Science.gov

Sample records for t47d human breast

  1. Human T47D-ERβ breast cancer cells with tetracycline-dependent ERβ expression reflect ERα/ERβ ratios in rat and human breast tissue.

    PubMed

    Evers, N M; van de Klundert, T M C; van Aesch, Y M; Wang, S; de Roos, W K; Romano, A; de Haan, L H J; Murk, A J; Ederveen, A G H; Rietjens, I M C M; Groten, J P

    2013-09-01

    T47D-ERβ breast cancer cells with tetracycline-dependent ERβ expression and constant ERα expression can be used to investigate effects of varying ERα/ERβ ratios on estrogen-induced cellular responses. This study defines conditions at which ERα/ERβ ratios in T47D-ERβ cells best mimic ERα/ERβ ratios in breast and other estrogen-sensitive tissues in vivo in rat as well as in human. Protein and mRNA levels of ERα and ERβ were analyzed in T47D-ERβ cells exposed to a range of tetracycline concentrations and compared to ERα and ERβ levels found in breast, prostate, and uterus from rat and human origin. The ERα/ERβ ratio in T47D-ERβ cells exposed to >150ng/ml tetracycline is comparable to the ratio found in rat mammary gland and in human breast tissue. The ERα/ERβ ratio of other estrogen-sensitive rat and human tissues can also be mimicked in T47D-ERβ cells. The ERα/ERβ ratio found in MCF-7 and native T47D breast cancer cell lines did not reflect ratios in analyzed rat and human tissues, which further supports the use of T47D-ERβ cells as model for estrogen-responsive tissues. Using 17β-estradiol and the T47D-ERβ cells under the conditions defined to mimic various tissues it could be demonstrated how these different tissues vary in their proliferative response. PMID:23680332

  2. Anticancer effect of ethanol Lycium barbarum (Goji berry) extract on human breast cancer T47D cell line.

    PubMed

    Wawruszak, Anna; Czerwonka, Arkadiusz; Okła, Karolina; Rzeski, Wojciech

    2016-09-01

    The anticancer activity of ethanol extract isolated from Goji berry (EEGB) on T47D human breast cancer cell line has been reported. Cell viability and cell proliferation were examined with the use of BrdU, MTT and NR methods. Induction of apoptosis was assessed by propidium iodide and Hoechst 33342 staining. Expression of genes involved in cell proliferation, apoptosis, cell cycle control and regulation of transcription was estimated using Western blotting analysis. EEGB inhibited the proliferation of breast cancer cells in a time-, and dose-dependent manner. The study confirmed the lack of EEGB cytotoxic activity to normal human skin fibroblasts. Western blot analysis demonstrated an increase in pro-apoptotic and a decrease in anti-apoptotic proteins' expression in cells treated with the extract. Anticancer activity and lack of toxicity against normal cells indicate a chemopreventive potential of Goji berries in breast cancer treatment. PMID:26525080

  3. Induction of Mitochondria Mediated Apoptosis in Human Breast Cancer Cells (T-47D) by Annona reticulata L. Leaves Methanolic Extracts.

    PubMed

    Roham, Pratiksha H; Kharat, Kiran R; Mungde, Priyanka; Jadhav, Mahadev A; Makhija, Surinder J

    2016-01-01

    Annona reticulata Linn. (Common name: Bullock's-heart) (Annonaceae family) is a semi-evergreen and small deciduous tree. The extracts of various parts of Annona reticulata L. have been reported as cytotoxic to many cancer cells. Annona reticulata L. leaves' methanolic extract (ARME) was prepared and used against the breast cancer cells. The breast cancer cells (T-47D) viability and IC50 were evaluated by Vybrant® MTT Cell Proliferation Assay Kit. Detection of phosphatidylserine on membranes of apoptotic cells was done by Attune flow cytometer. RNA transcripts were quantified in ARME treated and untreated cells. Finally, the Vybrant® FAM Poly Caspases assay kit was used for analysis of polycaspases activity in T-47D cells. The IC50 (5 ± 0.5 µg/mL) of the ARME was found against breast cancer cells (T-47D). The Paclitaxel was used as a control standard drug for the study. The downregulation of Bcl-2 and upregulation of Bax and Bak, and caspases activation suggested induction of apoptosis in T-47D cells by ARME through mitochondrial pathway. The cell cycle halted at G2/M phase in the ARME treated cells. The ARME was found to be effective against Breast cancer cells (T-47D). PMID:26908199

  4. Variant T47D human breast cancer cells with high progesterone-receptor levels despite estrogen and antiestrogen resistance.

    PubMed

    Horwitz, K B; Mockus, M B; Lessey, B A

    1982-03-01

    In target tissues for estrogen, including breast cancer cells, the synthesis of progesterone receptors (PRs) is controlled by estradiol acting through estrogen receptors (ERs). We describe studies with T47D human breast cancer cells, whose PRs are not regulated by estradiol, though present in extraordinary amounts (300,000 sites per cell). These cells have no ERs sedimenting at 8S on sucrose density gradients, and no unfilled cytoplasmic or nuclear ERs; some apparently hormone-filled nuclear sites, with KD congruent to 0.7 nM, can be demonstrated by exchange. The nuclear ER sites are not processed after estradiol treatment. Nafoxidine, however, doubles nuclear estrogen binding in 6 hr, in a cycloheximide-insensitive step that may represent a reversal of processing. T47D cells are profoundly resistant to estrogens and antiestrogens; estradiol does not stimulate PRs, and nafoxidine concentrations that are cytotoxic to ER-positive cells have no effect on cell growth or on PR levels. Yet the PRs are normal by several criteria, and they can be stoichiometrically translocated to, and extracted from, nuclei in the first 3 min after progesterone addition. If progesterone treatment exceeds 10 min, rapid nuclear turnover prevents quantitative PR recovery. Cytoplasmic PRs are replenished in 10 to 24 hr, and this cycloheximide-sensitive step is also estrogen- and nafoxidine-resistant. However, despite their insensitivity to estradiol or antiestrogen, PRs are not constitutively synthesized; 5-bromodeoxyuridine and sodium butyrate can selectively inhibit PR production. Thus, since PRs retain some characteristics of inducible proteins, the persistent nuclear estrogen-binding sites may be stimulating PRs continuously, even in the absence of exogenous estradiol. PMID:7200400

  5. In vivo phosphorylation of progesterone receptors in the T47D sub co human breast cancer cell line

    SciTech Connect

    Sheridan, P.L.

    1989-01-01

    We have had evidence indicating that human progesterone receptors (PR) are phosphoproteins, and used metabolic labeling with ({sup 35}S)methionine and ({sup 32}P)orthophosphate to study the synthesis, structure, and phosphorylation of PR in T47D{sub co} human breast cancer cells, a cell line extremely rich for PR. Human PR exist as two independent hormone-binding proteins; B-receptors which are triplets in SDS-gels (M{sub r} 114, 117, and 120 kDa), and A-receptors that are a single band (94 kDa). The work presented here documents that human A- and B-receptors are phosphorylated on serine residues in the untransformed state, with phosphate being incorporated into all three bands of the B-proteins. However, a brief ({sup 35}S)methionine pulse shows that both A and B are synthesized as singlets of 94 and 114 kDa, respectively. The B-triplet is formed post-translationally by slow phosphorylation. B-triplet formation, or maturation, can be reversed by treatment with calf alkaline phosphatase or stabilized by the presence of phosphatase inhibitors. Additional ({sup 35}S)labeling studies in the presence of progestins demonstrate that receptors that are 15 min old are able to bind hormone and transform to the tight nuclear binding state.

  6. Progesterone receptor replenishment in T47D human breast cancer cells. Roles of protein synthesis and hormone metabolism.

    PubMed

    Horwitz, K B; Mockus, M B; Pike, A W; Fennessey, P V; Sheridan, R L

    1983-06-25

    T47D are unusual human breast cancer cells that do not require estrogen to synthesize high levels of progesterone receptors. These cells can, therefore, be used to study the mechanisms by which progesterone, freed of estrogen interference, controls the synthesis of its receptors. In a recent paper we described progesterone receptor translocation and a subsequent very rapid nuclear processing step that results in an apparent loss of 60 to 80% of cellular progesterone receptors, 30 to 60 min after progesterone treatment. This paper deals with the replenishment of cellular receptors following processing. If progesterone is removed from cells after 60 min of treatment, cytoplasmic progesterone receptors replenish in 16 to 20 h. However, replenishment occurs even during chronic progesterone treatment; this is an artifact created by the extremely rapid (t1/2 approximately 2 h) metabolism of progesterone in media exposed to cells. If progesterone metabolism is blocked, then replenishment is not seen, probably because the hormone continuously retranslocates the newly replenished sites. There is an early protein synthesis-dependent step; cycloheximide in the first 4 h inhibits replenishment 24 h later, but if cycloheximide is slightly delayed (beyond 4 h), replenishment proceeds normally. In contrast to progesterone, the synthetic progestin R5020 completely suppresses progesterone receptor replenishment even 96 h after its removal from the medium. This compound can bind covalently to receptors and may be very difficult to remove from cells. Clearly, progestin treatment, and by analogy, circulating progesterone, will have profound effects on cytoplasmic and nuclear progesterone receptor levels when these are measured in biopsied human tumors as an adjunct to endocrine therapy. PMID:6683273

  7. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    PubMed Central

    Barzegar, Elmira; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Atashpour, Shekoufeh; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, flow cytometry analysis was performed to evaluate the cell cycle alteration and apoptosis induction in these cell lines following exposure to berberine and doxorubicin alone and in combination. Results: The IC50 of berberine was determined to be 25 µM after 48 hr of treatment in both cell lines but for doxorubicin it was 250 nM and 500 nM in T47D and MCF-7 cell lines, respectively. Co-treatment with berberine and doxorubicin increased cytotoxicity in T47D cells more significantly than in MCF-7 cells. Flow cytometry results demonstrated that berberine alone or in combination with doxorubicin induced G2/M arrest in the T47D cells, but G0/G1 arrest in the MCF-7 cells. Doxorubicin alone induced G2/M arrest in both cell lines. Furthermore, berberine and doxorubicin alone or in combination significantly induced apoptosis in both cell lines. Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer. PMID:26019795

  8. Regulation of insulin-like growth factor (IGF) binding protein-5 in the T47D human breast carcinoma cell line by IGF-I and retinoic acid.

    PubMed

    Shemer, J; Yaron, A; Werner, H; Shao, Z M; Sheikh, M S; Fontana, J A; LeRoith, D; Roberts, C T

    1993-11-01

    The T47D human breast carcinoma cell line has been shown to synthesize insulin-like growth factor-I (IGF-I) binding proteins (IGFBPs) and IGF-I receptors, and to exhibit a mitogenic response to exogenous IGF-I. We have used T47D cells to investigate the regulation of IGFBPs by IGF-I and retinoic acid (RA), agents that affect cell proliferation and have been shown to regulate IGFBP levels in other cell types. Exposure of T47D cells to IGF-I resulted in the appearance of IGFBP-2, -4, and -5 in conditioned medium but had no effect on the levels of IGFBPs in Triton X-100-extracted cells. This effect was most pronounced for IGFBP-5 and was also elicited by an IGF-I analog that retains affinity for IGFBPs but not by insulin or IGF analogs that have decreased affinity for IGFBPs. Additionally, this effect was not associated with a change in IGFBP-5 messenger RNA (mRNA) levels; however, the appearance of IGFBP-5 in the conditioned medium was inhibited by an anti-IGF-I receptor antibody (alpha IR-3). RA decreased IGFBP-5 mRNA levels and cell-associated IGFBP-5 in both the presence and absence of IGF-I and inhibited the IGF-I-stimulated secretion of IGFBP-5 into T47D cell conditioned medium. These results suggest that IGF-I increases IGFBP-5 levels in the T47D cell line both through direct interaction with IGFBP-5 as well as through a receptor-mediated process that does not require direct interaction with IGFBPs. The latter results are consistent with an effect of IGF-I on a factor that may modulate an IGFBP protease activity. The inhibitory effect of RA, on the other hand, appears to be due primarily to regulation of IGFBP-5 mRNA levels. Thus, IGFBP-5 accumulation appears to be positively regulated by IGF-I, potentially at the level of susceptibility to proteolysis, and negatively regulated at the level of gene expression by RA. PMID:7521344

  9. Effect of nomegestrol acetate on human estrogen sulfotransferase activity in the hormone-dependent MCF-7 and T-47D breast cancer cell lines.

    PubMed

    Chetrite, Gérard Samuel; Paris, Jacques; Shields-Botella, Jacqueline; Philippe, Jean-Claude; Pasqualini, Jorge Raul

    2003-01-01

    Breast cancer cells possess all the enzymes involved in the last steps of estradiol (E2) bioformation, as well as in its transformation (e.g. sulfotransferases) for the conversion to estrogen sulfates (ES). As ES are biologically inactive, the formation of these conjugates is an important transformation pathway in the control of the hormone. In the present study, we explored the effect of nomegestrol acetate on the sulfotransferase activity in the hormone-dependent MCF-7 and T-47D human breast cancer cells. After 24-h incubation at 37 degrees C of physiological concentrations of estrone ([3H]-E1: 5 x 10(-9) mol/l), it was observed that the sulfotransferase activity was present in both cell lines, since the concentrations of estrogen sulfates found were 9.40 +/- 1.10 in MCF-7 cells and 6.65 +/- 0.72 in the T-47D cells. The presence of ES was found exclusively in the culture medium, which suggests that as soon as the sulfate is biosynthesized it is secreted into the medium. Nomegestrol acetate has a stimulatory effect on sulfotransferase activity: at low doses (5 x 10(-8) and 5 x 10(-7) mol/l) this compound strongly increases the activity of this enzyme by 60.6% and 83%, respectively, in the MCF-7 cells and by 69.2% at 5 x 10(-7) mol/l in T-47D cells. At a high concentration (5 x 10(-5) mol/l) the stimulatory effect of nomegestrol acetate on the sulfotransferase activity was only 5.4% and 6.1%, respectively, in MCF-7 and T-47D cells. In conclusion, the stimulation provoked at low doses by nomegestrol acetate on the estrogen sulfotransferase activity involved in the biosynthesis of the biologically inactive estrogen sulfates in hormone-dependent breast cancer cells is an important effect of this progestin and can open attractive clinical applications. PMID:14981909

  10. The Comparison of The Effects of Silybin and Silybin-Phosphatidylcholine on Viability and ESR Expression in Human Breast Cancer T47D Cell Line

    PubMed Central

    Mahmoodi, Narges; Motamed, Nasrin; Paylakhi, Seyed Hassan

    2014-01-01

    Objective Silybin is a polyphenol with anti-oxidant and anti-cancer properties. The poor bioavailability of some polyphenols can be improved by binding to phosphatidylcholine. In recent years, studies have been conducted to evaluate the anti-cancer effect of silybin. We studied the effect of silybin and silybin-phosphatidylcholine on ESR1 and ESR2 gene expression and viability in the T47D breast cancer cell line. Materials and Methods In this experimental study, a 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide test (MTT test) was used to determine doses for cell treatment, and the gene expression was analyzed by real-time reverse transcriptase-polymerase chain reaction (real-time RT- PCR). Results Significant dose- and time-dependent cell growth inhibitory effects of silybin and silybin-phosphatidylcholine along with ESR1 down-regulation were observed in T47D cells. In contrast to ESR1, the T47D cell line showed negligible ESR2 expression. Conclusion This study suggests that silybin and silybin-phosphatidylcholine down-regulate ESR1 in ER+breast cancers. Results also show that in the T47D cell line, silybindown-regulation of ESR1 compared with silybin. PMID:24611152

  11. Perfluorinated chemicals, PFOS and PFOA, enhance the estrogenic effects of 17β-estradiol in T47D human breast cancer cells.

    PubMed

    Sonthithai, Pacharapan; Suriyo, Tawit; Thiantanawat, Apinya; Watcharasit, Piyajit; Ruchirawat, Mathuros; Satayavivad, Jutamaad

    2016-06-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the two most popular surfactants among perfluorinated compounds (PFCs), with a wide range of uses. Growing evidence suggests that PFCs have the potential to interfere with estrogen homeostasis, posing a risk of endocrine-disrupting effects. This in vitro study aimed to investigate the estrogenic effect of these compounds on T47D hormone-dependent breast cancer cells. PFOS and PFOA (10(-12) to 10(-4)  M) were not able to induce estrogen response element (ERE) activation in the ERE luciferase reporter assay. The ERE activation was induced when the cells were co-incubated with PFOS (10(-10) to 10(-7)  M) or PFOA (10(-9) to 10(-7)  M) and 1 nM of 17β-estradiol (E2). PFOS and PFOA did not modulate the expression of estrogen-responsive genes, including progesterone (PR) and trefoil factor (pS2), but these compounds enhanced the effect of E2-induced pS2 gene expression. Neither PFOS nor PFOA affected T47D cell viability at any of the tested concentrations. In contrast, co-exposure with PFOS or PFOA and E2 resulted in an increase of E2-induced cell viability, but no effect was found with 10 ng ml(-1) EGF co-exposure. Both compounds also intensified E2-dependent growth in the proliferation assay. ERK1/2 phosphorylation was increased by co-exposure with PFOS or PFOA and E2, but not with EGF. Collectively, this study shows that PFOS and PFOA did not possess estrogenic activity, but they enhanced the effects of E2 on estrogen-responsive gene expression, ERK1/2 activation and the growth of the hormone-deprived T47D cells. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26234195

  12. Combination of imatinib and clotrimazole enhances cell growth inhibition in T47D breast cancer cells.

    PubMed

    Motawi, Tarek M K; Sadik, Nermin A H; Fahim, Sally A; Shouman, Samia A

    2015-05-25

    Imatinib mesylate (IM), a tyrosine kinase inhibitor, is used as targeted cancer therapy. However, mono-targeting by IM does not always achieve full tumor eradication and thus it is recommended to combine IM with other anticancer agents. Clotrimazole (CLT) is an antifungal azole derivative with promising anticancer effects due to inhibiting the activity of glycolytic enzymes. The present study aimed to evaluate the effect of combining CLT with IM on breast cancer cell line in an attempt to establish effective new combination. T47D human breast cancer cell line was treated with different concentrations of IM and/or CLT for 48 h. IM-CLT interaction was determined by isobologram equation and combination index. Cell viability was confirmed by measuring LDH activity. As indicators of glycolysis inhibition, the expression of hexokinase-2 (HK-2) and 6-phosphofructo-1-kinase (PFK-1) plus the activity of intracellular lactate dehydrogenase (LDH) and pyruvate kinase (PK) were determined. In addition, glucose consumption and adenosine triphosphate (ATP) production were measured. Moreover, nitric oxide (NO), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-α (HIF-α) were also determined as they are modulators for glycolysis. This study demonstrated that IM or CLT synergistically inhibited cell growth in T47D as shown by combination and dose reduction indices. The combination of 15 μM IM and 20 μM CLT significantly decreased glucose consumption, activity of both PK and intracellular LDH, while increased leaked LDH, VEGF and NO in the medium compared to each drug alone. Furthermore the combination decreased gene expression of HK-2, PFK-1 and ATP content compared to the control. In conclusion, the synergistic effect of CLT on IM cytotoxicity in T47D cell line maybe mediated through inhibition of glycolysis and increasing both NO and VEGF. Further studies are required to confirm the efficiency and safety of this combination. PMID:25863232

  13. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    PubMed Central

    Wawruszak, Anna; Luszczki, Jarogniew J.; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers. PMID:26580554

  14. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells.

    PubMed

    Mahdi, Shah H A; Cheng, Huanyi; Li, Jinfeng; Feng, Renqing

    2015-10-01

    The contribution of Ca(2+) in TGF-β-induced EMT is poorly understood. We aimed to confirm the effect of TGF-β on the gene expression of intracellular calcium-handling proteins and to investigate the potential underlying mechanisms in TGF-β-induced EMT. T47D and MCF-7 cells were cultured in vitro and treated with TGF-β. The mRNA expression of EMT marker genes and intracellular calcium-handling proteins were quantified by qRT-PCR. qRT-PCR and Western blot analysis results verified the changes of EMT marker gene expression. Furthermore, we found that TGF-β induced cell morphological changes significantly with an increase of cell surface area and cell length. These results indicated that TGF-β induced EMT. The mRNA expression levels of SPCA1, SPCA2 and MCU were not influenced by TGF-β treatment, while NCX1 expression was decreased in T47D cells. In addition, the mRNA levels of SERCAs and IP3Rs were significantly changed due to TGF-β-induced EMT. The TGF-β-treated T47D cells exhibited markedly greater response to ATP than the control cells, and the descent velocity of cytosolic calcium concentration was faster in TGF-β-treated cells than in control cells. This is the first report to demonstrate that TGF-β-induced EMT in human breast cancer cells is associated with alterations in endoplasmic reticulum calcium homeostasis. PMID:26247838

  15. Methanolic extract of Pereskia bleo (Kunth) DC. (Cactaceae) induces apoptosis in breast carcinoma, T47-D cell line.

    PubMed

    Tan, M L; Sulaiman, S F; Najimuddin, N; Samian, M R; Muhammad, T S Tengku

    2005-01-01

    Currently, breast cancer is the leading cause of cancer-related death in women. Therefore, there is an urgent need to develop alternative therapeutic measures against this deadly disease. Here, we report the cytotoxicity activity and the mechanism of cell death exhibited by the methanol extract prepared from Pereskia bleo (Kunth) DC. (Cactaceae) plant against human breast carcinoma cell line, T-47D. In vitro cytotoxicity screening of methanol extract of Pereskia bleo plant indicated the presence of cytotoxicity activity of the extract against T-47D cells with EC50 of 2.0 microg/ml. T-47D cell death elicited by the extract was found to be apoptotic in nature based a clear indication of DNA fragmentation which is a hallmark of apoptosis. In addition, ultrastructural analysis also revealed apoptotic characteristics (the presence of chromatin margination and apoptotic bodies) in the extract-treated cells. RT-PCR analysis showed the mRNA expression levels of c-myc, and caspase 3 were markedly increased in the cells treated with the plant extract. However, p53 expression was only slightly increased as compared to caspase 3 and c-myc. Thus, the results from this study strongly suggest that the methanol extract of Pereskia bleo may contain bioactive compound(s) that caused breast carcinoma, T-47D cell death by apoptosis mechanism via the activation of caspase-3 and c-myc pathways. PMID:15588681

  16. Synthesis of novel 1,8-acridinediones derivatives: Investigation of MDR reversibility on breast cancer cell lines T47D and tamoxifen-resistant T47D.

