell IL-21 and IFN-γ production and for promotion of the GC response after acute viral challenge. © 2018 Weinstein et al.

  6. Steel tanks T5 and T4 with overhead pipeline between. Redwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steel tanks T5 and T4 with overhead pipeline between. Redwood tanks seen in background - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  7. The DNA binding site specificity and antiproliferative property of ternary Pt(II) and Zn(II) complexes of phenanthroline and N,N'-ethylenediaminediacetic acid.

    PubMed

    Nakamura, Yusuke; Taruno, Yoko; Sugimoto, Masashi; Kitamura, Yusuke; Seng, Hoi Ling; Kong, Siew Ming; Ng, Chew Hee; Chikira, Makoto

    2013-03-14

    The binding site specificity of the ternary complexes, [M(II)(phen)(edda)] (M(II) = Pt(2+) and Zn(2+); phen = 1,10-phenanthroline; edda = N,N'-ethylenediaminediacetic acid), for the self-complementary oligonucleotides (ODNs), ds(C(1)G(2)C(3)G(4)A(5)A(6)T(7)T(8)C(9)G(10)C(11)G(12))(2) (ODN1) and ds(C(1)G(2)C(3)G(4)T(5)A(6)T(7)A(8)C(9)G(10)C(11)G(12))(2) (ODN2), was studied by NMR measurements. The results indicated that [Pt(ii)(phen)(edda)] was partially intercalated between C(3)/G(10) and G(4)/C(9) base pairs of ODN1 and ODN2 in the major grooves, whereas [Zn(II)(phen)(edda)] was bound specifically to the TATA region of ODN2 in the minor groove and to the terminal G(2)/C(11) base pair of ODN1 in the major groove. The preference for the TATA sequence over the AATT sequence in the binding of [Zn(phen)(edda)] was attributed to the wider minor groove width of the TATA sequence. The bindings of the complexes to ct-DNA were also studied by UV, CD, and fluorescence spectroscopy. Additionally, the antiproliferative property of [Pt(II)(phen)(edda)] towards MCF7 breast cancer cells and normal MCF10-A cells was compared with that of [Zn(II)(phen)(edda)].

  8. Activation of macrophages and interference with CD4+ T-cell stimulation by Mycobacterium avium subspecies paratuberculosis and Mycobacterium avium subspecies avium

    PubMed Central

    Lage, Susanne Zur; Goethe, Ralph; Darji, Ayub; Valentin-Weigand, Peter; Weiss, Siegfried

    2003-01-01

    Mycobacterium avium subspecies paratuberculosis (M. ptb) and M. avium subspecies avium (M. avium) are closely related but exhibit significant differences in their interaction with the host immune system. The macrophage line, J774, was infected with M. ptb and M. avium and analysed for cytokine production and stimulatory capacity towards antigen-specific CD4+ T cells. Under all conditions J774 cells were activated to produce proinflammatory cytokines. No influence on the expression of major histocompatibility complex (MHC) class II, intracellular adhesion molecule-1 (ICAM-1), B7.1, B7.2 or CD40 was found. However, the antigen-specific stimulatory capacity of J774 cells for a CD4+ T-cell line was significantly inhibited after infection with M. ptb, but not with M. avium. When a T-cell hybridoma expressing a T-cell receptor identical to that of the T-cell line was used, this inhibition was not observed, suggesting that costimulation which is essential for the CD4+ T-cell line is influenced by the pathogenic bacterium M. ptb. PMID:12519304

  9. Caveolin-mediated endocytosis of the Chlamydia M278 outer membrane peptide encapsulated in poly(lactic acid)-Poly(ethylene glycol) nanoparticles by mouse primary dendritic cells enhances specific immune effectors mediated by MHC class II and CD4+ T cells.

    PubMed

    Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A

    2018-03-01

    We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    PubMed Central

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  11. CD4 T-cell cytokines synergize to induce proliferation of malignant and nonmalignant innate intraepithelial lymphocytes.

    PubMed

    Kooy-Winkelaar, Yvonne M C; Bouwer, Dagmar; Janssen, George M C; Thompson, Allan; Brugman, Martijn H; Schmitz, Frederike; de Ru, Arnoud H; van Gils, Tom; Bouma, Gerd; van Rood, Jon J; van Veelen, Peter A; Mearin, M Luisa; Mulder, Chris J; Koning, Frits; van Bergen, Jeroen

    2017-02-07

    Refractory celiac disease type II (RCDII) is a severe complication of celiac disease (CD) characterized by the presence of an enlarged clonal population of innate intraepithelial lymphocytes (IELs) lacking classical B-, T-, and natural killer (NK)-cell lineage markers (Lin - IELs) in the duodenum. In ∼50% of patients with RCDII, these Lin - IELs develop into a lymphoma for which no effective treatment is available. Current evidence indicates that the survival and expansion of these malignant Lin - IELs is driven by epithelial cell-derived IL-15. Like CD, RCDII is strongly associated with HLA-DQ2, suggesting the involvement of HLA-DQ2-restricted gluten-specific CD4 + T cells. We now show that gluten-specific CD4 + T cells isolated from CD duodenal biopsy specimens produce cytokines able to trigger proliferation of malignant Lin - IEL lines as powerfully as IL-15. Furthermore, we identify TNF, IL-2, and IL-21 as CD4 + T-cell cytokines that synergistically mediate this effect. Like IL-15, these cytokines were found to increase the phosphorylation of STAT5 and Akt and transcription of antiapoptotic mediator bcl-x L Several small-molecule inhibitors targeting the JAK/STAT pathway blocked proliferation elicited by IL-2 and IL-15, but only an inhibitor targeting the PI3K/Akt/mTOR pathway blocked proliferation induced by IL-15 as well as the CD4 + T-cell cytokines. Confirming and extending these findings, TNF, IL-2, and IL-21 also synergistically triggered the proliferation of freshly isolated Lin - IELs and CD3 - CD56 + IELs (NK-IELs) from RCDII as well as non-RCDII duodenal biopsy specimens. These data provide evidence implicating CD4 + T-cell cytokines in the pathogenesis of RCDII. More broadly, they suggest that adaptive immune responses can contribute to innate IEL activation during mucosal inflammation.

  12. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  13. An improved 96-well turbidity assay for T4 lysozyme activity

    PubMed Central

    Toro, Tasha B.; Nguyen, Thao P.; Watt, Terry J.

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: • Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays; • Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and • Incorporates a simplified expression and purification protocol for T4 lysozyme. PMID:26150996

  14. CHARACTERIZATION OF CoRoT TARGET FIELDS WITH BERLIN EXOPLANET SEARCH TELESCOPE. II. IDENTIFICATION OF PERIODIC VARIABLE STARS IN THE LRc2 FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabath, P.; Fruth, T.; Rauer, H.

    2009-04-15

    We report on photometric observations of the CoRoT LRc2 field with the new robotic Berlin Exoplanet Search Telescope II (BEST II). The telescope system was installed and commissioned at the Observatorio Cerro Armazones, Chile, in 2007. BEST II is a small aperture telescope with a wide field of view dedicated to the characterization of the stellar variability primarily in CoRoT target fields with high stellar densities. The CoRoT stellar field LRc2 was observed with BEST II up to 20 nights in 2007 July and August. From the acquired data containing about 100,000 stars, 426 new periodic variable stars were identifiedmore » and 90% of them are located within the CoRoT exoplanetary CCD segments and may be of further interest for CoRoT additional science programs.« less

  15. Modulation of CD4(+) T cell-dependent specific cytotoxic CD8(+) T cells differentiation and proliferation by the timing of increase in the pathogen load.

    PubMed

    Tzelepis, Fanny; Persechini, Pedro M; Rodrigues, Mauricio M

    2007-04-25

    Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8(+) T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8(+) cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8(+) cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8(+) cytotoxic T cells was dependent on MHC class II restricted CD4(+) T cells. Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4(+) T cell-dependent expansion of pathogen-specific CD8(+) cytotoxic T cells.

  16. Modulation of the Brd4/P-TEFb interaction by the human T-lymphotropic virus type 1 tax protein.

    PubMed

    Cho, Won-Kyung; Zhou, Meisheng; Jang, Moon Kyoo; Huang, Keven; Jeong, Soo-Jin; Ozato, Keiko; Brady, John N

    2007-10-01

    Positive transcription elongation factor (P-TEFb), which is composed of CDK9 and cyclin T1, plays an important role in cellular and viral gene expression. Our lab has recently demonstrated that P-TEFb is required for Tax transactivation of the viral long terminal repeat (LTR). P-TEFb is found in two major complexes: the inactive form, which is associated with inhibitory subunits 7SK snRNA and HEXIM1, and the active form, which is associated with, at least in part, Brd4. In this study, we analyzed the effect of Brd4 on human T-lymphotropic virus type 1 (HTLV-1) transcription. Overexpression of Brd4 repressed Tax transactivation of the HTLV-1 LTR in a dose-dependent manner. In vitro binding studies suggest that Tax and Brd4 compete for binding to P-TEFb through direct interaction with cyclin T1. Tax interacts with cyclin T1 amino acids 426 to 533, which overlaps the region responsible for Brd4 binding. In vivo, overexpression of Tax decreased the amount of 7SK snRNA associated with P-TEFb and stimulates serine 2 phosphorylation of the RNA polymerase II carboxyl-terminal domain, suggesting that Tax regulates the functionality of P-TEFb. Our results suggest the possibility that Tax may compete and functionally substitute for Brd4 in P-TEFb regulation.

  17. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.

    PubMed

    Hong, Feng; Lin, Wenjun; Meng, Weiwei; Yan, Yanfa

    2016-02-14

    We propose trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant solar cell applications. Through density functional theory calculations, we show that these compounds exhibit similar electronic and optical properties to kesterite Cu2ZnSnS4 (CZTS): high optical absorption with band gaps suitable for efficient single-junction solar cell applications. However, the trigonal Cu2-II-Sn-VI4 compounds exhibit defect properties more suitable for photovoltaic applications than those of CZTS. In CZTS, the dominant defects are the deep acceptors, Cu substitutions on Zn sites, which cause non-radiative recombination and limit the open-circuit voltages of CZTS solar cells. On the contrary, the dominant defects in trigonal Cu2-II-Sn-VI4 are the shallow acceptors, Cu vacancies, similar to those in CuInSe2. Our results suggest that the trigonal Cu2-II-Sn-VI4 quaternary compounds could be promising candidates for efficient earth-abundant thin-film solar cell and photoeletrochemical water-splitting applications.

  18. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  19. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  20. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  1. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  2. 32 CFR 1630.46 - Class 4-T: Treaty alien.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Class 4-T: Treaty alien. 1630.46 Section 1630.46 National Defense Other Regulations Relating to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.46 Class 4-T: Treaty alien. In Class 4-T shall be placed any registrant who is an alien who...

