Science.gov

Sample records for t47d human breast

  1. Identification of leptin receptors in human breast cancer: functional activity in the T47-D breast cancer cell line.

    PubMed

    Laud, K; Gourdou, I; Pessemesse, L; Peyrat, J P; Djiane, J

    2002-02-25

    To evaluate whether leptin plays a putative role in breast tumorigenesis, we studied the expression of its long and short receptor isoforms in various tumoral breast tissues. We applied semiquantitative RT-PCR method to RNA extracted from 20 breast cancer biopsies and two human breast cancer cell lines (T47-D and MCF-7). Our results showed the expression of both leptin receptor transcripts in all tumoral tissues examined. By in situ hybridization experiments, we localized leptin receptors in proliferating epithelial cells. Study of leptin effects on human breast cancer cells growth was performed by [3H]-thymidine incorporation method and colorimetric MTT assay. We demonstrated that leptin (50-100 ng/ml) significantly stimulates proliferation of the human breast cancer cell line T47-D (P<0.05). Western blot analysis indicated that leptin induces a time-dependent activation of mitogen-activated protein kinases (MAPKinase) 1 and 2 in T47-D cell line. Moreover, the specific MAPK-inhibitor PD 98059 blocked cell proliferation induced by leptin. In conclusion, we demonstrate that leptin receptors are expressed in breast cancer and that leptin induces proliferation in the T47-D cell line via activation of the MAPKinases pathway. These data suggest that leptin and its receptors may be implicated in mammary cell proliferation and in breast cancer pathogenesis. PMID:11911959

  2. Human T47D-ERβ breast cancer cells with tetracycline-dependent ERβ expression reflect ERα/ERβ ratios in rat and human breast tissue.

    PubMed

    Evers, N M; van de Klundert, T M C; van Aesch, Y M; Wang, S; de Roos, W K; Romano, A; de Haan, L H J; Murk, A J; Ederveen, A G H; Rietjens, I M C M; Groten, J P

    2013-09-01

    T47D-ERβ breast cancer cells with tetracycline-dependent ERβ expression and constant ERα expression can be used to investigate effects of varying ERα/ERβ ratios on estrogen-induced cellular responses. This study defines conditions at which ERα/ERβ ratios in T47D-ERβ cells best mimic ERα/ERβ ratios in breast and other estrogen-sensitive tissues in vivo in rat as well as in human. Protein and mRNA levels of ERα and ERβ were analyzed in T47D-ERβ cells exposed to a range of tetracycline concentrations and compared to ERα and ERβ levels found in breast, prostate, and uterus from rat and human origin. The ERα/ERβ ratio in T47D-ERβ cells exposed to >150ng/ml tetracycline is comparable to the ratio found in rat mammary gland and in human breast tissue. The ERα/ERβ ratio of other estrogen-sensitive rat and human tissues can also be mimicked in T47D-ERβ cells. The ERα/ERβ ratio found in MCF-7 and native T47D breast cancer cell lines did not reflect ratios in analyzed rat and human tissues, which further supports the use of T47D-ERβ cells as model for estrogen-responsive tissues. Using 17β-estradiol and the T47D-ERβ cells under the conditions defined to mimic various tissues it could be demonstrated how these different tissues vary in their proliferative response. PMID:23680332

  3. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    PubMed Central

    Barzegar, Elmira; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Atashpour, Shekoufeh; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, flow cytometry analysis was performed to evaluate the cell cycle alteration and apoptosis induction in these cell lines following exposure to berberine and doxorubicin alone and in combination. Results: The IC50 of berberine was determined to be 25 M after 48 hr of treatment in both cell lines but for doxorubicin it was 250 nM and 500 nM in T47D and MCF-7 cell lines, respectively. Co-treatment with berberine and doxorubicin increased cytotoxicity in T47D cells more significantly than in MCF-7 cells. Flow cytometry results demonstrated that berberine alone or in combination with doxorubicin induced G2/M arrest in the T47D cells, but G0/G1 arrest in the MCF-7 cells. Doxorubicin alone induced G2/M arrest in both cell lines. Furthermore, berberine and doxorubicin alone or in combination significantly induced apoptosis in both cell lines. Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer. PMID:26019795

  4. Effects of extremely low-frequency pulsed electromagnetic fields on morphological and biochemical properties of human breast carcinoma cells (T47D).

    PubMed

    Sadeghipour, Razmin; Ahmadian, Shahin; Bolouri, Bahram; Pazhang, Yaghub; Shafiezadeh, Mahshid

    2012-12-01

    This study was carried out to investigate the effects of 100 and 217 Hz extremely low-frequency pulsed electromagnetic fields (ELF-PEMF) on cell proliferation, actin reorganization, and ROS generation in a human breast carcinoma cells (T47D). Cells were exposed for 24-72 h, at 100 and 217 Hz, 0.1 mT. The treatment induced a time dependent decrease in cell growth after 72 h and revealed an increase in fluorescence intensity in cytoplasm and actin aggregations around the nucleus as detected by fluorescence microscopy. The amount of actin in T47D cells increased after 48 h exposure to 100 Hz and 24 h to 217 Hz while no changes in nuclear morphology were detected. Exposing the cells to 217 Hz for 72 h caused a dramatically increase of intracellular ROS generation while with exposure to 100 Hz it remained nearly unchanged. These results suggest that exposure to ELF-PEMF (100, 217 Hz, 0.1 mT) are able inducing an increase of actin level, its migration toward nucleus but despite of these changes and dramatically increase in ROS generation the symptoms of apoptosis were not observed. Our results support the hypothesis that cell response to EMF may only be observed at certain window effects; such as frequency and intensity of EMF parameters. PMID:22676212

  5. The Comparison of The Effects of Silybin and Silybin-Phosphatidylcholine on Viability and ESR Expression in Human Breast Cancer T47D Cell Line

    PubMed Central

    Mahmoodi, Narges; Motamed, Nasrin; Paylakhi, Seyed Hassan

    2014-01-01

    Objective Silybin is a polyphenol with anti-oxidant and anti-cancer properties. The poor bioavailability of some polyphenols can be improved by binding to phosphatidylcholine. In recent years, studies have been conducted to evaluate the anti-cancer effect of silybin. We studied the effect of silybin and silybin-phosphatidylcholine on ESR1 and ESR2 gene expression and viability in the T47D breast cancer cell line. Materials and Methods In this experimental study, a 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide test (MTT test) was used to determine doses for cell treatment, and the gene expression was analyzed by real-time reverse transcriptase-polymerase chain reaction (real-time RT- PCR). Results Significant dose- and time-dependent cell growth inhibitory effects of silybin and silybin-phosphatidylcholine along with ESR1 down-regulation were observed in T47D cells. In contrast to ESR1, the T47D cell line showed negligible ESR2 expression. Conclusion This study suggests that silybin and silybin-phosphatidylcholine down-regulate ESR1 in ER+breast cancers. Results also show that in the T47D cell line, silybindown-regulation of ESR1 compared with silybin. PMID:24611152

  6. Induction of G1 cell cycle arrest and cyclin D1 down-regulation in response to pericarp extract of Baneh in human breast cancer T47D cells

    PubMed Central

    2012-01-01

    Background and the purpose of the study Natural products from plants have an important role in the development and production of new drugs mainly for cancer therapy. More recently, we have shown that the pericarp methanolic extract of Pistacia atlantica sub kurdica (with local name of Baneh) as a rich source of active biological components with high antioxidant and radical scavenging activities, has ability to cease proliferation and induce apoptosis in T47D human breast cancer cells. The present study aimed to clarify whether Baneh extract able to alter cell cycle progression of T47D cells or not. Methods In order to study the possible effect of Baneh extract on cell cycle of T47D cells, we evaluated cell cycle distribution and its regulatory proteins by flow cytometry and western blot analysis respectively. Results Baneh extract induced G0/G1 cell cycle arrest in conjunction with a marked decrease in expression of cyclin D1 and cdk4 that was strongly dependent on time of exposure. In parallel, Dox-treated T47D cells in early time points were accumulated on S phase, but after 48 h cell cycle progression was inhibited on G2/M. Dox promoted striking accumulation of cyclin B1 rapidly and enhanced cyclin A abundance. Conclusion Taken together, our results establish that the antitumor activity of the pericarp extract of Baneh partly is mediated via cell cycle arrest and downregulation of cyclin D1 and cdk4 expression. These findings warrant further evaluation regarding the mechanism(s) of action of this promising anticancer agent. PMID:23351343

  7. Cytotoxicity and Apoptosis Inducing Activities of 2-Amino-4H-chromene-3-carbonitrile Derivatives Loaded on Gold Nanoparticles Against Human Breast Cancer Cell Line T47D.

    PubMed

    Saffari, Zahra; Zarabi, Maryam Farahnak; Aryapour, Hasan; Foroumadi, Alireza; Farhangi, Ali; Ghassemi, Soheil; Akbarzadeh, Azim

    2015-04-01

    Chemotherapy drugs, used for prevention of uncontrolled cell proliferation in certain tissues as well as inducing apoptosis in tumor cells, are important candidates for treatment of cancer. The synthesized 2-amino-4H-chromene-3-carbonitrile derivatives effective on cancerous cells resistant to other drugs such as Paclitaxel were used due to their ability in induction of apoptosis. The growth inhibitory and inducing apoptosis activities were determined. In order to make it target-oriented, the best compound was conjugated with gold nanoparticles (NPs) by aspartic acid with chemical reduction method. Cytotoxicity effect of 2-amino-4H-chromene-3-carbonitrile derivatives against the T47D breast cancer cell line was determined by MTT assay. The synthesis of gold NPs was confirmed by transmission electron microscopy, UV-Vis and dynamic light scattering. To assess the effects of compounds on the process of apoptosis, staining methods with acridine orange-ethidium bromide and Hoechst staining by fluorescence microscopy and DNA fragmentation by the diphenylamine method were used. The synthesized compounds containing two NH2 groups on benzene rings, demonstrated more cytotoxicity effect. The effect of conjugation with gold NPs and the induction of apoptosis were studied with the best compound. The cytotoxicity effects of the synthesized 2-amino-4H-chromene-3-carbonitrile compounds were changed by replacement of NO2 group on thiol ring with different chemical groups on the benzene ring. Analyses of treated cell lines by conjugated and non-conjugated forms of compounds verified their ability in inducing apoptosis while conjugated form demonstrated higher apoptosis. PMID:25883420

  8. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    PubMed Central

    Wawruszak, Anna; Luszczki, Jarogniew J.; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers. PMID:26580554

  9. Methanolic extract of Pereskia bleo (Kunth) DC. (Cactaceae) induces apoptosis in breast carcinoma, T47-D cell line.

    PubMed

    Tan, M L; Sulaiman, S F; Najimuddin, N; Samian, M R; Muhammad, T S Tengku

    2005-01-01

    Currently, breast cancer is the leading cause of cancer-related death in women. Therefore, there is an urgent need to develop alternative therapeutic measures against this deadly disease. Here, we report the cytotoxicity activity and the mechanism of cell death exhibited by the methanol extract prepared from Pereskia bleo (Kunth) DC. (Cactaceae) plant against human breast carcinoma cell line, T-47D. In vitro cytotoxicity screening of methanol extract of Pereskia bleo plant indicated the presence of cytotoxicity activity of the extract against T-47D cells with EC50 of 2.0 microg/ml. T-47D cell death elicited by the extract was found to be apoptotic in nature based a clear indication of DNA fragmentation which is a hallmark of apoptosis. In addition, ultrastructural analysis also revealed apoptotic characteristics (the presence of chromatin margination and apoptotic bodies) in the extract-treated cells. RT-PCR analysis showed the mRNA expression levels of c-myc, and caspase 3 were markedly increased in the cells treated with the plant extract. However, p53 expression was only slightly increased as compared to caspase 3 and c-myc. Thus, the results from this study strongly suggest that the methanol extract of Pereskia bleo may contain bioactive compound(s) that caused breast carcinoma, T-47D cell death by apoptosis mechanism via the activation of caspase-3 and c-myc pathways. PMID:15588681

  10. Synthesis of novel 1,8-acridinediones derivatives: Investigation of MDR reversibility on breast cancer cell lines T47D and tamoxifen-resistant T47D

    PubMed Central

    Moallem, S.A.; Dehghani, N.; Mehri, S.; Shahsavand, Sh.; Alibolandi, M.; Hadizadeh, F.

    2015-01-01

    Multi drug resistance (MDR) is a serious obstacle in the management of breast cancer. Therefore, overcoming MDR using novel anticancer agents is a top priority for medicinal chemists. It was found that dihydropyridines lacking calcium antagonistic activity (e.g acridinediones) possess MDR modifier potency. In this study, the capability of four novel acridine-1,8-diones derivatives 3a-d were evaluated as MDR reversing agents. In addition, the relationship between structural properties and biological effects of synthesized compounds was discussed. In vitro cytotoxicity of acridine-1,8-diones 3a-d derivatives in combination with doxorubicin (DOX) on T47D and tomoxifen-resistant T47D (TAMR-6) breast cancer cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Drug resistant index (DRI), which is equal to the ratio of IC50 in drug-resistant cells over IC50 in drug-sensitive cells, was calculated for each substance. Flowcytometry experiments were also implemented to distinguish cells undergoing apoptosis from those undergoing necrosis. The results from MTT and flowcytometry experiments indicated that 1 nM 3c derivative along with DOX significantly (P<0.05) increased the DOX cytotoxicity in T47D and TAMR-6 breast cancer cell lines. Synthesized compounds 3a and 3b also at concentrations of 1 nM with DOX significantly increased the cytotoxicity of DOX on T47D and TAMR-6 breast cancer cell lines. Meanwhile, 3d derivative with DOX did not exhibit good synergistic effect on cytotoxic activity of DOX, and slightly increased DOX cytotoxicity in both cell lines. Our results proposed that 3c may be an attractive lead compound for further development as a chemotherapeutic agent for MDR breast cancer therapy in combination with routine chemotherapeutic agents such as DOX. PMID:26600848

  11. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites

    SciTech Connect

    Spink, David C. Wu, Susan J.; Spink, Barbara C.; Hussain, Mirza M.; Vakharia, Dilip D.; Pentecost, Brian T.; Kaminsky, Laurence S.

    2008-02-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays to induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.

  12. Influence of mitoxantrone on nucleic acid synthesis on the T-47D breast tumor cell line

    SciTech Connect

    Safa, A.R.; Chegini, N.; Tseng, M.T.

    1983-01-01

    Mitoxantrone exerts growth inhibitory effects, suppresses (3H)-thymidine as well as (3H)-uridine incorporation, and induces ultrastructural alterations in T-47D human breast tumor cells. At low concentration (10(-9)M) the drug induced little effect on cell proliferation; cell growth kinetics were inhibited at a concentration of 10(-5)M. (3H)-thymidine and (3H)-uridine incorporation declined rapidly at the concentrations tested (10(-9), 10(-7), and 10(-5) M), revealing a potent effect on metabolic activity of the cultured cells. The sharpest decline in DNA and RNA synthesis occurred within the first 2 hr of drug treatment. Serial ultrastructural examinations indicated definitive alterations in chromatin structure, disintegration of nucleolar components as early as 2 hr after drug treatment, and complete segregation of nucleolar components following 8-hr exposure to concentrations of the drug between 10(-5) and 10(-7) M. A distinct increase in the density of mitochrondrial matrix was evident. The in vitro data presented in this report demonstrate the growth inhibitory and antimetabolic effects of mitoxantrone on human breast tumor cells and suggest that the drug may be a promising antitumor agent.

  13. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    SciTech Connect

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-09-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from (14C)acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal at 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells.

  14. Mitochondrial DNA depletion promotes impaired oxidative status and adaptive resistance to apoptosis in T47D breast cancer cells.

    PubMed

    Yu, Man; Shi, Yurong; Wei, Xiyin; Yang, Yi; Zang, Fenglin; Niu, Ruifang

    2009-11-01

    The mutation and reduction of mitochondrial DNA (mtDNA) have been extensively detected in human cancers. The effects of mitochondrial dysfunction are particularly important in breast cancer, because estrogen-mediated metabolites generate large quantities of local reactive oxygen species in the breast, which directly bind to mtDNA and facilitate neoplastic transformation. To further elucidate the molecular roles of mtDNA in breast cancer, we determined the oxidative status of a breast tumor cell line lacking mtDNA (T47D ??) and analyzed its susceptibility after exposure to various anticancer drugs as well as different proapoptotic signals. Our data showed that T47D ?? cells generated significantly increased levels of lactate with concomitantly reduced oxygen consumption and ATP production compared with the wild-type (WT). The amount of reactive oxygen species generation in ? cells was lowered to approximately 12% that of parental cells, as evidenced by the oxidation of redox-sensitive probes. Although mtDNA depletion did not affect the expression of superoxide dismutase or its activity, the activities of antioxidant enzymes, catalase and glutathione peroxidase, were significantly higher in ?? cells compared with WT cells. In addition, mtDNA-depleted cells displayed a decreased sensitivity and accumulation of chemotherapeutic drugs (doxorubicin, vincristine, and paclitaxel), potentially because of the upregulated expression of multidrug resistance 1 (MDR1) gene and its product P-glycoprotein. When compared with their WT counterparts, T47D ?? cells were also more resistant to apoptosis induced by varying concentrations of staurosporine and anti-Fas antibody. Altogether, our results indicate the importance of intact mtDNA for maintaining the proper intracellular oxidative status. These data provide evidence for a possible role of mtDNA content reduction in acquiring an apoptosis-resistant phenotype during breast tumor progression and might contribute to effective therapeutic strategies for this common malignancy. PMID:19609211

  15. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton

    PubMed Central

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D.; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17?-estradiol (E2) on T47-D ER+ breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, re-distribution of actin fibers toward the cell membrane was observed. However, when E4 was added to E2, an inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrinradixinmoesin family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr558, which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of estrogen receptor-?. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring ER modulator in the breast. PMID:24904530

  16. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton.

    PubMed

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17?-estradiol (E2) on T47-D ER+ breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, re-distribution of actin fibers toward the cell membrane was observed. However, when E4 was added to E2, an inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin-radixin-moesin family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr(558), which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of estrogen receptor-?. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring ER modulator in the breast. PMID:24904530

  17. Bisphenol AF stimulates transcription and secretion of C-X-C chemokine ligand 12 to promote proliferation of cultured T47D breast cancer cells.

    PubMed

    Li, Ming; Han, Xiaoyu; Gao, Wenhui; Chen, Feng; Shao, Bing

    2015-12-01

    Bisphenol AF (4,4'-hexafluoroisopropylidene-2-diphenol, BPAF), an endocrine disruptor, has been shown to stimulate the proliferation of human breast cancer cells. However, the underlying mechanism has not been fully elucidated. We found that BPAF promoted the in vitro proliferation of estrogen receptor ? (ER?)-positive breast cancer cells (T47D and MCF7), but not ER?-negative cells (MDA-MB-231 and MDA-MB-435s). BPAF significantly stimulated the proliferation of cultured T47D cell in a dose-dependent manner, and the half-maximal effective concentration (EC50) was approximately 123nM. We employed lentivirus-mediated short hairpin RNA (shRNA) to knockdown ER? and ER antagonist ICI 182780 to inhibit ER activation, which resulted in the repression of BPAF-induced proliferation of T47D and MCF7 cells. We observed that C-X-C chemokine ligand 12 (CXCL12) was up-regulated in T47D cells under treatment with BPAF. Quantitative real-time PCR results showed that BPAF caused a time and dose dependent increase in mRNA level of CXCL12. Furthermore, treatment of T47D cells with BPAF increased CXCL12 secretion according to ELISA assay. BPAF-induced CXCL12 transcription and secretion was significantly attenuated by small interfering RNA (siRNA) targeting ER? and ICI 182780, indicating BPAF-induced CXCL12 expression is mediated through ER?. Notably, knockdown CXCL12 in T47D cells significantly attenuated BPAF-induced cell proliferation. We also observed that inhibition of CXCL12 binding to its receptors CXCR4 and CXCR7 by chalcone 4 blocked BPAF-induced cell growth. Our results indicated that CXCL12 facilitated BPAF-induced proliferation of T47D cells. Taken together, our data provided support that BPAF stimulated transcription and secretion of CXCL12 depending on ER?, and ER?/CXCL12 signaling positively regulated BPAF-induced proliferation of cultured T47D breast cancer cells. PMID:26435001

  18. Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis

    SciTech Connect

    Kampa, Marilena; Nifli, Artemissia-Phoebe; Charalampopoulos, Ioannis; Alexaki, Vassilia-Ismini; Theodoropoulos, Panayiotis A.; Stathopoulos, Efstathios N.; Gravanis, Achille; Castanas, Elias . E-mail: castanas@med.uoc.gr

    2005-07-01

    Classical steroid mode of action involves binding to intracellular receptors, the later acting as ligand-activated nuclear transcription factors. Recently, membrane sites for different steroids have been also identified, mediating rapid, non-genomic, steroid actions. Membrane sites for estrogen and androgen have been found in a number of different cell types, bearing or not classical intracellular receptors. In the present study, with the use of radioligand binding, flow cytometry and confocal laser microscopy, we report that T47D human breast cancer cells express specific and saturable membrane receptors for both estrogen (K {sub D} 4.06 {+-} 3.31 nM) and androgen (K {sub D} 7.64 {+-} 3.15 nM). Upon activation with BSA-conjugated, non-permeable ligands (E{sub 2}-BSA and testosterone-BSA), membrane estrogen receptors protect cells from serum-deprivation-induced apoptosis, while androgen receptors induce apoptosis in serum-supplemented T47D cells. In addition, co-incubation of cells with a fixed concentration of one steroid and varying concentrations of the other reversed the abovementioned effect (apoptosis for androgen, and anti-apoptosis for E{sub 2}), suggesting that the fate of the cell depends on the relative concentration of either steroid in the culture medium. We also report the identification of membrane receptors for E{sub 2} and androgen in biopsy slides from breast cancer patients. Both sites are expressed, with the staining for membrane E{sub 2} being strongly present in ER-negative, less differentiated, more aggressive tumors. These findings suggest that aromatase inhibitors may exert their beneficial effects on breast cancer by also propagating the metabolism of local steroids towards androgen, inducing thus cell apoptosis through membrane androgen receptor activation.

  19. Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen.

    PubMed

    Radde, Brandie N; Ivanova, Margarita M; Mai, Huy Xuan; Salabei, Joshua K; Hill, Bradford G; Klinge, Carolyn M

    2015-01-01

    Oestrogen receptor ? (ER?+) breast tumours rely on mitochondria (mt) to generate ATP. The goal of the present study was to determine how oestradiol (E2) and 4-hydroxytamoxifen (4-OHT) affect cellular bioenergetic function in MCF-7 and T47D ER?+ breast cancer cells in serum-replete compared with dextran-coated charcoal (DCC)-stripped foetal bovine serum (FBS)-containing medium ('serum-starved'). Serum-starvation reduced oxygen consumption rate (OCR), extracellular acidification rate (ECAR), ATP-linked OCR and maximum mt capacity, reflecting lower ATP demand and mt respiration. Cellular respiratory stateapparent was unchanged by serum deprivation. 4-OHT reduced OCR independent of serum status. Despite having a higher mt DNA/nuclear DNA ratio than MCF-7 cells, T47D cells have a lower OCR and ATP levels and higher proton leak. T47D express higher nuclear respiratory factor-1 (NRF-1) and NRF-1-regulated, nuclear-encoded mitochondrial transcription factor TFAM and cytochrome c, but lower levels of cytochrome c oxidase, subunit IV, isoform 1 (COX4, COX4I1). Mitochondrial reserve capacity, reflecting tolerance to cellular stress, was higher in serum-starved T47D cells and was increased by 4-OHT, but was decreased by 4-OHT in MCF-7 cells. These data demonstrate critical differences in cellular energetics and responses to 4-OHT in these two ER?+ cell lines, likely reflecting cancer cell avoidance of apoptosis. PMID:25279503

  20. Clofarabine Has Apoptotic Effect on T47D Breast Cancer Cell Line via P53R2 Gene Expression

    PubMed Central

    Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah; Nozad Charoudeh, Hojjatollah; Ahmadi, Yasin; Baradaran, Behzad; Khalaj-Kondori, Mohammad; Milani, Morteza; Akbarzadeh, Abolfazl; Shaker, Maghsud; Pourhassan-Moghaddam, Mohammad

    2015-01-01

    Purpose: Clofarabine, a purine nucleoside analogue and inhibitor of Ribonucleotide Reductase (RR), is used for treatment of leukemia. Clofarabine-induced defect in DNA replication, induces p53 and subsequently P53R2 genes as subunit of RR. clofarabine deregulated P53R2 gene expression leading to the elevated levels of P53R2 which impose resistance to DNA damaging drugs. In this study the apoptotic and cytotoxic effects of clofarabine has been investigated on breast cancer cell line. Methods: Cofarabine cytotoxicity on T47D cells has been studied by MTT assay. T47D cells were exposed to the different concentrations of clofarabine for 24, 48 and 72 hours intervals. Relative expression of P53R2 gene has been studied using real-time PCR. Moreover, after treating with clofarabine the apoptotic and necrotic cells were detected using Annexin V and propodium iodide (PI) reagents by flowcytometry technique. Results: MTT assay results showed that the clofarabine IC50 on T47D cell line were 3 and 2.5µM after 48 and 72 h exposure, respectively. Clofarabine did not show any significant cytotoxic effect after 24 h exposure. The analysis of qRT-PCR showed a significant increase in P53R2 gene expression in treated cells with both 2.5 and 3 μM doses and also, the results of flowcytometry revealed 26.91 and 74.46 percent apoptosis induction in 48 and 72h treatments respectively in comparison to the control groups. Conclusion: Our results showed that apoptotic and cytotoxic effects of clofarabine on T47D cell line were in time and dose dependent manner; therefore it could be considered a new candidate in breast cancer therapy. PMID:26819918

  1. Combination of low-concentration of novel phytoestrogen (8,9)-furanyl-pterocarpan-3-ol from Pachyrhizus erosus attenuated tamoxifen-associated growth inhibition on breast cancer T47D cells

    PubMed Central

    Nurrochmad, Arief; Lukitaningsih, Endang; Monikawati, Ameilinda; Septhea, Dita Brenna; Meiyanto, Edy

    2013-01-01

    Objective To investigate the estrogenic effect of (8,9)-furanyl-pterocarpan-3-ol (FPC) on growth of human breast cancer T47D cells and the interactions between the FPC and tamoxifen (TAM), on the growth of estrogen receptor-dependent breast cancer T47D cells. Methods The proliferation effect of FPC were conducted on T47D cells in vitro by MTT test. T47D cells were treated with FPC alone (0.01-200 mol/L) or in combination with TAM 20 nmol/L. Furthermore, the expression of ER? or c-Myc were also determined by immunohistochemistry. Results The results indicated that administration of an anti-estrogen TAM showed growth inhibitory effect on T47D cells, wheraes co-administered with low concentration (less than 1 mol/L) of FPC attenuated to promote cell proliferation. In contrast, the combination of TAM with higher doses (more than 20 mol/L) of FPC showed growth inhibitory. This result was supported by immunocytochemistry studies that the administration of 20 nmol/L TAM down-regulated ER-? and c-Myc, but the combination of 20 nmol/L TAM and 1 mol/L FPC robustly up-regulated expression of ER-?. Thus, the reduced growth inhibition of TAM 20 nmol/L by FPC 1 mol/L on T47D cells may act via the modulation of ER-?. Conclusions The findings indicate and suggest that FPC had estrogenic activity at low concentrations and anti-estrogenic effect that are likely to be regulated by c-Myc and estrogen receptors. We also confirm that low concentration of FPC attenuated the growth-inhibitory effects of TAM on mammary tumor prevention. Therefore, the present study suggests that caution is warranted regarding the consumption of dietary FPC by breast cancer patients while on TMA therapy.

  2. Cytotoxic Effect and Constituent Profile of Alkaloid Fractions from Ethanolic Extract of Ficus septica Burm. f. Leaves on T47D Breast Cancer Cells.

    PubMed

    Nugroho, Agung Endro; Akbar, Fiki Fatihah; Wiyani, Anggie; Sudarsono

    2015-01-01

    The study aimed to investigate the profile of alkaloids in two ethyl acetate soluble fractions, namely fractions A and B from an ethanolic extract of Ficus septica leaves and cytotoxic effect on T47D breast cancer cells. Preparation of both fractions involved maceration of leaves with 70% (v/v) ethanol, filtration with Al2O3, precipitation with 0.1 N HCl, Mayer reagent, and 0.1 N NaOH, and also partition with ethyl acetate. Qualitative thin layer chromatography (TLC) was conducted to determine the profile of alkaloids in the two fractions, using alkaloid specific reagents such as Dragendorff, sodium nitrite, and Van Urk-Salkowski. Cytotoxic effects of both fractions on T47D cells were evaluated using MTT assay with a concentration series of 1.56; 3.12; 6.25; 12.5; 25 and 50 ?g/mL. The TLC test showed that fractions A and B contained alkaloids with Rx values of 0.74 and 0.80 for fraction A and 0.74, 0.84, 0.92 for fraction B with regard to yohimbine using the mobile phase of n-buthanol:glacial acetic acid:distilled water (3:1:1 v/v/v). Moreover, an indole alkaloid was detected with Rx values of 0.80 and 0.84, respectively. Fractions A and B exhibited high cytotoxic effects on T47D cells with IC50 values of 2.57 and 2.73 ?g/mL, respectively. In conclusion, overall the results of this study showed that fractions of Ficus septica contain alkaloids including indole alkaloid or its derivatives and possess a cytotoxic effect on T47D cells. This research supports the idea that alkaloids in F. septica have anticancer activity. PMID:26514534

  3. PQ1, a Quinoline Derivative, Induces Apoptosis in T47D Breast Cancer Cells through Activation of Caspase-8 and Caspase-9

    PubMed Central

    Ding, Ying; Nguyen, Thu Annelise

    2013-01-01

    Apoptosis, a programmed cell death, is an important control mechanism of cell homeostasis. Deficiency in apoptosis is one of the key features of cancer cells, allowing cells to escape from death. Activation of apoptotic signaling pathway has been a target of anti-cancer drugs in an induction of cytotoxicity. PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, has been reported to decrease the viability of cancer cells and attenuate xenograft tumor growth. However, the mechanism of the anti-cancer effect is still unclear. To evaluate whether the cytotoxicity of PQ1 is related to induction of apoptosis, the effect of PQ1 on apoptotic pathways was investigated in T47D breast cancer cells. PQ1-treated cells had an elevation of cleaved caspase-3 compared to controls. Studies of intrinsic apoptotic pathway showed that PQ1 can activate the intrinsic checkpoint protein caspase-9, enhance the level of pro-apoptotic protein Bax, and release cytochrome c from mitochondria to cytosol; however, PQ1 has no effect on the level of anti-apoptotic protein Bcl-2. Further studies also demonstrated that PQ1 can activate the key extrinsic player, caspase-8. Pre-treatment of T47D cells with caspase-8 or caspase-9 inhibitor suppressed the cell death induced by PQ1, while pre-treatment with caspase-3 inhibitor completely counteracted the effect of PQ1 on cell viability. This report provides evidence that PQ1 induces cytotoxicity via activation of both caspase-8 and caspase-9 in T47D breast cancer cells. PMID:23677255

  4. Real-time growth kinetics measuring hormone mimicry for ToxCast chemicals in T-47D human ductal carcinoma cells.

    PubMed

    Rotroff, Daniel M; Dix, David J; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Reif, David M; Richard, Ann M; Sipes, Nisha S; Abassi, Yama A; Jin, Can; Stampfl, Melinda; Judson, Richard S

    2013-07-15

    High-throughput screening (HTS) assays capable of profiling thousands of environmentally relevant chemicals for in vitro biological activity provide useful information on the potential for disrupting endocrine pathways. Disruption of the estrogen signaling pathway has been implicated in a variety of adverse health effects including impaired development, reproduction, and carcinogenesis. The estrogen-responsive human mammary ductal carcinoma cell line T-47D was exposed to 1815 ToxCast chemicals comprising pesticides, industrial chemicals, pharmaceuticals, personal care products, cosmetics, food ingredients, and other chemicals with known or suspected human exposure potential. Cell growth kinetics were evaluated using real-time cell electronic sensing. T-47D cells were exposed to eight concentrations (0.006-100 ?M), and measurements of cellular impedance were repeatedly recorded for 105 h. Chemical effects were evaluated based on potency (concentration at which response occurs) and efficacy (extent of response). A linear growth response was observed in response to prototypical estrogen receptor agonists (17?-estradiol, genistein, bisphenol A, nonylphenol, and 4-tert-octylphenol). Several compounds, including bisphenol A and genistein, induced cell growth comparable in efficacy to that of 17?-estradiol, but with decreased potency. Progestins, androgens, and corticosteroids invoked a biphasic growth response indicative of changes in cell number or cell morphology. Results from this cell growth assay were compared with results from additional estrogen receptor (ER) binding and transactivation assays. Chemicals detected as active in both the cell growth and ER receptor binding assays demonstrated potencies highly correlated with two ER transactivation assays (r = 0.72; r = 0.70). While ER binding assays detected chemicals that were highly potent or efficacious in the T-47D cell growth and transactivation assays, the binding assays lacked sensitivity in detecting weakly active compounds. In conclusion, this cell-based assay rapidly detects chemical effects on T-47D growth and shows potential, in combination with other HTS assays, to detect environmentally relevant chemicals with potential estrogenic activity. PMID:23682706

  5. Inhibition of hTERT Gene Expression by Silibinin-Loaded PLGA-PEG-Fe3O4 in T47D Breast Cancer Cell Line

    PubMed Central

    Ebrahimnezhad, Zohreh; Zarghami, Nosratollah; Keyhani, Manoutchehr; Amirsaadat, Soumaye; Akbarzadeh, Abolfazl; Rahmati, Mohammad; Mohammad Taheri, Zohreh; Nejati-Koshki, Kazem

    2013-01-01

    Introduction: Nowadays, using drug delivery is an essential method to improve cancer therapy through decreasing drug toxicity and increasing efficiency of treatment. Silibinin (C25H22O10), a polyphenolic flavonoid which is isolated from the milk thistle plant, has various applications in cancer therapy but it has hydrophobic structure with low water solubility and bioavailability. To increase the effect of silibinin, silibinin-loaded PLGA-PEG-Fe3O4 was prepared to determine the inhibitory effect of this nanodrug on Telomerase gene expression. Methods: The rate of silibinin loaded into PLGA-PEG-Fe3O4 was measured. Then, the cytotoxic effect of silibinin-loaded PLGA-PEG-Fe3O4 was determined by Methyl Thiazol Tetrazolium (MTT) assay. After that, inhibition of Telomerase gene expression was indicated through Real-time PCR. Results: Data analysis from MTT assay showed that silibinin-loaded PLGA-PEG-Fe3O4 had dose dependent cytotoxic effect on T47D cell line. MTT assay showed no cytotoxic effect of free PLGA-PEG-Fe3O4 on T47D breast cancer cell line. Real Time PCR analysis showed that the level of telomerase gene expression more efficiently decreased with silibinin-loaded PLGA-PEG-Fe3O4 than with free silibinin alone. Conclusion: The present study indicates that this nanodrug causes down-regulation of Telomerase gene expression in cancer cells. Therefore, PLGA-PEG-Fe3O4 could be an appropriate carrier for hydrophobic agents such as silibinin to improve their action in cancer therapy. PMID:23878789

  6. Pyrophen Produced by Endophytic Fungi Aspergillus sp Isolated from Piper crocatum Ruiz and Pav Exhibits Cytotoxic Activity and Induces S Phase Arrest in T47D Breast Cancer Cells.

    PubMed

    Astuti, Puji; Erden, Willy; Wahyono; Wahyuono, Subagus; Hertiani, Triana

    2016-01-01

    Ethyl acetate extracts obtained from culture of endophytic fungi Aspergillus sp isolated from Piper crocatum Ruiz and Pav, have been shown to possess cytotoxic activity against T47D breast cancer cells. Investigations were here conducted to determine bioactive compounds responsible for the activity. Bioassay guided fractionation was employed to obtain active compounds. Structure elucidation was performed based on analysis of LC-MS, 1H-NMR, 13C-NMR, COSY, DEPT, HMQC, HMBC data. Cytotoxity assays were conducted in 96 well plates against T47D and Vero cell lines. Bioassay guided isolation and chemical investigation led to the isolation of pyrophen, a 4-methoxy-6-(1'-acetamido-2'-phenylethyl)-2H-pyran-2-one. Further analysis of its activity against T47D and Vero cells showed an ability to inhibit the growth of T47D cells with IC50 values of 9.2 ?g/mL but less cytotoxicity to Vero cells with an IC50 of 109 ?g/mL. This compound at a concentration of 400 ng/mL induced S-phase arrest in T47D cells. PMID:26925652

  7. Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells.

    PubMed

    Hui, Rina; Finney, Georgina L; Carroll, Jason S; Lee, Christine S L; Musgrove, Elizabeth A; Sutherland, Robert L

    2002-12-01

    Cyclin D1 and cyclin E are overexpressed in approximately 45% and 30% of breast cancers, respectively, and adverse associations with patient outcome have been reported. The potential roles of cyclin D1 and cyclin E expression as markers of therapeutic responsiveness to the pure steroidal antiestrogen ICI 182780 were investigated using T-47D breast cancer cell lines constitutively overexpressing cyclin D1 or cyclin E. Measurement of S phase fraction, phosphorylation states of the retinoblastoma protein, and cyclin E-cyclin-dependent kinase (Cdk) 2 activity demonstrated that overexpression of cyclin D1 decreased sensitivity to antiestrogen inhibition at 24 and 48 h. Overexpression of cyclin E produced a less pronounced early cell cycle effect indicating only partial resistance to antiestrogen inhibition in the short-term. In ICI 182780-treated cyclin D1-overexpressing cells, sufficient Cdk activity was retained to allow retinoblastoma protein phosphorylation and cell proliferation, despite an increase in the association of p21 and p27 with cyclin D1-Cdk4/6 and cyclin E-Cdk2 complexes. After longer-term (>7 days) treatment, antiestrogens inhibited colony growth in cyclin D1- or cyclin E-overexpressing breast cancer cells, but with an approximately 2-2.5-fold decrease in dose sensitivity. This was associated with a fall in cyclin D1 levels, a reduction in the half-life of cyclin D1 protein and a decline in cyclin E-Cdk2 activity in cyclin D1-overexpressing cells, and the maintenance of cyclin E-p27 association in the cyclin E-overexpressing cells. These data confirm that cyclin D1 expression and cyclin E-p27 association play important roles in antiestrogen action, and suggest that cyclin D1 or cyclin E overexpression has subtle effects on antiestrogen sensitivity. Additional studies to elucidate the contribution of alterations in cyclin D1 stability to antiestrogen action and to assess the relationship between antiestrogen sensitivity and expression of cyclin D1, cyclin E, or p27 in a clinical setting are required. PMID:12460907

  8. Growth arrest and non-apoptotic programmed cell death associated with the up-regulation of c-myc mRNA expression in T-47D breast tumor cells following exposure to Epipremnum pinnatum (L.) Engl. hexane extract.

    PubMed

    Tan, M L; Muhammad, T S Tengku; Najimudin, N; Sulaiman, S F

    2005-01-15

    Epipremnum pinnatum (L.) Engl. hexane extract produced a significant growth inhibition against T-47D breast carcinoma cells and analysis of cell death mechanisms indicated that the extract elicited a non-apoptotic programmed cell death. T-47D cells exposed to the extract at EC(50) concentration (72 h) for 24 h failed to demonstrate typical DNA fragmentation associated with apoptosis, as carried out using a modified TUNEL assay. In addition, acute exposure to the extract produced an insignificant regulation of caspase-3 and p53 mRNA expression but increased in the c-myc mRNA expression. Ultrastructural analysis using transmission electron microscope demonstrated distinct vacuolated cells, which strongly indicated a Type II non-apoptotic cell death although the changes in chromatin were also detected. The presence of non-apoptotic programmed cell death was then reconfirmed with annexin-V and propidium iodide staining. These findings suggested that up-regulation of c-myc mRNA expression may have contributed to the growth arrest and Type II non-apoptotic programmed cell death in the Epipremnum pinnatum (L.) Engl. hexane extract-treated T-47D cells. PMID:15619555

  9. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells.

    PubMed

    Barcus, Craig E; Holt, Elizabeth C; Keely, Patricia J; Eliceiri, Kevin W; Schuler, Linda A

    2015-01-01

    Breast cancers that express estrogen receptor alpha (ER?+) constitute the majority of breast tumors. Estrogen is a major driver of their growth, and targeting ER-mediated signals is a largely successful primary therapeutic strategy. Nonetheless, ER?+ tumors also result in the most breast cancer mortalities. Other factors, including altered characteristics of the extracellular matrix such as density and orientation and consequences for estrogen crosstalk with other hormones such as prolactin (PRL), may contribute to these poor outcomes. Here we employed defined three dimensional low density/compliant and high density/stiff collagen-I matrices to investigate the effects on 17?-estradiol (E2) activity and PRL/E2 interactions in two well-characterized ER?+/PRLR+ luminal breast cancer cell lines in vitro. We demonstrate that matrix density modulated E2-induced transcripts, but did not alter the growth response. However, matrix density was a potent determinant of the behavioral outcomes of PRL/E2 crosstalk. High density/stiff matrices enhanced PRL/E2-induced growth mediated by increased activation of Src family kinases and insensitivity to the estrogen antagonist, 4-hydroxytamoxifen. It also permitted these hormones in combination to drive invasion and modify the alignment of collagen fibers. In contrast, low density/compliant matrices allowed modest if any cooperation between E2 and PRL to growth and did not permit hormone-induced invasion or collagen reorientation. Our studies demonstrate the power of matrix density to determine the outcomes of hormone actions and suggest that stiff matrices are potent collaborators of estrogen and PRL in progression of ER?+ breast cancer. Our evidence for bidirectional interactions between these hormones and the extracellular matrix provides novel insights into the regulation of the microenvironment of ER?+ breast cancer and suggests new therapeutic approaches. PMID:25607819

  10. Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells.

    PubMed Central

    Mehlen, P; Kretz-Remy, C; Briolay, J; Fostan, P; Mirault, M E; Arrigo, A P

    1995-01-01

    The small stress protein heat-shock protein 27 (hsp27) is an oligomeric phosphoprotein, constitutively expressed in most human cells, which enhances cellular resistance to tumour necrosis factor alpha (TNF alpha). This phenomenon correlates with dramatic changes in hsp27 cellular location, structural organization and phosphorylation. To gain a better understanding of the molecular mechanisms regulating these properties of hsp27, we investigated whether they were a consequence of the intracellular production of reactive oxygen species (ROS) generated by TNF alpha. Here, we report that, in T47D carcinoma cell lines, the rapid burst of intracellular ROS production and changes in hsp27 locale, structural organization and phosphoisoform composition induced by TNF alpha were abolished by the overexpression of the antioxidant enzyme seleno-glutathione peroxidase (GSHPx). These effects were greatly diminished when GSHPx-expressing cells were grown in the absence of selenium, a cofactor that is essential for seleno-GSHPx activity, indicating that they are directly linked to the increased GSHPx activity. Moreover, in growing T47D cells, GSHPx expression induced intracellular redistribution of hsp27 and decreased the phosphorylation of this protein without altering its pattern of oligomerization. In contrast, the heat-mediated phosphorylation of hsp27 was not altered by decreased intracellular ROS levels. Hence, in growing and TNF-treated cells, several hsp27 properties appear to be modulated by fluctuations in intracellular ROS levels. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8526844

  11. METABOLITES OF BENZO[A]FLUORANTHENE ARE POTENT CYP1 INDUCERS IN T-47D HUMAN BREAST CANCER CELLS. (R827180)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  13. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    PubMed

    Laura, Richard P; Dong, David; Reynolds, Wanda F; Maki, Richard A

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  14. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation

    PubMed Central

    Laura, Richard P.; Dong, David; Reynolds, Wanda F.; Maki, Richard A.

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  15. Flavonoid-induced autophagy in hormone sensitive breast cancer cells.

    PubMed

    Brunelli, Elisa; Pinton, Giulia; Bellini, Paolo; Minassi, Alberto; Appendino, Giovanni; Moro, Laura

    2009-09-01

    The activity of 8-prenylapigenin (8-PA) and its 3'-methoxylated analogue isocannflavin B (IsoB) was investigated in estrogen-dependent T47-D and estrogen-independent MDA-MB-231 human breast cancer cell lines. 8-PA showed a biphasic effect on T47-D cell proliferation, while no significant effect was observed on MDA-MB-231 cells. Conversely, IsoB exhibited only an inhibitory effect on T47-D cell proliferation, accompanied by the appearance of an intense intracytoplasmic vacuolization of autophagic origin. Moreover, biochemical analysis showed that IsoB reduced Akt phosphorylation and p21(Cip1) expression in T47-D cells. These data show that the prenylflavone moiety is a versatile platform for the induction and modulation of bioactivity. PMID:19371773

  16. The effect of sea anemone (H. magnifica) venom on two human breast cancer lines: death by apoptosis.

    PubMed

    Ramezanpour, Mahnaz; da Silva, Karen Burke; Sanderson, Barbara J S

    2014-10-01

    Venom from the sea anemone, Heteractis magnifica, has multiple biological effects including, cytotoxic, cytolytic and hemolytic activities. In this study, cytotoxicity induced by H. magnifica venom was investigated using the crystal violet assay on human breast cancer T47D and MCF7 cell lines and normal human breast 184B5 cell line. Apoptosis was also assayed via Annexin V-flourescein isothiocyanate and propidium iodide (PI) staining followed by flow cytometric analysis. Cell cycle progression and mitochondria membrane potential were studied via flow cytometry following PI and JC-1 staining respectively. H. magnifica venom induced significant reductions in viable cell numbers and increases in apoptosis in T47D and MCF7 in dose-dependent manners. A significant apoptosis-related increase in the sub G1 peak of the cell cycle in both breast cancer cell lines was also observed. Moreover, treatment by venom cleaved caspase-8, caspase-9, and activated caspase-3. Overall, H. magnifica venom was highly cytotoxic to T47D and MCF7 human breast cancer cells, and the phenomenon could be the killing phenomenon via the death receptor-mediated and the mitochondria-mediated apoptotic pathways. Consequently, H. magnifica venom has potential for the development of a breast cancer therapeutic. PMID:23989939

  17. Synthesis, in vitro progesterone receptors affinity of gadolinium containing mifepristone conjugates and estimation of binding sites in human breast cancer cells.

    PubMed

    Saha, Pijus; Hödl, Claudia; Strauss, Wolfgang S L; Steiner, Rudolf; Goessler, Walter; Kunert, Olaf; Leitner, Alexander; Haslinger, Ernst; Schramm, H Wolfgang

    2010-03-01

    Novel gadolinium-based mifepristone conjugates were synthesised using various synthetic routes. Moderate antiprogestagenic activity of the new conjugates was observed in human breast cancer cells (T47-D cells) using AP (alkaline phosphatase) assay. The amount of incorporated Gd determined by inductively coupled plasma mass spectroscopy (ICPMS) indicates the number of binding sites per cell. These conjugates might be important compounds to develop receptor-targeted MRI contrast agents as well as other anti-breast cancer therapeutics. PMID:20149664

  18. Genistein abrogates G2 arrest induced by curcumin in p53 deficient T47D cells

    PubMed Central

    2012-01-01

    Background The high cost and low level of cancer survival urge the finding of new drugs having better mechanisms. There is a high trend of patients to be back to nature and use natural products as an alternative way to cure cancer. The fact is that some of available anticancer drugs are originated from plants, such as taxane, vincristine, vinblastine, pacitaxel. Curcumin (diferuloylmethane), a dietary pigment present in Curcuma longa rizhome is reported to induce cell cycle arrest in some cell lines. Other study reported that genistein isolated from Glycine max seed inhibited phosphorylation of cdk1, gene involved during G2/M transition and thus could function as G2 checkpoint abrogator. The inhibition of cdk1 phosphorylation is one of alternative strategy which could selectively kill cancer cells and potentially be combined with DNA damaging agent such as curcumin. Methods T47D cell line was treated with different concentrations of curcumin and genistein, alone or in combination; added together or with interval time. Flow Cytometry and MTT assay were used to evaluate cell cycle distribution and viability, respectively. The presence of apoptotic cells was determined using acridine orange-ethidium bromide staining. Results In this study curcumin induced G2 arrest on p53 deficient T47D cells at the concentration of 10??M. Increasing concentration up to 30??M increased the number of cell death. Whilst genistein alone at low concentration (?10??M) induced cell proliferation, addition of genistein (20??M) 16?h after curcumin resulted in more cell death (89%), 34% higher than that administered at the same time (56%). The combination treatment resulted in apoptotic cell death. Combining curcumin with high dose of genistein (50??M) induced necrotic cells. Conclusions Genistein increased the death of curcumin treated T47D cells. Appropriate timing of administration and concentration of genistein determine the outcome of treatment and this method could potentially be developed as an alternative strategy for treatment of p53 defective cancer cells. PMID:23351311

  19. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    PubMed

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10? to 10??M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ER? and ? expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. PMID:23756170

  20. Degradation of endothelial basement membrane by human breast cancer cell lines

    SciTech Connect

    Yee, C.; Shiu, R.P.

    1986-04-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of (35S)methionine-labeled and (3H)proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer.

  1. Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators.

    PubMed Central

    Schrey, M. P.; Patel, K. V.

    1995-01-01

    Malignant human breast tumours contain high levels of prostaglandin E2 (PGE2). However, the mechanisms controlling PGE2 production in breast cancer are unknown. This in vitro study investigates the capacity for PGE2 synthesis and metabolism in several human breast cancer cell lines and early passage human breast fibroblasts and seeks to identify potential regulatory factors which may control these pathways. Basal PGE2 production rose up to 30-fold in breast fibroblast lines on addition of exogenous arachidonic acid (10 microM), whereas no such changes were observed in six out of seven cancer cell lines, with the exception of modest increases in MDA-MB-231 cells. Interleukin 1 beta (IL-1 beta) also induced PGE2 production in breast fibroblasts in the presence of excess substrate, consistent with cyclo-oxygenase induction by the cytokine. Under these conditions only Hs578T cells and MDA-MB-231 cells demonstrated large increases in PGE2 in response to IL-1 beta or phorbol ester; no such responses were seen in MCF-7, T47-D, ZR-75-1, BT-20 or CLF-90-1 cells. In the absence of added arachidonate, bradykinin (BK) and endothelin-1 (ET-1), potentiated PGE2 production in IL-1 beta-treated fibroblasts, possibly by mobilising endogenous substrate. PGE2 also stimulated ET-1 production by breast cancer cells. In co-cultures with T47-D cells both basal and stimulated PGE2 production by breast fibroblasts was greatly reduced. This appeared to be due to metabolic inactivation by the cancer cell since T47-D cells readily converted PGE2 to 15-keto-PGE2. This apparent 15-hydroxy-PG dehydrogenase activity was stimulated by TPA and inhibited by cycloheximide. In conclusion, breast fibroblasts, particularly under the influence of inflammatory mediators, provide a potentially rich source for PGE2 production in breast tumours, whereas significant contributions from the epithelial tumour component may be restricted to cancer cells exhibiting an invasive phenotype. Metabolic inactivation by the cancer cells may also play an important role in the regulation of breast tumour PGE2 levels. PMID:8519653

  2. miR-181b promotes chemoresistance in breast cancer by regulating Bim expression.

    PubMed

    Zheng, Yabing; Lv, Xiaoai; Wang, Xiaojia; Wang, Bei; Shao, Xiying; Huang, Yuan; Shi, Lei; Chen, Zhanhong; Huang, Jian; Huang, Ping

    2016-02-01

    MicroRNAs are emerging as critical regulators of the initiation and progression of multiple types of human cancers, including breast cancer. In the present study, the expression of miR-181b in breast cancer patient serum and breast cancer cell lines was evaluated. It was demonstrated that the miR-181b level was significantly upregulated in patient serum and breast cancer cell lines compared with that in normal controls. The results of invitro 3H thymidine incorporation and Transwell migration assay indicated that miR-181b overexpression markedly promoted the proliferation and metastasis of breast cancer cells. These data suggest that miR-181b is a tumor promoter in breast cancer. Furthermore, miR-181b expression was found to be upregulated in doxorubicin (DOX)-resistant T-47D cells (T-47D-R) compared with that in the parental T-47D cells, and upregulation of miR-181b expression decreased the anticancer effect of DOX in the T-47D cells. Mechanistic studies demonstrated that the Bim gene, an essential initiator of apoptosis, was inhibited by miR-181b overexpression. We observed that knockdown of miR-181b by its specific inhibitors significantly re-sensitized the T-47D-R cells to the cytotoxicity of DOX. Importantly, we demonstrated that miR-181b inhibitors increased the level of Bim in the T-47D-R cells, resulting in the loss of mitochondrial membrane potential (MMP) and the activation of caspases caused by DOX. In summary, the results of the present study suggest that miR-181b functions as an oncogene during breast cancer development, and the miR-181b/Bim pathway may be a novel target used to overcome the chemoresistance in breast cancer. PMID:26572075

  3. Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells

    PubMed Central

    2010-01-01

    Background Claudin-1 is a membrane protein of tight junctions, and is associated with the development of various cancers. However, the significance of claudin-1 expression in cancer cells is not well understood. Here, we showed for the first time the anti-apoptotic effect of claudin-1 in human breast cancer MCF-7 cells. Methods Human breast cancer MCF-7 and T47 D cells were treated with or without tamoxifen, siRNA against claudin-1, or tamoxifen and claudin-1 siRNA. The samples were analyzed by RT-PCR, Western blotting or immunofluorescent staining. Results The expression of claudin-1 was upregulated in tamoxifen-treated MCF-7 cells, whereas the expression of claudin-1 was not altered in tamoxifen-treated T47 D cells. Knockdown of claudin-1 by siRNA increased the amount of poly (ADP-ribose) polymerase (PARP) regardless of tamoxifen treatment in MCF-7 cells, but not T47 D cells. In the cell membranes of the MCF-7 cells, tamoxifen treatment increased the amount of claudin-1, but decreased the amount of ?-catenin. Claudin-1 siRNA increased the amount of E-cadherin in the cytoplasm of the MCF-7 cells as well as the amount of ?-catenin in their cell membranes. Conclusion These results indicate that claudin-1 has anti-apoptotic effects, and is involved in the regulation of the expression and subcellular localization of ?-catenin and E-cadherin in MCF-7, but not T47 D cells. PMID:20937153

  4. Nudix-type motif 2 in human breast carcinoma: a potent prognostic factor associated with cell proliferation.

    PubMed

    Oka, Kimako; Suzuki, Takashi; Onodera, Yoshiaki; Miki, Yasuhiro; Takagi, Kiyoshi; Nagasaki, Shuji; Akahira, Jun-Ichi; Ishida, Takanori; Watanabe, Mika; Hirakawa, Hisashi; Ohuchi, Noriaki; Sasano, Hironobu

    2011-04-15

    Nudix-type motif 2 (NUDT2) hydrolyzes diadenosine 5',5'''-p1,p4-tetraphosphate (Ap4A) associated with various cellular functions. Previous studies demonstrated its regulation through estrogens, suggesting possible importance of NUDT2 in breast carcinoma. NUDT2, however, has not been examined in malignant tissues. Therefore, we examined its expression and functions in breast carcinoma. Immunohistochemistry for NUDT2 was examined by invasive ductal carcinoma (IDC: n = 145) and pure ductal carcinoma in situ (DCIS: n = 82), and NUDT2 mRNA was examined by real-time PCR in 9 DCIS, 19 IDC and 6 non-neoplastic breast tissues. We also used T47D breast carcinoma cells in in vitro studies. NUDT2 immunoreactivity was detected in 78% of DCIS and 63% of IDC, and NUDT2 mRNA level was significantly higher in DCIS or IDC than non-neoplastic breast. NUDT2 status was significantly correlated with Van Nuys classification, HER2 or Ki-67 in DCIS, and with stage, lymph node metastasis, histological grade or HER2 in IDC. NUDT2 status was significantly associated with adverse clinical outcome of IDC patients and proved an independent prognostic factor. Results of transfection experiments demonstrated that proliferation activity of T47D cells was significantly associated with NUDT2 expression level according to the treatment of estradiol and/or tamoxifen. NUDT2 expression was significantly decreased by estradiol, and it was also significantly decreased in T47D cells transfected with HER2 siRNA. These findings suggest that NUDT2 is an estrogen-repressed gene and is also induced by HER2 pathways in breast carcinoma cells. NUDT2 promotes proliferation of breast carcinoma cells and is a potent prognostic factor in human breast carcinomas. PMID:20533549

  5. INDUCTION OF CYP1A1 AND CYP1B1 IN T-47D HUMAN BREAST CANCER CELLS BY BENZO[A]PYRENE IS DIMINISHED BY ARSENITE. (R827180)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. EFFECTS OF BENZO[A]PYRENE AND ARSENITE ON CYP1A1 AND CYP1B1 MRNA LEVELS IN T-47D HUMAN BREAST CANCER CELLS: DETERMINATION BY A BRANCHED DNA ASSAY. (R827180)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. First trimester human placental factors induce breast cancer cell autophagy.

    PubMed

    Epstein Shochet, G; Drucker, L; Pasmanik-Chor, M; Pomeranz, M; Fishman, A; Tartakover Matalon, S; Lishner, M

    2015-02-01

    Placental factors, progesterone included, facilitate breast cancer cell line (BCCL) motility and thus may contribute to the advanced breast cancer found during pregnancy. Cancer and placental implantations are similar; the last is accompanied by extravillous trophoblast cell invasion and autophagy which are interlinked. We aimed to analyze the effect of first trimester human placenta on BCCL autophagy. BCCLs (MCF-7/T47D) were cultured with placental explants (60 h) or placental supernatants (24 h). Following cultures, BCCLs were sorted out for RNA/protein extraction. RNA served for microarray/qPCR (BNIP3) and protein for Western blot (HIF1?, LC3BII) analyses. Inhibitors were added to the placenta-MCF-7 coculture or placental supernatants (autophagy inhibitor-3MA, progesterone receptor (PR) inhibitor-RU486, and HIF1? inhibitor-Vitexin) in order to evaluate their effects on BCCL motility and LC3BII/HIF1? expression. LC3BII (an autophagy marker) expression was elevated in BCCLs following placental explant coculture and exposure to placental supernatants. The autophagy inhibitor (3MA) repressed the placenta-induced MCF-7/T47D migration, establishing a connection between BCCL autophagy and migration. Microarray analysis of MCF-7 following placenta-MCF-7 coculture showed that "HIF1? pathway," a known autophagy facilitator, was significantly manipulated. Indeed, placental factors elevated HIF1? and its target BNIP3 in the BCCLs, verifying array results. Lastly, PR inhibitor reduced HIF1? expression and both PR and HIF1? inhibitors reduced MCF-7 LC3BII expression and motility, suggesting involvement of the PR-HIF1? axis in the autophagy process. Placental factors induced BCCL autophagy that is interlinked to their motility. This suggests that autophagy-related molecules may serve as targets for therapy in pregnancy-associated breast cancer. PMID:25656679

  8. Molecular expression and functional activity of vitamin C specific transport system (SVCT2) in human breast cancer cells.

    PubMed

    Khurana, Varun; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K

    2014-10-20

    The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover, this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [(14)C] AA was studied in MDA-MB231, T47D and ZR-75-1?cells. Functional parameters of [(14)C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription-polymerase chain reaction (RT-PCR). Uptake of [(14)C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [(14)C] AA uptake was found to be saturable, with Km values of 53.85 6.24, 49.69 2.83 and 45.44 3.16 ?M and Vmax values of 18.45 0.50, 32.50 0.43 and 33.25 0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (l-AA and d-iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca(++)/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1?cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics. PMID:25102111

  9. Exogenous normal mammary epithelial mitochondria suppress glycolytic metabolism and glucose uptake of human breast cancer cells.

    PubMed

    Jiang, Xian-Peng; Elliott, Robert L; Head, Jonathan F

    2015-10-01

    We hypothesized that normal mitochondria inhibited cancer cell proliferation and increased drug sensitivity by the mechanism of suppression of cancer aerobic glycolysis. To demonstrate the mechanism, we used real-time PCR and glycolysis cell-based assay to measure gene expression of glycolytic enzymes and glucose transporters, and extracellular lactate production of human breast cancer cells. We found that isolated fluorescent probe-stained mitochondria of MCF-12A (human mammary epithelia) could enter into human breast cancer cell lines MCF-7, T47D, and MDA-MB-231, confirmed by fluorescent and confocal microscopy. Mitochondria from the untransformed human mammary epithelia increased drug sensitivity of MCF-7 cells to paclitaxel. Real-time PCR showed that exogenous normal mitochondria of MCF-12A suppressed gene expression of glycolytic enzymes, lactate dehydrogenase A, and glucose transporter 1 and 3 of MCF-7 and MDA-MB-231 cells. Glycolysis cell-based assay revealed that normal mitochondria significantly suppressed lactate production in culture media of MCF-7, T47D, and MDA-MB-231 cells. In conclusion, normal mitochondria suppress cancer proliferation and increase drug sensitivity by the mechanism of inhibition of cancer cell glycolysis and glucose uptake. PMID:26407856

  10. Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells

    PubMed Central

    Chopin, Valrie; Toillon, Robert-Alain; Jouy, Nathalie; Bourhis, Xuefen Le

    2002-01-01

    This study was performed to determine the effect and action mechanisms of sodium butyrate (NaB) on the growth of breast cancer cells.Butyrate inhibited the growth of all breast cancer cell lines analysed. It induced cell cycle arrest in G1 and apoptosis in MCF-7, MCF-7ras, T47-D, and BT-20 cells, as well as arrest in G2/M in MDA-MB-231 cells.Transient transfection of MCF-7 and T47-D cells with wild-type and antisense p53 did not modify butyrate-induced apoptosis. Pifithrin-?, which inhibits the transcriptional activity of P53, did not modify cell growth or apoptosis of MCF-7 and T47-D cells treated with butyrate. These results indicate that P53 was not involved in butyrate-induced growth inhibition of breast cancer cells.Treatment of MCF-7 cells with anti-Fas agonist antibody induced cell death, indicating that Fas was functional in these cells. Moreover, butyrate potentiated Fas-induced apoptosis, as massive apoptosis was observed rapidly when MCF-7 cells were treated with butyrate and anti-Fas agonist antibody. In addition, butyrate-induced apoptosis in MCF-7 cells was considerably reduced by anti-Fas antagonist antibody. Western blot analysis showed that butyrate increased Fas and Fas ligand levels (Fas L), indicating that butyrate-induced apoptosis may be mediated by Fas signalling.These results demonstrate that butyrate inhibited the growth of breast cancer cells in a P53-independent manner. Moreover, it induced apoptosis via the Fas/Fas L system and potentiated Fas-triggered apoptosis in MCF-7 cells. These findings may open interesting perspectives in human breast cancer treatment strategy. PMID:11786482

  11. Src Drives Growth of Antiestrogen Resistant Breast Cancer Cell Lines and Is a Marker for Reduced Benefit of Tamoxifen Treatment

    PubMed Central

    Larsen, Sarah L.; Laenkholm, Anne-Vibeke; Duun-Henriksen, Anne Katrine; Bak, Martin; Lykkesfeldt, Anne E.; Kirkegaard, Tove

    2015-01-01

    The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor ? (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen. PMID:25706943

  12. Characterisation of VP-16-induced DNA cleavage in oestrogen-stimulated human breast cancer cells.

    PubMed Central

    Epstein, R. J.; Smith, P. J.; Watson, J. V.; Bleehen, N. M.