    PubMed

    Moallem, S A; Dehghani, N; Mehri, S; Shahsavand, Sh; Alibolandi, M; Hadizadeh, F

    2015-01-01

    Multi drug resistance (MDR) is a serious obstacle in the management of breast cancer. Therefore, overcoming MDR using novel anticancer agents is a top priority for medicinal chemists. It was found that dihydropyridines lacking calcium antagonistic activity (e.g acridinediones) possess MDR modifier potency. In this study, the capability of four novel acridine-1,8-diones derivatives 3a-d were evaluated as MDR reversing agents. In addition, the relationship between structural properties and biological effects of synthesized compounds was discussed. In vitro cytotoxicity of acridine-1,8-diones 3a-d derivatives in combination with doxorubicin (DOX) on T47D and tomoxifen-resistant T47D (TAMR-6) breast cancer cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Drug resistant index (DRI), which is equal to the ratio of IC50 in drug-resistant cells over IC50 in drug-sensitive cells, was calculated for each substance. Flowcytometry experiments were also implemented to distinguish cells undergoing apoptosis from those undergoing necrosis. The results from MTT and flowcytometry experiments indicated that 1 nM 3c derivative along with DOX significantly (P<0.05) increased the DOX cytotoxicity in T47D and TAMR-6 breast cancer cell lines. Synthesized compounds 3a and 3b also at concentrations of 1 nM with DOX significantly increased the cytotoxicity of DOX on T47D and TAMR-6 breast cancer cell lines. Meanwhile, 3d derivative with DOX did not exhibit good synergistic effect on cytotoxic activity of DOX, and slightly increased DOX cytotoxicity in both cell lines. Our results proposed that 3c may be an attractive lead compound for further development as a chemotherapeutic agent for MDR breast cancer therapy in combination with routine chemotherapeutic agents such as DOX. PMID:26600848

  17. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites

    SciTech Connect

    Spink, David C. Wu, Susan J.; Spink, Barbara C.; Hussain, Mirza M.; Vakharia, Dilip D.; Pentecost, Brian T.; Kaminsky, Laurence S.

    2008-02-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays to induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.

  18. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: roles of PAH interactions and PAH metabolites

    PubMed Central

    Spink, David C.; Wu, Susan J.; Spink, Barbara C.; Hussain, Mirza M.; Vakharia, Dilip D.; Pentecost, Brian T.; Kaminsky, Laurence S.

    2008-01-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 μM benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17β-estradiol (E2) metabolism, whereas BKF levels greater than 1 μM inhibited E2 metabolism. Time-course studies showed that induction of CYP1-catalyzed E2 metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays, to induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity. PMID:17919675

  19. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells.

    PubMed

    Kritsanawong, Somchai; Innajak, Sukanda; Imoto, Masaya; Watanapokasin, Ramida

    2016-05-01

    α-Mangostin extracted from mangosteen, Garcinia mangostana Linn. is known as 'queen of fruits'. The anticancer activity of α-mangostin through apoptosis induction and related signaling pathways in human breast cancer T47D cells was investigated. Human epidermal growth factor receptor 2 (HER2) and mitogen-activated protein kinase (MAPK) signaling have been shown to play important roles in apoptosis. The results showed that α-mangostin induced cell proliferation inhibition, DNA fragmentation, nuclear condensation, increased cleaved caspase-3 and cleaved caspase-9, but decreased Bcl-2 and Mcl-1 expression. Mitochondrial dysfunction and cytochrome c release were also detected. In addition, phosphorylation of ERα, HER2, PI3K, Akt and ERK1/2 were downregulated whereas p-JNK1/2 and p-p38 were upregulated. These results indicated that α-mangostin induced apoptosis associated with HER2/PI3K/Akt and MAPK signaling pathways suggesting that α-mangostin may be used as food supplement or a potential therapeutic compound for breast cancer. PMID:26892433

  20. Biotin uptake by T47D breast cancer cells: functional and molecular evidence of sodium-dependent multivitamin transporter (SMVT).

    PubMed

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2013-01-30

    /min, respectively. A band of SMVT mRNA at 774 bp was identified by RT-PCR analysis. Quantitative real time PCR confirmed higher expression of SMVT in T47D cells relative to MCF-12A cells. All these studies demonstrated for the first time the functional and molecular expression of sodium dependent multivitamin transporter (SMVT), a specific carrier-mediated system for biotin uptake, in human derived breast cancer (T47D) cells. The present study also indicated that cancer cells could import more vitamin compared to normal breast cells possibly for maintaining high proliferative status. We investigated the likelihood of selecting this cell line (T47D) as an in vitro cell culture model to study biotin-conjugated anti-cancer drugs/drug delivery systems. PMID:23142496

  1. Irreversible loss of the oestrogen receptor in T47D breast cancer cells following prolonged oestrogen deprivation.

    PubMed Central

    Pink, J. J.; Bilimoria, M. M.; Assikis, J.; Jordan, V. C.

    1996-01-01

    The development of antioestrogen resistance is a major clinical obstacle encountered in the treatment of breast cancer. By long-term growth in oestrogen-free medium, we have derived an oestrogen-independent, anti-oestrogen resistant cell line from the oestrogen receptor (ER)-positive, oestrogen-dependent T47D human breast cancer cell line. This cell line grows maximally in oestrogen-free medium and is resistant to all tested antioestrogens. This cell line does not express any measurable amounts of ER mRNA or protein and, in short-term studies, these cells show no response to either oestrogens or antioestrogens. However, return of these cells to oestrogen-containing medium for more than 8 weeks resulted in the re-expression of ER mRNA and protein. Subsequent limiting dilution subcloning of the T47D:C4 line revealed two phenotypically distinct clones, one which did not express measurable ER after long-term growth in oestrogen-containing medium and one which expressed ER mRNA and protein after a number of weeks in oestrogen-containing medium. In the absence of oestrogen, both types of cells are ER-negative as determined by Northern and Western blotting and lack of any oestrogen-dependent responses. The clone which re-expresses the ER (T47D:C4:5W) now responds to E2 with a 50% increase in growth and a 30-fold induction of an ER-responsive luciferase reporter construct. Long-term growth of the stably ER-negative clone (T47D:C4:2W) causes no measurable oestrogen-mediated responses, as assessed by ER expression, growth stimulation or luciferase induction. Interestingly, ER mRNA can be detected in both cell types by using reverse transcriptase-polymerase chain reaction (RT-PCR). This suggests that the ER mRNA present in the T47D:C4:2W clone is either inefficiently translated or is present at such a low level as to be functionally irrelevant. These novel clonal cell lines will prove to be invaluable in the study of the regulation of ER expression and regulatory pathways

  2. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton

    PubMed Central

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D.; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2) on T47-D ER+ breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, re-distribution of actin fibers toward the cell membrane was observed. However, when E4 was added to E2, an inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin–radixin–moesin family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr558, which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of estrogen receptor-α. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring ER modulator in the breast. PMID:24904530

  3. Effects of Estetrol on Migration and Invasion in T47-D Breast Cancer Cells through the Actin Cytoskeleton.

    PubMed

    Giretti, Maria Silvia; Montt Guevara, Maria Magdalena; Cecchi, Elena; Mannella, Paolo; Palla, Giulia; Spina, Stefania; Bernacchi, Guja; Di Bello, Silvia; Genazzani, Andrea Riccardo; Genazzani, Alessandro D; Simoncini, Tommaso

    2014-01-01

    Estetrol (E4) is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor (ER) modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2) on T47-D ER+ breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, re-distribution of actin fibers toward the cell membrane was observed. However, when E4 was added to E2, an inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin-radixin-moesin family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr(558), which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of estrogen receptor-α. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring ER modulator in the breast. PMID:24904530

  4. Bisphenol AF stimulates transcription and secretion of C-X-C chemokine ligand 12 to promote proliferation of cultured T47D breast cancer cells.

    PubMed

    Li, Ming; Han, Xiaoyu; Gao, Wenhui; Chen, Feng; Shao, Bing

    2015-12-01

    Bisphenol AF (4,4'-hexafluoroisopropylidene-2-diphenol, BPAF), an endocrine disruptor, has been shown to stimulate the proliferation of human breast cancer cells. However, the underlying mechanism has not been fully elucidated. We found that BPAF promoted the in vitro proliferation of estrogen receptor α (ERα)-positive breast cancer cells (T47D and MCF7), but not ERα-negative cells (MDA-MB-231 and MDA-MB-435s). BPAF significantly stimulated the proliferation of cultured T47D cell in a dose-dependent manner, and the half-maximal effective concentration (EC50) was approximately 123 nM. We employed lentivirus-mediated short hairpin RNA (shRNA) to knockdown ERα and ER antagonist ICI 182780 to inhibit ER activation, which resulted in the repression of BPAF-induced proliferation of T47D and MCF7 cells. We observed that C-X-C chemokine ligand 12 (CXCL12) was up-regulated in T47D cells under treatment with BPAF. Quantitative real-time PCR results showed that BPAF caused a time and dose dependent increase in mRNA level of CXCL12. Furthermore, treatment of T47D cells with BPAF increased CXCL12 secretion according to ELISA assay. BPAF-induced CXCL12 transcription and secretion was significantly attenuated by small interfering RNA (siRNA) targeting ERα and ICI 182780, indicating BPAF-induced CXCL12 expression is mediated through ERα. Notably, knockdown CXCL12 in T47D cells significantly attenuated BPAF-induced cell proliferation. We also observed that inhibition of CXCL12 binding to its receptors CXCR4 and CXCR7 by chalcone 4 blocked BPAF-induced cell growth. Our results indicated that CXCL12 facilitated BPAF-induced proliferation of T47D cells. Taken together, our data provided support that BPAF stimulated transcription and secretion of CXCL12 depending on ERα, and ERα/CXCL12 signaling positively regulated BPAF-induced proliferation of cultured T47D breast cancer cells. PMID:26435001

  5. Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis

    SciTech Connect

    Kampa, Marilena; Nifli, Artemissia-Phoebe; Charalampopoulos, Ioannis; Alexaki, Vassilia-Ismini; Theodoropoulos, Panayiotis A.; Stathopoulos, Efstathios N.; Gravanis, Achille; Castanas, Elias . E-mail: castanas@med.uoc.gr

    2005-07-01

    Classical steroid mode of action involves binding to intracellular receptors, the later acting as ligand-activated nuclear transcription factors. Recently, membrane sites for different steroids have been also identified, mediating rapid, non-genomic, steroid actions. Membrane sites for estrogen and androgen have been found in a number of different cell types, bearing or not classical intracellular receptors. In the present study, with the use of radioligand binding, flow cytometry and confocal laser microscopy, we report that T47D human breast cancer cells express specific and saturable membrane receptors for both estrogen (K {sub D} 4.06 {+-} 3.31 nM) and androgen (K {sub D} 7.64 {+-} 3.15 nM). Upon activation with BSA-conjugated, non-permeable ligands (E{sub 2}-BSA and testosterone-BSA), membrane estrogen receptors protect cells from serum-deprivation-induced apoptosis, while androgen receptors induce apoptosis in serum-supplemented T47D cells. In addition, co-incubation of cells with a fixed concentration of one steroid and varying concentrations of the other reversed the abovementioned effect (apoptosis for androgen, and anti-apoptosis for E{sub 2}), suggesting that the fate of the cell depends on the relative concentration of either steroid in the culture medium. We also report the identification of membrane receptors for E{sub 2} and androgen in biopsy slides from breast cancer patients. Both sites are expressed, with the staining for membrane E{sub 2} being strongly present in ER-negative, less differentiated, more aggressive tumors. These findings suggest that aromatase inhibitors may exert their beneficial effects on breast cancer by also propagating the metabolism of local steroids towards androgen, inducing thus cell apoptosis through membrane androgen receptor activation.

  6. Effect of nomegestrol acetate on estrogen biosynthesis and transformation in MCF-7 and T47-D breast cancer cells.

    PubMed

    Shields-Botella, J; Chetrite, G; Meschi, S; Pasqualini, J R

    2005-01-01

    Although ovaries serve as the primary source of estrogen for pre-menopausal women, after menopause estrogen biosynthesis from circulating precursors occurs in peripheral tissues by the action of several enzymes, 17beta-hydroxysteroid dehydrogenase 1 (17beta-HSD1), aromatase and estrogen sulfatase. In the breast, both normal and tumoral tissues have been shown to be capable of synthesizing estrogens, and this local estrogen production can be implicated in the development of breast tumors. In these tissues, estradiol (E(2)) can be synthesized by three pathways: (1) estrone sulfatase transforms estrogen sulfates into bioactive estrogens, (2) 17beta-HSD1 converts estrone (E(1)) into E(2), (3) aromatase which converts androgens into estrogens is also present and contributes to the in situ synthesis of active estrogens but to a far lesser extent than estrone sulfatase. Quantitative assessment of E(2) formation in human breast tumors indicates that metabolism of estrone sulfate (E(1)S) via the sulfatase pathway produces 100-500 times more E(2) than androgen aromatization. Breast tissue also possesses the estrogen sulfotransferase involved in the conversion of estrogens into their sulfates that are biologically inactive. In the present review, we summarized the action of the 19-nor-progestin nomegestrol acetate (NOMAC) on the sulfatase, 17beta-HSD1 and sulfotransferase activities in the hormone-dependent MCF-7 and T47-D human breast cancer cell lines. Using physiological doses of substrates NOMAC blocks very significantly the conversion of E(1)S to E(2). It inhibits the transformation of E(1) to E(2). NOMAC has a stimulatory effect on sulfotransferase activity in both cell lines, with a strong stimulating effect at low doses but only a weak effect at high concentrations. The effects on the three enzymes are always stronger in the progesterone-receptor rich T47-D cell line as compared with the MCF-7 cell line. Besides, no effect is found for NOMAC on the transformation of

  7. Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen.

    PubMed

    Radde, Brandie N; Ivanova, Margarita M; Mai, Huy Xuan; Salabei, Joshua K; Hill, Bradford G; Klinge, Carolyn M

    2015-01-01

    Oestrogen receptor α (ERα+) breast tumours rely on mitochondria (mt) to generate ATP. The goal of the present study was to determine how oestradiol (E2) and 4-hydroxytamoxifen (4-OHT) affect cellular bioenergetic function in MCF-7 and T47D ERα+ breast cancer cells in serum-replete compared with dextran-coated charcoal (DCC)-stripped foetal bovine serum (FBS)-containing medium ('serum-starved'). Serum-starvation reduced oxygen consumption rate (OCR), extracellular acidification rate (ECAR), ATP-linked OCR and maximum mt capacity, reflecting lower ATP demand and mt respiration. Cellular respiratory stateapparent was unchanged by serum deprivation. 4-OHT reduced OCR independent of serum status. Despite having a higher mt DNA/nuclear DNA ratio than MCF-7 cells, T47D cells have a lower OCR and ATP levels and higher proton leak. T47D express higher nuclear respiratory factor-1 (NRF-1) and NRF-1-regulated, nuclear-encoded mitochondrial transcription factor TFAM and cytochrome c, but lower levels of cytochrome c oxidase, subunit IV, isoform 1 (COX4, COX4I1). Mitochondrial reserve capacity, reflecting tolerance to cellular stress, was higher in serum-starved T47D cells and was increased by 4-OHT, but was decreased by 4-OHT in MCF-7 cells. These data demonstrate critical differences in cellular energetics and responses to 4-OHT in these two ERα+ cell lines, likely reflecting cancer cell avoidance of apoptosis. PMID:25279503

  8. Clofarabine Has Apoptotic Effect on T47D Breast Cancer Cell Line via P53R2 Gene Expression

    PubMed Central

    Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah; Nozad Charoudeh, Hojjatollah; Ahmadi, Yasin; Baradaran, Behzad; Khalaj-Kondori, Mohammad; Milani, Morteza; Akbarzadeh, Abolfazl; Shaker, Maghsud; Pourhassan-Moghaddam, Mohammad

    2015-01-01

    Purpose: Clofarabine, a purine nucleoside analogue and inhibitor of Ribonucleotide Reductase (RR), is used for treatment of leukemia. Clofarabine-induced defect in DNA replication, induces p53 and subsequently P53R2 genes as subunit of RR. clofarabine deregulated P53R2 gene expression leading to the elevated levels of P53R2 which impose resistance to DNA damaging drugs. In this study the apoptotic and cytotoxic effects of clofarabine has been investigated on breast cancer cell line. Methods: Cofarabine cytotoxicity on T47D cells has been studied by MTT assay. T47D cells were exposed to the different concentrations of clofarabine for 24, 48 and 72 hours intervals. Relative expression of P53R2 gene has been studied using real-time PCR. Moreover, after treating with clofarabine the apoptotic and necrotic cells were detected using Annexin V and propodium iodide (PI) reagents by flowcytometry technique. Results: MTT assay results showed that the clofarabine IC50 on T47D cell line were 3 and 2.5µM after 48 and 72 h exposure, respectively. Clofarabine did not show any significant cytotoxic effect after 24 h exposure. The analysis of qRT-PCR showed a significant increase in P53R2 gene expression in treated cells with both 2.5 and 3 μM doses and also, the results of flowcytometry revealed 26.91 and 74.46 percent apoptosis induction in 48 and 72h treatments respectively in comparison to the control groups. Conclusion: Our results showed that apoptotic and cytotoxic effects of clofarabine on T47D cell line were in time and dose dependent manner; therefore it could be considered a new candidate in breast cancer therapy. PMID:26819918

  9. Metabolic conversion and growth effects of n-6 and n-3 polyunsaturated fatty acids in the T47D breast cancer cell line.

    PubMed

    Bardon, S; Le, M T; Alessandri, J M

    1996-01-19

    The incorporation and conversion of polyunsaturated fatty acids (PUFA) of n-3 and n-6 families were examined in the T47D breast cancer cell line in parallel with their effects on cell proliferation. In low serum-containing medium, PUFA exerted differential growth effects, depending both on their affiliation and unsaturation degree. The study of PUFA processing suggested that T47D cells are deficient in delta 6 and delta 4-desaturation activities whereas they can process to delta 5-desaturation. Thus, the PUFA growth effect on T47D cells appeared to be associated with a lack of desaturation. PMID:8564929

  10. Combination of low-concentration of novel phytoestrogen (8,9)-furanyl-pterocarpan-3-ol from Pachyrhizus erosus attenuated tamoxifen-associated growth inhibition on breast cancer T47D cells

    PubMed Central

    Nurrochmad, Arief; Lukitaningsih, Endang; Monikawati, Ameilinda; Septhea, Dita Brenna; Meiyanto, Edy

    2013-01-01

    Objective To investigate the estrogenic effect of (8,9)-furanyl-pterocarpan-3-ol (FPC) on growth of human breast cancer T47D cells and the interactions between the FPC and tamoxifen (TAM), on the growth of estrogen receptor-dependent breast cancer T47D cells. Methods The proliferation effect of FPC were conducted on T47D cells in vitro by MTT test. T47D cells were treated with FPC alone (0.01-200 µmol/L) or in combination with TAM 20 nmol/L. Furthermore, the expression of ERα or c-Myc were also determined by immunohistochemistry. Results The results indicated that administration of an anti-estrogen TAM showed growth inhibitory effect on T47D cells, wheraes co-administered with low concentration (less than 1 µmol/L) of FPC attenuated to promote cell proliferation. In contrast, the combination of TAM with higher doses (more than 20 µmol/L) of FPC showed growth inhibitory. This result was supported by immunocytochemistry studies that the administration of 20 nmol/L TAM down-regulated ER-α and c-Myc, but the combination of 20 nmol/L TAM and 1 µmol/L FPC robustly up-regulated expression of ER-α. Thus, the reduced growth inhibition of TAM 20 nmol/L by FPC 1 µmol/L on T47D cells may act via the modulation of ER-α. Conclusions The findings indicate and suggest that FPC had estrogenic activity at low concentrations and anti-estrogenic effect that are likely to be regulated by c-Myc and estrogen receptors. We also confirm that low concentration of FPC attenuated the growth-inhibitory effects of TAM on mammary tumor prevention. Therefore, the present study suggests that caution is warranted regarding the consumption of dietary FPC by breast cancer patients while on TMA therapy.

  11. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    PubMed Central

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo. PMID:21976973

  12. Cytotoxic data of 14-deoxy-11, 12-didehydroandrographolide (14-DDA), double transfection and DDIT3 silencing data in T-47D breast carcinoma cells.

    PubMed

    Tan, Heng Kean; Tengku Muhammad, Tengku Sifzizul; Tan, Mei Lan

    2016-06-01

    The data presented in this article are related to the research article entitled "14-deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reticulum stress-mediated autophagy in T-47D breast carcinoma cells", which the mechanistic toxicology properties of 14-deoxy-11,12-didehydroandrographolide (14-DDA) were investigated (Tan et al., 2016 [1]). This article describes the derivation of cytotoxic parameters of 14-DDA, cell viability data after double transfection and DDIT3 silencing in T-47D cells. PMID:27182548

  13. Cytotoxic data of 14-deoxy-11, 12-didehydroandrographolide (14-DDA), double transfection and DDIT3 silencing data in T-47D breast carcinoma cells

    PubMed Central

    Tan, Heng Kean; Tengku Muhammad, Tengku Sifzizul; Tan, Mei Lan

    2016-01-01

    The data presented in this article are related to the research article entitled “14-deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reticulum stress-mediated autophagy in T-47D breast carcinoma cells”, which the mechanistic toxicology properties of 14-deoxy-11,12-didehydroandrographolide (14-DDA) were investigated (Tan et al., 2016 [1]). This article describes the derivation of cytotoxic parameters of 14-DDA, cell viability data after double transfection and DDIT3 silencing in T-47D cells. PMID:27182548

  14. Isodeoxyelephantopin from Elephantopus scaber (Didancao) induces cell cycle arrest and caspase-3-mediated apoptosis in breast carcinoma T47D cells and lung carcinoma A549 cells

    PubMed Central

    2014-01-01

    Background Isodeoxyelephantopin (IDOE) isolated from Elephantopus scaber L. (Didancao) is used in Chinese medicine for the treatment of some types of cancer. The anti-cancer mechanism of IDOE remains unclear. This study aims to investigate the antiproliferative activity of IDOE on breast carcinoma T47D cells and lung carcinoma A549 cells. Methods The growth inhibitory effects of IDOE on breast carcinoma T47D cells, lung carcinoma A549 cells, and normal lymphocytes were evaluated by the MTT assay. Morphological analysis of apoptosis induction was performed by acridine orange/ethidium bromide dual-staining and Hoechst 33342 nuclear staining. The cell cycle profile, caspase-3 expression, and annexin V staining were evaluated by flow cytometry. Results IDOE inhibited the growth of A549 and T47D cells in a dose- and time-dependent manner with IC50 values of 10.46 and 1.3 μg/mL, respectively. IDOE was not significantly toxic to normal lymphocytes. The cells became detached from the monolayer and rounded up, had fragmented nuclei and condensed chromatin, and the numbers of apoptotic cells increased (P = 0.0003). IDOE-induced cell death was associated with activated caspase-3 expression followed by cell cycle arrest at G2/M phase. Conclusions IDOE inhibited the proliferation of breast cancer cells and lung carcinoma cells and induced caspase-3-mediated apoptosis and cell cycle arrest in the treated cells. PMID:24742378

  15. 14-Deoxy-11,12-didehydroandrographolide induces DDIT3-dependent endoplasmic reticulum stress-mediated autophagy in T-47D breast carcinoma cells.