  3. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4+CD25high T cells in multiple sclerosis

    PubMed Central

    Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S

    2012-01-01

    Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885

  4. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium

    PubMed Central

    Begum, Jusnara; Lal, Neeraj; Zuo, Jianmin; Beggs, Andrew; Moss, Paul

    2016-01-01

    Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people. PMID:27606804

  5. Advanced Residual Strength Degradation Rate Modeling for Advanced Composite Structures. Volume II. Tasks II and III.

    DTIC Science & Technology

    1981-07-01

    ADVANCED COMPOSITE STRUCTURES VOLUME II - TASKS Ix AND III K. N. Lauraitis Tl J. T. Ryder ?l4 D. E. Pettit ~ Lockheed-California Company S Burbank...Strength Degradation Rate Final Report Modeling for Advanced Composite Structures 1 July 1979 to 29 May 1981 Vol II - Task II and III S. PERFORMIN ONG...identify by block namber) composites , graphite/epoxy, impact damage, damaged holes, fatigue, damage propagation, residual strength, NDI 20. ABSTRACT

  6. Phase II Study of Preoperative Concurrent Chemoradiation Therapy With S-1 in Patients With T4 Oral Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Tomoko; Murakami, Ryuji, E-mail: murakami@kumamoto-u.ac.j; Toya, Ryo

    Purpose: To determine the feasibility and efficacy of preoperative concurrent chemoradiation therapy (CCRT) with S-1, an oral fluoropyrimidine derivative, in patients with T4 oral squamous cell carcinoma (SCC). Methods and Materials: Only patients with histologically proven T4 oral SCC were included. Radiotherapy (total dose, 30 Gy) was delivered in 2-Gy daily fractions over a period of 3 weeks. Concurrently, S-1 (80 mg/m{sup 2}/day) was administered orally twice daily for 14 consecutive days. Results: We enrolled 46 patients. All underwent radiotherapy as planned; however, oral S-1 was discontinued in 3 patients who manifested acute toxicity. Grade 3 toxicities were mucositis (20%),more » anorexia (9%), and neutropenia (4%). We encountered no Grade 4 adverse events or serious postoperative morbidity requiring surgical intervention. After CCRT, 32 of the 46 patients underwent radical resection; in 17 (53%) of the operated patients, the pathologic response was complete. During follow-up ranging from 7 to 58 months (median, 22 months), tumor control failed in 5 (16%) of the 32 operated patients; there were 3 local and 2 regional failures. Of the 14 non-operated patients, 8 (57%) manifested local (n = 7) or regional failure (n = 1). The 3-year overall survival rate for all 46 patients was 69%; it was significantly higher for operated than for non-operated patients (82% vs. 48%; p = 0.0288). Conclusion: Preoperative CCRT with S-1 is feasible and effective in patients with T4 oral SCC. Even in inoperable cases, CCRT with S-1 provides adequate tumor control.« less

  7. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia

    PubMed Central

    Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland

    2018-01-01

    ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521

  8. Restriction Endonucleases from Invasive Neisseria gonorrhoeae Cause Double-Strand Breaks and Distort Mitosis in Epithelial Cells during Infection

    PubMed Central

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies. PMID:25460012

  9. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    PubMed

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  10. The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth

    PubMed Central

    D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V

    2011-01-01

    p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473

  11. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  12. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    PubMed

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  13. CD4+ T Cells Reactive to Enteric Bacterial Antigens in Spontaneously Colitic C3H/HeJBir Mice: Increased T Helper Cell Type 1 Response and Ability to Transfer Disease

    PubMed Central

    Cong, Yingzi; Brandwein, Steven L.; McCabe, Robert P.; Lazenby, A.; Birkenmeier, Edward H.; Sundberg, John P.; Elson, Charles O.

    1998-01-01

    C3H/HeJBir mice are a new substrain that spontaneously develop colitis early in life. This study was done to determine the T cell reactivity of C3H/HeJBir mice to candidate antigens that might be involved in their disease. C3H/HeJBir CD4+ T cells were strongly reactive to antigens of the enteric bacterial flora, but not to epithelial or food antigens. The stimulatory material in the enteric bacteria was trypsin sensitive and restricted by class II major histocompatibility complex molecules, but did not have the properties of a superantigen. The precursor frequency of interleuken (IL)-2–producing, bacterial-reactive CD4+ T cells in colitic mice was 1 out of 2,000 compared to 1 out of 20,000–25,000 in noncolitic control mice. These T cells produced predominately IL-2 and interferon γ, consistent with a T helper type 1 cell response and were present at 3–4 wk, the age of onset of the colitis. Adoptive transfer of bacterial-antigen–activated CD4+ T cells from colitic C3H/HeJBir but not from control C3H/HeJ mice into C3H/HeSnJ scid/scid recipients induced colitis. These data represent a direct demonstration that T cells reactive with conventional antigens of the enteric bacterial flora can mediate chronic inflammatory bowel disease. PMID:9500788

  14. Interleukin 4-producing CD4+ T cells in the skin of cats with allergic dermatitis.

    PubMed

    Roosje, P J; Dean, G A; Willemse, T; Rutten, V P M G; Thepen, T

    2002-03-01

    Lesional skin of cats with allergic dermatitis has a cellular infiltrate and a CD4/CD8 ratio comparable to that in humans with atopic dermatitis. CD4+ helper T cells and in particular cells belonging to the Th2 subset play an important role in disease pathogenesis in humans. We investigated the cytokine pattern of CD4+ T cells in situ, with special emphasis on the putative presence of cells producing interleukin 4 (IL4), in cats with allergic dermatitis. Immunohistochemical procedures were used to determine that CD4+ T cells in lesional and nonlesional skin of cats with allergic dermatitis can produce IL4, as occurs in humans. Lesional and nonlesional skin of cats with allergic dermatitis had significantly more IL4+ T cells (P = 0.001) than did skin of healthy control cats. Double staining indicated that all IL4+ cells were positive for pan-T or CD4 markers. Double labeling for mast cell chymase and IL4 stained primarily different cells. Western blotting demonstrated cross-reactivity between the antibody against human IL4 and a feline recombinant IL4. These results indicate that IL4 is primarily produced by CD4+ T cells and is also present in clinically uninvolved skin, indicating a role in the pathogenesis of allergic dermatitis in cats.

  15. Synthesis, Characterization and Antibacterial Activity of 1,4-di[ aminomethylene carboxyl] phenylene (H2L) and its Complexes Co(II), Cu (II), Zn(II) and Cd (II)

    NASA Astrophysics Data System (ADS)

    Sultan, J. S.; Fezea, S. M.; Mousa, F. H.

    2018-05-01

    A binucleating tetradentate Schiff base ligand, 1,4- di[amino methylene carboxylic] phenylene (H2L) and its forth new binuclear complexes [Co(II), Cu(II), Zn(II) and Cd(II)] were prepared via reaction metal (II) chloride with ligand (H2L) using 2:1 (M:L) in ethanol solvent. The new ligand (H2L) and its complexes were characterized by elemental microanalysis (C.H.N), atomic absorption, chloride content, molar conductance’s magnetic susceptibility, FTIR UV- Vis spectral and, 1H, 13 C- NMR (for H2L). The antibacterial activity with bacteria activity with bacteria, Staphylococcus aureus, Bacillus and Esccherichia Coli were studied.

  16. Transcriptional regulation of latent feline immunodeficiency virus in peripheral CD4+ T-lymphocytes.

    PubMed

    McDonnel, Samantha J; Sparger, Ellen E; Luciw, Paul A; Murphy, Brian G

    2012-05-01

    Feline immunodeficiency virus (FIV), the lentivirus of domestic cats responsible for feline AIDS, establishes a latent infection in peripheral blood CD4+ T-cells approximately eight months after experimental inoculation. In this study, cats experimentally infected with the FIV-C strain in the asymptomatic phase demonstrated an estimated viral load of 1 infected cell per approximately 10(3) CD4+ T-cells, with about 1 copy of viral DNA per cell. Approximately 1 in 10 proviral copies was capable of transcription in the asymptomatic phase. The latent FIV proviral promoter was associated with deacetylated, methylated histones, which is consistent with a condensed chromatin structure. In contrast, the transcriptionally active FIV promoter was associated with histone acetylation and demethylation. In addition, RNA polymerase II appeared to be paused on the latent viral promoter, and short promoter-proximal transcripts were detected. Our findings for the FIV promoter in infected cats are similar to results obtained in studies of human immunodeficiency virus (HIV)-1 latent proviruses in cell culture in vitro studies. Thus, the FIV/cat model may offer insights into in vivo mechanisms of HIV latency and provides a unique opportunity to test novel therapeutic interventions aimed at eradicating latent virus.

  17. Is 'subthreshold' bipolar II disorder more difficult to differentiate from borderline personality disorder than formal bipolar II disorder?

    PubMed

    Bayes, Adam; Graham, Rebecca K; Parker, Gordon B; McCraw, Stacey

    2018-06-01

    Recent research indicates that borderline personality disorder (BPD) can be diagnostically differentiated from the bipolar disorders. However, no studies have attempted to differentiate participants with sub-threshold bipolar disorder or SubT BP (where hypomanic episodes last less than 4 days) from those with a BPD. In this study, participants were assigned a SubT BP, bipolar II disorder (BP II) or BPD diagnosis based on clinical assessment and DSM-IV criteria. Participants completed self-report measures and undertook a clinical interview which collected socio-demographic information, a mood history, family history, developmental history, treatment information, and assessed cognitive, emotional and behavioural functioning. Both bipolar groups, whether SubT BP or BP II, differed to the BPD group on a number of key variables (i.e. developmental trauma, depression correlates, borderline personality scores, self-harm and suicide attempts), and compared to each other, returned similar scores on nearly all key variables. Borderline risk scores resulted in comparable classification rates of 0.74 (for BPD vs BP II) and 0.82 (for BPD vs sub-threshold BP II). Study findings indicate that both SubT BP and BP II disorder can be differentiated from BPD on a set of refined clinical variables with comparable accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Identification of a synonymous polymorphism within the cytochrome P4502C9 gene that interferes with identification of the CYP2C9*2 allele.

    PubMed

    Womack, Edward P; Reynolds, Kristen K; Valdes, Roland; Linder, Mark W

    2007-10-01

    Cytochrome P450 2C9 (CYP4502C9) genotyping is useful in dosage adjustments for several critical drug therapies, including warfarin. Potential interference compromising these genotyping results could lead to inappropriate dose adjustments that may result in adverse drug reactions. During routine clinical CYP4502C9 genotyping using multiplex allele-specific primer extension, an ambiguous result was obtained for determination of the CYP2C9 430C>T substitution, which defines the CYP2C9*2 allele. In this one patient sample submitted for CYP2C9 genotyping, the ratio for the variant 430T allele signal to the total signal (C+T alleles) was 0.29. This is above the expected ratio to be classified as wild-type (<0.15) and below the minimum expected ratio (>0.3) when the genotype is heterozygous at the 430 position. The mean fluorescence intensity for the 430C allele was consistent with that observed in subjects who are heterozygous at this nucleotide position. However, the corresponding signal for the 430T allele indicated the absence of the CYP2C9*2 allele. This suggests the assay was not able to determine the correct nucleotide at position 430 for one of the two alleles in this patient. Subsequent sequencing to investigate the allele-specific primer extension failure revealed the presence of a rare C>T nucleotide substitution at position 429. We tested this subject's CYP2C9 genotype using AvaII restriction endonuclease digestion and found that this rare substitution causes false-positive identification of the CYP2C9*2 allele when using this method. We developed a DpnII endonuclease digestion assay to specifically detect the CYP2C9 429C>T substitution and tested 100 randomly selected samples obtained from unrelated individuals. The 429C>T polymorphism was not identified in this sample set, which indicates an allele frequency of less than 2.0% (95% confidence interval, 0.0-1.8%) in the general population. Despite the rarity of this polymorphism, it has important implications

  19. Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease.

    PubMed

    Büttner, Sabrina; Habernig, Lukas; Broeskamp, Filomena; Ruli, Doris; Vögtle, F Nora; Vlachos, Manolis; Macchi, Francesca; Küttner, Victoria; Carmona-Gutierrez, Didac; Eisenberg, Tobias; Ring, Julia; Markaki, Maria; Taskin, Asli Aras; Benke, Stefan; Ruckenstuhl, Christoph; Braun, Ralf; Van den Haute, Chris; Bammens, Tine; van der Perren, Anke; Fröhlich, Kai-Uwe; Winderickx, Joris; Kroemer, Guido; Baekelandt, Veerle; Tavernarakis, Nektarios; Kovacs, Gabor G; Dengjel, Jörn; Meisinger, Chris; Sigrist, Stephan J; Madeo, Frank

    2013-11-27

    Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.

  20. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    PubMed

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cytoskeletal perturbation induced by herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T).