    1988-01-01

    Cycling cells are recognised to be more susceptible than quiescent cells to the cytotoxic action of many commonly used cancer chemotherapeutic agents. We have found that oestrogen stimulation of T-47D human breast cancer cells is accompanied by a two-fold increase in VP-16-induced DNA cleavage as measured by alkaline DNA unwinding, and that this increase in DNA cleavage is accompanied by a corresponding enhancement of drug-induced cytostasis. The enhancement of VP-16-induced DNA cleavage seen with oestrogen exposure is antagonised both by antioestrogen treatment and by cycloheximide, an inhibitor of protein synthesis, but not by the DNA synthesis inhibitor aphidicolin. Increased c-myc protein synthesis is detectable within an hour of oestrogen exposure, while increased VP-16-induced DNA cleavage is detectable within 4h and increased DNA synthesis within 16h. Only small changes in cell-cycle distribution occur with oestrogen stimulation. In the absence of VP-16, oestrogen does not reduce DNA double-strandedness, nor does it induce changes in chromatin structure as measured by alterations in DNA superhelicity or chromatin accessibility. These findings suggest that oestrogen enhances VP-16-induced DNA damage in asynchronously growing G1-phase cells and that this enhancement may be dependent at some point upon de novo protein synthesis. Oestrogen pre-treatment of T-47D human breast cancer cells improves the therapeutic index of VP-16 without the need for cell synchronisation or highly precise drug scheduling. PMID:3395549

  13. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    PubMed Central

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  14. The impact of Cysteine-Rich Intestinal Protein 1 (CRIP1) in human breast cancer

    PubMed Central

    2013-01-01

    Background CRIP1 (cysteine-rich intestinal protein 1) has been found in several tumor types, its prognostic impact and its role in cellular processes, particularly in breast cancer, are still unclear. Methods To elucidate the prognostic impact of CRIP1, we analyzed tissues from 113 primary invasive ductal breast carcinomas using immunohistochemistry. For the functional characterization of CRIP1, its endogenous expression was transiently downregulated in T47D and BT474 breast cancer cells and the effects analyzed by immunoblotting, WST-1 proliferation assay and invasion assay. Results We found a significant correlation between CRIP1 and HER2 (human epidermal growth factor receptor 2) expression levels (p?=?0.016) in tumor tissues. In Kaplan Meier analyses, CRIP1 expression was significantly associated with the distant metastases-free survival of patients, revealing a better prognosis for high CRIP1 expression (p?=?0.039). Moreover, in multivariate survival analyses, the expression of CRIP1 was an independent negative prognostic factor, along with the positive prognosticators nodal status and tumor size (p?=?0.029). CRIP1 knockdown in the T47D and BT474 breast cancer cell lines led to the increased phosphorylation of MAPK and Akt, to the reduced phosphorylation of cdc2, and to a significantly elevated cell proliferation in vitro (p?breast cancer tissue is significantly associated with a worse prognosis for patients and low endogenous CRIP1 levels in vitro increased the malignant potential of breast cancer cells, we hypothesize that CRIP1 may act as a tumor suppressor in proliferation and invasion processes. Therefore, CRIP1 may be an independent prognostic marker with significant predictive power for use in breast cancer therapy. PMID:23570421

  15. Estrogenic activities of sesame lignans and their metabolites on human breast cancer cells.

    PubMed

    Pianjing, Prisna; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Watcharasit, Piyajit; Mahidol, Chulabhorn; Satayavivad, Jutamaad

    2011-01-12

    Sesame lignans (sesamin, sesamolin) and their metabolites (enterodiol, ED; enterolactone, EL; and sesamol) have been evaluated for their estrogenic activities. ED and EL have been indicated to have estrogenic/antiestrogenic properties on human breast cancer cells; however the estrogenic activities of sesamin, sesamolin and sesamol have not been reported. In the present study, estrogenic potencies of sesame lignans and their metabolites were determined by estrogen responsive element (ERE) luciferase reporter assay in T47D cells stably transfected with ERE-luc (T47D-KBluc cells) and quantifying pS2 and progesterone receptor gene expression in T47D cells. All tested compounds except ED possessed ability of ERE activation with a very low potency compared to estradiol (E2). These effects were abolished by coincubating tested compounds with 1 ?M ICI 182?780, suggesting that estrogen receptors were directly involved in their ERE activations. Among tested compounds, sesamol showed the highest ability in ERE induction. The coincubation of increasing concentration of E2 (10(-12)-10(-6) M) with 10 ?M of tested compounds resulted in a downward shift of E2-ERE dose-response curves. In contrast, at the low concentration of E2 (10(-12) M), sesamin and sesamol significantly exhibited additive effects on the E2 responses. The inhibitory effect in a dose-dependent manner was also observed when 1-100 ?M sesamol was coincubated with 1 nM E2. Sesamin, sesamol and EL significantly induced pS2 gene expression whereas only sesamol could significantly induce progesterone receptor gene. The data obtained in this study suggested that sesame lignans and their metabolites possess weak estrogenic/antiestrogenic activity. PMID:21141889

  16. Reevaluation of the proposed autocrine proliferative function of prolactin in breast cancer.

    PubMed

    Nitze, Louise Maymann; Galsgaard, Elisabeth Douglas; Din, Nanni; Lund, Vibe Luja; Rasmussen, Birgitte Bruun; Berchtold, Martin Werner; Christensen, Leif; Panina, Svetlana

    2013-11-01

    The pituitary hormone prolactin (PRL) has been implicated in tumourigenesis. Expression of PRL and its receptor (PRLR) was reported in human breast epithelium and breast cancer cells. It was suggested that PRL may act as an autocrine/paracrine growth factor. Here, we addressed the role of locally synthesised PRL in breast cancer. We analysed the expression of PRL in human breast cancer tumours using qPCR analysis and in situ hybridization (ISH). PRL mRNA expression was very low or undetectable in the majority of samples in three cDNA arrays representing samples from 144 breast cancer patients and in 13 of 14 breast cancer cell lines when analysed by qPCR. In accordance, PRL expression did not reach detectable levels in any of the 19 human breast carcinomas or 5 cell lines, which were analysed using a validated ISH protocol. Two T47D-derived breast cancer cell lines were stably transfected with PRL-expressing constructs. Conditioned medium from the T47D/PRL clones promoted proliferation of lactogen-dependent Nb2 cells and control T47D cells. Surprisingly, the PRL-producing clones themselves displayed a lower proliferation rate as compared to the control cells. Their PRLR protein level was reduced and the cells were no longer responsive to exogenous recombinant PRL. Taken together, these data strongly indicate that autocrine PRL signalling is unlikely to be a general mechanism promoting tumour growth in breast cancer patients. PMID:24146212

  17. Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53

    SciTech Connect

    Ho, T.-F.; Ma, C.-J.; Lu, C.-H.; Tsai, Yo-Ting; Wei, Y.-H.; Chang, J.-S.; Lai, J.-K.; Cheuh, Pin-Ju; Yeh, C.-T.; Tang, P.-C.; Jingua, T.C.; Ko, J.-L.; Liu, F.-S.; Yen, H.E.

    2007-12-15

    Undecylprodigiosin (UP) is a bacterial bioactive metabolite produced by Streptomyces and Serratia. In this study, we explored the anticancer effect of UP. Human breast carcinoma cell lines BT-20, MCF-7, MDA-MB-231 and T47D and one nonmalignant human breast epithelial cell line, MCF-10A, were tested in this study. We found that UP exerted a potent cytotoxicity against all breast carcinoma cell lines in a dose- and time-dependent manner. In contrast, UP showed limited toxicity to MCF-10A cells, indicating UP's cytotoxic effect is selective for malignant cells. UP's cytotoxic effect was due to apoptosis, as confirmed by positive TUNEL signals, annexin V-binding, caspase 9 activation and PARP cleavage. Notably, UP-induced apoptosis was blocked by the pan-caspase inhibitor z-VAD.fmk, further indicating the involvement of caspase activity. Moreover, UP caused a marked decrease of the levels of antiapoptotic BCL-X{sub L}, Survivin and XIAP while enhancing the levels of proapoptotic BIK, BIM, MCL-1S and NOXA, consequently favoring induction of apoptosis. Additionally, we found that cells with functional p53 (MCF-7, T47D) or mutant p53 (BT-20, MDA-MB-231) were both susceptible to UP's cytotoxicity. Importantly, UP was able to induce apoptosis in MCF-7 cells with p53 knockdown by RNA interference, confirming the dispensability of p53 in UP-induced apoptosis. Overall, our results establish that UP induces p53-independent apoptosis in breast carcinoma cells with no marked toxicity to nonmalignant cells, raising the possibility of its use as a new chemotherapeutic drug for breast cancer irrespective of p53 status.

  18. Variability of the paracrine-induced osteoclastogenesis by human breast cancer cell lines.

    PubMed

    Costa-Rodrigues, Joo; Moniz, Karen A; Teixeira, Manuel R; Fernandes, Maria H

    2012-03-01

    Breast cancer frequently metastasizes to the bone, often leading to the formation of osteolytic lesions. This work compares the paracrine-induced osteoclastogenesis mediated by four human breast cancer cell lines, the estrogen-receptor positive T47D and MCF-7 and the estrogen-negative SK-BR-3 and Hs-578T cell lines. Human osteoclast precursor cells were cultured in the presence of conditioned media from the breast cancer cell lines (10% and 20%), collected at different culture periods (48 h, 7 days, and 14 days). Cultures performed in the absence or the presence of M-CSF and RANKL served as negative and positive control, respectively. Results showed that the cell lines differentially expressed several osteoclastogenic genes. All cell lines exhibited a significant osteoclastogenic potential, evidenced by a high TRAP activity and number of osteoclastic cells, expression of several osteoclast-related genes, and, particularly, a high calcium phosphate resorption activity. Differences among the osteoclastogenic potential of the cell lines were noted. T47D and MCF-7 cell lines displayed the highest and the lowest osteoclastogenic response, respectively. Despite the variability observed, MEK and NF-?B signaling pathways, and, at a lesser extent, PGE2 production, seemed to have a central role on the observed osteoclastogenic response. In conclusion, the tested breast cancer cell lines exhibited a high osteoclastogenic potential, although with some variability on the cell response profile, a factor to be considered in the development of new therapeutic approaches for breast cancer-induced bone metastasis. PMID:22274920

  19. Conjugated Linoleic Acid (CLA) inhibits expression of the Spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells

    PubMed Central

    Donnelly, Christina; Olsen, Arne M.; Lewis, Lionel D.; Eisenberg, Burton L.; Eastman, Alan; Kinlaw, William B.

    2010-01-01

    Spot 14 (THRSP, S14) is a nuclear protein involved in the regulation of genes required for fatty acid synthesis in normal and malignant mammary epithelial and adipose cells. Havartine and Bauman reported that conjugated linoleic acid (CLA) inhibits S14 gene expression in bovine mammary and mouse adipose tissues, and reduces milk fat production in cows. We hypothesized that CLA inhibits S14 gene expression in human breast cancer and liposarcoma cells, and that this will retard their growth. Exposure of T47D breast cancer cells to a mixture of CLA isomers reduced the expression of the S14 and fatty acid synthase (FAS) genes. The mixture caused a dose-related inhibition of T47D cell growth, as did pure c9, t11- and t10, c12-CLA, but not linoleic acid. Similar effects were observed in MDA-MB-231 breast cancer cells. Provision of 8 μM palmitate fully (CLA mix, t10, c12-CLA) or partially (c9, t11-CLA) reversed the antiproliferative effect in T47D cells. CLA likewise suppressed levels of S14 and FAS mRNAs in liposarcoma cells, and caused growth inhibition that was prevented by palmitic acid. CLA did not affect the growth of nonlipogenic HeLa cells or human fibroblasts. We conclude that, as in bovine mammary and mouse adipose cells, CLA suppresses S14 and FAS gene expression in human breast cancer and liposarcoma cells. Rescue from the antiproliferative effect of CLA by palmitic acid indicates that reduced tumor lipogenesis is a major mechanism for the anticancer effects of CLA. PMID:19116881

  20. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio.

    PubMed

    Pons, Daniel Gabriel; Nadal-Serrano, Mercedes; Blanquer-Rossello, M Mar; Sastre-Serra, Jorge; Oliver, Jordi; Roca, Pilar

    2014-05-01

    Breast cancer is the most common malignancy in women of developed countries. The aim of this study was to investigate whether genistein, a soy phytoestrogen, and 17?-estradiol (E2) could have effects on the cell cycle and mitochondrial function and dynamics. Three human breast cancer cell lines with different estrogen receptor alpha (ER?) and estrogen receptor beta (ER?) ratio were used: MCF-7 (high ER?/ER? ratio), T47D (low ER?/ER? ratio) and MDA-MB-231 (ER-negative). Cell proliferation, cell cycle, mitochondrial functionality, and mitochondrial dynamics parameters were analyzed. E2 and genistein treatment induced cell proliferation and apoptosis inhibition in MCF-7, but not in T47D and MDA-MB-231. Moreover, genistein treatment produced an up-regulation of ER? and a rise in cytochrome c oxidase activity in T47D cells, decreasing the ATP synthase/cytochrome c oxidase ratio. Finally, genistein treatment produced a drop in mitochondrial dynamics only in MCF-7 cells. In summary, the beneficial effects of genistein consumption depend on the ER?/ER? ratio in breast cells. Therefore, genistein treatment produces cell cycle arrest and an improvement of mitochondrial functionality in T47D cells with a low ER?/ER? ratio, but not in MCF-7 (high ER?/ER? ratio) and MDA-MB-231 (ER-negative) ones. PMID:24375531

  1. Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4.

    PubMed

    Feng, Xiaobin; Zhao, Lifen; Gao, Shuhang; Song, Xiaobo; Dong, Weijie; Zhao, Yongfu; Zhou, Huimin; Cheng, Lei; Miao, Xiaolong; Jia, Li

    2016-03-10

    Fucosylation is the final step in the glycosylation machinery, which produces glycans involved in tumor multidrug resistance development. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes of tumors, including drug resistance. This study was undertaken to determine the roles of fucosylation and miR-224-3p in multidrug resistance of human breast cancer cell lines. Comparative analysis revealed differential modification patterns of fucosylation of the fucosylated N-glycans in drug-resistant T47D/ADR cells and sensitive line T47D cells. The expressional profiles of fucosyltransferase genes in two pairs of parental and chemoresistant human breast cancer cell lines showed that FUT4 was up-regulated highly in MDR cell lines. Altered level of FUT4 affected the drug-resistant phenotype of T47D and T47D/ADR cells both in vitro and in vivo. By bioinformatics analysis, we identified FUT4 as one of the miR-224-3p-targeted genes. Further studies showed an inverse relationship between of FUT4 and miR-224-3p in parental and ADR-resistant breast cancer cells, wherein miR-224-3p was downregulated in resistant cells. 3'-UTR dual-luciferase reporter assay confirmed that miR-224-3p directly targeted 3'-untranslation region (3'-UTR) of FUT4 mRNA. In addition, miR-224-3p overexpression sensitized T47D/ADR cells to chemotherapeutics and reduced the growth rate of breast cancer xenografts in vivo. Our results indicate that FUT4 and miR-224-3p are crucial regulators of cancer response to chemotherapy, and may serve as therapeutic targets to reverse chemotherapy resistance in breast cancer. PMID:26701615

  2. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    PubMed Central

    2010-01-01

    Background The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells. Methods Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed. Results In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D) caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D) resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration in vitro. Conclusion Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells. PMID:20955597

  3. Function of RasGRP3 in the formation and progression of human breast cancer

    PubMed Central

    2014-01-01

    Introduction Ras guanine nucleotide exchange factors (RasGEFs) mediate the activation of the Ras signaling pathway that is over activated in many human cancers. The RasGRP3, an activator of H-Ras and R-Ras protein exerts oncogenic effects and the overexpression of the protein is observed in numerous malignant cancer types. Here, we investigated the putative alteration of expression and potential function of RasGRP3 in the formation and progression of human breast cancer. Methods The RasGRP3 and phosphoRasGRP3 expressions were examined in human invasive ductal adenocarcinoma derived samples and cell lines (BT-474, JIMT-1, MCF7, SK-BR-3, MDA-MB-453, T-47D) both in mRNA (Q-PCR) and protein (Western blot; immunohistochemistry) levels. To explore the biological function of the protein, RasGRP3 knockdown cultures were established. To assess the role of RasGRP3 in the viability of cells, annexin-V/PI staining and MitoProbe™ DilC1 (5) assay were performed. To clarify the function of the protein in cell proliferation and in the development of chemotherapeutic resistance, CyQuant assay was performed. To observe the RasGRP3 function in tumor formation, the Severe combined immunodeficiency (SCID) mouse model was used. To investigate the role of the protein in Ras-related signaling Q-PCR and Western blot experiments were performed. Results RasGRP3 expression was elevated in human breast tumor tissue samples as well as in multiple human breast cancer cell lines. Down-regulation of RasGRP3 expression in breast cancer cells decreased cell proliferation, induced apoptosis in MCF7 cells, and sensitized T-47D cells to the action of drugs Tamoxifen and trastuzumab (Herceptin). Gene silencing of RasGRP3 reduced tumor formation in mouse xenografts as well. Inhibition of RasGRP3 expression also reduced Akt, ERK1/2 and estrogen receptor alpha phosphorylation downstream from IGF-I insulin like growth factor-I (IGF-I) or epidermal growth factor (EGF) stimulation confirming the functional role of RasGRP3 in the altered behavior of these cells. Conclusions Taken together, our results suggest that the Ras activator RasGRP3 may have a role in the pathological behavior of breast cancer cells and may constitute a therapeutic target for human breast cancer. PMID:24779681

  4. Activin A mediates growth inhibition and cell cycle arrest through Smads in human breast cancer cells.

    PubMed

    Burdette, Joanna E; Jeruss, Jacqueline S; Kurley, Sarah J; Lee, Eun Jig; Woodruff, Teresa K

    2005-09-01

    The transforming growth factor-beta (TGF-beta) superfamily of growth factors is responsible for a variety of physiologic actions, including cell cycle regulation. Activin is a member of the TGF-beta superfamily that inhibits the proliferation of breast cancer cells. Activin functions by interacting with its type I and type II receptors to induce phosphorylation of intracellular signaling molecules known as Smads. Smads regulate transcription of many genes in a cell- and tissue-specific manner. In this study, the role of activin A in growth regulation of breast cancer cells was investigated. Activin stimulated the Smad-responsive promoter, p3TP, 2-fold over control in T47D breast cancer cells. Activin inhibited cellular proliferation of T47D breast cancer cells after 72 hours, an effect that could be abrogated by incubation with the activin type I receptor inhibitor, SB431542. Activin arrested T47D cells in the G0-G1 cell cycle phase. Smad2 and Smad3 were phosphorylated in response to activin and accumulated in the nucleus of treated T47D cells. Infection of T47D cells with adenoviral Smad3 resulted in cell cycle arrest and activation of p3TP-luciferase, whereas a adenoviral dominant-negative Smad3 blocked activin-mediated cell cycle arrest and gene transcription. Activin maintained expression of p21 and p27 cyclin-dependent kinase inhibitors involved in cell cycle control, enhanced expression of p15, reduced cyclin A expression, and reduced phosphorylation of the retinoblastoma (Rb) protein. Smad3 overexpression recapitulated activin-induced p15 expression and repression of cyclin A and Rb phosphorylation. These data indicate that activin A inhibits breast cancer cellular proliferation and activates Smads responsible for initiating cell cycle arrest. PMID:16140969

  5. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways

    PubMed Central

    Yang, Chuan-bin; Pei, Wei-jing; Zhao, Jia; Cheng, Yuan-yuan; Zheng, Xiao-hui; Rong, Jian-hui

    2014-01-01

    Aim: To investigate the effects of bornyl caffeate discovered in several species of plant on human breast cancer cells in vitro and the underlying mechanisms. Methods: Human breast cancer cell line MCF-7 and other tumor cell lines (T47D, HepG2, HeLa, and PC12) were tested. Cell viability was determined using MTT assay, and apoptosis was defined by monitoring the morphology of the nuclei and staining with Annexin V-FITC. Mitochondrial membrane potential (MMP) was measured using JC-1 under fluorescence microscopy. Intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. Results: Bornyl caffeate (10, 25, and 50 ?mol/L) suppressed the viability of MCF-7 cells in dose- and time-dependent manners, but neither caffeic acid nor borneol showed cytotoxicity at a concentration of 50 ?mol/L. Bornyl caffeate also exerted cytotoxicity to HepG2, Hela, T47D, and PC12 cells. Bornyl caffeate dose-dependently induced apoptosis of MCF-7 cells, increased the expression of Bax and decreased the expression of Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and activated p38 and c-Jun JNK. In MCF-7 cells, the cytotoxicity of bornyl caffeate was significantly attenuated by SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), z-VAD (pan-caspase inhibitor) or the thiol antioxidant L-NAC. Conclusion: Bornyl caffeate exerts non-selective cytotoxicity against cancer cells of different origin in vitro. The compound induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. PMID:24335836

  6. Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer.

    PubMed

    Sasser, A Kate; Sullivan, Nicholas J; Studebaker, Adam W; Hendey, Lindsay F; Axel, Amy E; Hall, Brett M

    2007-11-01

    Bone is the primary anatomical site of breast cancer metastasis, and bone metastasis is associated with increased morbidity and mortality. Mesenchymal stem cells (MSC) are a predominant fibroblast cell population within the bone marrow, and metastatic breast cancer cells that seed within bone would predictably encounter MSC or their soluble factors. Therefore, we examined the impact of primary human MSC on a panel of estrogen receptor-alpha (ERalpha)-positive (MCF-7, T47D, BT474, and ZR-75-1) and ERalpha-negative (MDA-MB-231 and MDA-MB-468) human breast tumor cell lines. All ERalpha-positive breast tumor cell lines displayed low basal activation of signal transducer and activator of transcription 3 (STAT3) until exposed to MSC, which induced chronic phosphorylation of STAT3 on tyrosine-705. Paracrine IL-6 was found to be the principal mediator of STAT3 phosphorylation in coculture studies, and MSC induction of STAT3 phosphorylation was lost when IL-6 was depleted from MSC conditioned media or the IL-6 receptor was blocked on tumor cells. Enhanced tumor cell growth rates were observed in the ERalpha-positive mammary tumor cell line MCF-7 after paracrine and autocrine IL-6 exposure, where MCF-7 growth rates were enhanced by >2-fold when cocultured with MSC in vitro and even more pronounced in vivo with autocrine IL-6 production. PMID:17586727

  7. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have been studied in vitro and in vivo. ► CYP4Z1 regulates expression and production of VEGF-A and TIMP-2. ► CYP4Z1-induced angiogenesis is associated with PI3K and ERK1/2 activation. ► CYP4Z1 may be an attractive target for anti-cancer therapy.

  8. Bisphenol AF-induced endogenous transcription is mediated by ER? and ERK1/2 activation in human breast cancer cells.

    PubMed

    Li, Ming; Guo, Jing; Gao, Wenhui; Yu, Jianlong; Han, Xiaoyu; Zhang, Jing; Shao, Bing

    2014-01-01

    Bisphenol AF (BPAF)-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1), growth regulation by estrogen in breast cancer 1 (GREB1) and cathepsin D (CTSD), through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ER?, ER? and G protein-coupled estrogen receptor 1 (GPER) by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ER? and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ER?-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ER?-positive T47D and MCF7 cells as well as overexpression of ER? in ER?-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ER? and ERK1/2 activation in human breast cancer cells. PMID:24727858

  9. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer

    PubMed Central

    Timoshenko, A V; Chakraborty, C; Wagner, G F; Lala, P K

    2006-01-01

    Increased expression of COX-2 or VEGF-C has been correlated with progressive disease in certain cancers. Present study utilized several human breast cancer cell lines (MCF-7, T-47D, Hs578T and MDA-MB-231, varying in COX-2 expression) as well as 10 human breast cancer specimens to examine the roles of COX-2 and prostaglandin E (EP) receptors in VEGF-C expression or secretion, and the relationship of COX-2 or VEGF-C expression to lymphangiogenesis. We found a strong correlation between COX-2 mRNA expression and VEGF-C expression or secretion levels in breast cancer cell lines and VEGF-C expression in breast cancer tissues. Expression of LYVE-1, a selective marker for lymphatic endothelium, was also positively correlated with COX-2 or VEGF-C expression in breast cancer tissues. Inhibition of VEGF-C expression and secretion in the presence of COX-1/2 or COX-2 inhibitors or following downregulation of COX-2 with COX-2 siRNA established a stimulatory role COX-2 in VEGF-C synthesis by breast cancer cells. EP1 as well as EP4 receptor antagonists inhibited VEGF-C production indicating the roles of EP1 and EP4 in VEGF-C upregulation by endogenous PGE2. Finally, VEGF-C secretion by MDA-MB-231 cells was inhibited in the presence of kinase inhibitors for Her-2/neu, Src and p38 MAPK, indicating a requirement of these kinases for VEGF-C synthesis. These results, for the first time, demonstrate a regulatory role of COX-2 in VEGF-C synthesis (and thereby lymphangiogenesis) in human breast cancer, which is mediated at least in part by EP1/EP4 receptors. PMID:16570043

  10. Epigenetic regulation of bone morphogenetic protein-6 gene expression in breast cancer cells.

    PubMed

    Zhang, Ming; Wang, Qing; Yuan, Wei; Yang, Shuang; Wang, Xu; Yan, Ji-Dong; Du, Jun; Yin, Jian; Gao, Song-Yuan; Sun, Bao-Cun; Zhu, Tian-Hui

    2007-01-01

    Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER(+)) breast cancer cell line MCF-7, but not in ER negative (ER(-)) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5' flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER(-) cell line MDA-MB-231 was relatively lower than that in ER(+) MCF-7 and T47D cell lines. After the treatment with 5-aza-2'-deoxycytidine (5-aza-dC, especially in the concentration of 10 microM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer. PMID:17574840

  11. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha.

    PubMed

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-01

    Human estrogen receptor ? (ER?) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ER? is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ER? regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ER? at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ER?. Hispolon treatment also inhibited expression of the ER? target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ER? in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. PMID:26056942

  12. Paradoxical effect of estradiol: it can block its own bioformation in human breast cancer cells.

    PubMed

    Pasqualini, J R; Chetrite, G

    2001-07-01

    The great majority of breast cancers are in their early stage hormone-dependent and it is well accepted that estradiol (E(2)) plays an important role in the genesis and evolution of this tumor. Human breast cancer tissues contain all the enzymes: estrone sulfatase, 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD), aromatase, involved in the last steps of E(2) bioformation in this tissue. Quantitative data show that the 'sulfatase pathway', which transforms estrogen sulfates into the bioactive unconjugated E(2), is 100-500 times higher than the 'aromatase pathway' which converts androgens into estrogens. In this paper we explore the effect of E(2) on the sulfatase activity using two hormone-dependent human breast cancer cells: MCF-7 and T-47D. The action of E(2) on the sulfatase activity was evaluated by the conversion of estrone sulfate (E(1)S) into E(2). The cells were incubated in Minimal Essential Medium (MEM) containing 5% steroid-depleted fetal calf serum and incubated with physiological concentrations of [(3)H]E(1)S (5 x 10(-9) M) alone (control) or in the presence of E(2) (5 x 10(-10) to 5 x 10(-5) M) for 24 h at 37 degrees C. It was found that E(2) is a potent inhibitory agent of the estrone sulfatase activity in both cell lines. A low concentration of E(2): 5 x 10(-9) M decreases the sulfatase activity by 67% in MCF-7 cells and 57% in T-47D cells. More than 80% of the decrease in the formation of E(2) was obtained with the dose of 5 x 10(-7) M in both cell lines. It is concluded that this paradoxical effect of E(2) adds a new biological response of this hormone and could be related to estrogen replacement therapy in which it was observed to have either no effect or to decrease breast cancer mortality in postmenopausal women. Preliminary results are indicated in the Proceedings of the 14th International Symposium of the Journal of Steroid Biochemistry & Molecular Biology (Quebec, Canada, 24-27 June 2000) [J. Steroid Biochem. Molec. Biol. 76 (2001) 95-104](1) and presented at the 83rd Annual Meeting of the Endocrine Society (Denver, USA, 20-23 June 2001 (abstract no. P2-615). PMID:11530280

  13. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    PubMed Central

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-01-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. PMID:22841774

  14. Characterization and modulation of a prolactin receptor mRNA isoform in normal and tumoral human breast tissues.

    PubMed

    Laud, K; Gourdou, I; Belair, L; Peyrat, J P; Djiane, J

    2000-03-15

    The role of prolactin (PRL) and its specific receptor (R-PRL) in human breast tumorigenesis remains unclear. We have investigated here the presence of extracellular-deleted hPRL-R isoforms in normal human breast, fibrocystic disease, primary breast carcinoma (ductal carcinoma, ductulo-lobular and lobular) and breast cancer cell lines (T47-D and MCF-7). RT-PCR and Southern blot analysis demonstrated the expression of full-length hPRL-R transcript in all samples tested. We also detected a hPRL-R transcript generated by alternative exon 6 splicing. This isoform has a 170 bp deletion in its extracellular sub-domain that induces a frameshift. Thus, the predicted amino-acid sequence should encode a putative soluble protein with the N-terminal sub-domain of the hPRL-R and 10 additional carboxy-terminal residues. This isoform should not bind PRL as previously demonstrated by other experiments. Moreover, the ratio of full-length to deleted form of hPRL-R transcripts differs from normal to tumoral breast tissue. This ratio is higher in tumoral mammary gland than in normal tissue. Our data suggest that the alternative splicing of the hPRL-R gene towards the deleted transcript may be a mechanism to down- or up-regulate the expression of the native transcript of hPRL-R in accordance to the physiological or pathological state of the mammary gland. PMID:10709093

  15. Immunologic analysis of human breast cancer progesterone receptors. 1. Immunonaffinity purification of transformed receptors and production of monoclonal antibodies

    SciTech Connect

    Estes, P.A.; Suba, E.J.; Lawler-Heavner, J.; Elashry-Stowers, D.; Wei, L.L.; Toft, D.O.; Sullivan, W.P.; Horwitz, K.B.; Edwards, D.P.

    1987-09-22

    A monoclonal antibody (MAb), designated PR-6, produced against chick oviduct progesterone receptors cross-reacts with the M/sub r/ 120,000 human B receptors. An immunomatrix prepared with PR-6 was used to purify progesterone receptors (PR) from T47D human breast cancer cells. Single-step immunoaffinity chromatography results in enrichment of B receptors (identified by immunoblot with PR-6 and by photoaffinity labeling with (/sup 3/H)promegestone) to a specific activity of 1915 pmol/mg of protein (or 23% purity) and with 27% yield. Purity and yields as judged by gel electrophoresis and densitometric scanning of the B protein were approximately 1.7-fold higher due to partial loss in hormone binding activity at the elution step. B receptors purified under these conditions are transformed and biologically active. They were maintained as undergraded 120-kDa doublets and retained both hormone and DNA binding activities. These purified B receptors were used as immunogen for production of four monoclonal antibodies against human PR. Three of the MAbs, designated as B-30 (IgG/sub 1/), B-64 (IgG/sub 1/), and B-11 (IgM), are specific for B receptors. The fourth MAb, A/B-52 (IgG/sub 1/), reacts with both A and B receptors. The IgG MAbs are monospecific for human PR since they recognize and absorb native receptor-hormone complexes, displace the sedimentation of 4S receptors on salt containing sucrose gradients, and, by immunoblot assay of crude T47D cytosol, react only with receptor polypeptides. Although mice were injected with B receptors only, production of A/B-52 which recognized both A and B receptors provides evidence that these two proteins share regions of structural homology.

  16. Aluminium and human breast diseases.

    PubMed

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 28 ?g/l) compared with control healthy subjects (mean 131 10 ?g/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 ?g/l) compared with human serum (median 6 ?g/l) or human milk (median 25 ?g/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate. PMID:22099158

  17. Kinetics of hyperpolarized 13C1-pyruvate transport and metabolism in living human breast cancer cells

    PubMed Central

    Harris, Talia; Eliyahu, Galit; Frydman, Lucio; Degani, Hadassa

    2009-01-01

    Metabolic fluxes can serve as specific biomarkers for detecting malignant transformations, tumor progression, and response to microenvironmental changes and treatment procedures. We present noninvasive hyperpolarized 13C NMR investigations on the metabolic flux of pyruvate to lactate, in a well-controlled injection/perfusion system using T47D human breast cancer cells. Initial rates of pyruvate-to-lactate conversion were obtained by fitting the hyperpolarized 13C and ancillary 31P NMR data to a model, yielding both kinetic parameters and mechanistic insight into this conversion. Transport was found to be the rate-limiting process for the conversion of extracellular pyruvate to lactate with Km = 2.14 0.03 mM, typical of the monocarboxylate transporter 1 (MCT1), and a Vmax = 27.6 1.1 fmolmin?1cell?1, in agreement with the high expression level of this transporter. Modulation of the environment to hypoxic conditions as well as suppression of cells' perfusion enhanced the rate of pyruvate-to-lactate conversion, presumably by up-regulation of the MCT1. Conversely, the addition of quercetin, a flavonoidal MCT1 inhibitor, markedly reduces the apparent rate of pyruvate-to-lactate conversion. These results suggest that hyperpolarized 13C1-pyruvate may be a useful magnetic resonance biomarker of MCT regulation and malignant transformations in breast cancer. PMID:19826085

  18. Benzene-Poly-Carboxylic Acid Complex, a Novel Anti-Cancer Agent Induces Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Fares, Fuad; Azzam, Naiel; Fares, Basem; Larsen, Stig; Lindkaer-Jensen, Steen

    2014-01-01

    Some cases of breast cancer are composed of clones of hormonal-independent growing cells, which do not respond to therapy. In the present study, the effect of Benzene-Poly-Carboxylic Acid Complex (BP-C1) on growth of human breast-cancer cells was tested. BP-C1 is a novel anti-cancer complex of benzene-poly-carboxylic acids with a very low concentration of cis-diammineplatinum (II) dichloride. Human breast cancer cells, MCF-7 and T47D, were used. Cell viability was detected by XTT assay and apoptosis was detected by Flow Cytometry and by annexin V/FITC/PI assay. Caspases were detected by western blot analysis and gene expression was measured by using the Applied Biosystems® TaqMan® Array Plates. The results showed that exposure of the cells to BP-C1 for 48 h, significantly (P<0.001) reduced cell viability, induced apoptosis and activated caspase 8 and caspace 9. Moreover, gene expression experiments indicated that BP-C1 increased the expression of pro-apoptotic genes (CASP8AP1, TNFRSF21, NFkB2, FADD, BCL10 and CASP8) and lowered the level of mRNA transcripts of inhibitory apoptotic genes (BCL2L11, BCL2L2 and XIAP. These findings may lead to the development of new therapeutic strategies for treatment of human cancer using BP-C1 analog. PMID:24523856

  19. Alpha cyano-4-hydroxy-3-methoxycinnamic acid inhibits proliferation and induces apoptosis in human breast cancer cells.

    PubMed

    Hamdan, Lamia; Arrar, Zoheir; Al Muataz, Yacoub; Suleiman, Lutfi; Ngrier, Claude; Mulengi, Joseph Kajima; Boukerche, Habib

    2013-01-01

    This study investigated the underlying mechanism of 4-hydroxy-3-methoxycinnamic acid (ACCA), on the growth of breast cancer cells and normal immortal epithelial cells, and compared their cytotoxic effects responses. Treatment of breast cancer cells (MCF-7, T47D, and MDA-231) with ACCA resulted in dose- and time-dependent decrease of cell proliferation, viability in colony formation assay, and programmed cell death (apoptosis) with minimal effects on non-tumoral cells. The ability of ACCA to suppress growth in cancer cells not expressing or containing defects in p53 gene indicates a lack of involvement of this critical tumor suppressor element in mediating ACCA-induced growth inhibition. Induction of apoptosis correlated with an increase in Bax protein, an established inducer of programmed cell death, and the ratio of Bax to Bcl-2, an established inhibitor of apoptosis. We also documented the ability of ACCA to inhibit the migration and invasion of MDA-231 cells with ACCA in vitro. Additionally, tumor growth of MDA-231 breast cancer cells in vivo was dramatically affected with ACCA. On the basis of its selective anticancer inhibitory activity on tumor cells, ACCA may represent a promising therapeutic drug that should be further evaluated as a chemotherapeutic agent for human breast cancer. PMID:24039831

  20. Chemical and biological differentiation of three human breast cancer cell types using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    SciTech Connect

    Kulp, K S; Berman, E F; Knize, M G; Shattuck, D L; Nelson, E J; Wu, L; Montgomery, J L; Felton, J S; Wu, K J

    2006-01-09

    We use Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) to image and classify individual cells based on their characteristic mass spectra. Using statistical data reduction on the large data sets generated during TOF-SIMS analysis, similar biological materials can be differentiated based on a combination of small changes in protein expression, metabolic activity and cell structure. We apply this powerful technique to image and differentiate three carcinoma-derived human breast cancer cell lines (MCF-7, T47D and MDA-MB-231). In homogenized cells, we show the ability to differentiate the cell types as well as cellular compartments (cytosol, nuclear and membrane). These studies illustrate the capacity of TOF-SIMS to characterize individual cells by chemical composition, which could ultimately be applied to detect and identify single aberrant cells within a normal cell population. Ultimately, we anticipate characterizing rare chemical changes that may provide clues to single cell progression within carcinogenic and metastatic pathways.

  1. Validation of T47D-KBluc cell assay for detection of estrogen receptor agonists and antagonists

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to environmental estrogens and their potential impact on reproductive health. Cell-based assays are useful tools to determine the estrogenic activity of chemicals. Confidence in in vitro assay results is strengthe...

  2. Validation of T47D-KBluc cell assay for detection of estrogen receptor agonists and antagonists###

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to environmental estrogens and their potential impact on reproductive health. Cell-based assays are useful tools to determine the estrogenic activity of chemicals. Confidence in in vitro assay results is strengthe...

  3. Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions.

    PubMed

    Holen, I; Nutter, F; Wilkinson, J M; Evans, C A; Avgoustou, P; Ottewell, Penelope D

    2015-10-01

    Bone is established as the preferred site of breast cancer metastasis. However, the precise mechanisms responsible for this preference remain unidentified. In order to improve outcome for patients with advanced breast cancer and skeletal involvement, we need to better understand how this process is initiated and regulated. As bone metastasis cannot be easily studied in patients, researchers have to date mainly relied on in vivo xenograft models. A major limitation of these is that they do not contain a human bone microenvironment, increasingly considered to be an important component of metastases. In order to address this shortcoming, we have developed a novel humanised bone model, where 1 10(5) luciferase-expressing MDA-MB-231 or T47D human breast tumour cells are seeded on viable human subchaodral bone discs in vitro. These discs contain functional osteoclasts 2-weeks after in vitro culture and positive staining for calcine 1-week after culture demonstrating active bone resorption/formation. In vitro inoculation of MDA-MB-231 or T47D cells colonised human bone cores and remained viable for <4 weeks, however, use of matrigel to enhance adhesion or a moving platform to increase diffusion of nutrients provided no additional advantage. Following colonisation by the tumour cells, bone discs pre-seeded with MDA-MB-231 cells were implanted subcutaneously into NOD SCID mice, and tumour growth monitored using in vivo imaging for up to 6 weeks. Tumour growth progressed in human bone discs in 80 % of the animals mimicking the later stages of human bone metastasis. Immunohistochemical and PCR analysis revealed that growing MDA-MB-231 cells in human bone resulted in these cells acquiring a molecular phenotype previously associated with breast cancer bone metastases. MDA-MB-231 cells grown in human bone discs showed increased expression of IL-1B, HRAS and MMP9 and decreased expression of S100A4, whereas, DKK2 and FN1 were unaltered compared with the same cells grown in mammary fat pads of mice not implanted with human bone discs. PMID:26231669

  4. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    SciTech Connect

    Wang, Yifan; Li, Shu Jie; Pan, Juncheng; Che, Yongzhe; Yin, Jian; Zhao, Qing

    2011-08-26

    Highlights: {yields} Hv1 is specifically expressed in highly metastatic human breast tumor tissues. {yields} Hv1 regulates breast cancer cytosolic pH. {yields} Hv1 acidifies extracellular milieu. {yields} Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  5. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  6. Transition of human breast cancer cells from an oestrogen responsive to unresponsive state.

    PubMed

    Darbre, P D; Daly, R J

    1990-12-20

    An in vitro model system is described for studying the problem of loss of steroid sensitivity in breast cancer cells. Growth of cloned oestrogen-sensitive human breast cancer cells in the long-term absence of steroid gives rise to a population of oestrogen-insensitive cells. In ZR-75-1 cells, the effect is clonal but occurs at high frequency suggesting a mechanism affecting a wide proportion of the cell population synchronously. This does not involve any reduction in oestrogen receptor number. Furthermore, there is no coordinated loss of oestrogen-sensitive molecular markers, showing that oestrogen receptors remain not only present but functional. These growth changes are not accompanied by any loss of growth inhibition by antioestrogen. Although steroid deprivation does not result in loss of oestrogen-sensitive markers, this does not hold true for other steroids. There was a reduction in progestin, androgen and glucocorticoid regulation on transfected LTRs. Loss of steroid-sensitive growth was accompanied by changes in response to exogenous growth factors and altered endogenous growth factor mRNA production. Steroid-deprived T-47-D cells acquire sensitivity to stimulation by TGF beta and have raised TGF beta 1 and TGF beta 2 mRNA levels. ZR-75-1 cells are growth inhibited by TGF beta and have reduced TGF beta 1 mRNA levels. In MCF-7 cells, increased IGFII mRNA, following transfection, can result in an increased basal cell growth rate in the absence of steroid. These findings are discussed in relation to possible autocrine mechanisms in the loss of steroid sensitivity of breast cancer cells. PMID:2285587

  7. Effects of 60-Hz fields, estradiol and xenoestrogens on human breast cancer cells

    SciTech Connect

    Dees, C.; Travis, C.; Garrett, S.; Henley, D.

    1996-10-01

    If exposure to xenoestrogens or electromagnetic fields (EMFs) such as 60 Hz contributes to the etiology of breast cancer, it is likely that they must stimulate the growth of breast cells, damage genetic material or enhance the effects of other mitogenic or mutagenic agents (co-promotion). Therefore, the ability of xenoestrogens or exposure to 60-Hz fields to stimulate the entry of growth-arrested human breast cancer cells into the cell cycle was determined using cyclin-dependent kinase 2 (Cdk2) activity, synthesis of cyclin D1 and cdc2 activity. Exposure of estrogen receptor-positive MCF-7 or T-47D cells to estrogen and xenoestrogens (DDT and Red No.3) increased Cdk2 and cyclin B1-cdc2 activity and cyclin D1 synthesis. Exposure of breast cancer cells to 12 mG or 1 or 9 G electromagnetic fields at 60 Hz failed to stimulate Cdk2 or cyclin B1-cdc2 activity or cyclin D1 synthesis. Simultaneous co-exposure of cells to 60-Hz fields and chemical promoters did not enhance Cdk2 activation above the levels produced by the chemical promoter alone. Estrogen and xenoestrogens also stimulated binding of the estrogen receptor to the estrogen receptor element but the EMF did not. Phorbol 12-myristate 13-acetate (PMA) induced phosphorylation of p53 and pRb105 in MCF-7 cells, but EMF exposure had no effect. DNA-damaging chemotherapeutic agents and Red Dye No. 3 were found to increase p53 site-specific DNA binding in breast cancer cells, but EMF exposure did not. These studies suggest that estrogen and xenoestrogens stimulate growth-arrested breast cancer cells to enter the growth cycle, but EMF exposure does not. Site-specific p53-DNA binding was increased in MCF-7 cells treated with DNA-damaging agents, but not by EMF exposure. EMF exposure does not appear to act as a promoter or DNA-damaging agent for human breast cancer cells in vitro. 34 refs., 10 figs.

  8. The transcriptional responsiveness of LKB1 to STAT-mediated signaling is differentially modulated by prolactin in human breast cancer cells

    PubMed Central

    2014-01-01

    Background Liver kinase 1 (LKB1) is an important multi-tasking protein linked with metabolic signaling, also controlling polarity and cytoskeletal rearrangements in diverse cell types including cancer cells. Prolactin (PRL) and Signal transducer and activator of transcription (STAT) proteins have been associated with breast cancer progression. The current investigation examines the effect of PRL and STAT-mediated signaling on the transcriptional regulation of LKB1 expression in human breast cancer cells. Methods MDA-MB-231, MCF-7, and T47D human breast cancer cells, and CHO-K1 cells transiently expressing the PRL receptor (long form), were treated with 100ng/ml of PRL for 24hours. A LKB1 promoter-luciferase construct and its truncations were used to assess transcriptional changes in response to specific siRNAs or inhibitors targeting Janus activated kinase 2 (JAK2), STAT3, and STAT5A. Real-time PCR and Western blotting were applied to quantify changes in mRNA and protein levels. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays were used to examine STAT3 and STAT5A binding to the LKB1 promoter. Results Consistent with increases in mRNA, the LKB1 promoter was up-regulated by PRL in MDA-MB-231 cells, a response that was lost upon distal promoter truncation. A putative GAS element that could provide a STAT binding site mapped to this region, and its mutation decreased PRL-responsiveness. PRL-mediated increases in promoter activity required signaling through STAT3 and STAT5A, also involving JAK2. Both STATs imparted basally repressive effects in MDA-MB-231 cells. PRL increased in vivo binding of STAT3, and more definitively, STAT5A, to the LKB1 promoter region containing the GAS site. In T47D cells, PRL down-regulated LKB1 transcriptional activity, an effect that was reversed upon culture in phenol red-free media. Interleukin 6, a cytokine activating STAT signaling in diverse cell types, also increased LKB1 mRNA levels and promoter activity in MDA-MB-231 cells. Conclusions LKB1 is differentially regulated by PRL at the level of transcription in representative human breast cancer cells. Its promoter is targeted by STAT proteins, and the cellular estrogen receptor status may affect PRL-responsiveness. The hormonal and possibly cytokine-mediated control of LKB1 expression is particularly relevant in aggressive breast cancer cells, potentially promoting survival under energetically unfavorable conditions. PMID:24913037

  9. Characterization, in some human breast cancer cell lines, of gastrin-releasing peptide-like receptors which are absent in normal breast epithelial cells.

    PubMed

    Giacchetti, S; Gauvill, C; de Crmoux, P; Bertin, L; Berthon, P; Abita, J P; Cuttitta, F; Calvo, F

    1990-08-15

    The binding of 125I-Tyr4 bombesin was investigated on plasma membranes of 8 human breast cancer cell lines and 2 long-term cultures of normal human breast epithelial cells. Scatchard plots were compatible with high-affinity, single-site class of receptors in 3 cell lines (KD of 0.75 x 10(-9) and 10(-9) M, Bmax of 0.75 x 10(-13) and 9.7 x 10(-13) M/mg protein in MDA-MB231 and in T47D cells, respectively) while no binding was observed in 5 other cell lines and normal epithelial cells. The neuropeptide and its structural analogues (natural or synthetic) inhibited the binding of 125I-Tyr4 bombesin in the following order of potency: gastrin-releasing peptide (GRP, EC50 = 1.7 x 10(-10) M) greater than BIM 26159 greater than bombesin, Tyr4 bombesin greater than BIM 26147 greater than litorin greater than neuromedin C. In contrast, 125I-Tyr4 bombesin binding was not displaced by neuromedin B, somatostatin, bradykinin and insulin. In agreement with our binding data, SDS-PAGE of the complex 125I-Tyr4 bombesin-receptor covalently linked by ethylene glycol-bis succinimidyl succinate (EGS) identified after autoradiography a single band with a molecular weight of 75,000, which disappeared in the presence of bombesin in excess. No transcription of either GRP or neuromedin B mRNA could be shown in tumor or normal cells. Exogenous gastrin-releasing peptide had no effect on growth of the cell lines when a serum-free medium was used, implicating that in breast cancer cell lines this receptor does not mediate growth but has a functional role. PMID:2166713

  10. Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion

    PubMed Central

    Santhanam, AN; Baker, AR; Hegamyer, G; Kirschmann, DA; Colburn, NH

    2012-01-01

    Metastasis to bone, liver and lungs is the primary cause of death in breast cancer patients. Our studies have revealed that the novel tumor suppressor Pdcd4 inhibits breast cancer cell migration and invasion in vitro. Loss of Pdcd4 in human nonmetastatic breast cancer cells increased the expression of lysyl oxidase (LOX) mRNA. LOX is a hypoxia-inducible amine oxidase, the activity of which enhances breast cancer cell invasion in vitro and in vivo. Specific inhibition of LOX activity by ?-aminopropionitrile or small interfering RNA decreased the invasiveness of T47D and MCF7 breast cancer cells attenuated for Pdcd4 function. Most significantly, loss of Pdcd4 augments hypoxia induction of LOX as well. Conversely, overexpression of Pdcd4 significantly reversed the hypoxia induction of LOX expression in T47D cells attenuated for Pdcd4. However, Pdcd4 did not affect hypoxia-inducible factor-1 (HIF-1) protein expression or HIF-1-responsive element-luciferase activity in response to hypoxia, suggesting that Pdcd4 regulation of LOX occurs through an HIF-independent mechanism. Nevertheless, the loss of Pdcd4 early in cancer progression may have an important role in the increased sensitivity of cancer cells to hypoxia through increased LOX activity and concomitant enhanced invasiveness. PMID:20498644

  11. Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion.

    PubMed

    Santhanam, A N; Baker, A R; Hegamyer, G; Kirschmann, D A; Colburn, N H

    2010-07-01

    Metastasis to bone, liver and lungs is the primary cause of death in breast cancer patients. Our studies have revealed that the novel tumor suppressor Pdcd4 inhibits breast cancer cell migration and invasion in vitro. Loss of Pdcd4 in human nonmetastatic breast cancer cells increased the expression of lysyl oxidase (LOX) mRNA. LOX is a hypoxia-inducible amine oxidase, the activity of which enhances breast cancer cell invasion in vitro and in vivo. Specific inhibition of LOX activity by beta-aminopropionitrile or small interfering RNA decreased the invasiveness of T47D and MCF7 breast cancer cells attenuated for Pdcd4 function. Most significantly, loss of Pdcd4 augments hypoxia induction of LOX as well. Conversely, overexpression of Pdcd4 significantly reversed the hypoxia induction of LOX expression in T47D cells attenuated for Pdcd4. However, Pdcd4 did not affect hypoxia-inducible factor-1 (HIF-1) protein expression or HIF-1-responsive element-luciferase activity in response to hypoxia, suggesting that Pdcd4 regulation of LOX occurs through an HIF-independent mechanism. Nevertheless, the loss of Pdcd4 early in cancer progression may have an important role in the increased sensitivity of cancer cells to hypoxia through increased LOX activity and concomitant enhanced invasiveness. PMID:20498644

  12. Immunotherapeutic Potential of Anti-Human Endogenous Retrovirus-K Envelope Protein Antibodies in Targeting Breast Tumors

    PubMed Central

    Rycaj, Kiera; Plummer, Joshua B.; Li, Ming; Yin, Bingnan; Frerich, Katherine; Garza, Jeremy G.; Shen, Jianjun; Lin, Kevin; Yan, Peisha; Glynn, Sharon A.; Dorsey, Tiffany H.; Hunt, Kelly K.; Ambs, Stefan; Johanning, Gary L.

    2012-01-01

    Background The envelope (env) protein of the human endogenous retrovirus type K (HERV-K) family is commonly expressed on the surface of breast cancer cells. We assessed whether HERV-K env is a potential target for antibody-based immunotherapy of breast cancer. Methods We examined the expression of HERV-K env protein in various malignant (MDA-MB-231, MCF-7, SKBR3, MDA-MB-453, T47D, and ZR-75-1) and nonmalignant (MCF-10A and MCF-10AT) human breast cell lines by immunoblot, enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry. Anti-HERV-K env monoclonal antibodies (mAbs; 6H5, 4D1, 4E11, 6E11, and 4E6) were used to target expression of HERV-K, and antitumor effects were assessed by quantifying growth and apoptosis of breast cancer cells in vitro, and tumor growth in vivo in mice (n = 5 per group) bearing xenograft tumors. The mechanisms responsible for 6H5 mAbmediated effects were investigated by microarray assays, flow cytometry, immunoblot, and immunofluorescence staining. The expression of HERV-K env protein was assessed in primary breast tumors (n = 223) by immunohistochemistry. All statistical tests were two-sided. Results The expression of HERV-K env protein in malignant breast cancer cell lines was substantially higher than nonmalignant breast cells. AntiHERV-K-specific mAbs inhibited growth and induced apoptosis of breast cancer cells in vitro. Mice treated with 6H5 mAb showed statistically significantly reduced growth of xenograft tumors compared with mice treated with control immunoglobulin (control [mIgG] vs 6H5 mAb, for tumors originating from MDA-MB-231 cells, mean size = 1448.33 vs 475.44 mm3; difference = 972.89 mm3, 95% CI = 470.17 to 1475.61 mm3; P < .001). Several proteins involved in the apoptotic signaling pathways were overexpressed in vitro in 6H5 mAbtreated malignant breast cells compared with mIgG-treated control. HERV-K expression was detected in 148 (66%) of 223 primary breast tumors, and a higher rate of lymph node metastasis was associated with HERV-K-positive compared with HERV-K-negative tumors (43% vs 23%, P = .003). Conclusion Monoclonal antibodies against HERV-K env protein show potential as novel immunotherapeutic agents for breast cancer therapy. PMID:22247020

  13. Immunologic analysis of human breast cancer progesterone receptors. 2. Structure, phosphorylation, and processing

    SciTech Connect

    Wei, L.L.; Sheridan, P.L.; Krett, N.L.; Francis, M.D.; Toft, D.O.; Edwards, D.P.; Horwitz, K.B.

    1987-09-22

    The authors have used a monoclonal antibody (MAb) directed against chick oviduct progesterone receptors (PR), that cross-reacts with human PR, to analyze PR structure and phosphorylation. This MAb, designated PR-6, interacts only with B receptors (M/sub r/ 120,000) of T47D human breast cancer cells; it has no affinity for A receptors (M/sub r/ 94,000) or for proteolytic fragments from either protein. The antibody immunoprecipitates native B receptors and was used to study the structure of native untransformed 8S and transformed 4S receptors, using sucrose density gradient analysis, photoaffinity labeling, and gel electrophoresis. The independence of A- and B-receptor complexes was confirmed by the fining that purified, transformed B receptors bind well to DNA-cellulose. Additional studies focused on the covalent modifications of receptors. The previously described shifts in apparent molecular weight of nuclear PR following R5020 treatment using in situ photoaffinity labeling. To show whether these shifts can be explained by receptor phosphorylation, untreated cells and hormone-treated cells were metabolically labeled with (/sup 32/P)orthophosphate, and the B receptors were isolated by immunoprecipitation with PR-6 and analyzed by sodium dodecyl sulfate (SDS) gel electrophoresis. In both treatment states, B receptors were labeled in vivo with /sup 32/P, thus demonstrating directly that human PR are phosphoproteins. Since B receptors were labeled in the absence of hormone and also after their in vivo transformation by hormone, they appear to be substrates for two phosphorylation reactions, one in the untransformed state and another after they are tightly bound to chromatin. The second phosphorylation may account for the mobility shift of the receptors on SDS gels. On the basis of these data a model of human PR structure and subcellular receptor dynamics is presented.

  14. Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from human alpha S1 casein (alpha S1-casomorphin, and alpha S1-casomorphin amide).

    PubMed Central

    Kampa, M; Loukas, S; Hatzoglou, A; Martin, P; Martin, P M; Castanas, E

    1996-01-01

    A new casomorphin pentapeptide (alpha S1-casomorphin) has been isolated from the sequence of human alpha S1-casein [alpha S1-casein-(158-162)], with the sequence Tyr-Val-Pro-Phe-Pro. This peptide was found to bind with high affinity to all three subtypes of the kappa-opioid receptor (kappa 1-kappa 2). When amidated at the C-terminus, alpha S1-casomorphin amide binds to the delta- and kappa 3-opioid sites. Both alpha S1-casomorphin and its amide inhibit in a dose-dependent and reversible manner the proliferation of T47D human breast cancer cells. This anti-proliferative activity was greater for alpha S1-casomorphin, which was the most potent opioid in inhibiting T47D cell proliferation. In T47D breast cancer cells, other casomorphins have been found to bind to somatostatin receptors in addition to opioid sites. In contrast, alpha S1-casomorphin and its amide do not interact with somatostatin receptors in our system. PMID:8920997

  15. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: 31P and 13C NMR studies.

    PubMed Central

    Neeman, M; Degani, H

    1989-01-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with 31P and 13C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. The content of phosphocholine had increased by 10% to 30% within the first hour of estrogen stimulation, but the content of the other observed phosphate metabolites as well as the pH remained unchanged. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment. PMID:2748604

  16. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: sup 31 P and sup 13 C NMR studies

    SciTech Connect

    Neeman, M.; Degani, H. )

    1989-07-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with {sup 31}P and {sup 13}C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment.

  17. The chemomodulatory effects of resveratrol and didox on herceptin cytotoxicity in breast cancer cell lines.

    PubMed

    Abdel-Latif, Ghada A; Al-Abd, Ahmed M; Tadros, Mariane G; Al-Abbasi, Fahad A; Khalifa, Amany E; Abdel-Naim, Ashraf B

    2015-01-01

    Herceptin is considered an essential treatment option for double negative breast cancer. Resveratrol and didox are known chemopreventive agents with potential anticancer properties. The aim of the current study is to investigate the influence of resveratrol and didox on the cytotoxicity profile of herceptin in HER-2 receptor positive and HER-2 receptor negative breast cancer cell lines (T47D and MCF-7 cell lines, respectively). The IC50's of herceptin in T47D and MCF-7 were 0.133??0.005?ng/ml and 23.3795??1.99?ng/ml respectively. Equitoxic combination of herceptin with resveratrol or didox in T47D significantly reduced the IC50 to 0.052??0.001 and 0.0365??0.001?ng/ml, respectively and similar results were obtained in MCF-7. The gene expression of BCL-xl was markedly decreased in T47D cells following treatment with herceptin/resveratrol compared to herceptin alone. Immunocytochemical staining of HER-2 receptor in T47D cells showed a significant reduction after treatment with herceptin/resveratrol combination compared to herceptin alone. On the contrary, herceptin/didox combination had no significant effect on HER-2 receptor expression. Cell cycle analysis showed an arrest at G2/M phase for both cell lines following all treatments. In conclusion, herceptin/resveratrol and herceptin/didox combinations improved the cytotoxic profile of herceptin in both T47D and MCF-7 breast cancer cell lines. PMID:26156237

  18. Diallyl trisulfide inhibits estrogen receptor-? activity in human breast cancer cells.

    PubMed

    Hahm, Eun-Ryeong; Singh, Shivendra V

    2014-02-01

    Organosulfur compounds from garlic effectively inhibit growth of transplanted as well as spontaneous cancers in preclinical animal models without any adverse side effects. However, the mechanisms underlying anticancer effect of this class of compounds are not fully understood. This study reports, for the first time, that garlic organosulfide diallyl trisulfide (DATS) inhibits estrogen receptor-? (ER-?) activity in human breast cancer cells. Exposure of MCF-7 and T47D cells to DATS resulted in downregulation of ER-? protein, which peaked between 12- and 24-h post-treatment. DATS was relatively more effective in suppressing ER-? protein expression compared with its mono and disulfide analogs. The 17?-estradiol (E2)-induced expression of pS2 and cyclin D1, ER-? target gene products, was also decreased in the presence of DATS. Downregulation of ER-? protein expression resulting from DATS treatment was accompanied by a decrease in nuclear levels of ER-? protein, ER-? mRNA suppression, and inhibition of ERE2e1b-luciferase reporter activity. DATS-mediated inhibition of cell viability and apoptosis induction were not affected in the presence of E2. In agreement with these results, ectopic expression of ER-? in MDA-MB-231 cell line failed to confer any protection against cell proliferation inhibition or apoptosis induction resulting from DATS exposure. DATS treatment caused a decrease in protein levels of peptidyl-prolyl cis-trans isomerase (Pin1), and overexpression of Pin1 partially attenuated ER-? downregulation by DATS. DATS-induced apoptosis was modestly but significantly augmented by overexpression of Pin1. In conclusion, this study identifies ER-? as a novel target of DATS in mammary cancer cells. PMID:24487688

  19. Essiac? and Flor-Essence? herbal tonics stimulate the in vitro growth of human breast cancer cells

    SciTech Connect

    Kulp, K S; Montgomery, J L; McLimans, B; Latham, E R; Shattuck, D L; Klotz, D M; Bennett, L M

    2005-10-07

    People diagnosed with cancer often self-administer complementary and alternative medicines (CAMs) to supplement their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} and Essiac{reg_sign} Herbal Tonics are commercially available complex mixtures of herbal extracts sold as dietary supplements and used by cancer patients based on anecdotal evidence that they can treat or prevent disease. In this study, we evaluated Flor-Essence{reg_sign} and Essiac{reg_sign} for their effects on the growth of human tumor cells in culture. The effect of Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics on cell proliferation was tested in MCF-7, MDA-MB-436, MDA-MB-231, and T47D cancer cells isolated from human breast tumors. Estrogen receptor (ER) dependent activation of a luciferase reporter construct was tested in MCF-7 cells. Specific binding to the ER was tested using an ICI 182,780 competition assay. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics at 1%, 2%, 4% and 8% stimulated cell proliferation relative to untreated controls and activated ER dependent luciferase activity in MCF-7 cells. A 10{sup -7} M concentration of ICI 870,780 inhibited the induction of ER dependent luciferase activity by Flor-Essence{reg_sign} and Essiac{reg_sign}, but did not affect cell proliferation. Flor-Essence{reg_sign} and Essiac{reg_sign} Herbal Tonics can stimulate the growth of human breast cancer cells through ER mediated as well as ER independent mechanisms of action. Cancer patients and health care providers can use this information to make informed decisions about the use of these CAMs.