    PubMed

    Tan, Heng Kean; Muhammad, Tengku Sifzizul Tengku; Tan, Mei Lan

    2016-06-01

    14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells. PMID:27049118

  16. Inhibition of hTERT Gene Expression by Silibinin-Loaded PLGA-PEG-Fe3O4 in T47D Breast Cancer Cell Line

    PubMed Central

    Ebrahimnezhad, Zohreh; Zarghami, Nosratollah; Keyhani, Manoutchehr; Amirsaadat, Soumaye; Akbarzadeh, Abolfazl; Rahmati, Mohammad; Mohammad Taheri, Zohreh; Nejati-Koshki, Kazem

    2013-01-01

    Introduction: Nowadays, using drug delivery is an essential method to improve cancer therapy through decreasing drug toxicity and increasing efficiency of treatment. Silibinin (C25H22O10), a polyphenolic flavonoid which is isolated from the milk thistle plant, has various applications in cancer therapy but it has hydrophobic structure with low water solubility and bioavailability. To increase the effect of silibinin, silibinin-loaded PLGA-PEG-Fe3O4 was prepared to determine the inhibitory effect of this nanodrug on Telomerase gene expression. Methods: The rate of silibinin loaded into PLGA-PEG-Fe3O4 was measured. Then, the cytotoxic effect of silibinin-loaded PLGA-PEG-Fe3O4 was determined by Methyl Thiazol Tetrazolium (MTT) assay. After that, inhibition of Telomerase gene expression was indicated through Real-time PCR. Results: Data analysis from MTT assay showed that silibinin-loaded PLGA-PEG-Fe3O4 had dose dependent cytotoxic effect on T47D cell line. MTT assay showed no cytotoxic effect of free PLGA-PEG-Fe3O4 on T47D breast cancer cell line. Real Time PCR analysis showed that the level of telomerase gene expression more efficiently decreased with silibinin-loaded PLGA-PEG-Fe3O4 than with free silibinin alone. Conclusion: The present study indicates that this nanodrug causes down-regulation of Telomerase gene expression in cancer cells. Therefore, PLGA-PEG-Fe3O4 could be an appropriate carrier for hydrophobic agents such as silibinin to improve their action in cancer therapy. PMID:23878789

  17. Pyrophen Produced by Endophytic Fungi Aspergillus sp Isolated from Piper crocatum Ruiz and Pav Exhibits Cytotoxic Activity and Induces S Phase Arrest in T47D Breast Cancer Cells.

    PubMed

    Astuti, Puji; Erden, Willy; Wahyono; Wahyuono, Subagus; Hertiani, Triana

    2016-01-01

    Ethyl acetate extracts obtained from culture of endophytic fungi Aspergillus sp isolated from Piper crocatum Ruiz and Pav, have been shown to possess cytotoxic activity against T47D breast cancer cells. Investigations were here conducted to determine bioactive compounds responsible for the activity. Bioassay guided fractionation was employed to obtain active compounds. Structure elucidation was performed based on analysis of LC-MS, 1H-NMR, 13C-NMR, COSY, DEPT, HMQC, HMBC data. Cytotoxity assays were conducted in 96 well plates against T47D and Vero cell lines. Bioassay guided isolation and chemical investigation led to the isolation of pyrophen, a 4-methoxy-6-(1'-acetamido-2'-phenylethyl)-2H-pyran-2-one. Further analysis of its activity against T47D and Vero cells showed an ability to inhibit the growth of T47D cells with IC50 values of 9.2 μg/mL but less cytotoxicity to Vero cells with an IC50 of 109 μg/mL. This compound at a concentration of 400 ng/mL induced S-phase arrest in T47D cells. PMID:26925652

  18. Real-time growth kinetics measuring hormone mimicry for ToxCast chemicals in T-47D human ductal carcinoma cells.

    PubMed

    Rotroff, Daniel M; Dix, David J; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Reif, David M; Richard, Ann M; Sipes, Nisha S; Abassi, Yama A; Jin, Can; Stampfl, Melinda; Judson, Richard S

    2013-07-15

    High-throughput screening (HTS) assays capable of profiling thousands of environmentally relevant chemicals for in vitro biological activity provide useful information on the potential for disrupting endocrine pathways. Disruption of the estrogen signaling pathway has been implicated in a variety of adverse health effects including impaired development, reproduction, and carcinogenesis. The estrogen-responsive human mammary ductal carcinoma cell line T-47D was exposed to 1815 ToxCast chemicals comprising pesticides, industrial chemicals, pharmaceuticals, personal care products, cosmetics, food ingredients, and other chemicals with known or suspected human exposure potential. Cell growth kinetics were evaluated using real-time cell electronic sensing. T-47D cells were exposed to eight concentrations (0.006-100 μM), and measurements of cellular impedance were repeatedly recorded for 105 h. Chemical effects were evaluated based on potency (concentration at which response occurs) and efficacy (extent of response). A linear growth response was observed in response to prototypical estrogen receptor agonists (17β-estradiol, genistein, bisphenol A, nonylphenol, and 4-tert-octylphenol). Several compounds, including bisphenol A and genistein, induced cell growth comparable in efficacy to that of 17β-estradiol, but with decreased potency. Progestins, androgens, and corticosteroids invoked a biphasic growth response indicative of changes in cell number or cell morphology. Results from this cell growth assay were compared with results from additional estrogen receptor (ER) binding and transactivation assays. Chemicals detected as active in both the cell growth and ER receptor binding assays demonstrated potencies highly correlated with two ER transactivation assays (r = 0.72; r = 0.70). While ER binding assays detected chemicals that were highly potent or efficacious in the T-47D cell growth and transactivation assays, the binding assays lacked sensitivity in detecting

  19. Cooperation of p27Kip1 and p18INK4c in Progestin-Mediated Cell Cycle Arrest in T-47D Breast Cancer Cells

    PubMed Central

    Swarbrick, Alexander; Lee, Christine S. L.; Sutherland, Robert L.; Musgrove, Elizabeth A.

    2000-01-01

    The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G1 cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27Kip1 among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27Kip1 and few were bound to p21Cip1. In vitro, recombinant His6-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His6-p27 in vitro or p27Kip1 in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18INK4c and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18INK4c led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27Kip1 and p18INK4c cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor β and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation. PMID:10713180

  20. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration

    PubMed Central

    Sun, Jing; Fu, Xueqi; Wang, Yongsen; Liu, Ye; Zhang, Yu; Hao, Tian; Hu, Xin

    2016-01-01

    Erianin is a natural product extracted from Dendrobiumchrysotoxum. To investigate the antitumor activity of Erianin in estrogen receptor (ER) positive breast cancer, we treated T47D cells with Erianin and evaluated the effects of Erianin treatment on multiple cancer-associated pathways. Erianin inhibited the proliferation of T47D cells effectively. Erianin induced apoptosis in T47D cells through reducing Bcl-2 expression and activating caspase signaling. Furthermore, it also suppressed the expression of CDKs and caused cell cycle arrest. In addition, Erianin treatment suppressed the migration of T47D cells, most likely through regulating the homeostatic expression of MPP and TIMP. Meanwhile, Erianin did not affect the proliferation of normal breast epithelial cell line MCF10A. Together, these results demonstrated that Erianin might have the potential to be an effective drug to treat the ER positive breast cancer. PMID:27508028

  1. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration.

    PubMed

    Sun, Jing; Fu, Xueqi; Wang, Yongsen; Liu, Ye; Zhang, Yu; Hao, Tian; Hu, Xin

    2016-01-01

    Erianin is a natural product extracted from Dendrobiumchrysotoxum. To investigate the antitumor activity of Erianin in estrogen receptor (ER) positive breast cancer, we treated T47D cells with Erianin and evaluated the effects of Erianin treatment on multiple cancer-associated pathways. Erianin inhibited the proliferation of T47D cells effectively. Erianin induced apoptosis in T47D cells through reducing Bcl-2 expression and activating caspase signaling. Furthermore, it also suppressed the expression of CDKs and caused cell cycle arrest. In addition, Erianin treatment suppressed the migration of T47D cells, most likely through regulating the homeostatic expression of MPP and TIMP. Meanwhile, Erianin did not affect the proliferation of normal breast epithelial cell line MCF10A. Together, these results demonstrated that Erianin might have the potential to be an effective drug to treat the ER positive breast cancer. PMID:27508028

  2. Two types of antiprogestins identified by their differential action in transcriptionally active extracts from T47D cells.

    PubMed Central

    Klein-Hitpass, L; Cato, A C; Henderson, D; Ryffel, G U

    1991-01-01

    Transcriptionally active nuclear extracts from human breast carcinoma cells (T47D) were used to compare the action of progestins and several antiprogestins of the 11 beta-aryl substituted steroid series on the DNA-binding properties and the trans-activating potential of progesterone receptor (PR) in vitro. Using the gel-shift assay we identified a novel type of antiprogestin (ZK98299, type I), which in contrast to type II antiprogestins, including RU486, does not induce binding of PR to progesterone response elements (PREs). In competition experiments excess of type I antiprogestin inhibits induction of DNA binding of PR by progestins and type II antiprogestins suggesting that its binding to PR interferes with the formation of stable receptor dimers. Moreover, we demonstrate that the antagonistic action of ZK98299 can be fully mimicked in vitro by using cell-free nuclear extracts from T47D cells and a 'simple' test promoter. In contrast, type II antiprogestins known to induce certain promoters in vivo exert strong agonistic effects on in vitro transcription of the test template used. Images PMID:2030942

  3. Human amniotic fluid derived mesenchymal stem cells cause an anti-cancer effect on breast cancer cell line in vitro.

    PubMed

    Ghafarzadeh, M; Eatemadi, A; Fakhravar, Z

    2016-01-01

    Human amniotic fluid stem cells (hAFSCs) have the ability to self-renew, and multipotent differentiation into three germ layer cells. We obtained 5 ml amniotic fluid from ten 16-20 week pregnant women undergoing amniocentesis. hAFSCs were isolated from all samples, co-cultured with T47D breast cancer cell line and characterized using flow cytometry and RT-PCR. After 3, 4 and 5 days, T47D and HSFCs viability were evaluated with MTT assay. After 5 days of co-culture T47D cells viability were decreased. Our findings showed that hAFSCs can release soluble factors in cell culture, causing an efficient anticancer effect. PMID:27262812

  4. Determining estrogenic activity in serum from ovariectomized rats treated with environmental compounds using an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    The use of cell-based assays to quantify low levels of estrogen in human serum is an accepted method. These assays are more sensitive but less specific than radioimmunoassays (RIA). Thus, we hypothesized that estrogen responsive T47D-KBluc cells would detect estrogenic activity i...

  5. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation

    PubMed Central

    Laura, Richard P.; Dong, David; Reynolds, Wanda F.; Maki, Richard A.

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  6. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    PubMed

    Laura, Richard P; Dong, David; Reynolds, Wanda F; Maki, Richard A

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  7. Runx2 Controls a Feed-forward loop between Androgen and Prolactin-induced Protein (PIP) in Stimulating T47D Cell Proliferation

    PubMed Central

    Baniwal, Sanjeev K; Little, Gillian H; Chimge, Nyam-Osor; Frenkel, Baruch

    2012-01-01

    PIP is a small polypeptide expressed by breast and prostate cancer (BCa, PCa) cells. However, both the regulation of PIP expression and its function in cancer cells are poorly understood. Using breast and prostate cancer cells, we found that Runx2, a pro-metastatic transcription factor, functionally interacts with the Androgen Receptor (AR) to regulate PIP expression. Runx2 expression in C4-2B cells synergized with AR to promote PIP expression, whereas its knockdown in T47D BCa cells abrogated basal as well as hormone stimulated PIP expression. Chromatin immunoprecipitation (ChIP) assays showed that Runx2 and AR co-occupied an enhancer element located ~11kb upstream of the PIP open reading frame, and that Runx2 facilitated AR recruitment to the enhancer. PIP knockdown in T47D cells compromised DHT-stimulated expression of multiple AR target genes including PSA, FKBP5, FASN, and SGK1. The inhibition of AR activity due to loss of PIP was attributable at least in part to abrogation of its nuclear translocation. PIP knockdown also suppressed T47D cell proliferation driven by either serum growth factors or dihydrotestosterone (DHT). Our data suggest that Runx2 controls a positive feedback loop between androgen signaling and PIP, and pharmacological inhibition of PIP may be useful to treat PIP positive tumors. PMID:21809344

  8. Effects of thyroid hormones on human breast cancer cell proliferation.

    PubMed

    Hall, Linda C; Salazar, Eddie P; Kane, Staci R; Liu, Nan

    2008-03-01

    The involvement of estrogens in breast cancer development and growth has been well established. However, the effects of thyroid hormones and their combined effects with estrogens are not well studied. We investigated the response of human breast cancer cells to thyroid hormone, particularly the role of T3 in mediating cell proliferation and gene expression. We demonstrated that 17beta-estradiol (E2) or triiodothyronine (T3) promoted cell proliferation in a dose-dependent manner in both MCF-7 and T47-D cell lines. The E2- or T3-dependent cell proliferation was suppressed by co-administration of the ER antagonist ICI. We also demonstrated that T3 could enhance the effect of E2 on cell proliferation in T47-D cells. Using an estrogen response element (ERE)-mediated luciferase assay, we determined that T3 was able to induce the activation of ERE-mediated gene expression in MCF-7 cells, although the effects were much weaker than that induced by E2. These results suggest that T3 can promote breast cancer cell proliferation and increase the effect of E2 on cell proliferation in some breast cancer cell lines and thus that T3 may play a role in breast cancer development and progression. PMID:18328691

  9. Flavonoid-induced autophagy in hormone sensitive breast cancer cells.

    PubMed

    Brunelli, Elisa; Pinton, Giulia; Bellini, Paolo; Minassi, Alberto; Appendino, Giovanni; Moro, Laura

    2009-09-01

    The activity of 8-prenylapigenin (8-PA) and its 3'-methoxylated analogue isocannflavin B (IsoB) was investigated in estrogen-dependent T47-D and estrogen-independent MDA-MB-231 human breast cancer cell lines. 8-PA showed a biphasic effect on T47-D cell proliferation, while no significant effect was observed on MDA-MB-231 cells. Conversely, IsoB exhibited only an inhibitory effect on T47-D cell proliferation, accompanied by the appearance of an intense intracytoplasmic vacuolization of autophagic origin. Moreover, biochemical analysis showed that IsoB reduced Akt phosphorylation and p21(Cip1) expression in T47-D cells. These data show that the prenylflavone moiety is a versatile platform for the induction and modulation of bioactivity. PMID:19371773

  10. Estradiol-Induced Regression in T47D:A18/PKCα Tumors Requires the Estrogen Receptor And Interaction with the Extracellular Matrix

    PubMed Central

    Zhang, Yiyun; Zhao, Huiping; Asztalos, Szilard; Chisamore, Michael; Sitabkhan, Yasmin; Tonetti, Debra A.

    2009-01-01

    Several breast cancer tumor models respond to estradiol (E2) by undergoing apoptosis, a phenomenon known to occur in clinical breast cancer. Prior to the application of tamoxifen as an endocrine therapy, high dose E2 or diethystilbesterol (DES) treatment was successfully utilized, albeit with unfavorable side effects. It is now recognized that such an approach may be a potential endocrine therapy option. We have explored the mechanism of E2-induced tumor regression in our T47D:A18/PKCα tumor model that exhibits autonomous growth, tamoxifen-resistance and E2-induced tumor regression. Fulvestrant, a selective estrogen receptor downregulator, prevents T47D:A18/PKCα E2-induced tumor growth inhibition and regression when given prior or subsequent to tumor establishment, respectively. Interestingly, E2-induced growth inhibition is only observed in vivo or when cells are grown in Matrigel but not in two-dimensional tissue culture, suggesting the requirement of the extracellular matrix (ECM). Tumor regression is accompanied by increased expression of the pro-apoptotic Fas/FasL proteins and downregulation of the pro-survival Akt pathway. Inhibition of colony formation in Matrigel by E2 is accompanied by increased expression of Fas and shRNA knockdown partially reverses colony formation inhibition. Classical ERE-regulated transcription of pS2, PR, TGFα, C3 and cathepsin D is independent of the inhibitory effects of E2. A membrane impermeable E2-BSA conjugate is capable of mediating growth inhibition, suggesting the involvement of a plasma membrane ER. We conclude that E2-induced T47D:A18/PKCα tumor regression requires participation of ERα, the ECM, Fas/FasL and Akt pathways, allowing the opportunity to explore new predictive markers and therapeutic targets. PMID:19372579

  11. Degradation of endothelial basement membrane by human breast cancer cell lines

    SciTech Connect

    Yee, C.; Shiu, R.P.

    1986-04-01

    During metastasis, it is believed that tumor cells destroy the basement membrane (BM) of blood vessels in order to disseminate through the circulatory system. By radioactively labeling the extracellular matrix produced by primary endothelial cells in vitro, the ability of human breast cancer cells to degrade BM components was studied. We found that T-47D, a human breast cancer line, was able to degrade significant amounts of (35S)methionine-labeled and (3H)proline-labeled BM, but not 35SO4-labeled BM. Six other tumor cell lines of human breast origin were assayed in the same manner and were found to degrade BM to varying degrees. Several non-tumor cell lines tested showed relatively little degrading activity. The use of serum-free medium greatly enhanced degradation of the BM by tumor cells, suggesting a role for naturally occurring enzyme inhibitors in the serum. Direct cell contact with the BM was required for BM degradation, suggesting that the active enzymes are cell associated. The addition of hormones implicated in the etiology of breast cancer did not significantly alter the ability of T-47D cells to degrade the BM. The use of this assay affords future studies on the mechanism of invasion and metastasis of human breast cancer.

  12. Prostaglandin E2 production and metabolism in human breast cancer cells and breast fibroblasts. Regulation by inflammatory mediators.

    PubMed Central

    Schrey, M. P.; Patel, K. V.

    1995-01-01

    Malignant human breast tumours contain high levels of prostaglandin E2 (PGE2). However, the mechanisms controlling PGE2 production in breast cancer are unknown. This in vitro study investigates the capacity for PGE2 synthesis and metabolism in several human breast cancer cell lines and early passage human breast fibroblasts and seeks to identify potential regulatory factors which may control these pathways. Basal PGE2 production rose up to 30-fold in breast fibroblast lines on addition of exogenous arachidonic acid (10 microM), whereas no such changes were observed in six out of seven cancer cell lines, with the exception of modest increases in MDA-MB-231 cells. Interleukin 1 beta (IL-1 beta) also induced PGE2 production in breast fibroblasts in the presence of excess substrate, consistent with cyclo-oxygenase induction by the cytokine. Under these conditions only Hs578T cells and MDA-MB-231 cells demonstrated large increases in PGE2 in response to IL-1 beta or phorbol ester; no such responses were seen in MCF-7, T47-D, ZR-75-1, BT-20 or CLF-90-1 cells. In the absence of added arachidonate, bradykinin (BK) and endothelin-1 (ET-1), potentiated PGE2 production in IL-1 beta-treated fibroblasts, possibly by mobilising endogenous substrate. PGE2 also stimulated ET-1 production by breast cancer cells. In co-cultures with T47-D cells both basal and stimulated PGE2 production by breast fibroblasts was greatly reduced. This appeared to be due to metabolic inactivation by the cancer cell since T47-D cells readily converted PGE2 to 15-keto-PGE2. This apparent 15-hydroxy-PG dehydrogenase activity was stimulated by TPA and inhibited by cycloheximide. In conclusion, breast fibroblasts, particularly under the influence of inflammatory mediators, provide a potentially rich source for PGE2 production in breast tumours, whereas significant contributions from the epithelial tumour component may be restricted to cancer cells exhibiting an invasive phenotype. Metabolic inactivation by

  13. Genistein abrogates G2 arrest induced by curcumin in p53 deficient T47D cells

    PubMed Central

    2012-01-01

    Background The high cost and low level of cancer survival urge the finding of new drugs having better mechanisms. There is a high trend of patients to be “back to nature” and use natural products as an alternative way to cure cancer. The fact is that some of available anticancer drugs are originated from plants, such as taxane, vincristine, vinblastine, pacitaxel. Curcumin (diferuloylmethane), a dietary pigment present in Curcuma longa rizhome is reported to induce cell cycle arrest in some cell lines. Other study reported that genistein isolated from Glycine max seed inhibited phosphorylation of cdk1, gene involved during G2/M transition and thus could function as G2 checkpoint abrogator. The inhibition of cdk1 phosphorylation is one of alternative strategy which could selectively kill cancer cells and potentially be combined with DNA damaging agent such as curcumin. Methods T47D cell line was treated with different concentrations of curcumin and genistein, alone or in combination; added together or with interval time. Flow Cytometry and MTT assay were used to evaluate cell cycle distribution and viability, respectively. The presence of apoptotic cells was determined using acridine orange-ethidium bromide staining. Results In this study curcumin induced G2 arrest on p53 deficient T47D cells at the concentration of 10 μM. Increasing concentration up to 30 μM increased the number of cell death. Whilst genistein alone at low concentration (≤10 μM) induced cell proliferation, addition of genistein (20 μM) 16 h after curcumin resulted in more cell death (89%), 34% higher than that administered at the same time (56%). The combination treatment resulted in apoptotic cell death. Combining curcumin with high dose of genistein (50 μM) induced necrotic cells. Conclusions Genistein increased the death of curcumin treated T47D cells. Appropriate timing of administration and concentration of genistein determine the outcome of treatment and this method

  14. Breast cancer cell-associated endopeptidase EC 24.11 modulates proliferative response to bombesin.

    PubMed

    Burns, D M; Walker, B; Gray, J; Nelson, J

    1999-01-01

    We have investigated the production, growth and inactivation of gastrin-releasing peptide (GRP)-like peptides in human breast cancer cell lines. Radioimmunoassay detected GRP-like immunoreactivity (GRP-LI) in T47D breast cancer cells but not in the conditioned medium, indicating rapid clearance. No GRP-LI was found in the ZR-75-1 or MDA-MB-436 cells or their conditioned medium. High-performance liquid chromatography (HPLC) analysis of the GRP-LI in the T47D cells revealed a major peak, which co-eluted with GRP(18-27), and a minor more hydrophilic peak. In vitro stimulation of T47D cell growth by bombesin (BN) was enhanced to 138% of control levels (bombesin alone) by the addition of the selective endopeptidase EC 3.4.24.11 inhibitor phosphoramidon (0.1 ng ml(-1)). Fluorogenic analysis using whole cells confirmed low levels of this phosphoramidon-sensitive enzyme on the T47D cells. This enzyme, previously unreported in human breast cancer cells, significantly modulates both T47D growth and its response to BN-induced growth. PMID:9888460

  15. Stable transfection of protein kinase C alpha cDNA in hormone-dependent breast cancer cell lines

    PubMed Central

    Tonetti, D A; Chisamore, M J; Grdina, W; Schurz, H; Jordan, V C

    2000-01-01

    An inverse relationship between protein kinase C (PKC) activity and oestrogen receptor (ER) expression in human breast cell lines and tumours has been firmly established over the past 10 years. To determine whether specific alterations in PKC expression accompany hormone-independence, we examined the expression of PKC isozymes in the hormone-independent human breast cancer cell clones MCF-7 5C and T47D:C42 compared with their hormone-dependent counterparts, MCF-7 A4, MCF-7 WS8 and T47D:A18 respectively. Both hormone-independent cell clones exhibit elevated PKCα expression and increased basal AP-1 activity compared with the hormone-dependent cell clones. To determine whether PKCα overexpression is sufficient to mediate the hormone-independent phenotype, we stably transfected an expression plasmid containing PKCα cDNA to the T47D:A18 and MCF-7 A4 cell lines. This is the first report of PKCα transfection in T47D cells. In contrast to MCF-7 cells, T47D has the propensity to lose the ER and more readily forms tamoxifen-stimulated tumours in athymic mice. We find that in T47D:A18/PKCα clones, there is concomitant up-regulation of PKC βI and δ, whereas in the MCF-7 A4/PKCα transfectants PKC ɛ is up-regulated. In T47D:A18, but not in MCF-7 A4, PKCα stable transfection is accompanied by down-regulation of ER function whilst basal AP-1 activity is elevated. Our results suggest PKCα overexpression may play a role in growth signalling during the shift from hormone dependent to hormone-independent breast cancers. © 2000 Cancer Research Campaign PMID:10952784

  16. Luteinizing hormone/human chorionic gonadotropin receptors in breast cancer.

    PubMed

    Meduri, G; Charnaux, N; Loosfelt, H; Jolivet, A; Spyratos, F; Brailly, S; Milgrom, E

    1997-03-01

    Recent studies have suggested that human choriogonadotropin (hCG), in addition to its function in regulating steroidogenesis, may also play a role as a growth factor. Immunocytochemistry using two different monoclonal antibodies (LHR29 and LHR1055) raised against the human luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor allowed us to detect this receptor in breast cancer cell lines (T47D, MCF7, and ZR75) in individual cancer biopsies and in benign breast lesions. The receptor was also present in epithelial cells of normal human and sow breast. In the latter, its concentration increased after ovulation. The presence of LH/hCG receptor mRNA was confirmed by reverse transcription-PCR using primers extending over exons 2-4, 5-11, and 9-11. The proportion of LH/hCG-receptor positive cells and the intensity of the immunolabeling varied in individual biopsies, but there was no obvious correlation with the histological type of the cancer. These results are compatible with previous studies suggesting that during pregnancy, hCG is involved in the differentiation of breast glandular epithelium and that this hormone may play an inhibitory role in mammary carcinogenesis and in the growth of breast tumors. PMID:9041186

  17. MOLECULAR EXPRESSION AND FUNCTIONAL ACTIVITY OF VITAMIN C SPECIFIC TRANSPORT SYSTEM (SVCT2) IN HUMAN BREAST CANCER CELLS

    PubMed Central

    Khurana, Varun; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K.