    PubMed

    Zhao, Y; Li, W; Chou, I N

    1987-01-01

    To understand the mechanisms of toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), we have studied their effects on the cytoskeletal organization, particularly microtubules (MT) and microfilaments (MF), DNA synthesis, and the synthesis and composition of cytoskeletal proteins in mouse 3T3 cells. Exposure of cells to 2,4-D or 2,4,5-T resulted in a dose-dependent inhibition of DNA synthesis; 50% inhibition occurred at 2.21 mM and 0.90 mM for 2,4-D and 2,4,5-T, respectively. Furthermore, a strong synergistic inhibition of DNA synthesis was produced by mixtures (each having a total concentration of 1.25 mM) of 2,4-D with 2,4,5-T. Similarly, 2,4,5-T is more potent than 2,4-D in causing cytoskeletal perturbation as revealed by fluorescence microscopy. Treatment of cells with 2,4-D (2.5 mM) or 2,4,5-T (1.25 mM) for 20 h resulted in severe MT aggregation and the appearance of large bundles, which were organized in a rope-like structure in the former and a dramatic octopus-like pattern in the latter. Further, MT bundling is particularly severe in the cell center. Under these conditions, marked changes in MF organization also occurred as evidenced by clustering and crisscrossing of MF in the perinuclear region. A 1:1 mixture (final = 1.25 mM) of 2,4-D and 2,4,5-T, a formulation equivalent to Agent Orange composition, also induced a dramatic perturbation to the organization of MT and MF, resulting in the formation of ring-like structures. MT bundling is still apparent, especially around the outer edge of the "rings." MF are localized predominantly along the cell periphery, where they appear to be aggregated tightly forming patches. Surprisingly, the synthesis and composition of cytoskeletal proteins, which are resistant to detergent extraction but released by CaCl2, are essentially unaffected by 2,4-D or 2,4,5-T. These results suggest that the dramatic perturbation of the cytoskeletal morphology caused by these herbicides

  2. Human T-Cell Lymphotropic Virus Type 1 Open Reading Frame II-Encoded p30II Is Required for In Vivo Replication: Evidence of In Vivo Reversion

    PubMed Central

    Silverman, Lee R.; Phipps, Andrew J.; Montgomery, Andrew; Ratner, Lee; Lairmore, Michael D.

    2004-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and exhibits high genetic stability in vivo. HTLV-1 contains four open reading frames (ORFs) in its pX region. ORF II encodes two proteins, p30II and p13II, both of which are incompletely characterized. p30II localizes to the nucleus or nucleolus and has distant homology to the transcription factors Oct-1, Pit-1, and POU-M1. In vitro studies have demonstrated that at low concentrations, p30II differentially regulates cellular and viral promoters through an interaction with CREB binding protein/p300. To determine the in vivo significance of p30II, we inoculated rabbits with cell lines expressing either a wild-type clone of HTLV-1 (ACH.1) or a clone containing a mutation in ORF II, which eliminated wild-type p30II expression (ACH.30.1). ACH.1-inoculated rabbits maintained higher HTLV-1-specific antibody titers than ACH.30.1-inoculated rabbits, and all ACH.1-inoculated rabbits were seropositive for HTLV-1, whereas only two of six ACH.30.1-inoculated rabbits were seropositive. Provirus could be consistently PCR amplified from peripheral blood mononuclear cell (PBMC) DNA in all ACH.1-inoculated rabbits but in only three of six ACH.30.1-inoculated rabbits. Quantitative competitive PCR indicated higher PBMC proviral loads in ACH.1-inoculated rabbits. Interestingly, sequencing of ORF II from PBMC of provirus-positive ACH.30.1-inoculated rabbits revealed a reversion to wild-type sequence with evidence of early coexistence of mutant and wild-type sequence. Our data provide evidence that HTLV-1 must maintain its key accessory genes to survive in vivo and that in vivo pressures select for maintenance of wild-type ORF II gene products during the early course of infection. PMID:15047799

  3. Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.

    2013-01-01

    The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  4. The utility and limitations of current web-available algorithms to predict peptides recognized by CD4 T cells in response to pathogen infection #

    PubMed Central

    Chaves, Francisco A.; Lee, Alvin H.; Nayak, Jennifer; Richards, Katherine A.; Sant, Andrea J.

    2012-01-01

    The ability to track CD4 T cells elicited in response to pathogen infection or vaccination is critical because of the role these cells play in protective immunity. Coupled with advances in genome sequencing of pathogenic organisms, there is considerable appeal for implementation of computer-based algorithms to predict peptides that bind to the class II molecules, forming the complex recognized by CD4 T cells. Despite recent progress in this area, there is a paucity of data regarding their success in identifying actual pathogen-derived epitopes. In this study, we sought to rigorously evaluate the performance of multiple web-available algorithms by comparing their predictions and our results using purely empirical methods for epitope discovery in influenza that utilized overlapping peptides and cytokine Elispots, for three independent class II molecules. We analyzed the data in different ways, trying to anticipate how an investigator might use these computational tools for epitope discovery. We come to the conclusion that currently available algorithms can indeed facilitate epitope discovery, but all shared a high degree of false positive and false negative predictions. Therefore, efficiencies were low. We also found dramatic disparities among algorithms and between predicted IC50 values and true dissociation rates of peptide:MHC class II complexes. We suggest that improved success of predictive algorithms will depend less on changes in computational methods or increased data sets and more on changes in parameters used to “train” the algorithms that factor in elements of T cell repertoire and peptide acquisition by class II molecules. PMID:22467652

  5. Differentiation of Effector CD4 T Cell Populations*

    PubMed Central

    Zhu, Jinfang; Yamane, Hidehiro; Paul, William E.

    2012-01-01

    CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation. PMID:20192806

  6. [Treatment effects of magnetic Twin-block appliance for class II cases].

    PubMed

    Wu, Jian-Yong; Liu, Jian; Li, Qi-Shun; Xu, Tian-Min; Lin, Jiu-Xiang

    2007-09-01

    To evaluate the effects of magnetic Twin-block appliance in the treatment of skeletal class II cases. The magnetic Twin-block appliance was embedded with two pairs of neodymium-iron-boron (Nd(2)Fe(14)B) rare earth permanent magnets in the upper and lower inclined planes of Twin-block appliance. The sample comprised of 13 skeletal class II patients in the late mixed or early permanent dentition treated by magnetic Twin-block appliance. Cephalometric films were taken before and after treatment. Helix CT images of the temporomandibular joint (TMJ) in all patients were examined before treatment (T1), during treatment (4 months after appliance placement, T2), after treatment (T3) and one year after treatment (T4). A double contour image was detected in the superior posterior part of the condylar head on the pseudo-sagittal reconstruction plane pictures of T2 in 11 patients. The double contour image could be observed in most patients as well. This image also exhibited on the pictures of T3 in several patients. On the pictures of T2 and T3 in some patients, interruption of cortical bone and "bifurcation phenomenon" of condyles were shown. Pictures of T1 and T4 were similar and no signs of remodeling of TMJ were observed. Cephalometric analysis revealed significant changes in the maxillofacial structure after treatment. The profile of patients improved. Bone remodeling of condyle occurred during the magnetic Twin-block treatment in class II patients. Magnetic Twin-block appliance was effective in the treatment of the growing skeletal class II patients.

  7. New T Tauri stars in Chamaeleon I and Chamaeleon II

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick

    1993-01-01

    A new objective prism survey of the entire Chamaeleon I dark cloud and 2/3 of the Chamaeleon II cloud has uncovered 26 new H-alpha emission line objects that were missed by previous H-alpha plate surveys. The new H-alpha emission line objects have similar IR colors and spatial distributions to the known T Tauri stars in these dark clouds, and could represent the very low mass end of the stellar population in these clouds or an older, less active component to the usual classical T Tauri star population. The new H-alpha survey identified 70 percent of the total known Young Stellar Objects (YSOs) in Cha I, compared with 35 percent for IRAS, and 25 percent from the Einstein X-ray survey. Ten of the new objects are weak-lined stars, with H-alpha equivalent widths less than 10 A. Weak-lined T Tauri stars make up about half of the total population of young stars in the Chamaeleon I cloud, a proportion similar to the Taurus-Auriga cloud. Presented are coordinates, finding charts, and optical and IR photometry of the new emission-line objects.

  8. Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds.

    PubMed

    Nanjo, Yohei; Asatsuma, Satoru; Itoh, Kimiko; Hori, Hidetaka; Mitsui, Toshiaki; Fujisawa, Yukiko

    2004-06-01

    Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.

  9. Synthesis and evaluation of nanoglobular macrocyclic Mn(II) chelate conjugates as non-gadolinium(III) MRI contrast agents.

    PubMed

    Tan, Mingqian; Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Parker, Dennis L; Lu, Zheng-Rong

    2011-05-18

    Because of the recent observation of the toxic side effects of Gd(III) based MRI contrast agents in patients with impaired renal function, there is strong interest on developing alternative contrast agents for MRI. In this study, macrocyclic Mn(II) chelates were conjugated to nanoglobular carriers, lysine dendrimers with a silsesquioxane core, to synthesize non-Gd(III) based MRI contrast agents. A generation 3 nanoglobular conjugate of Mn(II)-1,4,7-triaazacyclononane-1,4,7-triacetate-GA amide (G3-NOTA-Mn) was also synthesized and evaluated. The per ion T(1) and T(2) relaxivities of G2, G3, G4 nanoglobular Mn(II)-DOTA monoamide conjugates decreased with increasing generation of the carriers. The T(1) relaxivities of G2, G3, and G4 nanoglobular Mn(II)-DOTA conjugates were 3.3, 2.8, and 2.4 mM(-1) s(-1) per Mn(II) chelate at 3 T, respectively. The T(1) relaxivity of G3-NOTA-Mn was 3.80 mM(-1) s(-1) per Mn(II) chelate at 3 T. The nanoglobular macrocyclic Mn(II) chelate conjugates showed good in vivo stability and were readily excreted via renal filtration. The conjugates resulted in much less nonspecific liver enhancement than MnCl(2) and were effective for contrast-enhanced tumor imaging in nude mice bearing MDA-MB-231 breast tumor xenografts at a dose of 0.03 mmol Mn/kg. The nanoglobular macrocyclic Mn(II) chelate conjugates are promising nongadolinium based MRI contrast agents.

  10. Task-shifting of CD4 T cell count monitoring by the touchscreen-based Muse™ Auto CD4/CD4% single-platform system for CD4 T cell numeration: Implication for decentralization in resource-constrained settings.

    PubMed

    Kouabosso, André; Mossoro-Kpinde, Christian Diamant; Bouassa, Ralph-Sydney Mboumba; Longo, Jean De Dieu; Mbeko Simaleko, Marcel; Grésenguet, Gérard; Bélec, Laurent

    2018-04-01

    The accuracy of CD4 T cell monitoring by the recently developed flow cytometry-based CD4 T cell counting Muse™ Auto CD4/CD4% Assay analyzer (EMD Millipore Corporation, Merck Life Sciences, KGaA, Darmstadt, Germany) was evaluated in trained lay providers against laboratory technicians. After 2 days of training on the Muse™ Auto CD4/CD4% analyzer, EDTA-blood samples from 6 HIV-positive and 4 HIV-negative individuals were used for CD4 T cell counting in triplicate in parallel by 12 trained lay providers as compared to 10 lab technicians. Mean number of CD4 T cells in absolute number was 829 ± 380 cells/μl by lay providers and 794 ± 409 cells/μl by technicians (P > 0.05); and in percentage 36.2 ± 14.8%CD4 by lay providers and 36.1 ± 15.0%CD4 by laboratory technician (P > 0.05). The unweighted linear regression and Passing-Bablok regression analyses on CD4 T cell results expressed in absolute count revealed moderate correlation between CD4 T cell counts obtained by lay providers and lab technicians. The mean absolute bias measured by Bland-Altman analysis between CD4 T cell/μl obtained by lay providers and lab technicians was -3.41 cells/μl. Intra-assay coefficient of variance (CV) of Muse™ Auto CD4/CD4% in absolute number was 10.1% by lay providers and 8.5% by lab technicians (P > 0.05), and in percentage 5.5% by lay providers and 4.4% by lab technicians (P > 0.05). The inter-assay CV of Muse™ Auto CD4/CD4% in absolute number was 13.4% by lay providers and 10.3% by lab technicians (P > 0.05), and in percentage 7.8% by lay providers and 6.9% by lab technicians (P > 0.05). The study demonstrates the feasibility of CD4 T cell counting using the alternative flow cytometer Muse™ Auto CD4/CD4% analyzer by trained lay providers and therefore the practical possibility of decentralization CD4 T cell counting to health community centers. Copyright © 2018. Published by Elsevier B.V.

  11. CD4+CD25hiFOXP3+ cells in cord blood of neonates born from filaria infected mother are negatively associated with CD4+Tbet+ and CD4+RORγt+ T cells.