  20. Epigenetic silencing of NKD2, a major component of Wnt signaling, promotes breast cancer growth

    PubMed Central

    Dong, Yan; Cao, Baoping; Zhang, Meiying; Han, Weidong; Herman, James G.; Fuks, Franois; Zhao, Yali; Guo, Mingzhou

    2015-01-01

    Naked cuticle homolog 2 (NKD2) has been reported to antagonize Wnt signaling in zebrafish, mouse and mammals. The aim of this study is to investigate the epigenetic changes and mechanisms of NKD2 in human breast cancer development. Six breast cancer cell lines (MCF-7, ZR75-1, MDA-MB-468, MDA-MB-231, T47D and BT474) and 68 cases of primary human breast cancer were studied using methylation specific PCR, immunohistochemistry, western blot, flow cytometry techniques and a xenograft mouse model. The expression of NKD1 and NKD2 was regulated by promoter region methylation in breast cancer cells. No NKD1 methylation was found in primary human breast cancer. NKD2 was methylated in 51.4% (35/68) of human primary breast cancer samples. NKD2 methylation was significantly associated with reduction of NKD2 expression, and tumor stage (p < 0.05). NKD2 suppressed breast cancer cell proliferation both in vitro and in vivo. NKD2 induced G1/S arrest and inhibited Wnt signaling in breast cancer cells. In conclusion, NKD2 is frequently methylated in human breast cancer, and the expression of NKD2 is regulated by promoter region methylation. NKD2 suppresses breast cancer proliferation by inhibiting Wnt signaling. PMID:26124080

  1. Epigenetic silencing of NKD2, a major component of Wnt signaling, promotes breast cancer growth.

    PubMed

    Dong, Yan; Cao, Baoping; Zhang, Meiying; Han, Weidong; Herman, James G; Fuks, Franois; Zhao, Yali; Guo, Mingzhou

    2015-09-01

    Naked cuticle homolog 2 (NKD2) has been reported to antagonize Wnt signaling in zebrafish, mouse and mammals. The aim of this study is to investigate the epigenetic changes and mechanisms of NKD2 in human breast cancer development. Six breast cancer cell lines (MCF-7, ZR75-1, MDA-MB-468, MDA-MB-231, T47D and BT474) and 68 cases of primary human breast cancer were studied using methylation specific PCR, immunohistochemistry, western blot, flow cytometry techniques and a xenograft mouse model. The expression of NKD1 and NKD2 was regulated by promoter region methylation in breast cancer cells. No NKD1 methylation was found in primary human breast cancer. NKD2 was methylated in 51.4% (35/68) of human primary breast cancer samples. NKD2 methylation was significantly associated with reduction of NKD2 expression, and tumor stage (p < 0.05). NKD2 suppressed breast cancer cell proliferation both in vitro and in vivo. NKD2 induced G1/S arrest and inhibited Wnt signaling in breast cancer cells. In conclusion, NKD2 is frequently methylated in human breast cancer, and the expression of NKD2 is regulated by promoter region methylation. NKD2 suppresses breast cancer proliferation by inhibiting Wnt signaling. PMID:26124080

  2. [Effect of carnosol against proliferative activity of breast cancer cells and its estrogen receptor subtype's mediation and regulation mechanisms].

    PubMed

    Zhao, Pi-Wen; Lee, David Yue-Wei; Ma, Zhong-Ze; Sun, Yan-Ling; Tao, Shi-Ying; Zang, Jin-Feng; Niu, Jian-Zhao

    2014-09-01

    Carnosol has been proved to have anti-breast cancer effect in previous research. But its ER subtype's specific regulation and mediation mechanisms remain unclear. The aim of this study is to observe the effect of carnosol on cell proliferation and its estrogen receptor ? and ?'s specific regulation and mediation mechanisms with ER positive breast cancer T47D cell. With estrogen receptor ? and ? antagonists MPP and PHTPP as tools, the MTT cell proliferation assay was performed to observe the effect of carnosol on T47D cell proliferation. The changes in the T47D cell proliferation cycle were detected by flow cytometry. The effect of carnosol on ER? and ER? expressions of T47D cells was measured by Western blot. The findings showed that 1 x 10(-5)-1 x 10(-7) mol x L(-1) carnosol could significantly inhibit the T47D cell proliferation, which could be enhanced by MPP or weakened by PHTPP. Meanwhile, 1 x 10(-5) mol x L(-1) or 1 x 10(-6) mol x L(-1) carnosol could significantly increase ER? and ER? expressions of T47D cells, and remarkably increase ER?/ER? ratio. The results showed that carnosol showed the inhibitory effect on the proliferation of ER positive breast cancer cells through target cell ER, especially ER? pathway. In the meantime, carnosol could regulate expressions and proportions of target cell ER subtype ER? and ER?. PMID:25522625

  3. Antiproliferative activity of L-asparaginase of Tetrahymena pyriformis on human breast cancer cell lines.

    PubMed

    Kyriakidis, D A; Tsirka, S A; Tsavdaridis, I K; Iliadis, S N; Kortsaris, A H

    1990-08-10

    Purified L-asparaginase of Tetrahymena pyriformis is a multi-subunit enzyme exhibiting protein kinase activity as well. The enzyme's L-asparaginase activity is affected by its phosphorylation state. Both native and dephosphorylated L-asparaginase show antiproliferative activity on three breast cancer cell lines (T47D, BT20 and MCF-7) and on Walker 256 cells. These cells do not possess measurable L-asparaginase or L-asparagine synthetase activity. When T47D cells are treated for different times with L-asparaginase and then placed in fresh medium, the growth of cells treated for 1, 3, or 6 hours is initiated and parallels control curve, while the growth of cells treated for 24 or 48 hours with L-asparaginase stays at the same inhibitory level (24 h treatment) or continues to drop (48 h treatment). Addition of D-asparagine, a competitive inhibitor of T. pyriformis L-asparaginase, counteracts the antiproliferative activity of L-asparaginase, indicating that L-asparaginase and not the kinase activity is responsible for that effect. PMID:2125695

  4. Real-Time Growth Kinetics Measuring Hormone Mimicry for ToxCast Chemicals in T?47D Human Ductal Carcinoma Cells

    EPA Science Inventory

    High-throughput screening (HTS) assays capable of profiling thousands of environmentally relevant chemicals for in vitro biological activity provide useful information on the potential for disrupting endocrine pathways. Disruption of the estrogen signaling pathway has been implic...

  5. The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background.

    PubMed

    Bulzomi, Pamela; Bolli, Alessandro; Galluzzo, Paola; Acconcia, Filippo; Ascenzi, Paolo; Marino, Maria

    2012-08-01

    Fruit and vegetable consumption has generally been associated with the prevention or suppression of cancer. However, food could contain a multitude of chemicals (e.g., bisphenol A; BPA) that could synergize or antagonize the effects of diet-derived compounds. Remarkably, food containers (e.g., water and infant bottles) are the largest source of exposure to BPA for human beings. Here, the effects of the coexposure of naringenin (Nar, 1.0 10(-9) M to 1.0 10(-4) M) and BPA (1.0 10(-5) M) in estrogen-dependent breast cancer cell lines expressing (i.e., MCF-7 and T47D) or not expressing (i.e., MDA-MB-231) estrogen receptor ? (ER?) are reported. Although both Nar and BPA bind to ER?, they induce opposite effects on breast cancer cell growth. BPA induces cell proliferation, whereas Nar only decreases the number of ER?-positive cells (i.e., MCF-7 and T47D). Notably, even in the presence of BPA, Nar impairs breast cancer cell proliferation by activating caspase-3. The molecular pathways involved require p38 activation, whereas, the BPA-induced AKT activation is completely prevented by the Nar treatment. As a whole, Nar maintains its proapoptotic effects even in the presence of the food contaminant BPA, thus, enlarging the chemopreventive potential of this flavanone. PMID:22692793

  6. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments.

    PubMed

    Sasser, A Kate; Mundy, Bethany L; Smith, Kristen M; Studebaker, Adam W; Axel, Amy E; Haidet, Amanda M; Fernandez, Soledad A; Hall, Brett M

    2007-09-01

    Our understanding of the impact that fibroblasts have on cancer cell behavior in vivo has been limited by the complexities of in vivo tumor microenvironments, which contain many distinct cell populations that influence tumor growth and survival. Herein, we describe a novel, three-dimensional (3D), in vitro, fluorometric, Tumor Growth Assay (TGA) that allows for non-invasive measurements of cancer cell expansion in the presence of multiple tumor-associated cell types or soluble factors, while embedded in Cultrex or Matrigel Basement Membrane Extract (BME). Using this assay, we investigated the direct biological impact of primary human bone marrow stromal cells (hMSC) on the growth rates of a panel of metastatic breast cancer cell lines. Human MSC can be readily isolated from bone marrow, a principle site of breast cancer metastasis, and were found to significantly enhance the growth rate of MCF-7 (P-value<0.0001), an estrogen receptor-alpha (ERalpha) positive breast cancer cell line, in a soluble factor-dependent manner. MSC paracrine factors also enhanced the growth of other ERalpha positive breast cancer cell lines including T47D, BT474, and ZR-75-1 (P-value<0.05). In contrast, the ERalpha negative cell line MDA-MB-231 was unaffected by hMSC and the growth rate of another ERalpha negative cell line MDA-MB-468 was elevated in the presence of hMSC, albeit to a lesser extent than MCF-7 or the other ERalpha positive cell lines tested. PMID:17467167

  7. The effectiveness of nano chemotherapeutic particles combined with mifepristone depends on the PR isoform ratio in preclinical models of breast cancer

    PubMed Central

    Rojas, Paola; Lamb, Caroline; Colombo, Lucas; May, María; Molinolo, Alfredo; Lanari, Claudia

    2014-01-01

    There is clinical and experimental evidence suggesting that antiprogestins might be used for the treatment of selected breast cancer patients. Our aim was to evaluate the effect of albumin-bound paclitaxel (Nab-paclitaxel) and pegylated doxorubicin liposomes (PEG-LD) in combination with mifepristone (MFP) in experimental breast cancer models expressing different ratios of progesterone receptor (PR) isoforms A and B. We used two antiprogestin-responsive (PRA>PRB) and two resistant (PRAhuman T47D-YA and T47D-YB xenografts growing in immunocompromised NSG mice. MFP improved the therapeutic effects of suboptimal doses of Nab-paclitaxel or PEG-LD in murine and human carcinomas with higher levels of PRA than PRB. MFP induced tissue remodeling in PRA-overexpressing tumors, increasing the stromal/tumor cell ratio and the number of functional vessels. Accordingly, an increase in nanoparticles and drug accumulation was observed in stromal and tumor cells in MFP-treated tumors. We conclude that MFP induces an increase in vessels during tissue remodeling, favoring the selective accumulation of nanoparticles inside the tumors. We propose that antiprogestins have the potential to enhance the efficacy of chemotherapy in breast tumors with a high PRA/PRB ratio. PMID:24912774

  8. Microbiota of Human Breast Tissue

    PubMed Central

    Urbaniak, Camilla; Cummins, Joanne; Brackstone, Muriel; Macklaim, Jean M.; Gloor, Gregory B.; Baban, Chwanrow K.; Scott, Leslie; O'Hanlon, Deidre M.; Burton, Jeremy P.; Francis, Kevin P.; Tangney, Mark

    2014-01-01

    In recent years, a greater appreciation for the microbes inhabiting human body sites has emerged. In the female mammary gland, milk has been shown to contain bacterial species, ostensibly reaching the ducts from the skin. We decided to investigate whether there is a microbiome within the mammary tissue. Using 16S rRNA sequencing and culture, we analyzed breast tissue from 81 women with and without cancer in Canada and Ireland. A diverse population of bacteria was detected within tissue collected from sites all around the breast in women aged 18 to 90, not all of whom had a history of lactation. The principal phylum was Proteobacteria. The most abundant taxa in the Canadian samples were Bacillus (11.4%), Acinetobacter (10.0%), Enterobacteriaceae (8.3%), Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium (5.8%), Comamonadaceae (5.7%), Gammaproteobacteria (5.0%), and Prevotella (5.0%). In the Irish samples the most abundant taxa were Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria welshimeri (12.1%), Propionibacterium (10.1%), and Pseudomonas (5.3%). None of the subjects had signs or symptoms of infection, but the presence of viable bacteria was confirmed in some samples by culture. The extent to which these organisms play a role in health or disease remains to be determined. PMID:24610844

  9. Microbiota of human breast tissue.

    PubMed

    Urbaniak, Camilla; Cummins, Joanne; Brackstone, Muriel; Macklaim, Jean M; Gloor, Gregory B; Baban, Chwanrow K; Scott, Leslie; O'Hanlon, Deidre M; Burton, Jeremy P; Francis, Kevin P; Tangney, Mark; Reid, Gregor

    2014-05-01

    In recent years, a greater appreciation for the microbes inhabiting human body sites has emerged. In the female mammary gland, milk has been shown to contain bacterial species, ostensibly reaching the ducts from the skin. We decided to investigate whether there is a microbiome within the mammary tissue. Using 16S rRNA sequencing and culture, we analyzed breast tissue from 81 women with and without cancer in Canada and Ireland. A diverse population of bacteria was detected within tissue collected from sites all around the breast in women aged 18 to 90, not all of whom had a history of lactation. The principal phylum was Proteobacteria. The most abundant taxa in the Canadian samples were Bacillus (11.4%), Acinetobacter (10.0%), Enterobacteriaceae (8.3%), Pseudomonas (6.5%), Staphylococcus (6.5%), Propionibacterium (5.8%), Comamonadaceae (5.7%), Gammaproteobacteria (5.0%), and Prevotella (5.0%). In the Irish samples the most abundant taxa were Enterobacteriaceae (30.8%), Staphylococcus (12.7%), Listeria welshimeri (12.1%), Propionibacterium (10.1%), and Pseudomonas (5.3%). None of the subjects had signs or symptoms of infection, but the presence of viable bacteria was confirmed in some samples by culture. The extent to which these organisms play a role in health or disease remains to be determined. PMID:24610844

  10. Aluminium in human breast tissue.

    PubMed

    Exley, Christopher; Charles, Lisa M; Barr, Lester; Martin, Claire; Polwart, Anthony; Darbre, Philippa D

    2007-09-01

    Aluminium is omnipresent in everyday life and increased exposure is resulting in a burgeoning body burden of this non-essential metal. Personal care products are potential contributors to the body burden of aluminium and recent evidence has linked breast cancer with aluminium-based antiperspirants. We have used graphite furnace atomic absorption spectrometry (GFAAS) to measure the aluminium content in breast biopsies obtained following mastectomies. The aluminium content of breast tissue and breast tissue fat were in the range 4-437 nmol/g dry wt. and 3-192 nmol/g oil, respectively. The aluminium content of breast tissue in the outer regions (axilla and lateral) was significantly higher (P=0.033) than the inner regions (middle and medial) of the breast. Whether differences in the regional distribution of aluminium in the breast are related to the known higher incidence of tumours in the outer upper quadrant of the breast remains to be ascertained. PMID:17629949

  11. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b.

    PubMed

    Roscigno, Giuseppina; Quintavalle, Cristina; Donnarumma, Elvira; Puoti, Ilaria; Diaz-Lagares, Angel; Iaboni, Margherita; Fiore, Danilo; Russo, Valentina; Todaro, Matilde; Romano, Giulia; Thomas, Renato; Cortino, Giuseppina; Gaggianesi, Miriam; Esteller, Manel; Croce, Carlo M; Condorelli, Gerolama

    2016-01-01

    Cancer stem cells (CSCs) are a small part of the heterogeneous tumor cell population possessing self-renewal and multilineage differentiation potential as well as a great ability to sustain tumorigenesis. The molecular pathways underlying CSC phenotype are not yet well characterized. MicroRNAs (miRs) are small noncoding RNAs that play a powerful role in biological processes. Early studies have linked miRs to the control of self-renewal and differentiation in normal and cancer stem cells. We aimed to study the functional role of miRs in human breast cancer stem cells (BCSCs), also named mammospheres. We found that miR-221 was upregulated in BCSCs compared to their differentiated counterpart. Similarly, mammospheres from T47D cells had an increased level of miR-221 compared to differentiated cells. Transfection of miR-221 in T47D cells increased the number of mammospheres and the expression of stem cell markers. Among miR-221's targets, we identified DNMT3b. Furthermore, in BCSCs we found that DNMT3b repressed the expression of various stemness genes, such as Nanog and Oct 3/4, acting on the methylation of their promoters, partially reverting the effect of miR-221 on stemness. We hypothesize that miR-221 contributes to breast cancer tumorigenicity by regulating stemness, at least in part through the control of DNMT3b expression. PMID:26556862

  12. Modulation of the uptake of critical nutrients by breast cancer cells by lactate: Impact on cell survival, proliferation and migration.

    PubMed

    Guedes, Marta; Arajo, Joo R; Correia-Branco, Ana; Gregrio, Ins; Martel, Ftima; Keating, Elisa

    2016-02-15

    This work aimed to characterize the uptake of folate and glucose by breast cancer cells and to study the effect of lactate upon the transport of these nutrients and upon cell viability, proliferation and migration capacity. Data obtained showed that: a) MCF7 cells uptake (3)H-folic acid ((3)H-FA) at physiological but not at acidic pH; b) T47D cells accumulate (3)H-FA and (14)C-5-methyltetrahydrofolate ((14)C-5-MTHF) more efficiently at acidic than at physiological pH; c) (3)H-deoxyglucose ((3)H-DG) uptake by T47D cells is sodium-independent, inhibited by cytochalasin B (CYT B) and stimulated by insulin. Regarding the effect of lactate, in T47D cells, acute (26min) and chronic (24h) exposure to lactic acid (LA) stimulated (3)H-FA uptake. Acute exposure to LA also stimulated (3)H-DG uptake and chronic exposure to LA significantly stimulated T47D cell migratory capacity. In conclusion, the transport of folates is strikingly different in two phenotypically similar breast cancer cell lines: MCF7 and T47D cells. Additionally, lactate seems to act as a signaling molecule which increases the uptake of nutrients and promotes the migration capacity of T47D cells. PMID:26794902

  13. Modeling mixtures of environmental estrogens found in U.S. surface waters with an in vitro estrogen mediated transcriptionai activation assay (T47D-KBluc).

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. Environmental estrogens can come from various sources including concentrated animal feedlot operations (CAFO), municipa...

  14. Bisphenol-A-induced inactivation of the p53 axis underlying deregulation of proliferation kinetics, and cell death in non-malignant human breast epithelial cells.

    PubMed

    Dairkee, Shanaz H; Luciani-Torres, M Gloria; Moore, Dan H; Goodson, William H

    2013-03-01

    Widespread distribution of bisphenol-A (BPA) complicates epidemiological studies of possible carcinogenic effects on the breast because there are few unexposed controls. To address this challenge, we previously developed non-cancerous human high-risk donor breast epithelial cell (HRBEC) cultures, wherein BPA exposure could be controlled experimentally. BPA consistently induced activation of the mammalian target of rapamycin (mTOR) pathway--accompanied by dose-dependent evasion of apoptosis and increased proliferation--in HRBECs from multiple donors. Here, we demonstrate key molecular changes underlying BPA-induced cellular reprogramming. In 3/3 BPA-exposed HRBEC cell lines, and in T47D breast cancer cells, proapoptotic negative regulators of the cell cycle (p53, p21(WAF1) and BAX) were markedly reduced, with concomitant increases in proliferation-initiating gene products (proliferating cell nuclear antigen, cyclins, CDKs and phosphorylated pRb). However, simultaneous exposure to BPA and the polyphenol, curcumin, partially or fully reduced the spectrum of effects associated with BPA alone, including mTOR pathway proteins (AKT1, RPS6, pRPS6 and 4EBP1). BPA exposure induced an increase in the ER? (Estrogen Receptor): ER? ratio--an effect also reversed by curcumin (analysis of variance, P < 0.02 for all test proteins). At the functional level, concurrent curcumin exposure reduced BPA-induced apoptosis evasion and rapid growth kinetics in all cell lines to varying degrees. Moreover, BPA extended the proliferation potential of 6/6 primary finite-life HRBEC cultures--another effect reduced by curcumin. Even after removal of BPA, 1/6 samples maintained continuous growth--a hallmark of cancer. We show that BPA exposure induces aberrant expression of multiple checkpoints that regulate cell survival, proliferation and apoptosis and that such changes can be effectively ameliorated. PMID:23222814

  15. Epigenetic effects of human breast milk.

    PubMed

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-04-01

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life. PMID:24763114

  16. Epigenetic Effects of Human Breast Milk

    PubMed Central

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-01-01

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life. PMID:24763114

  17. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  18. Metabolic perturbation sensitizes human breast cancer to NK cell-mediated cytotoxicity by increasing the expression of MHC class I chain-related A/B

    PubMed Central

    Fu, Dexue; Geschwind, Jean-Francois; Karthikeyan, Swathi; Miller, Eliyahu; Kunjithapatham, Rani; Wang, Zhijun; Ganapathy-Kanniappan, Shanmugasundaram

    2015-01-01

    Cleavage or shedding of the surface antigen, MHC class I chain-related (MIC) protein (A/B) has been known to be one of the mechanisms by which tumor cells escape host immune surveillance. Thus, any strategy to augment the surface expression of MICA/B could facilitate anticancer immune response. Here, we demonstrate that metabolic perturbation by the glycolytic inhibitor, 3-bromopyruvate (3-BrPA) augments the surface expression of MICA/B in human breast cancer cell lines, MDA-MB-231 and T47D. Data from in vitro studies show that a non-toxic, low-dose of 3-BrPA is sufficient to perturb energy metabolism, as evident by the activation of p-AMPK, p-AKT and p-PI3K. Further, 3-BrPA-treatment also elevated the levels of MICA/B in human breast cancer cell lines. Significantly, 3-BrPA-dependent increase in MICA/B levels also enhanced the sensitivity of cancer cells to natural killer (NK-92MI)-mediated cytotoxicity. In vivo, 3-BrPA-pretreated cells demonstrated greater sensitivity to NK-92MI therapy than their respective controls. The antitumor effect was confirmed by a reduction in tumor size and decreased tumor viability as observed by bioluminescence imaging. Histological examination and TUNEL staining demonstrated that NK-92MI administration promoted apoptosis in 3-BrPA-pretreated cells. Taken together, our data show that targeting energy metabolism could be a novel strategy to enhance the effectiveness of anticancer immunotherapeutics. PMID:25949910

  19. Human mammary microenvironment better regulates the biology of human breast cancer in humanized mouse model.

    PubMed

    Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui

    2015-02-01

    During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer. PMID:25572806

  20. Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/?-catenin and mTORC1 signaling in prostate and breast cancer cells

    PubMed Central

    Lu, Wenyan; Lin, Cuihong; Li, Yonghe

    2014-01-01

    Activation of Wnt/?-catenin signaling can result in up-regulation of mTORC1 signaling in cancer cells. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/?-catenin signaling. We found that rottlerin, a natural plant polyphenol, suppressed LRP6 expression and phosphorylation, and inhibited Wnt/?-catenin signaling in HEK293 cells. Furthermore, the inhibitory effects of rottlerin on LRP6 expression/phosphorylation and Wnt/?-catenin signaling were confirmed in human prostate cancer PC-3 and DU145 cells and breast cancer MDA-MB-231 and T-47D cells. Mechanistically, rottlerin promoted LRP6 degradation, but had no effects on LRP6 transcriptional activity. In addition, rottlerin-mediated LRP6 down-regulation was unrelated to activation of 5?-AMP-activated protein kinase (AMPK). Importantly, we also found that rottlerin inhibited mTORC1 signaling in prostate and breast cancer cells. Finally, we demonstrated that rottlerin was able to suppress the expression of cyclin D1 and survivin, two targets of both Wnt/?-catenin and mTORC1 signaling, in prostate and breast cancer cells, and displayed remarkable anticancer activity with IC50 values between 0.7 and 1.7 ?M for prostate cancer PC-3 and DU145 cells and breast cancer MDA-MB-231 and T-47D cells. The IC50 values are comparable to those shown to suppress the activities of Wnt/?-catenin and mTORC1 signaling in prostate and breast cancer cells. Our data indicate that rottlerin is a novel LRP6 inhibitor and suppresses both Wnt/?-catenin and mTORC1 signaling in prostate and breast cancer cells, and that LRP6 represents a potential therapeutic target for cancers. PMID:24607787

  1. Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells.

    PubMed

    Lv, Kezhen; Liu, Liqun; Wang, Linbo; Yu, Jiren; Liu, Xiaojiao; Cheng, Yongxia; Dong, Minjun; Teng, Rongyue; Wu, Linjiao; Fu, Peifen; Deng, Wuguo; Hu, Wenxian; Teng, Lisong

    2012-01-01

    Resistance to chemotherapy is a major obstacle for the effective treatment of cancers. Lin28 has been shown to contribute to tumor relapse after chemotherapy; however, the relationship between Lin28 and chemoresistance remained unknown. In this study, we investigated the association of Lin28 with paclitaxel resistance and identified the underlying mechanisms of action of Lin28 in human breast cancer cell lines and tumor tissues. We found that the expression level of Lin28 was closely associated with the resistance to paclitaxel treatment. The T47D cancer cell line, which highly expresses Lin28, is more resistant to paclitaxel than the MCF7, Bcap-37 or SK-BR-3 cancer cell lines, which had low-level expression of Lin28. Knocking down of Lin28 in Lin28 high expression T47D cells increased the sensitivity to paclitaxel treatment, while stable expression of Lin28 in breast cancer cells effectively attenuated the sensitivity to paclitaxel treatment, resulting in a significant increase of IC50 values of paclitaxel. Transfection with Lin28 also significantly inhibited paclitaxel-induced apoptosis. We also found that Lin28 expression was dramatically increased in tumor tissues after neoadjuvant chemotherapy or in local relapse or metastatic breast cancer tissues. Moreover, further studies showed that p21, Rb and Let-7 miRNA were the molecular targets of Lin28. Overexpression of Lin28 in breast cancer cells considerably induced p21 and Rb expression and inhibited Let-7 miRNA levels. Our results indicate that Lin28 expression might be one mechanism underlying paclitaxel resistance in breast cancer, and Lin28 could be a potential target for overcoming paclitaxel resistance in breast cancer. PMID:22808086

  2. Effects of omega-3 fatty acids on progestin stimulation of invasive properties in breast cancer.

    PubMed

    Moore, Michael R; King, Rebecca A

    2012-12-01

    Clinical studies have shown that progestins increase breast cancer risk in hormone replacement therapy, while we and others have previously reported that progestins stimulate invasive properties in progesterone receptor (PR)-rich human breast cancer cell lines. Based on others' reports that omega-3 fatty acids inhibit metastatic properties of breast cancer, we have reviewed the literature for possible connections between omega-3 fatty-acid-driven pathways and progestin-stimulated pathways in an attempt to suggest theoretical mechanisms for possible omega-3 fatty acid inhibition of progestin stimulation of breast cancer invasion. We also present some data suggesting that fatty acids regulate progestin stimulation of invasive properties in PR-rich T47D human breast cancer cells, and that an appropriate concentration of the omega-3 fatty acid eicosapentaenoic acid inhibits progestin stimulation of invasive properties. It is hoped that focus on the inter-relationship between pathways by which omega-3 fatty acids inhibit and progestins stimulate breast cancer invasive properties will lead to further in vitro, in vivo, and clinical studies testing the hypothesis that omega-3 fatty acids can inhibit progestin stimulation of invasive properties in breast cancer, and ameliorate harmful effects of progestins which occur in combined progestin-estrogen hormone replacement therapy. PMID:22833172

  3. The PIKfyve–ArPIKfyve–Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines

    SciTech Connect

    Ikonomov, Ognian C. Filios, Catherine Sbrissa, Diego Chen, Xuequn Shisheva, Assia

    2013-10-18

    Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P{sub 2} synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P{sub 2} conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P{sub 2} in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the homeostasis of these lipids in TNBC. Together, our results uncover an unexpected role for Sac3 phosphatase in TNBC cell proliferation. Database analyses, discussed herein, reinforce the involvement of Sac3 in breast cancer pathogenesis.

  4. 17?-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells

    PubMed Central

    Wright, Paul K; Jones, Sarah Bowen; Ardern, Nicholas; Ward, Rebecca; Clarke, Robert B; Sotgia, Federica; Lisanti, Michael P; Landberg, Goran; Lamb, Rebecca

    2014-01-01

    A significant proportion of the genes regulated by 17-beta-estradiol (E2) via estrogen receptor alpha (ER?) have roles in vesicle trafficking in breast cancer. Intracellular vesicle trafficking and extracellular vesicles have important roles in tumourigenesis. Here we report the discovery of giant (3-42?m) intracellular and extracellular vesicles (GVs) and the role of E2 on vesicle formation in breast cancer (BC) cell lines using three independent live cell imaging techniques. Large diameter vesicles, GVs were also identified in a patient-derived xenograft BC model, and in invasive breast carcinoma tissue. ER?-positive (MCF-7 and T47D) BC cell lines demonstrated a significant increase in GV formation after stimulation with E2 which was reversed by tamoxifen. ER?-negative (MDA-MB-231 and MDA-MB-468) BC cell lines produced GVs independently of E2 and tamoxifen. These results indicate the existence of both intracellular and extracellular vesicles with considerably larger dimensions than generally recognised with BC cells and suggest that the GVs are regulated by E2 via ER? in ER?-positive BC but by E2-independent mechanisms in ER-ve BC. PMID:24931391

  5. 17?-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells.

    PubMed

    Wright, Paul K; Jones, Sarah Bowen; Ardern, Nicholas; Ward, Rebecca; Clarke, Robert B; Sotgia, Federica; Lisanti, Michael P; Landberg, Goran; Lamb, Rebecca

    2014-05-30

    A significant proportion of the genes regulated by 17-beta-estradiol (E2) via estrogen receptor alpha (ER?) have roles in vesicle trafficking in breast cancer. Intracellular vesicle trafficking and extracellular vesicles have important roles in tumourigenesis. Here we report the discovery of giant (3-42?m) intracellular and extracellular vesicles (GVs) and the role of E2 on vesicle formation in breast cancer (BC) cell lines using three independent live cell imaging techniques. Large diameter vesicles, GVs were also identified in a patient-derived xenograft BC model, and in invasive breast carcinoma tissue. ER?-positive (MCF-7 and T47D) BC cell lines demonstrated a significant increase in GV formation after stimulation with E2 which was reversed by tamoxifen. ER?-negative (MDA-MB-231 and MDA-MB-468) BC cell lines produced GVs independently of E2 and tamoxifen. These results indicate the existence of both intracellular and extracellular vesicles with considerably larger dimensions than generally recognised with BC cells and suggest that the GVs are regulated by E2 via ER? in ER?-positive BC but by E2-independent mechanisms in ER-ve BC. PMID:24931391

  6. Localization of decorin gene expression in normal human breast tissue and in benign and malignant tumors of the human breast.

    PubMed

    Bostrm, Pia; Sainio, Annele; Kakko, Tanja; Savontaus, Mikko; Sderstrm, Mirva; Jrvelinen, Hannu

    2013-01-01

    The small extracellular matrix proteoglycan decorin which possesses a potent antitumor activity has been shown to be present in various amounts in the stroma of several tumors including those of the breast. Regarding decorin in breast malignancies the published data are conflicting, i.e., whether breast cancer cells express it or not. Here, we first compared decorin gene expression levels between healthy human breast tissue and selected types of human breast cancer using GeneSapiens databank. Next, we localized decorin mRNA in tissue specimen of normal human breast, intraductal breast papillomas and various histologic types of human breast cancer using in situ hybridization (ISH) with digoxigenin-labeled RNA probes for decorin. We also examined the effect of decorin transduction on the behavior of cultured human breast cancer MCF7 cells. Analysis of GeneSapiens databank revealed that in various human breast cancers decorin expression is significant. However, ISH results clearly demonstrated that human breast cancer cells independently of the type of the cancer do not express decorin mRNA. This was also true for papilloma-forming cells of the human breast. Indeed, decorin gene expression in healthy human breast tissue as well as in benign and malignant tumors of human breast was shown to take place solely in cells of the original stroma. Decorin transduction using decorin adenoviral vector in decorin-negative MCF7 cells resulted in a significant decrease in the proliferation of these cells and changed cell cohesion. Decorin-transduced MCF7 cells also exhibited increased apoptosis. In conclusion, our study shows that in human breast tissue only cells of the original stroma are capable of decorin gene expression. Our study also shows that transduction of decorin in decorin-negative human breast cancer cells markedly modulates the growth pattern of these cells. PMID:23007289

  7. Excretion of drugs in human breast milk

    SciTech Connect

    Welch, R.M.; Findlay, J.W.

    1981-01-01

    The present report briefly discusses some of the morphological, physiological, and compositional aspects of animal and human breast milk and how these characteristics might be important for the accumulation of drugs and foreign compounds. In addition, a study is described confirming the presence of caffeine, codeine, morphine, phenacetin, acetaminophen, and salicylic acid in the breast milk of a lactating mother following oral administration of a combination analgesic containing aspirin, phenacetin, caffeine, and codeine. Although the study is limited to one subject, it has provided critically needed data on the rates of appearance in, and elimination of these drugs from, breast milk. A similar amount of information is presented on phenacetin, also a component of the analgesic mixture, which has not been previously reported to enter human milk. The distribution of these drugs between the slightly more acidic breast milk and the relatively neutral plasma is consistent with their weakly basic, acidic, or relatively neutral properties. In general, the study shows that codeine and morphine milk concentrations are higher than, salicylic acid milk levels are much lower than, and phenacetin, caffeine, and acetaminophen milk concentrations are relatively similar to their respective plasma levels. It is projected, from estimated steady-state milk concentrations of the drugs and their metabolites studied, that very low percentages of the therapeutic dosages (less than 0.7%) would be excreted in mother's milk, too low an amount to be clinically significant to the infant.

  8. Chemical Biomarkers of Human Breast Milk Pollution

    PubMed Central

    Massart, Francesco; Gherarducci, Giulia; Marchi, Benedetta; Saggese, Giuseppe

    2008-01-01

    Human milk is, without question, the best source of nutrition for infants containing the optimal balance of fats, carbohydrates and proteins for developing babies. Breastfeeding provides a range of benefits for growth, immunity and development building a powerful bond between mother and her child. Recognition of the manifold benefits of breast milk has led to the adoption of breast-feeding policies by numerous health and professional organizations such as the World Health Organization and American Academy of Pediatrics. In industrially developed as well as in developing nations, human milk contamination by toxic chemicals such as heavy metals, dioxins and organohalogen compounds, however, is widespread and is the consequence of decades of inadequately controlled pollution. Through breastfeeding, the mother may transfer to the suckling infant potentially toxic chemicals to which the mother has previously been exposed. In the present review, environmental exposure, acquisition and current levels of old and emerging classes of breast milk pollutants are systematically presented. Although scientific evidences indicated that the advantages of breast-feeding outweigh any risks from contaminants, it is important to identify contaminant trends, to locate disproportionately exposed populations, and to take public health measures to improve chemical BM pollution as possible. PMID:19578503

  9. The role of miR-100 in regulating apoptosis of breast cancer cells.

    PubMed

    Gong, Yi; He, Tianliang; Yang, Lu; Yang, Geng; Chen, Yulei; Zhang, Xiaobo

    2015-01-01

    Breast cancer is a serious health problem worldwide. Inhibition of apoptosis plays a major role in breast cancer tumorigenesis. MicroRNAs (miRNAs) play crucial roles in the regulation of apoptosis. However, the regulation of breast cancer apoptosis by miRNAs has not been intensively investigated. To address this issue, the effect of miR-100 on the cell proliferation of different breast cancer cells was characterized in the present study. The results showed that miR-100 was significantly upregulated in SK-BR-3 cells compared with other human breast cancer cells (MCF7, MDA-MB-453, T47D, HCC1954 and SUM149). Silencing miR-100 expression with anti-miRNA-100 oligonucleotide (AMO-miR-100) initiated apoptosis of SK-BR-3 cells in vitro and in vivo. However, the overexpression of miR-100 led to the proliferation inhibition of the miR-100-downregulated breast cancer cells. Antagonism of miR-100 in SK-BR-3 cells increased the expression of MTMR3, a target gene of miR-100, which resulted in the activation of p27 and eventually led to G2/M cell-cycle arrest and apoptosis. The downregulation of miR-100 sensitized SK-BR-3 cells to chemotherapy. Therefore, our finding highlights a novel aspect of the miR-100-MTMR3-p27 pathway in the molecular etiology of breast cancer. PMID:26130569

  10. ?-eleostearic acid inhibits growth and induces apoptosis in breast cancer cells via HER2/HER3 signaling.

    PubMed

    Zhuo, Ren-Jie; Wang, Feng; Zhang, Xiao-Hong; Zhang, Jin-Jie; Xu, Jin; Dong, Wei; Zou, Zu-Quan

    2014-03-01

    ?-eleostearic acid (?-ESA) has been shown to possess antitumor activity in cancer cells. However, the underlying mechanism(s) remain largely unknown. The present study was designed to investigate the antitumor effect of ?-ESA in breast cancer cells showing different expression levels of the human epidermal growth factor receptor 2 (HER2). ?-ESA inhibited cell growth and induced apoptosis in the SKBR3 and T47D breast cancer cell lines. The mechanism by which cell growth was inhibited involved G0/G1 and G2/M cell cycle phase arrest. The MTT assay showed that SKBR3 cells are more sensitive to ?-ESA compared to T47D cells. Western blot analysis revealed that ?-ESA treatment not only reduced HER2/HER3 protein expression, but also increased the level of phosphorylated phosphatase and tensin homolog protein (PTEN), which led to decreased levels of phosphorylated Akt. Inactive Akt further reduced phosphorylation of glycogen synthase kinase-3? (GSK-3?) and B-cell lymphoma 2 (Bcl-2)?associated death promoter (BAD) proteins. Furthermore, the level of the anti-apoptotic protein Bcl-2 was found to be reduced following ?-ESA treatment. Notably, nuclear factor ?B (NF-?B) was activated by ?-ESA treatment. Data of the present study showed that the antitumor activity of ?-ESA is at least partly mediated by reduction of the HER2/HER3 heterodimer protein level, activation of the Akt/BAD/Bcl-2 apoptotic pathway and inhibition of the Akt/GSK-3? survival pathway in the two breast cancer cell lines investigated in this study. Therefore, ?-ESA may be considered a beneficial dietary factor for the prevention and treatment of invasive breast cancer in cells overexpressing HER2. PMID:24425042

  11. Regulation of 1,25-dihydroxyvitamin D, receptors by (/sup 3/H)-1,25-dihydroxyvitamin D/sub 3/ in cultured cells (T-47D): evidence for receptor upregulation

    SciTech Connect

    Reinhardt, T.A.; Horst, R.L.

    1986-03-01

    The authors examined the effect of 1,25-(OH)/sub 2/D/sub 3/ on receptor concentration in cultured cells (T-47D). Two days prior to experiment, cells were fed with RPMI 1640 + 10% serum and 24-32 hours prior to experiment the media was replaced with RPMI 1640 + 25 mM Hepes + 1% serum. (/sup 3/H)-1,25-(OH)/sub 2/D/sub 3/ +/- 100-fold molar excess cold hormone was used to treat the cells. Occupied receptors were measured in freshly prepared cytosols. Total receptors were measured following a 16-hour incubation of cytosols in the presence of 0.6 nM (/sup 3/H)-1,25-(OH)/sub 2/D/sub 3/ +/- 100-fold molar excess of cold hormone at 4/sup 0/C. Treatment of cell cultures for 16-18 hours with 0.5-1.0 nM (/sup 3/H)-1,25-(OH)/sub 2/D/sub 3/ resulted in a 30-40% receptor occupancy by the hormone and a 2- to 3-fold increase in total cell receptor as compared to vehicle-treated controls. Time course studies showed a rapid increase in total receptors up to 16 hours post-treatment in the face of declining receptor occupancy. Actinomycin D blocked the (/sup 3/H)-1,25-(OH)/sub 2/D/sub 3/-dependent rise in cell receptor. The physiological significance of this receptor upregulation is not known nor is it known whether upregulation results from synthesis of new receptors and/or is the result of the activation of preformed receptors by a inducible activator protein.

  12. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation.

    PubMed

    Zhou, Wei-Jie; Wang, Sheng; Hu, Zhuang; Zhou, Zhen-Yu; Song, Cai-Juan

    2015-11-20

    Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP response element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer. PMID:26431878

  13. ODAM Expression Inhibits Human Breast Cancer Tumorigenesis

    PubMed Central

    Kestler, Daniel P.; Foster, James S.; Bruker, Charles T.; Prenshaw, John W.; Kennel, Stephen J.; Wall, Jonathan S.; Weiss, Deborah T.; Solomon, Alan

    2011-01-01

    We have posited that Odontogenic Ameloblast Associated Protein (ODAM) serves as a novel prognostic biomarker in breast cancer and now have investigated its potential role in regulating tumor growth and metastasis. Human breast cancer MDA-MB-231 cells were transfected with a recombinant ODAM plasmid construct (or, as a control, the plasmid vector alone). ODAM expression increased adhesion and apoptosis of the transfected MDA-MB-231 cells and suppressed their growth rate, migratory activity, and capability to invade extracellular matrix-coated membranes. Implantation of such cells into mouse mammary fat pads resulted in significantly smaller tumors than occurred in animals that received control cells; furthermore, ODAM-expressing cells, when injected intravenously into mice, failed to metastasize, whereas the control-transfected counterparts produced extensive lung lesions. Our finding that induction of ODAM expression in human breast cancer cells markedly inhibited their neoplastic properties provides further evidence for the regulatory role of this molecule in tumorigenesis and, consequently, is of potential clinical import. PMID:21603257

  14. Bone metastasis in a novel breast cancer mouse model containing human breast and human bone.

    PubMed

    Xia, Tian-Song; Wang, Guo-Zhu; Ding, Qiang; Liu, Xiao-An; Zhou, Wen-Bin; Zhang, Yi-Fen; Zha, Xiao-Ming; Du, Qing; Ni, Xiao-Jian; Wang, Jue; Miao, Su-Yu; Wang, Shui

    2012-04-01

    In practice, investigations for bone metastasis of breast cancer rely heavily on models in vivo. Lacking of such ideal model makes it difficult to study the whole process or accurate mechanism of each step of this metastatic disease. Development of xenograft mouse models has made great contributions in this area. Currently, the best animal model of breast cancer metastasizing to bone is NOD/SCID-hu models containing human bone, which makes it possible to let the breast cancer cells and the bone target of osteotropic metastasis be both of human origin. We have developed a novel mouse model containing both human bone and breast, and proved it functional and reliable. In this study, a set of human breast cancer cell line including MDA-MB-231, MDA-MB-231BO, MCF-7, ZR-75-1 and SUM1315 were characterized their osteotropism in this model. A specific cell line SUM1315 made species-specific bone metastasis, certifying the osteotropism-identification utility of the novel mouse model. Furthermore, gene expression and microRNA expression profiling analysis were done to the two SUM1315 derived sub lines isolated and purified from the orthotopic and metastatic xenograft. In addition, to demonstrate the disparity between the "spontaneous" and "forced" bone metastasis in mouse model, MDA-MB-231 cells were inoculated into both the human implants in this model simultaneously, and then primary cultured and profiling analyzed. Supported by overall results of profiling analyses, this study suggested the novel model was a useful tool for understanding, preventing and treating bone metastasis of breast cancer, meanwhile it had provided significant information for further investigations. PMID:21638054

  15. Placenta-breast cancer cell interactions promote cancer cell epithelial mesenchymal transition via TGF?/JNK pathway.

    PubMed

    Epstein Shochet, Gali; Tartakover-Matalon, Shelly; Drucker, Liat; Pasmanik-Chor, Metsada; Pomeranz, Meir; Fishman, Ami; Lishner, Michael

    2014-12-01

    Women diagnosed with pregnancy associated breast cancer often have advanced cancer with metastases and reduced expression of ER? compared to non-pregnant women. Nevertheless, metastases to the placenta are uncommon. Previously, we demonstrated that breast cancer cells (MCF-7/T47D) migrated from ex vivo human placental explant implantation sites. We aimed to analyze the effect of factors produced during placental implantation or as a result of the interaction between the implanted placentae to cancer cells on cancer cells migration and aggressiveness. We collected supernatants from implanted placentae and placental-breast cancer cells cocultures and analyzed their effects on cancer cells phenotype and pathways. Supernatants collected from breast cancer cells served as controls. We found that supernatants collected from implanted placentae induced modest cancer cells migration that was not accompanied by epithelial to mesenchymal transition (EMT), supported breast cancer cells survival and elevated MCF-7 cell number. The coculture supernatant induced excessive motility and EMT of the MCF-7 cells. This EMT was mediated by Smad3 and JNK/ERK activation. Both placenta and coculture supernatants reduced ER? expression in the cancer cells. Finally, we showed that MCF-7 cocultured with the human placental explants underwent continuous activation of JNK and Smad3 pathways and the EMT process, which led to their migration away from the placental implantation sites. These findings may explain the reduced ER? and elevated metastases found in breast cancer during pregnancy and highlights pathways involved in it. PMID:25316285

  16. TNF{alpha} acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-{kappa}B-dependent pathways

    SciTech Connect

    Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.; Rosemblit, Cinthia; Beguelin, Wendy; Salatino, Mariana; Charreau, Eduardo H.; Frahm, Isabel; Sapia, Sandra; Brouckaert, Peter; Elizalde, Patricia V.; Schillaci, Roxana

    2008-02-01

    Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation, just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.

  17. Methyl Angolensate from Callus of Indian Redwood Induces Cytotoxicity in Human Breast Cancer Cells

    PubMed Central

    Chiruvella, Kishore K.; Panjamurthy, Kuppusamy; Choudhary, Bibha; Joy, Omana; Raghavan, Sathees C.

    2010-01-01

    AIM: Natural products discovered from medicinal plants have played an important role in the treatment of cancer. Methyl angolensate (MA), a tetranortriterpenoid obtained from the root callus of Indian Redwood tree, Soymida febrifuga Roxb. (A.Juss) was tested for its anticancer properties on breast cancer cells. METHODS: Cell viability was tested using trypan blue, MTT and LDH assays. Tritiated thymidine assay and flowcytometry were used to study effect of MA on cell proliferation. The activation of apoptosis was checked by annexin V and JC-1 staining followed by FACS analysis. Immunoblotting analysis was used for studying expression of apoptotic and DNA double strand break repair proteins. RESULTS: We find that MA inhibited the growth of breast cancer cell line, T47D in a time- and dose-dependent manner. MA treatment led to the inhibition of cell proliferation as detected by tritiated thymidine assay and flowcytometry. Further, MA treated cells exhibited typical apoptotic morphological changes and led to the accumulation of subG1 peak in cell cycle distribution. The induction of apoptosis was further confirmed both by annexin V staining and JC1 staining. We also find that MA activates MAP kinase pathway to induce apoptosis. Besides, we find a time dependent activation followed by degradation of DNA double-strand break repair proteins upon treatment with MA. CONCLUSION: These results suggest that MA induces cytotoxicity in breast cancer cells. Further, the altered expression of DSB repair proteins in MA treated cells may control the induction of apoptosis in these cancer cells. PMID:23675192

  18. Integrin activation controls metastasis in human breast cancer

    NASA Astrophysics Data System (ADS)

    Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.

    2001-02-01

    Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin v3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin v3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.

  19. Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors.

    PubMed

    Notas, George; Pelekanou, Vassiliki; Kampa, Marilena; Alexakis, Konstantinos; Sfakianakis, Stelios; Laliotis, Aggelos; Askoxilakis, John; Tsentelierou, Eleftheria; Tzardi, Maria; Tsapis, Andreas; Castanas, Elias

    2015-11-01

    Tamoxifen is the treatment of choice in estrogen receptor alpha breast cancer patients that are eligible for adjuvant endocrine therapy. However, ?50% of ER?-positive tumors exhibit intrinsic or rapidly acquire resistance to endocrine treatment. Unfortunately, prediction of de novo resistance to endocrine therapy and/or assessment of relapse likelihood remain difficult. While several mechanisms regulating the acquisition and the maintenance of endocrine resistance have been reported, there are several aspects of this phenomenon that need to be further elucidated. Altered metabolic fate of tamoxifen within patients and emergence of tamoxifen-resistant clones, driven by evolution of the disease phenotype during treatment, appear as the most compelling hypotheses so far. In addition, tamoxifen was reported to induce pluripotency in breast cancer cell lines, in vitro. In this context, we have performed a whole transcriptome analysis of an ER?-positive (T47D) and a triple-negative breast cancer cell line (MDA-MB-231), exposed to tamoxifen for a short time frame (hours), in order to identify how early pluripotency-related effects of tamoxifen may occur. Our ultimate goal was to identify whether the transcriptional actions of tamoxifen related to induction of pluripotency are mediated through specific ER-dependent or independent mechanisms. We report that even as early as 3 hours after the exposure of breast cancer cells to tamoxifen, a subset of ER?-dependent genes associated with developmental processes and pluripotency are induced and this is accompanied by specific phenotypic changes (expression of pluripotency-related proteins). Furthermore we report an association between the increased expression of pluripotency-related genes in ER?-positive breast cancer tissues samples and disease relapse after tamoxifen therapy. Finally we describe that in a small group of ER?-positive breast cancer patients, with disease relapse after surgery and tamoxifen treatment, ALDH1A1 (a marker of pluripotency in epithelial cancers which is absent in normal breast tissue) is increased in relapsing tumors, with a concurrent modification of its intra-cellular localization. Our data could be of value in the discrimination of patients susceptible to develop tamoxifen resistance and in the selection of optimized patient-tailored therapies. PMID:26115764

  20. In vitro comparative models for canine and human breast cancers

    PubMed Central

    VISAN, SIMONA; BALACESCU, OVIDIU; BERINDAN-NEAGOE, IOANA; CATOI, CORNEL

    2016-01-01

    During the past four decades, an increased number of similarities between canine mammary tumors and human breast cancer have been reported: molecular, histological, morphological, clinical and epidemiological, which lead to comparative oncological studies. One of the most important goals in human and veterinary oncology is to discover potential molecular biomarkers that could detect breast cancer in an early stage and to develop new effective therapies. Recently, cancer cell lines have successfully been used as an in vitro model to study the biology of cancer, to investigate molecular pathways and to test the efficiency of anticancer drugs. Moreover, establishment of an experimental animal model for the study of human breast cancer will improve testing potential anti-cancer therapies and the discovery of effective therapeutic schemes suitable for human clinical trials. In this review, we collected data from previous studies that strengthen the value of canine mammary cancer cell lines as an in vitro model for the study of human breast cancer. PMID:27004024

  1. Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays.

    PubMed

    Van der Heiden, Edwige; Bechoux, Nathalie; Muller, Marc; Sergent, Thérèse; Schneider, Yves-Jacques; Larondelle, Yvan; Maghuin-Rogister, Guy; Scippo, Marie-Louise

    2009-04-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor mediating the adverse effects of dioxins and polycyclic aromatic hydrocarbons (PAHs). In this study, we investigated the genetic-, time-, dose-, species- and tissue-dependent AhR-mediated agonistic/antagonistic activities of three food flavonoids: quercetin, chrysin and genistein. To that end, four stably transfected cell lines were used in cell-based luciferase reporter gene assays: three lines were transformed with the ptKLuc vector harbouring four dioxin-responsive elements (DREs) upstream of the thymidine kinase promoter and the luciferase gene (HepG2-Luc, T-47D-Luc and H4IIE-ULg). The fourth is a patented cell line transformed with a different construct: H4IIE DR-CALUX((R)). Both H4IIE cells were compared for their genetic construction. Human hepatoma (HepG2-Luc) and human breast tumour (T-47D-Luc) cells were compared for tissue-dependent effects. Rat hepatoma (H4IIE-ULg) and human hepatoma (HepG2-Luc) cells were compared for species-dependent activities. We concluded that quercetin, chrysin and genistein act in a time-, dose-, species- and tissue-specific way. For example, genistein displayed agonistic activities when exposed to rat hepatoma cells during 6h but not after 24h. Flavonoids displayed agonistic/antagonistic activities in human breast tumour cells, depending on the exposure time, while in human hepatoma cells, only antagonistic activities of flavonoids were measured. In addition, we report, in all the cells, a synergy between an isoflavone and two food contaminants; the 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene, a PAH. In rat cells, this synergy occurred when cells were exposed to flavonoids and contaminant for 6h, while it was observed in human cells only after 24h. PMID:19286049

  2. The presence of Estrogen Receptor ? modulates the response of breast cancer cells to therapeutic agents.

    PubMed

    Pons, Daniel Gabriel; Torrens-Mas, Margalida; Nadal-Serrano, Mercedes; Sastre-Serra, Jorge; Roca, Pilar; Oliver, Jordi

    2015-09-01

    Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ER? increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ER?/ER? ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ER?/ER? ratio) and T47D (low ER?/ER? ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ER? in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ER? in T47D cells promoted the opposite effects. In TAM-treated cells, ER?-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ER? in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ER? expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment. PMID:26232188

  3. Bovine Leukemia Virus DNA in Human Breast Tissue

    PubMed Central

    Shen, Hua Min; Jensen, Hanne M.; Choi, K. Yeon; Sun, Dejun; Nuovo, Gerard

    2014-01-01

    Bovine leukemia virus (BLV), a deltaretrovirus, causes B-cell leukemia/lymphoma in cattle and is prevalent in herds globally. A previous finding of antibodies against BLV in humans led us to examine the possibility of human infection with BLV. We focused on breast tissue because, in cattle, BLV DNA and protein have been found to be more abundant in mammary epithelium than in lymphocytes. In human breast tissue specimens, we identified BLV DNA by using nested liquid-phase PCR and DNA sequencing. Variations from the bovine reference sequence were infrequent and limited to base substitutions. In situ PCR and immunohistochemical testing localized BLV to the secretory epithelium of the breast. Our finding of BLV in human tissues indicates a risk for the acquisition and proliferation of this virus in humans. Further research is needed to determine whether BLV may play a direct role in human disease. PMID:24750974

  4. Rhein Induces Apoptosis in Human Breast Cancer Cells

    PubMed Central

    Chang, Ching-Yao; Chan, Hong-Lin; Lin, Hui-Yi; Way, Tzong-Der; Kao, Ming-Ching; Song, Ming-Zhang; Lin, Ying-Ju; Lin, Cheng-Wen

    2012-01-01

    Human breast cancers cells overexpressing HER2/neu are more aggressive tumors with poor prognosis, and resistance to chemotherapy. This study investigates antiproliferation effects of anthraquinone derivatives of rhubarb root on human breast cancer cells. Of 7 anthraquinone derivatives, only rhein showed antiproliferative and apoptotic effects on both HER2-overexpressing MCF-7 (MCF-7/HER2) and control vector MCF-7 (MCF-7/VEC) cells. Rhein induced dose- and time-dependent manners increase in caspase-9-mediated apoptosis correlating with activation of ROS-mediated activation of NF-?B- and p53-signaling pathways in both cell types. Therefore, this study highlighted rhein as processing anti-proliferative activity against HER2 overexpression or HER2-basal expression in breast cancer cells and playing important roles in apoptotic induction of human breast cancer cells. PMID:22007260

  5. Clinical impact of human breast milk metabolomics.

    PubMed

    Cesare Marincola, Flaminia; Dessì, Angelica; Corbu, Sara; Reali, Alessandra; Fanos, Vassilios

    2015-12-01

    Metabolomics is a research field concerned with the analysis of metabolome, the complete set of metabolites in a given cell, tissue, or biological sample. Being able to provide a molecular snapshot of biological systems, metabolomics has emerged as a functional methodology in a wide range of research areas such as toxicology, pharmacology, food technology, nutrition, microbial biotechnology, systems biology, and plant biotechnology. In this review, we emphasize the applications of metabolomics in investigating the human breast milk (HBM) metabolome. HBM is the recommended source of nutrition for infants since it contains the optimal balance of nutrients for developing babies, and it provides a range of benefits for growth, immunity, and development. The molecular mechanisms beyond the inter- and intra-variability of HBM that make its composition unique are yet to be well-characterized. Although still in its infancy, the study of HBM metabolome has already proven itself to be of great value in providing insights into this biochemical variability in relation to mother phenotype, diet, disease, and lifestyle. The results of these investigations lay the foundation for further developments useful to identify normal and aberrant biochemical changes as well as to develop strategies to promote healthy infant feeding practices. PMID:25689794

  6. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    PubMed Central

    kazemi-Lomedasht, Fatemeh; Rami, Abbas; Zarghami, Nosratolla

    2013-01-01

    Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentration of cyclodextrin-curcumin and free curcumin. Telomerase gene expression level in two groups was compared by Real-time PCR. Results: MTT assay demonstrated that β-cyclodextrin-curcumin enhanced curcumin delivery in T47D breast cancer cells. The level of telomerase gene expression in cells treated with cyclodextrin-curcumin was lower than that of cells treated with free curcumin (P=0.001). Conclusion: Results are suggesting that cyclodextrin-curcumin complex can be more effective than free curcumin in inhibition of telomerase expression. PMID:24312824

  7. Extra-Nuclear Signalling of Estrogen Receptor to Breast Cancer Cytoskeletal Remodelling, Migration and Invasion

    PubMed Central

    Giretti, Maria Silvia; Fu, Xiao-Dong; De Rosa, Giovanni; Sarotto, Ivana; Baldacci, Chiara; Garibaldi, Silvia; Mannella, Paolo; Biglia, Nicoletta; Sismondi, Piero; Genazzani, Andrea Riccardo; Simoncini, Tommaso

    2008-01-01

    Background Estrogen is an established enhancer of breast cancer development, but less is known on its effect on local progression or metastasis. We studied the effect of estrogen receptor recruitment on actin cytoskeleton remodeling and breast cancer cell movement and invasion. Moreover, we characterized the signaling steps through which these actions are enacted. Methodology/Principal Findings In estrogen receptor (ER) positive T47-D breast cancer cells ER activation with 17?-estradiol induces rapid and dynamic actin cytoskeleton remodeling with the formation of specialized cell membrane structures like ruffles and pseudopodia. These effects depend on the rapid recruitment of the actin-binding protein moesin. Moesin activation by estradiol depends on the interaction of ER? with the G protein G?13, which results in the recruitment of the small GTPase RhoA and in the subsequent activation of its downstream effector Rho-associated kinase-2 (ROCK-2). ROCK-2 is responsible for moesin phosphorylation. The G?13/RhoA/ROCK/moesin cascade is necessary for the cytoskeletal remodeling and for the enhancement of breast cancer cell horizontal migration and invasion of three-dimensional matrices induced by estrogen. In addition, human samples of normal breast tissue, fibroadenomas and invasive ductal carcinomas show that the expression of wild-type moesin as well as of its active form is deranged in cancers, with increased protein amounts and a loss of association with the cell membrane. Conclusions/Significance These results provide an original mechanism through which estrogen can facilitate breast cancer local and distant progression, identifying the extra-nuclear G?13/RhoA/ROCK/moesin signaling cascade as a target of ER? in breast cancer cells. This information helps to understand the effects of estrogen on breast cancer metastasis and may provide new targets for therapeutic interventions. PMID:18493596

  8. QUANTITATION OF CYP1A1 AND 1B1 MRNA IN POLYCYCLIC AROMATIC HYDROCARBON-TREATED HUMAN T-47D AND HEPG2 CELLS BY A MODIFIED BDNA ASSAY USING FLUORESCENCE DETECTION. (R827180)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Expression of membrane transporters and metabolic enzymes involved in estrone-3-sulphate disposition in human breast tumour tissues.

    PubMed

    Banerjee, Nilasha; Miller, Naomi; Allen, Christine; Bendayan, Reina

    2014-06-01

    Two-thirds of newly diagnosed hormone-dependent (HR?) breast cancers are detected in post-menopausal patients where estrone-3-sulphate (E3S) is the predominant source for tumour estradiol. Understanding intra-tumoral fate of E3S would facilitate in the identification of novel molecular targets for HR? post-menopausal breast cancer patients. Hence this study investigates the clinical expression of (i) organic anion-transporting polypeptides (OATPs), (ii) multidrug resistance protein (MRP-1), breast cancer resistance proteins (BCRP), and (iii) sulphatase (STS), 17?-hydroxysteroid dehydrogenase (17?-HSD-1), involved in E3S uptake, efflux and metabolism, respectively. Fluorescent and brightfield images of stained tumour sections (n = 40) were acquired at 4 and 20 magnification, respectively. Marker densities were measured as the total area of positive signal divided by the surface area of the tumour section analysed and was reported as % area (ImageJ software). Tumour, stroma and non-tumour tissue areas were also quantified (Inform software), and the ratio of optical intensity per histologic area was reported as % area/tumour, % area/stroma and % area/non-tumour. Functional role of OATPs and STS was further investigated in HR? (MCF-7, T47-D, ZR-75) and HR-(MDA-MB-231) cells by transport studies conducted in the presence or absence of specific inhibitors. Amongst all the transporters and enzymes, OATPs and STS have significantly (p < 0.0001) higher expression in HR? tumour sections with highest target signals obtained from the tumour regions of the tissues. Specific OATP-mediated E3S uptake and STS-mediated metabolism were also observed in all HR? breast cancer cells. These observations suggest the potential of OATPs as novel molecular targets for HR? breast cancers. PMID:24831777

  10. WE-E-BRE-10: Level of Breast Cancer Stem Cell Correlated with Tumor Radioresistence: An Indication for Individualized Breast Cancer Therapy Adapted to Cancer Stem Cell Fractions

    SciTech Connect

    Qi, S; Pajonk, F; McCloskey, S; Low, D; Kupelian, P; Steinberg, M; Sheng, K

    2014-06-15

    Purposes: The presence of cancer stem cells (CSCs) in a solid tumor could result in poor tumor control probability. The purposes are to study CSC radiosensitivity parameters α and β and their correlation to CSC levels to understand the underlying radioresistance mechanisms and enable individualized treatment design. Methods: Four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, and SUM159PT) were irradiated in vitro using single radiation doses of 0, 2, 4, 6, 8 or 10 Gy. The fractions of CSCs in each cell lines were determined using cancer stem cell markers. Mammosphere assays were also performed to better estimate the number of CSCs and represent the CSC repopulation in a human solid tumor. The measured cell surviving fractions were fitted using the Linear-quadratic (LQ) model with independent fitting parameters: α-TC, β-TC (TCs), α-CSC, β-CSC (CSCs), and fs (the percentage of CSCs in each sample). Results: The measured fs increased following the irradiation by MCF-7 (0.1%), T47D (0.9%), MDA-MB-231 (1.18%) and SUM159T (2.46%), while decreasing surviving curve slopes were observed, indicating greater radioresistance, in the opposite order. The fitting yielded the radiosensitive parameters for the MCF-7: α-TC=0.1±0.2Gy{sup −1}, β-TC= 0.08 ±0.14Gy{sup −2}, α-CSC=0.04±0.07Gy{sup −1}, β-CSC =0.02±0.3Gy{sup −2}; for the SUM159PT, α-TC=0.08±0.25 Gy{sup −1}, β-TC=0.02±0.02Gy{sup −2}, α-CSC=0.04±0.18Gy{sup −1}, β-CSC =0.004±0.24Gy{sup −2}. In the mammosphere assay, where fs were higher than the corresponding cell line assays, there was almost no shoulder found in the surviving curves (more radioresistant in mammosphere assays) yielding β-CSC of approximately 0. Conclusion: Breast cancer stem cells were more radioresistant characterized by smaller α and β values compared to differentiated breast cancer cells. Percentage of breast cancer stem cells strongly correlated to overall tumor radioresistance. This observation suggested the feasibility of individualized radiotherapy prescription based on the fractions of cancer stem cells found in biopsy.

  11. Comprehensive molecular portraits of human breast tumors

    PubMed Central

    2012-01-01

    Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer. PMID:23000897

  12. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    SciTech Connect

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan; and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images were in general agreement with real human images. The Singlet approach offered more realistic contrast as compared to the Doublet approach, but at the expense of air bubbles and air pockets that formed during the filling process. Conclusions: The presented physical breast phantoms and their matching virtual breast phantoms offer realistic breast anatomy, patient variability, and ease of use, making them a potential candidate for performing both system quality control testing and virtual clinical trials.