    2014-01-01

    The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [14C] AA was studied in MDA-MB231, T47D and ZR-75-1 cells. Functional parameters of [14C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription–polymerase chain reaction (RT-PCR). Uptake of [14C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [14C] AA uptake was found to be saturable, with Km values of 53.85±6.24, 49.69±2.83 and 45.44±3.16 μM and Vmax values of 18.45±0.50, 32.50±0.43 and 33.25±0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (L-AA and D-Iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca++/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1 cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics. PMID:25102111

  18. Molecular expression and functional activity of vitamin C specific transport system (SVCT2) in human breast cancer cells.

    PubMed

    Khurana, Varun; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K

    2014-10-20

    The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover, this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [(14)C] AA was studied in MDA-MB231, T47D and ZR-75-1 cells. Functional parameters of [(14)C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription-polymerase chain reaction (RT-PCR). Uptake of [(14)C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [(14)C] AA uptake was found to be saturable, with Km values of 53.85 ± 6.24, 49.69 ± 2.83 and 45.44 ± 3.16 μM and Vmax values of 18.45 ± 0.50, 32.50 ± 0.43 and 33.25 ± 0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (l-AA and d-iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca(++)/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1 cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics. PMID:25102111

  19. GGNBP2 acts as a tumor suppressor by inhibiting estrogen receptor α activity in breast cancer cells.

    PubMed

    Lan, Zi-Jian; Hu, YunHui; Zhang, Sheng; Li, Xian; Zhou, Huaxin; Ding, Jixiang; Klinge, Carolyn M; Radde, Brandie N; Cooney, Austin J; Zhang, Jin; Lei, Zhenmin

    2016-07-01

    Gametogenetin-binding protein 2 (GGNBP2) is encoded in human chromosome 17q12-q23, a region known as a breast and ovarian cancer susceptibility locus. GGNBP2, also referred to ZFP403, has a single C2H2 zinc finger and a consensus LxxLL nuclear receptor-binding motif. Here, we demonstrate that GGNBP2 expression is reduced in primary human breast tumors and in breast cancer cell lines, including T47D, MCF-7, LCC9, LY2, and MDA-MB-231 compared with normal, immortalized estrogen receptor α (ERα) negative MCF-10A and MCF10F breast epithelial cells. Overexpression of GGNBP2 inhibits the proliferation of T47D and MCF-7 ERα positive breast cancer cells without affecting MCF-10A and MCF10F. Stable GGNBP2 overexpression in T47D cells inhibits 17β-estradiol (E2)-stimulated proliferation as well as migration, invasion, anchorage-independent growth in vitro, and xenograft tumor growth in mice. We further demonstrate that GGNBP2 protein physically interacts with ERα, inhibits E2-induced activation of estrogen response element-driven reporter activity, and attenuates ER target gene expression in T47D cells. In summary, our in vitro and in vivo findings suggest that GGNBP2 is a novel breast cancer tumor suppressor functioning as a nuclear receptor corepressor to inhibit ERα activity and tumorigenesis. PMID:27357812

  20. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    PubMed Central

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  1. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    PubMed

    Pulito, Claudio; Terrenato, Irene; Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  2. Rapamycin induces apoptosis when autophagy is inhibited in T-47D mammary cells and both processes are regulated by Phlda1.

    PubMed

    Moad, Ahmed Ismail Hassan; Muhammad, Tengku Sifzizul Tengku; Oon, Chern Ein; Tan, Mei Lan

    2013-07-01

    Autophagy is an evolutionarily conserved lysosomal degradation pathway and plays a critical role in the homeostatic process of recycling proteins and organelles. Functional relationships have been described between apoptosis and autophagy. Perturbations in the apoptotic machinery have been reported to induce autophagic cell deaths. Inhibition of autophagy in cancer cells has resulted in cell deaths that manifested hallmarks of apoptosis. However, the molecular relationships and the circumstances of which molecular pathways dictate the choice between apoptosis and autophagy are currently unknown. This study aims to identify specific gene expression of rapamycin-induced autophagy and the effects of rapamycin when the autophagy process is inhibited. In this study, we have demonstrated that rapamycin is capable of inducing autophagy in T-47D breast carcinoma cells. However, when the autophagy process was inhibited by 3-MA, the effects of rapamycin became apoptotic. The Phlda1 gene was found to be up-regulated in both autophagy and apoptosis and silencing this gene was found to reduce both activities, strongly suggests that Phlda1 mediates and positively regulates both autophagy and apoptosis pathways. PMID:23300026

  3. Analysis of DLC-1 expression in human breast cancer.

    PubMed

    Plaumann, Marlies; Seitz, Susanne; Frege, Renate; Estevez-Schwarz, Lope; Scherneck, Siegfried

    2003-06-01

    The chromosome region 8p12-p22 shows frequent allelic loss in many neoplasms, including breast cancer (BC). The DLC-1 gene, located on 8p21-p22, might be a candidate tumor suppressor gene in this region. To evaluate the involvement of DLC-1 in breast carcinogenesis we studied DLC-1 mRNA expression in a panel of 14 primary human BC and the corresponding normal breast cells as well as 8 BC cell lines. Low levels or absence of DLC-1 mRNA were observed in 57% of primary BC and 62.5% of BC cell lines, respectively. We could not find any correlation between DLC-1 mRNA expression and deletions at the DLC-1 locus. Transfection of the gene into DLC-1 deficient T-47D cells raised the DLC-1 mRNA level and resulted in inhibition of cell growth and reduced colony-forming capacity. Our results indicate a role of DLC-1 in BC carcinogenesis. PMID:12759748

  4. Production and characterization of monoclonal antibodies identifying breast tumor-associated antigens.

    PubMed Central

    Keydar, I; Chou, C S; Hareuveni, M; Tsarfaty, I; Sahar, E; Selzer, G; Chaitchik, S; Hizi, A

    1989-01-01

    We have generated a mouse monoclonal antibody (H23) against the retrovirus-like particles (human mammary tumor virus) released in vitro by the human breast adenocarcinoma cell line T47D. This antibody reacts specifically with a glycoprotein with an apparent molecular mass of 68 kDa (gp68) that is detected in the growth medium of T47D cells as well as in pleural effusion fluids from breast adenocarcinoma patients. No detectable levels of this antigen could be observed in pleural effusions of patients with cancers other than of breast origin. The H23-related antigen was localized in the cytoplasm of breast tumor cells as well as on the cell surface of both T47D cells and metastatic cells from breast cancer patients. A survey of tissue from 812 patients was performed by using H23 in an indirect immunoperoxidase assay. The results showed that the antigen was detectable in 91% of all breast tumors tested. No cytoplasmic staining was observed in either normal tissues or nonbreast carcinomas. Only one of the benign breast tissues tested (out of a total of 56 samples of tissue) was positive for this antigen. Given the ability of this antibody to specifically detect breast tumor cells, H23 may be of importance in diagnosis and in clinical follow-up of patients for the detection of metastatic lesions by imaging and for therapy. Images PMID:2465551

  5. Properties of retrovirus-like particles produced by a human breast carcinoma cell line: immunological relationship with mouse mammary tumor virus proteins.

    PubMed Central

    Keydar, I; Ohno, T; Nayak, R; Sweet, R; Simoni, F; Weiss, F; Karby, S; Mesa-Tejada, R; Spiegelman, S

    1984-01-01

    Clonal derivatives 8 and 11 of the T47D human breast carcinoma cell line release particles that have the biochemical characteristics of a retrovirus. Particles recovered from cultures of [3H]uridine-labeled clone 11 had a density of 1.18 g/ml and contained 60-70S and 35S RNAs associated with reverse transcriptase activity. The production of these particles was steroid-dependent. Clone 8 particles had a higher density, 1.195 g/ml, and their production was independent of steroid hormone. By RIA, antigens crossreactive with the 52,000-dalton envelope glycoprotein gp52, the major external protein of mouse mammary tumor virus, were found associated with these particles and in the media. Most of the gp52-related antigen was in soluble form, but it was enriched in the particle preparation. A lesser amount of antigen was distributed within the cultured cells. Absorption of rabbit antibody to gp52 with clone 11 particle preparations eliminated the ability of this antibody to detect immunocytochemically a crossreactive antigen previously localized in tissue sections of human breast carcinoma. These results indicate that the particle isolates from T47D contain the same gp52-related antigen found in human breast carcinomas and constitute an excellent source for the purification and characterization of this antigen. Images PMID:6330748

  6. Increased fucosylation has a pivotal role in multidrug resistance of breast cancer cells through miR-224-3p targeting FUT4.

    PubMed

    Feng, Xiaobin; Zhao, Lifen; Gao, Shuhang; Song, Xiaobo; Dong, Weijie; Zhao, Yongfu; Zhou, Huimin; Cheng, Lei; Miao, Xiaolong; Jia, Li

    2016-03-10

    Fucosylation is the final step in the glycosylation machinery, which produces glycans involved in tumor multidrug resistance development. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes of tumors, including drug resistance. This study was undertaken to determine the roles of fucosylation and miR-224-3p in multidrug resistance of human breast cancer cell lines. Comparative analysis revealed differential modification patterns of fucosylation of the fucosylated N-glycans in drug-resistant T47D/ADR cells and sensitive line T47D cells. The expressional profiles of fucosyltransferase genes in two pairs of parental and chemoresistant human breast cancer cell lines showed that FUT4 was up-regulated highly in MDR cell lines. Altered level of FUT4 affected the drug-resistant phenotype of T47D and T47D/ADR cells both in vitro and in vivo. By bioinformatics analysis, we identified FUT4 as one of the miR-224-3p-targeted genes. Further studies showed an inverse relationship between of FUT4 and miR-224-3p in parental and ADR-resistant breast cancer cells, wherein miR-224-3p was downregulated in resistant cells. 3'-UTR dual-luciferase reporter assay confirmed that miR-224-3p directly targeted 3'-untranslation region (3'-UTR) of FUT4 mRNA. In addition, miR-224-3p overexpression sensitized T47D/ADR cells to chemotherapeutics and reduced the growth rate of breast cancer xenografts in vivo. Our results indicate that FUT4 and miR-224-3p are crucial regulators of cancer response to chemotherapy, and may serve as therapeutic targets to reverse chemotherapy resistance in breast cancer. PMID:26701615

  7. Function of RasGRP3 in the formation and progression of human breast cancer

    PubMed Central

    2014-01-01

    Introduction Ras guanine nucleotide exchange factors (RasGEFs) mediate the activation of the Ras signaling pathway that is over activated in many human cancers. The RasGRP3, an activator of H-Ras and R-Ras protein exerts oncogenic effects and the overexpression of the protein is observed in numerous malignant cancer types. Here, we investigated the putative alteration of expression and potential function of RasGRP3 in the formation and progression of human breast cancer. Methods The RasGRP3 and phosphoRasGRP3 expressions were examined in human invasive ductal adenocarcinoma derived samples and cell lines (BT-474, JIMT-1, MCF7, SK-BR-3, MDA-MB-453, T-47D) both in mRNA (Q-PCR) and protein (Western blot; immunohistochemistry) levels. To explore the biological function of the protein, RasGRP3 knockdown cultures were established. To assess the role of RasGRP3 in the viability of cells, annexin-V/PI staining and MitoProbe™ DilC1 (5) assay were performed. To clarify the function of the protein in cell proliferation and in the development of chemotherapeutic resistance, CyQuant assay was performed. To observe the RasGRP3 function in tumor formation, the Severe combined immunodeficiency (SCID) mouse model was used. To investigate the role of the protein in Ras-related signaling Q-PCR and Western blot experiments were performed. Results RasGRP3 expression was elevated in human breast tumor tissue samples as well as in multiple human breast cancer cell lines. Down-regulation of RasGRP3 expression in breast cancer cells decreased cell proliferation, induced apoptosis in MCF7 cells, and sensitized T-47D cells to the action of drugs Tamoxifen and trastuzumab (Herceptin). Gene silencing of RasGRP3 reduced tumor formation in mouse xenografts as well. Inhibition of RasGRP3 expression also reduced Akt, ERK1/2 and estrogen receptor alpha phosphorylation downstream from IGF-I insulin like growth factor-I (IGF-I) or epidermal growth factor (EGF) stimulation confirming the functional

  8. Human breast cancer cells contain a phosphoramidon-sensitive metalloproteinase which can process exogenous big endothelin-1 to endothelin-1: a proposed mitogen for human breast fibroblasts.

    PubMed

    Patel, K V; Schrey, M P

    1995-03-01

    Endothelin-1 (ET-1) levels are elevated in human breast tumours compared with normal and benign tissues, and in the presence of insulin-like growth factor 1 (IGF-I) ET-1 is a potent mitogen for human breast fibroblasts. In this study we have examined the ability of intact human breast cancer cell lines to process exogenously added big ET-1 (1-38) to the active mature ET-1 peptide by using a specific radioimmunometric assay. In both hormome-dependent (MCF-7, T47-D) and hormone-independent (MDA-MB-231) breast cancer cell lines the putative endothelin-converting enzyme (ECE) exhibited apparent Michaelis-Menten kinetics when converting added big ET-1 to ET-1. Both basal ET-1 production and exogenously added big ET-1 to ET-1 conversion were greatly reduced in all three cell lines in response to the metalloproteinase inhibitor phosphoramidon but were insensitive to other classes of protease inhibitors. Inhibition was also observed when cells were incubated in the presence of the divalent cation chelators 1,10-phenanthroline and EDTA. In MCF-7 cells the optimal pH for the ECE activity using a saponin cell permeabilisation procedure was found to residue within a narrow range of 6.2-7.26. Our results indicate that human breast cancer cells contain a neutral phosphoramidon-sensitive metalloproteinase which can process big ET-1 to ET-1. In the breast this conversion could contribute substantially to the local extracellular levels of this proposed paracrine breast fibroblast mitogen. PMID:7880721

  9. Human breast cancer cells contain a phosphoramidon-sensitive metalloproteinase which can process exogenous big endothelin-1 to endothelin-1: a proposed mitogen for human breast fibroblasts.

    PubMed Central

    Patel, K. V.; Schrey, M. P.

    1995-01-01

    Endothelin-1 (ET-1) levels are elevated in human breast tumours compared with normal and benign tissues, and in the presence of insulin-like growth factor 1 (IGF-I) ET-1 is a potent mitogen for human breast fibroblasts. In this study we have examined the ability of intact human breast cancer cell lines to process exogenously added big ET-1 (1-38) to the active mature ET-1 peptide by using a specific radioimmunometric assay. In both hormome-dependent (MCF-7, T47-D) and hormone-independent (MDA-MB-231) breast cancer cell lines the putative endothelin-converting enzyme (ECE) exhibited apparent Michaelis-Menten kinetics when converting added big ET-1 to ET-1. Both basal ET-1 production and exogenously added big ET-1 to ET-1 conversion were greatly reduced in all three cell lines in response to the metalloproteinase inhibitor phosphoramidon but were insensitive to other classes of protease inhibitors. Inhibition was also observed when cells were incubated in the presence of the divalent cation chelators 1,10-phenanthroline and EDTA. In MCF-7 cells the optimal pH for the ECE activity using a saponin cell permeabilisation procedure was found to residue within a narrow range of 6.2-7.26. Our results indicate that human breast cancer cells contain a neutral phosphoramidon-sensitive metalloproteinase which can process big ET-1 to ET-1. In the breast this conversion could contribute substantially to the local extracellular levels of this proposed paracrine breast fibroblast mitogen. PMID:7880721

  10. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    SciTech Connect

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  11. Aluminium and the human breast.

    PubMed

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. PMID:26997127

  12. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    SciTech Connect

    Yu, Wei; Chai, Hongyan; Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue; Yang, Guifang; Cai, Xiaojun; Falck, John R.; Yang, Jing

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  13. Bisphenol AF-induced endogenous transcription is mediated by ERα and ERK1/2 activation in human breast cancer cells.

    PubMed

    Li, Ming; Guo, Jing; Gao, Wenhui; Yu, Jianlong; Han, Xiaoyu; Zhang, Jing; Shao, Bing

    2014-01-01

    Bisphenol AF (BPAF)-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1), growth regulation by estrogen in breast cancer 1 (GREB1) and cathepsin D (CTSD), through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER) by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ERα and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ERα-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ERα-positive T47D and MCF7 cells as well as overexpression of ERα in ERα-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ERα and ERK1/2 activation in human breast cancer cells. PMID:24727858

  14. Bisphenol AF-Induced Endogenous Transcription Is Mediated by ERα and ERK1/2 Activation in Human Breast Cancer Cells

    PubMed Central

    Li, Ming; Guo, Jing; Gao, Wenhui; Yu, Jianlong; Han, Xiaoyu; Zhang, Jing; Shao, Bing

    2014-01-01

    Bisphenol AF (BPAF)-induced transcriptional activity has been evaluated by luciferase reporter assay. However, the molecular mechanism of BPAF-induced endogenous transcription in human breast cancer cells has not been fully elucidated. In the present study, we investigated the effect and mechanism of BPAF-induced endogenous transcription detected by real-time PCR in human breast cancer cells. We found that BPAF stimulated transcription of estrogen responsive genes, such as trefoil factor 1 (TFF1), growth regulation by estrogen in breast cancer 1 (GREB1) and cathepsin D (CTSD), through dose-dependent and time-dependent manners in T47D and MCF7 cells. Gene-silencing of ERα, ERβ and G protein-coupled estrogen receptor 1 (GPER) by small interfering RNA revealed that BPAF-induced endogenous transcription was dependent on ERα and GPER, implying both genomic and nongenomic pathways might be involved in the endogenous transcription induced by BPAF. ERα-mediated gene transcription was further confirmed by inhibition of ER activity using ICI 182780 in ERα-positive T47D and MCF7 cells as well as overexpression of ERα in ERα-negative MDA-MB-231 breast cancer cells. Moreover, we utilized Src tyrosine kinase inhibitor PP2 and two MEK inhibitors PD98059 and U0126 to elucidate the rapid nongenomic activation of Src/MEK/ERK1/2 cascade on endogenous transcription. Our data showed that BPAF-induced transcription could be significantly blocked by PP2, PD98059 and U0126, suggesting activation of ERK1/2 was also required to regulate endogenous transcription. Taken together, these results indicate that BPAF-induced endogenous transcription of estrogen responsive genes is mediated through both genomic and nongenomic pathways involving the ERα and ERK1/2 activation in human breast cancer cells. PMID:24727858

  15. Progesterone receptors in human breast cancer. Stoichiometric translocation and nuclear receptor processing.

    PubMed

    Mockus, M B; Horwitz, K B

    1983-04-25

    In a subline of T47D human breast cancer cells, progesterone receptors (PR) are synthesized at very high levels, but their synthesis is not estrogen-dependent. Despite the unusual control of synthesis, the physicochemical properties of PR are normal. These are, therefore, ideal cells to study PR regulation by progesterone, free of estrogen effects. In this paper, we show that nuclear translocation of PR is stoichiometric, and that an unusual and very rapid nuclear turnover, or processing step, characterizes receptor-DNA interactions. In intact T47D cells, PR are translocated to the nucleus only by progestins; 70-90% of cytoplasmic receptors are depleted at 37 degrees C within 5 min of progestin addition. After PR are translocated by 0.1 muM progesterone, they can be quantitatively recovered from nuclei only in the first 5 min; thereafter, a rapid nuclear processing step results in loss of 50-80% of the newly translocated sites. Rapid processing may be inherent to PR; it also occurs in PR of MCF-7 cells. The extent of receptor translocation and of nuclear receptor processing is dependent on the progesterone concentration and on the treatment time, and can be masked by endogenous hormones. Proteolytic enzyme inhibitors (leupeptin, antipain) do not prevent nuclear PR loss. G-C specific DNA intercalators that prevent nuclear estrogen receptor processing (actinomycin D, chromomycin A3) also fail to prevent PR loss, but some A-T specific DNA-binding dyes (chloroquine, primaquine, quinacrine) protect 50-75% of nuclear PR. We conclude that translocated nuclear PR can be quantitatively measured only at early time points because the nuclear receptors are rapidly processed. Furthermore, the processing step may involve an interaction of receptors with DNA since it can be partially blocked by DNA-binding agents. PMID:6833276

  16. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells.