    PubMed

    Ateba-Ngoa, Ulysse; Mombo-Ngoma, Ghyslain; Zettlmeissl, Eva; van der Vlugt, Luciën E P M; de Jong, Sanne E; de Jong, Sanne; Matsiegui, Pierre-Blaise; Ramharter, Michael; Kremsner, Peter G; Yazdanbakhsh, Maria; Adegnika, Ayola Akim

    2014-01-01

    Children who have been exposed in utero to maternal filarial infection are immunologically less responsive to filarial antigens, have less pathology, and are more susceptible to acquire infection than offspring of uninfected mothers. Moreover children from filaria infected mothers have been shown to be less responsive to vaccination as a consequence of an impairment of their immune response. However, it is not well known how in utero exposure to parasite antigens affects cellular immune responses. Here, 30 pregnant women were examined for the presence of microfilaria of Loa loa and Mansonella perstans in peripheral blood. At delivery, cord blood mononuclear cells (CBMC) were obtained and the CD4+T cells were phenotyped by expression of the transcription factors Tbet, RORγt, and FOXP3. No significant difference was observed between newborns from infected versus uninfected mothers in the frequencies of total CD4+T cells and CD4+T cells subsets including CD4+Tbet+, CD4+RORγt+ T and CD4+CD25hiFOXP3+ T cells. However, there was a negative association between CD4+CD25hiFOXP3+T cells and CD4+Tbet+ as well as CD4+RORγt+ T cells in the infected group only (B = -0.242, P = 0.002; B = -0.178, P = 0.013 respectively). Our results suggest that filarial infection during pregnancy leads to an expansion of functionally active regulatory T cells that keep TH1 and TH17 in check.

  12. Syntheses and structural characterization of Co(II) and Cd(II) coordination polymers with 1,4-bis(imidazolyl)butane ligand

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz

    2017-11-01

    Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.

  13. Normalization of CD4+ T Cell Metabolism Reverses Lupus

    PubMed Central

    Yin, Yiming; Choi, Seung-Chul; Xu, Zhiwei; Perry, Daniel J.; Seay, Howard; Croker, Byron P.; Sobel, Eric S.; Brusko, Todd M.; Morel, Laurence

    2015-01-01

    Systemic Lupus Erythematosus (SLE) is an autoimmune disease in which autoreactive CD4+ T cells play an essential role. CD4+ T cells rely on glycolysis for inflammatory effector functions, but recent studies have shown that mitochondrial metabolism supports their chronic activation. How these processes contribute to lupus is unclear. Here, we show that both glycolysis and mitochondrial oxidative metabolism are elevated in CD4+ T cells from lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice as compared to non-autoimmune controls. In vitro, both the mitochondrial metabolism inhibitor metformin and the glucose metabolism inhibitor 2-Deoxy-D-glucose (2DG) reduced IFNγ production, although at different stages of activation. Metformin also restored the defective IL-2 production by TC CD4+ T cells. In vivo, treatment of TC mice and other lupus models with a combination of metformin and 2DG normalized T cell metabolism and reversed disease biomarkers. Further, CD4+ T cells from SLE patients also exhibited enhanced glycolysis and mitochondrial metabolism that correlated with their activation status, and their excessive IFNγ production was significantly reduced by metformin in vitro. These results suggest that normalization of T cell metabolism through the dual inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic venue for SLE. PMID:25673763

  14. The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA.

    PubMed

    Dyakonova, Elena S; Koval, Vladimir V; Lomzov, Alexander A; Ishchenko, Alexander A; Fedorova, Olga S

    2015-06-01

    The apurinic/apyrimidinic (AP) endonuclease Apn1 from Saccharomyces cerevisiae is a key enzyme involved in the base excision repair (BER) at the cleavage stage of abasic sites (AP sites) in DNA. The crystal structure of Apn1 from S. cerevisiae is unresolved. Based on its high amino acid homology to Escherichia coli Endo IV, His-83 is believed to coordinate one of three Zn2+ ions in Apn1's active site similar to His-69 in Endo IV. Substituting His-83 with Ala is proposed to decrease the AP endonuclease activity of Apn1 owing to weak coordination of Zn2+ ions involved in enzymatic catalysis. The kinetics of recognition, binding, and incision of DNA substrates with the H83A Apn1 mutant was investigated. The stopped-flow method detecting fluorescence intensity changes of 2-aminopurine (2-aPu) was used to monitor the conformational dynamics of DNA at pre-steady-state conditions. We found substituting His-83 with Ala influenced catalytic complex formation and further incision of the damaged DNA strand. The H83A Apn1 catalysis depends not only on the location of the mismatch relative to the abasic site in DNA, but also on the nature of damage. We consider His-83 properly coordinates the active site Zn2+ ion playing a crucial role in catalytic incision stage. Our data prove suppressed enzymatic activity of H83A Apn1 results from the reduced number of active site Zn2+ ions. Our study provides insights into mechanistic specialty of AP site repair by yeast AP endonuclease Apn1 of Endo IV family, which members are not found in mammals, but are present in many microorganisms. The results will provide useful guidelines for design of new anti-fungal and anti-malarial agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The story of DNase II: a stifled death-wish leads to self-harm.

    PubMed

    Crow, Yanick J

    2010-09-01

    DNase II is an endonuclease which plays a fundamental role in the degradation of DNA from both apoptotic cells, and nuclei extruded from red blood cells during erythropoiesis: important tasks, considering that everyday 10(8)-10(9) cells undergo apoptosis, and 10(11) red blood cells are produced in the adult human. The DNase II-null mouse demonstrates embryonic lethality due to type I interferon-mediated erythroid precursor cell death triggered by undegraded nucleic acids. However, the mechanisms leading to such cytotoxicity are poorly understood. A study in the current issue of the European Journal of Immunology investigates the role of the death ligand TRAIL in this process. Although TRAIL is shown to be dispensable for the interferon-induced apoptosis of erythroid cells in DNAse II(-/-) embryos, the authors have developed a useful strategy for further exploring this question in future studies. Interestingly, earlier studies by the same group showed that crossing the DNase II-null mouse with a mouse deficient for the type I interferon receptor can rescue the lethal anaemia observed in the DNase II-null embryos, but only at the cost of developing autoimmunity.

  16. 4. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. July 1971. AERIAL RECONNAISSANCE II, ERIE RAILWAY SURVEY. - Erie Railway, Parallel French Creek Bridges, 100 feet South of Millers Station Road, 0.4 mile Northeast of State Route 408, 0.9 mile East of Cambridge Springs, Cambridge Springs, Crawford County, PA

  17. Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer

    PubMed Central

    Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.

    2018-01-01

    Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915

  18. Coding of Class I and II aminoacyl-tRNA synthetases

    PubMed Central

    Carter, Charles W.

    2018-01-01

    SUMMARY The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels—protozymes and Urzymes—associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric—middle base-pairing frequencies in sense/antisense alignments—that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins. PMID:28828732

  19. A highly stable l-alanine-based mono(aquated) Mn(ii) complex as a T1-weighted MRI contrast agent.

    PubMed

    Khannam, Mahmuda; Weyhermüller, Thomas; Goswami, Upashi; Mukherjee, Chandan

    2017-08-08

    The synthesized lithium (S)-6,6'-(1-carboxyethylazanediyl)bis(methylene)dipicolinate (Li 3 cbda) is a new chiral, alanine-based ligand bearing two picolinate functionalities. The trianionic form of the ligand [(cbda) 3- ] constitutes a seven-coordinate, water-soluble, pentagonal bipyramidal Mn(ii) complex (1). The structural analysis reveals the presence of a water coordinating site in the complex. The complex is thermodynamically very stable, and the stability is not affected by the presence of physiological anions (HCO 3 - , PO 4 3- , and F - ). The pH of the medium exerts a small effect on the stability of the complex. The r 1 relaxivity of 3.02 mM -1 s -1 is exhibited by the complex at 1.41 T, pH ∼7.4, and 25 °C. Phantom images obtained via a clinical MRI BRIVO MR355 system established concentration-dependent signal enhancement by the complex. The cytotoxicity test confirmed complex 1 as a biocompatible potential T 1 -weighted MRI contrast agent.

  20. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion1

    PubMed Central

    Turner, Michael S.; Kane, Lawrence P.; Morel, Penelope A.

    2009-01-01

    The definitions of tolerogenic vs. immunogenic dendritic cells (DC) remain controversial. Immature DC have been shown to induce T regulatory cells (Treg) specific for foreign and allo-antigens. However, we have previously reported that mature DC (G4DC) prevented the onset of autoimmune diabetes whereas immature DC (GMDC) were therapeutically ineffective. In this study, islet-specific CD4+ T cells from BDC2.5 TCR Tg mice were stimulated, in the absence of exogenous cytokine, with GMDC or G4DC pulsed with high- or low-affinity antigenic peptides and examined for Treg induction. Both GMDC and G4DC presenting low peptide doses induced weak TCR signaling via the Akt/mTOR pathway, resulting in significant expansion of Foxp3+ Treg. Furthermore, unpulsed G4DC, but not GMDC, also induced Treg. High peptide doses induced strong Akt/mTOR signaling and favored the expansion of Foxp3neg Th cells. The inverse correlation of Foxp3 and Akt/mTOR signaling was also observed in DO11.10 and OT-II TCR-Tg T cells and was recapitulated with anti-CD3/CD28 stimulation in the absence of DC. IL-6 production in these cultures correlated positively with antigen dose and inversely with Treg expansion. Studies with T cells or DC from IL-6−/− mice revealed that IL-6 production by T cells was more important in the inhibition of Treg induction at low antigen doses. These studies indicate that strength of Akt/mTOR signaling, a critical T cell intrinsic determinant for Treg vs Th induction, can be controlled by adjusting the dose of antigenic peptide. Furthermore, this operates in a dominant fashion over DC phenotype and cytokine production. PMID:19801514

  1. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  2. Environmental and T cell-intrinsic factors limit the expansion of neonatal follicular T helper cells but may be circumvented by specific adjuvants.

    PubMed

    Mastelic, Béatris; Kamath, Arun T; Fontannaz, Paola; Tougne, Chantal; Rochat, Anne-Françoise; Belnoue, Elodie; Combescure, Christophe; Auderset, Floriane; Lambert, Paul-Henri; Tacchini-Cottier, Fabienne; Siegrist, Claire-Anne

    2012-12-15

    Follicular Th (T(FH)) cells have emerged as a new Th subset providing help to B cells and supporting their differentiation into long-lived plasma cells or memory B cells. Their differentiation had not yet been investigated following neonatal immunization, which elicits delayed and limited germinal center (GC) responses. We demonstrate that neonatal immunization induces CXCR5(high)PD-1(high) CD4(+) T(FH) cells that exhibit T(FH) features (including Batf, Bcl6, c-Maf, ICOS, and IL-21 expression) and are able to migrate into the GCs. However, neonatal T(FH) cells fail to expand and to acquire a full-blown GC T(FH) phenotype, as reflected by a higher ratio of GC T(FH)/non-GC CD4(+) T cells in immunized adults than neonates (3.8 × 10(-3) versus 2.2 × 10(-3), p = 0.01). Following the adoptive transfer of naive adult OT-II CD4(+) T cells, OT-II T(FH) cells expand in the vaccine-draining lymph nodes of immunized adult but not infant recipients, whereas naive 2-wk-old CD4(+) OT-II cells failed to expand in adult hosts, reflecting the influence of both environmental and T cell-intrinsic factors. Postponing immunization to later in life increases the number of T(FH) cells in a stepwise manner, in direct correlation with the numbers of GC B cells and plasma cells elicited. Remarkably, adjuvantation with CpG oligonucleotides markedly increased GC T(FH) and GC B cell neonatal responses, up to adult levels. To our knowledge, this is the first demonstration that the T(FH) cell development limits early life GC responses and that adjuvants/delivery systems supporting T(FH) differentiation may restore adultlike early life GC B cell responses.

  3. Human immunodeficiency virus infection of helper T cell clones. Early proliferative defects despite intact antigen-specific recognition and interleukin 4 secretion.