  13. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    PubMed

    Warleta, Fernando; Quesada, Cristina Snchez; Campos, Mara; Allouche, Yosra; Beltrn, Gabriel; Gaforio, Jos J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells. PMID:22254082

  14. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells

    PubMed Central

    Timoshenko, A V; Rastogi, S; Lala, P K

    2007-01-01

    Vascular endothelial growth factor C (VEGF-C) is a lymphangiogenic factor over-expressed in highly metastatic, cyclooxygenase (COX)-2 expressing breast cancer cells. We tested the hypothesis that tumour-derived VEGF-C may play an autocrine role in metastasis by promoting cellular motility through one or more VEGF-C-binding receptors VEGFR-2, VEGFR-3, neuropilin (NRP)-1, NRP-2, and integrin ?9?1. We investigated the expression of these receptors in several breast cancer cell lines (MDA-MB-231, Hs578T, SK-BR-3, T-47D, and MCF7) and their possible requirement in migration of two VEGF-C-secreting, highly metastatic lines MDA-MB-231 and Hs578T. While cell lines varied significantly in their expression of above VEGF-C receptors, migratory activity of MDA-MB-231 and Hs578T cells was linked to one or more of these receptors. Depletion of endogenous VEGF-C by treatments with a neutralising antibody, VEGF-C siRNA or inhibitors of Src, EGFR/Her2/neu and p38 MAP kinases which inhibited VEGF-C production, inhibited cellular migration, indicating the requirement of VEGF-C for migratory function. Migration was differentially attenuated by blocking or downregulation of different VEGF-C receptors, for example treatment with a VEGFR-2 tyrosine kinase inhibitor, NRP-1 and NRP-2 siRNA or ?9?1 integrin antibody, indicating the participation of one or more of the receptors in cell motility. This novel role of tumour-derived VEGF-C indicates that breast cancer metastasis can be promoted by coordinated stimulation of lymphangiogenesis and enhanced migratory activity of breast cancer cells. PMID:17912247

  15. microRNA, cell cycle, and human breast cancer.

    PubMed

    Yu, Zuoren; Baserga, Renato; Chen, Lide; Wang, Chenguang; Lisanti, Michael P; Pestell, Richard G

    2010-03-01

    The discovery of microRNAs as a novel class of gene expression regulators has led to a new strategy for disease diagnostics and therapeutics. Cell cycle, cell proliferation, and tumorigenesis are all regulated by microRNAs. Several general principles linking microRNAs and cancer have been recently reviewed; therefore, the current review focuses specifically on the perspective of microRNAs in control of cell cycle, stem cells, and heterotypic signaling, as well as the role of these processes in breast cancer. Altered abundance of cell cycle regulation proteins and aberrant expression of microRNAs frequently coexist in human breast cancers. Altered microRNA expression in breast cancer cell lines is associated with altered cell cycle progression and cell proliferation. Indeed, recent studies have demonstrated a causal role for microRNA in governing breast tumor suppression or collaborative oncogenesis. This review summarizes the current understanding of the role for microRNA in regulating the cell cycle and summarizes the evidence for aberrant microRNA expression in breast cancer. The new evidence for microRNA regulation by annotated genes and the involvement of microRNA in breast cancer metastasis are discussed, as is the potential for microRNA to improve breast cancer diagnosis and therapy. PMID:20075198

  16. Early Human Papilloma Virus (HPV) Oncogenic Influences in Breast Cancer

    PubMed Central

    Ngan, Christopher; Lawson, James S.; Clay, Rosemary; Delprado, Warick; Whitaker, Noel J.; Glenn, Wendy K.

    2015-01-01

    BACKGROUND Human papilloma viruses (HPVs) may act early in breast oncogenesis (“hit-and-run” phenomena). METHODS The authors used immunohistochemistry for the identification of HPV E7 oncogenic protein expression in 32 sets of benign and subsequent breast cancer specimens from the same Australian patients. RESULTS HPV E7 oncoprotein was clearly expressed in the nuclei of 23 (72%) of the 32 benign specimens and 20 (62.5%) of the subsequent 32 breast cancer specimens in the same patients. There was no HPV E7 protein expression in seven (30%) of the 23 breast cancer specimens that had prior HPV E7 protein-positive benign breast biopsies in the same patients. CONCLUSIONS This observation suggests that HPV oncogenic influences occur early in some breast cancers. This finding confirms the previous observations. This early influence of HPVs may be the reason why there is no increase in the prevalence of HPV-associated breast cancer in immunocompromised patients as compared to HPV-associated cervical cancer. PMID:26691275

  17. The Oncogenic Potential of Human Cytomegalovirus and Breast Cancer

    PubMed Central

    Herbein, Georges; Kumar, Amit

    2014-01-01

    Breast cancer is the leading causes of cancer-related death among women. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. Numerous articles indicate that breast tumors exhibit diverse phenotypes depending on their distinct physiopathological signatures, clinical courses, and therapeutic possibilities. The human cytomegalovirus (HCMV) is a multifaceted highly host specific betaherpesvirus that is regarded as asymptomatic or mildly pathogenic virus in immunocompetent host. HCMV may cause serious in utero infections as well as acute and chronic complications in immunocompromised individual. The involvement of HCMV in late inflammatory complications underscores its possible role in inflammatory diseases and cancer. HCMV targets a variety of cell types in vivo, including macrophages, epithelial cells, endothelial cells, fibroblasts, stromal cells, neuronal cells, smooth muscle cells, and hepatocytes. HCMV can be detected in the milk after delivery and thereby HCMV could spread to adjacent mammary epithelial cells. HCMV also infects macrophages and induces an atypical M1/M2 phenotype, close to the tumor-associated macrophage phenotype, which is associated with the release of cytokines involved in cancer initiation or promotion and breast cancer of poor prognosis. HCMV antigens and DNA have been detected in tissue biopsies of breast cancers and elevation in serum HCMV IgG antibody levels has been reported to precede the development of breast cancer in some women. In this review, we will discuss the potential role of HCMV in the initiation and progression of breast cancer. PMID:25202681

  18. Global profiling of prolactin-modulated transcripts in breast cancer in vivo

    PubMed Central

    2013-01-01

    Background Prolactin (PRL) is essential for normal mammary gland development. PRL promotes mammary tumor formation in rodents and elevated serum prolactin is associated with increased risk of estrogen-receptor positive breast cancer in women. On the other hand, PRL may also exert pro-differentiation effects and act to suppress invasive features of established breast cancer. Previously published limited global transcript profiling analyses of prolactin-regulated gene expression in human breast cancer cells have exclusively been performed in vitro. The present study aimed to shed new light on how PRL modulates estrogen receptor (ER)-positive breast cancer through global transcript profiling of a human breast cancer xenograft model in vivo. Methods The prolactin-responsive human T47D breast cancer cell line was xenotransplanted into nude mice and global transcript profiling was carried out following treatment with or without human PRL for 48 h. A subset of PRL-modulated transcripts was further validated using qRT-PCR and immunohistochemistry. Results The in vivo analyses identified 130 PRL-modulated transcripts, 75 upregulated and 55 downregulated, based on fold change >1.6 and P-value <0.05. From this initial panel of transcripts, a subset of 18 transcripts with established breast cancer-relevance were selected and validated by qRT-PCR. Some but not all of the transcripts were also PRL-modulated in vitro. The selected PRL-modulated transcripts were tested for dependence on Stat5, Jak1 or Jak2 activation, and for co-regulation by 17β-estradiol (E2). The protein encoded by one of the PRL-regulated transcripts, PTHrP, was examined in a panel of 92 human breast cancers and found by in situ quantitative immunofluorescence analysis to be highly positively correlated with nuclear localized and tyrosine phosphorylated Stat5. Gene Ontology analysis revealed that PRL-upregulated genes were enriched in pathways involved in differentiation. Finally, a gene signature based on PRL-upregulated genes was associated with prolonged relapse-free and metastasis-free survival in breast cancer patients. Conclusions This global analysis identified and validated a panel of PRL-modulated transcripts in an ER-positive human breast cancer xenotransplant model, which may have value as markers of relapse-free and metastasis-free survival. Gene products identified in the present study may facilitate ongoing deciphering of the pleiotropic effects of PRL on human breast cancer. PMID:23758962

  19. MicroRNA Regulation of Human Breast Cancer Stem Cells.

    PubMed

    Shimono, Yohei; Mukohyama, Junko; Nakamura, Shun-Ichi; Minami, Hironobu

    2015-01-01

    MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression. PMID:26712794

  20. MicroRNA Regulation of Human Breast Cancer Stem Cells

    PubMed Central

    Shimono, Yohei; Mukohyama, Junko; Nakamura, Shun-ichi; Minami, Hironobu

    2015-01-01

    MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression. PMID:26712794

  1. Development of a new metastatic human breast carcinoma xenograft line.

    PubMed Central

    Mehta, R. R.; Graves, J. M.; Shilkaitis, A.; Das Gupta, T. K.

    1998-01-01

    Xenografts originated from human tumours offer the most appropriate research material for in vivo experimental research. However, primary human breast carcinomas are difficult to grow when transplanted in athymic mice: tumour take is less than 15%. Recently, we have achieved 60% tumour take by injecting tumour cell suspensions mixed with Matrigel. Human breast xenografts originated from primary breast carcinoma also frequently show the potential to metastasize spontaneously. In the present study, we generated a human breast carcinoma xenograft line (UISO-BCA-NMT-18) that shows 100% tumorigenicity and 80-100% lung metastasis when transplanted s.c. in athymic mice. We have studied in detail the characteristics of the xenograft and the patient's tumour from which the xenograft line originated. Both the xenograft and the patient's tumour showed intense staining for mutant p53 nuclear protein, and high expression of U-PA, PAI and u-PAR. In vivo growth of the xenograft is stimulated by exogenous supplementation of oestrogen. This xenograft is continuously growing in mice and has shown 80-100% metastasis for the last three successive in vivo passages. This well-characterized, oestrogen-responsive, metastatic breast carcinoma xenograft line will provide excellent research material for metastasis-related research. Images p596-a Figure 1 Figure 2 Figure 3 Figure 5 Figure 4 Figure 9 PMID:9484817

  2. Epigenetic and transcriptional determinants of the human breast

    PubMed Central

    Gascard, Philippe; Bilenky, Misha; Sigaroudinia, Mahvash; Zhao, Jianxin; Li, Luolan; Carles, Annaick; Delaney, Allen; Tam, Angela; Kamoh, Baljit; Cho, Stephanie; Griffith, Malachi; Chu, Andy; Robertson, Gordon; Cheung, Dorothy; Li, Irene; Heravi-Moussavi, Alireza; Moksa, Michelle; Mingay, Matthew; Hussainkhel, Angela; Davis, Brad; Nagarajan, Raman P.; Hong, Chibo; Echipare, Lorigail; OGeen, Henriette; Hangauer, Matthew J.; Cheng, Jeffrey B.; Neel, Dana; Hu, Donglei; McManus, Michael T.; Moore, Richard; Mungall, Andrew; Ma, Yussanne; Plettner, Patrick; Ziv, Elad; Wang, Ting; Farnham, Peggy J.; Jones, Steven J.M.; Marra, Marco A.; Tlsty, Thea D.; Costello, Joseph F.; Hirst, Martin

    2015-01-01

    While significant effort has been dedicated to the characterization of epigenetic changes associated with prenatal differentiation, relatively little is known about the epigenetic changes that accompany post-natal differentiation where fully functional differentiated cell types with limited lifespans arise. Here we sought to address this gap by generating epigenomic and transcriptional profiles from primary human breast cell types isolated from disease-free human subjects. From these data we define a comprehensive human breast transcriptional network, including a set of myoepithelial- and luminal epithelial-specific intronic retention events. Intersection of epigenetic states with RNA expression from distinct breast epithelium lineages demonstrates that mCpG provides a stable record of exonic and intronic usage, whereas H3K36me3 is dynamic. We find a striking asymmetry in epigenomic reprogramming between luminal and myoepithelial cell types, with the genomes of luminal cells harbouring more than twice the number of hypomethylated enhancer elements compared with myoepithelial cells. PMID:25690954

  3. CHL1 is involved in human breast tumorigenesis and progression

    SciTech Connect

    He, Li-Hong; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Ma, Qin; Shi, Ye-Hui; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Ge, Jie; Zhao, Hong-Meng; Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Li, Shu-Fen; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin ; Tong, Zhong-Sheng; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  4. PTEN and NEDD4 in Human Breast Carcinoma.

    PubMed

    Chen, Yilun; van de Vijver, Marc J; Hibshoosh, Hanina; Parsons, Ramon; Saal, Lao H

    2016-01-01

    PTEN is an important tumor suppressor gene that antagonizes the oncogenic PI3K/AKT signaling pathway and has functions in the nucleus for maintaining genome integrity. Although PTEN inactivation by mutation is infrequent in breast cancer, transcript and protein levels are deficient in >25 % of cases. The E3 ubiquitin ligase NEDD4 (also known as NEDD4-1) has been reported to negatively regulate PTEN protein levels through poly-ubiquitination and proteolysis in carcinomas of the prostate, lung, and bladder, but its effect on PTEN in the breast has not been studied extensively. To investigate whether NEDD4 contributes to low PTEN levels in human breast cancer, we analyzed the expression of these proteins by immunohistochemistry across a large Swedish cohort of breast tumor specimens, and their transcript expression levels by microarrays. For both NEDD4 and PTEN, their transcript expression was significantly correlated to their protein expression. However, comparing NEDD4 expression to PTEN expression, either no association or a positive correlation was observed at the protein and transcript levels. This unexpected observation was further corroborated in two independent breast cancer cohorts from The Netherlands Cancer Institute and The Cancer Genome Atlas. Our results suggest that NEDD4 is not responsible for the frequent down-regulation of the PTEN protein in human breast carcinoma. PMID:26276352

  5. CAPER, a novel regulator of human breast cancer progression

    PubMed Central

    Mercier, Isabelle; Gonzales, Donna M; Quann, Kevin; Pestell, Timothy G; Molchansky, Alexander; Sotgia, Federica; Hulit, James; Gandara, Ricardo; Wang, Chenguang; Pestell, Richard G; Lisanti, Michael P; Jasmin, Jean-Franois

    2014-01-01

    CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways. PMID:24621503

  6. CAPER, a novel regulator of human breast cancer progression.

    PubMed

    Mercier, Isabelle; Gonzales, Donna M; Quann, Kevin; Pestell, Timothy G; Molchansky, Alexander; Sotgia, Federica; Hulit, James; Gandara, Ricardo; Wang, Chenguang; Pestell, Richard G; Lisanti, Michael P; Jasmin, Jean-Franois

    2014-01-01

    CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways. PMID:24621503

  7. Human neural stem cell tropism to metastatic breast cancer.

    PubMed

    Zhao, Donghong; Najbauer, Joseph; Annala, Alexander J; Garcia, Elizabeth; Metz, Marianne Z; Gutova, Margarita; Polewski, Monika D; Gilchrist, Megan; Glackin, Carlotta A; Kim, Seung U; Aboody, Karen S

    2012-02-01

    Metastasis to multiple organs is the primary cause of mortality in breast cancer patients. The poor prognosis for patients with metastatic breast cancer and toxic side effects of currently available treatments necessitate the development of effective tumor-selective therapies. Neural stem cells (NSCs) possess inherent tumor tropic properties that enable them to overcome many obstacles of drug delivery that limit effective chemotherapy strategies for breast cancer. We report that increased NSC tropism to breast tumor cell lines is strongly correlated with the invasiveness of cancer cells. Interleukin 6 (IL-6) was identified as a major cytokine mediating NSC tropism to invasive breast cancer cells. We show for the first time in a preclinical mouse model of metastatic human breast cancer that NSCs preferentially target tumor metastases in multiple organs, including liver, lung, lymph nodes, and femur, versus the primary intramammary fat pad tumor. For proof-of-concept of stem cell-mediated breast cancer therapy, NSCs were genetically modified to secrete rabbit carboxylesterase (rCE), an enzyme that activates the CPT-11 prodrug to SN-38, a potent topoisomerase I inhibitor, to effect tumor-localized chemotherapy. In vitro data demonstrate that exposure of breast cancer cells to conditioned media from rCE-secreting NSCs (NSC.rCE) increased their sensitivity to CPT-11 by 200-fold. In vivo, treatment of tumor-bearing mice with NSC.rCE cells in combination with CPT-11 resulted in reduction of metastatic tumor burden in lung and lymph nodes. These data suggest that NSC-mediated enzyme/prodrug therapy may be more effective and less toxic than currently available chemotherapy strategies for breast cancer metastases. PMID:22084033

  8. T Cell Coinhibition and Immunotherapy in Human Breast Cancer

    PubMed Central

    Janakiram, Murali; Abadi, Yael M.; Sparano, Joseph A.; Zang, Xingxing

    2014-01-01

    Costimulation and coinhibition generated by the B7 family and their receptor CD28 family have key roles in regulating T lymphocyte activation and tolerance. These pathways are very attractive therapeutic targets for human cancers including breast cancer. Gene polymorphisms of B7x (B7-H4/B7S1), PD-1 (CD279), and CTLA-4 (CD152) are associated with increased risk of developing breast cancer although the underlying mechanisms are unclear. In human breast cancer microenvironment, up-regulation of coinhibitory B7/CD28 members B7x, B7-H3 (CD276), and PD-L1 (B7-H1/CD274) on tumor cells as well as PD-1 and PD-L1 on tumor-infiltrating immune cells are emerging as immune evasion pathways. Chemotherapy can affect the expression of these molecules, and therefore may dampen the immune response against breast cancer. Immunotherapy targeting T cell coinhibition as monotherapy or combined with standard therapies are in early stages of clinical development, but hold great promise for treatment of human breast cancer. PMID:23114578

  9. Ron Receptor Tyrosine Kinase Activation Confers Resistance to Tamoxifen in Breast Cancer Cell Lines1

    PubMed Central

    McClaine, Rebecca J; Marshall, Aaron M; Wagh, Purnima K; Waltz, Susan E

    2010-01-01

    Although tamoxifen treatment is associated with improved survival in patients with estrogen receptor (ER)-positive breast tumors, resistance remains an important clinical obstacle. Signaling through growth factor signaling pathways, in particular through receptor tyrosine kinases, has been demonstrated to confer tamoxifen resistance in an estradiol-independent manner. The Ron receptor tyrosine kinase, a member of the c-Met family of receptors, is expressed in a number of human epithelial tumors, and elevated expression of Ron is associated with poor prognosis in women with breast cancer. In this report, we evaluated the role of Ron receptor activation in conferring resistance to tamoxifen in human and murine breast cancer cell lines. Activation of Ron by its ligand, hepatocyte growth factor-like protein (HGFL) was associated with partial rescue from tamoxifen-induced growth inhibition in Ron-expressing cell lines. Western analysis revealed that treatment of the T47D human breast cancer cell line with tamoxifen and HGFL was associated with increased phosphorylation of mitogen-activated protein kinase (MAPK) 1/2 and phosphorylation of serine residue 118 of ER. Expression of ER-dependent genes was increased in cells treated with tamoxifen and HGFL by quantitative reverse transcription-polymerase chain reaction. All of these effects were inhibited by treatment with either a Ron-neutralizing antibody or a MEK1 inhibitor, suggesting the specificity of the effect to Ron, and the involvement of the MAPK 1/2 signaling pathway. In summary, these results illustrate a novel connection between the Ron receptor tyrosine kinase and an important mechanism of tamoxifen resistance in breast cancer. PMID:20689759

  10. Human breast milk: A review on its composition and bioactivity.

    PubMed

    Andreas, Nicholas J; Kampmann, Beate; Mehring Le-Doare, Kirsty

    2015-11-01

    Breast milk is the perfect nutrition for infants, a result of millions of years of evolution, finely attuning it to the requirements of the infant. Breast milk contains many complex proteins, lipids and carbohydrates, the concentrations of which alter dramatically over a single feed, as well as over lactation, to reflect the infant's needs. In addition to providing a source of nutrition for infants, breast milk contains a myriad of biologically active components. These molecules possess diverse roles, both guiding the development of the infants immune system and intestinal microbiota. Orchestrating the development of the microbiota are the human milk oligosaccharides, the synthesis of which are determined by the maternal genotype. In this review, we discuss the composition of breast milk and the factors that affect it during the course of breast feeding. Understanding the components of breast milk and their functions will allow for the improvement of clinical practices, infant feeding and our understanding of immune responses to infection and vaccination in infants. PMID:26375355

  11. Imaging the Redox States of Human Breast Cancer Core Biopsies

    PubMed Central

    Xu, H. N.; Tchou, J.; Chance, B.; Li, L. Z.

    2016-01-01

    Currently, the gold standard to establish benign vs. malignant breast tissue diagnosis requires an invasive biopsy followed by tissue fixation for subsequent histopathological examination. This process takes at least 24 h resulting in tissues that are less suitable for molecular, functional, or metabolic analysis. We have recently conducted redox scanning (cryogenic NADH/flavoprotein fluorescence imaging) on snap-frozen breast tissue biopsy samples obtained from human breast cancer patients at the time of their breast cancer surgery. The redox state was readily determined by the redox scanner at liquid nitrogen temperature with extraordinary sensitivity, giving oxidized flavoproteins (Fp) an up to tenfold discrimination of cancer to non-cancer of breast in our preliminary data. Our finding suggests that the identified metabolic parameters could discriminate between cancer and non-cancer breast tissues without subjecting tissues to fixatives. The remainder of the frozen tissue is available for additional analysis such as molecular analysis and conventional histopathology. We propose that this novel redox scanning procedure may assist in tissue diagnosis in ex vivo tissues. PMID:22879054

  12. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone

    PubMed Central

    Thibaudeau, Laure; Taubenberger, Anna V.; Holzapfel, Boris M.; Quent, Verena M.; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D.; Dalton, Paul D.; Power, Carl A.; Hollier, Brett G.; Hutmacher, Dietmar W.

    2014-01-01

    ABSTRACT The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact ‘organ’ bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276

  13. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone.

    PubMed

    Thibaudeau, Laure; Taubenberger, Anna V; Holzapfel, Boris M; Quent, Verena M; Fuehrmann, Tobias; Hesami, Parisa; Brown, Toby D; Dalton, Paul D; Power, Carl A; Hollier, Brett G; Hutmacher, Dietmar W

    2014-02-01

    The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact 'organ' bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo. PMID:24713276

  14. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    Humans are concurrently exposed to xenoestrogens and to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in infants to high levels during pregnancy and in young women. However, few studies have addressed how xenoestrogens interact with...

  15. Modelling defined mixtures of environmental oestrogens found in domestic animal and sewage treatment effluents using an in vitro oestrogen-mediated transcriptional activation assay (T47D-KBluc

    EPA Science Inventory

    There is growing concern that exposure of fish, wildlife, and humans to water sources contaminated with estrogens could potentially impact reproductive health. Environmental estrogens can come from various sources including concentrated animal feedlot operations (CAFO), municipal...

  16. Globular adiponectin enhances invasion in human breast cancer cells

    PubMed Central

    FALK LIBBY, EMILY; LIU, JIANZHONG; LI, YI; LEWIS, MONICA J.; DEMARK-WAHNEFRIED, WENDY; HURST, DOUGLAS R.

    2016-01-01

    Every year, a large number of women succumb to metastatic breast cancer due to a lack of curative approaches for this disease. Adiponectin (AdipoQ) is the most abundant of the adipocyte-secreted adipokines. In recent years, there has been an interest in the use of AdipoQ and AdipoQ receptor agonists as therapeutic agents for the treatment of breast cancer. However, while multiple epidemiological studies have previously indicated that low levels of circulating plasma AdipoQ portend poor prognosis in patients with breast cancer, recent studies have reported that elevated expression levels of AdipoQ in breast tissue are correlated with advanced stages of the disease. Thus, the aim of the present study was to clarify the mechanism by which AdipoQ in breast tissue acts directly on tumor cells to regulate the early steps of breast cancer metastasis. In the present study, the effects of different AdipoQ isoforms on the metastatic potential of human breast cancer cells were investigated. The results revealed that globular adiponectin (gAd) promoted invasive cell morphology and significantly increased the migration and invasion abilities of breast cancer cells, whereas full-length adiponectin (fAd) had no effect on these cells. Additionally, gAd, but not fAd, increased the expression levels of microtubule-associated protein 1 light chain 3 beta (LC3B)-II and intracellular LC3B puncta, which are indicators of autophagosome formation, thus suggesting autophagic induction by gAd. Furthermore, the inhibition of autophagic function by autophagy-related protein 7 knockdown attenuated the gAd-induced increase in invasiveness in breast cancer cells. Therefore, the results of the present study suggested that a specific AdipoQ isoform may enhance breast cancer invasion, possibly via autophagic induction. Understanding the roles of the different AdipoQ isoforms as microenvironmental regulatory molecules may aid the development of effective AdipoQ-based treatments for breast cancer. PMID:26870258

  17. The combination of green tea and tamoxifen is effective against breast cancer.

    PubMed

    Sartippour, Maryam R; Pietras, Richard; Marquez-Garban, Diana C; Chen, Hsiao-Wang; Heber, David; Henning, Susanne M; Sartippour, Guilan; Zhang, Liping; Lu, Ming; Weinberg, Olga; Rao, Jian Yu; Brooks, Mai N

    2006-12-01

    Epidemiologic data have suggested that green tea may prevent breast cancer. Studies in our laboratory have provided evidence that green tea extract inhibits breast cancer growth by a direct anti-proliferative effect on the tumor cells, as well as by indirect suppressive effects on the tumor-associated endothelial cells. In this study, we asked whether concurrent administration of green tea may add to the anti-tumor effects of standard breast cancer therapy. We observed that green tea increased the inhibitory effect of tamoxifen on the proliferation of the ER (estrogen receptor)-positive MCF-7, ZR75, T47D human breast cancer cells in vitro. This combination regimen was also more potent than either agent alone at increasing cell apoptosis. In animal experiments, mice treated with both green tea and tamoxifen had the smallest MCF-7 xenograft tumor size, and the highest levels of apoptosis in tumor tissue, as compared with either agent administered alone. Moreover, the suppression of angiogenesis in vivo correlated with larger areas of necrosis and lower tumor blood vessel density in treated xenografts. Green tea decreased levels of ER-alpha in tumors both in vitro and in vivo. We also observed that green tea blocked ER-dependent transcription, as well as estradiol-induced phosphorylation and nuclear localization of mitogen-activated protein kinase. To our knowledge, this study is the first to show the interaction of green tea with the ER pathway, as well as provide mechanistic evidence that the combination of green tea and tamoxifen is more potent than either agent alone in suppressing breast cancer growth. These results may lead to future improvements in breast cancer treatment and prevention. PMID:16785249

  18. Comparison of the antiproliferative activity of crude ethanol extracts of nine salvia species grown in Jordan against breast cancer cell line models

    PubMed Central

    Abu-Dahab, Rana; Afifi, Fatma; Kasabri, Violet; Majdalawi, Lara; Naffa, Randa

    2012-01-01

    Background: The antiproliferative activity of Salvia species grown in Jordan has not been fully evaluated yet. The aim of this work was to study the antiproliferative activity of crude ethanol extracts from nine Salvia species grown in Jordan against a panel of breast cancer cell lines. Material and Methods: Cytotoxic activity was evaluated in human tumor models of breast cancer; MCF-7, T47D, ZR-75-1, and BT 474 by the sulforhodamine B assay. In addition, the extracts were evaluated using a non-transformed cell line (Vero) and normal fibroblast cells in order to demonstrate their selectivity and safety. Results: From the nice ethanol extracts under investigation, those of S. dominica and S. fruticosa showed an inhibitory concentration of 50% of cells (IC50) in concentrations less than 30?g/mL against the four cell lines under investigation. S. syriaca and S. hormium showed an IC50 below 30?g/ml for two out of the four cell lines. S. fruticosa, S. hormium and S. syriaca showed selectivity in their antiproliferative activity against estrogen receptor positive cell lines with minimal toxicity against normal human periodontal fibroblasts. Phytochemical screening using thin layer chromatography indicated the presence of terpenoids, flavonoids and coumarins in all examined extracts. Conclusion: Three of the plant extracts under investigation exhibited antiproliferative activity against breast cancer cells and were shown to be safe and selective. These could be considered as a potential source for novel anticancer therapy. PMID:24082637

  19. Inactivated Sendai Virus Strain Tianjin Induces Apoptosis in Breast Cancer MCF-7 Cells by Promoting Caspase Activation and Fas/FasL Expression

    PubMed Central

    Han, Zhe; Li, Xiao-Xia; Li, Mei; Han, Han; Chen, Jun; Zang, Sitao

    2015-01-01

    Abstract Virotherapy represents a promising new approach for treating cancer. Here the authors have analyzed the effect of ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human breast cancer MCF-7 cells in vitro and in vivo. In vitro, UV-Tianjin inhibited the proliferation of MCF-7, MDA-MB-231, and T47D breast cancer cell lines, although MCF-7 cells were most susceptible to UV-Tianjin treatment. Hoechst staining and flow cytometric analysis of UV-Tianjin-treated MCF-7 cells revealed that UV-Tianjin induced apoptosis in a dose-dependent manner. Moreover, UV-Tianjin treatment resulted in reductions in the mitochondria membrane potential of MCF-7 cells and regulated the levels and activities of Bcl-2, Bax, cyt c, caspases, Fas, and Fas ligand (FasL). In vivo, UV-Tianjin inhibited the growth of MCF-7 tumors in nude mice and increased tumor cell apoptosis compared with saline-treated controls. In addition, the percentage of tumor cells positive for cleaved versions of caspase-7, caspase-8, and caspase-9 was higher in UV-Tianjin-treated tumors than in saline-treated controls. In summary, UV-Tianjin exhibited the antitumor activity in human breast cancer MCF-7 cells both in vitro and in vivo. The UV-Tianjin treatment seemed to induce apoptosis by activating both the mitochondrial and death receptor apoptotic pathways. PMID:25517620

  20. Aging of stromal-derived human breast fibroblasts might contribute to breast cancer progression.

    PubMed

    Martens, John W M; Sieuwerts, Anieta M; Bolt-deVries, Joan; Bosma, Peter T; Swiggers, Susan J J; Klijn, Jan G M; Foekens, John A

    2003-02-01

    Age is an important factor in the development and spread of breast cancer. Stromal cells also contribute to breast cancer growth and metastasis through the production of extracellular matrix (ECM) modifiers such as urokinase type plasminogen activator (uPA), its receptor (uPAR), its inhibitors (PAI-1 and PAI-2), matrix metalloproteinases (MMPs), and growth factors, including the fibroblast and insulin-like growth factors (FGF's and IGF's). In the present study we have investigated whether breast fibroblasts aged in vitro through passage in culture display altered levels of the plasminogen activator system and growth factors that are known to modulate that system. With real-time RT-PCR we found that during passage human breast fibroblasts, whether derived from the tumour burden or from matched adjacent normal breast tissue, exhibited a consistent increase in PAI-1 and FGF-1 and a decrease in MMP-2 mRNA expression. In addition, in 5 out of 7 fibroblast strains we observed an induction of uPA expression in combination with a reduced IGF-1 expression. Interestingly, while during aging MMP-2 protein increased in all tumour-derived fibroblast strains, these protein levels were reduced in all normal tissue- derived fibroblasts. No other clear-cut age-dependent alterations were found in the all-together 25 factors investigated. We furthermore demonstrate in one tumour-derived fibroblast strain that the increases in uPA and PAI-1 mRNA and MMP-2 protein production are inversely related to the telomere length. Artificially increasing telomere length in this fibroblast strain by expressing human telomerase reverse transcriptase (hTERT) prevented senescence and resulted in late passage cultures with early passage uPA, PAI-1 and MMP-2 levels. Our results show that aging accompanied by telomere loss induces PAI-1 and FGF-1 mRNA expression in all breast fibroblast strains, increases uPA and decreases IGF-1 mRNA expression in a subset, and increases MMP-2 protein expression only in tumour-derived breast fibroblasts. These age-induced levels of PAI-1, FGF-1, uPA and MMP-2 in stromal breast fibroblast could contribute to breast cancer progression. PMID:12574821

  1. Ocular input for human melatonin regulation: relevance to breast cancer

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Levin, Robert; Brainard, George C.

    2002-01-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  2. Novel Selective Estrogen Mimics for the Treatment of Tamoxifen-Resistant Breast Cancer

    PubMed Central

    Molloy, Mary Ellen; Perez White, Bethany E.; Gherezghiher, Teshome; Michalsen, Bradley T.; Xiong, Rui; Patel, Hitisha; Zhao, Huiping; Maximov, Philipp Y.; Jordan, V. Craig; Thatcher, Gregory R. J.; Tonetti, Debra A.

    2014-01-01

    Endocrine-resistant breast cancer is a major clinical obstacle. The use of 17β-estradiol (E2) has re-emerged as a potential treatment option following exhaustive use of tamoxifen (TAM) or aromatase inhibitors although side effects have hindered its clinical usage. Protein kinase C alpha (PKCα) expression was shown to be a predictor of disease outcome for patients receiving endocrine therapy and may predict a positive response to an estrogenic treatment. Here, we have investigated the use of novel benzothiophene selective estrogen mimics (SEMs) as an alternative to E2 for the treatment of TAM-resistant breast cancer. Following in vitro characterization of SEMs, a panel of clinically relevant PKCα-expressing, TAM-resistant models were used to investigate the antitumor effects of these compounds. SEM treatment resulted in growth inhibition and apoptosis of TAM-resistant cell lines in vitro. In vivo SEM treatment induced tumor regression of TAM-resistant T47D:A18/PKCα and T47D:A18-TAM1 tumor models. T47D:A18/PKCα tumor regression was accompanied by translocation of ERα to extranuclear sites, possibly defining a mechanism through which these SEMs initiate tumor regression. SEM treatment did not stimulate growth of E2-dependent T47D:A18/neo tumors. Additionally, unlike E2 or TAM, treatment with SEMs did not stimulate uterine weight gain. These findings suggest the further development of SEMs as a feasible therapeutic strategy for the treatment of endocrine-resistant breast cancer without the side effects associated with E2. PMID:25205655

  3. Novel selective estrogen mimics for the treatment of tamoxifen-resistant breast cancer.

    PubMed

    Molloy, Mary Ellen; White, Bethany E Perez; Gherezghiher, Teshome; Michalsen, Bradley T; Xiong, Rui; Patel, Hitisha; Zhao, Huiping; Maximov, Philipp Y; Jordan, V Craig; Thatcher, Gregory R J; Tonetti, Debra A

    2014-11-01

    Endocrine-resistant breast cancer is a major clinical obstacle. The use of 17?-estradiol (E2) has reemerged as a potential treatment option following exhaustive use of tamoxifen or aromatase inhibitors, although side effects have hindered its clinical usage. Protein kinase C alpha (PKC?) expression was shown to be a predictor of disease outcome for patients receiving endocrine therapy and may predict a positive response to an estrogenic treatment. Here, we have investigated the use of novel benzothiophene selective estrogen mimics (SEM) as an alternative to E2 for the treatment of tamoxifen-resistant breast cancer. Following in vitro characterization of SEMs, a panel of clinically relevant PKC?-expressing, tamoxifen-resistant models were used to investigate the antitumor effects of these compounds. SEM treatment resulted in growth inhibition and apoptosis of tamoxifen-resistant cell lines in vitro. In vivo SEM treatment induced tumor regression of tamoxifen-resistant T47D:A18/PKC? and T47D:A18-TAM1 tumor models. T47D:A18/PKC? tumor regression was accompanied by translocation of estrogen receptor (ER) ? to extranuclear sites, possibly defining a mechanism through which these SEMs initiate tumor regression. SEM treatment did not stimulate growth of E2-dependent T47D:A18/neo tumors. In addition, unlike E2 or tamoxifen, treatment with SEMs did not stimulate uterine weight gain. These findings suggest the further development of SEMs as a feasible therapeutic strategy for the treatment of endocrine-resistant breast cancer without the side effects associated with E2. PMID:25205655

  4. Cyclin A1 Modulates the Expression of Vascular Endothelial Growth Factor and Promotes Hormone-Dependent Growth and Angiogenesis of Breast Cancer

    PubMed Central

    Kopparapu, Pradeep Kumar; Anagnostaki, Lola; Hrknen, Pirkko; Persson, Jenny Liao

    2013-01-01

    Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of proteinprotein complexes between cyclin A1 and estrogen receptor ER-? cyclin A1 overexpression increases ER-? expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-? Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression. PMID:23991063

  5. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway.

    PubMed

    Thoennissen, N H; O'Kelly, J; Lu, D; Iwanski, G B; La, D T; Abbassi, S; Leiter, A; Karlan, B; Mehta, R; Koeffler, H P

    2010-01-14

    Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is an ingredient of chili peppers with inhibitory effects against cancer cells of different origin. We examined the activity of capsaicin on breast cancer cells in vitro and in vivo. The drug potently inhibited growth of ER-positive (MCF-7, T47D, BT-474) and ER-negative (SKBR-3, MDA-MB231) breast cancer cell lines, which was associated with G(0)/G(1) cell-cycle arrest, increased levels of apoptosis and reduced protein expression of human epidermal growth factor receptor (EGFR), HER-2, activated extracellular-regulated kinase (ERK) and cyclin D1. In contrast, cell-cycle regulator p27(KIP1), caspase activity as well as poly-ADP ribose polymerase (PARP) cleavage were increased. Notably, capsaicin blocked breast cancer cell migration in vitro and decreased by 50% the size of MDA-MB231 breast cancer tumors growing orthotopically in immunodeficient mice without noticeable drug side effects. in vivo activation of ERK was clearly decreased, as well as expression of HER-2 and cyclin D1, whereas caspase activity and PARP cleavage products were increased in tumors of drug-treated mice. Besides, capsaicin potently inhibited the development of pre-neoplastic breast lesions by up to 80% without evidence of toxicity. Our data indicate that capsaicin is a novel modulator of the EGFR/HER-2 pathway in both ER-positive and -negative breast cancer cells with a potential role in the treatment and prevention of human breast cancer. PMID:19855437

  6. Concentration of endogenous estrogens and estrogen metabolites in the NCI-60 human tumor cell lines

    PubMed Central

    2012-01-01

    Background Endogenous estrogens and estrogen metabolites play an important role in the pathogenesis and development of human breast, endometrial, and ovarian cancers. Increasing evidence also supports their involvement in the development of certain lung, colon and prostate cancers. Methods In this study we systemically surveyed endogenous estrogen and estrogen metabolite levels in each of the NCI-60 human tumor cell lines, which include human breast, central nerve system, colon, ovarian, prostate, kidney and non-small cell lung cancers, as well as melanomas and leukemia. The absolute abundances of these metabolites were measured using a liquid chromatography-tandem mass spectrometry method that has been previously utilized for biological fluids such as serum and urine. Results Endogenous estrogens and estrogen metabolites were found in all NCI-60 human tumor cell lines and some were substantially elevated and exceeded the levels found in well known estrogen-dependent and estrogen receptor-positive tumor cells such as MCF-7 and T-47D. While estrogens were expected to be present at high levels in cell lines representing the female reproductive system (that is, breast and ovarian), other cell lines, such as leukemia and colon, also contained very high levels of these steroid hormones. The leukemia cell line RMPI-8226 contained the highest levels of estrone (182.06 pg/106 cells) and 17?-estradiol (753.45 pg/106 cells). In comparison, the ovarian cancer cell line with the highest levels of these estrogens contained only 19.79 and 139.32 pg/106 cells of estrone and 17?-estradiol, respectively. The highest levels of estrone and 17?-estradiol in breast cancer cell lines were only 8.45 and 87.37 pg/106 cells in BT-549 and T-47D cells, respectively. Conclusions The data provided evidence for the presence of significant amounts of endogenous estrogens and estrogen metabolites in cell lines not commonly associated with these steroid hormones. This broad discovery of endogenous estrogens and estrogen metabolites in these cell lines suggest that several human tumors may be beneficially treated using endocrine therapy aimed at estrogen biosynthesis and estrogen-related signaling pathways. PMID:22546321

  7. Excretion of mefloquine in human breast milk.

    PubMed

    Edstein, M D; Veenendaal, J R; Hyslop, R

    1988-01-01

    Concentrations of mefloquine in plasma and breast milk were measured in 2 women following the administration of one Lariam tablet (250 mg mefloquine). The milk-to-plasma ratio of mefloquine based on the area under the plasma and milk concentration curves was 0.13 and 0.16. After a maternal mefloquine dose of 3.73 mg/kg and assuming a daily milk ingestion of 1 litre over a week, the maximum amount of drug ingested by an infant would be 0.14 mg/kg. During lactation the plasma clearance and apparent volume of distribution of mefloquine were about 50% less than the same parameters calculated after lactation had ceased. PMID:3262044

  8. Characterization of human breast cancer by scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Di; Malyarenko, Eugene; Seviaryn, Fedar; Yuan, Ye; Sherman, Mark; Bandyopadhyay, Sudeshna; Gierach, Gretchen; Greenway, Christopher W.; Maeva, Elena; Strumban, Emil; Duric, Neb; Maev, Roman

    2013-03-01

    Objectives: The purpose of this study was to characterize human breast cancer tissues by the measurement of microacoustic properties. Methods: We investigated eight breast cancer patients using acoustic microscopy. For each patient, seven blocks of tumor tissue were collected from seven different positions around a tumor mass. Frozen sections (10 micrometer, ?m) of human breast cancer tissues without staining and fixation were examined in a scanning acoustic microscope with focused transducers at 80 and 200 MHz. Hematoxylin and Eosin (H and E) stained sections from the same frozen breast cancer tissues were imaged by optical microscopy for comparison. Results: The results of acoustic imaging showed that acoustic attenuation and sound speed in cancer cell-rich tissue regions were significantly decreased compared with the surrounding tissue regions, where most components are normal cells/tissues, such as fibroblasts, connective tissue and lymphocytes. Our observation also showed that the ultrasonic properties were influenced by arrangements of cells and tissue patterns. Conclusions: Our data demonstrate that attenuation and sound speed imaging can provide biomechanical information of the tumor and normal tissues. The results also demonstrate the potential of acoustic microscopy as an auxiliary method for operative detection and localization of cancer affected regions.

  9. Retinoic acid protects human breast cancer cells against etoposide-induced apoptosis by NF-kappaB-dependent but cIAP2-independent mechanisms

    PubMed Central

    2010-01-01

    Background Retinoids, through their cognate nuclear receptors, exert potent effects on cell growth, differentiation and apoptosis, and have significant promise for cancer therapy and chemoprevention. These ligands can determine the ultimate fate of target cells by stimulating or repressing gene expression directly, or indirectly through crosstalking with other signal transducers. Results Using different breast cancer cell models, we show here that depending on the cellular context retinoids can signal either towards cell death or cell survival. Indeed, retinoids can induce the expression of pro-apoptotic (i.e. TRAIL, TNF-Related Apoptosis-Inducing Ligand, Apo2L/TNFSF10) and anti-apoptotic (i.e. cIAP2, inhibitor of apoptosis protein-2) genes. Promoter mapping, gel retardation and chromatin immunoprecipitation assays revealed that retinoids induce the expression of this gene mainly through crosstalk with NF-kappaB. Supporting this crosstalk, the activation of NF-kappaB by retinoids in T47D cells antagonizes the apoptosis triggered by the chemotherapeutic drugs etoposide, camptothecin or doxorubicin. Notably apoptosis induced by death ligands (i.e. TRAIL or antiFAS) is not antagonized by retinoids. That knockdown of cIAP2 expression by small interfering RNA does not alter the inhibition of etoposide-induced apoptosis by retinoids in T47D cells reveals that stimulation of cIAP2 expression is not the cause of their anti-apoptotic action. However, ectopic overexpression of a NF-kappaB repressor increases apoptosis by retinoids moderately and abrogates almost completely the retinoid-dependent inhibition of etoposide-induced apoptosis. Our data exclude cIAP2 and suggest that retinoids target other regulator(s) of the NF-kappaB signaling pathway to induce resistance to etoposide on certain breast cancer cells. Conclusions This study shows an important role for the NF-kappaB pathway in retinoic acid signaling and retinoic acid-mediated resistance to cancer therapy-mediated apoptosis in breast cancer cells, independently of cIAP2. Our data support the use of NF-kappaB pathway activation as a marker for screening that will help to develop novel retinoids, or retinoid-based combination therapies with improved efficacy. PMID:20102612

  10. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI.

    PubMed

    Jafari, Atefeh; Salouti, Mojtaba; Shayesteh, Saber Farjami; Heidari, Zahra; Rajabi, Ahmad Bitarafan; Boustani, Komail; Nahardani, Ali

    2015-02-20

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.00.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION-BBN in human blood serum. DSPION-BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION-BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T2-weighted and T2*-weighted color map MR images were acquired. The MRI study indicated that the DSPION-BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T2*-weighted color map MR images in mice with breast tumors. PMID:25642737

  11. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    NASA Astrophysics Data System (ADS)

    Jafari, Atefeh; Salouti, Mojtaba; Farjami Shayesteh, Saber; Heidari, Zahra; Bitarafan Rajabi, Ahmad; Boustani, Komail; Nahardani, Ali

    2015-02-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION-BBN in human blood serum. DSPION-BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION-BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T2-weighted and T2*-weighted color map MR images were acquired. The MRI study indicated that the DSPION-BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T2*-weighted color map MR images in mice with breast tumors.

  12. Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-beta signaling pathways

    PubMed Central

    2012-01-01

    Introduction Mammary-specific overexpression of Six1 in mice induces tumors that resemble human breast cancer, some having undergone epithelial to mesenchymal transition (EMT) and exhibiting stem/progenitor cell features. Six1 overexpression in human breast cancer cells promotes EMT and metastatic dissemination. We hypothesized that Six1 plays a role in the tumor initiating cell (TIC) population specifically in certain subtypes of breast cancer, and that by understanding its mechanism of action, we could potentially develop new means to target TICs. Methods We examined gene expression datasets to determine the breast cancer subtypes with Six1 overexpression, and then examined its expression in the CD24low/CD44+ putative TIC population in human luminal breast cancers xenografted through mice and in luminal breast cancer cell lines. Six1 overexpression, or knockdown, was performed in different systems to examine how Six1 levels affect TIC characteristics, using gene expression and flow cytometric analysis, tumorsphere assays, and in vivo TIC assays in immunocompromised and immune-competent mice. We examined the molecular pathways by which Six1 influences TICs using genetic/inhibitor approaches in vitro and in vivo. Finally, we examined the expression of Six1 and phosphorylated extracellular signal-regulated kinase (p-ERK) in human breast cancers. Results High levels of Six1 are associated with adverse outcomes in luminal breast cancers, particularly the luminal B subtype. Six1 levels are enriched in the CD24low/CD44+ TIC population in human luminal breast cancers xenografted through mice, and in tumorsphere cultures in MCF7 and T47D luminal breast cancer cells. When overexpressed in MCF7 cells, Six1expands the TIC population through activation of transforming growth factor-beta (TGF-β) and mitogen activated protein kinase (MEK)/ERK signaling. Inhibition of ERK signaling in MCF7-Six1 cells with MEK1/2 inhibitors, U0126 and AZD6244, restores the TIC population of luminal breast cancer cells back to that observed in control cells. Administration of AZD6244 dramatically inhibits tumor formation efficiency and metastasis in cells that express high levels of Six1 ectopically or endogenously. Finally, we demonstrate that Six1 significantly correlates with phosphorylated ERK in human breast cancers. Conclusions Six1 plays an important role in the TIC population in luminal breast cancers and induces a TIC phenotype by enhancing both TGF-β and ERK signaling. MEK1/2 kinase inhibitors are potential candidates for targeting TICs in breast tumors. PMID:22765220

  13. Notch-1 promotes breast cancer cells proliferation by regulating LncRNA GAS5

    PubMed Central

    Pei, Jing; Wang, Benzhong

    2015-01-01

    Background: Notch signaling is indicated as novel therapeutic targets to prevent recurrence of breast cancer. LncRNAs were identified as downstream target of Notch pathway. However, the exact mechanisms involved in Notch signaling, lncRNAs and breast cancer remain to be explained. Objective: This original research aimed to determine the prognostic implications of Notch-1 for breast cancer, and explain mechanisms involved in regulation of lnRNA GAS5 by Notch-1, and identify the function of this mechanism on breast cancer. Method: Thirty breast cancer patients were included from The First Affiliated Hospital of Anhui Medical University (China) since January 2006 in this study. The mRNA level by RT-PCR and protein level of Notch-1 by western blot in tumor tissues and adjacent normal tissues were evaluated and 5-year survival analysis was applied to examine the significance of Notch-1. The levels of ten reported lncRNAs were determined by RT-PCR, and subsequently linear analysis was applied to analyze the relationship between these four unique lncRNAs and protein level of Notch-1, which identified the most relevant lncRNA GAS5 with Notch-1 in breast cancer. Subsequently, Notch1-siRNA was applied to influence the expression of Notch-1 in T47D, then the level of RSA5 was measured by RT-PCR, and CCK-8 assay was applied to measure the proliferation of T47D cells. Results: High level of Notch-1 provided a poor prognosis in breast cancer. Interference of Notch-1 significantly suppressed proliferation of T47D cell (P < 0.05), and significantly increased the level of GAS5. Conclusion: Notch-1 promotes breast cancer cells proliferation by regulating LncRNA GAS5. PMID:26550436

  14. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17?-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor ?. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant human tissue, revealing a role for GPER in estrogen-induced breast physiology and pathology. PMID:24718936

  15. Urinary isothiocyanate levels, brassica, and human breast cancer.

    PubMed

    Fowke, Jay H; Chung, Fung-Lung; Jin, Fan; Qi, Dai; Cai, Qiuyin; Conaway, Cliff; Cheng, Jia-Rong; Shu, Xiao-Ou; Gao, Yu-Tang; Zheng, Wei

    2003-07-15

    Brassica vegetable consumption (e.g., Chinese cabbage) provides isothiocyanates (ITC) and other glucosinolate derivatives capable of inducing Phase II enzymes [e.g., glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and NADPH quinine oxidoreductase] and apoptosis, altering steroid hormone metabolism, regulating estrogen receptor response, and stabilizing cellular proliferation. Asian populations consuming large amounts of Brassica have a lower breast cancer incidence compared with Western populations; however, the association between Brassica consumption and breast cancer risk is uncertain. It is difficult to estimate glucosinolate exposure and degradation in humans, possibly limiting epidemiological investigations of Brassica and cancer associations. We conducted a case control investigation of breast cancer in Shanghai, China, using urinary ITC levels as a biological measure of glucosinolate intake and degradation in populations with habitual Brassica intake. A representative subgroup of 337 cases providing presurgery, fasting, and first-morning urine specimens was one-to-one matched (age, menopausal status, date of urine collection, and day of laboratory assay) to population controls. Urinary ITC levels were inversely associated with breast cancer [odds ratio (OR) (Quartile 1) = 1 (ref); OR(Q2) = 0.9, 95% confidence interval (0.6, 1.4); OR(Q3) = 0.7, (0.5, 1.1); OR(Q4) = 0.5, (0.3, 0.8), adjusted for age, menopausal status, soy protein, fibroadenoma history, family breast cancer, physical activity, waist-to-hip ratio, body mass index, age at menarche, and parity in conditional logistic model]. This protective association persisted within post and premenopausal women. In contrast, total Brassica intake estimated from a food frequency questionnaire was not associated with breast cancer. Trends in the association between urinary ITC and breast cancer were more consistent with homozygous deletion of GSTM1 or GSTT1, the AAgenotype of GSTP1 (A313G), or with the C allele of NADPH quinine oxidoreductase (C609T), although interactions were not statistically significant. In conclusion, greater Brassica vegetable consumption, as measured by the urinary ITC biomarker, was associated with significantly reduced breast cancer risk among Chinese women. PMID:12873994

  16. FT-Raman spectroscopy study of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  17. Analyzing the regulation of metabolic pathways in human breast cancer

    PubMed Central

    2010-01-01

    Background Tumor therapy mainly attacks the metabolism to interfere the tumor's anabolism and signaling of proliferative second messengers. However, the metabolic demands of different cancers are very heterogeneous and depend on their origin of tissue, age, gender and other clinical parameters. We investigated tumor specific regulation in the metabolism of breast cancer. Methods For this, we mapped gene expression data from microarrays onto the corresponding enzymes and their metabolic reaction network. We used Haar Wavelet transforms on optimally arranged grid representations of metabolic pathways as a pattern recognition method to detect orchestrated regulation of neighboring enzymes in the network. Significant combined expression patterns were used to select metabolic pathways showing shifted regulation of the aggressive tumors. Results Besides up-regulation for energy production and nucleotide anabolism, we found an interesting cellular switch in the interplay of biosynthesis of steroids and bile acids. The biosynthesis of steroids was up-regulated for estrogen synthesis which is needed for proliferative signaling in breast cancer. In turn, the decomposition of steroid precursors was blocked by down-regulation of the bile acid pathway. Conclusion We applied an intelligent pattern recognition method for analyzing the regulation of metabolism and elucidated substantial regulation of human breast cancer at the interplay of cholesterol biosynthesis and bile acid metabolism pointing to specific breast cancer treatment. PMID:20831783

  18. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line

    PubMed Central

    Khanavi, Mahnaz; Gheidarloo, Razieh; Sadati, Nargess; Ardekani, Mohammad Reza Shams; Nabavi, Seyed Mohammad Bagher; Tavajohi, Shohreh; Ostad, Seyed Nasser

    2012-01-01

    Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70%) extract and partition fractions of hexane, chloroform (CHCl3), ethyl acetate (EtOAc), and MeOHH2O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH 3T3) cell lines by MTT assay. Statistical Analysis Used: IC50 (median growth inhibitory concentration) values were calculated by Sigmaplot (10) software. Results: Hexane fraction of Chondria dasyphylla (IC50 82.26 4.09 ?g/ml) and MeOH-H2O fraction of Ulva flexuosa (IC50 116.92 8.58 ?g/ml) showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC50 166.42 26.7 and 190.24 52.8 ?g/ml), respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC50 27.94 9.3 and 70.41 7.5 ?g/ml). Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines. PMID:22438665

  19. A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium.

    PubMed

    Speroni, Lucia; Sweeney, Michael F; Sonnenschein, Carlos; Soto, Ana M

    2016-01-01

    The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression. PMID:26891095

  20. Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells.

    PubMed

    Tseng, Chao-Neng; Hong, Yi-Ren; Chang, Hsueh-Wei; Yu, Tsai-Jung; Hung, Ting-Wei; Hou, Ming-Feng; Yuan, Shyng-Shiou F; Cho, Chung-Lung; Liu, Chien-Tsung; Chiu, Chien-Chih; Huang, Chih-Jen

    2014-01-01

    Cancer stem cells (CSCs) are a subset of cancer cells in tumors or established cancer cell lines that can initiate and sustain the growth of tumors in vivo. Cancer stem cells can be enriched in serum-free, suspended cultures that allow the formation of tumorspheres over several days to weeks. Brefeldin A (BFA) is a mycotoxin that induces endoplasmic reticulum (ER) stress in eukaryotic cells. We found that BFA, at sub-microgram per milliliter concentrations, preferentially induced cell death in MDA-MB-231 suspension cultures (EC50: 0.016 µg/mL) compared to adhesion cultures. BFA also effectively inhibited clonogenic activity and the migration and matrix metalloproteinases-9 (MMP-9) activity of MDA-MB-231 cells. Western blotting analysis indicated that the effects of BFA may be mediated by the down-regulation of breast CSC marker CD44 and anti-apoptotic proteins Bcl-2 and Mcl-1, as well as the reversal of epithelial-mesenchymal transition. Furthermore, BFA also displayed selective cytotoxicity toward suspended MDA-MB-468 cells, and suppressed tumorsphere formation in T47D and MDA-MB-453 cells, suggesting that BFA may be effective against breast cancer cells of various phenotypes. PMID:25356567

  1. A human breast cell model of preinvasive to invasive transition.

    PubMed

    Rizki, Aylin; Weaver, Valerie M; Lee, Sun-Young; Rozenberg, Gabriela I; Chin, Koei; Myers, Connie A; Bascom, Jamie L; Mott, Joni D; Semeiks, Jeremy R; Grate, Leslie R; Mian, I Saira; Borowsky, Alexander D; Jensen, Roy A; Idowu, Michael O; Chen, Fanqing; Chen, David J; Petersen, Ole W; Gray, Joe W; Bissell, Mina J

    2008-03-01

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from preinvasive to invasive phenotype as it may occur "spontaneously" in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted basement membrane cultures. These cells remained noninvasive; however, unlike their nonmalignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher-grade tumors. To find functionally significant changes in transition from preinvasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between preinvasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP9, MMP13, MMP15, and MMP17 was up-regulated in the invasive cells. Using small interfering RNA-based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which preinvasive breast cells could acquire invasiveness in a metaplastic context. PMID:18316601

  2. Detection of Human Papillomavirus DNA in Patients with Breast Tumor in China

    PubMed Central

    Li, Jie; Ding, Jie; Zhai, Kan

    2015-01-01

    The presence of HPV in breast tissue and the potential causal association between human papillomavirus (HPV) and breast cancer (BC) remains controversial. The aim of the present study was to compare the HPV prevalence in BC tissues, adjacent normal breast tissues and breast benign disease tissues and to investigate the possible association between HPV and breast tumor development in Chinese women. Paraffin-embedded specimens from 187 pairs of BCs including tumor and normal breast tissue adjacent to tumors and 92 breast benign lesions between June 2009 and July 2014 were investigated by nested polymerase chain reaction (PCR) and type-specific PCR, respectively. With strictly quality control, HPV positive infection was detected in three BC tissues. No HPV positive infection was detected in all normal breast tissue adjacent to tumors and benign breast tissues. Through our detailed analysis, rare HPV infection in this study suggests that HPV might not be associated with BC progression. PMID:26295705

  3. Biological determinants of radiation-induced human breast cancer

    SciTech Connect

    Feig, S.A.

    1980-01-01

    This is the second in a three part series on the hypothetical risk from x-ray mammography. It will review those aspects of breast anatomy, histology, physiology, and pathology which are pertinent to radiation carcinogenesis. Radiation-induced breast cancers are histologically identical to the naturally occurring type in that they arise from the ductal epithelium and consist of a similar proportion of infiltrating and intraductal lesions. Possible explanations for the increased resistance to radiation effect in women over 30 years of age at time of exposure include regression of the glandular target tissue, hormonal changes, and parity. Examples of age-related sensitivity and hormonal dependence in other radiation-induced human and animal tumors will be discussed.

  4. The PI3K/mTOR dual inhibitor P7170 demonstrates potent activity against endocrine-sensitive and endocrine-resistant ER+ breast cancer.

    PubMed

    Bean, Jennifer R; Hosford, Sarah R; Symonds, Lynn K; Owens, Philip; Dillon, Lloye M; Yang, Wei; Shee, Kevin; Schwartz, Gary N; Marotti, Jonathan D; Muller, Kristen E; Rosenkranz, Kari M; Barth, Richard J; Chen, Vivian S; Agarwal, Veena R; Miller, Todd W

    2015-01-01

    Activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway has been implicated in anti-estrogen resistance in breast cancer. We tested the therapeutic potential of the novel PI3K/mTOR dual inhibitor P7170 in a panel of anti-estrogen-sensitive and anti-estrogen-resistant models of ER+ breast cancer. Estrogen receptor-positive (ER+) breast cancer cells were treated P7170. Fresh cores from primary ER+/HER2- tumors from two patients were treated P7170 ex vivo. Mice bearing breast cancer xenografts were randomized to treatment with vehicle, fulvestrant, P7170, or combinations, and tumor volumes were measured. Tissues and cells were analyzed for markers of pathway activity, cell viability, and apoptosis. In cell lines, P7170 exhibited IC50 values in the range of 0.9-7 nM and induced apoptosis. P7170 potently inhibited mTOR activity (? 25 nM) and inhibited PI3K at higher concentrations (? 200 nM). P7170 completely inhibited MCF-7 tumor growth, significantly inhibited growth of fulvestrant-resistant T47D tumors, and suppressed tumor cell proliferation but did not induce apoptosis. While P7170 inhibits PI3K and mTOR in ER+/HER2- human breast cancer cells and tumors ex vivo, in vivo data indicate that the primary mechanism of P7170 anti-tumor action is inhibition of mTOR and cell proliferation. P7170 is a novel agent worthy of further investigation for the treatment of ER+ breast cancer. PMID:25491778

  5. Expression of estrogen receptor beta increases integrin alpha1 and integrin beta1 levels and enhances adhesion of breast cancer cells.

    PubMed

    Lindberg, Karolina; Ström, Anders; Lock, John G; Gustafsson, Jan-Ake; Haldosén, Lars-Arne; Helguero, Luisa A

    2010-01-01

    Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERalpha and ERbeta). Estrogen-bound ERalpha induces proliferation of mammary epithelial and cancer cells, while ERbeta is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERbeta levels compared to the early stage breast cancers, suggesting that loss of ERbeta could be important in cancer development. Analysis of ERbeta-/- mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERbeta is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERalpha and ERbeta. As ERbeta is widely found in breast cancer but not in cell lines, we used ERalpha positive T47-D and MCF-7 human breast cancer cells to generate cells with inducible ERbeta expression. Furthermore, the colon cancer cell lines SW480 and HT-29 were also used. Integrin alpha1 mRNA and protein levels increased following ERbeta expression. Integrin beta1-the unique partner for integrin alpha1-increased only at the protein level. ERbeta expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERbeta increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERbeta expression was associated to less cell migration. These results indicate that ERbeta affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells. PMID:19780039

  6. Marker evaluation of human breast and bladder cancers

    SciTech Connect

    Mayall, B.H.; Carroll, P.R.; Chen, Ling-Chun; Cohen, M.B.; Goodson, W.H. III; Smith, H.S.; Waldman, F.M. )

    1990-11-02

    We are investigating multiple markers in human breast and bladder cancers. Our aim is to identify markers that are clinically relevant and that contribute to our understanding of the disease process in individual patients. Good markers accurately assess the malignant potential of a cancer in an individual patient. Thus, they help identify those cancers that will recur, and they may be used to predict more accurately time to recurrence, response to treatment, and overall prognosis. Therapy and patient management may then be optimized to the individual patient. Relevant markers reflect the underlying pathobiology of individual tumors. As a tissue undergoes transformation from benign to malignant, the cells lose their differentiated phenotype. As a generalization, the more the cellular phenotype, cellular proliferation and cellular genotype depart from normal, the more advanced is the tumor in its biological evolution and the more likely it is that the patient has a poor prognosis. We use three studies to illustrate our investigation of potential tumor markers. Breast cancers are labeled in vivo with 5-bromodeoxyuridine (BrdUrd) to give a direct measure of the tumor labeling index. Bladder cancers are analyzed immunocytochemically using an antibody against proliferation. Finally, the techniques of molecular genetics are used to detect allelic loss in breast cancers. 6 refs., 3 figs.

  7. Mathematical analysis of mammary ducts in lactating human breast.

    PubMed

    Mortazavi, S Negin; Geddes, Donna; Hassiotou, Foteini; Hassanipour, Fatemeh

    2014-01-01

    This work studies a simple model for milk transport through lactating human breast ducts, and describes mathematically the mass transfer from alveolar sacs through the mammary ducts to the nipple. In this model both the phenomena of diffusion in the sacs and conventional flow in ducts have been considered. The ensuing analysis reveals that there is an optimal range of bifurcation numbers leading to the easiest milk flow based on the minimum flow resistance. This model formulates certain difficult-to-measure values like diameter of the alveolar sacs, and the total length of the milk path as a function of easy-to-measure properties such as milk fluid properties and macroscopic measurements of the breast. Alveolar dimensions from breast tissues of six lactating women are measured and reported in this paper. The theoretically calculated alveoli diameters for optimum milk flow (as a function of bifurcation numbers) show excellent match with our biological data on alveolar dimensions. Also, the mathematical model indicates that for minimum milk flow resistance the glandular tissue must be within a short distance from the base of the nipple, an observation that matches well with the latest anatomical and physiological research. PMID:25571286

  8. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation.