    PubMed

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A; Davidson, Nancy E; Huang, Yi

    2012-11-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N (1)-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  17. COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer

    PubMed Central

    Timoshenko, A V; Chakraborty, C; Wagner, G F; Lala, P K

    2006-01-01

    Increased expression of COX-2 or VEGF-C has been correlated with progressive disease in certain cancers. Present study utilized several human breast cancer cell lines (MCF-7, T-47D, Hs578T and MDA-MB-231, varying in COX-2 expression) as well as 10 human breast cancer specimens to examine the roles of COX-2 and prostaglandin E (EP) receptors in VEGF-C expression or secretion, and the relationship of COX-2 or VEGF-C expression to lymphangiogenesis. We found a strong correlation between COX-2 mRNA expression and VEGF-C expression or secretion levels in breast cancer cell lines and VEGF-C expression in breast cancer tissues. Expression of LYVE-1, a selective marker for lymphatic endothelium, was also positively correlated with COX-2 or VEGF-C expression in breast cancer tissues. Inhibition of VEGF-C expression and secretion in the presence of COX-1/2 or COX-2 inhibitors or following downregulation of COX-2 with COX-2 siRNA established a stimulatory role COX-2 in VEGF-C synthesis by breast cancer cells. EP1 as well as EP4 receptor antagonists inhibited VEGF-C production indicating the roles of EP1 and EP4 in VEGF-C upregulation by endogenous PGE2. Finally, VEGF-C secretion by MDA-MB-231 cells was inhibited in the presence of kinase inhibitors for Her-2/neu, Src and p38 MAPK, indicating a requirement of these kinases for VEGF-C synthesis. These results, for the first time, demonstrate a regulatory role of COX-2 in VEGF-C synthesis (and thereby lymphangiogenesis) in human breast cancer, which is mediated at least in part by EP1/EP4 receptors. PMID:16570043

  18. The novel C24D synthetic polypeptide inhibits binding of placenta immunosuppressive ferritin to human T cells and elicits anti-breast cancer immunity in vitro and in vivo.

    PubMed

    Solodeev, Inna; Zahalka, Muayad A; Moroz, Chaya

    2014-09-01

    Immune tolerance mechanisms supporting normal human pregnancy are exploited by breast cancer and other malignancies. We cloned from human placenta and breast cancer cells the novel human immunomodulator named placenta immunosuppressive ferritin (PLIF). PLIF is composed of a ferritin heavy chain-like domain and a novel cytokine-like domain, named C48. Both intact PLIF and C48 inhibit T cell proliferation. Blocking PLIF by specific antibodies in a tolerant breast cancer model in nude mice resulted in tumor cell apoptosis and rejection. This prompted us to study active immune preventive strategies targeting PLIF activity. Currently, we report on the design and synthesis of the novel C24D polypeptide, which inhibits the binding of PLIF to T cells and therefore inhibits the immune suppressive effect of PLIF. The effect of C24D on the generation of anti-breast cancer cytotoxic T lymphocytes (CTLs) was studied in vitro in cultures of MCF-7 (HLA-A2(+)) or T47D (HLA-A2(-)) breast cancer cells incubated with peripheral blood mononuclear cells (PBMCs) from healthy blood donors. We found that C24D treatment exclusively induced development of CTLs. On reactivation by their specific target cells, the CTLs secreted interferon-γ and induced target apoptosis. Anti-MCF-7 CTLs were cross-cytotoxic to MDA-MB-231 (HLA-A2(+)) triple-negative breast cancer but not to T47D. Moreover, C24D treatment in vivo inhibited the growth of MCF-7 tumors engrafted in immune-compromised nude mice transfused with naïve allogeneic human PBMCs. Our results demonstrate that C24D treatment breakdown breast cancer induced tolerance enabling the initiation of effective anti-tumor immune response. PMID:25246274

  19. Human Breast Cancer Histoid

    PubMed Central

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R.; Ingram, Marylou

    2011-01-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue. PMID:22034518

  20. Metformin inhibits histone H2B monoubiquitination and downstream gene transcription in human breast cancer cells.

    PubMed

    DU, Yu; Zheng, Haiyan; Wang, Jiang; Ren, Ye; Li, Mi; Gong, Chen; Xu, Fei; Yang, Caihong

    2014-08-01

    Metformin, one of the most widely prescribed antihyperglycemic drugs, has recently received increasing attention for its potential effects with regard to cancer prevention and treatment. However, the mechanisms behind the suppression of cancer cell growth by metformin remain far from completely understood. The aim of the present study was to investigate whether metformin could regulate histone modification and its downstream gene transcription, and its potential function in inhibiting breast cancer cell proliferation. A T47D cell proliferation curve was determined by cell counting following metformin treatment with differing doses or time courses. The cell cycle was analyzed by flow cytometry with propidium iodide staining. Histone H2B monoubiquitination was evaluated by western blotting subsequent to histone extraction. The histone H2B monoubiquitination downstream gene expression level was determined by quantitative PCR. The results showed that metformin changed the cell-cycle check-point and inhibited breast cancer cell proliferation in a dose-dependent manner. AMPK was activated and histone H2B monoubiquitination and downstream gene transcription were inhibited following metformin treatment in the T47D cells. The effect of metformin on T47D cell proliferation was dependent on AMPK activity. It was concluded that metformin can suppress breast cancer cell growth by the activation of AMPK and the inhibition of histone H2B monoubiquitination and downstream gene transcription. This study reveals a novel potential mechanism of cancer cell growth suppression by metformin. PMID:25009658

  1. A peptide derived from alpha-fetoprotein prevents the growth of estrogen-dependent human breast cancers sensitive and resistant to tamoxifen.

    PubMed

    Bennett, James A; Mesfin, Fassil B; Andersen, Thomas T; Gierthy, John F; Jacobson, Herbert I

    2002-02-19

    An 8-mer peptide (EMTOVNOG) derived from alpha-fetoprotein was compared with tamoxifen for activity against growth of human breast cancer xenografts implanted in immune-deficient mice. Both peptide and tamoxifen prevented growth of estrogen-receptor-positive MCF-7 and T47D human breast cancer xenografts. A subline of MCF-7, made resistant to tamoxifen by a 6-month exposure to this drug in culture, was found to be resistant to tamoxifen in vivo. Peptide completely prevented the xenograft growth of this tamoxifen-resistant subline of MCF-7. Neither peptide nor tamoxifen was effective in slowing the xenograft growth of the estrogen-receptor-negative MDA-MB-231 human breast cancer. A worrisome side effect of tamoxifen is its hypertrophic effect on the uterus. In this study, tamoxifen was shown to stimulate the growth of the immature mouse uterus in vivo, and the peptide significantly inhibited tamoxifen's uterotrophic effect. The mechanism of action of peptide is different from that of tamoxifen in that the peptide does not interfere with the binding of [(3)H]estradiol to the estrogen receptor. In conclusion, alpha-fetoprotein-derived peptide appears to be a novel agent that interferes with the growth of tamoxifen-sensitive as well as tamoxifen-resistant estrogen-receptor-positive human breast cancers; it inhibits the uterotrophic side effect of tamoxifen and, thus, it may be useful in combination with or in place of tamoxifen for treatment of estrogen-receptor-positive human breast cancers. PMID:11830647

  2. Chemical and biological differentiation of three human breast cancer cell types using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    SciTech Connect

    Kulp, K S; Berman, E F; Knize, M G; Shattuck, D L; Nelson, E J; Wu, L; Montgomery, J L; Felton, J S; Wu, K J

    2006-01-09

    We use Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) to image and classify individual cells based on their characteristic mass spectra. Using statistical data reduction on the large data sets generated during TOF-SIMS analysis, similar biological materials can be differentiated based on a combination of small changes in protein expression, metabolic activity and cell structure. We apply this powerful technique to image and differentiate three carcinoma-derived human breast cancer cell lines (MCF-7, T47D and MDA-MB-231). In homogenized cells, we show the ability to differentiate the cell types as well as cellular compartments (cytosol, nuclear and membrane). These studies illustrate the capacity of TOF-SIMS to characterize individual cells by chemical composition, which could ultimately be applied to detect and identify single aberrant cells within a normal cell population. Ultimately, we anticipate characterizing rare chemical changes that may provide clues to single cell progression within carcinogenic and metastatic pathways.

  3. Aluminium and human breast diseases.

    PubMed

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate. PMID:22099158

  4. Validation of T47D-KBluc cell assay for detection of estrogen receptor agonists and antagonists

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to environmental estrogens and their potential impact on reproductive health. Cell-based assays are useful tools to determine the estrogenic activity of chemicals. Confidence in in vitro assay results is strengthe...

  5. Validation of T47D-KBluc cell assay for detection of estrogen receptor agonists and antagonists###

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to environmental estrogens and their potential impact on reproductive health. Cell-based assays are useful tools to determine the estrogenic activity of chemicals. Confidence in in vitro assay results is strengthe...

  6. Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions.

    PubMed

    Holen, I; Nutter, F; Wilkinson, J M; Evans, C A; Avgoustou, P; Ottewell, Penelope D

    2015-10-01

    Bone is established as the preferred site of breast cancer metastasis. However, the precise mechanisms responsible for this preference remain unidentified. In order to improve outcome for patients with advanced breast cancer and skeletal involvement, we need to better understand how this process is initiated and regulated. As bone metastasis cannot be easily studied in patients, researchers have to date mainly relied on in vivo xenograft models. A major limitation of these is that they do not contain a human bone microenvironment, increasingly considered to be an important component of metastases. In order to address this shortcoming, we have developed a novel humanised bone model, where 1 × 10(5) luciferase-expressing MDA-MB-231 or T47D human breast tumour cells are seeded on viable human subchaodral bone discs in vitro. These discs contain functional osteoclasts 2-weeks after in vitro culture and positive staining for calcine 1-week after culture demonstrating active bone resorption/formation. In vitro inoculation of MDA-MB-231 or T47D cells colonised human bone cores and remained viable for <4 weeks, however, use of matrigel to enhance adhesion or a moving platform to increase diffusion of nutrients provided no additional advantage. Following colonisation by the tumour cells, bone discs pre-seeded with MDA-MB-231 cells were implanted subcutaneously into NOD SCID mice, and tumour growth monitored using in vivo imaging for up to 6 weeks. Tumour growth progressed in human bone discs in 80 % of the animals mimicking the later stages of human bone metastasis. Immunohistochemical and PCR analysis revealed that growing MDA-MB-231 cells in human bone resulted in these cells acquiring a molecular phenotype previously associated with breast cancer bone metastases. MDA-MB-231 cells grown in human bone discs showed increased expression of IL-1B, HRAS and MMP9 and decreased expression of S100A4, whereas, DKK2 and FN1 were unaltered compared with the same cells grown in

  7. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    SciTech Connect

    Wang, Yifan; Li, Shu Jie; Pan, Juncheng; Che, Yongzhe; Yin, Jian; Zhao, Qing

    2011-08-26

    Highlights: {yields} Hv1 is specifically expressed in highly metastatic human breast tumor tissues. {yields} Hv1 regulates breast cancer cytosolic pH. {yields} Hv1 acidifies extracellular milieu. {yields} Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  8. Chronic Inhibition of STAT3/STAT5 in Treatment-Resistant Human Breast Cancer Cell Subtypes: Convergence on the ROS/SUMO Pathway and Its Effects on xCT Expression and System xc- Activity

    PubMed Central

    Linher-Melville, Katja; Nashed, Mina G.; Ungard, Robert G.; Haftchenary, Sina; Rosa, David A.; Gunning, Patrick T.; Singh, Gurmit

    2016-01-01

    Pharmacologically targeting activated STAT3 and/or STAT5 has been an active area of cancer research. The cystine/glutamate antiporter, system xc-, contributes to redox balance and export of intracellularly produced glutamate in response to up-regulated glutaminolysis in cancer cells. We have previously shown that blocking STAT3/5 using the small molecule inhibitor, SH-4-54, which targets the SH2 domains of both proteins, increases xCT expression, thereby increasing system xc- activity in human breast cancer cells. The current investigation demonstrates that chronic SH-4-54 administration, followed by clonal selection of treatment-resistant MDA-MB-231 and T47D breast cancer cells, elicits distinct subtype-dependent effects. xCT mRNA and protein levels, glutamate release, and cystine uptake are decreased relative to untreated passage-matched controls in triple-negative MDA-MB-231 cells, with the inverse occurring in estrogen-responsive T47D cells. This “ying-yang” effect is linked with a shifted balance between the phosphorylation status of STAT3 and STAT5, intracellular ROS levels, and STAT5 SUMOylation/de-SUMOylation. STAT5 emerged as a definitive negative regulator of xCT at the transcriptional level, while STAT3 activation is coupled with increased system xc- activity. We propose that careful classification of a patient’s breast cancer subtype is central to effectively targeting STAT3/5 as a therapeutic means of treating breast cancer, particularly given that xCT is emerging as an important biomarker of aggressive cancers. PMID:27513743

  9. Effects of CDK4/6 Inhibition in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Cells with Acquired Resistance to Paclitaxel

    PubMed Central

    Trapé, Adriana Priscila; Liu, Shuying; Cortes, Andrea Carolina; Ueno, Naoto T.; Gonzalez-Angulo, Ana Maria

    2016-01-01

    Among patients with hormone receptor (HR)-positive breast cancer, those with residual disease after neoadjuvant chemotherapy have a higher risk of relapse and poorer survival than those with a complete response. Previous studies have revealed a correlation between activation of cell cycle-regulating pathways in HR-positive breast cancer, particularly cyclin-dependent kinase (CDK) 4 and 6/cyclin D1 signaling, and resistance to standard therapies. Although CDK4/6 inhibition by palbociclib in combination with endocrine therapy has shown potent antiproliferative effects in HR-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, the potential role of palbociclib in re-sensitizing chemotherapy-resistant HR-positive breast cancer is not well defined. We hypothesized that CDK4/6 inhibition by palbociclib re-sensitizes HR-positive/HER2-negative residual breast cancer to taxane-based adjuvant therapy. Using cell counting, flow cytometry, and western blotting, we evaluated the efficacy of palbociclib alone and in concurrent or sequential combination with paclitaxel in parental and paclitaxel-resistant T47D HR-positive/HER2-negative breast cancer cells. The CDK4/6 pathway was constitutively active in both parental and paclitaxel-resistant T47D cells; thus, both cell types were highly sensitive to the inhibitory effects of single-agent palbociclib on cell growth and cell cycle progression. However, palbociclib did not re-sensitize resistant cells to paclitaxel-induced G2/M arrest and cell death in any of the combinations tested. Our results suggest that CDK4/6 inhibition by palbociclib does not re-sensitize HR-positive/HER2-negative residual breast cancer to chemotherapy. Nevertheless, the fact that CDK4/6 activation remained intact in paclitaxel-resistant cells indicates that patients who have HR-positive/HER2-negative residual disease after taxane-based neoadjuvant chemotherapy may still benefit from palbociclib in combination with other regimens

  10. Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines

    SciTech Connect

    Ho, T.-F.; Peng, Y.-T.; Chuang, S.-M.; Lin, S.-C.; Feng, B.-L.; Lu, C.-H.; Yu, W.-J.; Chang, J.-S. Chang, C.-C.

    2009-03-01

    Prodigiosin is a bacterial metabolite with potent anticancer activity, which is attributed to its proapoptotic effect selectively active in malignant cells. Still, the molecular mechanisms whereby prodigiosin induces apoptosis remain largely unknown. In particular, the role of survivin, a vital inhibitor of apoptosis, in prodigiosin-induced apoptosis has never been addressed before and hence was the primary goal of this study. Our results showed that prodigiosin dose-dependently induced down-regulation of survivin in multiple breast carcinoma cell lines, including MCF-7, T-47D and MDA-MB-231. This down-regulation is mainly regulated at the level of transcription, as prodigiosin reduced the levels of both survivin mRNA and survivin promoter activity but failed to rescue survivin expression when proteasome-mediated degradation is abolished. Importantly, overexpression of survivin rendered cells more resistant to prodigiosin, indicating an essential role of survivin down-regulation in prodigiosin-induced apoptosis. In addition, we found that prodigiosin synergistically enhanced cell death induced by paclitaxel, a chemotherapy drug known to up-regulate survivin that in turn confers its own resistance. This paclitaxel sensitization effect of prodigiosin is ascribed to the lowering of survivin expression, because prodigiosin was shown to counteract survivin induction by paclitaxel and, notably, the sensitization effect was severely abrogated in cells that overexpress survivin. Taken together, our results argue that down-regulation of survivin is an integral component mediating prodigiosin-induced apoptosis in human breast cancer cells, and further suggest the potential of prodigiosin to sensitize anticancer drugs, including paclitaxel, in the treatment of breast cancer.

  11. Cell and membrane lipid analysis by proton magnetic resonance spectroscopy in five breast cancer cell lines.

    PubMed

    Le Moyec, L; Tatoud, R; Eugène, M; Gauvillé, C; Primot, I; Charlemagne, D; Calvo, F

    1992-10-01

    The lipid composition of five human breast cancer cell lines (MCF-7, T47D, ZR-75-1, SKBR3 and MDA-MB231) was assessed by proton magnetic resonance spectroscopy (MRS) in whole cells and membrane-enriched fractions. The proportions of the three main lipid resonances in 1D spectra were different for each cell line. These resonances included mobile methyl and methylene functions from fatty acids of triglycerides and phospholipids and N-trimethyl from choline of phospholipids. T47D and ZR-75-1 cells presented a high methylene/methyl ratio (6.02 +/- 0.35 and 6.28 +/- 0.90). This ratio was significantly lower for SKBR3, MCF-7 and MDA-MB231 cells (2.76 +/- 0.22, 2.27 +/- 0.57 and 1.39 +/- 0.39). The N-trimethyl/methyl ratio was high for MDA-MB231 and SKBR3 cells (1.38 +/- 0.54 and 0.86 +/- 0.32), but lower for MCF-7, T47D and ZR-75-1 cells (0.49 +/- 0.11, 0.16 +/- 0.07 and 0.07 +/- 0.03). 2D COSY spectra confirmed these different proportions in mobile lipids. From 1D spectra obtained on membrane preparations, T47D and ZR-75-1 were the only cell lines to retain a signal from mobile methylene functions. These differences might be related to the heterogeneity found for several parameters of these cells (tumorigenicity, growth rate, hormone receptors); an extended number of cases from fresh samples might enable clinical correlations. PMID:1329906

  12. Effect of low doses of estradiol and tamoxifen on breast cancer cell karyotypes.

    PubMed

    Rondón-Lagos, Milena; Rangel, Nelson; Di Cantogno, Ludovica Verdun; Annaratone, Laura; Castellano, Isabella; Russo, Rosalia; Manetta, Tilde; Marchiò, Caterina; Sapino, Anna

    2016-08-01

    Evidence supports a role of 17&-estradiol (E2) in carcinogenesis and the large majority of breast carcinomas are dependent on estrogen. The anti-estrogen tamoxifen (TAM) is widely used for both treatment and prevention of breast cancer; however, it is also carcinogenic in human uterus and rat liver, highlighting the profound complexity of its actions. The nature of E2- or TAM-induced chromosomal damage has been explored using relatively high concentrations of these agents, and only some numerical aberrations and chromosomal breaks have been analyzed. This study aimed to determine the effects of low doses of E2 and TAM (10(&8 )mol L(&1) and 10(&6 )mol L(&1) respectively) on karyotypes of MCF7, T47D, BT474, and SKBR3 breast cancer cells by comparing the results of conventional karyotyping and multi-FISH painting with cell proliferation. Estrogen receptor (ER)-positive (+) cells showed an increase in cell proliferation after E2 treatment (MCF7, T47D, and BT474) and a decrease after TAM treatment (MCF7 and T47D), whereas in ER& cells (SKBR3), no alterations in cell proliferation were observed, except for a small increase at 96 h. Karyotypes of both ER+ and ER& breast cancer cells increased in complexity after treatments with E2 and TAM leading to specific chromosomal abnormalities, some of which were consistent throughout the treatment duration. This genotoxic effect was higher in HER2+ cells. The ER&/HER2+ SKBR3 cells were found to be sensitive to TAM, exhibiting an increase in chromosomal aberrations. These in vitro results provide insights into the potential role of low doses of E2 and TAM in inducing chromosomal rearrangements in breast cancer cells. PMID:27357940

  13. The transcriptional responsiveness of LKB1 to STAT-mediated signaling is differentially modulated by prolactin in human breast cancer cells

    PubMed Central

    2014-01-01

    Background Liver kinase 1 (LKB1) is an important multi-tasking protein linked with metabolic signaling, also controlling polarity and cytoskeletal rearrangements in diverse cell types including cancer cells. Prolactin (PRL) and Signal transducer and activator of transcription (STAT) proteins have been associated with breast cancer progression. The current investigation examines the effect of PRL and STAT-mediated signaling on the transcriptional regulation of LKB1 expression in human breast cancer cells. Methods MDA-MB-231, MCF-7, and T47D human breast cancer cells, and CHO-K1 cells transiently expressing the PRL receptor (long form), were treated with 100 ng/ml of PRL for 24 hours. A LKB1 promoter-luciferase construct and its truncations were used to assess transcriptional changes in response to specific siRNAs or inhibitors targeting Janus activated kinase 2 (JAK2), STAT3, and STAT5A. Real-time PCR and Western blotting were applied to quantify changes in mRNA and protein levels. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays were used to examine STAT3 and STAT5A binding to the LKB1 promoter. Results Consistent with increases in mRNA, the LKB1 promoter was up-regulated by PRL in MDA-MB-231 cells, a response that was lost upon distal promoter truncation. A putative GAS element that could provide a STAT binding site mapped to this region, and its mutation decreased PRL-responsiveness. PRL-mediated increases in promoter activity required signaling through STAT3 and STAT5A, also involving JAK2. Both STATs imparted basally repressive effects in MDA-MB-231 cells. PRL increased in vivo binding of STAT3, and more definitively, STAT5A, to the LKB1 promoter region containing the GAS site. In T47D cells, PRL down-regulated LKB1 transcriptional activity, an effect that was reversed upon culture in phenol red-free media. Interleukin 6, a cytokine activating STAT signaling in diverse cell types, also increased LKB1 mRNA levels and

  14. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer

    PubMed Central

    Hollmén, Maija; Karaman, Sinem; Schwager, Simon; Lisibach, Angela; Christiansen, Ailsa J.; Maksimow, Mikael; Varga, Zsuzsanna; Jalkanen, Sirpa; Detmar, Michael

    2016-01-01

    ABSTRACT Tumor-associated macrophages (TAMs) have been implicated in the promotion of breast cancer growth and metastasis, and a strong infiltration by TAMs has been associated with estrogen receptor (ER)-negative tumors and poor prognosis. However, the molecular mechanisms behind these observations are unclear. We investigated macrophage activation in response to co-culture with several breast cancer cell lines (T47D, MCF-7, BT-474, SKBR-3, Cal-51 and MDA-MB-231) and found that high granulocyte colony-stimulating factor (G-CSF) secretion by the triple-negative breast cancer (TNBC) cell line MDA-MB-231 gave rise to immunosuppressive HLA-DRlo macrophages that promoted migration of breast cancer cells via secretion of TGF-α. In human breast cancer samples (n = 548), G-CSF was highly expressed in TNBC (p < 0.001) and associated with CD163+ macrophages (p < 0.0001), poorer overall survival (OS) (p = 0.021) and significantly increased numbers of TGF-α+ cells. While G-CSF blockade in the 4T1 mammary tumor model promoted maturation of MHCIIhi blood monocytes and TAMs and significantly reduced lung metastasis, anti-CSF-1R treatment promoted MHCIIloF4/80hiMRhi anti-inflammatory TAMs and enhanced lung metastasis in the presence of high G-CSF levels. Combined anti-G-CSF and anti-CSF-1R therapy significantly increased lymph node metastases, possibly via depletion of the so-called “gate-keeper” subcapsular sinus macrophages. These results indicate that G-CSF promotes the anti-inflammatory phenotype of tumor-induced macrophages when CSF-1R is inhibited and therefore caution against the use of M-CSF/CSF-1R targeting agents in tumors with high G-CSF expression. PMID:27141367

  15. Efficacy of treatment of colon, lung and breast human carcinoma xenografts with: doxorubicin, cisplatin, irinotecan or topotecan.