    PubMed Central

    Laurence, J; Friedman, S M; Chartash, E K; Crow, M K; Posnett, D N

    1989-01-01

    HIV selectively inhibited the proliferative response of clonal CD4+ T lymphocytes to alloantigen while other alloantigen-dependent responses were unperturbed. Specifically, impaired blastogenesis could be dissociated from alloantigen-specific induction of the B cell activation molecule CD23, IL-4 release, and inositol lipid hydrolysis. In addition, membrane expression of pertinent T cell receptor molecules, including CD2, CD3, and T cell antigen receptor (Ti), remained intact. Using two MHC class II-specific human CD4+ helper T cell clones, the proliferative defect was shown to be an early consequence of HIV infection, occurring within 4 d of viral inoculation and preceding increases in mature virion production. It was generalizable to three distinct methods of T cell activation, all independent of antigen-presenting cells: anti-CD3 mediated cross-linking of the CD3/Ti complex; anti-CD2 and phorbol 12-myristic 13-acetate (PMA); and anti-CD28 plus PMA. These abnormalities were not mitigated by addition of exogenous IL-2, even though expression of the IL-2 receptor (CD25) was unaltered. These studies define a selective blockade in T cell function early after HIV exposure that could serve as a model for certain in vivo manifestations of AIDS. PMID:2470786

  4. Respiratory Syncytial Virus (RSV) Infects CD4+ T Cells: Frequency of Circulating CD4+ RSV+ T Cells as a Marker of Disease Severity in Young Children.

    PubMed

    Raiden, Silvina; Sananez, Inés; Remes-Lenicov, Federico; Pandolfi, Julieta; Romero, Cecilia; De Lillo, Leonardo; Ceballos, Ana; Geffner, Jorge; Arruvito, Lourdes

    2017-04-01

    Although human airway epithelial cells are the main target of respiratory syncytial virus (RSV), it also infects immune cells, such as macrophages and B cells. Whether T cells are permissive to RSV infection is unknown. We sought to analyze the permissiveness of CD4+ T cells to RSV infection. CD4+ and CD8+ T cells from cord blood, healthy young children, and adults were challenged by RSV or cocultured with infected HEp-2 cells. Infection, phenotype, and cytokine production by T cells were analyzed by flow cytometry or enzyme-linked immunosorbent assay. Expression of RSV antigens by circulating CD4+ T cells from infected children was analyzed by flow cytometry, and disease severity was defined by standard criteria. CD4+ and CD8+ T cells were productively infected by RSV. Infection decreased interleukin 2 and interferon γ production as well as the expression of CD25 and Ki-67 by activated CD4+ T cells. Respiratory syncytial virus antigens were detected in circulating CD4+ and CD8+ T cells during severe RSV infection of young children. Interestingly, the frequency of CD4+ RSV+ T cells positively correlated with disease severity. Respiratory syncytial virus infects CD4+ and CD8+ T cells and compromises T-cell function. The frequency of circulating CD4+ RSV+ T cells might represent a novel marker of severe infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Angiotensin II stimulates superoxide production in the thick ascending limb by activating NOX4

    PubMed Central

    Hong, Nancy J.; Garvin, Jeffrey L.

    2012-01-01

    Angiotensin II (ANG II) stimulates production of superoxide (O2−) by NADPH oxidase (NOX) in medullary thick ascending limbs (TALs). There are three isoforms of the catalytic subunit (NOX1, 2, and 4) known to be expressed in the kidney. We hypothesized that NOX2 mediates ANG II-induced O2− production by TALs. To test this, we measured NOX1, 2, and 4 mRNA and protein by RT-PCR and Western blot in TAL suspensions from rats and found three catalytic subunits expressed in the TAL. We measured O2− production using a lucigenin-based assay. To assess the contribution of NOX2, we measured ANG II-induced O2− production in wild-type and NOX2 knockout mice (KO). ANG II increased O2− production by 346 relative light units (RLU)/mg protein in the wild-type mice (n = 9; P < 0.0007 vs. control). In the knockout mice, ANG II increased O2− production by 290 RLU/mg protein (n = 9; P < 0.007 vs. control). This suggests that NOX2 does not contribute to ANG II-induced O2− production (P < 0.6 WT vs. KO). To test whether NOX4 mediates the effect of ANG II, we selectively decreased NOX4 expression in rats using an adenovirus that expresses NOX4 short hairpin (sh)RNA. Six to seven days after in vivo transduction of the kidney outer medulla, NOX4 mRNA was reduced by 77%, while NOX1 and NOX2 mRNA was unaffected. In control TALs, ANG II stimulated O2− production by 96%. In TALs transduced with NOX4 shRNA, ANG II-stimulated O2− production was not significantly different from the baseline. We concluded that NOX4 is the main catalytic isoform of NADPH oxidase that contributes to ANG II-stimulated O2− production by TALs. PMID:22875785

  6. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity.

    PubMed

    Pinchuk, Irina V; Saada, Jamal I; Beswick, Ellen J; Boya, Gushyalatha; Qiu, Sumin M; Mifflin, Randy C; Raju, Gottumukkala S; Reyes, Victor E; Powell, Don W

    2008-10-01

    A prominent role for inhibitory molecules PD-L1 and PD-L2 in peripheral tolerance has been proposed. However, the phenotype and function of PD-L-expressing cells in human gut remains unclear. Recent studies suggest that colonic myofibroblasts (CMFs) and fibroblasts are important in the switch from acute inflammation to adaptive immunity. In the normal human colon, CMFs represent a distinct population of major histocompatibility complex class II(+) cells involved in the regulation of mucosal CD4(+) T-cell responses. PD-L1 and PD-L2 expression on human CMFs was determined using Western blot, fluorescence-activated cell sorter analysis and confocal microscopy. Lymphoproliferation assays and cytokine enzyme-linked immunosorbent assays were used to evaluate the role of B7 costimulators expressed by CMFs with regard to the regulation of preactivated T-helper cell responses. We demonstrate here the expression of PD-L1/2 molecules by normal human CMF and fibroblasts in situ and in culture. Both molecules support suppressive functions of CMFs in the regulation of activated CD4(+) T-helper cell proliferative responses; blocking this interaction reverses the suppressive effect of CMFs on T-cell proliferation and leads to increased production of the major T-cell growth factor, interleukin (IL)-2. PD-L1/2-mediated CMF suppressive functions are mainly due to the inhibition of IL-2 production, because supplementation of the coculture media with exogenous IL-2 led to partial recovery of activated T-cell proliferation. Our data suggest that stromal myofibroblasts and fibroblasts may limit T-helper cell proliferative activity in the gut and, thus, might play a prominent role in mucosal intestinal tolerance.

  7. Induction and function of virus-specific CD4+ T cell responses

    PubMed Central

    Whitmire, Jason K.

    2010-01-01

    CD4+ T cells -- often referred to as T-helper cells -- play a central role in immune defense and pathogenesis. Virus infections and vaccines stimulate and expand populations of antigen-specific CD4+ T cells in mice and in man. These virus-specific CD4+ T cells are extremely important in antiviral protection: deficiencies in CD4+ T cells are associated with virus reactivation, generalized susceptibility to opportunistic infections, and poor vaccine efficacy. As described below, CD4+ T cells influence effector and memory CD8+ T cell responses, humoral immunity, and the antimicrobial activity of macrophages and are involved in recruiting cells to sites of infection. This review summarizes a few key points about the dynamics of the CD4+ T cell response to virus infection, the positive role of pro-inflammatory cytokines in the differentiation of virus-specific CD4+ T cells, and new areas of investigation to improve vaccines against virus infection. PMID:21236461

  8. CD4+CD25hiFOXP3+ Cells in Cord Blood of Neonates Born from Filaria Infected Mother Are Negatively Associated with CD4+Tbet+ and CD4+RORγt+ T Cells

    PubMed Central

    Zettlmeissl, Eva; van der Vlugt, Luciën E. P. M.; de Jong, Sanne; Matsiegui, Pierre-Blaise; Ramharter, Michael; Kremsner, Peter G.; Yazdanbakhsh, Maria; Adegnika, Ayola Akim

    2014-01-01

    Background Children who have been exposed in utero to maternal filarial infection are immunologically less responsive to filarial antigens, have less pathology, and are more susceptible to acquire infection than offspring of uninfected mothers. Moreover children from filaria infected mothers have been shown to be less responsive to vaccination as a consequence of an impairment of their immune response. However, it is not well known how in utero exposure to parasite antigens affects cellular immune responses. Methodology Here, 30 pregnant women were examined for the presence of microfilaria of Loa loa and Mansonella perstans in peripheral blood. At delivery, cord blood mononuclear cells (CBMC) were obtained and the CD4+T cells were phenotyped by expression of the transcription factors Tbet, RORγt, and FOXP3. Results No significant difference was observed between newborns from infected versus uninfected mothers in the frequencies of total CD4+T cells and CD4+T cells subsets including CD4+Tbet+, CD4+RORγt+ T and CD4+CD25hiFOXP3+ T cells. However, there was a negative association between CD4+CD25hiFOXP3+T cells and CD4+Tbet+ as well as CD4+RORγt+ T cells in the infected group only (B = −0.242, P = 0.002; B = −0.178, P = 0.013 respectively). Conclusion Our results suggest that filarial infection during pregnancy leads to an expansion of functionally active regulatory T cells that keep TH1 and TH17 in check. PMID:25531674

  9. Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2-mapping at 3T MRI: a feasibility study.

    PubMed

    Marik, W; Apprich, S; Welsch, G H; Mamisch, T C; Trattnig, S

    2012-05-01

    To perform an in vivo evaluation comparing overlying articular cartilage in patients suffering from osteochondrosis dissecans (OCD) in the talocrural joint and healthy volunteers using quantitative T2 mapping at 3.0 T. Ten patients with OCD of Grade II or lower and 9 healthy age matched volunteers were examined at a 3.0 T whole body MR scanner using a flexible multi-element coil. In all investigated persons MRI included proton-density (PD)-FSE and 3D GRE (TrueFisp) sequences for morphological diagnosis and location of anatomical site and quantitative T2 and T2 maps. Region of interest (ROI) analysis was performed for the cartilage layer above the OCD and for a morphologically healthy graded cartilage layer. Mean T2 and T2 values were then statistically analysed. The cartilage layer of healthy volunteers showed mean T2 and T2 values of 29.4 ms (SD 4.9) and 11.8 ms (SD 2.7), respectively. In patients with OCD of grade I and II lesions mean T2 values were 40.9 ms (SD 6.6), 48.7 ms (SD 11.2) and mean T2 values were 16.1 ms (SD 3.2), 16.2 ms (SD 4.8). Therefore statistically significantly higher mean T2 and T2 values were found in patients suffering from OCD compared to healthy volunteers. T2 and T2 mapping can help assess the microstructural composition of cartilage overlying osteochondral lesions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury.

    PubMed

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury.