    PubMed

    De Petrocellis, L; Melck, D; Palmisano, A; Bisogno, T; Laezza, C; Bifulco, M; Di Marzo, V

    1998-07-01

    Anandamide was the first brain metabolite shown to act as a ligand of "central" CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 microM and 83-92% maximal inhibition at 5-10 microM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 microM anandamide. The anti-proliferative effect of anandamide was not due to toxicity or to apoptosis of cells but was accompanied by a reduction of cells in the S phase of the cell cycle. A stable analogue of anandamide (R)-methanandamide, another endogenous cannabinoid, 2-arachidonoylglycerol, and the synthetic cannabinoid HU-210 also inhibited EFM-19 cell proliferation, whereas arachidonic acid was much less effective. These cannabimimetic substances displaced the binding of the selective cannabinoid agonist [3H]CP 55, 940 to EFM-19 membranes with an order of potency identical to that observed for the inhibition of EFM-19 cell proliferation. Moreover, anandamide cytostatic effect was inhibited by the selective CB1 receptor antagonist SR 141716A. Cell proliferation was arrested by a prolactin mAb and enhanced by exogenous human prolactin, whose mitogenic action was reverted by very low (0.1-0.5 microM) doses of anandamide. Anandamide suppressed the levels of the long form of the prolactin receptor in both EFM-19 and MCF-7 cells, as well as a typical prolactin-induced response, i.e., the expression of the breast cancer cell susceptibility gene brca1. These data suggest that anandamide blocks human breast cancer cell proliferation through CB1-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor. PMID:9653194

  9. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    PubMed Central

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of central CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 ?M and 8392% maximal inhibition at 510 ?M. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 ?M anandamide. The anti-proliferative effect of anandamide was not due to toxicity or to apoptosis of cells but was accompanied by a reduction of cells in the S phase of the cell cycle. A stable analogue of anandamide (R)-methanandamide, another endogenous cannabinoid, 2-arachidonoylglycerol, and the synthetic cannabinoid HU-210 also inhibited EFM-19 cell proliferation, whereas arachidonic acid was much less effective. These cannabimimetic substances displaced the binding of the selective cannabinoid agonist [3H]CP 55,940 to EFM-19 membranes with an order of potency identical to that observed for the inhibition of EFM-19 cell proliferation. Moreover, anandamide cytostatic effect was inhibited by the selective CB1 receptor antagonist SR 141716A. Cell proliferation was arrested by a prolactin mAb and enhanced by exogenous human prolactin, whose mitogenic action was reverted by very low (0.10.5 ?M) doses of anandamide. Anandamide suppressed the levels of the long form of the prolactin receptor in both EFM-19 and MCF-7 cells, as well as a typical prolactin-induced response, i.e., the expression of the breast cancer cell susceptibility gene brca1. These data suggest that anandamide blocks human breast cancer cell proliferation through CB1-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor. PMID:9653194

  10. Predicting the Important Enzymes in Human Breast Milk Digestion

    PubMed Central

    2015-01-01

    Human milk is known to contain several proteases, but little is known about whether these enzymes are active, which proteins they cleave, and their relative contribution to milk protein digestion in vivo. This study analyzed the mass spectrometry-identified protein fragments found in pooled human milk by comparing their cleavage sites with the enzyme specificity patterns of an array of enzymes. The results indicate that several enzymes are actively taking part in the digestion of human milk proteins within the mammary gland, including plasmin and/or trypsin, elastase, cathepsin D, pepsin, chymotrypsin, a glutamyl endopeptidase-like enzyme, and proline endopeptidase. Two proteins were most affected by enzyme hydrolysis: β-casein and polymeric immunoglobulin receptor. In contrast, other highly abundant milk proteins such as α-lactalbumin and lactoferrin appear to have undergone no proteolytic cleavage. A peptide sequence containing a known antimicrobial peptide is released in breast milk by elastase and cathepsin D. PMID:24620897

  11. Synthesis and evaluation of Lys(1)(α,γ-Folate)Lys(3)((177)Lu-DOTA)-Bombesin(1-14) as a potential theranostic radiopharmaceutical for breast cancer.

    PubMed

    Aranda-Lara, Liliana; Ferro-Flores, Guillermina; Azorín-Vega, Erika; Ramírez, Flor de María; Jiménez-Mancilla, Nallely; Ocampo-García, Blanca; Santos-Cuevas, Clara; Isaac-Olivé, Keila

    2016-01-01

    The aim of this work was to synthesize Lys(1)(α,γ-Folate)-Lys(3)((177)Lu-DOTA)-Bombesin (1-14) ((177)Lu-Folate-BN), as well as to assess its potential for molecular imaging and targeted radiotherapy of breast tumors expressing folate receptors (FR) and gastrin-releasing peptide receptors (GRPR). Radiation absorbed doses of (177)Lu-Folate-BN (74 MBq, i.v.) estimated in athymic mice with T47D-induced breast tumors (positive to FR and GRPR), showed tumor doses of 23.9±2.1Gy. T47D-tumors were clearly visible (Micro-SPECT/CT images). (177)Lu-Folate-BN demonstrated properties suitable as a theranostic radiopharmaceutical. PMID:26545016

  12. Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells.

    PubMed

    Caldon, C Elizabeth; Sergio, C Marcelo; Kang, Jian; Muthukaruppan, Anita; Boersma, Marijke N; Stone, Andrew; Barraclough, Jane; Lee, Christine S; Black, Michael A; Miller, Lance D; Gee, Julia M; Nicholson, Rob I; Sutherland, Robert L; Print, Cristin G; Musgrove, Elizabeth A

    2012-07-01

    Cyclin E2, but not cyclin E1, is included in several gene signatures that predict disease progression in either tamoxifen-resistant or metastatic breast cancer. We therefore examined the role of cyclin E2 in antiestrogen resistance in vitro and its potential for therapeutic targeting through cyclin-dependent kinase (CDK) inhibition. High expression of CCNE2, but not CCNE1, was characteristic of the luminal B and HER2 subtypes of breast cancer and was strongly predictive of shorter distant metastasis-free survival following endocrine therapy. After antiestrogen treatment of MCF-7 breast cancer cells, cyclin E2 mRNA and protein were downregulated and cyclin E2-CDK2 activity decreased. However, this regulation was lost in tamoxifen-resistant (MCF-7 TAMR) cells, which overexpressed cyclin E2. Expression of either cyclin E1 or E2 in T-47D breast cancer cells conferred acute antiestrogen resistance, suggesting that cyclin E overexpression contributes to the antiestrogen resistance of tamoxifen-resistant cells. Ectopic expression of cyclin E1 or E2 also reduced sensitivity to CDK4, but not CDK2, inhibition. Proliferation of tamoxifen-resistant cells was inhibited by RNAi-mediated knockdown of cyclin E1, cyclin E2, or CDK2. Furthermore, CDK2 inhibition of E-cyclin overexpressing cells and tamoxifen-resistant cells restored sensitivity to tamoxifen or CDK4 inhibition. Cyclin E2 overexpression is therefore a potential mechanism of resistance to both endocrine therapy and CDK4 inhibition. CDK2 inhibitors hold promise as a component of combination therapies in endocrine-resistant disease as they effectively inhibit cyclin E1 and E2 overexpressing cells and enhance the efficacy of other therapeutics. PMID:22564725

  13. Effects of Combination of Estradiol with Selective Progesterone Receptor Modulators (SPRMs) on Human Breast Cancer Cells In Vitro and In Vivo.

    PubMed

    Nair, Hareesh B; Santhamma, Bindu; Krishnegowda, Naveen K; Dileep, Kalarikkal V; Nickisch, Klaus J

    2016-01-01

    Use of estrogen or estrogen / progestin combination was an approved regimen for menopausal hormonal therapy (MHT). However, more recent patient-centered studies revealed an increase in the incidence of breast cancer in women receiving menopausal hormone therapy with estrogen plus progestin rather than estrogen alone. Tissue selective estrogen complex (TSEC) has been proposed to eliminate the progesterone component of MHT with supporting evidences. Based on our previous studies it is evident that SPRMs have a safer profile on endometrium in preventing unopposed estrogenicity. We hypothesized that a combination of estradiol (E2) with selective progesterone receptor modulator (SPRM) to exert a safer profile on endometrium will also reduce mammary gland proliferation and could be used to prevent breast cancer when used in MHT. In order to test our hypothesis, we compared the estradiol alone or in combination with our novel SPRMs, EC312 and EC313. The compounds were effectively controlled E2 mediated cell proliferation and induced apoptosis in T47D breast cancer cells. The observed effects were found comparable that of BZD in vitro. The effects of SPRMs were confirmed by receptor binding studies as well as gene and protein expression studies. Proliferation markers were found downregulated with EC312/313 treatment in vitro and reduced E2 induced mammary gland proliferation, evidenced as reduced ductal branching and terminal end bud growth in vivo. These data supporting our hypothesis that E2+EC312/EC313 blocked the estrogen action may provide basic rationale to further test the clinical efficacy of SPRMs to prevent breast cancer incidence in postmenopausal women undergoing MHT. PMID:27011208

  14. Effects of Combination of Estradiol with Selective Progesterone Receptor Modulators (SPRMs) on Human Breast Cancer Cells In Vitro and In Vivo

    PubMed Central

    Nair, Hareesh B.; Santhamma, Bindu; Krishnegowda, Naveen K.; Dileep, Kalarikkal V.; Nickisch, Klaus J.

    2016-01-01

    Use of estrogen or estrogen / progestin combination was an approved regimen for menopausal hormonal therapy (MHT). However, more recent patient-centered studies revealed an increase in the incidence of breast cancer in women receiving menopausal hormone therapy with estrogen plus progestin rather than estrogen alone. Tissue selective estrogen complex (TSEC) has been proposed to eliminate the progesterone component of MHT with supporting evidences. Based on our previous studies it is evident that SPRMs have a safer profile on endometrium in preventing unopposed estrogenicity. We hypothesized that a combination of estradiol (E2) with selective progesterone receptor modulator (SPRM) to exert a safer profile on endometrium will also reduce mammary gland proliferation and could be used to prevent breast cancer when used in MHT. In order to test our hypothesis, we compared the estradiol alone or in combination with our novel SPRMs, EC312 and EC313. The compounds were effectively controlled E2 mediated cell proliferation and induced apoptosis in T47D breast cancer cells. The observed effects were found comparable that of BZD in vitro. The effects of SPRMs were confirmed by receptor binding studies as well as gene and protein expression studies. Proliferation markers were found downregulated with EC312/313 treatment in vitro and reduced E2 induced mammary gland proliferation, evidenced as reduced ductal branching and terminal end bud growth in vivo. These data supporting our hypothesis that E2+EC312/EC313 blocked the estrogen action may provide basic rationale to further test the clinical efficacy of SPRMs to prevent breast cancer incidence in postmenopausal women undergoing MHT. PMID:27011208

  15. Epigallocatechin gallate, the main ingredient of green tea induces apoptosis in breast cancer cells.

    PubMed

    Zhao, Xinhan; Tian, Honggang; Ma, Xi; Li, Linlin

    2006-01-01

    Green tea has been suggested for prevention of cancers. In this study, the effect of the main constituent of green tea, epigallocatechin gallate (EGCG), on apoptosis of breast cancer cells was examined. EGCG induced apoptosis in T-47D cells through caspase cascade and the cells were detained at the G1 phase. The rate of apoptosis and activity of caspase-3 induced by EGCG was time and dose dependent. These findings suggest that EGCG might be useful in treatment and/or prevention of breast cancer by inducing apoptosis. PMID:16720324

  16. Cytotoxic activity of the methanolic extract of Turnera diffusa Willd on breast cancer cells.

    PubMed

    Avelino-Flores, Mara Del Carmen; Cruz-Lpez, Mara del Carmen; Jimnez-Montejo, Fabiola E; Reyes-Leyva, Julio

    2015-03-01

    Turnera diffusa Willd, commonly known as Damiana, is employed in traditional medicine as a stimulant, aphrodisiac, and diuretic. Its leaves and stems are used for flavoring and infusion. Damiana is considered to be safe for medicinal use by the FDA. Pharmacological studies have established the hypoglycemic, antiaromatase, prosexual, estrogenic, antibacterial, and antioxidant activity of T. diffusa. The aim of the present study was to evaluate the possible cytotoxic effect of extracts and organic fractions of this plant on five tumor cell lines (SiHa, C-33, Hep G2, MDA-MB-231, and T-47D) and normal human fibroblasts. The results show that the methanolic extract (TdM) displayed greater activity on MDA-MB-231 breast cancer cells (with an IC50 of 30.67??g/mL) than on the other cancer cell lines. Four organic fractions of this extract exhibited activity on this cancer cell line. In the most active fraction (F4), two active compounds were isolated, arbutin (1) and apigenin (2). This is the first report of a cytotoxic effect by T. diffusa on cancer cells. The IC50 values suggest that the methanolic extract of T. diffusa has potential as an anticancer therapy. PMID:25299247

  17. Estrogen induces Vav1 expression in human breast cancer cells.

    PubMed

    Du, Ming-juan; Chen, Xiang-dong; Zhou, Xiao-li; Wan, Ya-juan; Lan, Bei; Zhang, Cui-zhu; Cao, Youjia

    2014-01-01

    Vav1, a guanine nucleotide exchange factor (GEF) for Rho family GTPases, is a hematopoietic protein involved in a variety of cellular events. In recent years, aberrant expression of Vav1 has been reported in non-hematopoietic cancers including human breast cancer. It remains to be answered how Vav1 is expressed and what Vav1 does in its non-resident tissues. In this study, we aimed to explore the mechanism for Vav1 expression in breast cancer cells in correlation with estrogen-ER pathway. We not only verified the ectopic expression of Vav1 in human breast cancer cell lines, but also observed that Vav1 expression was induced by 17?-estradiol (E2), a typical estrogen receptor (ER) ligand, in ER-positive cell lines. On the other hand, Tamoxifen, a selective estrogen receptor modulator (SERM), and ICI 182,780, an ER antagonist, suppressed the expression of Vav1. The estrogen receptor modulating Vav1 expression was identified to be ? form, not ?. Furthermore, treatment of E2 increased the transcription of vav1 gene by enhancing the promoter activity, though there was no recognizable estrogen response element (ERE). Nevertheless, two regions at the vav1 gene promoter were defined to be responsible for E2-induced activation of vav1 promoter. Chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP) analyses suggested that ER? might access to the vav1 promoter via interacting with transcription factors, c-Myb and ELF-1. Consequently, the enhanced expression of Vav1 led to the elevation of Cyclin D1 and the progression of cell cycle. The present study implies that estrogen-ER modulates the transcription and expression of Vav1, which may contribute to the proliferation of cancerous cells. PMID:24905577

  18. Estrogen Induces Vav1 Expression in Human Breast Cancer Cells

    PubMed Central

    Du, Ming-juan; Chen, Xiang-dong; Zhou, Xiao-li; Wan, Ya-juan; Lan, Bei; Zhang, Cui-zhu; Cao, Youjia

    2014-01-01

    Vav1, a guanine nucleotide exchange factor (GEF) for Rho family GTPases, is a hematopoietic protein involved in a variety of cellular events. In recent years, aberrant expression of Vav1 has been reported in non-hematopoietic cancers including human breast cancer. It remains to be answered how Vav1 is expressed and what Vav1 does in its non-resident tissues. In this study, we aimed to explore the mechanism for Vav1 expression in breast cancer cells in correlation with estrogen-ER pathway. We not only verified the ectopic expression of Vav1 in human breast cancer cell lines, but also observed that Vav1 expression was induced by 17?-estradiol (E2), a typical estrogen receptor (ER) ligand, in ER-positive cell lines. On the other hand, Tamoxifen, a selective estrogen receptor modulator (SERM), and ICI 182,780, an ER antagonist, suppressed the expression of Vav1. The estrogen receptor modulating Vav1 expression was identified to be ? form, not ?. Furthermore, treatment of E2 increased the transcription of vav1 gene by enhancing the promoter activity, though there was no recognizable estrogen response element (ERE). Nevertheless, two regions at the vav1 gene promoter were defined to be responsible for E2-induced activation of vav1 promoter. Chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP) analyses suggested that ER? might access to the vav1 promoter via interacting with transcription factors, c-Myb and ELF-1. Consequently, the enhanced expression of Vav1 led to the elevation of Cyclin D1 and the progression of cell cycle. The present study implies that estrogen-ER modulates the transcription and expression of Vav1, which may contribute to the proliferation of cancerous cells. PMID:24905577

  19. A third human retinoic acid receptor, hRAR-. gamma

    SciTech Connect

    Krust, A.; Kastner, Ph.; Petkovich, M.; Zelent, A.; Chambon, P. )

    1989-07-01

    Retinoic acid receptors (RARs) are retinoic acid (RA)-inducible enhancer factors belonging to the superfamily of steroid/thyroid nuclear receptors. The authors have previously characterized two human RAR (hRAR-{alpha} and hRAR-{beta}) cDNAs and have recently cloned their murine cognates (mRAR-{alpha} and mRAR-{beta}) together with a third RAR (mRAR-{gamma}) whose RNA was detected predominantly in skin, a well-known target for RA. mRAR-{gamma} cDNA was used here to clone its human counterpart (hRAR-{gamma}) from a T47D breast cancer cell cDNA library. Using a transient transfection assay in HeLa cells and a reporter gene harboring a synthetic RA responsive element, they demonstrate that hRAR-{gamma} cDNA indeed encodes a RA-inducible transcriptional trans-activator. Interestingly, comparisons of the amino acid sequences of all six human and mouse RARs indicate that the interspecies conservation of a given member of the RAR subfamily (either {alpha}, {beta}, or {gamma}) is much higher than the conservation of all three receptors within a given species. These observations indicate that RAR-{alpha}, -{beta}, and -{gamma} may perform specific functions. They show also that hRAR-{gamma} RNA is the predominant RAR RNA species in human skin, which suggests that hRAR-{gamma} mediates some of the retinoid effects in this tissue.

  20. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice

    PubMed Central

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy. PMID:24870377

  1. A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity

    PubMed Central

    Ablett, Matthew P.; O'Brien, Ciara S.; Sims, Andrew H.; Farnie, Gillian; Clarke, Robert B.

    2014-01-01

    C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formation respectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+ /CD24− - patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4 + FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast cancer stem cell activities and may therefore be important in tumour formation at the sites of metastases. PMID:24583601

  2. Breast Cancer classification using extracted parameters from a terahertz dielectric model of human breast tissue.

    PubMed

    Truong, Bao C Q; Tuan, H D; Fitzgerald, Anthony J; Wallace, Vincent P; Tuan Nghia Nguyen; Nguyen, H T

    2015-08-01

    Our previous study proposed a dielectric model for human breast tissue and provided initial analysis of classification potential of the eight model parameters and their multiparameter combinations with the support vector machine (SVM). A combination of three model parameters could achieve a leave-one-out cross validation accuracy of 93.2%. However, the SVM approach fails to exploit the combinations of more than three model parameters for classification improvement. Thus, the Bayesian neural network (BNN) method is employed to overcome this problem based on its advantages of handling our small data and high complexity of the multiparamter combinations. The BNN successfully classifies the data using the combinations of four model parameters with an accuracy, estimated by leave-one-out cross validation, of 97.3%. Overall performance assessed by leaveone-out and repeated random-subsampling cross validations for all examined combinations is also remarkably improved by BNN. The results indicate the advance of BNN as compared to SVM in utilising the model parameters for detecting tumour from normal breast tissue. PMID:26736874

  3. Low dentin matrix protein 1 expression correlates with skeletal metastases development in breast cancer patients and enhances cell migratory capacity in vitro.

    PubMed

    Bucciarelli, E; Sidoni, A; Bellezza, G; Cavaliere, A; Brachelente, G; Costa, G; Chaplet, M; Castronovo, V; Bellahcne, A

    2007-09-01

    Small integrin-binding ligand N-linked glycoproteins (SIBLINGs) constitute a family of extracellular matrix proteins involved in bone homeostasis. Their pattern of expression has been primarily reported in bone and tooth and, more recently, in several cancer types. Dentin matrix protein 1 (DMP1), a SIBLING family member, expression was investigated by immunohistochemistry in a retrospective series of 148 primary human breast cancers. Correlations between DMP1 expression levels in the tumors and clinicopathologic features, bone metastases development and relapse of the disease were examined. DMP1 was expressed by 63.5% of the breast tumors analyzed. Significant inverse associations were found between DMP1 expression levels and the size and grade of the tumors (both, P < 0.0001). High DMP1 expression levels in the primary breast lesions were associated with a lower risk of subsequent development of skeletal metastases (P = 0.009). Patients with tumors expressing high levels of DMP1 had a significantly higher disease-free survival rate than those with low DMP1-expressing tumors (P = 0.0062). When DMP1 expression was examined in breast cancer cell lines, we found that non invasive MCF-7 and T47-D cells expressed higher levels than highly invasive MDA-MB-231 and Hs578T cells. Moreover, the specific inhibition of DMP1 expression in MCF-7 cells using siRNAs promoted significantly their migratory capability. Our data implicate for the first time DMP1 expression in breast cancer progression and bone metastases development. PMID:17136477

  4. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells

    SciTech Connect

    Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1 mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.

  5. Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells.

    PubMed

    Masamura, S; Santner, S J; Heitjan, D F; Santen, R J

    1995-10-01

    Genetic and environmental factors can modulate the level of sensitivity to various hormones, including estrogens. Enhanced sensitivity to estradiol (E2) has been demonstrated in several biological conditions, such as in sheep during the nonbreeding season, in untreated patients with Turner's syndrome, and in the prepubertal state in normal girls. We postulated that secondary responses to hormonal therapy in patients with breast cancer could also result from enhanced E2 sensitivity, developing as an adaptive mechanism to E2 deprivation. The present study used the MCF-7 human breast cancer cell line as a model system to test the concept that enhanced sensitivity to E2 may occur as a result of adaptation to low E2 levels. After depriving MCF-7 cells of estrogens in tissue culture medium for periods of 1-6 months, we established conditions under which replication could be stimulated maximally by 10(-14)-10(-15) mol/L E2. In contrast, wild-type cells not exposed to estrogen deprivation required 10(-10) mol/L E2 to grow at the same rate. Further, the concentration of the antiestrogen, ICI 164384, needed to inhibit growth by 50% in estrogen-deprived cells was much lower than that required in wild-type cells (i.e. 10(-15) vs. 10(-9) mol/L). Nude mice implanted with these estrogen-deprived cells demonstrated an earlier appearance of palpable tumors in response to E2 than animals bearing wild-type cells. Reexposure to 10(-10)-10(-9) mol/L E2, either in vivo or in vitro, returned these cells to the level of estrogen sensitivity observed in wild-type cells. Taken together, these observations suggest that breast cancer cells can adapt to low levels of estrogens by enhancing their sensitivity to E2. PMID:7559875

  6. Effects of Recombinant Human Prolactin on Breast Milk Composition

    PubMed Central

    Powe, Camille E.; Puopolo, Karen M.; Newburg, David S.; Lnnerdal, Bo; Chen, Ceng; Allen, Maureen; Merewood, Anne; Worden, Susan

    2011-01-01

    OBJECTIVE: The objective of this study was to determine the impact of recombinant human prolactin (r-hPRL) on the nutritional and immunologic composition of breast milk. METHODS: We conducted 2 trials of r-hPRL treatment. In the first study, mothers with documented prolactin deficiency were given r-hPRL every 12 hours in a 28-day, open-label trial. In the second study, mothers with lactation insufficiency that developed while they were pumping breast milk for their preterm infants were given r-hPRL daily in a 7-day, double-blind, placebo-controlled trial. Breast milk characteristics were compared before and during 7 days of treatment. RESULTS: Among subjects treated with r-hPRL (N = 11), milk volumes (73 36 to 146 54 mL/day; P < .001) and milk lactose levels (155 15 to 184 8 mmol/L; P = .01) increased, whereas milk sodium levels decreased (12.1 2.0 to 8.3 0.5 mmol/L; P = .02). Milk calcium levels increased in subjects treated with r-hPRL twice daily (2.8 0.6 to 5.0 0.9 mmol/L; P = .03). Total neutral (1.5 0.3 to 2.5 0.4 g/L; P = .04) and acidic (33 4 to 60 6 mg/L; P = .02) oligosaccharide levels increased in r-hPRL-treated subjects, whereas total daily milk immunoglobulin A secretionwas unchanged. CONCLUSIONS: r-hPRL treatment increased milk volume and induced changes in milk composition similar to those that occur during normal lactogenesis. r-hPRL also increased antimicrobially active oligosaccharide concentrations. These effects were achieved for women with both prolactin deficiency and lactation insufficiency. PMID:21262884

  7. Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer.

    PubMed

    Graveel, Carrie R; DeGroot, Jack D; Su, Yanli; Koeman, Julie; Dykema, Karl; Leung, Samuel; Snider, Jacqueline; Davies, Sherri R; Swiatek, Pamela J; Cottingham, Sandra; Watson, Mark A; Ellis, Matthew J; Sigler, Robert E; Furge, Kyle A; Vande Woude, George F

    2009-08-01

    Understanding the signaling pathways that drive aggressive breast cancers is critical to the development of effective therapeutics. The oncogene MET is associated with decreased survival in breast cancer, yet the role that MET plays in the various breast cancer subtypes is unclear. We describe a knockin mouse with mutationally activated Met (Met(mut)) that develops a high incidence of diverse mammary tumors with basal characteristics, including metaplasia, absence of progesterone receptor and ERBB2 expression, and expression of cytokeratin 5. With gene expression and tissue microarray analysis, we show that high MET expression in human breast cancers significantly correlated with estrogen receptor negative/ERBB2 negative tumors and with basal breast cancers. Few treatment options exist for breast cancers of the basal or trastuzumab-resistant ERBB2 subtypes. We conclude from these studies that MET may play a critical role in the development of the most aggressive breast cancers and may be a rational therapeutic target. PMID:19567831

  8. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  9. Differences and homologies of chromosomal alterations within and between breast cancer cell lines: a clustering analysis

    PubMed Central

    2014-01-01

    Background The MCF7 (ER+/HER2-), T47D (ER+/HER2-), BT474 (ER+/HER2+) and SKBR3 (ER-/HER2+) breast cancer cell lines are widely used in breast cancer research as paradigms of the luminal and HER2 phenotypes. Although they have been subjected to cytogenetic analysis, their chromosomal abnormalities have not been carefully characterized, and their differential cytogenetic profiles have not yet been established. In addition, techniques such as comparative genomic hybridization (CGH), microarray-based CGH and multiplex ligation-dependent probe amplification (MLPA) have described specific regions of gains, losses and amplifications of these cell lines; however, these techniques cannot detect balanced chromosomal rearrangements (e.g., translocations or inversions) or low frequency mosaicism. Results A range of 19 to 26 metaphases of the MCF7, T47D, BT474 and SKBR3 cell lines was studied using conventional (G-banding) and molecular cytogenetic techniques (multi-color fluorescence in situ hybridization, M-FISH). We detected previously unreported chromosomal changes and determined the content and frequency of chromosomal markers. MCF7 and T47D (ER+/HER2-) cells showed a less complex chromosomal make up, with more numerical than structural alterations, compared to BT474 and SKBR3 (HER2+) cells, which harbored the highest frequency of numerical and structural aberrations. Karyotype heterogeneity and clonality were determined by comparing all metaphases within and between the four cell lines by hierarchical clustering. The latter analysis identified five main clusters. One of these clusters was characterized by numerical chromosomal abnormalities common to all cell lines, and the other four clusters encompassed cell-specific chromosomal abnormalities. T47D and BT474 cells shared the most chromosomal abnormalities, some of which were shared with SKBR3 cells. MCF7 cells showed a chromosomal pattern that was markedly different from those of the other cell lines. Conclusions Our study provides a comprehensive and specific characterization of complex chromosomal aberrations of MCF7, T47D, BT474 and SKBR3 cell lines. The chromosomal pattern of ER+/HER2- cells is less complex than that of ER+/HER2+ and ER-/HER2+ cells. These chromosomal abnormalities could influence the biologic and pharmacologic response of cells. Finally, although gene expression profiling and aCGH studies have classified these four cell lines as luminal, our results suggest that they are heterogeneous at the cytogenetic level. PMID:24456987

  10. Silibinin Inhibits Wnt/?-catenin Signaling by Suppressing Wnt Co-receptor LRP6 Expression in Human Prostate and Breast Cancer Cells

    PubMed Central

    Lu, Wenyan; Lin, Cuihong; King, Taj D.; Chen, Honghong; Reynolds, Robert C.; Li, Yonghe

    2012-01-01

    Silibinin is a natural compound isolated from milk thistle seed extracts, and has traditionally been used as a hepatoprotectant. A number of studies have also established the cancer therapeutic and chemopreventive role of silibinin in both in vitro and in vivo models. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for the Wnt/?-catenin pathway and represents a promising target for cancer prevention and therapy. In the present study, we found that silibinin was able to repress endogenous LRP6 expression and block Wnt3A-induced LRP6 phosphorylation and Wnt/?-catenin signaling activation in HEK293 cells. Importantly, silibinin was also able to suppress endogenous LRP6 expression and phosphorylation and block Wnt/?-catenin signaling in prostate cancer PC-3 and DU-145 cells and breast cancer MDA-MB-231 and T-47D cells. Mechanistically, silibinin inhibited LRP6 promoter activity and decreased LRP6 mRNA levels in prostate and breast cancer cells. Finally, we demonstrated that silibinin displayed anticancer activity with IC50 values comparable to those shown to suppress LRP6 expression and Wnt/?-catenin signaling activities in prostate and breast cancer cells. Our data indicate that silibinin is a novel small molecule Wnt/?-catenin signaling inhibitor by suppressing Wnt co-receptor LRP6 expression at the transcription level, and that the anti-cancer activity of silibinin is associated with its inhibitory effect on Wnt/LRP6 signaling. PMID:22820499

  11. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province ; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT increases breast cancer cell radiosensitivity compared with radiation alone. These findings have salient implications for designing clinical trials using fulvestrant and radiation therapy.

  12. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    SciTech Connect

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R.; Knethen, Andreas von; Choubey, Divaker; Mehta, Rajendra G.

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding partner, RXR{alpha}.

  13. Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer.

    PubMed

    Li, Peng; Xiang, Tingxiu; Li, Hongzhong; Li, Qianqian; Yang, Bing; Huang, Jing; Zhang, Xiang; Shi, Yuan; Tan, Jinxiang; Ren, Guosheng

    2015-01-01

    Extracellular matrix (ECM) is closely correlated with the malignant behavior of breast cancer cells. Hyaluronan (HA) is one of the main components of ECM, and actively regulates cell adhesion, migration and proliferation by interacting with specific cell surface receptors such as CD44 and RHAMM. HA synthase 2 (HAS2) catalyzes the sysnthesis of HA, but its role in breast tumorigenesis remains unclear. This study assessed the roles of HAS2 in malignant behavior of human breast cancer and sought to provide mechanistic insights into the biological and pivotal roles of HAS2. We observed HAS2 was overexpressed in breast cancer cell lines and invasive duct cancer tissues, compared with the nonmalignant breast cell lines and normal breast tissues. In addition, a high level of HAS2 expression was statistically correlated with lymph node metastasis. Functional assays showed that knockdown of HAS2 expression inhibited breast tumor cell proliferation in vivo and in vitro, through the induction of apoptosis or cell cycle arrest. Further studies showed that the HA were elevated in breast cancer, and HAS2 could upregulate HA expression. In conclusion, HAS2-HA system influences the biological characteristics of human breast cancer cells, and HAS2 may be a potential prognostic marker and therapeutic target in breast cancer. PMID:26722395

  14. Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer

    PubMed Central

    Li, Peng; Xiang, Tingxiu; Li, Hongzhong; Li, Qianqian; Yang, Bing; Huang, Jing; Zhang, Xiang; Shi, Yuan; Tan, Jinxiang; Ren, Guosheng

    2015-01-01

    Extracellular matrix (ECM) is closely correlated with the malignant behavior of breast cancer cells. Hyaluronan (HA) is one of the main components of ECM, and actively regulates cell adhesion, migration and proliferation by interacting with specific cell surface receptors such as CD44 and RHAMM. HA synthase 2 (HAS2) catalyzes the sysnthesis of HA, but its role in breast tumorigenesis remains unclear. This study assessed the roles of HAS2 in malignant behavior of human breast cancer and sought to provide mechanistic insights into the biological and pivotal roles of HAS2. We observed HAS2 was overexpressed in breast cancer cell lines and invasive duct cancer tissues, compared with the nonmalignant breast cell lines and normal breast tissues. In addition, a high level of HAS2 expression was statistically correlated with lymph node metastasis. Functional assays showed that knockdown of HAS2 expression inhibited breast tumor cell proliferation in vivo and in vitro, through the induction of apoptosis or cell cycle arrest. Further studies showed that the HA were elevated in breast cancer, and HAS2 could upregulate HA expression. In conclusion, HAS2-HA system influences the biological characteristics of human breast cancer cells, and HAS2 may be a potential prognostic marker and therapeutic target in breast cancer. PMID:26722395

  15. The Phytoestrogen Genistein Affects Breast Cancer Cells Treatment Depending on the ER?/ER? Ratio.

    PubMed

    Pons, Daniel Gabriel; Nadal-Serrano, Mercedes; Torrens-Mas, Margalida; Oliver, Jordi; Roca, Pilar

    2016-01-01

    Genistein (GEN) is a phytoestrogen found in soybeans. GEN exerts its functions through its interaction with the estrogen receptors (ER), ER? and ER?, and we previously reported that the ER?/ER? ratio is an important factor to consider in GEN-treated breast cancer cells. The aim of this study was to investigate the effects of GEN in breast cancer cells with different ER?/ER? ratio: MCF-7 (high ratio), T47D (low ratio), and MCF-7 overexpressing ER? (MCF7?+?ER?) treated with cisplatin (CDDP), paclitaxel (PTX) or tamoxifen (TAM). Cell viability, ROS production, autophagy, apoptosis, antioxidant enzymes protein levels, and cell cycle were analyzed. GEN treatment provoked an increase in cell viability in MCF-7 cells and in the antioxidant enzymes protein levels in combination with the cytotoxic agents, decreasing ROS production (CDDP?+?GEN and TAM+GEN) and autophagy (TAM?+?GEN) or apoptosis (CDDP?+?GEN and TAM?+?GEN). Moreover GEN treatment enhanced the cell cycle S phase entry in CDDP+GEN- and TAM?+?GEN-treated MCF-7 cells and, in the case of CDDP?+?GEN, increased the proportion of cells in the G2/M phase and decreased it in the subG0 /G1 phase. Otherwise, in the T47D and MCF7?+?ER? cells the combination of GEN with cytotoxic treatments did not cause significant changes in these parameters, even TAM?+?GEN-treated T47D cells showed less cell viability due to an increment in the autophagy. In conclusion, GEN consumption may be counterproductive in those patients receiving anticancer treatment with a high ER?/ER? ratio diagnosed breast cancer and it could be harmless or even beneficial in those patients with a lower ER?/ER? ratio breast cancer cells. J. Cell. Biochem. 117: 218-229, 2016. 2015 Wiley Periodicals, Inc. PMID:26100284

  16. PAQR3 expression is downregulated in human breast cancers and correlated with HER2 expression

    PubMed Central

    Li, Zhenghu; Ling, Zhi-Qiang; Guo, Weiwei; Lu, Xiao-Xiao; Pan, Yi; Wang, Zhenzhen; Chen, Yan

    2015-01-01

    PAQR3 is a newly discovered tumor suppressor and its functional role in breast cancer has not been well characterized. We report here that PAQR3 is associated with the progression and survival of human patients with breast cancer, as well as cell proliferation and migration of human breast cancer cells. PAQR3 mRNA level was robustly downregulated in human breast cancer samples compared with their corresponding para-cancerous histological normal tissues (n = 82, P < 0.0001). The mRNA level of PAQR3 was negatively correlated with HER2 expression (P < 0.0001) and disease-free survival of the patients (P < 0.0001). PAQR3 overexpression inhibited cell proliferation, colony formation and migration of breast cancer cells including MCF7, SKBR3, MDA-MD-231, MDA-MD-468 and MDA-MD-453 cells. Knockdown of PAQR3 in MDA-MD-231 cells elevated cell proliferation and migration. Inhibition of HER2 by trastuzumab increased PAQR3 expression in SKBR3 cells. In conclusion, PAQR3 expression is frequently downregulated in human breast cancers inversely correlated with HER2 expression. PAQR3 is able to modulate the proliferation and migration of breast cancer cells. Our data indicate that PAQR3 functions as a tumor suppressor in the development of human breast cancers. PMID:25900239

  17. Antitumor effects of crocin on human breast cancer cells

    PubMed Central

    Lu, Pengwei; Lin, Huan; Gu, Yuanting; Li, Lin; Guo, Hong; Wang, Fang; Qiu, Xinguang

    2015-01-01

    Crocin is a chemical extracted from saffron and it is the most important kind of pigment of saffron. It has been proposed as a promising candidate for cancer prevention. In this study, we investigate the growth inhibition and the apoptosis of MCF-7 cells induced by Crocin, and explore the underlying molecular mechanism. We found that Crocin can significantly inhibit the proliferation of MCF-7 cells, and induce their apoptosis through mitochondrial signaling pathways including the activation of Caspase-8, upregulation of Bax, the disruption of mitochondrial membrane potential (MMP), and the release of cytochrome c. The studies showed that Crocin induced apoptosis of MCF-7 cells partially through caspase-8 mediated mitochondrial pathway. Therefore, we postulate that Crocin might have cancer-preventive and cancer-therapeutic benefit for human breast cancer. PMID:26884946

  18. Multiplexed ion beam imaging (MIBI) of human breast tumors

    PubMed Central

    Angelo, Michael; Bendall, Sean C.; Finck, Rachel; Hale, Matthew B.; Hitzman, Chuck; Borowsky, Alexander D.; Levenson, Richard M.; Lowe, John B.; Liu, Scot D.; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P.

    2014-01-01

    Immunohistochemistry (IHC) is a tool for visualizing protein expression employed as part of the diagnostic work-up for the majority of solid tissue malignancies. Existing IHC methods use antibodies tagged with fluorophores or enzyme reporters that generate colored pigments. Because these reporters exhibit spectral and spatial overlap when used simultaneously, multiplexed IHC is not routinely used in clinical settings. We have developed a method that uses secondary ion mass spectrometry to image antibodies tagged with isotopically pure elemental metal reporters. Multiplexed ion beam imaging (MIBI) is capable of analyzing up to 100 targets simultaneously over a five-log dynamic range. Here, we used MIBI to analyze formalin-fixed, paraffin-embedded (FFPE) human breast tumor tissue sections stained with ten labels simultaneously. The resulting data suggest that MIBI will provide new insights by integrating tissue microarchitecture with highly multiplexed protein expression patterns, and will be valuable for basic research, drug discovery and clinical diagnostics. PMID:24584119

  19. Multiplexed ion beam imaging of human breast tumors.

    PubMed

    Angelo, Michael; Bendall, Sean C; Finck, Rachel; Hale, Matthew B; Hitzman, Chuck; Borowsky, Alexander D; Levenson, Richard M; Lowe, John B; Liu, Scot D; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P

    2014-04-01

    Immunohistochemistry (IHC) is a tool for visualizing protein expression that is employed as part of the diagnostic workup for the majority of solid tissue malignancies. Existing IHC methods use antibodies tagged with fluorophores or enzyme reporters that generate colored pigments. Because these reporters exhibit spectral and spatial overlap when used simultaneously, multiplexed IHC is not routinely used in clinical settings. We have developed a method that uses secondary ion mass spectrometry to image antibodies tagged with isotopically pure elemental metal reporters. Multiplexed ion beam imaging (MIBI) is capable of analyzing up to 100 targets simultaneously over a five-log dynamic range. Here, we used MIBI to analyze formalin-fixed, paraffin-embedded human breast tumor tissue sections stained with ten labels simultaneously. The resulting data suggest that MIBI can provide new insights into disease pathogenesis that will be valuable for basic research, drug discovery and clinical diagnostics. PMID:24584119

  20. The emerging importance of α-L-fucose in human breast cancer: a review

    PubMed Central

    Listinsky, Jay J; Siegal, Gene P; Listinsky, Catherine M

    2011-01-01

    Breast cancer cells incorporate the simple sugar alpha-L-fucose (fucose) into glycoproteins and glycolipids which, in turn, are expressed as part of the malignant phenotype. We have noted that fucose is not simply a bystander molecule, but, in fact, contributes to many of the fundamental oncologic properties of breast cancer cells. Here, we summarize the evidence from us and others that fucose is necessary for key functions of neoplastic progression including hematogenous metastasis, tumor invasion through extracellular matrices including basement membranes and up-regulation of the Notch signaling system, with implications for epithelial-to-mesenchymal transition and activation of breast cancer stem cells. Additionally, certain breast cancer biomarkers are fucose-rich while a well-known marker of breast cancer progression, soluble E-selectin, is a known counter-receptor of fucosylated selectin ligands. We provide illustrative examples and supportive evidence drawn from work with human breast cancer cell lines in vitro as well as clinical studies with human pathologic material. And finally, we discuss evidence that fucose (or its absence) is central to the mechanisms of action of several experimental targeted therapies which may prove useful in breast cancer treatment. We propose that alpha-L-fucose is essential in order to construct first, the malignant and then the metastatic phenotype of many human breast cancers. This knowledge may inform the search for novel treatment approaches in breast cancer. PMID:21904652

  1. Immune profiling in human breast cancer using high-sensitivity detection and analysis techniques

    PubMed Central

    Weightman, Michael J; Bradley, John; Skinner, John M

    2015-01-01

    Objectives Evaluation of immune profiles in human breast cancer using high-sensitivity detection and analysis methods. Design Cohort comparative analysis studies of breast tissue. Setting Human hospital and laboratory healthcare facilities. Participants Women over 18 years. Main outcome measures Evaluation of the comparative immunophenotype of human breast carcinoma and normal breast tissues. Results Leukocyte density and specific subgroups of lymphocytes and macrophages were generally higher in breast cancers compared to normal breast tissues. CD3, CD4, CD45RO, CD45RA(2H4), CD45 and HLA Class II (on TIL) were significantly expressed on breast tumour tissues compared with normal tissues (p?Breast carcinoma showed predominance of CD4 T-cells of mainly memory phenotype. Normal breast tissues showed low leukocyte infiltration. Further correlation of these findings with clinical outcome, including survival, is proceeding with encouraging results. PMID:26464809

  2. Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases.

    PubMed

    Hofman, Jakub; Skarka, Adam; Havrankova, Jana; Wsol, Vladimir

    2015-08-01

    Paclitaxel (PTX), docetaxel (DTX), 5-fluorouracil (5-FU), cyclophosphamide (CYC) or tamoxifen (TMX) are combined with doxorubicin (DOX) in first-line chemotherapy regimens that are indicated for breast cancer patients. Although the efficacies of these drugs in combination treatments have been demonstrated in clinical practice, their possible interference with DOX metabolism has not been described in detail to date. In the present study, we investigated the possible interactions of human carbonyl reducing enzymes with 5-FU, PTX, DTX, CYC and TMX. First, the reducing activities of carbonyl reducing enzymes toward DOX were tested using incubations with purified recombinant enzymes. In the subsequent studies, we investigated the possible effects of the tested anticancer agents on the DOX-reducing activities of the most potent enzymes (AKR1C3, CBR1 and AKR1A1) and on the DOX metabolism driven by MCF7, HepG2 and human liver cytosols. In both of these assays, we observed that CYC and its active metabolites inhibited DOX metabolism. In the final study, we tracked the changes in AKR1C3, CBR1 and AKR1A1 expression levels following exposure to the tested cytostatics in MCF7 and HepG2 cells. Consequently, no significant changes in the expression levels of tested enzymes were detected in either cell line. Based on these findings, it is feasible to presume that inhibition rather than induction plays a role in the interactions of the tested anticancer agents with DOX-reducing enzymes. In conclusion, our results describe important molecular events that occur during combination breast cancer therapies and might modulate pharmacokinetic DOX resistance and/or behaviour. PMID:25986883

  3. Gene Expression Analysis in Human Breast Cancer Associated Blood Vessels

    PubMed Central

    Jones, Dylan T.; Lechertier, Tanguy; Mitter, Richard; Herbert, John M. J.; Bicknell, Roy; Jones, J. Louise; Li, Ji-Liang; Buffa, Francesca; Harris, Adrian L.; Hodivala-Dilke, Kairbaan

    2012-01-01

    Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (572 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer. PMID:23056178

  4. Detection of a 67-kD glycoprotein in human tumor cell lines by a monoclonal antibody established against a recombinant human endogenous retrovirus-K envelope-gene-encoded protein.

    PubMed

    Vogetseder, W; Feng, J; Haibach, C; Mayerl, W; Dierich, M P

    1995-01-01

    Endogenous retroviruses in humans are discussed as putative etiologic agents in tumorigenesis. Molecular mimicry of cellular epitopes by retroviruses may be of importance for the genesis of autoimmune diseases. A group of human endogenous retroviruses, HERV-K, which is related to the mouse mammary tumour virus, has been characterised previously and open reading frames have been found covering their gag, pol, prt and env genes. Transcription of HERV-K genomes at the mRNA level as well as antibodies in human sera directed against HERV-K env have been detected recently. We have generated a monoclonal antibody (mAb), anti-HERV1, against a recombinant HERV-K Env protein. This mAb is capable of immunoprecipitating a 67-kD glycoprotein from the human breast carcinoma cell line T47D, the amount of which is strongly enhanced after stimulation with estradiol followed by progesterone. The same band could be precipitated from other carcinoma cell lines (Hep2, MCF7 and HeLa), but not from the human B-lymphoblastoid cell line Raji and from cultured human fibroblasts. Incubation of this antigen in the presence of endoglycosidase F indicates the presence of N-linked carbohydrate moieties of at least 7-9 kD. PMID:7576722

  5. Development of Anatomically Realistic Numerical Breast Phantoms with Accurate Dielectric Properties for Modeling Microwave Interactions with the Human Breast

    PubMed Central

    Zastrow, Earl; Davis, Shakti K.; Lazebnik, Mariya; Kelcz, Frederick; Van Veen, Barry D.; Hagness, Susan C.

    2008-01-01

    Computational electromagnetics models of microwave interactions with the human breast serve as an invaluable tool for exploring the feasibility of new technologies and improving design concepts related to microwave breast cancer detection and treatment. In this paper we report the development of a collection of anatomically realistic 3D numerical breast phantoms of varying shape, size, and radiographic density which can be readily used in FDTD computational electromagnetics models. The phantoms are derived from T1-weighted magnetic resonance images (MRIs) of prone patients. Each MRI is transformed into a uniform grid of dielectric properties using several steps. First, the structure of each phantom is identified by applying image processing techniques to the MRI. Next, the voxel intensities of the MRI are converted to frequency-dependent and tissue-dependent dielectric properties of normal breast tissues via a piecewise-linear map. The dielectric properties of normal breast tissue are taken from the recently completed large-scale experimental study of normal breast tissue dielectric properties conducted by the Universities of Wisconsin and Calgary. The comprehensive collection of numerical phantoms is made available to the scientific community through an online repository. PMID:19126460

  6. Progesterone and estrogen receptors segregate into different cell subpopulations in the normal human breast.

    PubMed

    Hilton, H N; Graham, J D; Kantimm, S; Santucci, N; Cloosterman, D; Huschtscha, L I; Mote, P A; Clarke, C L

    2012-09-25

    Progesterone is critical in normal breast development and its synthetic derivatives are emerging as major drivers of breast cancer risk. The recent demonstration that progesterone regulates the stem cell compartment in the murine mammary gland, despite the absence of progesterone receptor (PR) in mammary stem cells, highlights the fact that PR distribution in progenitor cell subsets in the human breast remains to be conclusively shown. By utilising two independent cell sorting strategies to fractionate cells into distinct subpopulations enriched for different cell lineage characteristics, we have demonstrated a consistent enrichment of PR transcripts, relative to estrogen receptor transcripts, in the bipotent progenitor subfraction in the normal human breast. We have also shown co-expression of both steroid hormone receptors with basal markers in a subset of human breast cells, and finally we have demonstrated that PR+ bipotent progenitor cells are estrogen-insensitive, and that estrogen regulates PR in mature luminal cells only. PMID:22580007

  7. Breast Cancer

    MedlinePLUS

    ... Sledding, Skiing, Snowboarding, Skating Crushes What's a Booger? Breast Cancer KidsHealth > For Kids > Breast Cancer Print A ... for it when they are older. What Is Breast Cancer? The human body is made of tiny ...

  8. WNT-1 inducible signaling pathway protein-1 enhances growth and tumorigenesis in human breast cancer

    PubMed Central

    Chiang, Kun-Chun; Yeh, Chun-Nan; Chung, Li-Chuan; Feng, Tsui-Hsia; Sun, Chi-Chin; Chen, Miin-Fu; Jan, Yi-Yin; Yeh, Ta-Sen; Chen, Shin-Cheh; Juang, Horng-Heng

    2015-01-01

    WNT1 inducible signaling pathway protein 1 (WISP1) plays a key role in many cellular functions in a highly tissue-specific manner; however the role of WISP1 in breast cancer is still poorly understood. Here, we demonstrate that WISP1 acts as an oncogene in human breast cancer. We demonstrated that human breast cancer tissues had higher WISP1 mRNA expression than normal breast tissues and that treatment of recombinant WISP1 enhanced breast cancer cell proliferation. Further, ectopic expression of WISP1 increased the growth of breast cancer cells in vitro and in vivo. WISP1 transfection also induced epithelial-mesenchymal-transition (EMT) in MCF-7 cells, leading to higher migration and invasion. During this EMT-inducing process, E-cadherin was repressed and N-cadherin, snail, and β-catenin were upregulated. Filamentous actin (F-actin) remodeling and polarization were also observed after WISP1 transfection into MCF-7 cells. Moreover, forced overexpression of WISP1 blocked the expression of NDRG1, a breast cancer tumor suppressor gene. Our study provides novel evidence that WISP1-modulated NDRG1 gene expression is dependent on a DNA fragment (−128 to +46) located within the human NDRG1 promoter. Thus, we concluded that WISP1 is a human breast cancer oncogene and is a potential therapeutic target. PMID:25732125

  9. Anaplastic lymphoma kinase is expressed in different subtypes of human breast cancer

    SciTech Connect

    Perez-Pinera, Pablo; Chang, Y.; Astudillo, A.; Mortimer, J.; Deuel, T.F. . E-mail: tfdeuel@scripps.edu

    2007-06-29

    Pleiotrophin (PTN, Ptn) is an 18 kDa cytokine expressed in human breast cancers. Since inappropriate expression of Ptn stimulates progression of breast cancer in transgenic mice and a dominant negative PTN reverses the transformed phenotype of human breast cancer cells that inappropriately express Ptn, it is suggested that constitutive PTN signaling in breast cancer cells that inappropriately express Ptn activates pathways that promote a more aggressive breast cancer phenotype. Pleiotrophin signals by inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP){beta}/{zeta}, and, recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTP{beta}/{zeta} signaling pathway in PTN-stimulated cells, not through a direct interaction of PTN with ALK and thus not through the PTN-enforced dimerization of ALK. Since full-length ALK is activated in different malignant cancers and activated ALK is a potent oncogenic protein, we examined human breast cancers to test the possibility that ALK may be expressed in breast cancers and potentially activated through the PTN/RPTP{beta}/{zeta} signaling pathway; we now demonstrate that ALK is strongly expressed in different histological subtypes of human breast cancer; furthermore, ALK is expressed in both nuclei and cytoplasm and, in the 'dotted' pattern characteristic of ALK fusion proteins in anaplastic large cell lymphoma. This study thus supports the possibility that activated ALK may be important in human breast cancers and potentially activated either through the PTN/RPTP{beta}/{zeta} signaling pathway, or, alternatively, as an activated fusion protein to stimulate progression of breast cancer in humans.

  10. Differential contextual responses of normal human breast epithelium to ionizing radiation in a mouse xenograft model.

    PubMed

    Coates, Philip J; Appleyard, M Virginia C L; Murray, Karen; Ackland, Caroline; Gardner, June; Brown, Douglas C; Adamson, Dougal J A; Jordan, Lee B; Purdie, Colin A; Munro, Alastair J; Wright, Eric G; Dewar, John A; Thompson, Alastair M

    2010-12-01

    Radiotherapy is a key treatment option for breast cancer, yet the molecular responses of normal human breast epithelial cells to ionizing radiation are unclear. A murine subcutaneous xenograft model was developed in which nonneoplastic human breast tissue was maintained with the preservation of normal tissue architecture, allowing us to study for the first time the radiation response of normal human breast tissue in situ. Ionizing radiation induced dose-dependent p53 stabilization and p53 phosphorylation, together with the induction of p21(CDKN1A) and apoptosis of normal breast epithelium. Although p53 was stabilized in both luminal and basal cells, induction of Ser392-phosphorylated p53 and p21 was higher in basal cells and varied along the length of the ductal system. Basal breast epithelial cells expressed ?Np63, which was unchanged on irradiation. Although stromal responses themselves were minimal, the response of normal breast epithelium to ionizing radiation differed according to the stromal setting. We also demonstrated a dose-dependent induction of ?-H2AX foci in epithelial cells that was similarly dependent on the stromal environment and differed between basal and luminal epithelial cells. The intrinsic differences between human mammary cell types in response to in vivo irradiation are consistent with clinical observation that therapeutic ionizing radiation is associated with the development of basal-type breast carcinomas. Furthermore, there may be clinically important stromal-epithelial interactions that influence DNA damage responses in the normal breast. These findings demonstrate highly complex responses of normal human breast epithelium following ionizing radiation exposure and emphasize the importance of studying whole-tissue effects rather than single-cell systems. PMID:21084272

  11. Automated quantification of aligned collagen for human breast carcinoma prognosis

    PubMed Central

    Bredfeldt, Jeremy S.; Liu, Yuming; Conklin, Matthew W.; Keely, Patricia J.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries. PMID:25250186

  12. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  13. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  14. c-MYC is a radiosensitive locus in human breast cells.

    PubMed

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-09-17

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  15. Human breast milk and antiretrovirals dramatically reduce oral HIV-1 transmission in BLT humanized mice.

    PubMed

    Wahl, Angela; Swanson, Michael D; Nochi, Tomonori; Olesen, Rikke; Denton, Paul W; Chateau, Morgan; Garcia, J Victor

    2012-01-01

    Currently, over 15% of new HIV infections occur in children. Breastfeeding is a major contributor to HIV infections in infants. This represents a major paradox in the field because in vitro, breast milk has been shown to have a strong inhibitory effect on HIV infectivity. However, this inhibitory effect has never been demonstrated in vivo. Here, we address this important paradox using the first humanized mouse model of oral HIV transmission. We established that reconstitution of the oral cavity and upper gastrointestinal (GI) tract of humanized bone marrow/liver/thymus (BLT) mice with human leukocytes, including the human cell types important for mucosal HIV transmission (i.e. dendritic cells, macrophages and CD4⁺ T cells), renders them susceptible to oral transmission of cell-free and cell-associated HIV. Oral transmission of HIV resulted in systemic infection of lymphoid and non-lymphoid tissues that is characterized by the presence of HIV RNA in plasma and a gradual decline of CD4⁺ T cells in peripheral blood. Consistent with infection of the oral cavity, we observed virus shedding into saliva. We then evaluated the role of human breast milk on oral HIV transmission. Our in vivo results demonstrate that breast milk has a strong inhibitory effect on oral transmission of both cell-free and cell-associated HIV. Finally, we evaluated the effect of antiretrovirals on oral transmission of HIV. Our results show that systemic antiretrovirals administered prior to exposure can efficiently prevent oral HIV transmission in BLT mice. PMID:22737068

  16. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening

    PubMed Central

    2014-01-01

    Introduction Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to its receptors, TRAIL-receptor 1 (TRAIL-R1) and TRAIL-receptor 2 (TRAIL-R2), leading to apoptosis by activation of caspase-8 and the downstream executioner caspases, caspase-3 and caspase-7 (caspase-3/7). Triple-negative breast cancer (TNBC) cell lines with a mesenchymal phenotype are sensitive to TRAIL, whereas other breast cancer cell lines are resistant. The underlying mechanisms that control TRAIL sensitivity in breast cancer cells are not well understood. Here, we performed small interfering RNA (siRNA) screens to identify molecular regulators of the TRAIL pathway in breast cancer cells. Methods We conducted siRNA screens of the human kinome (691 genes), phosphatome (320 genes), and about 300 additional genes in the mesenchymal TNBC cell line MB231. Forty-eight hours after transfection of siRNA, parallel screens measuring caspase-8 activity, caspase-3/7 activity, or cell viability were conducted in the absence or presence of TRAIL for each siRNA, relative to a negative control siRNA (siNeg). A subset of genes was screened in cell lines representing epithelial TNBC (MB468), HER2-amplified breast cancer (SKBR3), and estrogen receptor-positive breast cancer (T47D). Selected putative negative regulators of the TRAIL pathway were studied by using small-molecule inhibitors. Results The primary screens in MB231 identified 150 genes, including 83 kinases, 4 phosphatases, and 63 nonkinases, as potential negative regulators of TRAIL. The identified genes are involved in many critical cell processes, including apoptosis, growth factor-receptor signaling, cell-cycle regulation, transcriptional regulation, and DNA repair. Gene-network analysis identified four genes (PDPK1, IKBKB, SRC, and BCL2L1) that formed key nodes within the interaction network of negative regulators. A secondary screen of a subset of the genes identified in additional cell lines representing different breast cancer subtypes and sensitivities to TRAIL validated and extended these findings. Further, we confirmed that small-molecule inhibition of SRC or BCL2L1, in combination with TRAIL, sensitizes breast cancer cells to TRAIL-induced apoptosis, including cell lines resistant to TRAIL-induced cytotoxicity. Conclusions These data identify novel molecular regulators of TRAIL-induced apoptosis in breast cancer cells and suggest strategies for the enhanced application of TRAIL as a therapy for breast cancer. PMID:24745479

  17. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  18. Ultra-small volume interdigital sensors for the measurement of human breast milk

    NASA Astrophysics Data System (ADS)

    Keating, A.; Pang, W. W.; Lai, C. T.; Hartmann, P.

    2007-12-01

    A palm-size interdigital impedance sensor incorporating a 10 ?L sample reservoir, temperature sensor and hybrid heater was fabricated to determine the feasibility of measuring macronutrients in ultra-small volumes of human breast milk. Comparisons with previous measurements of homogenized cows milk show excellent agreement with fat measurement. Human breast milk however shows no correlation with fat but a surprising correlation with protein. Our investigations and proposed methods to improve the correlation and measurement accuracy are discussed.

  19. Cancer/Testis OIP5 and TAF7L Genes are Up-Regulated in Breast Cancer.

    PubMed

    Mobasheri, Maryam Beigom; Shirkoohi, Reza; Modarressi, Mohammad Hossein

    2015-01-01

    Breast cancer still remains as the most frequent cancer with second mortality rate in women worldwide. There are no validated biomarkers for detection of the disease in early stages with effective power in diagnosis and therapeutic approaches. Cancer/testis antigens are recently promising tumor antigens and suitable candidates for targeted therapies and generating cancer vaccines. We conducted the present study to analyze transcript changes of two cancer/testis antigens, OIP5 and TAF7L, in breast tumors and cell lines in comparison with normal breast tissues by quantitative real time RT-PCR for the first time. Significant over-expression of OIP5 was observed in breast tumors and three out of six cell lines including MDA-MB-468, T47D and SKBR3. Not significant expression of TAF7L was evident in breast tumors but significant increase was noted in three out of six cell lines including MDA-MB-231, BT474 and T47D. OIP5 has ssignificant role in chromatin organization and cell cycle control during cell cycle exit and normal chromosome segregation during mitosis and TAF7L is a component of the transcription factor ??D, which is involved in transcription initiation of most protein coding genes. TAF7Lis located at X chromosome and belongs to the CT-X gene family of cancer/testis antigens which contains about 50% of CT antigens, including those which have been used in cancer immunotherapy. PMID:26107214

  20. miRNA-34b as a tumor suppressor in estrogen-dependent growth of breast cancer cells

    PubMed Central

    2011-01-01

    Introduction Estrogen is involved in several physiological and pathological processes through estrogen receptor (ER)-mediated transcriptional gene regulation. miRNAs (miRs), which are noncoding RNA genes, may respond to estrogen and serve as posttranscriptional regulators in tumorigenic progression, especially in breast cancer; however, only limited information about this possibility is available. In the present study, we identified the estrogen-regulated miR-34b and investigated its functional role in breast cancer progression. Methods Estrogen-regulated miRNAs were identified by using a TaqMan low density array. Our in vivo Tet-On system orthotopic model revealed the tumor-suppressive ability of miR-34b. Luciferase reporter assays and chromatin immunoprecipitation assay demonstrated miR-34b were regulated by p53-ER interaction. Results In this study, we identified one such estrogen downregulated miRNA, miR-34b, as an oncosuppressor that targets cyclin D1 and Jagged-1 (JAG1) in an ER+/wild-type p53 breast cancer cell line (MCF-7), as well as in ovarian and endometrial cells, but not in ER-negative or mutant p53 breast cancer cell lines (T47D, MBA-MB-361 and MDA-MB-435). There is a negative association between ER? and miR-34b expression levels in ER+ breast cancer patients. Tet-On induction of miR-34b can cause inhibition of tumor growth and cell proliferation. Also, the overexpression of miR-34b inhibited ER+ breast tumor growth in an orthotopic mammary fat pad xenograft mouse model. Further validation indicated that estrogen's inhibition of miR-34b expression was mediated by interactions between ER? and p53, not by DNA methylation regulation. The xenoestrogens diethylstilbestrol and zeranol also showed similar estrogenic effects by inhibiting miR-34b expression and by restoring the protein levels of the miR-34b targets cyclin D1 and JAG1 in MCF-7 cells. Conclusions These findings reveal that miR-34b is an oncosuppressor miRNA requiring both ER+ and wild-type p53 phenotypes in breast cancer cells. These results improve our ability to develop new therapeutic strategies to target the complex estrogenic pathway in human breast cancer progression through miRNA regulation. PMID:22113133

  1. Human Leukocyte Antigen-G (HLA-G) Polymorphism and Expression in Breast Cancer Patients

    PubMed Central

    Jeong, Seri; Park, Seho; Park, Byeong-Woo; Park, Younhee; Kwon, Oh-Joong; Kim, Hyon-Suk

    2014-01-01

    Human leukocyte antigen-G (HLA-G) is known to be implicated in a tumor-driven immune escape mechanism in malignancies. The purpose of this study was to investigate HLA-G polymorphism and expression in breast cancer. HLA-G alleles were determined by direct DNA sequencing procedures from blood samples of 80 breast cancer patients and 80 healthy controls. Soluble HLA-G (sHLA-G) was measured by enzyme-linked immunosorbent assay (ELISA) from serum specimens. HLA-G expression in breast cancer lesions was also analyzed by immunohistochemistry staining. The presence of HLA-G 3? untranslated region (UTR) 14-bp sequence was analyzed and found to be associated with reduced risk of breast cancer susceptibility based on HLA-G expression in tissues (P?=?0.0407). Levels of sHLA-G were higher in the breast cancer group (median 117.2 U/mL) compared to the control group (median 10.1 U/mL, P<0.001). The area under the receiver operating characteristic curve (AU-ROC) values of sHLA-G for differentiating breast cancer from normal controls and for detecting metastasis from other stages of breast cancer were 0.89 and 0.79, respectively. HLA-G polymorphism and expression may be involved in breast carcinogenesis and sHLA-G concentrations could be used as a diagnostic marker for detecting breast cancer. PMID:24870375

  2. The human mammary-derived growth inhibitor (MDGI) gene: Genomic structure and mutation analysis in human breast tumors

    SciTech Connect

    Phelan, C.M.; Morgan, K.; Narod, S.A.