    PubMed

    Hardman, W E; Moyer, M P; Cameron, I L

    1999-01-01

    Given that human cancer xenografts tend to retain chemosensitivities similar to the cancerous tissue of origin, human carcinoma xenografts grown in nude mice were tested for sensitivity to four drug protocols: doxorubicin at 5 mg/kg, i.v., q5d; irinotecan at 60 mg/kg, i.v., q4d; cisplatin 5 mg/kg, i.p., q7d; and topotecan 1.5 mg/kg, p.o., qd (5 of 7 days). Irinotecan and doxorubicin protocols either halted or caused significant regression of the breast cancer cell lines (MCF7, MDA-MB 231 and T47D). None of the protocols tested resulted in significant regression in the lung cancer xenografts (H460, A549 and H226) although both irinotecan and doxorubicin did halt growth of the H226 xenograft. The ability of the irinotecan treatment to cause regression of xenograft size in all three colon cancer cell lines (SW620, COLO205 and HT29) justifies further clinical trials of irinotecan as an especially promising drug for the treatment of colon cancer. PMID:10472342

  16. Role of ERRF, a Novel ER-Related Nuclear Factor, in the Growth Control of ER-Positive Human Breast Cancer Cells

    PubMed Central

    Su, Dan; Fu, Xiaoying; Fan, Songqing; Wu, Xiao; Wang, Xin-Xin; Fu, Liya; Dong, Xue-Yuan; Ni, Jianping Jenny; Fu, Li; Zhu, Zhengmao; Dong, Jin-Tang

    2012-01-01

    Whereas estrogen–estrogen receptor α (ER) signaling plays an important role in breast cancer growth, it is also necessary for the differentiation of normal breast epithelial cells. How this functional conversion occurs, however, remains unknown. Based on a genome-wide sequencing study that identified mutations in several breast cancer genes, we examined some of the genes for mutations, expression levels, and functional effects on cell proliferation and tumorigenesis. We present the data for C1orf64 or ER-related factor (ERRF) from 31 cell lines and 367 primary breast cancer tumors. Whereas mutation of ERRF was infrequent (1 of 79 or 1.3%), its expression was up-regulated in breast cancer, and the up-regulation was more common in lower-stage tumors. In addition, increased ERRF expression was significantly associated with ER and/or progesterone receptor (PR) positivity, which was still valid in human epidermal growth factor receptor 2 (HER2)–negative tumors. In ER-positive tumors, ERRF expression was inversely correlated with HER2 status. Furthermore, higher ERRF protein expression was significantly associated with better disease-free survival and overall survival, particularly in ER- and/or PR-positive and HER2-negative tumors (luminal A subtype). Functionally, knockdown of ERRF in two ER-positive breast cancer cell lines, T-47D and MDA-MB-361, suppressed cell growth in vitro and tumorigenesis in xenograft models. These results suggest that ERRF plays a role in estrogen-ER–mediated growth of breast cancer cells and could, thus, be a potential therapeutic target. PMID:22341523

  17. Early estrogen-induced metabolic changes and their inhibition by actinomycin D and cycloheximide in human breast cancer cells: sup 31 P and sup 13 C NMR studies

    SciTech Connect

    Neeman, M.; Degani, H. )

    1989-07-01

    Metabolic changes following estrogen stimulation and the inhibition of these changes in the presence of actinomycin D and cycloheximide were monitored continuously in perfused human breast cancer T47D clone 11 cells with {sup 31}P and {sup 13}C NMR techniques. The experiments were performed by estrogen rescue of tamoxifen-treated cells. Immediately after perfusion with estrogen-containing medium, a continuous enhancement in the rates of glucose consumption, lactate production by glycolysis, and glutamate synthesis by the Krebs cycle occurred with a persistent 2-fold increase at 4 hr. Pretreatment with either actinomycin D or cycloheximide, at concentrations known to inhibit mRNA and protein synthesis, respectively, and simultaneous treatment with estrogen and each inhibitor prevented the estrogen-induced changes in glucose metabolism. This suggested that the observed estrogen stimulation required synthesis of mRNA and protein. These inhibitors also modulated several metabolic activities that were not related to estrogen stimulation. The observed changes in the in vivo kinetics of glucose metabolism may provide a means for the early detection of the response of human breast cancer cells to estrogen versus tamoxifen treatment.

  18. Essiac? and Flor-Essence? herbal tonics stimulate the in vitro growth of human breast cancer cells

    SciTech Connect

    Kulp, K S; Montgomery, J L; McLimans, B; Latham, E R; Shattuck, D L; Klotz, D M; Bennett, L M

    2005-10-07

    People diagnosed with cancer often self-administer complementary and alternative medicines (CAMs) to supplement their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} and Essiac{reg_sign} Herbal Tonics are commercially available complex mixtures of herbal extracts sold as dietary supplements and used by cancer patients based on anecdotal evidence that they can treat or prevent disease. In this study, we evaluated Flor-Essence{reg_sign} and Essiac{reg_sign} for their effects on the growth of human tumor cells in culture. The effect of Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics on cell proliferation was tested in MCF-7, MDA-MB-436, MDA-MB-231, and T47D cancer cells isolated from human breast tumors. Estrogen receptor (ER) dependent activation of a luciferase reporter construct was tested in MCF-7 cells. Specific binding to the ER was tested using an ICI 182,780 competition assay. Flor-Essence{reg_sign} and Essiac{reg_sign} herbal tonics at 1%, 2%, 4% and 8% stimulated cell proliferation relative to untreated controls and activated ER dependent luciferase activity in MCF-7 cells. A 10{sup -7} M concentration of ICI 870,780 inhibited the induction of ER dependent luciferase activity by Flor-Essence{reg_sign} and Essiac{reg_sign}, but did not affect cell proliferation. Flor-Essence{reg_sign} and Essiac{reg_sign} Herbal Tonics can stimulate the growth of human breast cancer cells through ER mediated as well as ER independent mechanisms of action. Cancer patients and health care providers can use this information to make informed decisions about the use of these CAMs.

  19. Human breast cancer cells and normal mammary epithelial cells: retinol metabolism and growth inhibition by the retinol metabolite 4-oxoretinol.

    PubMed

    Chen, A C; Guo, X; Derguini, F; Gudas, L J

    1997-10-15

    To understand the signaling and growth-inhibitory effects of retinoids, we have examined the metabolism of [3H]retinol in a number of estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) human breast cancer cell lines. We have also assayed the metabolism of [3H]retinol in normal human mammary epithelial cells. The ER+ breast cancer cell lines MCF-7 and T47D produce [3H]4-oxoretinol from [3H]retinol; the production of [3H]4-oxoretinol is increased by initial culture in the presence of nonradiolabeled retinoic acid (RA) or N-(4-hydroxyphenyl)retinamide, indicating that these drugs enhance [3H]retinol metabolism to [3H]4-oxoretinol. No metabolism of [3H]retinol to [3H]RA in these ER+ tumor lines was detected. ER- breast cancer lines MDA-MB-231, MDA-MB-468, and BT20 do not metabolize [3H]retinol to [3H]4-oxoretinol. In the ER- tumor lines, most of the [3H]retinol remains unmetabolized during the 24-h culture period; MDA-MB-468 and BT20 metabolize some [3H]retinol to [3H]RA. Unlike the majority of the tumor lines, the normal human breast epithelial cell strains AD074 and MCF10A rapidly metabolize [3H]retinol to [3H]retinyl esters. No detectable [3H]RA is produced from [3H]retinol in AD074 and MCF10A cells. Thus, the normal breast epithelial strains, the ER+ tumor lines and the ER- tumor lines differ greatly in their pathways of [3H]retinol metabolism. The levels of cellular retinol binding protein-I mRNA expression are not correlated with the levels or types of various retinol metabolites. Whereas the normal breast epithelial cells and the ER+ tumor lines are growth inhibited by RA, N-(4-hydroxyphenyl)retinamide, and 4-oxoretinol, only the 4-oxoretinol is growth inhibitory in the ER- tumor lines. The cellular retinoic acid-binding protein II mRNA levels are not correlated with the growth inhibition by RA or 4-oxoretinol in the normal and tumor lines. PMID:9377581

  20. Cytoskeleton alterations induced by Geodia corticostylifera depsipeptides in breast cancer cells.

    PubMed

    Rangel, Marisa; Prado, Marisa P; Konno, Katsuhiro; Naoki, Hideo; Freitas, José C; Machado-Santelli, Glaucia M

    2006-09-01

    Crude extracts of the marine sponge Geodia corticostylifera from Brazilian Coast have previously shown antibacterial, antifungal, cytotoxic, haemolytic and neurotoxic activities. The present work describes the isolation of the cyclic peptides geodiamolides A, B, H and I (1-4) from G. corticostylifera and their anti-proliferative effects against sea urchin eggs and human breast cancer cell lineages. Its structure-activity relationship is discussed as well. In an initial series of experiments these peptides inhibited the first cleavage of sea urchin eggs (Lytechinus variegatus). Duplication of nuclei without complete egg cell division indicated the mechanism of action might be related to microfilament disruption. Further studies showed that the geodiamolides have anti-proliferative activity against human breast cancer cell lines (T47D and MCF7). Using fluorescence techniques and confocal microscopy, we found evidence that the geodiamolides A, B, H and I act by disorganizing actin filaments of T47D and MCF7 cancer cells, in a way similar to other depsipeptides (such as jaspamide 5 and dolastatins), keeping the normal microtubule organization. Normal cells lines (primary culture human fibroblasts and BRL3A rat liver epithelial cells) were not affected by the treatment as tumor cells were, thus indicating the biomedical potential of these compounds. PMID:16843570

  1. Epigenetic silencing of NKD2, a major component of Wnt signaling, promotes breast cancer growth

    PubMed Central

    Dong, Yan; Cao, Baoping; Zhang, Meiying; Han, Weidong; Herman, James G.; Fuks, François; Zhao, Yali; Guo, Mingzhou

    2015-01-01

    Naked cuticle homolog 2 (NKD2) has been reported to antagonize Wnt signaling in zebrafish, mouse and mammals. The aim of this study is to investigate the epigenetic changes and mechanisms of NKD2 in human breast cancer development. Six breast cancer cell lines (MCF-7, ZR75-1, MDA-MB-468, MDA-MB-231, T47D and BT474) and 68 cases of primary human breast cancer were studied using methylation specific PCR, immunohistochemistry, western blot, flow cytometry techniques and a xenograft mouse model. The expression of NKD1 and NKD2 was regulated by promoter region methylation in breast cancer cells. No NKD1 methylation was found in primary human breast cancer. NKD2 was methylated in 51.4% (35/68) of human primary breast cancer samples. NKD2 methylation was significantly associated with reduction of NKD2 expression, and tumor stage (p < 0.05). NKD2 suppressed breast cancer cell proliferation both in vitro and in vivo. NKD2 induced G1/S arrest and inhibited Wnt signaling in breast cancer cells. In conclusion, NKD2 is frequently methylated in human breast cancer, and the expression of NKD2 is regulated by promoter region methylation. NKD2 suppresses breast cancer proliferation by inhibiting Wnt signaling. PMID:26124080

  2. MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation cell cycle and migration in human breast cancer

    PubMed Central

    Liu, Dayue; Xia, Haoming; Wang, Fang; Chen, Cui; Long, Jianting

    2016-01-01

    Background In this study, we investigated the functional correlation between microRNA-210 (miR-210) and gene of F-box protein 31 (FBXO31) in regulating breast cancer. Methods Dual-luciferase assay and quantitative real-time polymerase chain reaction were used to investigate the binding of miR-210 with FBXO31 and their expression patterns in breast cancer. miR-210 was inhibited in breast cancer T47D and MCF-7 cells to assess its effect on cancer proliferation, cell cycle progression, and migration. FBXO31 was also downregulated in breast cancer cells to examine its effect on miR-210-mediated breast cancer regulation. The interaction between miR-210 and FBXO31 was further investigated by examining the effect of overexpressing miR-210 on FBXO31-induced suppression of breast cancer proliferation. Results FBXO31 was the downstream target gene of miR-210 in breast cancer. miR-210 and FBXO31 are inversely expressed in breast cancer cell lines. miR-210 downregulation reduced cancer progression, induced cell cycle arrest, and inhibited cancer migration in T47D and MCF-7 cells. Tumor suppression by miR-210 downregulation was reversed by downregulating FBXO31. In FBXO31-overexpressed breast cancer cells, upregulating miR-210 also reversed the tumor-suppressive effect of FBXO31 on breast cancer proliferation. Conclusion Our work demonstrated that the expression pattern and tumor regulatory functions of miR-210 and FBXO31 are inversely correlated in breast cancer.

  3. Monoterpenes inhibit cell growth, cell cycle progression, and cyclin D1 gene expression in human breast cancer cell lines.

    PubMed

    Bardon, S; Picard, K; Martel, P

    1998-01-01

    Monoterpenes are found in the essential oils of many commonly consumed fruits and vegetables. These compounds have been shown to exert chemopreventive and chemotherapeutic activities in mammary tumor models and represent a new class of breast cancer therapeutic agents. In this study, we investigated the effects of limonene and limonene-related monoterpenes, perillyl alcohol and perillic acid, on cell growth, cell cycle progression, and expression of cyclin D1 cell cycle-regulatory gene in T-47D, MCF-7, and MDA-MB-231 breast cancer cell lines. Our results revealed that limonene-related monoterpenes caused a dose-dependent inhibition of cell proliferation. Of the three monoterpenes tested, perillyl alcohol was the most potent and limonene was the least potent inhibitor of cell growth. The enantiomeric composition of limonene and perillyl alcohol did not interfere with their effect on cell growth. Sensitivity of breast cancer cell lines to monoterpenes was in the following order: T-47D > MCF-7 > MDA-MB-231. Growth inhibition induced by perillyl alcohol and perillic acid was associated with a fall in the proportion of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Finally, we showed that the effects of limonene-related monoterpenes on cell proliferation and cell cycle progression were preceded by a decrease in cyclin D1 mRNA levels. PMID:9824849

  4. Modulation of the uptake of critical nutrients by breast cancer cells by lactate: Impact on cell survival, proliferation and migration.

    PubMed

    Guedes, Marta; Araújo, João R; Correia-Branco, Ana; Gregório, Inês; Martel, Fátima; Keating, Elisa

    2016-02-15

    This work aimed to characterize the uptake of folate and glucose by breast cancer cells and to study the effect of lactate upon the transport of these nutrients and upon cell viability, proliferation and migration capacity. Data obtained showed that: a) MCF7 cells uptake (3)H-folic acid ((3)H-FA) at physiological but not at acidic pH; b) T47D cells accumulate (3)H-FA and (14)C-5-methyltetrahydrofolate ((14)C-5-MTHF) more efficiently at acidic than at physiological pH; c) (3)H-deoxyglucose ((3)H-DG) uptake by T47D cells is sodium-independent, inhibited by cytochalasin B (CYT B) and stimulated by insulin. Regarding the effect of lactate, in T47D cells, acute (26 min) and chronic (24 h) exposure to lactic acid (LA) stimulated (3)H-FA uptake. Acute exposure to LA also stimulated (3)H-DG uptake and chronic exposure to LA significantly stimulated T47D cell migratory capacity. In conclusion, the transport of folates is strikingly different in two phenotypically similar breast cancer cell lines: MCF7 and T47D cells. Additionally, lactate seems to act as a signaling molecule which increases the uptake of nutrients and promotes the migration capacity of T47D cells. PMID:26794902

  5. Estrogen-insensitive progesterone receptors in a human breast cancer cell line: characterization of receptors and of a ligand exchange assay.

    PubMed

    Mockus, M B; Lessey, B A; Bower, M A; Horwitz, K B

    1982-05-01

    In modified culture conditions, T47D human breast cancer cells synthesize extraordinary amounts of progesterone receptors (PgR), but, unlike other progesterone target cells, the PgR are entirely independent of estrogen controls. In the present studies we characterize some physicochemical properties of the PgR in T47D cells. We also describe an exchange assay for cytoplasmic and nuclear forms of the receptors which has enabled us to demonstrate that after progesterone treatment, translocation is stoichiometric. Despite the anomalous regulation of PgR levels, these receptors are typical of steroid receptors; they sediment at 7-8S on sucrose density gradients, they bind ligands with high affinity (Kd approximately 4 nM for R5020; Kd approximately 2 nM for progesterone), they bind only progestins specifically, and they are thermolabile (t1/2 at 37 C is approximately 15 min). Receptor levels range from 15-40 pmol/mg DNA, or more than 300,000 sites/cell. The ability of ligands to dissociate from and rebind to the receptors was measured and used in an exchange assay for nuclear PgR. The synthetic progestin R5020 dissociates readily from receptors (t1/2 approximately 3 h at 0 C and 1.5 h at 10 C), and the dissociation of progesterone is even faster (t1/2 approximately 30 min at 0 C). To quantify steroid exchange, receptor levels were measured in mixtures of hormone-filled and unfilled cytosols. These studies assess ligand dissociation and subsequent ligand rebinding. At 0 C for 4-18 H or at 10 C for 4 h, unlabeled progesterone dissociates from receptors, and R5020 rebinds all sites, resulting in 100% exchange. In contrast, despite the use of a variety of incubation times and temperatures, no more than 50% of receptors previously filled with R5020 can exchange for [3H]R5020. The progesterone to [3H]R5020 exchange assay was used to measure salt-extracted nuclear progesterone receptors. In cells treated for 5 min with 0.1 microM progesterone, all depleted cytoplasmic sites

  6. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters

    PubMed Central

    Wargon, Victoria; Riggio, Marina; Giulianelli, Sebastián; Sequeira, Gonzalo R.; Rojas, Paola; May, María; Polo, María L.; Gorostiaga, María A.; Jacobsen, Britta; Molinolo, Alfredo; Novaro, Virginia; Lanari, Claudia

    2014-01-01

    There is emerging interest in understanding the role of progesterone receptors (PRs) in breast cancer. The aim of this study was to investigate the proliferative effect of progestins and antiprogestins depending on the relative expression of the A (PRA) and B (PRB) isoforms of PR. In mifepristone (MFP)-resistant murine carcinomas antiprogestin responsiveness was restored by re-expressing PRA using demethylating agents and histone deacetylase inhibitors. Consistently, in two human breast cancer xenograft models, one manipulated to overexpress PRA or PRB (IBH-6 cells), and the other expressing only PRA (T47D-YA) or PRB (T47D-YB), MFP selectively inhibited the growth of PRA-overexpressing tumors and stimulated IBH-6-PRB xenograft growth. Furthermore, in cells with high or equimolar PRA/PRB ratios, which are stimulated to proliferate in vitro by progestins, and are inhibited by MFP, MPA increased the interaction between PR and the coactivator AIB1, and MFP favored the interaction between PR and the corepressor SMRT. In a PRB-dominant context in which MFP stimulates and MPA inhibits cell proliferation, the opposite interactions were observed. Chromatin immunoprecipitation assays in T47D cells in the presence of MPA or MFP confirmed the interactions between PR and the coregulators at the CCND1 and MYC promoters. SMRT downregulation by siRNA abolished the inhibitory effect of MFP on MYC expression and cell proliferation. Our results indicate that antiprogestins are therapeutic tools that selectively inhibit PRA-overexpressing tumors by increasing the SMRT/AIB1 balance at the CCND1 and MYC promoters. PMID:25363551

  7. Reovirus oncolysis of human breast cancer.

    PubMed

    Norman, Kara L; Coffey, Matthew C; Hirasawa, Kensuke; Demetrick, Douglas J; Nishikawa, Sandra G; DiFrancesco, Lisa M; Strong, James E; Lee, Patrick W K

    2002-03-20

    We have previously shown that human reovirus replication is restricted to cells with an activated Ras pathway, and that reovirus could be used as an effective oncolytic agent against human glioblastoma xenografts. This study examines in more detail the feasibility of reovirus as a therapeutic for breast cancer, a subset of cancer in which direct activating mutations in the ras proto-oncogene are rare, and yet where unregulated stimulation of Ras signaling pathways is important in the pathogenesis of the disease. We demonstrate herein the efficient lysis of breast tumor-derived cell lines by the virus, whereas normal breast cells resist infection in vitro. In vivo studies of reovirus breast cancer therapy reveal that viral administration could cause tumor regression in an MDA-MB-435S mammary fat pad model in severe combined immunodeficient mice. Reovirus could also effect regression of tumors remote from the injection site in an MDA-MB-468 bilateral tumor model, raising the possibility of systemic therapy of breast cancer by the oncolytic agent. Finally, the ability of reovirus to act against primary breast tumor samples not propagated as cell lines was evaluated; we found that reovirus could indeed replicate in ex vivo surgical specimens. Overall, reovirus shows promise as a potential breast cancer therapeutic. PMID:11916487

  8. Epigenetic Effects of Human Breast Milk

    PubMed Central

    Verduci, Elvira; Banderali, Giuseppe; Barberi, Salvatore; Radaelli, Giovanni; Lops, Alessandra; Betti, Federica; Riva, Enrica; Giovannini, Marcello

    2014-01-01

    A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant’s health and his later life. PMID:24763114

  9. Modeling mixtures of environmental estrogens found in U.S. surface waters with an in vitro estrogen mediated transcriptionai activation assay (T47D-KBluc).

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. Environmental estrogens can come from various sources including concentrated animal feedlot operations (CAFO), municipa...

  10. The role of YY1 in reduced HP1α gene expression in invasive human breast cancer cells

    PubMed Central

    Lieberthal, Jason G; Kaminsky, Marissa; Parkhurst, Christopher N; Tanese, Naoko

    2009-01-01

    Introduction Heterochromatin protein 1 (HP1) associates with chromatin by binding to histone H3 and contributes to gene silencing. There are three isoforms of HP1 in mammals: HP1α, β, and γ. Studies have shown that the level of HP1α is reduced in invasive human breast cancer cell lines such as MDA-MB-231 and HS578T compared with non-invasive cell lines such as MCF7 and T47D. It is hypothesized that reduced HP1α expression may lead to impaired epigenetic silencing of genes that are important in the acquisition of an invasive phenotype. We set out to determine whether reduced expression of HP1α in invasive breast cancer cell lines occurs at the level of transcription. Methods We used transient transfection assays to investigate the mechanism of differential transcriptional activity of the human HP1α gene promoter in different cell lines. Mutational analysis of putative transcription factor binding sites in an HP1α gene reporter construct was performed to identify transcription factors responsible for the differential activity. SiRNA-mediated knockdown and chromatin immunoprecipitation experiments were performed to determine the role of a specific transcription factor in regulating the HP1α gene. Results The transcription factor yin yang 1 (YY1) was found to play a role in differential transcriptional activity of the HP1α gene. Examination of the YY1 protein and mRNA levels revealed that both were reduced in the invasive cell line HS578T compared with MCF7 cells. YY1 knockdown in MCF7 cells resulted in a decreased level of HP1α mRNA, indicating that YY1 positively regulates HP1α expression. Chromatin immunoprecipitation experiments verified YY1 occupancy at the HP1α gene promoter in MCF7 cells but not HS578T cells. Overexpression of YY1 in HS578T cells decreased cell migration in a manner independent of HP1α overexpression. Conclusions Our data suggests that a reduction of YY1 expression in breast cancer cells could contribute to the acquisition of an

  11. Detection of circulating breast cancer cells using photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kiran

    According to the American Cancer Society, more than 200,000 new cases of breast cancer are expected to be diagnosed this year. Moreover, about 40,000 women died from breast cancer last year alone. As breast cancer progresses in an individual, it can transform from a localized state to a metastatic one with multiple tumors distributed through the body, not necessarily contained within the breast. Metastasis is the spread of cancer through the body by circulating tumor cells (CTCs) which can be found in the blood and lymph of the diagnosed patient. Diagnosis of a metastatic state by the discovery of a secondary tumor can often come too late and hence, significantly reduce the patient's chance of survival. There is a current need for a CTC detection method which would diagnose metastasis before the secondary tumor occurs or reaches a size resolvable by current imaging systems. Since earlier detection would improve prognosis, this study proposes a method of labeling of breast cancer cells for detection with a photoacoustic flow cytometry system as a model for CTC detection in human blood. Gold nanoparticles and fluorescent polystyrene nanoparticles are proposed as contrast agents for T47D, the breast cancer cell line of choice. The labeling, photoacoustic detection limit, and sensitivity are first characterized and then applied to a study to show detection from human blood.