  11. OX62+OX6+OX35+ rat dendritic cells are unable to prime CD4+ T cells for an effective immune response following acute burn injury☆

    PubMed Central

    Fazal, Nadeem

    2013-01-01

    Co-stimulatory molecules expressed on Dendritic Cells (DCs) function to coordinate an efficient immune response by T cells in the peripheral lymph nodes. We hypothesized that CD4+ T cell-mediated immune suppression following burn injury may be related to dysfunctional DCs residing in gut associated lymphoid tissues (GALT), such as Mesenteric Lymph Nodes (MLN). Therefore, we studied co-stimulatory molecules expressed on burn rat MLN DCs as an index of functional DCs that would mount an effective normal CD4+ T cell immune response. In a rat model of 30% Total Body Surface Area (TBSA) scald burn, OX62+OX6+OX35+ DCs and CD4+ T cells were isolated from MLN of day 3 post-burn and sham control rats. DCs were tested for their expression of co-stimulatory molecules, and prime CD4+ T cell (DC:CD4+T cell co-culture assays) to determine an effector immune response such as CD4+ T cell proliferation. The surface receptor expressions of MLN DCs co-stimulatory molecules, i.e., MHC-II, CD40, CD80 (B7-1), and CD86 (B7-2) were determined by Flow cytometry (quantitatively) and confocal microscopy (qualitatively). Tritiated thymidine and CFDA-SE determined CD4+ T cell proliferation following co-incubation with DCs. Cytokine milieu of MLN (IL-12 and IL-10) was assessed by mRNA determination by RT-PCR. The results showed down-regulated expressions of co-stimulatory markers (CD80, CD86, CD40 and MHC-II) of MLN DCs obtained from burn-injured rats, as well as lack of ability of these burn-induced DCs to stimulate CD4+ T cell proliferation in co-culture assays, as compared to the sham rats. Moreover, anti-CD40 stimulation of affected burn MLN DCs did not reverse this alteration. Furthermore, a marked up-regulation of mRNA IL-10 and down-regulation of mRNA IL-12 in burn MLN as compared to sham animals was also observed. To surmise, the data indicated that dysfunctional OX62+OX6+OX35+ rat MLN DCs may contribute to CD4+ T-cell-mediated immune suppression observed following acute burn injury

  12. New Mononuclear Cu(II) Complexes and 1D Chains with 4-Amino-4H-1,2,4-triazole

    PubMed Central

    Dîrtu, Marinela M.; Boland, Yves; Gillard, Damien; Tinant, Bernard; Robeyns, Koen; Safin, Damir A.; Devlin, Eamonn; Sanakis, Yiannis; Garcia, Yann

    2013-01-01

    The crystal structures of two mononuclear Cu(II) NH2trz complexes [Cu(NH2trz)4(H2O)](AsF6)2 (I) and [Cu(NH2trz)4(H2O)](PF6)2 (II) as well as two coordination polymers [Cu(μ2-NH2trz)2Cl]Cl·H2O (III) and [Cu(μ2-NH2trz)2Cl] (SiF6)0.5·1.5H2O (IV) are presented. Cationic 1D chains with bridging bis-monodentate μ2-coordinated NH2trz and bridging μ2-coordinated chloride ligands are present in III and IV. In these coordination polymers, the Cu(II) ions are strongly antiferromagnetically coupled with J = −128.4 cm−1 for III and J = −143 cm−1 for IV (H = −J∑SiSi+1), due to the nature of the bridges between spin centers. Inter-chain interactions present in the crystal structures were taken into consideration, as well as g factors, which were determined experimentally, for the quantitative modeling of their magnetic properties. PMID:24300095

  13. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  14. Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair.

    PubMed

    Klein Douwel, Daisy; Hoogenboom, Wouter S; Boonen, Rick Acm; Knipscheer, Puck

    2017-07-14

    XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  15. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    PubMed

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  16. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity

    PubMed Central

    Wang, Dongrui; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R.; Forman, Stephen J.; Brown, Christine E.

    2018-01-01

    Chimeric antigen receptor–modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy. PMID:29769444

  17. An AP Endonuclease Functions in Active DNA Demethylation and Gene Imprinting in Arabidopsis

    PubMed Central

    Li, Yan; Córdoba-Cañero, Dolores; Qian, Weiqiang; Zhu, Xiaohong; Tang, Kai; Zhang, Huiming; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2015-01-01

    Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/−zdp−/− mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. PMID:25569774

  18. T4 Syndrome: A Scoping Review of the Literature.

    PubMed

    Karas, Steve; Pannone, Albert

    2017-02-01

    The purpose of this scoping review was to identify any available evidence regarding T4 syndrome. Databases were searched from inception through October 2015 and included PubMed, CINAHL, PEDro, Google Scholar, Osteomed-DR; Index to Chiropractic Literature, PROSPERO, and Chiroaccess. All studies with information about T4 syndrome that were published in a peer-reviewed journal or textbook were included. The information was organized in the format of the International Classification of Functioning, Disability, and Health. Studies were ranked using Sackett's levels of evidence. Eight articles met the inclusion criteria. Studied areas included theoretical pathophysiology and symptom etiology, diagnosis, symptoms, treatment, and outcomes of T4 syndrome. The methodological quality of included studies was low. T4 syndrome is a diagnosis of exclusion that appears to be rare. It has been treated conservatively in the literature using mobilization and exercise. There is no high-quality evidence published about T4 syndrome, and we caution clinicians when considering it as a primary means to determine patient care. Copyright © 2016. Published by Elsevier Inc.

  19. R4 terms in supergravities via T -duality constraint

    NASA Astrophysics Data System (ADS)

    Razaghian, Hamid; Garousi, Mohammad R.

    2018-05-01

    It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.

  20. 9.4T Human MRI: Preliminary Results

    PubMed Central

    Vaughan, Thomas; DelaBarre, Lance; Snyder, Carl; Tian, Jinfeng; Akgun, Can; Shrivastava, Devashish; Liu, Wanzahn; Olson, Chris; Adriany, Gregor; Strupp, John; Andersen, Peter; Gopinath, Anand; van de Moortele, Pierre-Francois; Garwood, Michael; Ugurbil, Kamil

    2014-01-01

    This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T. PMID:17075852

  1. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    PubMed

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination.

    PubMed

    Casares, Noelia; Arribillaga, Laura; Sarobe, Pablo; Dotor, Javier; Lopez-Diaz de Cerio, Ascensión; Melero, Ignacio; Prieto, Jesús; Borrás-Cuesta, Francisco; Lasarte, Juan J

    2003-12-01

    CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.

  3. Purification and Properties of Bacteriophage T4-Induced RNA Ligase*

    PubMed Central

    Silber, Robert; Malathi, V. G.; Hurwitz, Jerard

    1972-01-01

    An enzyme, purified 300-fold from Escherichia coli infected with bacteriophage T4, catalyzes the conversion of 5′-termini of polyribonucleotides to internal phosphodiester bonds. The reaction requires ATP and Mg++. For every 5′-32P terminus rendered resistant to alkaline phosphatase, an equal amount of AMP and PPi are formed. Various polyribonucleotides are substrates in the reaction; to date, the best substrate is [5′-32P]polyriboadenylate. With the latter substrate, no evidence of intermolecular reaction was obtained. However, the 5′-32P termini of poly(A) rendered resistant to alkaline phosphatase are also resistant to attack by RNase II, polynucleotide phosphorylase, and low concentrations of venom phosphodiesterase. Since the product formed with poly(A) lacks 3′-hydroxyl ends, as measured with these exonucleases, the enzyme appears to convert linear molecules of polyriboadenylate to a circular form by the intramolecular covalent linkage of the 5′-phosphate end to the 3′-hydroxyl terminus. Images PMID:4342972

  4. Silicon Phthalocyanine 4 and Photodynamic Therapy in Stage IA-IIA Cutaneous T-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-12-03

    Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Stage I Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IA Mycosis Fungoides/Sezary Syndrome; Stage IB Mycosis Fungoides/Sezary Syndrome; Stage II Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IIA Mycosis Fungoides/Sezary Syndrome

  5. Adaptor protein-3 is required in dendritic cells for optimal Toll-like receptor signaling from phagosomes and antigen presentation to CD4+ T cells

    PubMed Central

    Mantegazza, Adriana R.; Guttentag, Susan H.; El-Benna, Jamel; Sasai, Miwa; Iwasaki, Akiko; Shen, Hao; Laufer, Terri M.; Marks, Michael S.

    2012-01-01

    SUMMARY Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4+ T cell activation and Th1 effector function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores. PMID:22560444

  6. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  7. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  8. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  9. Synthesis of thin film containing 4-amino-1,2,4-triazole iron(II) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onggo, Djulia, E-mail: djulia@Chem.itb.ac.id

    The Iron(II) complex with 4-amino-1,2,4 triazole (NH{sub 2}-trz) ligand has potential applications as smart material since the compounds show a distinct color change from lilac at low temperature to colorless at high temperature. The lilac color of the complex represent the diamagnetic low spin state while the colorless correspond to the paramagnetic high spin state of iron(II). The transition between the two states could be tuned by changing the anionic group. Generally, the complex was synthesized directly from aqueous solution of iron(II) salt with considerable amounts of NH{sub 2}-trz solution produced solid powder compound. For application as an electronic molecularmore » device, the complex should be obtained as a thin film. The transparent [Fe(NH{sub 2}trz){sub 3}]-Nafion film has been successfully obtained, however, no anion variation can be produced since the nafion is an anionic resin. In this work, the [Fe(NH{sub 2}trz){sub 3}]-complexes with several anions have been synthesized inside nata de coco membrane that commonly used as a medium for deposition metal nano-particles. After drying the membrane containing the complex became a thin film. At room temperature, the film containing iron(II) complexes of sulphate and nitrate salts show lilac color, similar to that of the original complexes in the powder form. On heating, the color of the complex film changed to colorless and this color change was observed reversibly. In contrast, the films containing perchlorate and tetrafluoroborate iron(II) complexes are colorless at room temperature and changed to lilac on cooling. The significant color changing of the iron(II)complexes in the nata de coco film can be used for demonstration thermo chromic effect of smart materials with relatively small amount of the compounds.« less

  10. Meiotic and pedigree segregation analyses in carriers of t(4;8)(p16;p23.1) differing in localization of breakpoint positions at 4p subband 4p16.3 and 4p16.1.

    PubMed

    Midro, Alina T; Zollino, Marcella; Wiland, Ewa; Panasiuk, Barbara; Iwanowski, Piotr S; Murdolo, Marina; Śmigiel, Robert; Sąsiadek, Maria; Pilch, Jacek; Kurpisz, Maciej

    2016-02-01

    The purpose of this study was to compare meiotic segregation in sperm cells from two carriers with t(4;8)(p16;p23.1) reciprocal chromosome translocations (RCTs), differing in localization of the breakpoint positions at the 4p subband-namely, 4p16.3 (carrier 1) and 4p16.1 (carrier 2)-and to compare data of the pedigree analyses performed by direct method. Three-color fluorescent in situ hybridization (FISH) on sperm cells and FISH mapping for the evaluation of the breakpoint positions, data from pedigrees, and direct segregation analysis of the pedigrees were performed. Similar proportions of normal/balanced and unbalanced sperm cells were found in both carriers. The most common was an alternate type of segregation (about 52 % and about 48 %, respectively). Unbalanced adjacent I and adjacent II karyotypes were found in similar proportions about 15 %. The direct segregation analysis (following Stengel-Rutkowski) of the pedigree of carriers of t(4;8)(p16.1;p23.1) was performed and results were compared with the data of the pedigree segregation analysis obtained earlier through the indirect method. The probability of live-born progeny with unbalanced karyotype for carriers of t(4;8)(p16.1;p23.1) was moderately high at 18.8 %-comparable to the value obtained using the indirect method for the same carriership, which was 12 %. This was, however, markedly lower than the value of 41.2 % obtained through the pedigree segregation indirect analysis estimated for carriers of t(4;8)(p16.3;p23.1), perhaps due to the unique composition of genes present within the 4p16.1-4p 16.3 region. Revealed differences in pedigree segregation analysis did not correspond to the very similar profile of meiotic segregation patterns presented by carrier 1 and carrier 2. Most probably, such discordances may be due to differences in embryo survival rates arising from different genetic backgrounds.