    1996-05-15

    The mammary-derived growth inhibitor (MDGI) gene is a candidate tumor suppressor gene for human breast cancer. It has been shown to reduce the tumorigenicity of breast cancer cell lines in nude mice, and loss of expression of this gene has been shown in primary breast tumors. Furthermore, the human MDGI gene has been mapped to human chromosome 1p32-p35, a common region of deletion in sporadic breast tumors. We have determined the genomic structure of the human MDGI gene from a cosmid clone mapping to chromosome 1p32-p35 and have more finely mapped the MDGI gene relative to chromosome 1p microsatellite markers. The gene covers approximately 8 kb of genomic DNA and is divided into four exons. In an attempt to identify possible inactivating mutations in the MDGI gene in human breast cancer, we have sequenced all four exons and their surrounding splice junctions in 30 sporadic breast tumors. Ten of these tumors showed loss of heterozygosity (LOH) in the 1p32-p35 regions, with 5 tumors showing LOH in the subregion containing the MDGI gene. No mutations were found in this analysis. A polymorphism was identified in exon 2 in the constitutional DNA of 1/30 cases in this study, which resulted in the conversion of a lysine to an arginine residue at codon 53. This variant was present in the constitutional DNA of a further 3/26 women with sporadic breast cancer and 2/90 control individual (P=0.20). Despite experimental evidence that MDGI has tumor suppressor activity, our data suggest that mutations in the coding region are uncommon in human breast tumorigenesis. 29 refs., 3 figs., 2 tabs.

  3. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  4. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  5. Production of immunoreactive polymorphonuclear leucocyte elastase in human breast cancer cells: possible role of polymorphonuclear leucocyte elastase in the progression of human breast cancer.

    PubMed Central

    Yamashita, J. I.; Ogawa, M.; Ikei, S.; Omachi, H.; Yamashita, S. I.; Saishoji, T.; Nomura, K.; Sato, H.

    1994-01-01

    Breast cancer cells are known to express various proteolytic enzymes, which make them invasive and favour their dissemination to distant sites. However, it is unclear whether breast cancer cells have the ability to produce polymorphonuclear leucocyte elastase (PMN-E). We measured immunoreactive (ir) PMN-E content in the conditioned medium of two breast cancer cell lines, MCF-7 and ZR-75-1, and two normal breast epithelial cell lines, HBL-100 and Hs 578Bst, using a highly specific and sensitive enzyme immunoassay. Furthermore, ir-PMN-E content was determined in tissue extracts from 62 human breast cancers. ir-PMN-E content in the culture medium of MCF-7 cells and ZR-75-1 cells increased as a function of time, regardless of the presence or absence of oestradiol. On the other hand, no detectable ir-PMN-E was secreted into the culture medium of HBL-100 and Hs 578Bst cells. ir-PMN-E was detectable in 59 of 62 tissue extracts prepared from human breast cancers, the concentration ranging from 0.12 to 19.17 micrograms per 100 mg of protein. When 62 breast cancer specimens were categorised into four groups in terms of clinical stage, ir-PMN-E content in breast cancer tissue was significantly higher in stage III (8.90 +/- 5.13 micrograms 100 mg-1 protein) and stage IV (12.19 +/- 5.44 micrograms 100 mg-1 protein) patients than in stage I (1.64 +/- 1.54 micrograms 100 mg-1 protein) and stage II (4.23 +/- 3.74 micrograms 100 mg-1 protein) patients. Breast cancer patients with high levels of ir-PMN-E showed significantly shorter disease-free survival and overall survival than those with low levels of ir-PMN-E at the cut-off point of 8.99 micrograms 100 mg-1 protein. In the multivariate analysis, ir-PMN-E content was found to be a significant prognostic factor for disease recurrence and death in human breast cancer. PMID:8286213

  6. Assessment of microtubule depolymerization property of flavonoids isolated from Tanacetum gracile in breast cancer cells by biochemical and molecular docking approach.

    PubMed

    Sinha, Sadhna; Amin, Hina; Nayak, Debasis; Bhatnagar, Manisha; Kacker, Puneet; Chakraborty, Souneek; Kitchlu, Surinder; Vishwakarma, Ram; Goswami, Anindya; Ghosal, Sabari

    2015-09-01

    The chemical investigation of the bioactive nonpolar fractions of Tanacetum gracile afforded two flavonoid analogues namely, 5-hydroxy-3,6,7,3',4'-pentamethoxyflavone (1) and 5,4'-dihydroxy-3,6,7,3',4'-tetramethoxyflavone (2) which were identical to the previously reported artemetin and chrysosplenetin respectively. The structure of the compounds was elucidated on the basis of spectroscopic evidences and they showed significant cytotoxic activity against human breast cancer cells (MCF-7 and T47D). Mechanism based study showed that the compounds modulated microtubule depolymerization by activating mitotic spindle checkpoint. Molecular docking at the colchicine binding pocket revealed that the compounds bind at ?-? interfacial site of tubulin, correlating binding interactions with probable inhibition mechanism. The study reveals important observations to generate improved flavonoids that leads to cell apoptosis. The compounds were also evaluated for absorption, metabolism and toxicity by online webserver admetSAR. The significant microtubule disassembling property and less toxicity paves way for consideration of the compounds as chemopreventive agents. PMID:26115782

  7. Effect of the Secretory Small GTPase Rab27B on Breast Cancer Growth, Invasion, and Metastasis

    PubMed Central

    Hendrix, An; Maynard, Dawn; Pauwels, Patrick; Braems, Geert; Denys, Hannelore; Van den Broecke, Rudy; Lambert, Jo; Van Belle, Simon; Cocquyt, Veronique; Gespach, Christian; Bracke, Marc; Seabra, Miguel C.; Gahl, William A.

    2010-01-01

    Background Secretory GTPases like Rab27B control vesicle exocytosis and deliver critical proinvasive growth regulators into the tumor microenvironment. The expression and role of Rab27B in breast cancer were unknown. Methods Expression of green fluorescent protein (GFP) fused with wild-type Rab3D, Rab27A, or Rab27B, or Rab27B point mutants defective in GTP/GDP binding or geranylgeranylation, or transient silencing RNA to the same proteins was used to study Rab27B in estrogen receptor (ER)positive human breast cancer cell lines (MCF-7, T47D, and ZR75.1). Cell cycle progression was evaluated by flow cytometry, western blotting, and measurement of cell proliferation rates, and invasion was assessed using Matrigel and native type I collagen substrates. Orthotopic tumor growth, local invasion, and metastasis were analyzed in mouse xenograft models. Mass spectrometry identified proinvasive growth regulators that were secreted in the presence of Rab27B. Rab27B protein levels were evaluated by immunohistochemistry in 59 clinical breast cancer specimens, and Rab3D, Rab27A, and Rab27B mRNA levels were analyzed by quantitative real-time polymerase chain reaction in 20 specimens. Statistical tests were two-sided. Results Increased expression of Rab27B promoted G1 to S phase cell cycle transition, proliferation and invasiveness of cells in culture, and invasive tumor growth and hemorrhagic ascites production in a xenograft mouse model (n = 10; at 10 weeks, survival of MCF-7 GFP- vs GFP-Rab27Binjected mice was 100% vs 62.5%, hazard ratio = 0.26, 95% confidence interval = 0.08 to 0.88, P = .03). Mass spectrometric analysis of purified Rab27B-secretory vesicles identified heat-shock protein 90? as key proinvasive growth regulator. Heat-shock protein 90? secretion was Rab27B-dependent and was required for matrix metalloproteinase-2 activation. All Rab27B-mediated functional responses were GTP- and geranylgeranyl-dependent. Presence of endogenous Rab27B mRNA and protein, but not of Rab3D or Rab27A mRNA, was associated with lymph node metastasis (P < .001) and differentiation grade (P = .001) in ER-positive human breast tumors. Conclusions Rab27B regulates invasive growth and metastasis in ER-positive breast cancer cell lines, and increased expression is associated with poor prognosis in humans. PMID:20484105

  8. Single-Molecule Sequencing Reveals Estrogen-Regulated Clinically Relevant lncRNAs in Breast Cancer.

    PubMed

    Jonsson, Philip; Coarfa, Cristian; Mesmar, Fahmi; Raz, Tal; Rajapakshe, Kimal; Thompson, John F; Gunaratne, Preethi H; Williams, Cecilia

    2015-11-01

    Estrogen receptor (ER)?-positive tumors are commonly treated with ER? antagonists or inhibitors of estrogen synthesis, but most tumors develop resistance, and we need to better understand the pathways that underlie the proliferative and tumorigenic role of this estrogen-activated transcription factor. We here present the first single-molecule sequencing of the estradiol-induced ER? transcriptome in the luminal A-type human breast cancer cell lines MCF7 and T47D. Sequencing libraries were prepared from the polyadenylated RNA fraction after 8 hours of estrogen or vehicle treatment. Single-molecule sequencing was carried out in biological and technical replicates and differentially expressed genes were defined and analyzed for enriched processes. Correlation analysis with clinical expression and survival were performed, and follow-up experiments carried out using time series, chromatin immunoprecipitation and quantitative real-time PCR. We uncovered that ER? in addition to regulating approximately 2000 protein-coding genes, also regulated up to 1000 long noncoding RNAs (lncRNAs). Most of these were up-regulated, and 178 lncRNAs were regulated in both cell lines. We demonstrate that Long Intergenic Non-protein Coding RNA 1016 (LINC01016) and LINC00160 are direct transcriptional targets of ER?, correlate with ER? expression in clinical samples, and show prognostic significance in relation to breast cancer survival. We show that silencing of LINC00160 results in reduced proliferation, demonstrating that lncRNA expression have functional consequences. Our findings suggest that ER? regulation of lncRNAs is clinically relevant and that their functions and potential use as biomarkers for endocrine response are important to explore. PMID:26426411

  9. Weightlessness acts on human breast cancer cell line MCF-7

    NASA Astrophysics Data System (ADS)

    Vassy, J.; Portet, S.; Beil, M.; Millot, G.; Fauvel-Lafve, F.; Gasset, G.; Schoevaert, D.

    2003-10-01

    Because cells are sensitive to mechanical forces, weightlessness might act on stress-dependent cell changes. Human breast cancer cells MCF-7, flown in space in a Photon capsule, were fixed after 1.5, 22 and 48 h in orbit. Cells subjected to weightlessness were compared to 1g in-flight and ground controls. Post-flight, fluorescent labeling was performed to visualize cell proliferation (Ki-67), three cytoskeleton components and chromatin structure. Confocal microscopy and image analysis were used to quantify cycling cells and mitosis, modifications of the cytokeratin network and chromatin structure. Several main phenomena were observed in weightlessness: The perinuclear cytokeratin network and chromatin structure were looser. More cells were cycling and mitosis was prolonged. Finally, cell proliferation was reduced as a consequence of a cell-cycle blockade. Microtubules were altered in many cells. The results reported in the first point are in agreement with basic predictions of cellular tensegrity. The prolongation of mitosis can be explained by an alteration of microtubules. We discuss here the different mechanisms involved in weightlessness alteration of microtubules: i) alteration of their self-organization by reaction-diffusion processes, and a mathematical model is proposed, ii) activation or desactivation of microtubules stabilizing proteins, acting on both microtubule and microfilament networks in cell cortex.

  10. Compensated individually addressable array technology for human breast imaging

    DOEpatents

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  11. Human stromal cells are required for an anti-breast cancer effect of zoledronic acid

    PubMed Central

    Timmer-Bosscha, Hetty; de Vries, Elisabeth G.E.; Schrder, Carolina P.

    2015-01-01

    Previous studies suggested that bisphosphonate zoledronic acid exerts an anti-tumor effect by interacting with the microenvironment. In this study, we aimed to elucidate the mechanism behind the anti-breast cancer effect of zoledronic acid. Here we showed that zoledronic acid did not influence in vitro human breast cancer cell survival, but did affect human stromal cell survival. Breast cancer cell death in co-culture with stromal cells was analyzed in vitro by fluorescent microscopy and flowcytometry analysis. In co-culture, the addition of stromal cells to breast cancer cells induced tumor cell death by zoledronic acid, which was abolished by transforming growth factor (TGF)-?. In the in vivo chicken chorioallantoic membrane model, zoledronic acid reduced the breast cancer cells fraction per tumor only in the presence of human stromal cells. Zoledronic acid decreased TGF-? excretion by stromal cells and co-cultures. Moreover, supernatant of zoledronic acid treated stromal cells reduced phospho-Smad2 protein levels in breast cancer cells. Thus, zoledronic acid exerts an anti-breast cancer effect via stromal cells, accompanied by decreased stromal TGF-? excretion and reduced TGF-? signaling in cancer cells. PMID:26203666

  12. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer.

    PubMed

    Richter, Antje M; Walesch, Sara K; Dammann, Reinhard H

    2016-01-01

    Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF). Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005). RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005). Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis induction. PMID:26927176

  13. Cytotoxic Compounds from Juglans sinensis Dode Display Anti-Proliferative Activity by Inducing Apoptosis in Human Cancer Cells.

    PubMed

    Lee, Yoo Jin; Cui, Jun; Lee, Jun; Han, Ah-Reum; Lee, Eun Byul; Jang, Ho Hee; Seo, Eun Kyoung

    2016-01-01

    Phytochemical investigation of the bark of Juglans sinensis Dode (Juglandaceae) led to the isolation of two active compounds, 8-hydroxy-2-methoxy-1,4-naphthoquinone (1) and 5-hydroxy-2-methoxy-1,4-naphthoquinone (2), together with 15 known compounds 3-17. All compounds were isolated from this plant for the first time. The structures of 1 and 2 were elucidated by spectroscopic data analysis, including 1D and 2D NMR experiments. Compounds 1-17 were tested for their cytotoxicity against the A549 human lung cancer cell line; compounds 1 and 2 exhibited significant cytotoxicity and additionally had potent cytotoxicity against six human cancer cell lines, MCF7 (breast cancer), SNU423 (liver cancer), SH-SY5Y (neuroblastoma), HeLa (cervical cancer), HCT116 (colorectal cancer), and A549 (lung cancer). In particular, breast, colon, and lung cancer cells were more sensitive to the treatment using compound 1. In addition, compounds 1 and 2 showed strong cytotoxic activity towards human breast cancer cells MCF7, HS578T, and T47D, but not towards MCF10A normal-like breast cells. They also inhibited the colony formation of MCF7, A549, and HCT116 cells in a dose-dependent manner. Flow cytometry analysis revealed that the percentage of apoptotic cells significantly increased in MCF7 cells upon the treatment with compounds 1 and 2. The mechanism of cell death caused by compounds 1 and 2 may be attributed to the upregulation of Bax and downregulation of Bcl2. These findings suggest that compounds 1 and 2 may be regarded as potential therapeutic agents against cancer. PMID:26805799

  14. S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth

    SciTech Connect

    Martel, Peter M.; Bingham, Chad M.; McGraw, Charles J.; Baker, Christina L.; Morganelli, Peter M.; Meng, Marie Louise; Armstrong, Jessica M.; Moncur, Joel T.; Kinlaw, William B. . E-mail: william.kinlaw@hitchcock.org

    2006-02-01

    Most breast cancers exhibit brisk lipogenesis, and require it for growth. S14 is a lipogenesis-related nuclear protein that is overexpressed in most breast cancers. Sterol response element-binding protein-1c (SREBP-1c) is required for induction of lipogenesis-related genes, including S14 and fatty acid synthase (FAS), in hepatocytes, and correlation of SREBP-1c and FAS expression suggested that SREBP-1c drives lipogenesis in tumors as well. We directly tested the hypothesis that SREBP-1c drives S14 expression and mediates lipogenic effects of progestin in T47D breast cancer cells. Dominant-negative SREBP-1c inhibited induction of S14 and FAS mRNAs by progestin, while active SREBP-1c induced without hormone and superinduced in its presence. Changes in S14 mRNA were reflected in protein levels. A lag time and lack of progestin response elements indicated that S14 and FAS gene activation by progestin is indirect. Knockdown of S14 reduced, whereas overexpression stimulated, T47D cell growth, while nonlipogenic MCF10a mammary epithelial cells were not growth-inhibited. These data directly demonstrate that SREBP-1c drives S14 gene expression in breast cancer cells, and progestin magnifies that effect via an indirect mechanism. This supports the prediction, based on S14 gene amplification and overexpression in breast tumors, that S14 augments breast cancer cell growth and survival.

  15. Persistent Pesticides in Human Breast Milk and Cryptorchidism

    PubMed Central

    Damgaard, Ida N.; Skakkebk, Niels E.; Toppari, Jorma; Virtanen, Helena E.; Shen, Heqing; Schramm, Karl-Werner; Petersen, Jrgen H.; Jensen, Tina K.; Main, Katharina M.

    2006-01-01

    Introduction Prenatal exposure to some pesticides can adversely affect male reproductive health in animals. We investigated a possible human association between maternal exposure to 27 organochlorine compounds used as pesticides and cryptorchidism among male children. Design Within a prospective birth cohort, we performed a casecontrol study; 62 milk samples from mothers of cryptorchid boys and 68 from mothers of healthy boys were selected. Milk was collected as individual pools between 1 and 3 months postpartum and analyzed for 27 organochlorine pesticides. Results Eight organochlorine pesticides were measurable in all samples (medians; nanograms per gram lipid) for cases/controls: 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p?-DDE): 97.3/83.8; ?-hexachlorocyclohexane (?-HCH): 13.6/12.3; hexachlorobenzene (HCB): 10.6/8.8; ? -endosulfan: 7.0/6.7; oxychlordane: 4.5/4.1; 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p?-DDT): 4.6/4.0; dieldrin: 4.1/3.1; cis-heptachloroepoxide (cis-HE): 2.5/2.2. Five compounds [octachlorostyrene (OCS); pentachlorobenzene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (p,p?-DDD); o,p?-DDT; mirex] were measurable in most samples (detection rates 90.899.2%) but in lower concentrations. For methoxychlor, cis-chlordane, pentachloroanisole (PCA), ? -HCH, 1,1-dichloro-2-(2-chlorophenyl)-2,2(4-chlorophenyl)ethane, trans-chlordane, ? -HCH, and o,p?-DDE, both concentrations and detection rates were low (26.571.5%). Heptachlor, HCH (?, ? ), aldrin, ?-endosulfan and trans-heptachloroepoxide were detected at negligible concentrations and low detection rates and were not analyzed further. Seventeen of 21 organochlorine pesticides [p,p?-DDT, p,p?-DDE, p,p?-DDD, o,p?-DDT, HCH (? , ?, ? ), HCB, PCA, ? -endosulfan, cis-HE, chlordane (cis-, trans-) oxychlordane, methoxychlor, OCS, and dieldrin] were measured in higher median concentrations in case milk than in control milk. Apart from trans-chlordane (p = 0.012), there were no significant differences between cryptorchid and healthy boys for individual chemicals. However, combined statistical analysis of the eight most abundant persistent pesticides showed that pesticide levels in breast milk were significantly higher in boys with cryptorchidism (p = 0.032). Conclusion The association between congenital cryptorchidism and some persistent pesticides in breast milk as a proxy for maternal exposure suggests that testicular descent in the fetus may be adversely affected. PMID:16835070

  16. VIS-NIR spectrum analysis for distinguishing tumor and normal human breast tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yu, Yuan; Tuchin, Valery V.; Chen, Yongjun; Wen, Xiang; Liu, Caihua; Wang, Jing; Xue, Xingbo; Zhu, Dan

    2012-03-01

    The high incidence and mortality of breast cancer require an effective method for early breast diagnosis. In order to investigate the optical differences among malignant tumor, benign tumor and normal human breast tissue, a commercial spectrophotometer combined with single integrating sphere was used to measure the optical properties of different types of breast tissue in the wavelength range of 400 nm to 2200 nm in vitro. The hematoxylin and eosin staining (H&E staining) are used as the standard, and to find the find possible optical markers from the corresponding absorption or scattering spectra. This work is not only used for in vitro rapid optical diagnosis, but very helpful to develop innovative optical diagnosis of breast tumor in vivo.

  17. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    SciTech Connect

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator of ER in breast cancer cells and that its increased expression in tumors may result in estrogen-independent ER activation, thereby reducing estrogen dependence and response to anti-estrogen therapy.

  18. Promising antioxidant and anticancer (human breast cancer) oxidovanadium(IV) complex of chlorogenic acid. Synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin.

    PubMed

    Naso, Luciana G; Valcarcel, Mara; Roura-Ferrer, Meritxell; Kortazar, Danel; Salado, Clarisa; Lezama, Luis; Rojo, Teofilo; Gonzlez-Bar, Ana C; Williams, Patricia A M; Ferrer, Evelina G

    2014-06-01

    A new chlorogenate oxidovanadium complex (Na[VO(chlorog)(H2O)3].4H2O) was synthesized by using Schlenk methodology in the course of a reaction at inert atmosphere in which deprotonated chlorogenic acid ligand binds to oxidovanadium(IV) in a reaction experiment controlled via EPR technique and based in a species distribution diagram. The compound was characterized by FTIR, EPR, UV-visible and diffuse reflectance spectroscopies and thermogravimetric, differential thermal and elemental analyses. The ligand and the complex were tested for their antioxidant effects on DPPH (1,1-diphenyl-2-picrylhydrazyl radical), ABTS(+) (radical cation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), O2(-), OH and ROO radicals and their cytotoxic activity on different cancer cell lines (SKBR3, T47D and MDAMB231) and primary human mammary epithelial cells. The complex behaved as good antioxidant agent with strongest inhibitory effects on O2(-), OH and ROO radicals and exhibited selective cytotoxicity against SKBR3 cancer cell line. Albumin interaction experiments denoted high affinity toward the complex and its calculated binding constant was indicative of a strong binding to the protein. Based on this study, it is hypothesized that Na[VO(chlorog)(H2O)3].4H2O would be a promising candidate for further evaluation as an antioxidant and anticancer agent. PMID:24681549

  19. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    PubMed

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. Cancer Prev Res; 8(12); 1174-83. 2015 AACR. PMID:26487401

  20. Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice.

    PubMed Central

    Visonneau, S.; Cesano, A.; Torosian, M. H.; Miller, E. J.; Santoli, D.

    1998-01-01

    We evaluated the growth and metastatic potential of two human breast cancer cell lines and 16 patient-derived biopsy specimens, representing the most common histological types of breast carcinomas, upon subcutaneous implantation into severe combined immunodeficient (SCID) mice. The method of engraftment we used, based on implantation of intact tissue specimens and complete immunosuppression of the host, provided an easier system to grow human breast carcinoma specimens in mouse models and resulted in a 50% success rate of tumor take. No correlation was found between growth in SCID mice and pathological diagnosis, grading, or estrogen/progesterone receptor expression by the tumor biopsy specimen. Serial passage of the tumor fragments in SCID mice resulted in increased metastasis rates and more rapid emergence of a palpable tumor mass. A tumor from a patient with infiltrating ductal carcinoma, which grew aggressively and metastasized in 100% of the female SCID mice, was also successfully engrafted in 100% of nonobese diabetic (NOD)/SCID female mice, but systemic spread was minimal. Fragments of the same tumor grew in only 33% of male SCID mice with very limited metastases. A strong correlation (r = 0.997) was observed between tumor burden and the presence of soluble (serum) interleukin-2 receptor, a marker associated with a subset of human breast tumors. All together, these data indicate the usefulness of SCID/human breast tumor xenografts for measuring tumor progression and evaluating novel therapeutic approaches to breast cancer. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:9588898

  1. Lowered circulating aspartate is a metabolic feature of human breast cancer

    PubMed Central

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer. PMID:26452258

  2. DEAD-box helicase DP103 defines metastatic potential of human breast cancers

    PubMed Central

    Shin, Eun Myoung; Sin Hay, Hui; Lee, Moon Hee; Goh, Jen Nee; Tan, Tuan Zea; Sen, Yin Ping; Lim, See Wee; Yousef, Einas M.; Ong, Hooi Tin; Thike, Aye Aye; Kong, Xiangjun; Wu, Zhengsheng; Mendoz, Earnest; Sun, Wei; Salto-Tellez, Manuel; Lim, Chwee Teck; Lobie, Peter E.; Lim, Yoon Pin; Yap, Celestial T.; Zeng, Qi; Sethi, Gautam; Lee, Martin B.; Tan, Patrick; Goh, Boon Cher; Miller, Lance D.; Thiery, Jean Paul; Zhu, Tao; Gaboury, Louis; Tan, Puay Hoon; Hui, Kam Man; Yip, George Wai-Cheong; Miyamoto, Shigeki; Kumar, Alan Prem; Tergaonkar, Vinay

    2014-01-01

    Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β–activated kinase-1 (TAK1) phosphorylation of NF-κB–activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB–mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of DP103 correlated with enhanced MMP9, reduced overall survival, and reduced survival after relapse. Together, these data indicate that a positive DP103/NF-κB feedback loop promotes constitutive NF-κB activation in invasive breast cancers and activation of this pathway is linked to cancer progression and the acquisition of chemotherapy resistance. Furthermore, our results suggest that DP103 has potential as a therapeutic target for breast cancer treatment. PMID:25083991

  3. Effects of physiological levels of the green tea extract epigallocatechin-3-gallate on breast cancer cells.

    PubMed

    Zeng, Li; Holly, Jeff M P; Perks, Claire M

    2014-01-01

    Physiological concentrations of the green tea extract epigallocatechin-3-gallate (EGCG) caused growth inhibition in estrogen receptor ? (ER?)-positive MCF7 cells that was associated with down-regulation of the ER? and reduced insulin-like growth factor binding protein-2 abundance and increased protein abundance of the tumor suppressor genes p53/p21. In contrast to MCF7 cells that have wt p53, EGCG alone did not change cell proliferation or death significantly in another ER?-positive cell line T47D that possesses mutant p53. EGCG increased ER? protein levels and as a consequence, the cells responded significantly better to an ER? antagonist tamoxifen (TAM) in the presence of EGCG. EGCG significantly increased cell death in an ER?-negative cell line, MDA-MB-231 that also possesses mutant p53. EGCG significantly increased the ER? and insulin-like growth factor-I receptor levels and thereby enhanced the sensitivities of the cells to TAM and a blocking antibody targeting the insulin-like growth factor-1 receptor (?IR3). In contrast to MCF7, T47D and MDA-MB-231 breast cancer cells that exhibited significant changes in key molecules involved in breast growth and survival upon treatment with physiological levels of EGCG, the growth, survival, and levels of these proteins in non-malignant breast epithelial cells, MCF10A cells, were not affected. PMID:24847310

  4. Breast cancer photothermal therapy based on gold nanorods targeted by covalently-coupled bombesin peptide

    NASA Astrophysics Data System (ADS)

    Heidari, Zahra; Salouti, Mojtaba; Sariri, Reyhaneh

    2015-05-01

    Photothermal therapy, a minimally invasive treatment method for killing cancers cells, has generated a great deal of interest. In an effort to improve treatment efficacy and reduce side effects, better targeting of photoabsorbers to tumors has become a new concept in the battle against cancer. In this study, a bombesin (BBN) analog that can bind to all gastrin-releasing peptide (GRP) receptor subtypes was bound covalently with gold nanorods (GNRs) using Nanothinks acid as a link. The BBN analog was also coated with poly(ethylene glycol) to increase its stability and biocompatibility. The interactions were confirmed by ultraviolet-visible and Fourier transform infrared spectroscopy. A methylthiazol tetrazolium assay showed no cytotoxicity of the PEGylated GNR-BBN conjugate. The cell binding and internalization studies showed high specificity and uptake of the GNR-BBN-PEG conjugate toward breast cancer cells of the T47D cell line. The in vitro study revealed destruction of the T47D cells exposed to the new photothermal agent combined with continuous-wave near-infrared laser irradiation. The biodistribution study showed significant accumulation of the conjugate in the tumor tissue of mice with breast cancer. The in vivo photothermal therapy showed the complete disappearance of xenographted breast tumors in the mouse model.

  5. Zeranol may increase the risk of leptin-induced neoplasia in human breast.

    PubMed

    Xu, Pingping; Ye, Weiping; Zhong, Saiyi; Jen, Robert; Li, Hong; Feng, Eric; Lin, Shu-Hong; Liu, Jie-Yu; Lin, Young C

    2011-01-01

    Breast cancer and obesity are serious health problems and their relationship has been studied for many years. Leptin is mainly secreted by adipocytes and plays a key role in breast cancer development. Leptin expression is up-regulated in obese individuals and promotes breast cancer cell growth. On the other hand, exposure to environmental estrogens has been found to be directly related to breast cancer. Zeranol (Z) is a non-steroidal anabolic growth promoter used in the beef industry in the US. This study focused on the evaluation of Z and Z-containing sera (ZS) and its adverse health risk to human consumption of Z-containing meat produced from Z-implanted beef cattle. We hypothesized that Z increases the risk of breast neoplasia in women, particularly in obese women. A cell proliferation assay, ELISA analysis, RT-PCR and Western blot analysis were conducted. Our study demonstrated that Z and ZS collected from Z-implanted heifers stimulated the proliferation of primary cultured human normal breast epithelial cells (HNBECs) by up-regulating cyclin D1 expression. Leptin increased the sensitivity of HNBECs to Z, and Z increased the ability of HNBECs to secrete leptin. These results suggest an interaction between leptin and Z in HNBECs. Furthermore, Z may play a role in leptin-induced breast neoplasia. PMID:22870137

  6. A gelonin-containing immunotoxin directed against human breast carcinoma.

    PubMed

    Rosenblum, M G; Zuckerman, J E; Marks, J W; Rotbein, J; Allen, W R

    1992-09-01

    Toxins may be specifically directed to tumor cells and the toxins' potency greatly increased by covalent conjugation to monoclonal antibodies recognizing tumor-associated antigens. Antibody 15A8, an immunoglobulin G1 (IgG1) subclass anti-human breast carcinoma murine monoclonal antibody and gelonin, a plant toxin, were covalently modified with N-succimindyl 3-(2-pyridyldithio) proprionate and iminothiolane, respectively, and allowed to cross-link. 15A8-gelonin conjugates were purified from unreacted antibody and free gelonin by gel filtration and blue sepharose chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the final product contained two bands corresponding to antibody:gelonin conjugates of 1:1 (predominant) and 1:2. There were no contaminating amounts of free antibody or free toxin in the preparation. The yield of the final purified 15A8-gelonin conjugate was approximately 20% based on the amount of starting antibody. The protein synthesis inhibitory activity of the immunoconjugate was assessed by in vitro rabbit reticulocyte translation assay. This functional activity was normalized to that of unmodified gelonin for use in in vitro antiproliferative assays against antigen-negative (Hs294t human melanoma) and antigen-positive (ME-180 human cervical carcinoma) cell lines. Antigen-negative Hs294t cells incubated for 72 hours with 15A8-gelonin immunotoxin showed no increased cytotoxicity compared with HS294t cells exposed to free gelonin alone. However, the immunotoxin was preferentially toxic to antigen-positive ME-180 cells; over 5 logs greater cell kill was observed after 72 hours exposure to 15A8-gelonin than after the same exposure to gelonin alone. Various lysosomotropic agents augmented 15A8-gelonin cytotoxicity; the most effective potentiating agent appeared to be monensin. In addition, the chemotherapeutic agents L-phenylalanine mustard (L-PAM), 5-fluorouracil, vincristine, and bleomycin, and the biological response modifiers interferon-alpha and tumor necrosis factor-alpha were shown to augment 15A8-gelonin cytotoxicity. Should in vivo pharmacology and therapeutic studies confirm these in vitro findings, 15A8-gelonin conjugate may be a potent agent for therapy of cancer in man. PMID:1445665

  7. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans

    NASA Astrophysics Data System (ADS)

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A.; Schweiger, Martin; Arridge, Simon R.; Schnall, Mitchell D.; Yodh, Arjun G.

    2007-05-01

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising.

  8. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans.

    PubMed

    Corlu, Alper; Choe, Regine; Durduran, Turgut; Rosen, Mark A; Schweiger, Martin; Arridge, Simon R; Schnall, Mitchell D; Yodh, Arjun G

    2007-05-28

    We present three-dimensional (3D) in vivo images of human breast cancer based on fluorescence diffuse optical tomography (FDOT). To our knowledge, this work represents the first reported 3D fluorescence tomography of human breast cancer in vivo. In our protocol, the fluorophore Indocyanine Green (ICG) is injected intravenously. Fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Phantom and in vivo studies confirm the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. Fluorescence images of breast tumors were in good agreement with those of MRI, and with DOT based on endogenous contrast. Tumorto- normal tissue contrast based on ICG fluorescence was two-to-four-fold higher than contrast based on hemoglobin and scattering parameters. In total the measurements demonstrate that FDOT of breast cancer is feasible and promising. PMID:19546980

  9. Characterization of human breast cancer tissues by infrared imaging.

    PubMed

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-01

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins. PMID:26535413

  10. Recurrent Breast Abscesses due to Corynebacterium kroppenstedtii, a Human Pathogen Uncommon in Caucasian Women

    PubMed Central

    Le Flche-Matos, Anne; Berthet, Nicolas; Lomprez, Fabienne; Arnoux, Yolande; Le Guern, Anne-Sophie; Leclercq, India; Burguire, Ana Maria; Manuguerra, Jean-Claude

    2012-01-01

    Background. Corynebacterium kroppenstedtii (Ck) was first described in 1998 from human sputum. Contrary to what is observed in ethnic groups such as Maori, Ck is rarely isolated from breast abscesses and granulomatous mastitis in Caucasian women. Case Presentation. We herein report a case of recurrent breast abscesses in a 46-year-old Caucasian woman. Conclusion. In the case of recurrent breast abscesses, even in Caucasian women, the possible involvement of Ck should be investigated. The current lack of such investigations, probably due to the difficulty to detect Ck, may cause the underestimation of such an aetiology. PMID:23008788

  11. Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo.

    PubMed

    Abrahamsson, Annelie; Dabrosin, Charlotta

    2015-09-01

    Extracellular circulating microRNAs (miRNAs) have been suggested to be biomarkers for disease monitoring but data are inconsistent, one reason being that blood miRNA is of heterogeneous origin. Here, we sampled extracellular microRNAs locally in situ using microdialysis. Three different cohorts of women were included; postmenopausal women with ongoing breast cancer investigated within the cancer and in normal adjacent breast tissue, postmenopausal women investigated in their normal healthy breast and subcutaneous fat before and after six weeks of tamoxifen therapy, premenopausal women during the menstrual cycle. Samples were initially screened using TaqMan array cards with subsequently absolute quantification. 124 miRNA were expressed in microdialysates. After absolute quantifications extracellular miRNA-21 was found to be significantly increased in breast cancer. In addition, the levels were significantly higher in pre-menopausal breast tissue compared with postmenopausal. In breast tissue of pre-menopausal women miRNA-21 exhibited a cyclic variation during the menstrual cycle and in postmenopausal women six weeks of tamoxifen treatment decreased miRNA-21 suggesting that this miRNA may be important for breast carcinogenesis. None of these changes were found in plasma or microdialysates from subcutaneous fat. Our data revealed tissue specific changes of extracellular circulating miRNAs that would be otherwise unraveled using blood samples. PMID:26008976

  12. Tissue specific expression of extracellular microRNA in human breast cancers and normal human breast tissue in vivo

    PubMed Central

    Abrahamsson, Annelie; Dabrosin, Charlotta

    2015-01-01

    Extracellular circulating microRNAs (miRNAs) have been suggested to be biomarkers for disease monitoring but data are inconsistent, one reason being that blood miRNA is of heterogeneous origin. Here, we sampled extracellular microRNAs locally in situ using microdialysis. Three different cohorts of women were included; postmenopausal women with ongoing breast cancer investigated within the cancer and in normal adjacent breast tissue, postmenopausal women investigated in their normal healthy breast and subcutaneous fat before and after six weeks of tamoxifen therapy, premenopausal women during the menstrual cycle. Samples were initially screened using TaqMan array cards with subsequently absolute quantification. 124 miRNA were expressed in microdialysates. After absolute quantifications extracellular miRNA-21 was found to be significantly increased in breast cancer. In addition, the levels were significantly higher in pre-menopausal breast tissue compared with postmenopausal. In breast tissue of pre-menopausal women miRNA-21 exhibited a cyclic variation during the menstrual cycle and in postmenopausal women six weeks of tamoxifen treatment decreased miRNA-21 suggesting that this miRNA may be important for breast carcinogenesis. None of these changes were found in plasma or microdialysates from subcutaneous fat. Our data revealed tissue specific changes of extracellular circulating miRNAs that would be otherwise unraveled using blood samples. PMID:26008976

  13. The Chk1 inhibitor AZD7762 sensitises p53 mutant breast cancer cells to radiation in vitro and in vivo.

    PubMed

    Ma, Zhikun; Yao, Guoliang; Zhou, Bo; Fan, Yonggang; Gao, Shegan; Feng, Xiaoshan

    2012-10-01

    AZD7762, a novel checkpoint kinase 1 (Chk 1)inhibitor, has been proven to sensitize various tumor cells to DNA damage. However, whether or not AZD7762 sensitizes breast cancer cells to radiation has not been defined. In the present study, we aimed to demonstrate for the first time, that AZD7762 not only promotes radiation-induced apoptosis and mitotic catastrophe of p53 mutant T47D breast cancer cells in vitro, but also delays their xenograft growth in response to radiation in vivo. Our mechanistic study showed that AZD7762 treatment resulted in the abrogation of radiation-induced G2/M arrest and the inhibition of radiation damage repair as demonstrated by increased radiation-induced ?H2AX expression and decreased RAD51 protein expression. These results suggest that AZD7762 may effectively abrogate radiation-induced G2/M arrest and inhibit radiation damage repair in conferring radiosensitivity on p53 mutant T47D breast cancer cells, by promoting radiation-induced apoptosis and mitotic catastrophe. The clinical application of AZD7762, as an adjuvant in the radiotherapy of breast cancers, should be further explored. PMID:22825736

  14. The fractional viscoelastic response of human breast tissue cells

    NASA Astrophysics Data System (ADS)

    Carmichael, B.; Babahosseini, H.; Mahmoodi, S. N.; Agah, M.

    2015-07-01

    The mechanical response of a living cell is notoriously complicated. The complex, heterogeneous characteristics of cellular structure introduce difficulties that simple linear models of viscoelasticity cannot overcome, particularly at deep indentation depths. Herein, a nano-scale stress-relaxation analysis performed with an atomic force microscope reveals that isolated human breast cells do not exhibit simple exponential relaxation capable of being modeled by the standard linear solid (SLS) model. Therefore, this work proposes the application of the fractional Zener (FZ) model of viscoelasticity to extract mechanical parameters from the entire relaxation response, improving upon existing physical techniques to probe isolated cells. The FZ model introduces a new parameter that describes the fractional time-derivative dependence of the response. The results show an exceptional increase in conformance to the experimental data compared to that predicted by the SLS model, and the order of the fractional derivative (?) is remarkably homogeneous across the populations, with a median value of 0.48 0.06 for the malignant population and 0.51 0.07 for the benign. The cells responses exhibit power-law behavior and complexity not associated with simple relaxation (SLS, ? = 1) that supports the application of a fractional model. The distributions of some of the FZ parameters also preserve the distinction between the malignant and benign sample populations seen from the linear model and previous results while including the contribution of fast-relaxation behavior. The resulting viscosity, measured by a composite relaxation time, exhibits considerably less dispersion due to residual error than the distribution generated by the linear model and therefore serves as a more powerful marker for cell differentiation.

  15. Claudin-20 promotes an aggressive phenotype in human breast cancer cells

    PubMed Central

    Martin, Tracey A; Lane, Jane; Ozupek, Hulya; Jiang, Wen G

    2013-01-01

    Claudin-20 is a member of the Claudin family of transmembrane proteins located in the tight junction (TJ) of cells of epithelial origin. Due to the increasing evidence supporting the role of TJ proteins in preventing tumor cell metastatic behavior, this study sought to evaluate the distribution of Claudin-20 in human breast cancer and the effect of Claudin-20 overexpression in human breast cancer cells. Q-PCR data from breast cancer primary tumors (n = 114) and matched background tissue (n = 30) showed that high claudin-20 expression was correlated with poor survival of patients with breast cancer (p = 0.022). Following transformation of the breast cancer cell lines MDA-MB-231 and MCF7 with a Claudin-20 expression construct functional assays were performed to ascertain changes in cell behavior. Claudin-20 transformed cells showed significantly increased invasion (p < 0.005) and were significantly less adhesive than wild type cells (p < 0.05). There was no effect on growth (either in vitro or in vivo) for either cell line. Overexpression of Claudin-20 resulted in reduced transepithelial resistance (induced by the motogen HGF at 25 ng/ml, p = 0.0007). Interestingly, this was not mirrored by paracellular permeability, as overexpression of Claudin-20 caused a decrease in permeability. The introduction of Claudin-20 into human breast cancer cells resulted in breast cancer cells with an aggressive phenotype and reduced trans-epithelial resistance. There was no corresponding decrease in paracellular permeability, indicating that this Claudin has a differential function in epithelial TJ. This provides further insight into the importance of correctly functioning TJ in preventing the progression of human breast cancer. PMID:24665404

  16. Recombinant GnRH-p53 protein sensitizes breast cancer cells to 5-fluorouracil-induced apoptosis in vitro and in vivo.

    PubMed

    Lu, Yi; Zhang, Zhisong; Yan, Zhenwen; Chen, Li; Deng, Weimin; Lotze, Michael; Wang, Zhou; Lin, Xinli; Li, Lu-Yuan

    2013-10-01

    An ideal approach to treat cancers with dysfunctional p53 tumor suppressor gene is to reinstate p53 functionality by directly using p53 protein as a therapeutic agent. However, this has not been possible because the cells cannot readily internalize the protein. We constructed a fusion protein consisting of gonadotropin-releasing hormone (GnRH-p53) and p53 moieties. The recombinant protein was directly used to treat human breast cancer cells and athymic nude mice bearing breast cancer xenografts, with or without DNA synthesis-arresting agent 5-fluorouracil (5-FU). Treatments of cells from breast cancer cell-lines MDA-MB-231, T47D, or SKBR-3 with GnRH-p53 in combination with 5-FU significantly enhanced p53-activated apoptosis signals, including PUMA expression, BAX translocation to mitochondria, and activated caspase-3. Intratumoral injection of the GnRH-p53 protein inhibited MDA-MB-231 xenograft growth and induced p53-mediated apoptosis in the tumors. Systemic treatment of the tumor-bearing mice via tail vein injection of GnRH-p53 markedly augmented the anticancer efficacy of 5-FU. Substitution of GnRH-p53 with wild type p53 protein had no effect. Recombinant GnRH-p53 is able to function as a surrogate of p53 with regard to its apoptosis-inducing activity. Combination of GnRH-p53 with DNA-damaging drugs may be of important therapeutic value for cancer treatment. PMID:23801079

  17. Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis.

    PubMed

    Notte, Annick; Rebucci, Magali; Fransolet, Maude; Roegiers, Edith; Genin, Marie; Tellier, Celine; Watillon, Kassandra; Fattaccioli, Antoine; Arnould, Thierry; Michiels, Carine

    2015-05-01

    Understanding the mechanisms responsible for the resistance against chemotherapy-induced cell death is still of great interest since the number of patients with cancer increases and relapse is commonly observed. Indeed, the development of hypoxic regions as well as UPR (unfolded protein response) activation is known to promote cancer cell adaptive responses to the stressful tumor microenvironment and resistance against anticancer therapies. Therefore, the impact of UPR combined to hypoxia on autophagy and apoptosis activation during taxol exposure was investigated in MDA-MB-231 and T47D breast cancer cells. The results showed that taxol rapidly induced UPR activation and that hypoxia modulated taxol-induced UPR activation differently according to the different UPR pathways (PERK, ATF6, and IRE1?). The putative involvement of these signaling pathways in autophagy or in apoptosis regulation in response to taxol exposure was investigated. However, while no link between the activation of these three ER stress sensors and autophagy or apoptosis regulation could be evidenced, results showed that ATF4 activation, which occurs independently of UPR activation, was involved in taxol-induced autophagy completion. In addition, an ATF4-dependent mechanism leading to cancer cell adaptation and resistance against taxol-induced cell death was evidenced. Finally, our results demonstrate that expression of ATF4, in association with hypoxia-induced genes, can be used as a biomarker of a poor prognosis for human breast cancer patients supporting the conclusion that ATF4 might play an important role in adaptation and resistance of breast cancer cells to chemotherapy in hypoxic tumors. PMID:25724736

  18. Radiosensitization of human breast cancer cells to ultraviolet light by 5-fluorouracil

    PubMed Central

    SASAKI, KAZUHITO; TSUNO, NELSON H.; SUNAMI, EIJI; KAWAI, KAZUSHIGE; SHUNO, YASUTAKA; HONGO, KUMIKO; HIYOSHI, MASAYA; KANEKO, MANABU; MURONO, KOJI; TADA, NORIKO; NIREI, TAKAKO; KITAYAMA, JOJI; TAKAHASHI, KOKI; NAGAWA, HIROKAZU

    2011-01-01

    Ultraviolet light B (UVB) phototherapy is widely used to treat dermatological diseases and therefore may be a potential optional strategy in the treatment of a skin lesion infiltrated by a malignant tumor. Currently, little is known regarding the effect of UVB phototherapy on human breast cancer cells. The present study aimed to investigate the effect of UVB phototherapy, as well as the potential effect of 5-fluorouracil (5-FU), the first-line anticancer drug for breast cancer, on radiosensitizing MCF-7 human breast cancer cells, in an attempt to develop new therapeutic strategies for the treatment of locoregional recurrence of breast cancer. MCF-7 cells were incubated in the presence of 5-FU for 48 h, and UVB irradiation at 750 mJ/cm2 was administered in the midterm of 5-FU treatment. The viability of MCF-7 cells was analyzed by the trypan blue staining method. Apoptosis was quantified by flow cytometry and Hoechst 33258 staining. The cell cycle was evaluated by flow cytometry after the staining of cells with propidium iodide. The combination treatment of 5-FU and UVB resulted in a strong potentiation of the inhibitory effect of MCF-7 cell growth, dependent on the intra-S phase cell cycle arrest and induction of apoptosis, when compared to treatment with 5-FU or UVB alone. In conclusion, 5-FU sensitized human breast cancer cells to UVB phototherapy, and this combination therapy is an effective and promising strategy for the treatment of breast cancer, particularly for locoregional recurrence. PMID:22866105

  19. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone.

    PubMed

    Liu, Sijin; Goldstein, Robert H; Scepansky, Ellen M; Rosenblatt, Michael

    2009-11-15

    Rho-associated kinase (ROCK) signaling plays a fundamental role in regulating cell morphology, adhesion, and motility. Aberrant expression of ROCK is related to tumor metastases and poor clinical outcome. Here, we show that ROCK expression is increased in metastatic human mammary tumors and breast cancer cell lines compared with nonmetastatic tumors and cell lines. Overexpression of ROCK confers a metastatic phenotype on the nonmetastatic MCF-7 cell line. Inhibition of ROCK activity, by either a specific ROCK inhibitor (Y27632) or ROCK-targeted small interfering RNAs, reduces cell migration and proliferation in vitro and metastasis to bone in vivo using a novel "human breast cancer metastasis to human bone" mouse model. Expression of the c-Myc-regulated miR-17-92 cluster is shown to be elevated in metastatic breast cancer cells compared with nonmetastatic cells and diminished by Y27632 treatment. Furthermore, blockade of miR-17 is shown to decrease breast cancer cell invasion/migration in vitro and metastasis in vivo. Together, these findings suggest that augmented ROCK signaling contributes to breast cancer metastasis. The effects of ROCK on tumor cell invasion/motility and growth may derive from regulating cytoskeletal actin-myosin contraction and modulating the c-Myc pathway, including c-Myc-dependent microRNAs. Inhibition of ROCK or the pathway it stimulates, therefore, may represent a novel approach for treatment of breast cancer metastases. PMID:19887617

  20. HOXB7-S3 inhibits the proliferation and invasion of MCF-7 human breast cancer cells

    PubMed Central

    MA, RUI; ZHANG, DAN; HU, PENG-CHAO; LI, QUN; LIN, CONG-YAO

    2015-01-01

    Homeobox B7 (HOXB7) has been found to be overexpressed in numerous types of human cancer. However, the role of HOXB7 in breast cancer remains to be elucidated. The aim of the present study was to investigate the effects of HOXB7 on the proliferation and invasion of breast cancer cells. Initially, reverse transcription quantitative polymerase chain reaction and western blotting were respectively employed to detect the mRNA and protein expression levels of the HOXB7 gene in the MDA-MB-231 and MCF-7 human breast cancer cell lines. Subsequently, small interfering RNAs designed to interfere with the expression of HOXB7 were used to knockdown the expression of HOXB7 in the MCF-7 cell line, the effects of which on cell proliferation, the apoptotic rate and invasion capacity were measured using a Cell Counting kit-8 assay, flow cytometry and transwell chambers, respectively. The results demonstrated that HOXB7 mRNA and protein were all overexpressed in MDA-MB-231 and MCF-7 breast cancer cell lines. Furthermore, HOXB7-S3 effectively inhibited the proliferation and invasion of MCF-7 breast cancer cells. In conclusion, these results demonstrated that HOXB7 may be a potential therapeutic target in human breast cancer. PMID:26135503

  1. Expression and prognostic role of SKIP in human breast carcinoma.

    PubMed

    Liu, Xiaobing; Ni, Qichao; Xu, Junfei; Sheng, Chenyi; Wang, Qingqing; Chen, Jinpeng; Yang, Shuyun; Wang, Hua

    2014-04-01

    Ski-interacting protein (SKIP) is a nuclear hormone receptor-interacting cofactor, interactions with the proto-oncogene Ski, appears to modulate a number of signalling pathways involved in control of cell proliferation and differentiation, and may play a critical role in oncogenesis. In the present study, to investigate the potential roles of SKIP in breast cancer, expression patterns, interaction and the correlation with clinical/prognostic factors of SKIP and Ki-67 were examined among patients with breast cancer. Immunohistochemistry and Western blot analysis were performed for SKIP in 85 breast carcinoma samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. We found that SKIP was over expressed in breast carcinoma as compared with the adjacent normal tissues. High expression of SKIP was positively associated with histological grade (P = 0.01) and Ki-67 (P = 0.004). Univariate analysis showed that SKIP expression was associated with a poor prognosis (P = 0.006). While in vitro, following release of breast cancer cell lines from serum starvation, the expression of SKIP was up-regulated, whereas p27 was down-regulated. In addition, we employed small interfering RNA (siRNA) technique to knock down SKIP expression and observed it effects on MDA-MB-231 cells growth. SKIP depletion by siRNA inhibited cell proliferation, blocked S phase and decreased cyclin A and cyclin B levels. On the basis of these results, we suggested that SKIP overexpression was involved in the pathogenesis of breast cancer, which might serve as a future target for breast cancer. PMID:24150787

  2. Complement component 1, q subcomponent binding protein is a marker for proliferation in breast cancer.

    PubMed

    Scully, Olivia Jane; Yu, Yingnan; Salim, Agus; Thike, Aye Aye; Yip, George Wai-Cheong; Baeg, Gyeong Hun; Tan, Puay-Hoon; Matsumoto, Ken; Bay, Boon Huat

    2015-07-01

    Complement component 1, q subcomponent binding protein (C1QBP), is a multi-compartmental protein with higher mRNA expression reported in breast cancer tissues. This study evaluated the association between immunohistochemical expression of the C1QBP protein in breast cancer tissue microarrays (TMAs) and clinicopathological parameters, in particular tumor size. In addition, an invitro study was conducted to substantiate the breast cancer TMA findings. Breast cancer TMAs were constructed from pathological specimens of patients diagnosed with invasive ductal carcinoma. C1QBP protein and proliferating cell nuclear antigen (PCNA) immunohistochemical analyses were subsequently performed in the TMAs. C1QBP immunostaining was detected in 131 out of 132 samples examined. The C1QBP protein was predominantly localized in the cytoplasm of the breast cancer cells. Univariate analysis revealed that a higher C1QBP protein expression was significantly associated with older patients (P?=?0.001) and increased tumor size (P?=?0.002). Multivariate analysis showed that C1QBP is an independent predictor of tumor size in progesterone-positive tumors. Furthermore, C1QBP was also significantly correlated with expression of PCNA, a known marker of proliferation. Inhibition of C1QBP expression was performed by transfecting C1QBP siRNA into T47D breast cancer cells, a progesterone receptor-positive breast cancer cell line. C1QBP gene expression was analyzed by real-time RT-PCR, and protein expression by Western blot. Cell proliferation assays were also performed by commercially available assays. Down-regulation of C1QBP expression significantly decreased cell proliferation and growth in T47D cells. Taken together, our findings suggest that the C1QBP protein could be a potential proliferative marker in breast cancer. PMID:25573962

  3. A novel assay to assess the effectiveness of antiangiogenic drugs in human breast cancer.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many cytotoxic drugs maintain antiangiogenic properties, but there are no human, tumor-based assays to evaluate their antiangiogenic potential. We used a fibrin-thrombin clot-based angiogenesis model to evaluate the angiogenic response of human breast cancer to various cytotoxic agents commonly used...

  4. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast

    NASA Astrophysics Data System (ADS)

    Chen, L.; Boone, J. M.; Abbey, C. K.; Hargreaves, J.; Bateni, C.; Lindfors, K. K.; Yang, K.; Nosratieh, A.; Hernandez, A.; Gazi, P.

    2015-04-01

    The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40?mm) simulated projection images of the breast. Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11?mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33?mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33, 0.71, 1.5 and 2.9?mm were representative of breast CT; the average 43?mm slice thickness served to simulate simulated projection images of the breast. The percent correct of the human observers responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p < 0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1?mm lesion diameter lesions. For example, the average of three radiologists performance for 3?mm diameter lesions was 92% correct for thin section breast CT images while it was 67% for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1?mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11?mm. The average radiologist performance outperformed that of the average physicist observer, however trends in performance were similar. Human observers demonstrate significantly better mass-lesion detection performance on thin-section CT images of the breast, compared to thick-section simulated projection images of the breast.

  5. Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts

    PubMed Central

    2013-01-01

    Background Human breast cancer is a heterogeneous disease consisting of multiple molecular subtypes. Genetically engineered mouse models are a useful resource for studying mammary cancers in vivo under genetically controlled and immune competent conditions. Identifying murine models with conserved human tumor features will facilitate etiology determinations, highlight the effects of mutations on pathway activation, and should improve preclinical drug testing. Results Transcriptomic profiles of 27 murine models of mammary carcinoma and normal mammary tissue were determined using gene expression microarrays. Hierarchical clustering analysis identified 17 distinct murine subtypes. Cross-species analyses using three independent human breast cancer datasets identified eight murine classes that resemble specific human breast cancer subtypes. Multiple models were associated with human basal-like tumors including TgC3(1)-Tag, TgWAP-Myc and Trp53-/-. Interestingly, the TgWAPCre-Etv6 model mimicked the HER2-enriched subtype, a group of human tumors without a murine counterpart in previous comparative studies. Gene signature analysis identified hundreds of commonly expressed pathway signatures between linked mouse and human subtypes, highlighting potentially common genetic drivers of tumorigenesis. Conclusions This study of murine models of breast carcinoma encompasses the largest comprehensive genomic dataset to date to identify human-to-mouse disease subtype counterparts. Our approach illustrates the value of comparisons between species to identify murine models that faithfully mimic the human condition and indicates that multiple genetically engineered mouse models are needed to represent the diversity of human breast cancers. The reported trans-species associations should guide model selection during preclinical study design to ensure appropriate representatives of human disease subtypes are used. PMID:24220145

  6. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma

    SciTech Connect

    Howlett, Anthony R; Bailey, Nina; Damsky, Caroline; Petersen, Ole W; Bissell, Mina J

    1994-11-28

    We previously established a rapid three-dimensional assay for discrimination of normal and malignant human breast epithelial cells using a laminin-rich reconstituted basement membrane. In this assay, normal epithelial cells differentiate into well-organized acinar structures whereas tumor cells fail to recapitulate this process and produce large, disordered colonies. The data suggest that breast acinar morphogenesis and differentiation is regulated by cell-extracellular matrix (ECM) interactions and that these interactions are altered in malignancy. Here, we investigated the role of ECM receptors (integrins) in these processes and report on the expression and function of potential laminin receptors in normal and tumorigenic breast epithelial cells. Immmunocytochemical analysis showed that normal and carcinoma cells in a three-dimensional substratum express profiles of integrins similar to normal and malignant breast tissues in situ. Normal cells express {alpha}1, {alpha}2, {alpha}3, {alpha}6, {beta}1 and {beta}4 integrin subunits, whereas breast carcinoma cells show variable losses, disordered expression, or down regulation of these subunits. Function-blocking experiments using inhibitory antiintegrin subunit antibodies showed a >5-fold inhibition of the formation of acinar structures by normal cells in the presence of either anti-{beta}1 or anti-{alpha}3 antibodies, whereas anti-{alpha}2 or -{alpha}6 had little or no effect. In experiments where collagen type I gels were used instead of basement membrane, acinar morphogenesis was blocked by anti-{beta}1 and -{alpha}2 antibodies but not by anti-{alpha}3. These data suggest a specificity of integrin utilization dependent on the ECM ligands encountered by the cell. The interruption of normal acinar morphogenesis by anti-integrin antibodies was associated with an inhibition of cell growth and induction of apoptosis. Function-blocking antibodies had no inhibitory effect on the rate of tumor cell growth, survival or capacity to form colonies. Thus under our culture conditions breast acinar formation is at least a two-step process involving {beta}1-integrin-dependent cellular growth followed by polarization of the cells into organized structures. The regulation of this pathway appears to be impaired or lost in the tumor cells, suggesting that tumor colony formation occurs by independent mechanisms and that loss of proper integrinmediated cell-ECM interaction may be critical to breast tumor formation.

  7. Survivin family proteins as novel molecular determinants of doxorubicin resistance in organotypic human breast tumors

    PubMed Central

    2014-01-01

    Introduction The molecular determinants of breast cancer resistance to first-line anthracycline-containing chemotherapy are unknown. Methods We examined the response to doxorubicin of organotypic cultures of primary human breast tumors ex vivo with respect to cell proliferation, DNA damage and modulation of apoptosis. Samples were analyzed for genome-wide modulation of cell death pathways, differential activation of p53, and the role of survivin family molecules in drug resistance. Rational drug combination regimens were explored by high-throughput screening, and validated in model breast cancer cell types. Results Doxorubicin treatment segregated organotypic human breast tumors into distinct Responder or Non Responder groups, characterized by differential proliferative index, stabilization of p53, and induction of apoptosis. Conversely, tumor histotype, hormone receptor or human epidermal growth factor receptor-2 (HER2) status did not influence chemotherapy sensitivity. Global analysis of cell death pathways identified survivin and its alternatively spliced form, survivin-?Ex3 as uniquely overexpressed in Non Responder breast tumors. Forced expression of survivin-?Ex3 preserved cell viability and prevented doxorubicin-induced apoptosis in breast cancer cell types. High-throughput pharmacologic targeting of survivin family proteins with a small-molecule survivin suppressant currently in the clinic (YM155) selectively potentiated the effect of doxorubicin, but not other chemotherapeutics in breast cancer cell types, and induced tumor cell apoptosis. Conclusions Survivin family proteins are novel effectors of doxorubicin resistance in chemotherapy-naive breast cancer. The incorporation of survivin antagonist(s) in anthracycline-containing regimens may have improved clinical activity in these patients. PMID:24886669

  8. Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion

    PubMed Central

    2013-01-01

    Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells. PMID:23289900

  9. EVIDENCE FOR THE PRESENCE OF MUTAGENIC ARYL AMINES IN HUMAN BREAST MILK AND DNA ADDUCTS IN EXFOLIATED BREAST-DUCT EPITHELIAL CELLS

    EPA Science Inventory

    Aromatic (AA) and heterocyclic amines (HAA) are ubiquitous environmental mutagens present in combustions emissions, fried meats, tobacco smoke, etc., and are suspect human mammary carcinogens. To determine the presence of aryl amines in breast tissue and fluid, we examined exfol...

  10. Significance of twist and iNOS expression in human breast carcinoma.

    PubMed

    Ranganathan, Santhalakshmi; Krishnan, Arunkumar; Sivasithambaram, Niranjali Devaraj

    2016-01-01

    Twist is a basic helix-loop-helix transcription factor family normally expressed during embryonic development and apparently activated in variety of tumours. Overexpression of twist is correlated with uncontrolled cell proliferation, differentiation, invasion and metastasis. Twist expression is associated with oestrogen receptor (ER); however, the molecular mechanism behind involvement of twist in progression of breast cancer is still unclear. Nitric oxide synthases (NOSs) which cause damage to the cellular DNA are also shown to be involved in cancer progression. The present study involves total number of n=85 breast biopsies, which include 19 non-cancer and 66 cancerous lesions. We analysed twist, iNOS and ER expression pattern in human breast carcinomas by RT-PCR and also analysed twist cellular localisation by immunohistochemical analysis. iNOS expression pattern was correlated with different stages of breast carcinoma. Twist expression was significantly increased in cancer lesions when compared to the non-cancer. The breast cancer lesions positive to ER showed positivity to twist (72%) as well. The higher stages of cancer lesions showed a significant expression of twist localised in cytoplasm of the cancer cells. Collectively these data indicate that up-regulation of twist is correlated with the ER presenting breast cancer, and iNOS expression was positively correlated with tumour-node metastasis (TNM) staging of breast cancer. These findings suggest that expression of twist and iNOS may have a functional role in cancer progression. PMID:26590086

  11. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells.