  12. Nondestructive testing of the human breast

    NASA Astrophysics Data System (ADS)

    Cockburn, William

    1999-03-01

    The utilization of thermal imaging in the evaluation of the human breast has been for the past two decades a highly effective form of screening for breast cancer and other breast disease. The procedure however, is not without controversy and a continuing debate concerning the competitive paradox with mammography as the gold standard in breast cancer screening/detection still exists. This paper and its accompanying oral presentation at Thermosense XXI will provide a brief historic overview of breast thermal imaging and will explore the authors concepts of the paradigm shift which needs to occur in order for breast thermal imaging to gain acceptance in the scientific, medical, and public communities. Early thermal imaging equipment sold for medical application were based on liquid crystal detector plates, or electronic low band infrared detectors. While the final output of these devices was quite colorful and impressive, they lacked the quantification necessary to accurately measure temperature from a medical perspective, and as such, many false positive findings and papers were produced which damaged the early credibility of the procedure. The author has previously suggested appropriate changes in both technology and in utilization protocol for correction of errors which have hindered the advancement and indeed, the further development and implementation of this most beneficial quantitative diagnostic tool.

  13. The PIKfyve–ArPIKfyve–Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines

    SciTech Connect

    Ikonomov, Ognian C. Filios, Catherine Sbrissa, Diego Chen, Xuequn Shisheva, Assia

    2013-10-18

    Highlights: •We assess PAS complex proteins and phosphoinositide levels in breast cancer cells. •Sac3 and ArPIKfyve are markedly elevated in triple-negative breast cancer cells. •Sac3 silencing inhibits proliferation in triple-negative breast cancer cell lines. •Phosphoinositide profiles are altered in breast cancer cells. •This is the first evidence linking high Sac3 with breast cancer cell proliferation. -- Abstract: The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve–ArPIKfyve–Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P–PtdIns(3,5)P{sub 2} synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P–PtdIns(3,5)P{sub 2} conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P{sub 2} in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or

  14. Chemical Biomarkers of Human Breast Milk Pollution

    PubMed Central

    Massart, Francesco; Gherarducci, Giulia; Marchi, Benedetta; Saggese, Giuseppe

    2008-01-01

    Human milk is, without question, the best source of nutrition for infants containing the optimal balance of fats, carbohydrates and proteins for developing babies. Breastfeeding provides a range of benefits for growth, immunity and development building a powerful bond between mother and her child. Recognition of the manifold benefits of breast milk has led to the adoption of breast-feeding policies by numerous health and professional organizations such as the World Health Organization and American Academy of Pediatrics. In industrially developed as well as in developing nations, human milk contamination by toxic chemicals such as heavy metals, dioxins and organohalogen compounds, however, is widespread and is the consequence of decades of inadequately controlled pollution. Through breastfeeding, the mother may transfer to the suckling infant potentially toxic chemicals to which the mother has previously been exposed. In the present review, environmental exposure, acquisition and current levels of old and emerging classes of breast milk pollutants are systematically presented. Although scientific evidences indicated that the advantages of breast-feeding outweigh any risks from contaminants, it is important to identify contaminant trends, to locate disproportionately exposed populations, and to take public health measures to improve chemical BM pollution as possible. PMID:19578503

  15. Excretion of drugs in human breast milk

    SciTech Connect

    Welch, R.M.; Findlay, J.W.

    1981-01-01

    The present report briefly discusses some of the morphological, physiological, and compositional aspects of animal and human breast milk and how these characteristics might be important for the accumulation of drugs and foreign compounds. In addition, a study is described confirming the presence of caffeine, codeine, morphine, phenacetin, acetaminophen, and salicylic acid in the breast milk of a lactating mother following oral administration of a combination analgesic containing aspirin, phenacetin, caffeine, and codeine. Although the study is limited to one subject, it has provided critically needed data on the rates of appearance in, and elimination of these drugs from, breast milk. A similar amount of information is presented on phenacetin, also a component of the analgesic mixture, which has not been previously reported to enter human milk. The distribution of these drugs between the slightly more acidic breast milk and the relatively neutral plasma is consistent with their weakly basic, acidic, or relatively neutral properties. In general, the study shows that codeine and morphine milk concentrations are higher than, salicylic acid milk levels are much lower than, and phenacetin, caffeine, and acetaminophen milk concentrations are relatively similar to their respective plasma levels. It is projected, from estimated steady-state milk concentrations of the drugs and their metabolites studied, that very low percentages of the therapeutic dosages (less than 0.7%) would be excreted in mother's milk, too low an amount to be clinically significant to the infant.

  16. The chemomodulatory effects of resveratrol and didox on herceptin cytotoxicity in breast cancer cell lines

    PubMed Central

    Abdel-Latif, Ghada A.; Al-Abd, Ahmed M.; Tadros, Mariane G.; Al-Abbasi, Fahad A.; Khalifa, Amany E.; Abdel-Naim, Ashraf B.

    2015-01-01

    Herceptin is considered an essential treatment option for double negative breast cancer. Resveratrol and didox are known chemopreventive agents with potential anticancer properties. The aim of the current study is to investigate the influence of resveratrol and didox on the cytotoxicity profile of herceptin in HER-2 receptor positive and HER-2 receptor negative breast cancer cell lines (T47D and MCF-7 cell lines, respectively). The IC50’s of herceptin in T47D and MCF-7 were 0.133 ± 0.005 ng/ml and 23.3795 ± 1.99 ng/ml respectively. Equitoxic combination of herceptin with resveratrol or didox in T47D significantly reduced the IC50 to 0.052 ± 0.001 and 0.0365 ± 0.001 ng/ml, respectively and similar results were obtained in MCF-7. The gene expression of BCL-xl was markedly decreased in T47D cells following treatment with herceptin/resveratrol compared to herceptin alone. Immunocytochemical staining of HER-2 receptor in T47D cells showed a significant reduction after treatment with herceptin/resveratrol combination compared to herceptin alone. On the contrary, herceptin/didox combination had no significant effect on HER-2 receptor expression. Cell cycle analysis showed an arrest at G2/M phase for both cell lines following all treatments. In conclusion, herceptin/resveratrol and herceptin/didox combinations improved the cytotoxic profile of herceptin in both T47D and MCF-7 breast cancer cell lines. PMID:26156237

  17. Oxidized derivative of docosahexaenoic acid preferentially inhibit cell proliferation in triple negative over luminal breast cancer cells

    PubMed Central

    El-Bayoumy, Karam; Amin, Shantu; Gowda, Krishne; de Cicco, Ricardo López; Barton, Maria; Su, Yanrong; Russo, Irma H.; Himmelberger, Julie A.; Slifker, Michael; Manni, Andrea; Russo, Jose

    2016-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exert an anticancer effect by affecting multiple cellular mechanisms leading to inhibition of proliferation and induction of apoptosis. It is well known that breast cancer comprises distinct molecular subtypes which differ in their responsiveness to therapeutic and preventive agents. We tested the hypothesis that n-3FA may preferentially affect triple-negative breast cancer cells for which no targeted intervention is presently available. The in vitro antiproliferative effects of n-3 PUFA docosahexaenoic acid (DHA) and its metabolite, 4-OH-DHA as well as its putative metabolite 4-OXO-DHA, were tested in five triple-negative human basal breast cell lines at different stages of transformation (MCF-10F, trMCF, bsMCF, MDA-MB-231, and BT-549) and three luminal breast cancer cell lines (MCF-7, T-47D, and SK-BR-3). Cell proliferation was measured with the tetrazolium MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay. DHA and its oxidized derivatives significantly inhibited cell proliferation (20–90% reduction) of both basal and luminal breast cancer cell lines. The inhibitory effect was more pronounced on triple-negative basal breast cancer cell lines as compared to luminal breast cancer cell lines after 4-OXO-DHA treatment. Our data provide novel information regarding the preferential antitumor effect of oxidized derivatives of DHA on basal type breast cancer. PMID:25413005

  18. Sodium arsenite inhibited genomic estrogen signaling but induced pERα (Ser118) via MAPK pathway in breast cancer cells.

    PubMed

    Nakareangrit, Watanyoo; Thiantanawat, Apinya; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2016-09-01

    Arsenic (As) is considered a major environmental health threat worldwide due to its widespread contamination in drinking water. Recent studies reported that arsenic is a potential xenoestrogen as it interfered with the action of estrogen (E2) and estrogen receptor (ER) signaling. The present study investigated the effects of sodium arsenite (NaAsO2 ) on estrogen signaling in human breast cancer cells. The results demonstrated that NaAsO2 dose-dependently increased viability of hormone-dependent breast cancer MCF-7 and T47D cells expressing both ERα and ERβ but not hormone-independent MDA-MB-231 cells expressing ERβ. These suggested ERα contribution to NaAsO2 -stimulated breast cancer cells growth. NaAsO2 induced down-regulation of ERα but up-regulation of ERβ protein expressions in T47D cells. Moreover, NaAsO2 dose-dependently inhibited E2-induced ER transcriptional activity as it decreased E2-mediated ERE-luciferase transcription activation and PgR mRNA transcription but increased pS2 mRNA transcription. However, NaAsO2 induced both rapid and sustained activation of ERK1/2 and increased in phosphorylation of ERα at serine 118 residue, c-fos and c-myc protein expressions. These results indicated that NaAsO2 interferes the genomic estrogen-signaling pathway but induces activation of a rapid nongenomic signal transduction through ERK1/2 pathway which may contribute to its proliferative effect on hormone-dependent breast cancer cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1133-1146, 2016. PMID:25728338

  19. Defining the cellular precursors to human breast cancer

    PubMed Central

    Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte

    2012-01-01

    Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501

  20. Immunoreactive opioid peptides in human breast cancer.

    PubMed Central

    Scopsi, L.; Balslev, E.; Brünner, N.; Poulsen, H. S.; Andersen, J.; Rank, F.; Larsson, L. I.

    1989-01-01

    Opioid peptides have a variety of actions on inter alia pituitary hormone secretion and the immune system. Release of endogenous opioids has been found to stimulate growth of experimental breast cancers and opiate receptor blockers have reduced the growth of chemically induced rat breast tumors. Opioid peptides may therefore play a role in human breast cancer. Invasive ductal carcinomas from 61 premenopausal women were immunocytochemically analyzed for the presence of opioid peptide immunoreactivity. Positive staining was unambiguously identified in 34 of the tumors (56%). In addition, a medullary carcinoma was positive. In a smaller series of tumors, opioid peptide immunoreactive cells were detected in both primary tumors and metastases. Positive tumor cells were usually few and scattered. Therefore, underestimates of their true frequency of occurrence are likely to have occurred, making accurate correlations with clinical behavior and estrogen receptor status difficult. No correlations with estrogen receptors were established for the unambiguously opioid peptide-positive tumors. Many of the positive tumors also stained with antibodies to gamma-endorphin and alpha-melanocyte-stimulating hormone, suggesting the presence of proopiomelanocortin-derived peptides in them. However, peptides derived from other opioid precursors also may be present in breast cancer. Images Figure 1 PMID:2464945

  1. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis

    PubMed Central

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Nica, Cristian; Raica, Marius

    2016-01-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  2. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis.

    PubMed

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Cimpean, Anca Maria; Nica, Cristian; Raica, Marius

    2016-06-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  3. Reciprocal modulation of histone deacetylase inhibitors sodium butyrate and trichostatin A on the energy metabolism of breast cancer cells.

    PubMed

    Rodrigues, Mariana Figueiredo; Carvalho, Érika; Pezzuto, Paula; Rumjanek, Franklin David; Amoêdo, Nivea Dias

    2015-05-01

    Tumor cells display different bioenergetic profiles when compared to normal cells. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin A in breast cancer cells representing different stages of aggressiveness and metabolic profile. When testing the effect of NaB and TSA on viability of cells, it was shown that non-tumorigenic MCF-10A cells were less affected by increasing doses of the drugs than the tumorigenic, hormone dependent, tightly cohesive MCF-7, T-47D and the highly metastatic triple-negative MDA-MB 231 cells. T-47D cells were the most sensitive to treatment with both, NaB and TSA. Experiments measuring anchorage- independent growth of tumor cells showed that MCF-7, T-47D, and MDA-MB-231 cells were equally sensitive to the treatment with NaB. The NaB induced an attenuation of glycolysis, reflected by a decrease in lactate release in MCF-7 and T47D lines. Pyruvate kinase activity was significantly enhanced by NaB in MDA-MB-231 cells only. In contrast, the inhibitor enhanced lactate dehydrogenase activity specifically in T-47 D cells. Glucose-6-phosphate dehydrogenase activity was shown to be differentially modulated by NaB in the cell lines investigated: the enzyme was inhibited in MCF-7 cells, whereas in T-47D and MDA-MB-231 cells, G6PDH was activated. NaB and TSA were able to significantly increase the oxygen consumption by MDA-MB-231 and T-47D cells. Collectively the results show that epigenetic changes associated to acetylation of proteins in general affect the energy metabolism in all cancer cell lines and that mitochondria may occupy a central role in metastasis. PMID:25510910

  4. Tamoxifen enhances the cytotoxic effects of nelfinavir in breast cancer cells

    PubMed Central

    2010-01-01

    Introduction The HIV protease inhibitor nelfinavir is currently under investigation as a new anti-cancer drug. Several studies have shown that nelfinavir induces cell cycle arrest, endoplasmic reticulum stress, autophagy, and apoptosis in cancer cells. In the present article, the effect of nelfinavir on human breast cancer cells is examined and potential combination treatments are investigated. Methods The effects of nelfinavir and tamoxifen on the human breast cancer cell lines MCF7, T47 D, MDA-MB-453, and MDA-MB-435 were tested by analysing their influence on cell viability (via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay), apoptosis (annexin binding, poly(ADP-ribose) polymerase cleavage), autophagy (autophagy marker light chain 3B expression), endoplasmic reticulum stress (binding protein and activating transcription factor 3 expression), and the occurrence of oxidative stress (intracellular glutathione level). Results Nelfinavir induced apoptosis in all four breast cancer cell lines tested, although the extent of autophagy and endoplasmic reticulum stress varied among the cell lines. The concentration of nelfinavir needed for an efficient induction of apoptosis in breast cancer cells could be reduced from 15 μg/ml to 6 μg/ml when combined with tamoxifen. At a concentration of 6 μg/ml, tamoxifen substantially enhanced the endoplasmic reticulum stress reaction in those cell lines that responded to nelfinavir with binding protein (BiP) upregulation (MCF7, T47D), and enhanced autophagy in cell lines that responded to nelfinavir treatment with autophagy marker light chain 3B upregulation (MDA-MB-453). Although tamoxifen has been described to be able to induce oxidative stress at concentrations similar to those applied in this study (6 μg/ml), we observed that nelfinavir but not tamoxifen reduced the intracellular glutathione level of breast cancer cells within hours of application by up to 32%, suggesting the induction of oxidative stress

  5. Laurenditerpenol, a New Diterpene from the Tropical Marine Alga Laurencia intricata Potently Inhibits HIF-1 Mediated Hypoxic Signaling in Breast Tumor Cells

    PubMed Central

    Mohammed, Kaleem A.; Hossain, Chowdhury Faiz; Zhang, Lei; Bruick, Richard K.; Zhou, Yu-Dong; Nagle, Dale G.

    2010-01-01

    The degree of tumor hypoxia correlates with advanced disease stages and treatment resistance. The transcription factor hypoxia-inducible factor-1 (HIF-1) promotes tumor cell adaptation and survival under hypoxic conditions. Therefore, specific HIF-1 inhibitors represent an important new class of potential tumor-selective therapeutic agents. A T47D human breast tumor cell-based reporter assay was used to examine extracts of plants and marine organisms for inhibitors of HIF-1 activation. Bioassay-guided fractionation of the lipid extract of the red alga Laurencia intricata yielded a structurally novel diterpene laurenditerpenol (1). The structure of 1 was determined spectroscopically. The relative configurations of the substituents of each ring system were assigned based on NOESY correlations. The absolute configurations of positions C-1 was determined by the modified Mosher ester procedure (directly in NMR tubes). Compound 1 potently inhibited hypoxia-activated HIF-1 (IC50: 0.4 μM) and hypoxia-induced VEGF (a potent angiogenic factor) in T47D cells. Compound 1 selectively inhibits HIF-1 activation by hypoxia but not iron chelator induced activation. Further, 1 suppresses tumor cell survival under hypoxic conditions without affecting normoxic cell growth. Compound 1 inhibits HIF-1 by blocking the induction of the oxygen-regulated HIF-1α protein. Mitochondrial respiration studies revealed that 1 suppresses oxygen consumption. PMID:15620241

  6. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol AF in an in vitro estrogen-mediated transcriptional activation assay (T47D-KBluc).

    PubMed

    Bermudez, Dieldrich S; Gray, Leon E; Wilson, Vickie S

    2010-08-01

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. However, few studies have addressed how xenoestrogens interact with endogenous estrogens. The current study was designed to characterize the individual dose-response curves of estradiol-17beta (E(2)), bisphenol A (BPA), tetrabromo-bisphenol A (TBBPA), and bisphenol AF (BPAF, 4,4'-hexafluoroisopropylidene diphenol) on estrogen-dependent luciferase expression in T47D-KBluc cells and to determine how binary (8 x 8 factorial) and ternary (4 x 4 x 4 factorial) mixtures of an endogenous estrogen (E(2)) interact with BPA and/or BPAF. Log EC(50) and hillslope values with SEs, respectively, for individual compounds were as follows: E(2), -12.10M +/- 0.06071, 0.7702 +/- 0.1739; BPA, -6.679M +/- 0.08505, 1.194 +/- 0.2137; and BPAF, -7.648M +/- 0.05527, 1.273 +/- 0.1739. TBBPA was not evaluated in mixture studies because of its minimally estrogenic response at 3 x10(-5)M and elicited cytotoxicity at higher concentrations. Both the binary mixtures of E(2) with BPA and BPAF and the ternary mixture of E(2), BPA, and BPAF behaved in an additive manner. For binary mixtures, as E(2) concentration increased, higher concentrations of BPA and BPAF were necessary to induce a significant increase in the estrogenic response. Understanding the behavior of mixture interactions of xenoestrogens, like BPA and BPAF, with endogenous estrogens will allow a better assessment of the potential risk associated with exposure to these chemicals, individually or as mixtures. PMID:20498000

  7. Modeling the Interaction of Binary and Ternary Mixtures of Estradiol with Bisphenol A and Bisphenol AF in an In Vitro Estrogen-Mediated Transcriptional Activation Assay (T47D-KBluc)

    PubMed Central

    Bermudez, Dieldrich S.; Gray, Leon E.; Wilson, Vickie S.

    2010-01-01

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. However, few studies have addressed how xenoestrogens interact with endogenous estrogens. The current study was designed to characterize the individual dose-response curves of estradiol-17β (E2), bisphenol A (BPA), tetrabromo-bisphenol A (TBBPA), and bisphenol AF (BPAF, 4,4'-hexafluoroisopropylidene diphenol) on estrogen-dependent luciferase expression in T47D-KBluc cells and to determine how binary (8 × 8 factorial) and ternary (4 × 4 × 4 factorial) mixtures of an endogenous estrogen (E2) interact with BPA and/or BPAF. Log EC50 and hillslope values with SEs, respectively, for individual compounds were as follows: E2, −12.10M ± 0.06071, 0.7702 ± 0.1739; BPA, −6.679M ± 0.08505, 1.194 ± 0.2137; and BPAF, −7.648M ± 0.05527, 1.273 ± 0.1739. TBBPA was not evaluated in mixture studies because of its minimally estrogenic response at 3 ×10−5M and elicited cytotoxicity at higher concentrations. Both the binary mixtures of E2 with BPA and BPAF and the ternary mixture of E2, BPA, and BPAF behaved in an additive manner. For binary mixtures, as E2 concentration increased, higher concentrations of BPA and BPAF were necessary to induce a significant increase in the estrogenic response. Understanding the behavior of mixture interactions of xenoestrogens, like BPA and BPAF, with endogenous estrogens will allow a better assessment of the potential risk associated with exposure to these chemicals, individually or as mixtures. PMID:20498000

  8. Angelica sinensis polysaccharides promotes apoptosis in human breast cancer cells via CREB-regulated caspase-3 activation.