  11. T4 AsiA blocks DNA recognition by remodeling σ70 region 4

    PubMed Central

    Lambert, Lester J; Wei, Yufeng; Schirf, Virgil; Demeler, Borries; Werner, Milton H

    2004-01-01

    Bacteriophage T4 AsiA is a versatile transcription factor capable of inhibiting host gene expression as an ‘anti-σ′ factor while simultaneously promoting gene-specific expression of T4 middle genes in conjunction with T4 MotA. To accomplish this task, AsiA engages conserved region 4 of Eschericia coli σ70, blocking recognition of most host promoters by sequestering the DNA-binding surface at the AsiA/σ70 interface. The three-dimensional structure of an AsiA/region 4 complex reveals that the C-terminal α helix of region 4 is unstructured, while four other helices adopt a completely different conformation relative to the canonical structure of unbound region 4. That AsiA induces, rather than merely stabilizes, this rearrangement can be realized by comparison to the homologous structures of region 4 solved in a variety of contexts, including the structure of Thermotoga maritima σA region 4 described herein. AsiA simultaneously occupies the surface of region 4 that ordinarily contacts core RNA polymerase (RNAP), suggesting that an AsiA-bound σ70 may also undergo conformational changes in the context of the RNAP holoenzyme. PMID:15257291

  12. NAD+ protects against EAE by regulating CD4+ T-cell differentiation

    PubMed Central

    Tullius, Stefan G.; Biefer, Hector Rodriguez Cetina; Li, Suyan; Trachtenberg, Alexander J.; Edtinger, Karoline; Quante, Markus; Krenzien, Felix; Uehara, Hirofumi; Yang, Xiaoyong; Kissick, Haydn T.; Kuo, Winston P.; Ghiran, Ionita; de la Fuente, Miguel A.; Arredouani, Mohamed S.; Camacho, Virginia; Tigges, John C.; Toxavidis, Vasilis; El Fatimy, Rachid; Smith, Brian D.; Vasudevan, Anju; ElKhal, Abdallah

    2014-01-01

    CD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases. PMID:25290058

  13. Memory CD4+ T cells: beyond “helper” functions

    PubMed Central

    Boonnak, Kobporn; Subbarao, Kanta

    2012-01-01

    In influenza virus infection, antibodies, memory CD8+ T cells, and CD4+ T cells have all been shown to mediate immune protection, but how they operate and interact with one another to mediate efficient immune responses against virus infection is not well understood. In this issue of the JCI, McKinstry et al. have identified unique functions of memory CD4+ T cells beyond providing “help” for B cell and CD8+ T cell responses during influenza virus infection. PMID:22820285

  14. Opioid maintenance therapy restores CD4+ T cell function by normalizing CD4+CD25(high) regulatory T cell frequencies in heroin user.

    PubMed

    Riss, Gina-Lucia; Chang, Dae-In; Wevers, Carolin; Westendorf, Astrid M; Buer, Jan; Scherbaum, Norbert; Hansen, Wiebke

    2012-08-01

    There is an increasing body of evidence that heroin addiction is associated with severe alterations in immune function, which might contribute to an increased risk to contract infectious diseases like hepatitis B and C or HIV. However, the impact of heroin consumption on the CD4(+) T cell compartment is not well understood. Therefore, we analyzed the frequency and functional phenotype of CD4(+) T cells as well as immune-suppressive CD4(+)CD25(high) regulatory T cells (Tregs) isolated from the peripheral blood of opiate addicts currently abusing heroin (n=27) in comparison to healthy controls (n=25) and opiate addicts currently in opioid maintenance treatment (OMT; n=27). Interestingly, we detected a significant increase in the percentage of CD4(+)CD25(high) Tregs in the peripheral blood of heroin addicted patients in contrast to patients in OMT. The proliferative response of CD4(+) T cells upon stimulation with anti-CD3 and anti-CD28 antibodies was significantly decreased in heroin users, but could be restored by depletion of CD25(high) regulatory T cells from CD4(+) T cells to similar values as observed from healthy controls and patients in OMT. These results suggest that impaired immune responses observed in heroin users are related to the expansion of CD4(+)CD25(high) Tregs and more importantly, can be restored by OMT. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice.

    PubMed

    Bathke, Barbara; Pätzold, Juliane; Kassub, Ronny; Giessel, Raphael; Lämmermann, Kerstin; Hinterberger, Maria; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus; Lauterbach, Henning

    2017-12-27

    The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic ® (MVA-BN ® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN ® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN ® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN ® backbone. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  16. Synchrotron radiation circular dichroism spectroscopy study of recombinant T β4 folding

    NASA Astrophysics Data System (ADS)

    Huang, Yung-Chin; Chu, Hsueh-Liang; Chen, Peng-Jen; Chang, Chia-Ching

    Thymosin beta 4 (T β4) is a 43-amino acid small peptide, has been demonstrated that it can promote cardiac repair, wound repair, tissue protection, and involve in the proliferation of blood cell precursor stem cells of bone marrow. Moreover, T β4 has been identified as a multifunction intrinsically disordered protein, which is lacking the stable tertiary structure. Owing to the small size and disordered character, the T β4 protein degrades rapidly and the storage condition is critical. Therefore, it is not easy to reveal its folding mechanism of native T β4. However, recombinant T β4 protein (rT β4), which fused with a 5-kDa peptide in its amino-terminal, is stable and possesses identical function of T β4. Therefore, rT β4 can be used to study its folding mechanism. By using over-critical folding process, stable folding intermediates of rT β4 can be obtained. Structure analysis of folding intermediates by synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies indicate that rT β4 is a random coli major protein and its hydrophobic region becomes compact gradually. Moreover, the rT β4 folding is a two state transition. Thermal denaturation analysis indicates that rT β4 lacks stable tertiary structure. These results indicated that rT β4, similar to T β4, is an intrinsically disordered protein. Research is supported by MOST, Taiwan. MOST 103-2112-M-009-011-MY3. Corresponding author: Chia-Ching Chang; ccchang01@faculty.nctu.edu.tw.

  17. The putative oncogene Pim-1 in the mouse: its linkage and variation among t haplotypes.

    PubMed

    Nadeau, J H; Phillips, S J

    1987-11-01

    Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudo-alpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.

  18. Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells.

    PubMed

    Katri, Patricia; Ruan, Shigui

    2004-11-01

    Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells. Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et al. (Math. Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates. Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of time delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected equilibrium. Numerical simulations are presented to illustrate the results.

  19. The Majority of HIV Type 1 DNA in Circulating CD4+ T Lymphocytes Is Present in Non-Gut-Homing Resting Memory CD4+ T Cells

    PubMed Central

    Xu, Yin; Bailey, Michelle; Seddiki, Nabila; Suzuki, Kazuo; Murray, John M.; Gao, Yuan; Yan, Celine; Cooper, David A.; Kelleher, Anthony D.; Koelsch, Kersten K.; Zaunders, John

    2013-01-01

    Abstract Memory CD4+ T lymphocytes in peripheral blood that express integrins α4ß7 preferentially recirculate through gut-associated lymphoid tissue (GALT), a proposed site of significant HIV-1 replication. Tregs and activated CD4+ T cells in GALT could also be particularly susceptible to infection. We therefore hypothesized that infection of these subsets of memory CD4+ T cells may contribute disproportionately to the HIV-1 reservoir. A cross-sectional study of CD4+ T cell subsets of memory CD45RO+ cells in peripheral blood mononuclear cells (PBMCs) was conducted using leukapheresis from eight subjects with untreated chronic HIV-1 infection. Real-time polymerase chain reaction (PCR) was used to quantify total and integrated HIV-1 DNA levels from memory CD4+ T cells sorted into integrin β7+ vs. β7−, CD25+CD127low Treg vs. CD127high, and activated CD38+ vs. CD38−. More than 80% of total HIV-1 DNA was found to reside in the integrin β7-negative non-gut-homing subset of CD45RO+ memory CD4+ T cells. Less than 10% was found in highly purified Tregs or CD38+ activated memory cells. Similarly, integrated HIV-1 DNA copies were found to be more abundant in resting non-gut-homing memory CD4+ T cells (76%) than in their activated counterparts (23%). Our investigations showed that the majority of both total and integrated HIV-1 DNA was found within non-gut-homing resting CD4+ T cells. PMID:23971972

  20. Comparison of only T3 and T3–T4 sympathectomy for axillary hyperhidrosis regarding treatment effect and compensatory sweating

    PubMed Central

    Yuncu, Gökhan; Turk, Figen; Ozturk, Gökhan; Atinkaya, Cansel

    2013-01-01

    OBJECTIVES Patients diagnosed with axillary hyperhidrosis can face psychosocial issues that can ultimately hinder their quality of life both privately and socially. The routine treatment for axillary hyperhidrosis is T3–T4 sympathectomy, but compensatory sweating is a serious side effect that is commonly seen with this approach. This study was designed to evaluate whether a T3 sympathectomy was effective for the treatment of axillary hyperhidrosis and whether this treatment led to less compensatory sweating than T3–T4 sympathectomies among our 60-patient population. METHODS One hundred and twenty endoscopic thoracic sympathectomies were performed on 60 patients who had axillary hyperhidrosis. The sympathectomies were accomplished by means of a single-lumen endotracheal tube and a single port. The axillary hyperhidrosis patients were randomly divided into two groups with 17 patients in Group 1 undergoing T3–T4 sympathectomies and 43 in Group 2 undergoing only T3 sympathectomies. We analysed the data associated with the resolution of axillary hyperhidrosis, the degree of patient satisfaction with the surgical outcome and the quality of life in parallel with compensatory sweating after the procedure as reported by the patient and confirmed by the examiner. Moreover, the results were compared statistically. RESULTS No statistically significant difference was observed between the groups based on age (P = 0.56), gender (P = 0.81), duration of the surgery (P = 0.35) or postoperative satisfaction levels (P = 0.45). However, the incidence and degree of compensatory sweating were lower in the T3 group than the T3–T4 group at the 1-year follow-up (P = 0.008). CONCLUSIONS T3 sympathectomy was as effective as T3–T4 sympathectomy for the treatment of axillary hyperhidrosis based on the patients’ reported postoperative satisfaction, and the T3 group demonstrated lower compensatory sweating at the 1-year follow-up. PMID:23644731

  1. Incorporation of T4 bacteriophage in electrospun fibres.

    PubMed

    Korehei, R; Kadla, J

    2013-05-01

    Antibacterial food packaging materials, such as bacteriophage-activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats. The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre-encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C. Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time. These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage. © 2013 The Society for Applied Microbiology.

  2. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    PubMed

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  3. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  4. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  5. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  6. 26 CFR 1.469-4T - Definition of activity (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Definition of activity (temporary). 1.469-4T Section 1.469-4T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-4T Definition of activity (temporary). (a) Overview—(1)...

  7. Non-water-suppressed 1 H FID-MRSI at 3T and 9.4T.

    PubMed

    Chang, Paul; Nassirpour, Sahar; Avdievitch, Nikolai; Henning, Anke

    2018-08-01

    This study investigates metabolite concentrations using metabolite-cycled 1 H free induction decay (FID) magnetic resonance spectroscopic imaging (MRSI) at ultra-high fields. A non-lipid-suppressed and slice-selective ultra-short echo time (TE) 1 H FID MRSI sequence was combined with a low-specific absorption rate (SAR) asymmetric inversion adiabatic pulse to enable non-water-suppressed metabolite mapping using metabolite-cycling at 9.4T. The results were compared to a water-suppressed FID MRSI sequence, and the same study was performed at 3T for comparison. The scan times for performing single-slice metabolite mapping with a nominal voxel size of 0.4 mL were 14 and 17.5 min on 3T and 9.4T, respectively. The low-SAR asymmetric inversion adiabatic pulse enabled reliable non-water-suppressed metabolite mapping using metabolite cycling at both 3T and 9.4T. The spectra and maps showed good agreement with the water-suppressed FID MRSI ones at both field strengths. A quantitative analysis of metabolite ratios with respect to N-acetyl aspartate (NAA) was performed. The difference in Cre/NAA was statistically significant, ∼0.1 higher for the non-water-suppressed case than for water suppression (from 0.73 to 0.64 at 3T and from 0.69 to 0.59 at 9.4T). The difference is likely because of chemical exchange effects of the water suppression pulses. Small differences in mI/NAA were also statistically significant, however, are they are less reliable because the metabolite peaks are close to the water peak that may be affected by the water suppression pulses or metabolite-cycling inversion pulse. We showed the first implementation of non-water-suppressed metabolite-cycled 1 H FID MRSI at ultra-high fields. An increase in Cre/NAA was seen for the metabolite-cycled case. The same methodology was further applied at 3T and similar results were observed. Magn Reson Med 80:442-451, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society

  8. A threefold interpenetrated two-dimensional zinc(II) supramolecular architecture based on 3-nitrobenzoic acid and 4,4'-bipyridine.

    PubMed

    Tang, Long; Wang, Ji-Jiang; Fu, Feng; Wang, Sheng-Wen; Liu, Qi-Rui

    2016-02-01

    With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal-organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3-nitrobenzoic acid (HNBA) and 4,4'-bipyridine (4,4'-bipy) under hydrothermal conditions produced a two-dimensional zinc(II) supramolecular architecture, catena-poly[[bis(3-nitrobenzoato-κ(2)O,O')zinc(II)]-μ-4,4'-bipyridine-κ(2)N:N'], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4'-bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction analysis. The Zn(II) ions are connected by the 4,4'-bipy ligands to form a one-dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π-π stacking interactions, expanding the structure into a threefold interpenetrated two-dimensional supramolecular architecture. The solid-state fluorescence analysis indicates a slight blue shift compared with pure 4,4'-bipyridine and HNBA.