    PubMed

    Altiok, Nedret; Koyuturk, Meral; Altiok, Soner

    2007-11-01

    Estrogen is known to stimulate breast cancer development in humans. Ironically, high doses of estrogen can induce regression of hormone-dependent breast cancer in postmenopausal women. The mechanism by which estrogen induces tumour regression in breast cancer is still unknown. We found that under low growth-stimulated conditions, high concentrations of 17-beta-estradiol (estradiol) induces apoptosis and concomitantly increases phosphorylation of c-jun in estrogen receptor (ER)-positive breast cancer cell line, MCF-7, but not in ER-negative breast cancer cell line MDA-MB 231 suggesting an ER-mediated event. Interestingly, when the c-jun NH2-terminal kinase (JNK) signalling pathway was disrupted by the JNK inhibitor SP600125, the ability of estradiol to inhibit the growth of MCF-7 cells and to induce apoptosis was completely blocked. These data suggest that JNK plays a central role in mediating the anticancer effect of high concentrations of estradiol in MCF-7 cells. Our data showing the apoptotic effect of estradiol in low growth-stimulated conditions suggest potential implications for the pharmacological control of breast cancer with high dose estrogen in postmenopausal women. Furthermore, our results indicate that augmenting JNK activity could be an efficient novel approach for treating breast cancer. PMID:17187235

  12. CXCL12 chemokine expression suppresses human breast cancer growth and metastasis in vitro and in vivo

    PubMed Central

    Lv, Zhi-Dong; Kong, Bin; Liu, Xiang-Ping; Dong, Qian; Niu, Hai-Tao; Wang, Yong-Hua; Li, Fu-Nian; Wang, Hai-Bo

    2014-01-01

    Chemokine receptors are now known to play an important role in cancer growth and metastasis. However, there is little information regarding chemokine expression in breast cancer. The aim of this study was to evaluate CXCL12 expression in breast cancer and to investigate the question of whether reduced expression of CXCL12 may have any pathological significance in breast cancer development or progression. In this study, we performed western blotting and immunohistochemistry to evaluate the expression of CXCL12 and relevance with clinicopathological factors in the invasive ductal carcinoma. Reduction of CXCL12 was significantly correlated with tumor size, lymph node metastasis, TNM stage and Her-2 expression in breast cancer. Patients with negative CXCL12 expression had significantly lower cumulative postoperative 5 year survival rate than those with positive CXCL12 expression. In addition, we demonstrated that upregulation of CXCL12 expression by infection with an adenovirus containing a CXCL12 vector significantly inhibited cell growth and reduced the migration of breast cancer cells. Furthermore, animal studies revealed that nude mice injected with the Ad-CXCL12 cell lines featured a lighter weight than the control cell lines. These data suggest that CXCL12 plays an important role in cell growth and invasion in human breast cancer and it appears to be a potential prognostic marker for patients with breast cancer. PMID:25400746

  13. Inheritance of human breast cancer: Evidence for autosomal dominant transmission in high-risk families

    SciTech Connect

    Newman, B.; Austin, M.A.; Lee, M.; King, M.C.

    1988-05-01

    Segregation analysis of breast cancer in families can provide the logical basis and the specific genetic models for mapping and identifying genes responsible for human breast cancer. Patterns of breast cancer occurrence in families were investigated by complex segregation analysis. In a sample of 1579 nuclear families ascertained through a population-based series of probands, an autosomal dominant model with a highly penetrant susceptibility allele fully explained disease clustering. From the maximum-likelihood Mendelian model, the frequency of the susceptibility allele was 0.0006 in the general population, and lifetime risk of breast cancer was 0.82 among susceptible women and 0.08 among women without the susceptibility allele. Inherited susceptibility affected only 4% of families in the sample: multiple cases of this relatively common disease occurred in other families by change. The same genetic models, with higher gene frequency, explained disease clustering in an extended kindred at high risk of breast cancer. Evidence for a highly penetrant, autosomal dominant susceptibility allele for breast cancer in a high-risk family and the general population suggests that high-risk families can serve as models for understanding breast cancer in the population as a whole.

  14. Label-free imaging of human breast tissues using coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Yaliang; Gao, Liang; Wang, Zhiyong; Thrall, Michael J.; Luo, Pengfei; Wong, Kelvin K.; Wong, Stephen T.

    2011-03-01

    Breast cancer is a common disease in women. Current imaging and diagnostic methods for breast cancer confront several limitations, like time-consuming, invasive and with a high cost. Alternative strategies are in high demand to alleviate patients' trauma and lower medical expenses. Coherent anti-Stokes Raman scattering (CARS) imaging technique offers many advantages, including label-free, sub-wavelength spatial resolution and video-rate imaging speed. Therefore, it has been demonstrated as a powerful tool for various biomedical applications. In this study, we present a label-free fast imaging method to identify breast cancer and its subtypes using CARS microscopy. Human breast tissues, including normal, benign and invasive carcinomas, were imaged ex vivo using a custom-built CARS microscope. Compared with results from corresponding hematoxylin and eosin (H&E) stains, the CARS technique has demonstrated its capability in identifying morphological features in a similar way as in H&E stain. These features can be used to distinguish breast cancer from normal and benign tissues, and further separate cancer subtypes from each other. Our pilot study suggests that CARS microscopy could be used as a routine examination tool to characterize breast cancer ex vivo. Moreover, its label-free and fast imaging properties render this technique as a promising approach for in vivo and real-time imaging and diagnosis of breast cancer.

  15. The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis.

    PubMed

    Spring, K; Fournier, P; Lapointe, L; Chabot, C; Roussy, J; Pommey, S; Stagg, J; Royal, I

    2015-10-29

    DEP-1/PTPRJ is a receptor-like protein tyrosine phosphatase mainly known for its antiproliferative and tumor-suppressive functions. Many identified substrates are growth factor receptors, and DEP-1 is deleted and/or mutated in human cancers including that of the breast. However, DEP-1 was also identified as a promoter of Src activation and proinvasive functions in the endothelium, suggesting it could perhaps mediate breast cancer invasiveness that is likewise driven by Src family kinases. We show here that DEP-1 expression was greater in highly invasive breast cancer cells (MDA-MB-231, Hs578T, BT-549) than in the less invasive or untransformed cell lines tested (MCF-7, T47D, SK-BR3 and MCF10A). DEP-1 silencing experiments in invasive cells demonstrated that moderately expressed and catalytically active DEP-1 was required, in collaboration with basal epidermal growth factor receptor activity, for Src activation and the phosphorylation of its substrate Cortactin, and for their colocalization at the cell's leading edge. This correlated with an increased number of cell protrusions, and an enhanced capacity of the cells to migrate and invade. Similarly, moderate overexpression of DEP-1 in the low-invasive cells resulted in the promotion of their invasiveness in an Src-dependent manner. Consistent with these data, the expression of endogenous DEP-1 was elevated in a bone metastatic cell line derived from MDA-MB-231 cells, and promoted increased Src Y418 and Cortactin Y421 phosphorylation, as well as pro-MMP9 secretion and Matrigel invasion. Importantly, the silencing of DEP-1 in MDA-MB-231 cells greatly decreased their ability to metastasize, despite having no effect on tumor growth or angiogenesis. Hence, we found that moderate expression of DEP-1 was associated with the increased relapse and decreased survival of breast cancer patients. These results therefore identify a new and unsuspected role for DEP-1 as a mediator of an invasive cell program implicating Src activation and the promotion of breast cancer progression. PMID:25772245

  16. Serum sialic acid and CEA concentrations in human breast cancer.

    PubMed Central

    Hogan-Ryan, A.; Fennelly, J. J.; Jones, M.; Cantwell, B.; Duffy, M. J.

    1980-01-01

    The concentration of bound sialic acid in the sera of 56 normal subjects and 65 subjects with breast cancer was measured, in order to determine (1) whether serum sialic acid concentrations are raised in breast cancer and (2) whether the concentration of sialic acid in serum reflects tumour stage. The amount of sialic acid in serum was compared to serum carcinoembryonic antigen (CEA) values. Urinary hydroxyproline and serum alkaline phosphatase concentrations were used as indicators of bone and liver involvement. Erythrocyte sedimentation rate (ESR) was also measured. Significantly elevated serum sialic acid concentrations were found in breast cancer, and showed correlation with tumour stage. Serum sialic acid values did not correlate with CEA values. The results suggest that measurement of serum sialic acid concentrations may be of adjunctive value in assessing tumour stage. PMID:7387856

  17. Disposition of hop prenylflavonoids in human breast tissue.

    PubMed

    Bolca, Selin; Li, Jinghu; Nikolic, Dejan; Roche, Nathalie; Blondeel, Phillip; Possemiers, Sam; De Keukeleire, Denis; Bracke, Marc; Heyerick, Arne; van Breemen, Richard B; Depypere, Herman

    2010-07-01

    Hop-derived products may contain xanthohumol (XN), isoxanthohumol (IX), and the potent phytoestrogen 8-prenylnaringenin (8-PN). To evaluate the potential health effects of these prenylflavonoids on breast tissue, their concentration, nature of metabolites, and biodistribution were assessed and compared with 17beta-estradiol (E(2)) exposure. In this dietary intervention study, women were randomly allocated to hop (n=11; 2.04 mg XN, 1.20 mg IX, and 0.1 mg 8-PN per supplement) or control (n=10). After a run-in of >or=4 days, three supplements were taken daily for 5 days preceding an aesthetic breast reduction. Blood and breast biopsies were analyzed using HPLC-ESI-MS/MS. Upon hop administration, XN and IX concentrations ranged between 0.72 and 17.65 nmol/L and 3.30 and 31.50 nmol/L, and between 0.26 and 5.14 pmol/g and 1.16 and 83.67 pmol/g in hydrolyzed serum and breast tissue, respectively. 8-PN however, was only detected in samples of moderate and strong 8-PN producers (0.43-7.06 nmol/L and 0.78-4.83 pmol/g). Phase I metabolism appeared to be minor (approximately 10%), whereas extensive glucuronidation was observed (> 90%). Total prenylflavonoids showed a breast adipose/glandular tissue distribution of 38/62 and their derived E(2)-equivalents were negligible compared with E(2) in adipose (384.6+/-118.8 fmol/g, p=0.009) and glandular (241.6+/-93.1 fmol/g, p<0.001) tissue, respectively. Consequently, low doses of prenylflavonoids are unlikely to elicit estrogenic responses in breast tissue. PMID:20486208

  18. Disposition of hop prenylflavonoids in human breast tissue

    PubMed Central

    Bolca, Selin; Li, Jinghu; Nikolic, Dejan; Roche, Nathalie; Blondeel, Phillip; Possemiers, Sam; De Keukeleire, Denis; Bracke, Marc; Heyerick, Arne; van Breemen, Richard B.; Depypere, Herman

    2013-01-01

    Hop-derived products may contain xanthohumol (XN), isoxanthohumol (IX), and the potent phytoestrogen 8-prenylnaringenin (8-PN). To evaluate the potential health effects of these prenylflavonoids on breast tissue, their concentration, nature of metabolites, and biodistribution were assessed and compared to 17?-estradiol (E2) exposure. In this dietary intervention study, women were randomly allocated to hop (n=11; 2.04 mg XN, 1.20 mg IX, and 0.1 mg 8-PN per supplement) or control (n=10). After a run-in of ?4d, 3 supplements were taken daily during 5d preceding an aesthetic breast reduction. Blood and breast biopsies were analyzed using HPLC-ESI-MS/MS. Upon hop administration, XN and IX concentrations ranged between 0.7217.65 nmol/L and 3.3031.50 nmol/L, and between 0.26 5.14 pmol/g and 1.1683.67 pmol/g in hydrolyzed serum and breast tissue, respectively. 8-PN however, was only detected in samples of moderate and strong 8-PN producers (0.437.06 nmol/L and 0.784.83 pmol/g). Phase I metabolism appeared to be minor (~10%), whereas extensive glucuronidation was observed (>90%). Total prenylflavonoids showed a breast adipose/glandular tissue distribution of 38/62 and their derived E2-equivalents were negligible compared to E2 in adipose (384.6118.8 fmol/g, P=0.009) and glandular (241.693.1 fmol/g, P<0.001) tissue, respectively. Consequently, low doses of prenylflavonoids are unlikely to elicit estrogenic responses in breast tissue. PMID:20486208

  19. Sensitizing the Therapeutic Efficacy of Taxol with Shikonin in Human Breast Cancer Cells

    PubMed Central

    Li, Wenjuan; Liu, Joan; Jackson, Kasey; Shi, Runhua; Zhao, Yunfeng

    2014-01-01

    Shikonin, a small-molecule natural product which inhibits the activity of pyruvate kinase M2 (PKM2), has been studied as an anti-cancer drug candidate in human cancer models. Here, our results demonstrate that shikonin is able to sensitize human breast cancer cells to chemotherapy by paclitaxel (taxol). Human breast adenocarcinoma MBA-MD-231 cells, which have higher levels of PKM2 expression and activity compared with MCF-7 cells, were selected to study further. The concentrations of shikonin and taxol were first selected at which they did not significantly induce cytotoxicity when treated alone, whereas the combination induced apoptosis. Surprisingly, PKM2 activity was decreased by shikonin, but not by the combination treatment. To identify the potential targets of this combination, human phospho-kinase antibody array analysis was performed and results indicated that the combination treatment inhibited the activation of ERK, Akt, and p70S6 kinases, which are known to contribute to breast cancer progression. Finally, how the combination affects breast cancer cell growth in vivo was tested using a xenograft tumor model. The results indicated that shikonin plus taxol prolonged animal survival and reduced tumor size than the vehicle treatment group. In summary, our results suggest that shikonin has a potential as an adjuvant for breast cancer therapy. PMID:24710512

  20. Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells.

    PubMed

    Li, Wenjuan; Liu, Joan; Jackson, Kasey; Shi, Runhua; Zhao, Yunfeng

    2014-01-01

    Shikonin, a small-molecule natural product which inhibits the activity of pyruvate kinase M2 (PKM2), has been studied as an anti-cancer drug candidate in human cancer models. Here, our results demonstrate that shikonin is able to sensitize human breast cancer cells to chemotherapy by paclitaxel (taxol). Human breast adenocarcinoma MBA-MD-231 cells, which have higher levels of PKM2 expression and activity compared with MCF-7 cells, were selected to study further. The concentrations of shikonin and taxol were first selected at which they did not significantly induce cytotoxicity when treated alone, whereas the combination induced apoptosis. Surprisingly, PKM2 activity was decreased by shikonin, but not by the combination treatment. To identify the potential targets of this combination, human phospho-kinase antibody array analysis was performed and results indicated that the combination treatment inhibited the activation of ERK, Akt, and p70S6 kinases, which are known to contribute to breast cancer progression. Finally, how the combination affects breast cancer cell growth in vivo was tested using a xenograft tumor model. The results indicated that shikonin plus taxol prolonged animal survival and reduced tumor size than the vehicle treatment group. In summary, our results suggest that shikonin has a potential as an adjuvant for breast cancer therapy. PMID:24710512

  1. A Novel Polyamine Analog Inhibits Growth and Induces Apoptosis in Human Breast Cancer Cells1

    PubMed Central

    Huang, Yi; Hager, Erin R.; Phillips, Dawn L.; Dunn, Valerie R.; Hacker, Amy; Frydman, Benjamin; Kink, John A.; Valasinas, Aldonia L.; Reddy, Venodhar K.; Marton, Laurence J.; Casero, Robert A.; Davidson, Nancy E.

    2013-01-01

    Polyamine analogs have demonstrated considerable activity against many important solid tumor models including breast cancer. However, the precise mechanisms of antitumor activities of polyamine analogs are not entirely understood. The cytotoxicity of a newly developed polyamine analog compound, SL11144, against human breast cancer was assessed. Treatment of human breast cancer cell lines in culture with SL11144 decreased cell proliferation and induced programmed cell death in a time- and dose-dependent manner. SL11144 also profoundly inhibited the growth of MDA-MB-231 xenografts in host nude mice without overt toxic effects. Treatment of MDA-MB-435 cells with SL11144 led to the release of cytochrome c from mitochondria into cytosol, activation of caspase-3, and poly(ADP-ribose) polymerase cleavage. SL11144 decreased Bcl-2 and increased Bax protein levels in MDA-MB-231 cells. Furthermore, activator protein 1 transcriptional factor family member c-Jun was up-regulated by SL11144 in MDA-MB-435 and MDA-MB-231 cells, but not in MCF7 cells. In addition, significant inhibition of ornithine decarboxylase activity and a decrease in polyamine pools were demonstrated. These results demonstrate that the novel polyamine analog SL11144 has effective antineoplastic action against human breast cancer cells in vitro and in vivo and that multiple apoptotic mechanisms are associated with its cytotoxic effect in specific human breast cancer cell lines. PMID:12855657

  2. Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model

    NASA Astrophysics Data System (ADS)

    Nair, Maya S.; Ghosh, Nirmalya; Raju, Narisetti Sundar; Pradhan, Asima

    2002-07-01

    We report the measurement of optical transport parameters of pathologically characterized malignant tissues, normal tissues, and different types of benign tumors of the human breast in the visible wavelength region. A spatially resolved steady-state diffuse fluorescence reflectance technique was used to estimate the values for the reduced-scattering coefficient (mu's) and the absorption coefficient (mua) of human breast tissues at three wavelengths (530, 550, and 590 nm). Different breast tissues could be well differentiated from one another, and different benign tumors could also be distinguished by their measured transport parameters. A diffusion theory model was developed to describe fluorescence light energy distribution, especially its spatial variation in a turbid and multiply scattering medium such as human tissue. The validity of the model was checked with a Monte Carlo simulation and also with different tissue phantoms prepared with polystyrene microspheres as scatterers, riboflavin as fluorophores, and methylene blue as absorbers.

  3. Lectin of Abelmoschus esculentus (okra) promotes selective antitumor effects in human breast cancer cells.

    PubMed

    Monte, Leonardo G; Santi-Gadelha, Tatiane; Reis, Larissa B; Braganhol, Elizandra; Prietsch, Rafael F; Dellagostin, Odir A; E Lacerda, Rodrigo Rodrigues; Gadelha, Carlos A A; Conceição, Fabricio R; Pinto, Luciano S

    2014-03-01

    The anti-tumor effects of a newly-discovered lectin, isolated from okra, Abelmoschus esculentus (AEL), were investigated in human breast cancer (MCF7) and skin fibroblast (CCD-1059 sk) cells. AEL induced significant cell growth inhibition (63 %) in MCF7 cells. The expression of pro-apoptotic caspase-3, caspase-9, and p21 genes was increased in MCF7 cells treated with AEL, compared to those treated with controls. In addition, AEL treatment increased the Bax/Bcl-2 ratio in MCF7 cells. Flow cytometry also indicated that cell death (72 %) predominantly occurred through apoptosis. Thus, AEL in its native form promotes selective antitumor effects in human breast cancer cells and may represent a potential therapeutic to combat human breast cancer. PMID:24129958

  4. Kinesin-1 Translocation along Human Breast Cancer Cell Microtubules in Vitro

    NASA Astrophysics Data System (ADS)

    Shojania Feizabadi, Mitra; Jun, Yonggun

    2015-03-01

    A principle approach to better understand intra-cellular microtubule based transport is to study such it in vitro. Such in vitro examinations have predominantly used microtubules polymerized from bovine brain tubulin, but motor function can also in principle be affected by the specific tubulin isotypes present in different cells. The human breast cancer cells carry different beta tubulin isotype distribution. However, it is entirely unknown whether transport along the microtubules is different in these cells. In this work we have characterized, for the first time, the translocation specifications of kinesin-1 along human breast cancer cell microtubules polymerized in vitro. We found that as compared with the translocation along bovine brain microtubules, kinesin-1 shows a fifty percent shorter processive run length and slightly slower velocity under similar experimental conditions. These first time results support the regulatory role of tubulin isotypes in regards to motor protein translocations, and quantify the translocation specifications of kinesin-1 along microtubules of human breast cancer cells.

  5. Infrequent CDKN2 (MTS1/p16) gene alterations in human primary breast cancer.

    PubMed Central

    Berns, E. M.; Klijn, J. G.; Smid, M.; van Staveren, I. L.; Gruis, N. A.; Foekens, J. A.

    1995-01-01

    Changes which lead to excessive cyclin production or to loss of cell cycle inhibition by proteins such as p16/MTS1 may release breast tumour cells from the constraints of cell division. In order to establish the frequency of MTS1/p16 gene alteration and its relation with genetic damage to the p53 and cyclin D1 genes, we have studied these gene abnormalities in 164 human primary breast cancers and in six breast cancer cell lines. Two breast cancer cell lines and one primary tumour showed a homozygous deletion of exon 2 of the MTS1 gene. Using single-strand conformation polymorphism and subsequent sequencing analysis, one tumour showed an alteration at codon 67 (CCC-->CTC; Pro to Leu). Another tumour showed a mutation at codon 98 (without amino acid change) with an additional polymorphism at codon 140. This polymorphism was also found in 13 other tumour samples, but has no effect on (disease-free) survival. From these data we conclude that the occurrence of CDKN2 (p16/MTS1) mutation in primary breast cancer is a rare event and is not likely to be involved in human breast tumour carcinogenesis and progression. Images Figure 1 PMID:7547249

  6. COMBINED PHOTO-ACOUSTIC AND ACOUSTIC IMAGING OF HUMAN BREAST SPECIMENS IN THE MAMMOGRAPHIC GEOMETRY

    PubMed Central

    Xie, Zhixing; Hooi, Fong Ming; Fowlkes, J Brian; Pinsky, Renee W.; Wang, Xueding; Carson, Paul L.

    2013-01-01

    A photo-acoustic volume imaging (PAVI) system was designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3-D ultrasound (AUS). The goal of the work described here was to validate the design and evaluate its performance in human breast tissues for non-invasive imaging of deeply positioned structures covering such geometry. The good penetration of nearinfrared light and high receiving sensitivity of a broad-bandwidth, 572-element, 2-D poly(vinyl difluoride) array at a low center frequency of 1 MHz were used with 20 channel simultaneous acquisition. Pseudo-lesions filled with dilute blood were imaged in three human breast specimens at various depths up to 49 mm. With near-infrared light illumination and 256-sample averaging, the extrapolated maximum depth in imaging a 2.4-mm blood-rich lesion with a 3-dB contrast-to-noise ratio in a compressed breast was 54 mm. Three-dimensional photo-acoustic volume image stacks of the breasts were co-registered with 3-D ultrasound image stacks, suggesting for the first time that PAVI, based on the intrinsic tissue contrast, can visualize tissue interfaces other than those with blood, including the inner skin surface and connective tissue sheets. With the designed system, PAVI revealed satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides in the mammographic geometry with mild compression. PMID:23972486

  7. Expression of Tropomyosin 1 Gene Isoforms in Human Breast Cancer Cell Lines

    PubMed Central

    Dube, Syamalima; Yalamanchili, Santhi; Lachant, Joseph; Abbott, Lynn; Benz, Patricia; Mitschow, Charles; Dube, Dipak K.; Poiesz, Bernard J.

    2015-01-01

    Nine malignant breast epithelial cell lines and 3 normal breast cell lines were examined for stress fiber formation and expression of TPM1 isoform-specific RNAs and proteins. Stress fiber formation was strong (++++) in the normal cell lines and varied among the malignant cell lines (negative to +++). Although TPM1γ and TPM1δ were the dominant transcripts of TPM1, there was no clear evidence for TPM1δ protein expression. Four novel human TPM1 gene RNA isoforms were discovered (λ, μ, ν, and ξ), which were not identified in adult and fetal human cardiac tissues. TPM1λ was the most frequent isoform expressed in the malignant breast cell lines, and it was absent in normal breast epithelial cell lines. By western blotting, we were unable to distinguish between TPM1γ, λ, and ν protein expression, which were the only TPM1 gene protein isoforms potentially expressed. Some malignant cell lines demonstrated increased or decreased expression of these isoforms relative to the normal breast cell lines. Stress fiber formation did not correlate with TPM1γ RNA expression but significantly and inversely correlated with TPM1δ and TPM1λ expression, respectively. The exact differences in expression of these novel isoforms and their functional properties in breast epithelial cells will require further study. PMID:26171250

  8. Down-regulation of cyclooxygenase-2 (COX-2) by cannabidiolic acid in human breast cancer cells.

    PubMed

    Takeda, Shuso; Okazaki, Hiroyuki; Ikeda, Eriko; Abe, Satomi; Yoshioka, Yasushi; Watanabe, Kazuhito; Aramaki, Hironori

    2014-01-01

    Metastases are known to be responsible for approximately 90% of breast cancer-related deaths. Cyclooxygenase-2 (COX-2) is involved not only in inflammatory processes, but also in the metastasis of cancer cells; it is expressed in 40% of human invasive breast cancers. To comprehensively analyze the effects of cannabidiolic acid (CBDA), a selective COX-2 inhibitor found in the fiber-type cannabis plant (Takeda et al., 2008), on COX-2 expression and the genes involved in metastasis, we performed a DNA microarray analysis of human breast cancer MDA-MB-231 cells, which are invasive breast cancer cells that express high levels of COX-2, treated with CBDA for 48 hr at 25 µM. The results obtained revealed that COX-2 and Id-1, a positive regulator of breast cancer metastasis, were down-regulated (0.19-fold and 0.52-fold, respectively), while SHARP1 (or BHLHE41), a suppressor of breast cancer metastasis, was up-regulated (1.72-fold) and CHIP (or STUB1) was unaffected (1.03-fold). These changes were confirmed by real-time RT-PCR analyses. Taken together, the results obtained here demonstrated that i) CBDA had dual inhibitory effects on COX-2 through down-regulation and enzyme inhibition, and ii) CBDA may possess the ability to suppress genes that are positively involved in the metastasis of cancer cells in vitro. PMID:25242400

  9. The Role and Regulatory Mechanism of 14-3-3 Sigma in Human Breast Cancer

    PubMed Central

    Ko, SeungSang; Kim, Ji Young; Jeong, Joon; Lee, Jong Eun; Yang, Woo Ick

    2014-01-01

    Purpose 14-3-3 sigma (?) is considered to be an important tumor suppressor and decreased expression of the same has been reported in many malignant tumors by hypermethylation at its promoter or ubiquitin-mediated proteolysis by estrogen-responsive ring finger protein (Efp). In this study, we investigated the significance of 14-3-3 ? expression in human breast cancer and its regulatory mechanism. Methods Efp was silenced using small interfering RNA (siRNA) in the MCF-7 breast cancer cell line in order to examine its influence on the level of 14-3-3 ? protein. The methylation status of the 14-3-3 ? promoter was also evaluated by methylation-specific polymerase chain reaction (PCR). The expression of Efp and 14-3-3 ? in 220 human breast carcinoma tissues was assessed by immunohistochemistry. Other clinicopathological parameters were also evaluated. Results Silencing Efp in the MCF-7 breast cancer cell line resulted in increased expression of 14-3-3 ?. The Efp-positive human breast cancers were more frequently 14-3-3 ?-negative (60.5% vs. 39.5%). Hypermethylation of 14-3-3 ? was common (64.9%) and had an inverse association with 14-3-3 ? positivity (p=0.072). Positive 14-3-3 ? expression was significantly correlated with poor prognosis: disease-free survival (p=0.008) and disease-specific survival (p=0.009). Conclusion Our data suggests that in human breast cancer, the regulation of 14-3-3 ? may involve two mechanisms: ubiquitin-mediated proteolysis by Efp and downregulation by hypermethylation. However, the inactivation of 14-3-3 ? is probably achieved mainly by hypermethylation. Interestingly, 14-3-3 ? turned out to be a very significant poor prognostic indicator, which is in contrast to its previously known function as a tumor suppressor, suggesting a different role of 14-3-3 ? in breast cancer. PMID:25320618

  10. Expression and regulation of Cyr61 in human breast cancer cell lines.

    PubMed

    Tsai, Miaw-Sheue; Bogart, Daphne F; Li, Patricia; Mehmi, Inderjit; Lupu, Ruth

    2002-01-31

    We have shown that Cyr61, an angiogenic regulator, is overexpressed in invasive and metastatic human breast cancer cells and tumor biopsies. We have further demonstrated that Cyr61 promotes acquisition of estrogen-independence and anti-estrogen resistance in vivo in breast cancer cells. Moreover, we have demonstrated that Cyr61 induces tumor formation and tumor vascularization in vivo, events mediated through the activation of the MAPK and the Akt signaling pathways. Here we investigate how Cyr61 expression is regulated in both estrogen receptor (ER)-positive and ER-negative breast cancer cells. We demonstrate that Cyr61 mRNA and protein expression is inducible by estrogen and anti-estrogens in ER-positive breast cancer cells. We show that a labile protein as well as a negative regulator might be involved in Cyr61 expression in estrogen-dependent breast cancer cells. Other important regulators of Cyr61 expression in breast cancer cells that we found are the phorbol ester TPA, vitamin D, and retinoic acid. TPA causes positive regulation of Cyr61 expression in ER-positive MCF-7 cells. Vitamin D induces a transient stimulatory effect on Cyr61 gene expression. Lastly, retinoic acid has a negative effect on Cyr61 expression and downregulates its expression in MCF-7 cells. Interestingly, most of these effects are not seen in aggressive breast cancer cells that do not express ER and express high levels of Cyr61, such as the MDA-MB-231 cells. Our results are in agreement with our knowledge that Cyr61 promotes tumor growth, and that tumor-promoting agents have a positive impact on cells that express low levels of Cyr61, such as the ER-positive breast cancer cells; however, these agents have no significant effect on cells that express high levels of Cyr61. Our findings suggest an association between increased Cyr61 expression and an aggressive phenotype of breast cancer cells. PMID:11840342

  11. Gene expression of cytokeratin 19 and its molecular detection in human breast cancer cell lines.

    PubMed

    Uawisetwathana, Umaporn; Rodpai, Ekkarat; Moongkarndi, Primchanien

    2016-02-20

    Cytokeratins have been identified as useful tools in oncology diagnostics. In this study, cytokeratin19 (CK19) expression was studied in three human breast cancer cell lines, SKBR3, BT549, and BT474 using RT-PCR. CK19 was expressed in tumor cell of different origin, showing higher expression in invasive breast cancer with ER(+) (BT474) than invasive breast cancer with ER(-) (BT549) and breast adenocarcinoma with ER(-) (SKBR3). Two primer sets were used to evaluate CK19 expression. Primer set I (hCK19/1) and primer set II (hCK19/2) were used to amplify the CK19 human gene at a 215bp and 384bp, respectively, whereas PBMC and RAW264.7 (mouse macrophage) no detectable PCR products were obtained. The sensitivity for detection was determined by two methods, i.e., cDNA dilution (the dilution of cDNA from RNA of breast cancer cells) and cell dilution (the dilution of breast cancer cells in PBMC). hCK19/2 was more sensitive than hCK19/1. In cDNA dilution, the lower limits of primer set II for detection were 400, 40 and 40 cells for SKBR3, BT549 and BT474 cells, respectively. While in cell dilution all of the 3 breast cancer cells could be detected at 1 cancer cell in 10(4), 10(6) and 10(5) PBMC, respectively. The data supported the possibility that CK19 could be detected and be the marker for breast cancer in patient blood. PMID:26690255

  12. Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes.

    PubMed

    Su, Xiaoping; Malouf, Gabriel G; Chen, Yunxin; Zhang, Jianping; Yao, Hui; Valero, Vicente; Weinstein, John N; Spano, Jean-Philippe; Meric-Bernstam, Funda; Khayat, David; Esteva, Francisco J

    2014-10-30

    Accumulating evidence highlights the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. However, the role of lncRNA expression in human breast cancer biology, prognosis and molecular classification remains unknown. Herein, we established the lncRNA profile of 658 infiltrating ductal carcinomas of the breast from The Cancer Genome Atlas project. We found lncRNA expression to correlate with the gene expression and chromatin landscape of human mammary epithelial cells (non-transformed) and the breast cancer cell line MCF-7. Unsupervised consensus clustering of lncRNA revealed four subgroups that displayed different prognoses. Gene set enrichment analysis for cis- and trans-acting lncRNAs showed enrichment for breast cancer signatures driven by master regulators of breast carcinogenesis. Interestingly, the lncRNA HOTAIR was significantly overexpressed in the HER2-enriched subgroup, while the lncRNA HOTAIRM1 was significantly overexpressed in the basal-like subgroup. Estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Importantly, almost two thirds of the lncRNAs were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that expressed lncRNA in breast cancer drives carcinogenesis through increased activity of neighboring genes. In summary, our study depicts the first lncRNA subtype classification in breast cancer and provides the framework for future studies to assess the interplay between lncRNAs and the breast cancer epigenome. PMID:25296969

  13. Hard X-ray Microscopic Imaging Of Human Breast Tissues

    SciTech Connect

    Park, Sung H.; Kim, Hong T.; Kim, Jong K.; Jheon, Sang H.; Youn, Hwa S.

    2007-01-19

    X-ray microscopy with synchrotron radiation will be a useful tool for innovation of x-ray imaging in clinical and laboratory settings. It helps us observe detailed internal structure of material samples non-invasively in air. And, it also has the potential to solve some tough problems of conventional breast imaging if it could evaluate various conditions of breast tissue effectively. A new hard x-ray microscope with a spatial resolution better than 100 nm was installed at Pohang Light Source, a third generation synchrotron radiation facility in Pohang, Korea. The x-ray energy was set at 6.95 keV, and the x-ray beam was monochromatized by W/B4C monochromator. Condenser and objective zone plates were used as x-ray lenses. Zernike phase plate next to condenser zone plate was introduced for improved contrast imaging. The image of a sample was magnified 30 times by objective zone plate and 20 times by microscope objective, respectively. After additional 10 times digital magnification, the total magnifying power was up to 6000 times in the end. Phase contrast synchrotron images of 10-{mu}m-thick female breast tissue of the normal, fibroadenoma, fibrocystic change and carcinoma cases were obtained. By phase contrast imaging, hard x-rays enable us to observe many structures of breast tissue without sample preparations such as staining or fixation.

  14. Assessing sequential oncogene amplification in human breast cancer

    SciTech Connect

    Janocko, L.E.; Lucke, J.F.; Groft, D.W.; Brown, K.A.

    1995-09-01

    Studies of amplification and/or overexpression of c-myc, HER-2/neu, and H-ras in breast cancer have shown that each is associated with a poor prognosis. The purpose of this study was to explore the possibility that there is a preferred sequence of amplification of these oncogenes in breast cancer. The frequencies of amplification and patterns of co-amplification of c-myc, HER-2/neu, and H-ras were studied in a group of 84 breast cancers. The data suggested a preferred sequence of amplification that consisted of c-myc amplification-HER-2/neu amplification-H-ras amplification. This model was supported by loglinear analysis. In addition, the levels of amplification of JC-A, a DNA fragment newly isolated from a patient with advanced breast cancer, were studied in 61 of these cases. The data suggested that JC-A amplification occurred early. Loglinear analysis supported a model in which JC-A amplification occurred either before or after c-myc amplification but was unrelated to Her-2/neu or ras amplification. 35 refs., 1 tab.

  15. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank

    PubMed Central

    2014-01-01

    Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle. PMID:24636070

  16. The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer.

    PubMed

    Hayward, Daniel G; Clarke, Robert B; Faragher, Alison J; Pillai, Meenu R; Hagan, Iain M; Fry, Andrew M

    2004-10-15

    Aneuploidy and chromosome instability are common abnormalities in human cancer. Loss of control over mitotic progression, multipolar spindle formation, and cytokinesis defects are all likely to contribute to these phenotypes. Nek2 is a cell cycle-regulated protein kinase with maximal activity at the onset of mitosis that localizes to the centrosome. Functional studies have implicated Nek2 in regulation of centrosome separation and spindle formation. Here, we present the first study of the protein expression levels of the Nek2 kinase in human cancer cell lines and primary tumors. Nek2 protein is elevated 2- to 5-fold in cell lines derived from a range of human tumors including those of cervical, ovarian, breast, prostate, and leukemic origin. Most importantly, by immunohistochemistry, we find that Nek2 protein is significantly up-regulated in preinvasive in situ ductal carcinomas of the breast as well as in invasive breast carcinomas. Finally, by ectopic expression of Nek2A in immortalized HBL100 breast epithelial cells, we show that increased Nek2 protein leads to accumulation of multinucleated cells with supernumerary centrosomes. These data highlight the Nek2 kinase as novel potential target for chemotherapeutic intervention in breast cancer. PMID:15492258

  17. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells.

    PubMed

    Sartippour, Maryam R; Shao, Zhi-Ming; Heber, David; Beatty, Perrin; Zhang, Liping; Liu, Canhui; Ellis, Lee; Liu, Wen; Go, Vay Liang; Brooks, Mai N

    2002-08-01

    Investigators have shown that green tea and its main catechin epigallocatechin-3 gallate (EGCG) may decrease the risk of cancer. Our previous study showed that green tea extract (GTE) as well as its individual catechin components inhibited MDA-MB231 breast cancer cell and human umbilical vein endothelial cell (HUVEC) proliferation. Further, GTE suppressed breast cancer xenograft size and decreased the tumor vessel density in vivo. In the current study, we investigated the effect of GTE on the major angiogenic factor vascular endothelial growth factor (VEGF) in an in vitro experiment. GTE or EGCG (40 mg/L) significantly decreased the levels of the VEGF peptide secreted into conditioned media. This occurred in both HUVEC and human breast cancer cells and the effect was dose dependent. Furthermore, GTE and EGCG decreased the RNA levels of VEGF in MDA-MB231 cells. This inhibition occurred at the transcriptional regulation level and was accompanied by a significant decrease in VEGF promoter activity. We also showed that GTE decreased c-fos and c-jun RNA transcripts, suggesting that activator protein (AP)-1-responsive regions present in the human VEGF promoter may be involved in the inhibitory effect of GTE. Furthermore, GTE suppressed the expression of protein kinase C, another VEGF transcription modulator, in breast cancer cells. Inhibition of VEGF transcription appeared to be one of the molecular mechanism(s) involved in the antiangiogenic effects of green tea, which may contribute to its potential use for breast cancer treatment and/or prevention. PMID:12163680

  18. Effects of the JWA gene in the regulation of human breast cancer cells.

    PubMed

    Chen, Xiang; Feng, Jiake; Ge, Zhijun; Chen, Hong; Ding, Weiliang; Zhu, Wenjiao; Tang, Xiaoyan; Chen, Yanyu; Tan, Yongfei; Ma, Tieliang

    2015-05-01

    The present study aimed to investigate whether the JWA gene can regulate the proliferation, migration and invasion of human breast cancer cells through the MAPK signaling pathway. The role of JWA in proliferation, migration, invasion and apoptosis was investigated in the MDA?MB?231 human breast cancer cell line. Following transfection with JWA?small interfering (si)RNA, the effect of JWA on apoptosis was assessed by Western blot analysis, proliferation was determined using Transwell chambers and cell migration and invasion were analyzed by transwell assay. The expression levels of extracellular signal?regulated kinase (ERK) 1/2, CSBP/RK/Mpk2 kinase (p38) and c?Jun N?terminal kinase (JNK) were detected using Western blot analysis in the siRNA and control groups. The expression of JWA in the breast cancer cells was significantly lower compared with the normal breast cells. Downregulation of JWA protein levels reduced the apoptosis and enhanced proliferation, migration and invasion of the MDA?MB?231 cells in vitro. The results of the Western blot analysis demonstrated that, compared with the control groups, the expression levels of phosphorylated (p?)p38 decreased significantly in the JWA siRNA group. No significant changes were observed in the expression levels of p?ERK1/2 or p?JNK. Therefore, the JWA gene may regulate human breast cancer cells through the MAPK signaling pathway using different types of regulation. PMID:25586271

  19. Synergistic suppression of human breast cancer cells by combination of plumbagin and zoledronic acid In vitro

    PubMed Central

    Qiao, Han; Wang, Ting-yu; Yan, Wei; Qin, An; Fan, Qi-ming; Han, Xiu-guo; Wang, Yu-gang; Tang, Ting-ting

    2015-01-01

    Aim: Zoledronic acid (ZA), a bisphosphonate, is currently used in combination with chemotherapeutic agents to suppress breast cancer cell proliferation or breast cancer-induced osteolysis. The aim of this study was to investigate the effects of ZA combined with a natural anticancer compound plumbagin (PL) against human breast cancer cells in vitro. Methods: Human breast cancer MDA-MB-231SArfp cells were treated with ZA, PL or a combination of ZA and PL. The cell growth, apoptosis and migration were evaluated using CCK-8 assay, flow cytometry and transwell assay, respectively. The expression of apoptosis-related proteins was measured using real-time PCR and Western blotting. Synergism was evaluated using Compusyn software, and the combination index (CI) and drug reduction index (DRI) values were determined. Results: PL or ZA alone caused mild cytotoxicity (the IC50 value at 24 h was 12.18 and above 100 ?mol/L, respectively). However, the combination of ZA and PL caused a synergistic cytotoxicity (CI=0.26). The DRI values also showed a synergistic effect between PL and ZA, with actual values of 5.52 and 3.59, respectively. Furthermore, PL and ZA synergistically induced apoptosis and inhibited migration of the breast cancer cells. Moreover, the combination of ZA and PL decreased the expression of Notch-1, cleaved PARP, Bcl-2 and Bcl-xl, and increased the expression of cleaved caspase-3, CDKN1A and ID1. When the breast cancer cells were transfected with specific siRNA against Notch-1, the combination of ZA and PL markedly increased the expression of Bcl-2. Conclusion: Combination of ZA and PL synergistically suppresses human breast cancer MDA-MB-231SArfp cells in vitro. PL can inhibit ZA-induced activation of the Notch-1 signaling pathway and subsequently reduce the expression of Bcl-2, thus potentiating cancer cell apoptosis. PMID:26235741

  20. Proteomic Identification of Mitochondrial Targets of Arginase in Human Breast Cancer

    PubMed Central

    Singh, Rajan; Avliyakulov, Nuraly K.; Braga, Melissa; Haykinson, Michael J.; Martinez, Luis; Singh, Vikash; Parveen, Meher; Chaudhuri, Gautam; Pervin, Shehla

    2013-01-01

    We have previously reported arginase expression in human breast cancer cells and demonstrated that the inhibition of arginase by N? hydroxy L-arginine (NOHA) in MDA-MB-468 cells induces apoptosis. However, arginase expression and its possible molecular targets in human breast tumor samples and potential clinical implications have not been fully elucidated. Here, we demonstrate arginase expression in human breast tumor samples, and several established breast cancer cell lines, in which NOHA treatment selectively inhibits cell proliferation. The over-expression of Bcl2 in MDA-MB-468 cells abolished NOHA-induced apoptosis, suggesting that the mitochondria may be the main site of NOHAs action. We, therefore, undertook a proteomics approach to identify key mitochondrial targets of arginase in MDA-MB-468 cells. We identified 54 non-mitochondrial and 13 mitochondrial proteins that were differentially expressed in control and NOHA treated groups. Mitochondrial serine hydroxymethyltransferase (mSHMT) was identified as one of the most promising targets of arginase. Both arginase II (Arg II) and mSHMT expressions were higher in human breast tumor tissues compared to the matched normal and there was a strong correlation between Arg II and mSHMT protein expression. MDA-MB-468 xenografts had significant upregulation of Arg II expression that preceded the induction of mSHMT expression. Small inhibitory RNA (siRNA)-mediated inhibition of Arg II in MDA-MB-468 and HCC-1806 cells led to significant inhibition of both the mSHMT gene and protein expression. As mSHMT is a key player in folate metabolism, our data provides a novel link between arginine and folate metabolism in human breast cancer, both of which are critical for tumor cell proliferation. PMID:24223914

  1. Molecular mechanisms of oestrogen action on growth of human breast cancer cells in culture.

    PubMed

    Darbre, Philippa D

    2012-04-01

    Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor ? (ER?) and ER? and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells. PMID:25961353

  2. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  3. Lipopolysaccharide (LPS) Promotes Apoptosis in Human Breast Epithelial × Breast Cancer Hybrids, but Not in Parental Cells

    PubMed Central

    Fried, Sabrina; Tosun, Songuel; Troost, Gabriele; Keil, Silvia; Zaenker, Kurt S.; Dittmar, Thomas

    2016-01-01

    Toll-like receptors (TLRs) belong to the group of pathogen recognition receptors known to play a crucial role in the innate immune system. In cancer, TLR expression is still debated controversially due to contradictory results reporting that both induction of apoptosis as well as tumor progression could depend on TLR signaling, whereby recent data rather indicate a pro-tumorigenic effect. The biological phenomenon of cell fusion has been associated with cancer progression due to findings revealing that fusion-derived hybrid cells could exhibit properties like an increased metastatogenic capacity and an increased drug resistance. Thus, M13MDA435 hybrid cell lines, which derived from spontaneous fusion events between human M13SV1-EGFP-Neo breast epithelial cells and human MDA-MB-435-Hyg breast cancer cells, were investigated. Cultivation of cells in the presence of the TLR4 ligand LPS potently induced apoptosis in all hybrid clones, but not in parental cells, which was most likely attributed to differential kinetics of the TLR4 signal transduction cascade. Activation of this pathway concomitant with NF-κB nuclear translocation and TNF-α expression was solely observed in hybrid cells. However, induction of LPS mediated apoptosis was not TNF-α dependent since TNF-α neutralization was not correlated to a decreased amount of dead cells. In addition to TNF-α, LPS also caused IFN-β expression in hybrid clones 1 and 3. Interestingly, hybrid clones differ in the mode of LPS induced apoptosis. While neutralization of IFN-β was sufficient to impair the LPS induced apoptosis in M13MDA435-1 and -3 hybrids, the amount of apoptotic M13MDA435-2 and -4 hybrid cells remained unchanged in the presence of neutralizing IFN-β antibodies. In summary, the fusion of non-LPS susceptible parental human breast epithelial cells and human breast cancer cells gave rise to LPS susceptible hybrid cells, which is in view with the cell fusion hypothesis that hybrid cells could exhibit novel properties. PMID:26863029

  4. Lipopolysaccharide (LPS) Promotes Apoptosis in Human Breast Epithelial × Breast Cancer Hybrids, but Not in Parental Cells.

    PubMed

    Fried, Sabrina; Tosun, Songuel; Troost, Gabriele; Keil, Silvia; Zaenker, Kurt S; Dittmar, Thomas

    2016-01-01

    Toll-like receptors (TLRs) belong to the group of pathogen recognition receptors known to play a crucial role in the innate immune system. In cancer, TLR expression is still debated controversially due to contradictory results reporting that both induction of apoptosis as well as tumor progression could depend on TLR signaling, whereby recent data rather indicate a pro-tumorigenic effect. The biological phenomenon of cell fusion has been associated with cancer progression due to findings revealing that fusion-derived hybrid cells could exhibit properties like an increased metastatogenic capacity and an increased drug resistance. Thus, M13MDA435 hybrid cell lines, which derived from spontaneous fusion events between human M13SV1-EGFP-Neo breast epithelial cells and human MDA-MB-435-Hyg breast cancer cells, were investigated. Cultivation of cells in the presence of the TLR4 ligand LPS potently induced apoptosis in all hybrid clones, but not in parental cells, which was most likely attributed to differential kinetics of the TLR4 signal transduction cascade. Activation of this pathway concomitant with NF-κB nuclear translocation and TNF-α expression was solely observed in hybrid cells. However, induction of LPS mediated apoptosis was not TNF-α dependent since TNF-α neutralization was not correlated to a decreased amount of dead cells. In addition to TNF-α, LPS also caused IFN-β expression in hybrid clones 1 and 3. Interestingly, hybrid clones differ in the mode of LPS induced apoptosis. While neutralization of IFN-β was sufficient to impair the LPS induced apoptosis in M13MDA435-1 and -3 hybrids, the amount of apoptotic M13MDA435-2 and -4 hybrid cells remained unchanged in the presence of neutralizing IFN-β antibodies. In summary, the fusion of non-LPS susceptible parental human breast epithelial cells and human breast cancer cells gave rise to LPS susceptible hybrid cells, which is in view with the cell fusion hypothesis that hybrid cells could exhibit novel properties. PMID:26863029

  5. Does Dietary Iodine Regulate Oxidative Stress and Adiponectin Levels in Human Breast Milk?

    PubMed Central

    Gutirrez-Repiso, Carolina; Velasco, Ins; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodrguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico

    2014-01-01

    Abstract Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1??M potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk. Antioxid. Redox Signal. 20, 847853. PMID:24001137

  6. Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk?

    PubMed

    Gutirrez-Repiso, Carolina; Velasco, Ins; Garcia-Escobar, Eva; Garcia-Serrano, Sara; Rodrguez-Pacheco, Francisca; Linares, Francisca; Ruiz de Adana, Maria Soledad; Rubio-Martin, Elehazara; Garrido-Sanchez, Lourdes; Cobos-Bravo, Juan Francisco; Priego-Puga, Tatiana; Rojo-Martinez, Gemma; Soriguer, Federico; Garca-Fuentes, Eduardo

    2014-02-10

    Little is known about the association between iodine and human milk composition. In this study, we investigated the association between iodine and different markers of oxidative stress and obesity-related hormones in human breast milk. This work is composed of two cross-sectional studies (in lactating women and in the general population), one prospective and one in vitro. In the cross-sectional study in lactating women, the breast milk iodine correlated negatively with superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) activities, and with adiponectin levels. An in vitro culture of human adipocytes with 1??M potassium iodide (KI, dose similar to the human breast milk iodine concentration) produced a significant decrease in adiponectin, GSH-Px, SOD1, and SOD2 mRNA expression. However, after 2 months of treatment with KI in the prospective study, a positive correlation was found between 24-h urinary iodine and serum adiponectin. Our observations lead to the hypothesis that iodine may be a factor directly involved in the regulation of oxidative stress and adiponectin levels in human breast milk. PMID:24001137

  7. The Network of Antigen-Antibody Reactions in Adult Women with Breast Cancer or Benign Breast Pathology or without Breast Pathology

    PubMed Central

    Romo-González, Tania; Esquivel-Velázquez, Marcela; Ostoa-Saloma, Pedro; Lara, Carlos; Zentella, Alejandro; León-Díaz, Rosalba; Lamoyi, Edmundo; Larralde, Carlos

    2015-01-01

    The Immunoglobulin G (IgG) antibody response to different protein antigens of the mammary ductal carcinoma by adult women affected by Breast Cancer (BC) distinguishes at least 103 proteins that differ in their molecular weights (MW). The IgG producing cell clones (nodes) coexist with each other in each individual organism and share energy resources among themselves, as well as factors that control the level of expression and Specificity of their IgG antibodies. So, it can be proposed that among them there is a Network of interconnections (links) unveiled by the antigens, which specifically react with the IgG antibodies produced by the clones. This Network possibly regulates IgG antibodies' activity and effectiveness. We describe the Network of nodes and links that exists between the different antigens and their respective IgG producing cell clones against the extracted protein antigens from the cells of the T47D Cell-Line, in 50 women with BC, 50 women with Benign Breast Pathology (BBP) and 50 women without breast pathology (H). We have found that women with BBP have the highest number of Links, followed by the H group and, lastly, the women with BC, a finding which suggests that cancer interferes with the Connectivity between the IgG producing cell clones and blocks the expression of 322 links in women with BBP and 32 links in women with H. It is also plausible that the largest number of links in the women with BBP indicates the Network’s state of arousal that provides protection against BC. On the other hand, there were many missing links in the BC group of women; the clone which lost more links in the BC group was the hub 24, which point to some of the antigens of T47D as potentially useful as vaccines, as the immune system of women with BBP is well aware of them. PMID:25781932

  8. The network of antigen-antibody reactions in adult women with breast cancer or benign breast pathology or without breast pathology.

    PubMed

    Romo-Gonzlez, Tania; Esquivel-Velzquez, Marcela; Ostoa-Saloma, Pedro; Lara, Carlos; Zentella, Alejandro; Len-Daz, Rosalba; Lamoyi, Edmundo; Larralde, Carlos

    2015-01-01

    The Immunoglobulin G (IgG) antibody response to different protein antigens of the mammary ductal carcinoma by adult women affected by Breast Cancer (BC) distinguishes at least 103 proteins that differ in their molecular weights (MW). The IgG producing cell clones (nodes) coexist with each other in each individual organism and share energy resources among themselves, as well as factors that control the level of expression and Specificity of their IgG antibodies. So, it can be proposed that among them there is a Network of interconnections (links) unveiled by the antigens, which specifically react with the IgG antibodies produced by the clones. This Network possibly regulates IgG antibodies' activity and effectiveness. We describe the Network of nodes and links that exists between the different antigens and their respective IgG producing cell clones against the extracted protein antigens from the cells of the T47D Cell-Line, in 50 women with BC, 50 women with Benign Breast Pathology (BBP) and 50 women without breast pathology (H). We have found that women with BBP have the highest number of Links, followed by the H group and, lastly, the women with BC, a finding which suggests that cancer interferes with the Connectivity between the IgG producing cell clones and blocks the expression of 322 links in women with BBP and 32 links in women with H. It is also plausible that the largest number of links in the women with BBP indicates the Network's state of arousal that provides protection against BC. On the other hand, there were many missing links in the BC group of women; the clone which lost more links in the BC group was the hub 24, which point to some of the antigens of T47D as potentially useful as vaccines, as the immune system of women with BBP is well aware of them. PMID:25781932

  9. Self-assembly structure formation during the digestion of human breast milk.

    PubMed

    Salentinig, Stefan; Phan, Stephanie; Hawley, Adrian; Boyd, Ben J

    2015-01-26

    An infant's complete diet, human breast milk, is the basis for its survival and development. It contains water-soluble and poorly water-soluble bioactive components, metabolic messages, and energy, all of which are made bioavailable during the digestion process in the infant's gastrointestinal tract. Reported is the first discovery of highly geometrically organized structures formed during the digestion of human breast milk under simulated in?vivo conditions using small-angle X-ray scattering and cryogenic transmission electron microscopy. Time of digestion, pH, and bile salt concentration were found to have symbiotic effects gradually tuning the oil-based environment inside the breast milk globules to more water-like structures with high internal surface area. The structure formation is necessarily linked to its function as carriers for poorly water-soluble molecules in the digestive tract of the infant. PMID:25482918

  10. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells

    SciTech Connect

    Dieudonne, Marie-Noelle; Bussiere, Marianne; Dos Santos, Esther; Leneveu, Marie-Christine; Giudicelli, Yves . E-mail: biochip@wanadoo.fr; Pecquery, Rene

    2006-06-23

    It is well established that obesity is a risk factor for breast cancer and that blood levels of adiponectin, a hormone mainly secreted by white adipocytes, are inversely correlated with the body fat mass. As adiponectin elicits anti-proliferative effects in some cell types, we tested the hypothesis that adiponectin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express adiponectin receptors and respond to human recombinant adiponectin by reducing their growth, AMPkinase activation, and p42/p44 MAPkinase inactivation. Further, we demonstrate that the anti-proliferative effect of adiponectin involves activation of cell apoptosis and inhibition of cell cycle. These findings suggest that adiponectin could act in vivo as a paracrine/endocrine growth inhibitor towards mammary epithelial cells. Moreover, adipose adiponectin production being strongly reduced in obesity, this study may help to explain why obesity is a risk factor of developing breast cancers.

  11. [INVITED] Time reversal optical tomography: Detecting and locating tumors in an ex vivo model human breast

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Alrubaiee, Mohammad; Gayen, S. K.

    2016-03-01

    Time reversal optical tomography (TROT), a recently introduced diffuse optical imaging approach, is used to detect, locate, and obtain cross-section images of tumors inside a "model human breast." The model cancerous breast is assembled as a semi-cylindrical slab of uniform thickness using ex vivo human breast tissues with two pieces of tumors embedded in it. The experimental arrangement used a 750-nm light beam from a Ti:sapphire laser to illuminate an end face (source plane) of the sample in a multi-source probing scheme. A multi-detector signal acquisition scheme measured transmitted light intensity distribution on the other end face (detector plane). The perturbations in light intensity distribution in the detector plane were analyzed using TROT to obtain locations of the tumor pieces in three dimensions and estimate their cross sections. The estimated locations and dimensions of targets are in good agreement with the results of a corroborating magnetic resonance imaging experiment.

  12. Quantitative determination of the human breast milk macronutrients by near-infrared Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Motta, Edlene d. C. M.; Zângaro, Renato A.; Silveira, Landulfo, Jr.

    2012-03-01

    This work proposes the evaluation of the macronutrient constitution of human breast milk based on the spectral information provided by near-infrared Raman spectroscopy. Human breast milk (5 mL) from a subject was collected during the first two weeks of breastfeeding and stocked in -20°C freezer. Raman spectra were measured using a Raman spectrometer (830 nm excitation) coupled to a fiber based Raman probe. Spectra of human milk were dominated by bands of proteins, lipids and carbohydrates in the 600-1800 cm-1 spectral region. Raman spectroscopy revealed differences in the biochemical constitution of human milk depending on the time of breastfeeding startup. This technique could be employed to develop a classification routine for the milk in Human Milk Banking (HMB) depending on the nutritional facts.

  13. Non-tumorigenic epithelial cells secrete MCP-1 and other cytokines that promote cell division in breast cancer cells by activating ER? via PI3K/Akt/mTOR signaling.

    PubMed

    Riverso, Maria; Kortenkamp, Andreas; Silva, Elisabete

    2014-08-01

    Efforts in understanding the role of the microenvironment in the development of breast cancer have focused on tumor-stroma cross-talk, but the possibility that normal epithelial cells might also play a role in tumor progression has received little attention. Here, we show that non-tumorigenic human mammary epithelial cells (MCF10A and HMEC) secrete factors able to enhance the proliferation of estrogen receptor ? (ER?) positive breast cancer cells (MCF7 and T47D) and suppress their ability to undergo apoptosis. Conditioned medium (CM) derived from MCF10A and HMEC cells was capable of activating ER? in a hormone-independent way, by phosphorylating ER? on Ser167. Co-exposure with PI3K and mTORC1 inhibitors significantly reduced the ER? Ser167 phosphorylation and suppressed the proliferation-enhancing effects of both 10A-CM and HMEC-CM on MCF7 cells. We show that MCF10A and HMEC secrete numerous cytokines, among them MCP-1, which was one of the most prevalent. MCP-1 was shown to have a role in the effects elicited by the 10A-CM. It activated the ER? by phosphorylating Ser167 via the PI3K/Akt/mTORC1 signaling pathway, an effect which was further confirmed by silencing the MCP-1 receptors, CCR2 and CCR4. To our knowledge, this is the first time MCP-1 has been shown to contribute to ER? signaling activation. These data suggest that normal mammary cells could have the capability of supporting the proliferation of breast cancer cells via paracrine interactions. A better understanding of the role of these cells may be useful for designing strategies for the prevention of tumor progression at early stages. PMID:24878609

  14. PMCA2 regulates apoptosis during mammary gland involution and predicts outcome in breast cancer.

    PubMed

    VanHouten, Joshua; Sullivan, Catherine; Bazinet, Caroline; Ryoo, Tom; Camp, Robert; Rimm, David L; Chung, Gina; Wysolmerski, John

    2010-06-22

    After lactation, weaning causes mammary epithelial cell (MEC) apoptosis. MECs express the plasma membrane calcium-ATPase 2 (PMCA2), which transports calcium across the apical surface of the cells into milk. Here we show that PMCA2 is down-regulated early in mammary involution associated with changes in MEC shape. We demonstrate that loss of PMCA2 expression raises intracellular calcium levels and sensitizes MECs to apoptosis. In contrast, overexpression of PMCA2 in T47D breast cancer cells lowers intracellular calcium and protects them from apoptosis. Finally, we show that high PMCA2 expression in breast cancers is associated with poor outcome. We conclude that loss of PMCA2 expression at weaning triggers apoptosis by causing cellular calcium crisis. PMCA2 overexpression, on the other hand, may play a role in breast cancer progression by conferring resistance to apoptosis. PMID:20534448

  15. Basement Membrane-Rich Organoids with Functional Human Blood Vessels Are Permissive Niches for Human Breast Cancer Metastasis

    PubMed Central

    Fernndez-Periez, Rodrigo; Molina-Privado, Irene; Rojo, Federico; Guijarro-Muoz, Irene; Alonso-Camino, Vanesa; Zazo, Sandra; Compte, Marta; lvarez-Cienfuegos, Ana; Cuesta, ngel M.; Snchez-Martn, David; lvarez-Mndez, Ana M.; Sanz, Laura; lvarez-Vallina, Luis

    2013-01-01

    Metastasic breast cancer is the leading cause of death by malignancy in women worldwide. Tumor metastasis is a multistep process encompassing local invasion of cancer cells at primary tumor site, intravasation into the blood vessel, survival in systemic circulation, and extravasation across the endothelium to metastasize at a secondary site. However, only a small percentage of circulating cancer cells initiate metastatic colonies. This fact, together with the inaccessibility and structural complexity of target tissues has hampered the study of the later steps in cancer metastasis. In addition, most data are derived from in vivo models where critical steps such as intravasation/extravasation of human cancer cells are mediated by murine endothelial cells. Here, we developed a new mouse model to study the molecular and cellular mechanisms underlying late steps of the metastatic cascade. We have shown that a network of functional human blood vessels can be formed by co-implantation of human endothelial cells and mesenchymal cells, embedded within a reconstituted basement membrane-like matrix and inoculated subcutaneously into immunodeficient mice. The ability of circulating cancer cells to colonize these human vascularized organoids was next assessed in an orthotopic model of human breast cancer by bioluminescent imaging, molecular techniques and immunohistological analysis. We demonstrate that disseminated human breast cancer cells efficiently colonize organoids containing a functional microvessel network composed of human endothelial cells, connected to the mouse circulatory system. Human breast cancer cells could be clearly detected at different stages of the metastatic process: initial arrest in the human microvasculature, extravasation, and growth into avascular micrometastases. This new mouse model may help us to map the extravasation process with unprecedented detail, opening the way for the identification of relevant targets for therapeutic intervention. PMID:23951338

  16. Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines

    SciTech Connect

    Lee, Won Jae; Roberts-Thomson, Sarah J.; Monteith, Gregory R. . E-mail: G.Monteith@pharmacy.uq.edu.au

    2005-11-25

    There is evidence to suggest that plasma membrane Ca{sup 2+}-ATPase (PMCA) isoforms are important mediators sssof mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184B5 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study.

  17. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor ? (ER?) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ER? such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ER? would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  18. Identification of p53 and Its Isoforms in Human Breast Carcinoma Cells

    PubMed Central

    Milićević, Zorka; Bajić, Vladan; Živković, Lada; Kasapović, Jelena; Andjelković, Uroš; Spremo-Potparević, Biljana

    2014-01-01

    In breast carcinoma, disruption of the p53 pathway is one of the most common genetic alterations. The observation that the p53 can express multiple protein isoforms adds a novel level of complexity to the outcome of p53 mutations. p53 expression was analysed by Western immunoblotting and immunohistochemistry using monoclonal antibodies DO-7, Pab240, and polyclonal antiserum CM-1. The more frequently p53-positive nuclear staining has been found in the invasive breast tumors. One of the most intriguing findings is that mutant p53 appears as discrete dot-shaped regions within the nucleus of breast cancer cells. In many malignant cells, the nucleolar sequestration of p53 is evident. These observations support the view that the nucleolus is involved directly in the mediation of p53 function or indirectly by the control of the localization of p53 interplayers. p53 expressed in the nuclear fraction of breast cancer cells revealed a wide spectrum of isoforms. p53 isoforms ΔNp53 (47 kDa) and Δ133p53β (35 kDa), known as dominant-negative repressors of p53 function, were detected as the most predominant variants in nuclei of invasive breast carcinoma cells. The isoforms expressed also varied between individual tumors, indicating potential roles of these p53 variants in human breast cancer. PMID:24511294

  19. Zeranol enhances leptin-induced proliferation in primary cultured human breast cancer epithelial cells.

    PubMed

    Xu, Pingping; Ye, Weiping; Li, Hong; Lin, Shu-Hong; Kuo, Chieh-Ti; Feng, Eric; Lin, Young C

    2010-01-01

    Breast cancer is the leading type of cancer in women in the United States. One of the known risk factors of breast cancer is obesity. Leptin is a product of the obese (ob) gene and plays an important role in breast cancer development. Its expression is up-regulated in obesity and it promotes breast cancer cell growth. Exposure to environmental estrogenic disruptors has been found to be directly related to the increase in the incidence of breast cancer. Zeranol (Z) is a non-steroidal anabolic growth promoter with potent estrogenic activity that is widely used in the US beef industry. The objective of this study was to determine the mechanisms of Z- and leptin-induced proliferation of primary cultured human breast cancer epithelial cells (HBCECs). A cell proliferation assay was used to determine the extent to which Z is capable of enhancing the mitogenic activity of leptin in HBCECs. RT-PCR was used to explore the possible mechanisms by quantifying the transcription of cyclin D1 and ObR genes. Our results demonstrated that when the HBCECs were pre-treated with 3 nM leptin for 24 h, the sensitivity to Z exposure greatly enhanced the mitogenic action of leptin. The experimental data observed show that there is interaction between leptin and Z in HBCEC growth. PMID:21472316

  20. Presence of human papillomavirus in breast cancer and its association with prognostic factors

    PubMed Central

    Fernandes, Andrena; Bianchi, Gino; Feltri, Adriana Pesci; Prez, Marihorgen; Correnti, Mara

    2015-01-01

    Breast cancer accounts for 16% of all female cancers worldwide, and in Venezuela, it is the leading cause of death among women. Recently, the presence of high-risk genotypes of human papillomavirus (HPV) has been demonstrated in breast cancer and has been associated with histopathological features of the tumours. In Venezuela, there is no study which determines the association between the presence of HPV in breast cancer and the histopathological features. The aim of this investigation is to evaluate the presence of HPV in the different types of breast cancer, according to their molecular classification, based on the expression of ER, PR, HER2 and Ki67. With this purpose in mind, we assessed the presence of the HPV genome in 24 breast cancer samples diagnosed with infiltrating ductal carcinoma, ductal carcinoma in situ (DCIS) and lobular carcinoma, by the INNO-LIPA genotyping extra kit and the evaluation of the markers ER, PR, HER2, and Ki67 by immunohistochemistry. The viral genome was found in 41.67% of the total number of samples, 51 being the most frequent genotype with 30.77%, followed by types 18 and 33, with 23.08%, respectively. Most tumours were found in the group of luminal A, with a low range of Ki67 expression. The presence of HPV in breast tumours could affect their growth pattern and metastatic power. PMID:26180547

  1. Carbon nanotube electron field emitters for X-ray imaging of human breast cancer

    PubMed Central

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-01-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to 2D mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary digital breast tomosynthesis (s-DBT), utilizing an array of carbon nanotube (CNT) field emission X-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for X-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 seconds, was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent. PMID:24869902

  2. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration

    PubMed Central

    Acerbi, I; Cassereau, L; Dean, I; Shi, Q; Au, A; Park, C; Chen, YY; Liphardt, J; Hwang, ES; Weaver, VM

    2015-01-01

    Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive Luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated, macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta. PMID:25959051

  3. The Acinar Cage: Basement Membranes Determine Molecule Exchange and Mechanical Stability of Human Breast Cell Acini

    PubMed Central

    Gaiko-Shcherbak, Aljona; Fabris, Gloria; Dreissen, Georg; Merkel, Rudolf; Hoffmann, Bernd; Noetzel, Erik

    2015-01-01

    The biophysical properties of the basement membrane that surrounds human breast glands are poorly understood, but are thought to be decisive for normal organ function and malignancy. Here, we characterize the breast gland basement membrane with a focus on molecule permeation and mechanical stability, both crucial for organ function. We used well-established and nature-mimicking MCF10A acini as 3D cell model for human breast glands, with ether low- or highly-developed basement membrane scaffolds. Semi-quantitative dextran tracer (3 to 40 kDa) experiments allowed us to investigate the basement membrane scaffold as a molecule diffusion barrier in human breast acini in vitro. We demonstrated that molecule permeation correlated positively with macromolecule size and intriguingly also with basement membrane development state, revealing a pore size of at least 9 nm. Notably, an intact collagen IV mesh proved to be essential for this permeation function. Furthermore, we performed ultra-sensitive atomic force microscopy to quantify the response of native breast acini and of decellularized basement membrane shells against mechanical indentation. We found a clear correlation between increasing acinar force resistance and basement membrane formation stage. Most important native acini with highly-developed basement membranes as well as cell-free basement membrane shells could both withstand physiologically relevant loads (≤ 20 nN) without loss of structural integrity. In contrast, low-developed basement membranes were significantly softer and more fragile. In conclusion, our study emphasizes the key role of the basement membrane as conductor of acinar molecule influx and mechanical stability of human breast glands, which are fundamental for normal organ function. PMID:26674091

  4. Effects of Ambient Particulate Matter on Human Breast Cancer: Is Xenogenesis Responsible?

    PubMed Central

    Huo, Qiang; Zhang, Ning; Wang, Xiaolong; Jiang, Liyu; Ma, Tingting; Yang, Qifeng

    2013-01-01

    Background Recently, evidence from several studies has revealed that air pollution is associated with the increased morbidity and mortality of breast cancer patients. However, to date, the underlying mechanism remains largely unclear. Considering the high prevalence of air pollution and breast cancer in China, it is necessary to understand how air pollution may affect breast cancer. Methods We analyzed 1,832 female patients who had resided in the same cities for at least 10 years prior to their diagnosis. Variables including demographic data as well as clinical and tumor characteristics, including the patient’s age at menarche, family history of breast cancer, tumor histopathological type, tumor size, lymph node metastasis, distant metastasis, histological grade, estrogen receptor (ER) status, progesterone receptor (PR) status and human epidermal growth factor receptor 2 (HER-2) status at the time of diagnosis were analyzed. Results Compared to patients residing in low-pollution areas, patients living in high-pollution areas demonstrated a younger age at menarche (p<0.001), a greater family history of breast cancer (p = 0.034) and more invasive cancers (p = 0.028) with higher tumor grades (p = 0.028) and estrogen receptor (ER)-positive status (p = 0.022). Differences in tumor grade were only found in ER-positive cases. Conclusions Our findings and clinical data indicate that long-term air pollution exposure may contribute to the development of breast cancer by playing the role of a xenoestrogen, and also provides new insight into the association between air pollution and the morbidity and mortality of breast cancer patients. Furthermore, it is urgently necessary to study the association between air pollution and breast cancer to improve the living quality and health of females, and applicable public health strategies may need to be established or modified as soon as possible. PMID:24146897

  5. Cytometric and biochemical characterization of human breast cancer cells reveals heterogeneous myoepithelial phenotypes.

    PubMed

    Leccia, Felicia; Nardone, Agostina; Corvigno, Sara; Vecchio, Luigi Del; De Placido, Sabino; Salvatore, Francesco; Veneziani, Bianca Maria

    2012-11-01

    To determine whether cell cultures maintain the cellular heterogeneity of primary tissues and may therefore be used for in vitro modeling of breast cancer subtypes, we evaluated the expression of a cell surface marker panel in breast cancer cell cultures derived from various subtypes of human breast carcinoma. We used a four-color flow cytometry strategy to immunophenotype seven human breast cancer cell cultures and four reference breast cancer cell lines. We analyzed 28 surface markers selected based on their potential to distinguish epithelial or mesenchymal lineage, to identify stem cell populations, and to mediate cell adhesion and migration. We determined their ability to form mammospheres and analyzed luminal cytokeratins CK18, CK19, and myoepithelial/basal CK5, SMA (alpha-smooth muscle actin), and vimentin expression by western blot. All cell surface markers showed a unimodal profile. Ten/28 markers were homogenously expressed. Four (CD66b, CD66c, CD165, CD324) displayed negative/low expression. Six (CD29, CD55, CD59, CD81, CD151, CD166) displayed homogenous high expression. Eighteen (CD9, CD10, CD24, CD26, CD44, CD47, CD49b, CD49f, CD54, CD61, CD90, CD105, CD133, CD164, CD184, CD200, CD227, CD326) were heterogeneously expressed. Spearman's rank test demonstrated a significant correlation (p< 0.001) between mesenchymal phenotype and breast cancer cell cultures. Breast cancer cell cultures, all CD44+, displayed concomitant high expression of only three antigens (CD10, CD54, CD90), and low expression of CD326; cell cultures formed mammospheres and expressed CK5, SMA and vimentin, and were weakly CK19-positive. We demonstrate that breast cancer cell cultures preserve inter-tumor heterogeneity and express stem/progenitor markers that can be identified, quantified and categorized by flow cytometry. Therefore, cell cultures can be used for in vitro modeling of breast cancer subtypes; immunophenotyping may mirror breast cancer heterogeneity and reveal molecular characteristics of individual tumors useful for testing target therapy. PMID:22791584

  6. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo).

    PubMed

    Zhang, Xiaomei; Harrington, Nikesha; Moraes, Ricardo C; Wu, Meng-Fen; Hilsenbeck, Susan G; Lewis, Michael T

    2009-06-01

    Altered hedgehog signaling is implicated in the development of approximately 20-25% of all cancers, especially those of soft tissues. Genetic evidence in mice as well as immunolocalization studies in human breast cancer specimens suggest that deregulated hedgehog signaling may contribute to breast cancer development. Indeed, two recent studies demonstrated that anchorage-dependent growth of some human breast cancer cell lines is impaired by cyclopamine, a potent hedgehog signaling antagonist targeting the Smoothened (SMO) protein. However, specificity of cyclopamine at the dosage required for growth inhibition (> or =10 microM) remained an open question. In this paper we demonstrate that hedgehog signaling antagonists, including cyclopamine, and a second compound, CUR0199691, can inhibit growth of estrogen receptor (ER)-positive and ER-negative tumorigenic breast cancer cells at elevated doses. However, our results indicate that, for most breast cancer cell lines, growth inhibition by these compounds can be independent of detectable Smo gene expression. Rather, our results suggest that cyclopamine and CUR0199691 have unique secondary molecular targets at the dosages required for growth inhibition that are unrelated to hedgehog signaling. PMID:18563554

  7. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells

    PubMed Central

    Han, Hye-Yeon; Kim, Hyungwoo; Son, Yong Hae; Lee, Guemsan; Jeong, Sung-Hee; Ryu, Mi Heon

    2014-01-01

    Background: The fruit of Kochia scoparia Scharder is widely used as a medicinal ingredient for the treatment of dysuria and skin diseases in China, Japan and Korea. Especially, K. scoparia had been used for breast masses and chest and flank pain. Objective: To investigate the anti-cancer effect of K. scoparia on breast cancer. Materials and Methods: We investigated the anti-cancer effects of K. scoparia, methanol extract (MEKS) in vitro. We examined the effects of MEKS on the proliferation rate, cell cycle arrest, reactive oxygen species (ROS) generation and activation of apoptosis-associated proteins in MDA-MB-231, human breast cancer cells. Results: MTT assay results demonstrated that MEKS decreased the proliferation rates of MDA-MB-231 cells in a dose-dependent manner with an IC50 value of 36.2 ?g/ml. MEKS at 25 ?g/ml significantly increased the sub-G1 DNA contents of MDA-MB-231 cells to 44.7%, versus untreated cells. In addition, MEKS induced apoptosis by increasing the levels of apoptosis-associated proteins such as cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and cleaved Poly (ADP-ribose) polymerase (PARP). Conclusion: These results suggest that MEKS inhibits cell proliferation and induces apoptosis in breast cancer cells and that MEKS may have potential chemotherapeutic value for the treatment of human breast cancer. PMID:25298688

  8. DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines

    PubMed Central

    Roll, J Devon; Rivenbark, Ashley G; Jones, Wendell D; Coleman, William B

    2008-01-01

    Background DNA hypermethylation events and other epimutations occur in many neoplasms, producing gene expression changes that contribute to neoplastic transformation, tumorigenesis, and tumor behavior. Some human cancers exhibit a hypermethylator phenotype, characterized by concurrent DNA methylation-dependent silencing of multiple genes. To determine if a hypermethylation defect occurs in breast cancer, the expression profile and promoter methylation status of methylation-sensitive genes were evaluated among breast cancer cell lines. Results The relationship between gene expression (assessed by RT-PCR and quantitative real-time PCR), promoter methylation (assessed by methylation-specific PCR, bisulfite sequencing, and 5-aza-2'deoxycytidine treatment), and the DNA methyltransferase machinery (total DNMT activity and expression of DNMT1, DNMT3a, and DNMT3b proteins) were examined in 12 breast cancer cell lines. Unsupervised cluster analysis of the expression of 64 methylation-sensitive genes revealed two groups of cell lines that possess distinct methylation signatures: (i) hypermethylator cell lines, and (ii) low-frequency methylator cell lines. The hypermethylator cell lines are characterized by high rates of concurrent methylation of six genes (CDH1, CEACAM6, CST6, ESR1, LCN2, SCNN1A), whereas the low-frequency methylator cell lines do not methylate these genes. Hypermethylator cell lines coordinately overexpress total DNMT activity and DNMT3b protein levels compared to normal breast epithelial cells. In contrast, most low-frequency methylator cell lines possess DNMT activity and protein levels that are indistinguishable from normal. Microarray data mining identified a strong cluster of primary breast tumors that express the hypermethylation signature defined by CDH1, CEACAM6, CST6, ESR1, LCN2, and SCNN1A. This subset of breast cancers represents 18/88 (20%) tumors in the dataset analyzed, and 100% of these tumors were classified as basal-like, suggesting that the hypermethylator defect cosegregates with poor prognosis breast cancers. Conclusion These observations combine to strongly suggest that: (a) a subset of breast cancer cell lines express a hypermethylator phenotype, (b) the hypermethylation defect in these breast cancer cell lines is related to aberrant overexpression of DNMT activity, (c) overexpression of DNMT3b protein significantly contributes to the elevated DNMT activity observed in tumor cells expressing this phenotype, and (d) the six-gene hypermethylator signature characterized in breast cancer cell lines defines a distinct cluster of primary basal-like breast cancers. PMID:18221536

  9. Diffuse Optical Imaging and Spectroscopy of the Human Breast for Quantitative Oximetry with Depth Resolution

    NASA Astrophysics Data System (ADS)

    Yu, Yang

    Near-infrared spectral imaging for breast cancer diagnostics and monitoring has been a hot research topic for the past decade. Here we present instrumentation for diffuse optical imaging of breast tissue with tandem scan of a single source-detector pair with broadband light in transmission geometry for tissue oximetry. The efforts to develop the continuous-wave (CW) domain instrument have been described, and a frequency-domain (FD) system is also used to measure the bulk tissue optical properties and the breast thickness distribution. We also describe the efforts to improve the data processing codes in the 2D spatial domain for better noise suppression, contrast enhancement, and spectral analysis. We developed a paired-wavelength approach, which is based on finding pairs of wavelength that feature the same optical contrast, to quantify the tissue oxygenation for the absorption structures detected in the 2D structural image. A total of eighteen subjects, two of whom were bearing breast cancer on their right breasts, were measured with this hybrid CW/FD instrument and processed with the improved algorithms. We obtained an average tissue oxygenation value of 87% +/- 6% from the healthy breasts, significantly higher than that measured in the diseased breasts (69% +/- 14%) (p < 0.01). For the two diseased breasts, the tumor areas bear hypoxia signatures versus the remainder of the breast, with oxygenation values of 49 +/- 11% (diseased region) vs. 61 +/- 16% (healthy regions) for the breast with invasive ductal carcinoma, and 58 +/- 8% (diseased region) vs 77 +/- 11% (healthy regions) for ductal carcinoma in situ. Our subjects came from various ethnical/racial backgrounds, and two-thirds of our subjects were less than thirty years old, indicating a potential to apply the optical mammography to a broad population. The second part of this thesis covers the topic of depth discrimination, which is lacking with our single source-detector scan system. Based on an off-axis detection method, we incorporated an additional detector to acquire a second set of image independently. We then proposed an inner-product approach to associate absorption structures detected in the on-axis image with those detected in the off-axis image. The spatial coordinate difference for the same structure between the two images is directly related to the depth of the corresponding structure, and the monotonic dependence can be quantified by perturbation theory of the diffusion equation. A preliminary phantom study shows good agreement between the measured and the actual depth of embedded structures, and human measurements show the capability to assign a depth coordinate to the more complex absorption structures inside the breast.

  10. Regulation of gene expression in human mammary epithelium: effect of breast pumping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known of the molecular regulation of human milk production because of limitations in obtaining mammary tissue from lactating women. Our objectives were to evaluate whether RNA isolated from breast milk fat globules (MFGs) could be an alternative to mammary biopsies and to determine whether...

  11. EBAG9/RCAS1 in human breast carcinoma: a possible factor in endocrineimmune interactions

    PubMed Central

    Suzuki, T; Inoue, S; Kawabata, W; Akahira, J; Moriya, T; Tsuchiya, F; Ogawa, S; Muramatsu, M; Sasano, H

    2001-01-01

    EBAG9 has been recently identified as an oestrogen responsive gene in MCF-7 human breast carcinoma cells. EBAG9 is identical to RCAS1, a cancer cell surface antigen possibly involved in immune escape. In this study, we examined the expression of EBAG9/RCAS1 in human breast carcinomas using immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). EBAG9 immunoreactivity was also associated with various clinicopathological parameters, including intratumoural infiltration of inflammatory cells, to examine the biological significance of EBAG9 in human breast carcinomas. EBAG9 immunoreactivity was detected in the entire surface and cytoplasm of carcinoma cells in 82 out of 91 invasive ductal carcinomas (90.1%). In non-neoplastic mammary glands, EBAG9 immunoreactivity was weakly present on the luminal surface of epithelial cells. Results from RT-PCR (n = 7) were consistent with those of immunohistochemistry. EBAG9 immunoreactivity was significantly associated with estrogen receptor (ER) ? labelling index (P = 0.0081), and inversely associated with the degree of intratumoural infiltration of mononuclear cells (P = 0.0020), or CD3+ T lymphocytes (P = 0.0025). This study suggests that EBAG9 is produced via ER in carcinoma cells and inhibits the intratumoural infiltration of T lymphocytes in the context of a possible endocrineimmune interaction in human breast carcinomas. 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742495

  12. Fulvestrant-induced expression of ErbB3 and ErbB4 receptors sensitizes oestrogen receptor-positive breast cancer cells to heregulin β1

    PubMed Central

    2011-01-01

    Introduction We have previously reported that induction of epidermal growth factor receptor and ErbB2 in response to antihormonal agents may provide an early mechanism to allow breast cancer cells to evade the growth-inhibitory action of such therapies and ultimately drive resistant cell growth. More recently, the other two members of the ErbB receptor family, ErbB3 and ErbB4, have been implicated in antihormone resistance in breast cancer. In the present study, we have investigated whether induction of ErbB3 and/or ErbB4 may provide an alternative resistance mechanism to antihormonal action in a panel of four oestrogen receptor (ER)-positive breast cancer cell lines. Methods MCF-7, T47D, BT474 and MDAMB361 cell lines were exposed to fulvestrant (100 nM) for seven days, and effects on ErbB3/4 expression and signalling, as well as on cell growth, were assessed. Effects of heregulin β1 (HRGβ1) were also examined in the absence and presence of fulvestrant to determine the impact of ER blockade on the capacity of this ErbB3/4 ligand to promote signalling and cell proliferation. Results Fulvestrant potently reduced ER expression and transcriptional activity and significantly inhibited growth in MCF-7, T47D, BT474 and MDAMB361 cells. However, alongside this inhibitory activity, fulvestrant also consistently induced protein expression and activity of ErbB3 in MCF-7 and T47D cells and ErbB4 in BT474 and MDAMB361 cell lines. Consequently, fulvestrant treatment sensitised all cell lines to the actions of the ErbB3/4 ligand HRGβ1 with enhanced ErbB3/4-driven signalling activity, reexpression of cyclin D1 and significant increases in cell proliferation being observed when compared to untreated cells. Indeed, in T47D and MDAMB361 HRGβ1 was converted from a ligand having negligible or suppressive growth activity into one that potently promoted cell proliferation. Consequently, fulvestrant-mediated growth inhibition was completely overridden by HRGβ1 in all four cell lines. Conclusions These findings suggest that although antihormones such as fulvestrant may have potent acute growth-inhibitory activity in ER-positive breast cancer cells, their ability to induce and sensitise cells to growth factors may serve to reduce and ultimately limit their inhibitory activity. PMID:21396094

  13. Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies.

    PubMed

    Thibaudeau, Laure; Quent, Verena M; Holzapfel, Boris M; Taubenberger, Anna V; Straub, Melanie; Hutmacher, Dietmar W

    2014-09-01

    Bone metastasis is a complication that occurs in 80% of women with advanced breast cancer. Despite the prevalence of bone metastatic disease, the avenues for its clinical management are still restricted to palliative treatment options. In fact, the underlying mechanisms of breast cancer osteotropism have not yet been fully elucidated due to a lack of suitable in vivo models that are able to recapitulate the human disease. In this work, we review the current transplantation-based models to investigate breast cancer-induced bone metastasis and delineate the strengths and limitations of the use of different grafting techniques, tissue sources, and hosts. We further show that humanized xenograft models incorporating human cells or tissue grafts at the primary tumor site or the metastatic site mimic more closely the human disease. Tissue-engineered constructs are emerging as a reproducible alternative to recapitulate functional humanized tissues in these murine models. The development of advanced humanized animal models may provide better platforms to investigate the mutual interactions between human cancer cells and their microenvironment and ultimately improve the translation of preclinical drug trials to the clinic. PMID:24771149

  14. Susceptibility of human breast epithelial cells in vitro to hormones and drugs.

    PubMed

    Calaf, Gloria M

    2006-02-01

    Breast cancer is often hormone responsive with growth or regression of tumors modulated by endocrine manipulations. Estrogens are known to control the growth of many mammary carcinomas in experimental animals, and humans. Knowledge of tumor response to hormones will greatly improve the ability to plan therapy for breast cancer patients. Chemoprevention of breast cancer has been mostly aimed at reducing the rate of cell division through administration of anti-hormones. Tamoxifen has shown to be species, tissue, and cell-type specific. Cell proliferation in mammary gland occurs in a non-random fashion since there are specific compartments with varied rates of proliferation represented by the terminal end buds that are ready for differentiation into alveolar buds. The aim of this work was to study the effect of 17beta estradiol as well as an antiestrogen, tamoxifen in several in vitro systems to analyze the proliferative capabilities of different kind of cells under controlled experimental conditions. Normal, benign lesions, and duct carcinomas of human breast tissues were processed for organ culture. In the case of the normal breast tissue it was enzymatically digested and culture as organoid culture as well. Several immortalized normal and malignant human breast cell lines were also used in these studies to analyze the effect of 17beta estradiol, progesterone, tamoxifen and anti-progestin RU486. Both 17beta estradiol and progesterone stimulated cell proliferation whereas tamoxifen and RU486 inhibited such effect under these experimental conditions. Thus, in vitro systems allowed to analyze the proliferative capabilities of different kind of cells under controlled experimental conditions. PMID:16391781

  15. Regulation of drug resistance by human pregnane X receptor in breast cancer

    PubMed Central

    Chen, Yakun; Tang, Yong; Chen, Shuqing; Nie, Daotai

    2012-01-01

    Drug resistance is a significant barrier to an effective treatment of breast cancer. Human pregnane X receptor (hPXR), an orphan nuclear receptor known for its activation by many important clinical drugs, is a major transcription factor of drug metabolism enzymes (DMEs), such as cytochrome P450 3A4 (CYP3A4), and efflux transporters such as multi-drug resistance gene (MDR1). hPXR has been detected in human breast cancers but its role in responses of cancers toward drugs remains unknown. In this study, hPXR expression was confirmed in breast cancer cell lines and in normal and cancerous human breast specimens. Preactivation of hPXR by SR12813 in MDA-MB-231 cells led to an increased resistance to Taxol at concentrations of 20 and 50 nmol/L. A significant increase in resistance toward tamoxifen was also observed in MCF-7 with hPXR preactivation. Activation of hPXR led to an increased expression of CYP3A4 and MDR1, two possible mediators for hPXR-mediated drug resistance in breast cancers. Furthermore, knockdown of hPXR via small hairpin RNA (shRNA) sensitized MDA-MB-231 and MCF-7 cells to the treatment of Taxol, vinblastine or tamoxifen. The reduction in resistance of hPXR knockdown cells was further confirmed by reduced colony formation under the pressure of cancer treatment drugs. Taken together, our data suggest a potential role of hPXR in breast cancer resistance to drug treatments. PMID:19746521

  16. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    PubMed Central

    Wang, Li-Shu; Huang, Yi-Wen; Liu, Suling; Yan, Pearlly; Lin, Young C

    2008-01-01

    Background Conjugated linoleic acid (CLA), a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. Methods The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. Results The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E2) stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam) and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA-MB-231 cells. Conclusion These data, therefore, demonstrate that ERα plays important roles in CLA induced apoptosis in human breast tissues. PMID:18652667

  17. Production and characterisation of monoclonal antibodies against RAI3 and its expression in human breast cancer

    PubMed Central

    2009-01-01

    Background RAI3 is an orphan G-protein coupled receptor (GPCR) that has been associated with malignancy and may play a role in the proliferation of breast cancer cells. Although its exact function in normal and malignant cells remains unclear and evidence supporting its role in oncogenesis is controversial, its abundant expression on the surface of cancer cells would make it an interesting target for the development of antibody-based therapeutics. To investigate the link with cancer and provide more evidence for its role, we carried out a systematic analysis of RAI3 expression in a large set of human breast cancer specimens. Methods We expressed recombinant human RAI3 in bacteria and reconstituted the purified protein in liposomes to raise monoclonal antibodies using classical hybridoma techniques. The specific binding activity of the antibodies was confirmed by enzyme-linked immunosorbent assay (ELISA), western blot and immunocytochemistry. We carried out a systematic immunohistochemical analysis of RAI3 expression in human invasive breast carcinomas (n = 147) and normal breast tissues (n = 44) using a tissue microarray. In addition, a cDNA dot blot hybridisation assay was used to investigate a set of matched normal and cancerous breast tissue specimens (n = 50) as well as lymph node metastases (n = 3) for RAI3 mRNA expression. Results The anti-RAI3 monoclonal antibodies bound to recombinant human RAI3 protein with high specificity and affinity, as shown by ELISA, western blot and ICC. The cDNA dot blot and immunohistochemical experiments showed that both RAI3 mRNA and RAI3 protein were abundantly expressed in human breast carcinoma. However, there was no association between RAI3 protein expression and prognosis based on overall and recurrence-free survival. Conclusion We have generated a novel, highly-specific monoclonal antibody that detects RAI3 in formaldehyde-fixed paraffin-embedded tissue. This is the first study to report a systematic analysis of RAI3 expression in normal and cancerous human breast tissue at both the mRNA and protein levels. PMID:19552806

  18. Prostaglandin E2 inhibits p53 in human breast adipose stromal cells: a novel mechanism for the regulation of aromatase in obesity and breast cancer.

    PubMed

    Wang, Xuyi; Docanto, Maria M; Sasano, Hironobu; Lo, Camden; Simpson, Evan R; Brown, Kristy A

    2015-02-15

    Obesity is a risk factor for postmenopausal breast cancer and the majority of these cancers are estrogen dependent. Aromatase converts androgens into estrogens and its increased expression in breast adipose stromal cells (ASC) is a major driver of estrogen receptor-positive breast cancer. In particular, obesity-associated and tumor-derived factors, such as prostaglandin E2 (PGE2), have been shown to drive the expression of aromatase by stimulating the activity of the proximal promoter II (PII). The tumor-suppressor p53 is a key regulator of cell-cycle arrest and apoptosis and is frequently mutated in breast cancer. Mutations in p53 are rare in tumor-associated ASCs. Therefore, it was hypothesized that p53 is regulated by PGE2 and involved in the PGE2-mediated regulation of aromatase. Results demonstrate that PGE2 causes a significant decrease in p53 transcript and nuclear protein expression, as well as phosphorylation at Ser15 in primary human breast ASCs. Stabilization of p53 with RITA leads to a significant decrease in the PGE2-stimulated aromatase mRNA expression and activity, and PII activity. Interaction of p53 with PII was demonstrated and this interaction is decreased in the presence of PGE2. Moreover, mutation of the identified p53 response element leads to an increase in the basal activity of the promoter. Immunofluorescence on clinical samples demonstrates that p53 is decreased in tumor-associated ASCs compared with ASCs from normal breast tissue, and that there is a positive association between perinuclear (inactive) p53 and aromatase expression in these cells. Furthermore, aromatase expression is increased in breast ASCs from Li-Fraumeni patients (germline TP53 mutations) compared with non-Li-Fraumeni breast tissue. Overall, our results demonstrate that p53 is a negative regulator of aromatase in the breast and its inhibition by PGE2 provides a novel mechanism for aromatase regulation in obesity and breast cancer. PMID:25634217

  19. Trends in the enantiomeric composition of polychlorinated biphenyl atropisomers in human breast milk.

    PubMed

    Konishi, Yoshimasa; Kakimoto, Kensaku; Nagayoshi, Haruna; Nakano, Takeshi

    2016-02-01

    For the precise estimation of the risk to human health caused by persistent organic pollutants (POPs), it is important to discuss enantiomer fraction value (EF value) because it is reported that behaviors such as stability and toxicity of enantiomers are quite different in human body. Among POPs, polychlorinated biphenyl (PCB) is known as one of the most persistent compounds in human breast milk samples. The main exposure source of PCB for human body is mostly from food especially in seafood. The contamination of fish and shellfish has been a serious problem for the Japanese, who consume a large amount of fish in their diet. PCBs have 19 congeners which are chlorine-substituted in 3- or 4- ortho positions are known to have enantiomers. In this study, we analyzed PCB 183 (2,2',3,4,4',5',6-hepta CB) in human breast milk and fish samples enantioselectively and revealed the time trends of the EF value. Though EF value of PCB 183 in fish samples sustained close to racemate (EF = 0.5) from 1982 to 2012, that in breast milk increased over time. This fact indicates that (+)-PCB-183 has greater bioaccumulation potential than (-)-PCB-183 in human body; therefore, the toxicity of (+)-PCB-183 should be emphasized. PMID:26081770

  20. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation.

    PubMed

    Caffarel, Mara M; Sarri, David; Palacios, Jos; Guzmn, Manuel; Snchez, Cristina

    2006-07-01

    It has been proposed that cannabinoids are involved in the control of cell fate. Thus, these compounds can modulate proliferation, differentiation, and survival in different manners depending on the cell type and its physiopathologic context. However, little is known about the effect of cannabinoids on the cell cycle, the main process controlling cell fate. Here, we show that Delta(9)-tetrahydrocannabinol (THC), through activation of CB(2) cannabinoid receptors, reduces human breast cancer cell proliferation by blocking the progression of the cell cycle and by inducing apoptosis. In particular, THC arrests cells in G(2)-M via down-regulation of Cdc2, as suggested by the decreased sensitivity to THC acquired by Cdc2-overexpressing cells. Of interest, the proliferation pattern of normal human mammary epithelial cells was much less affected by THC. We also analyzed by real-time quantitative PCR the expression of CB(1) and CB(2) cannabinoid receptors in a series of human breast tumor and nontumor samples. We found a correlation between CB(2) expression and histologic grade of the tumors. There was also an association between CB(2) expression and other markers of prognostic and predictive value, such as estrogen receptor, progesterone receptor, and ERBB2/HER-2 oncogene. Importantly, no significant CB(2) expression was detected in nontumor breast tissue. Taken together, these data might set the bases for a cannabinoid therapy for the management of breast cancer. PMID:16818634

  1. Abrogation of TGF-? signaling enhances chemokine production and correlates with prognosis in human breast cancer

    PubMed Central

    Bierie, Brian; Chung, Christine H.; Parker, Joel S.; Stover, Daniel G.; Cheng, Nikki; Chytil, Anna; Aakre, Mary; Shyr, Yu; Moses, Harold L.

    2009-01-01

    In human breast cancer, loss of carcinoma cellspecific response to TGF-? signaling has been linked to poor patient prognosis. However, the mechanisms through which TGF-? regulates these processes remain largely unknown. In an effort to address this issue, we have now identified gene expression signatures associated with the TGF-? signaling pathway in human mammary carcinoma cells. The results strongly suggest that TGF-? signaling mediates intrinsic, stromal-epithelial, and host-tumor interactions during breast cancer progression, at least in part, by regulating basal and oncostatin Minduced CXCL1, CXCL5, and CCL20 chemokine expression. To determine the clinical relevance of our results, we queried our TGF-?associated gene expression signatures in 4 human breast cancer data sets containing a total of 1,319 gene expression profiles and associated clinical outcome data. The signature representing complete abrogation of TGF-? signaling correlated with reduced relapse-free survival in all patients; however, the strongest association was observed in patients with estrogen receptorpositive (ER-positive) tumors, specifically within the luminal A subtype. Together, the results suggest that assessment of TGF-? signaling pathway status may further stratify the prognosis of ER-positive patients and provide novel therapeutic approaches in the management of breast cancer. PMID:19451693

  2. Human Cytomegalovirus interleukin-10 promotes proliferation and migration of MCF-7 breast cancer cells

    PubMed Central

    Bishop, Robin K.; Valle Oseguera, Cendy A.; Spencer, Juliet V.

    2015-01-01

    Breast cancer is the most common malignancy affecting women worldwide. While a small fraction of breast cancers have a hereditary component, environmental and behavioral factors also impact the development of cancer. Human cytomegalovirus (HCMV) is a member of the Herpesviridae family that is widespread in the general population and has been linked to several forms of cancer. While HCMV DNA has been found in some breast cancer tissue specimens, we wanted to investigate whether a secreted viral cytokine might have an effect on cancerous or even pre-cancerous cells. HCMV encodes an ortholog of the human cellular cytokine interleukin-10 (IL-10). The HCMV UL111A gene product is cmvIL-10, which has 27% sequence identity to IL-10 and binds the cellular IL-10 receptor (IL-10R) to induce downstream cell signaling. We found that MCF-7 human breast cancer cells express IL-10R and that exposure to cmvIL-10 results in enhanced proliferation and increased chemotaxis of MCF-7 cells. PCR arrays revealed that treatment with cmvIL-10 alters expression of cell adhesion molecules and increases MMP gene expression. In particular, MMP-10 gene expression was found to be significantly up-regulated and this correlated with an increase in cell-associated MMP-10 protein produced by MCF-7 cells exposed to cmvIL-10. These results suggest that the presence of cmvIL-10 in the tumor microenvironment could contribute to the development of more invasive tumors. PMID:26023679

  3. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  4. Expression of K+ channels in normal and cancerous human breast.

    PubMed

    Brevet, Marie; Ahidouch, Ahmed; Sevestre, Henri; Merviel, Philippe; El Hiani, Yassine; Robbe, Micheline; Ouadid-Ahidouch, Halima

    2008-08-01

    Potassium (K+) channels contribute to the regulation of cell proliferation and apoptosis and are also involved in tumor generation and malignant growth. Using immunohistochemical analysis, we investigated the expression of four K+ channels GIRK1 (G-Protein Inwardly Rectifying Potassium Channel 1), Ca2+-activated K channel (K Ca 1.1), voltage activated K+ channels (KV 1.1 and KV 1.3) and of the anti-apoptotic protein Bcl2 in normal and cancerous breast tissues and compared their expression with clinicopathological data. GIRK1 was overexpressed in carcinomatous tissues. In contrast, K V 1.1 and K V 1.3 were less expressed in cancerous tissue. The expression of Bcl-2 was similar in both tissues. As to the clinicopathological data, a correlation between K Ca 1.1 channel and estrogen receptor (ER) expression was observed. GIRK1 was overexpressed in breast carcinoma suggesting its involvement in proliferation and oncogenesis and its possible use as a putative pharmaceutical target. The correlation between K Ca 1.1 channel and ER suggests the involvement of this channel in proliferation. The loss of expression of the two channels K V 1.1 and K V 1.3 may correspond to their role in apoptosis. PMID:18498071

  5. Anticancer Effects of Different Seaweeds on Human Colon and Breast Cancers

    PubMed Central

    Moussavou, Ghislain; Kwak, Dong Hoon; Obiang-Obonou, Brice Wilfried; Ogandaga Maranguy, Cyr Abel; Dinzouna-Boutamba, Sylvatrie-Danne; Lee, Dae Hoon; Manvoudou Pissibanganga, Ordelia Gwenaelle; Ko, Kisung; Seo, Jae In; Choo, Young Kug

    2014-01-01

    Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents. PMID:25255129

  6. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures

    PubMed Central

    Zonneveld, Marijke I.; Brisson, Alain R.; van Herwijnen, Martijn J. C.; Tan, Sisareuth; van de Lest, Chris H. A.; Redegeld, Frank A.; Garssen, Johan; Wauben, Marca H. M.; Nolte-'t Hoen, Esther N. M.

    2014-01-01

    Extracellular vesicles (EV) in breast milk carry immune relevant proteins and could play an important role in the instruction of the neonatal immune system. To further analyze these EV and to elucidate their function it is important that native populations of EV can be recovered from (stored) breast milk samples in a reproducible fashion. However, the impact of isolation and storage procedures on recovery of breast milk EV has remained underexposed. Here, we aimed to define parameters important for EV recovery from fresh and stored breast milk. To compare various protocols across different donors, breast milk was spiked with a well-defined murine EV population. We found that centrifugation of EV down into density gradients largely improved density-based separation and isolation of EV, compared to floatation up into gradients after high-force pelleting of EV. Using cryo-electron microscopy, we identified different subpopulations of human breast milk EV and a not previously described population of lipid tubules. Additionally, the impact of cold storage on breast milk EV was investigated. We determined that storing unprocessed breast milk at ?80C or 4C caused death of cells present in breast milk, leading to contamination of the breast milk EV population with storage-induced EV. Here, an alternative method is proposed to store breast milk samples for EV analysis at later time points. The proposed adaptations to the breast milk storage and EV isolation procedures can be applied for EV-based biomarker profiling of breast milk and functional analysis of the role of breast milk EV in the development of the neonatal immune system. PMID:25206958

  7. GATA3 Inhibits Lysyl Oxidase Mediated Metastases of Human Basal Triple-Negative Breast Cancer Cells

    PubMed Central

    Chu, Isabel M.; Michalowski, Aleksandra M.; Hoenerhoff, Mark; Szauter, Kornelia M.; Luger, Dror; Sato, Misako; Flanders, Kathy; Oshima, Akira; Csiszar, Katalin; Green, Jeffrey E.

    2011-01-01

    Discovery of mechanisms that impede the aggressive and metastatic phenotype of human basal triple-negative type breast cancers (BTNBC) could provide novel targets for therapy for this form of breast cancer that has a relatively poor prognosis. Previous studies have demonstrated that the expression of GATA3, the master transcriptional regulator of mammary luminal differentiation, can reduce the tumorigenicity and metastatic propensity of the human BTNBC MDA-MB-231 cell line (MB231), although the mechanism for reduced metastases was not elucidated. We demonstrate through gene expression profiling that GATA3 expression in 231 cells resulted in the dramatic reduction in the expression of Lysyl oxidase (LOX), a metastasis-promoting matrix remodeling protein, in part, through methylation of the LOX promoter. Suppression of LOX expression by GATA3 was further confirmed in the BTNBC Hs578T cell line. Conversely, reduction of GATA3 expression by siRNA in luminal BT474 cells increased LOX expression. Reconstitution of LOX expression in 231-GATA3 cells restored metastatic propensity. A strong inverse association between high LOX and low GATA3 expression was confirmed in a panel of 51 human breast cancer cell lines. Similarly, human breast cancer microarray data demonstrated that high LOX/low GATA3 expression is associated with the BTNBC subtype of breast cancer and poor patient prognosis. Expression of GATA3 reprograms BTNBC to a less aggressive phenotype and inhibits a major mechanism of metastasis through inhibition of LOX. Induction of GATA3 in BTNBC cells or novel approaches that inhibit LOX expression or activity could be important strategies for treating BTNBC. PMID:21892208

  8. Distribution and physical properties of BCA200, a Mr 200,000 glycoprotein selectively associated with human breast cancer.

    PubMed

    Ring, D B; Kassel, J A; Hsieh-Ma, S T; Bjorn, M J; Tringale, F; Eaton, A M; Reid, S A; Frankel, A E; Nadji, M

    1989-06-01

    Of 122 mouse monoclonal antibodies selective for human breast cancer, 13 immunoprecipitated an acidic glycoprotein from SK-Br-3 and ZR-75-30 human breast cancer cells. The antigen (BCA200) migrates with an apparent molecular weight of 200,000 on reducing and 180,000 on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting a single polypeptide chain with a folded domain stabilized by a disulfide bond. Cross-blocking and sandwich immunoassays detected at least three distinct antigenic determinants on BCA200. Scatchard experiments measured 1,000,000 to 5,000,000 antigen copies per SK-Br-3 cell. The tissue distribution of BCA200 was studied using two monoclonals to different epitopes. Neither antibody stained any cells in human blood. When frozen sections of 20 normal human tissues were immunoperoxidase stained, the only positive structures were mucinous glands of colon, transitional epithelium of bladder, sweat glands of skin, and acinar epithelium of breast. Antibody 454C11 stained 16 of 21 breast tumor frozen sections and 9 of 12 breast cancer cell lines, while antibody 520C9 stained 5 of 20 breast tumors and 4 of 10 breast cancer lines. Cross-reaction was observed with lung, prostatic, pancreatic, endometrial, and ovarian cancer, but not with lymphoma, melanoma, colon, stomach, bladder, or esophageal cancer. When conjugated to ricin A chain, 10 of 13 antibodies produced immunotoxins selectively cytotoxic to SK-Br-3 breast cancer cells. PMID:2470501

  9. Lectin-binding properties of human breast cancer cell lines and human milk with particular reference to Helix pomatia agglutinin.

    PubMed

    Schumacher, U; Adam, E; Brooks, S A; Leathem, A J

    1995-03-01

    Several studies have shown binding of a variety of lectins to breast cancer cells in tissue sections. In particular, binding of the lectin from the Roman snail, Helix pomatia agglutinin (HPA), to breast cancer cells is linked with a poor prognosis. The molecular basis for lectin binding to metastatic breast cancers is not known. To elucidate this in a model system, lectin-binding patterns of seven human breast cancer cell lines were investigated, their cell membranes were isolated, and HPA binding was assessed. In addition, the influence of fixation and processing on lectin-binding sites was also investigated. Binding of lectins to the tumor cells was very heterogeneous between and within the different cell lines and was influenced by fixation and processing. However, some cell lines showed HPA-binding sites both in vivo and in tissue sections. Analysis of the isolated cell membrane glycoproteins from these cell lines on Western blots revealed that HPA can bind to several membrane glycoproteins. In contrast, human milk shows only one major milk glycoprotein that is HPA-positive. Therefore, a switch in glycosylation appears to be taking place during the transformation to a metastatic phenotype. PMID:7868857

  10. First Evidence that Ecklonia cava-Derived Dieckol Attenuates MCF-7 Human Breast Carcinoma Cell Migration

    PubMed Central

    Kim, Eun-Kyung; Tang, Yujiao; Kim, Yon-Suk; Hwang, Jin-Woo; Choi, Eun-Ju; Lee, Ji-Hyeok; Lee, Seung-Hong; Jeon, You-Jin; Park, Pyo-Jam

    2015-01-01

    We investigated the effect of Ecklonia cava (E. cava)-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6?-biecko, and 2,7?-phloroglucinol-6,6?-bieckol) were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius-well was used to assess cell migration, and dieckol (1100 M) was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF). On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect ofdieckol. PMID:25830682

  11. No association between HPV positive breast cancer and expression of human papilloma viral transcripts

    PubMed Central

    Gannon, Orla M.; Antonsson, Annika; Milevskiy, Michael; Brown, Melissa A.; Saunders, Nicholas A.; Bennett, Ian C.

    2015-01-01

    Infectious agents are thought to be responsible for approximately 16% of cancers worldwide, however there are mixed reports in the literature as to the prevalence and potential pathogenicity of viruses in breast cancer. Furthermore, most studies to date have focused primarily on viral DNA rather than the expression of viral transcripts. We screened a large cohort of fresh frozen breast cancer and normal breast tissue specimens collected from patients in Australia for the presence of human papilloma virus (HPV) DNA, with an overall prevalence of HPV of 16% and 10% in malignant and non-malignant tissue respectively. Samples that were positive for HPV DNA by nested PCR were screened by RNA-sequencing for the presence of transcripts of viral origin, using three different bioinformatic pipelines. We did not find any evidence for HPV or other viral transcripts in HPV DNA positive samples. In addition, we also screened publicly available breast RNA-seq data sets for the presence of viral transcripts and did not find any evidence for the expression of viral transcripts (HPV or otherwise) in other data sets. This data suggests that transcription of viral genomes is unlikely to be a significant factor in breast cancer pathogenesis. PMID:26658849

  12. Mutations in p53 as potential molecular markers for human breast cancer

    SciTech Connect

    Runnebaum, I.B.; Nagarajan, M.; Bowman, M.; Soto, D.; Sukumar, S. )

    1991-12-01

    Based on the high incidence of loss of heterozygosity for loci on chromosome 17p in the vicinity of the p53 locus in human breast tumors. The authors investigated the frequency and effects of mutations in the p53 tumor suppressor gene in mammary neoplasia. They examined the p53 gene in 20 breast cancer cell lines and 59 primary breast tumors. Northern blot analysis, immunoprecipitation, and nucleotide sequencing analysis revealed aberrant mRNA expression, over-expression of protein, and point mutations in the p53 gene in 50% of the cell line tested. A multiplex PCR assay was developed to search for deletions in the p53 genomic locus. Multiplex PCR of genomic DNA showed that up to 36% of primary tumors contained aberrations in the p53 locus. Mutations in exons 5-9 of the p53 gene were found in 10 out of 59 (17%) of the primary tumors studied by single-stranded conformation polymorphism analysis. They conclude that, compared to amplification of HER2/NEU, MYC, or INT2 oncogene loci, p53 gene mutations and deletions are the most frequently observed genetic change in breast cancer related to a single gene. Correlated to disease status, p53 gene mutations could prove to be a valuable marker for diagnosis and/or prognosis of breast neoplasia.

  13. First evidence that Ecklonia cava-derived dieckol attenuates MCF-7 human breast carcinoma cell migration.

    PubMed

    Kim, Eun-Kyung; Tang, Yujiao; Kim, Yon-Suk; Hwang, Jin-Woo; Choi, Eun-Ju; Lee, Ji-Hyeok; Lee, Seung-Hong; Jeon, You-Jin; Park, Pyo-Jam

    2015-04-01

    We investigated the effect of Ecklonia cava (E. cava)-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6'-biecko, and 2,7?-phloroglucinol-6,6'-bieckol) were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius-well was used to assess cell migration, and dieckol (1-100 M) was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP)-9 and vascular endothelial growth factor (VEGF). On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect ofdieckol. PMID:25830682

  14. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines.

    PubMed

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER(+) and ER(-) breast cancer cell lines. PMID:26188095

  15. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer

    NASA Astrophysics Data System (ADS)

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent.

  16. No association between HPV positive breast cancer and expression of human papilloma viral transcripts.

    PubMed

    Gannon, Orla M; Antonsson, Annika; Milevskiy, Michael; Brown, Melissa A; Saunders, Nicholas A; Bennett, Ian C

    2015-01-01

    Infectious agents are thought to be responsible for approximately 16% of cancers worldwide, however there are mixed reports in the literature as to the prevalence and potential pathogenicity of viruses in breast cancer. Furthermore, most studies to date have focused primarily on viral DNA rather than the expression of viral transcripts. We screened a large cohort of fresh frozen breast cancer and normal breast tissue specimens collected from patients in Australia for the presence of human papilloma virus (HPV) DNA, with an overall prevalence of HPV of 16% and 10% in malignant and non-malignant tissue respectively. Samples that were positive for HPV DNA by nested PCR were screened by RNA-sequencing for the presence of transcripts of viral origin, using three different bioinformatic pipelines. We did not find any evidence for HPV or other viral transcripts in HPV DNA positive samples. In addition, we also screened publicly available breast RNA-seq data sets for the presence of viral transcripts and did not find any evidence for the expression of viral transcripts (HPV or otherwise) in other data sets. This data suggests that transcription of viral genomes is unlikely to be a significant factor in breast cancer pathogenesis. PMID:26658849

  17. Anticancer Activity of Curcumin on Human Breast Adenocarcinoma: Role of Mcl-1 Gene

    PubMed Central

    Khazaei Koohpar, Zeinab; Entezari, Maliheh; Movafagh, Abolfazl; Hashemi, Mehrdad

    2015-01-01

    Background: Breast cancer is the second leading cause of cancer-related death among females in the world. To date, chemotherapy has been the most frequently used treatment for breast cancer and other cancers. However, some natural products have been used, as alternative treatments for cancers including breast cancer, due to their wide range of biological activities and low toxicity in animal models. Objectives: The present study examined the anti-proliferative activity of curcumin and its effect(s) on the apoptosis of breast cancer cells. Materials and Methods: This study was performed by an in vitro assay and the anticancer effects of curcumin were determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide). We used quantitative real time Polymerase Chain Reaction (PCR) for detection of Mcl-1 gene expression in treated groups and then compared them to control samples. Results: In the treatment group, there were higher levels of cell death changes than the control group. The results also showed that the Mcl-1 gene expression declined in the tested group as compared to the control group. Conclusions: Our present findings indicated that curcumin significantly inhibited the growth of human breast cancer cell MCF-7 by inducing apoptosis in a dose- and time- dependent manner, accompanied by a decrease in MCF-7 cell viability. Furthermore, our results showed that quantitative real-time PCR could be used as a direct method for detection Mcl-1 gene expression in tested samples and normal samples. PMID:26413251

  18. Sulforaphane Causes Epigenetic Repression of hTERT Expression in Human Breast Cancer Cell Lines

    PubMed Central

    Meeran, Syed M.; Patel, Shweta N.; Tollefsbol, Trygve O.

    2010-01-01

    Background Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, is a common dietary component that has histone deacetylase inhibition activity and exciting potential in cancer prevention. The mechanisms by which SFN imparts its chemopreventive properties are of considerable interest and little is known of its preventive potential for breast cancer. Principal Findings We found that SFN significantly inhibits the viability and proliferation of breast cancer cells in vitro while it has negligible effects on normal breast cells. Inhibition of telomerase has received considerable attention because of its high expression in cancer cells and extremely low level of expression in normal cells. SFN treatment dose- and time-dependently inhibited human telomerase reverse transcriptase (hTERT), the catalytic regulatory subunit of telomerase, in both MCF-7 and MDA-MB-231 human breast cancer cells. DNA methyltransferases (DNMTs), especially DNMT1 and DNMT3a, were also decreased in SFN-treated breast cancer cells suggesting that SFN may repress hTERT by impacting epigenetic pathways. Down-regulation of DNMTs in response to SFN induced site-specific CpG demethylation occurring primarily in the first exon of the hTERT gene thereby facilitating CTCF binding associated with hTERT repression. Chromatin immunoprecipitation (ChIP) analysis of the hTERT promoter revealed that SFN increased the level of active chromatin markers acetyl-H3, acetyl-H3K9 and acetyl-H4, whereas the trimethyl-H3K9 and trimethyl-H3K27 inactive chromatin markers were decreased in a dose-dependent manner. SFN-induced hyperacetylation facilitated the binding of many hTERT repressor proteins such as MAD1 and CTCF to the hTERT regulatory region. Depletion of CTCF using siRNA reduced the SFN-induced down-regulation of hTERT mRNA transcription in these breast cancer cells. In addition, down-regulation of hTERT expression facilitated the induction of cellular apoptosis in human breast cancer cells. Significance Collectively, our results provide novel insights into SFN-mediated epigenetic down-regulation of telomerase in breast cancer prevention and may open new avenues for approaches to SFN-mediated cancer prevention. PMID:20625516

  19. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    PubMed Central

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang, Yi-Wen; Zuo, Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-01-01

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ER? signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ER? was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ER?-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ER?-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells. PMID:20678512

  20. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells.

    PubMed

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E; Huang, Yi-Wen; Zuo, Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H-M

    2010-10-15

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ER? signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ER? was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ER?-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ER?-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells. PMID:20678512

  1. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    SciTech Connect

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-10-15

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ER{alpha} signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ER{alpha} was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ER{alpha}-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ER{alpha}-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  2. The PDZ protein TIP-1 facilitates cell migration and pulmonary metastasis of human invasive breast cancer cells in athymic mice

    SciTech Connect

    Han, Miaojun; Graduate School, Chinese Academy of Sciences, Beijing; Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN 37232 ; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong; Department of Cancer Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232; Vanderbilt-Ingram Cancer Center, School of Medicine, Vanderbilt University, Nashville, TN 37232

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer This study has revealed novel oncogenic functions of TIP-1 in human invasive breast cancer. Black-Right-Pointing-Pointer Elevated TIP-1 expression levels in human breast cancers correlate to the disease prognosis. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the cell migration and pulmonary metastasis of human breast cancer cells. Black-Right-Pointing-Pointer TIP-1 knockdown suppressed the expression and functionality of motility-related genes. -- Abstract: Tax-interacting protein 1 (TIP-1, also known as Tax1bp3) inhibited proliferation of colon cancer cells through antagonizing the transcriptional activity of beta-catenin. However, in this study, elevated TIP-1 expression levels were detected in human invasive breast cancers. Studies with two human invasive breast cancer cell lines indicated that RNAi-mediated TIP-1 knockdown suppressed the cell adhesion, proliferation, migration and invasion in vitro, and inhibited tumor growth in mammary fat pads and pulmonary metastasis in athymic mice. Biochemical studies showed that TIP-1 knockdown had moderate and differential effects on the beta-catenin-regulated gene expression, but remarkably down regulated the genes for cell adhesion and motility in breast cancer cells. The decreased expression of integrins and paxillin was accompanied with reduced cell adhesion and focal adhesion formation on fibronectin-coated surface. In conclusion, this study revealed a novel oncogenic function of TIP-1 suggesting that TIP-1 holds potential as a prognostic biomarker and a therapeutic target in the treatment of human invasive breast cancers.

  3. Development and validation of a test for environmental estrogens: Checking xeno-estrogen activity by CXCL12 secretion in BREAST CANCER CELL LINES (CXCL-test).

    PubMed

    Habauzit, D; Boudot, A; Kerdivel, G; Flouriot, G; Pakdel, F

    2010-10-01

    Several methods have been developed to evaluate and quantify the effects of Endocrine disruptor chemicals (EDC). Nevertheless, most of these methods are time-consuming or not enough sensitive to detect EDC at the environmental range. To link the biological effect of tested EDC to natural protein secretion, we have developed a new screening method based on the secretion of the cytokine CXCL12 (or SDF-1, Stroma-cell Derived Factor 1), which plays a capital role in cell survival and migration. We have demonstrated that CXCL12 secretion is regulated by estrogenic compounds in a dose-dependent way in ER-positive breast cancer cell lines (MCF-7 and T47D). By combining cell culture and ELISA test, we used this up-regulation of CXCL12 secretion to test several major environmental contaminants. Our results showed that 17?-estradiol (from 10(-11) M), 17?-ethynylestradiol (from 10(-12) M), genistein (from 10(-8) M) and bisphenol A (from 10(-6) M) dose-regulate CXCL12 secretion in T47D. In contrast, antiestrogens, raloxifen and 4-hydroxytamoxifen, had no effect on the CXCL12 secretion, but were able to inhibit E2 effect. Moreover, we used cell proliferation assays to evaluate the effect of these different compounds on the growth of T47D cells. We found strong correlation (P = 0.7) between proliferation and CXCL12 secretion. However CXCL12 secretion was as sensitive as cell proliferation assays but appeared more rapid. Thus, this bioassay named CXCL-test (for Checking Xeno-estrogen activity by CXCL12 secretion in breast cancer cell Lines) constitutes a fast and sensitive method for the detection of estrogenic compounds allowing in 14 h to achieve a detection limit of 10(-11) M of E2 (2.7 ng/L). PMID:20549624

  4. Human Epidermal Growth Factor Receptor Family-Targeted Therapies in the Treatment of HER2-Overexpressing Breast Cancer

    PubMed Central

    Eroglu, Zeynep; Tagawa, Tomoko

    2014-01-01

    Breast cancer characterized by overexpression of human epidermal growth factor receptor 2 (HER2) has been associated with more aggressive disease progression and a poorer prognosis. Although an improved understanding of breast cancer pathogenesis and the role of HER2 signaling has resulted in significant survival improvements in the past 20 years, resistance to HER2-targeted therapy remains a concern. A number of strategies to prevent or overcome resistance to HER2-targeted therapy in breast cancer are being evaluated. This article provides a comprehensive review of (a) the role of HER2 signaling in breast cancer pathogenesis, (b) potential receptor and downstream therapeutic targets in breast cancer to overcome resistance to HER2-targeted therapy, and (c) clinical trials evaluating agents targeting one or more members of the HER family and/or downstream pathways for the treatment of breast cancer, with a focus on metastatic disease. PMID:24436312

  5. Estrogenic and DNA-damaging activity of Red No. 3 in human breast cancer cells.

    PubMed Central

    Dees, C; Askari, M; Garrett, S; Gehrs, K; Henley, D; Ardies, C M

    1997-01-01

    Exposure to pesticides, dyes, and pollutants that mimic the growth promoting effects of estrogen may cause breast cancer. The pesticide DDT and the food colorant Red No. 3 were found to increase the growth of HTB 133 but not estrogen receptor (ER) negative human breast cells (HTB 125) or rat liver epithelial cells (RLE). Red No. 3, beta-estradiol, and DDT increase ER site-specific DNA binding to the estrogen response element in HTB 133 cells and increase cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells. Site-specific DNA binding by p53 in RLE, HTB 125, HTB 133, and MCF-7 cells was increased when they were treated with Red No. 3, which suggests that cellular DNA was damaged by this colorant. Red No. 3 increased binding of the ER from MCF-7 cells to the estrogen-responsive element. Consumption of Red No. 3, which has estrogenlike growth stimulatory properties and may be genotoxic, could be a significant risk factor in human breast carcinogenesis. Images Figure 4. A Figure 4. B Figure 5. A Figure 5. B Figure 6. Figure 7. A Figure 7. B Figure 7. C PMID:9168006

  6. COOPERATIVITY OF THE MUC1 ONCOPROTEIN AND STAT1 PATHWAY IN POOR PROGNOSIS HUMAN BREAST CANCER

    PubMed Central

    Khodarev, Nikolai; Ahmad, Rehan; Rajabi, Hasan; Pitroda, Sean; Kufe, Turner; McClary, Cain; Joshi, Maya Datt; MacDermed, Dhara; Weichselbaum, Ralph; Kufe, Donald

    2009-01-01

    Signal transducer and activator of transcription 1 (STAT1) is activated in the inflammatory response to interferons. The MUC1 oncoprotein is overexpressed in human breast cancers. Analysis of genes differentially expressed in MUC1-transformed cells has identified a network linking MUC1 and STAT1 that is associated with cellular growth and inflammation. The results further demonstrate that the MUC1-C subunit associates with STAT1 in cells and that the MUC1-C cytoplasmic domain binds directly to the STAT1 DNA binding domain. The interaction between MUC1-C and STAT1 is inducible by IFN? in non-malignant epithelial cells and constitutive in breast cancer cells. Moreover, the MUC1-STAT1 interaction contributes to the activation of STAT1 target genes, including MUC1 itself. Analysis of two independent databases demonstrated that MUC1 and STAT1 are coexpressed in about 15% of primary human breast tumors. Coexpression of MUC1 and the STAT1 pathway was found to be significantly associated with decreased recurrence-free and overall survival. These findings indicate that (i) MUC1 and STAT1 function in an auto-inductive loop, and (ii) activation of both MUC1 and the STAT1 pathway in breast tumors confers a poor prognosis for patients. PMID:19915608

  7. Cooperativity of the MUC1 oncoprotein and STAT1 pathway in poor prognosis human breast cancer.

    PubMed

    Khodarev, N; Ahmad, R; Rajabi, H; Pitroda, S; Kufe, T; McClary, C; Joshi, M D; MacDermed, D; Weichselbaum, R; Kufe, D

    2010-02-11

    Signal transducer and activator of transcription 1 (STAT1) is activated in the inflammatory response to interferons. The MUC1 oncoprotein is overexpressed in human breast cancers. Analysis of genes differentially expressed in MUC1-transformed cells has identified a network linking MUC1 and STAT1 that is associated with cellular growth and inflammation. The results further show that the MUC1-C subunit associates with STAT1 in cells and the MUC1-C cytoplasmic domain binds directly to the STAT1 DNA-binding domain. The interaction between MUC1-C and STAT1 is inducible by IFNgamma in non-malignant epithelial cells and constitutive in breast cancer cells. Moreover, the MUC1-STAT1 interaction contributes to the activation of STAT1 target genes, including MUC1 itself. Analysis of two independent databases showed that MUC1 and STAT1 are coexpressed in about 15% of primary human breast tumors. Coexpression of MUC1 and the STAT1 pathway was found to be significantly associated with decreased recurrence-free and overall survival. These findings indicate that (i) MUC1 and STAT1 function in an auto-inductive loop, and (ii) activation of both MUC1 and the STAT1 pathway in breast tumors confers a poor prognosis for patients. PMID:19915608

  8. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    SciTech Connect

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  9. Quantitation of fixative-induced morphologic and antigenic variation in mouse and human breast cancers.

    PubMed

    Cardiff, Robert D; Hubbard, Neil E; Engelberg, Jesse A; Munn, Robert J; Miller, Claramae H; Walls, Judith E; Chen, Jane Q; Velsquez-Garca, Hctor A; Galvez, Jose J; Bell, Katie J; Beckett, Laurel A; Li, Yue-Ju; Borowsky, Alexander D

    2013-04-01

    Quantitative Image Analysis (QIA) of digitized whole slide images for morphometric parameters and immunohistochemistry of breast cancer antigens was used to evaluate the technical reproducibility, biological variability, and intratumoral heterogeneity in three transplantable mouse mammary tumor models of human breast cancer. The relative preservation of structure and immunogenicity of the three mouse models and three human breast cancers was also compared when fixed with representatives of four distinct classes of fixatives. The three mouse mammary tumor cell models were an ER+/PR+ model (SSM2), a Her2+ model (NDL), and a triple negative model (MET1). The four breast cancer antigens were ER, PR, Her2, and Ki67. The fixatives included examples of (1) strong cross-linkers, (2) weak cross-linkers, (3) coagulants, and (4) combination fixatives. Each parameter was quantitatively analyzed using modified Aperio Technologies ImageScope algorithms. Careful pre-analytical adjustments to the algorithms were required to provide accurate results. The QIA permitted rigorous statistical analysis of results and grading by rank order. The analyses suggested excellent technical reproducibility and confirmed biological heterogeneity within each tumor. The strong cross-linker fixatives, such as formalin, consistently ranked higher than weak cross-linker, coagulant and combination fixatives in both the morphometric and immunohistochemical parameters. PMID:23399853

  10. When fat becomes an ally of the enemy: adipose tissue as collaborator in human breast cancer.

    PubMed

    Lapeire, Lore; Denys, Hannelore; Cocquyt, Vronique; De Wever, Olivier

    2015-07-01

    Since the discovery of leptin in 1994, our vision of adipose tissue as a static organ regulating mainly lipid storage and release has been completely overthrown, and adipose tissue is now seen as an active and integral organ in human physiology. In the past years, extensive research has tremendously given us more insights in the mechanisms and pathways involved not only in normal but also in 'sick' adipose tissue, for example, in obesity and lipodystrophy. With growing evidence of a link between obesity and several types of cancer, research focusing on the interaction between adipose tissue and cancer has begun to unravel the interesting but complex multi-lateral communication between the different players. With breast cancer as one of the first cancer types where a positive correlation between obesity and