  9. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    PubMed

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  10. Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity

    PubMed Central

    Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E.; Steel, Jason C.; Morris, John C.; Berzofsky, Jay A.

    2014-01-01

    The structured lymphoid tissues are considered the only inductive sites where primary T cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen -bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite lack of structured lymphoid tissues, can act as an inductive site during primary CD8+ T cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8+ T cells and the local expansion of antigen-specific CD8+ T cells, thereby demonstrating a different paradigm for primary mucosal T cell immune induction. PMID:25600442

  11. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  12. Reexamination of human T cell lymphotropic virus (HTLV-I/II) prevalence.

    PubMed

    Zucker-Franklin, D; Pancake, B A; Marmor, M; Legler, P M

    1997-06-10

    In the United States, blood donors are being screened for infection with human T cell lymphotropic viruses I and II (HTLV-I/II) by serologic means, which detect antibodies to the structural proteins of these viruses. Because patients with mycosis fungoides (MF) usually do not have such antibodies even though their cells harbor HTLV-I Tax and/or pol proviral sequences, it was questioned whether the prevalence of HTLV infection among healthy blood donors may also be underestimated by current means of testing. To examine this possibility, a study on specimens of relatives of mycosis fungoides patients (MFR) was begun. In addition, to collect data more expeditiously, a cohort of former injection drug users (IDUs) was tested by routine serologic methods, as well as by PCR/Southern blot analysis for Tax, pol, and gag proviral sequences and Western blot analysis for antibodies to the Tax gene product. To date, 6/8 MFRs and 42/81 (51.8%) of HIV-negative IDUs proved to be positive for HTLV, whereas routine serology identified none of the MFR and only 18/81 (22.2%) of the IDUs. Among the latter test subjects, the incidence of HTLV-I also proved to be 10 times higher than expected. Therefore, it is likely that among healthy blood donors infection with HTLV-I/II is more prevalent than is currently assumed. Since Tax is the transforming sequence of HTLV-I/II, testing for Tax sequences and antibodies to its gene product may be desirable in blood transfusion and tissue donor facilities.

  13. The Effects of T4 and A3/R Bacteriophages on Differentiation of Human Myeloid Dendritic Cells

    PubMed Central

    Bocian, Katarzyna; Borysowski, Jan; Zarzycki, Michał; Pacek, Magdalena; Weber-Dąbrowska, Beata; Machcińska, Maja; Korczak-Kowalska, Grażyna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages) are viruses of bacteria. Here we evaluated the effects of T4 and A3/R bacteriophages, as well as phage-generated bacterial lysates, on differentiation of human myeloid dendritic cells (DCs) from monocytes. Neither of the phages significantly reduced the expression of markers associated with differentiation of DCs and their role in the activation of T cells (CD40, CD80, CD83, CD86, CD1c, CD11c, MHC II, PD-L1, PD-L2, TLR2, TLR4, and CCR7) and phagocytosis receptors (CD64 and DEC-205). By contrast, bacterial lysate of T4 phage significantly decreased the percentages of DEC-205- and CD1c-positive cells. The percentage of DEC-205-positive cells was also significantly reduced in DCs differentiated in the presence of lysate of A3/R phage. Thus while bacteriophages do not substantially affect differentiation of DCs, some products of phage-induced lysis of bacterial cells may influence the differentiation and potentially also some functions of DCs. Our results have important implications for phage therapy of bacterial infections because during infections monocytes recruited to the site of inflammation are an important source of inflammatory DCs. PMID:27582733

  14. Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia

    PubMed Central

    Johnson, Susan; Eller, Michael; Teigler, Jeffrey E.; Maloveste, Sebastien M.; Schultz, Bruce T.; Soghoian, Damien Z.; Lu, Richard; Oster, Alexander F.; Chenine, Agnès-Laurence; Alter, Galit; Dittmer, Ulf; Marovich, Mary; Robb, Merlin L.; Michael, Nelson L.; Bolton, Diane

    2015-01-01

    ABSTRACT CD4+ T cells play a pivotal role in the control of chronic viral infections. Recently, nontraditional CD4+ T cell functions beyond helper effects have been described, and a role for cytolytic CD4+ T cells in the control of HIV infection has been suggested. We define here the transcriptional, phenotypic, and functional profiles of HIV-specific cytolytic CD4+ T cells. Fluidigm BioMark and multiparameter flow cytometric analysis of HIV-specific cytolytic CD4+ T cells revealed a distinct transcriptional signature compared to Th1 CD4+ cells but shared similar features with HIV-specific cytolytic CD8+ T cells. Furthermore, HIV-specific cytolytic CD4+ T cells showed comparable killing activity relative to HIV-specific CD8+ T cells and worked cooperatively in the elimination of virally infected cells. Interestingly, we found that cytolytic CD4+ T cells emerge early during acute HIV infection and tightly follow acute viral load trajectory. This emergence was associated to the early viral set point, suggesting an involvement in early control, in spite of CD4 T cell susceptibility to HIV infection. Our data suggest cytolytic CD4+ T cells as an independent subset distinct from Th1 cells that show combined activity with CD8+ T cells in the long-term control of HIV infection. IMPORTANCE The ability of the immune system to control chronic HIV infection is of critical interest to both vaccine design and therapeutic approaches. Much research has focused on the effect of the ability of CD8+ T cells to control the virus, while CD4+ T cells have been overlooked as effectors in HIV control due to the fact that they are preferentially infected. We show here that a subset of HIV-specific CD4+ T cells cooperate in the cytolytic control of HIV replication. Moreover, these cells represent a distinct subset of CD4+ T cells showing significant transcriptional and phenotypic differences compared to HIV-specific Th1 cells but with similarities to CD8+ T cells. These findings are

  15. HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation

    PubMed Central

    Deng, Jing; Mitsuki, Yu-ya; Shen, Guomiao; Ray, Jocelyn C.; Cicala, Claudia; Arthos, James; Dustin, Michael L.

    2016-01-01

    ABSTRACT HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events. CD4 T cells were applied to supported lipid bilayers that were reconstituted with HIV Env gp120, anti-T cell receptor (anti-TCR) monoclonal antibody, and ICAM-1 to represent the surface of HIV Env-bearing antigen-presenting cells. The results showed that the HIV Env did not disrupt immunological synapse formation. Instead, the HIV Env accumulated with TCR at the center of the synapse, altered the kinetics of TCR recruitment to the synapse and affected synapse morphology over time. The HIV Env also prolonged Lck phosphorylation at the synapse and enhanced TCR-induced CD69 upregulation, interleukin-2 secretion, and proliferation to promote virus infection. These results suggest that HIV uses the immunological synapse as a conduit not only for selective virus transmission to activated CD4 T cells but also for boosting the T cell activation state, thereby increasing its likelihood of undergoing productive replication in targeted CD4 T cells. IMPORTANCE There are about two million new HIV infections every year. A better understanding of how HIV is transmitted to susceptible cells is critical to devise effective strategies to prevent HIV infection. Activated CD4 T cells are preferentially infected by HIV, although how this is accomplished is not fully understood. This study examined whether HIV co-opts the normal T cell activation process through the so-called immunological synapse. We found that the HIV envelope is recruited to the center of the

  16. Association between ApoA-II -265T/C polymorphism and oxidative stress in patients with type 2 diabetes mellitus.

    PubMed

    Koohdani, Fariba; Sadrzadeh-Yeganeh, Haleh; Djalali, Mahmoud; Eshraghian, Mohammadreza; Keramat, Laleh; Mansournia, Mohammad-Ali; Zamani, Elham

    2015-01-01

    Apolipoprotein A-II (ApoA-II) constitutes approximately 20% of the total HDL protein content. The results of various studies on the relationship between cardiovascular diseases (CVD) and the plasma ApoA-II level are contradictory. The aim of this study was to determine the relationship between ApoA-II polymorphism and oxidative stress (OS) as a risk factor for CVD. The present comparative study was carried out on 180 obese and non-obese patients with type 2 diabetes, with equal numbers of CC, TC, and TT genotypes of ApoA-II -265T/C gene. The ApoA-II genotype was determined by the TaqMan assay method. The anthropometric measurements and serum levels of lipid profile, superoxide dismutase activity (SOD), total antioxidant capacity (TAC), and 8-isoprostaneF2α were measured. After adjusting for confounding factors, in the total study population and in obese and non-obese groups, the subjects with CC genotype had a lower mean serum SOD activity (p=0.002, p=0.007 and p=0.005, respectively) and higher mean 8-isoprostaneF2α concentration (p<0.001, p=0.003 and p=0.004, respectively) than the T-allele carriers. In the TT/TC group, the mean 8-isoprostanF2α concentration was significantly higher in the obese subjects than the non-obese subjects (p=0.009). In the CC group, no significant differences were found in the OS factors between obese and non-obese groups. The T allele in patients with type 2 diabetes is a protective factor against OS; obesity inhibits this protective effect. The results of this study represent the anti-atherogenic properties of ApoA-II. However, further studies are needed in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Polyfunctional CD4+ T Cells As Targets for Tuberculosis Vaccination

    PubMed Central

    Lewinsohn, Deborah A.; Lewinsohn, David M.; Scriba, Thomas J.

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of morbidity and mortality worldwide, despite the widespread use of the only licensed vaccine, Bacille Calmette Guerin (BCG). Eradication of TB will require a more effective vaccine, yet evaluation of new vaccine candidates is hampered by lack of defined correlates of protection. Animal and human studies of intracellular pathogens have extensively evaluated polyfunctional CD4+ T cells producing multiple pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-2) as a possible correlate of protection from infection and disease. In this study, we review the published literature that evaluates whether or not BCG and/or novel TB vaccine candidates induce polyfunctional CD4+ T cells and if these T cell responses correlate with vaccine-mediated protection. Ample evidence suggests that BCG and several novel vaccine candidates evaluated in animal models and humans induce polyfunctional CD4+ T cells. However, while a number of studies utilizing the mouse TB model support that polyfunctional CD4+ T cells are associated with vaccine-induced protection, other studies in mouse and human infants demonstrate no correlation between these T cell responses and protection. We conclude that induction of polyfunctional CD4+ T cells is certainly not sufficient and may not even be necessary to mediate protection and suggest that other functional attributes, such as additional effector functions, T cell differentiation state, tissue homing potential, or long-term survival capacity of the T cell may be equally or more important to promote protection. Thus, a correlate of protection for TB vaccine development remains elusive. Future studies should address polyfunctional CD4+ T cells within the context of more comprehensive immunological signatures of protection that include other functions and phenotypes of T cells as well as the full spectrum of immune cells and mediators that participate in the immune

  18. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  19. Human T lymphotropic virus type II infection and humoral responses to pneumococcal polysaccharide and tetanus toxoid vaccines.

    PubMed

    Jarvis, Gary A; Janoff, Edward N; Cheng, Hui; Devita, Deborah; Fasching, Claudine; McCulloch, Charles E; Murphy, Edward L

    2005-04-15

    Infection with human T lymphotropic virus type II (HTLV-II) has been linked to an increased incidence of bacterial pneumonia. To determine whether HTLV-II infection is associated with impaired humoral immune responses, we immunized a cohort of HTLV-II-infected subjects and matched uninfected control subjects with 23-valent pneumococcal polysaccharide and tetanus toxoid vaccines. The pneumococcal polysaccharide vaccine elicited comparable and significant increases in concentrations of IgG against all 5 serotypes tested at 1 and 6 months after immunization in both groups. The avidity and opsonophagocytic functions of the anticapsular IgG were similar. The concentrations of tetanus toxoid-specific IgG also increased comparably and significantly over time in both groups. Thus, HTLV-II-infected persons develop robust humoral responses to potentially protective polysaccharide and protein vaccines.

  20. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    PubMed

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.