    PubMed

    Zhou, Wei-Jie; Wang, Sheng; Hu, Zhuang; Zhou, Zhen-Yu; Song, Cai-Juan

    2015-11-20

    Angelica sinensis polysaccharide (ASP) is purified from the fresh roots of Angelica sinensis (AS). This traditional Chinese medicine has been used for thousands of years for treating gynecological diseases and used in functional foods for the prevention and treatment of various diseases, such as inflammation and cancer. The antitumor activity of ASP is related to its biological activities, because it suppresses a variety of pro-proliferative or anti-apoptotic factors that are dramatically expressed in cancer cells of given types. In this study, we show that angelica sinensis polysaccharide induced apoptosis in breast cancer cells of T47D over-expressing the Cyclic AMP response element binding protein (CREB), inducing apoptosis-related signaling pathway activity. The result also found that ASP caused cell death was linked to caspase activity, accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. We found that ASP significantly affected the poly-ADP-ribose polymerase (PARP), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL and apoptotic protease activating facter-1 (Apaf1) protein expression in a dose- and time-dependent manner. DAPI staining and Flow cytometry were used to analyze apoptosis. The nude mice xenograft model was used to evaluate the antitumor effect of ASP in vivo. ASP has profound antitumor effect on T47D cells, probably by inducing apoptosis through CREB signaling pathway. Thus, these results suggest that ASP would be a promising therapeutic agent for breast cancer. PMID:26431878

  9. Effects of biosurfactants on the viability and proliferation of human breast cancer cells

    PubMed Central

    2014-01-01

    Biosurfactants are molecules with surface activity produced by microorganisms that can be used in many biomedical applications. The anti-tumour potential of these molecules is being studied, although results are still scarce and few data are available regarding the mechanisms underlying such activity. In this work, the anti-tumour activity of a surfactin produced by Bacillus subtilis 573 and a glycoprotein (BioEG) produced by Lactobacillus paracasei subsp. paracasei A20 was evaluated. Both biosurfactants were tested against two breast cancer cell lines, T47D and MDA-MB-231, and a non-tumour fibroblast cell line (MC-3 T3-E1), specifically regarding cell viability and proliferation. Surfactin was found to decrease viability of both breast cancer cell lines studied. A 24 h exposure to 0.05 g l-1 surfactin led to inhibition of cell proliferation as shown by cell cycle arrest at G1 phase. Similarly, exposure of cells to 0.15 g l-1 BioEG for 48 h decreased cancer cells’ viability, without affecting normal fibroblasts. Moreover, BioEG induced the cell cycle arrest at G1 for both breast cancer cell lines. The biosurfactant BioEG was shown to be more active than surfactin against the studied breast cancer cells. The results gathered in this work are very promising regarding the biosurfactants potential for breast cancer treatment and encourage further work with the BioEG glycoprotein. PMID:24949273

  10. Control of sulfatase activity by nomegestrol acetate in normal and cancerous human breast tissues.

    PubMed

    Chetrite, Gérard Samuel; Thomas, Jean-Louis; Shields-Botella, Jaqueline; Cortes-Prieto, Joaquin; Philippe, Jean-Claude; Pasqualini, Jorge Raul

    2005-01-01

    Nomegestrol acetate (NOMAC), a 17alpha-hydroxy-nor-progesterone derivative (17alpha-acetoxy-6-methyl-19-nor-4,6-pregnadiene-3,20-dione, the active substance in Lutenyl), is a potent and useful clinical synthetic progestin for the treatment of menopausal complaints and is under current development for oral contraception. Previous studies in this laboratory demonstrated that NOMAC can block sulfatase and 17beta-hydroxysteroid dehydrogenase, the enzymes involved in the biosynthesis and transformation of estradiol (E2) in hormone-dependent MCF-7 and T-47D breast cancer cells. In the present study, the effect of NOMAC on sulfatase activity using total breast cancer tissue, compared to the effect in normal breast tissue, was explored. Slices of tumoral or normal breast tissues (45-65 mg) were incubated in buffer (20 mM Tris-HCl, pH 7.2) with physiological concentrations of [3H]-estrone sulfate (5x10(-9) M), alone or in the presence of nomegestrol acetate (5x10(-5) - 5x10(-7) - 5x10(-9) M), for 4 h at 37 degrees C. Estrone sulfate (E1S), estrone (E1) and E2 were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [3H]- E1S was only converted to [3H]- E1 and not to [3H]- E2, in normal or cancerous breast tissues, which suggests a low or no 17beta-HSD activity under these experimental conditions. The sulfatase activity was more intense with breast cancer tissue than normal tissue, since the concentrations of E1 were 42.5 +/- 3.4 and 27.2 +/- 2.5 pg/mg tissue, respectively. NOMAC, at the concentration of 5x10(-5) M, inhibited this conversion by 49.2% and 40.8% in cancerous and normal breast tissues, respectively. The sulfatase inhibition at low concentration (5x10(-7) M) was 32.5% and 22.8%, respectively. It is concluded that sulfatase activity is almost twice as potent in cancerous breast tissues than in normal tissues. Nomegestrol acetate is a strong anti-sulfatase agent, in particular with cancerous breast

  11. p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells.

    PubMed

    Phelps, Monika; Darley, Matthew; Primrose, John N; Blaydes, Jeremy P

    2003-05-15

    The negative-regulatory feedback loop between p53 and hdm2 forms part of a finely balanced regulatory network of proteins that controls cell cycle progression and commitment to apoptosis. Expression of hdm2, and its mouse orthologue mdm2, is known to be induced by p53, but recent evidence has demonstrated mdm2 expression can also be regulated via p53-independent pathways. However the p53 independent mechanisms that control transcription of the human hdm2 gene have not been studied. Differential levels of hdm2 mRNA and protein expression have been reported in several types of human malignancy, including breast cancers in which hdm2 expression correlates with positive estrogen receptor alpha (ERalpha) status. Experimental models have demonstrated that hdm2 overexpression can promote breast cancer development. Here, we show that the elevated level of hdm2 protein in ERalpha(+ve) breast cancer cell lines such as MCF-7 and T47D is because of transcription from the p53-inducible P2 promoter of hdm2. The P2 promoter is inactive in ERalpha(-ve) cell lines such as SKBr3. Hdm2-P2 promoter activity in T47D cells is independent of p53, as well as of known regulators of the mouse mdm2-P2 promoter, including ERalpha and ras-raf-mitogen-activated protein/extracellular signal-regulated kinase (MEK) mitogen-activated protein kinase (MAPK) signaling. We show that hdm2-P2 activity in T47D cells is dependent on the integrity of both an evolutionarily conserved composite binding site for AP1 and ETS family transcription factors (AP1-ETS) and a nonconserved upstream (nnGGGGC)(5) repeat sequence. Lack of hdm2-P2 activity in ERalpha(-ve) cells is shown to be a consequence of reduced transcriptional activation through the AP1-ETS element. Overexpression of ETS2 in SKBr3 cells reconstitutes AP1-ETS element-dependent hdm2-P2 promoter activity, resulting in increased levels of hdm2 protein in the cells. Our findings support the hypothesis that the elevated levels of hdm2 expression reported

  12. A monoclonal antibody to the human c-erbB3 protein stimulates the anchorage-independent growth of breast cancer cell lines.

    PubMed Central

    Rajkumar, T.; Gullick, W. J.

    1994-01-01

    The c-erbB3 protein is a member of the type I growth factor receptor family. It has a widespread pattern of expression in normal tissues and is overexpressed in about 20% of breast cancers. We have raised a specific monoclonal antibody, called SGP1, against the extracellular domain of c-erbB3 which recognises the native form of the protein. The monoclonal antibody was found to modestly but significantly stimulate the anchorage-independent cloning efficiency of the breast tumour cell lines BT483 and T47D, both of which express the c-erbB3 protein. No effect was observed on 293 cells lacking expression, nor did a control isotype-matched antibody promote the growth of any of the cells tested. These results suggest that the c-erbB3 protein may normally act as a growth factor receptor. Images Figure 1 Figure 2 Figure 3 Figure 6 PMID:8080731

  13. Metastatic breast cancer cells in lymph nodes increase nodal collagen density

    PubMed Central

    Rizwan, Asif; Bulte, Camille; Kalaichelvan, Anusha; Cheng, Menglin; Krishnamachary, Balaji; Bhujwalla, Zaver M.; Jiang, Lu; Glunde, Kristine

    2015-01-01

    The most life-threatening aspect of breast cancer is the occurrence of metastatic disease. The tumor draining lymph nodes typically are the first sites of metastasis in breast cancer. Collagen I fibers and the extracellular matrix have been implicated in breast cancer to form avenues for metastasis. In this study, we have investigated extracellular matrix molecules such as collagen I fibers in the lymph nodes of mice bearing orthotopic human breast cancer xenografts. The lymph nodes in mice with metastatic MDA-MB-231 and SUM159 tumor xenografts and tumor xenografts grown from circulating tumor cell lines displayed an increased collagen I density compared to mice with no tumor and mice with non-metastatic T-47D and MCF-7 tumor xenografts. These results suggest that cancer cells that have metastasized to the lymph nodes can modify the extracellular matrix components of these lymph nodes. Clinically, collagen density in the lymph nodes may be a good marker for identifying lymph nodes that have been invaded by breast cancer cells. PMID:25950608

  14. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    PubMed

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  15. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration

    PubMed Central

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  16. Methyl Angolensate from Callus of Indian Redwood Induces Cytotoxicity in Human Breast Cancer Cells

    PubMed Central

    Chiruvella, Kishore K.; Panjamurthy, Kuppusamy; Choudhary, Bibha; Joy, Omana; Raghavan, Sathees C.

    2010-01-01

    AIM: Natural products discovered from medicinal plants have played an important role in the treatment of cancer. Methyl angolensate (MA), a tetranortriterpenoid obtained from the root callus of Indian Redwood tree, Soymida febrifuga Roxb. (A.Juss) was tested for its anticancer properties on breast cancer cells. METHODS: Cell viability was tested using trypan blue, MTT and LDH assays. Tritiated thymidine assay and flowcytometry were used to study effect of MA on cell proliferation. The activation of apoptosis was checked by annexin V and JC-1 staining followed by FACS analysis. Immunoblotting analysis was used for studying expression of apoptotic and DNA double strand break repair proteins. RESULTS: We find that MA inhibited the growth of breast cancer cell line, T47D in a time- and dose-dependent manner. MA treatment led to the inhibition of cell proliferation as detected by tritiated thymidine assay and flowcytometry. Further, MA treated cells exhibited typical apoptotic morphological changes and led to the accumulation of subG1 peak in cell cycle distribution. The induction of apoptosis was further confirmed both by annexin V staining and JC1 staining. We also find that MA activates MAP kinase pathway to induce apoptosis. Besides, we find a time dependent activation followed by degradation of DNA double-strand break repair proteins upon treatment with MA. CONCLUSION: These results suggest that MA induces cytotoxicity in breast cancer cells. Further, the altered expression of DSB repair proteins in MA treated cells may control the induction of apoptosis in these cancer cells. PMID:23675192

  17. TNF{alpha} acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-{kappa}B-dependent pathways

    SciTech Connect

    Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.; Rosemblit, Cinthia; Beguelin, Wendy; Salatino, Mariana; Charreau, Eduardo H.; Frahm, Isabel; Sapia, Sandra; Brouckaert, Peter; Elizalde, Patricia V.; Schillaci, Roxana

    2008-02-01

    Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation, just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.

  18. In vitro comparative models for canine and human breast cancers

    PubMed Central

    VISAN, SIMONA; BALACESCU, OVIDIU; BERINDAN-NEAGOE, IOANA; CATOI, CORNEL

    2016-01-01

    During the past four decades, an increased number of similarities between canine mammary tumors and human breast cancer have been reported: molecular, histological, morphological, clinical and epidemiological, which lead to comparative oncological studies. One of the most important goals in human and veterinary oncology is to discover potential molecular biomarkers that could detect breast cancer in an early stage and to develop new effective therapies. Recently, cancer cell lines have successfully been used as an in vitro model to study the biology of cancer, to investigate molecular pathways and to test the efficiency of anticancer drugs. Moreover, establishment of an experimental animal model for the study of human breast cancer will improve testing potential anti-cancer therapies and the discovery of effective therapeutic schemes suitable for human clinical trials. In this review, we collected data from previous studies that strengthen the value of canine mammary cancer cell lines as an in vitro model for the study of human breast cancer. PMID:27004024

  19. Is human cytomegalovirus associated with breast cancer progression?

    PubMed Central

    2013-01-01

    Background It has been hypothesized that human cytomegalovirus (HCMV) may be associated with breast cancer progression. However, the role of HCMV infection in breast cancer remains controversial. We aimed to assess whether HCMV genes (UL122 and UL83) could be detected in breast carcinomas and reinvestigated their possible association with breast cancer progression. DNA from paraffin-embedded tissues was analyzed by real-time PCR. We investigated 20 fibroadenomas and 27 primary breast carcinomas (stages II, III, and IV). Findings Two carcinomas were positive for HCMV, one was positive for two TaqMan viral detection probes, and one was positive for a sole TaqMan viral detection probe (UL83), whereas the remainder of the samples was negative. Conclusions Samples studied showed no association between HCMV infection and breast cancer progression. PMID:23557440

  20. Shu-Gan-Liang-Xue Decoction Simultaneously Down-regulates Expressions of Aromatase and Steroid Sulfatase in Estrogen Receptor Positive Breast Cancer Cells

    PubMed Central

    Fu, Xue-song; Li, Ping-ping

    2011-01-01

    Objective Estradiol (E2) plays an important role in the development of breast cancer. In postmenopausal women, the estrogen can be synthesized via aromatase (CYP19) pathway and steroid-sulfatase (STS) pathway in peripheral tissues, when the production in ovary has ceased. The objective of our study was to explore the effects of Shu-Gan-Liang-Xue Decoction (SGLXD) on the expressions of CYP19 and STS in estrogen receptor positive breast cancer MCF-7 and T47D cells. Methods The effects of SGLXD on the cell viability of MCF-7 and T47D were analyzed by MTT assay. By quantitative real-time RT-PCR and Western blot, we evaluated the mRNA and protein expressions of CYP19 and STS in MCF-7 and T47D cells after SGLXD treatment. Results By MTT assay, the cell viability rates of MCF-7 and T47D were significantly inhibited by SGLXD in a dose-dependent manner, the IC50 values were 40.07 mg/ml for MCF-7 cells and 25.62 mg/ml for T47D cells, respectively. As evidenced by real-time PCR and Western blot, the high concentrations of SGLXD significantly down-regulated the expressions of CYP19 and STS both in the transcript level and the protein level. Conclusion The results suggest that SGLXD is a potential dual aromatase-sulfatase inhibitor by simultaneously down-regulating the expressions of CYP19 and STS in MCF-7 and T47D cells. PMID:23467843

  1. Human breast milk provides better antioxidant capacity than infant formula.

    PubMed

    Oveisi, Mohammad Reza; Sadeghi, Naficeh; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abd-Ol-Azim; Jannat, Forouzandeh; Mokhtarinasab, Fariba

    2010-01-01

    Human milk contains all of the constituents that are required for the optimal growth and development of a neonate. It supports the development of brain, immune, and physiological systems. This study aimed to consider the significance of breast milk in preventing oxidative stress by comparing total antioxidant capacity (TAC) in breast and formula milk for premature infants, demonstrating the relationship between TAC in breast milk and postnatal age in days. The Ferric reducing antioxidant power assay (FRAP) method was used to spectophotometrically measure of TAC in breast and formula milk. One hundred and fourty (n = 140) lactating mothers agreed to participate in the study. TAC was also measured in two brands of formula milk (n = 80). The Range of TAC in human breast milk was 234.27-1442.31 μM and in two formula was 160.04-630.92 μM. The average TAC was significantly higher in breast milk (642.94 ± 241.23 μM) compared to formula milk (280.986 ± 100.34 μM) p < 0.0001. The TAC of breast milk was increased with some nutritional parameter such as increased consumption of cheese, vegetables, fruits, bread and nuts. Infants' height at the birthday was directly correlated with antioxidant capacity of breast milk, whilst a reversed correlation was observed between TAC in breast milk and infant age. Based on our results, it is concluded that the TAC of breast milk is varied and affected by nutrition. It is alo observed that TAC is significantly higher in breast milk than formula, which means that breast milk provides better antioxidant potency than infant formula. PMID:24381611

  2. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells.

    PubMed

    Hargraves, Kris G; He, Lin; Firestone, Gary L

    2016-05-01

    The tumor suppressive microRNA miR-34a is transcriptionally regulated by p53 and shown to inhibit breast cancer cell proliferation as well as being a marker of increased disease free survival. Indole-3-carbinol (I3C) derived from cruciferous vegetables, artemisinin, extracted from the sweet wormwood plant, and artesunate, a semi-synthetic derivative of artemisinin, are phytochemicals with anti-tumorigenic properties however, little is known about the role of microRNAs in their mechanism of action. Human breast cancer cells expressing wild-type (MCF-7) or mutant p53 (T47D) were treated with a concentration range and time course of each phytochemical under conditions of cell cycle arrest as detected by flow cytometry to examine the potential connection between miR-34a expression and their anti-proliferative responses. Real-time PCR and western blot analysis of extracted RNA and total protein revealed artemsinin and artesunate increased miR-34a expression in a dose-dependent manner correlating with down-regulation of the miR-34a target gene, CDK4. I3C stimulation of miR-34a expression required functional p53, whereas, both artemisinin and artesunate up-regulated miR-34a expression regardless of p53 mutational status or in the presence of dominant negative p53. Phytochemical treatments inhibited the luciferase activity of a construct containing the wild-type 3'UTR of CDK4, but not those with a mutated miR-34a binding site, whereas, transfection of miR-34a inhibitors ablated the phytochemical mediated down-regulation of CDK4 and induction of cell cycle arrest. Our results suggest that miR-34a is an essential component of the anti-proliferative activities of I3C, artemisinin, and artesunate and demonstrate that both wild-type p53 dependent and independent pathways are responsible for miR-34a induction. © 2015 Wiley Periodicals, Inc. PMID:25789847

  3. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting

    SciTech Connect

    Ge, Xin; Lyu, Pengwei; Cao, Zhang; Li, Jingruo; Guo, Guangcheng; Xia, Wanjun; Gu, Yuanting

    2015-08-07

    miRNAs, sorting as non-coding RNAs, are differentially expressed in breast tumor and act as tumor promoters or suppressors. miR-206 could suppress the progression of breast cancer, the mechanism of which remains unclear. The study here was aimed to investigate the effect of miR-206 on human breast cancers. We found that miR-206 was down-regulated while one of its predicted targets, 6-Phosphofructo-2-kinase (PFKFB3) was up-regulated in human breast carcinomas. 17β-estradiol dose-dependently decreased miR-206 expression as well as enhanced PFKFB3 mRNA and protein expression in estrogen receptor α (ERα) positive breast cancer cells. Furthermore, we identified that miR-206 directly interacted with 3′-untranslated region (UTR) of PFKFB3 mRNA. miR-206 modulated PFKFB3 expression in MCF-7, T47D and SUM159 cells, which was influenced by 17β-estradiol depending on ERα expression. In addition, miR-206 overexpression impeded fructose-2,6-bisphosphate (F2,6BP) production, diminished lactate generation and reduced cell proliferation and migration in breast cancer cells. In conclusion, our study demonstrated that miR-206 regulated PFKFB3 expression in breast cancer cells, thereby stunting glycolysis, cell proliferation and migration. - Highlights: • miR-206 was down-regulated and PFKFB3 was up-regulated in human breast carcinomas. • 17β-estradiol regulated miR-206 and PFKFB3 expression in ERα+ cancer cells. • miR-206directly interacted with 3′-UTR of PFKFB3 mRNA. • miR-206 fructose-2,6-bisphosphate (F2,6BP) impeded production and lactate generation. • miR-206 reduced cell proliferation and migration in breast cancer cells.

  4. Food flavonoid aryl hydrocarbon receptor-mediated agonistic/antagonistic/synergic activities in human and rat reporter gene assays.

    PubMed

    Van der Heiden, Edwige; Bechoux, Nathalie; Muller, Marc; Sergent, Thérèse; Schneider, Yves-Jacques; Larondelle, Yvan; Maghuin-Rogister, Guy; Scippo, Marie-Louise

    2009-04-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor mediating the adverse effects of dioxins and polycyclic aromatic hydrocarbons (PAHs). In this study, we investigated the genetic-, time-, dose-, species- and tissue-dependent AhR-mediated agonistic/antagonistic activities of three food flavonoids: quercetin, chrysin and genistein. To that end, four stably transfected cell lines were used in cell-based luciferase reporter gene assays: three lines were transformed with the ptKLuc vector harbouring four dioxin-responsive elements (DREs) upstream of the thymidine kinase promoter and the luciferase gene (HepG2-Luc, T-47D-Luc and H4IIE-ULg). The fourth is a patented cell line transformed with a different construct: H4IIE DR-CALUX((R)). Both H4IIE cells were compared for their genetic construction. Human hepatoma (HepG2-Luc) and human breast tumour (T-47D-Luc) cells were compared for tissue-dependent effects. Rat hepatoma (H4IIE-ULg) and human hepatoma (HepG2-Luc) cells were compared for species-dependent activities. We concluded that quercetin, chrysin and genistein act in a time-, dose-, species- and tissue-specific way. For example, genistein displayed agonistic activities when exposed to rat hepatoma cells during 6h but not after 24h. Flavonoids displayed agonistic/antagonistic activities in human breast tumour cells, depending on the exposure time, while in human hepatoma cells, only antagonistic activities of flavonoids were measured. In addition, we report, in all the cells, a synergy between an isoflavone and two food contaminants; the 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene, a PAH. In rat cells, this synergy occurred when cells were exposed to flavonoids and contaminant for 6h, while it was observed in human cells only after 24h. PMID:19286049

  5. Stromal Activation by Tumor Cells: An in Vitro Study in Breast Cancer

    PubMed Central

    Merlino, Giuseppe; Miodini, Patrizia; Paolini, Biagio; Carcangiu, Maria Luisa; Gennaro, Massimiliano; Dugo, Matteo; Daidone, Maria Grazia; Cappelletti, Vera

    2016-01-01

    Background: The tumor microenvironment participates in the regulation of tumor progression and influences treatment sensitivity. In breast cancer, it also may play a role in determining the fate of non-invasive lesions such as ductal carcinoma in situ (DCIS), a non-obligate precursor of invasive diseases, which is aggressively treated despite its indolent nature in many patients since no biomarkers are available to predict the progression of DCIS to invasive disease. In vitro models of stromal activation by breast tumor cells might provide clues as to specific stromal genes crucial for the transition from DCIS to invasive disease. Methods: normal human dermal fibroblasts (NHDF) were treated under serum-free conditions with cell culture media conditioned by breast cancer cell lines (SkBr3, MDA-MB-468, T47D) for 72 h and subjected to gene expression profiling with Illumina platform. Results: TGM2, coding for a tissue transglutaminase, was identified as candidate gene for stromal activation. In public transcriptomic datasets of invasive breast tumors TGM2 expression proved to provide prognostic information. Conversely, its role as an early biosensor of tumor invasiveness needs to be further investigated by in situ analyses. Conclusion: Stromal TGM2 might probably be associated with precancerous evolution at earlier stages compared to DCIS. PMID:27600076

  6. Nodal signaling promotes a tumorigenic phenotype in human breast cancer.

    PubMed

    Kirsammer, Gina; Strizzi, Luigi; Margaryan, Naira V; Gilgur, Alina; Hyser, Matthew; Atkinson, Janis; Kirschmann, Dawn A; Seftor, Elisabeth A; Hendrix, Mary J C

    2014-12-01

    The Ras-ERK pathway is deregulated in approximately a third of human cancers, particularly those of epithelial origin. In aggressive, triple-negative, basal-like breast cancers, most tumors display increased MEK and ERK phosphorylation and exhibit a gene expression profile characteristic of Kras or EGFR mutant tumors; however, Ras family genetic mutations are uncommon in triple-negative breast cancer and EGFR mutations account for only a subset of these tumors. Therefore, the upstream events that activate MAPK signaling and promote tumor aggression in triple-negative breast cancers remain poorly defined. We have previously shown that a secreted TGF-β family signaling ligand, Nodal, is expressed in breast cancer in correlation with disease progression. Here we highlight key findings demonstrating that Nodal is required in aggressive human breast cancer cells to activate ERK signaling and downstream tumorigenic phenotypes both in vitro and in vivo. Experimental knockdown of Nodal signaling downregulates ERK activity, resulting in loss of c-myc, upregulation of p27, G1 cell cycle arrest, increased apoptosis and decreased tumorigenicity. The data suggest that ERK activation by Nodal signaling regulates c-myc and p27 proteins post-translationally and that this cascade is essential for aggressive breast tumor behavior in vivo. As the MAPK pathway is an important target for treating triple-negative breast cancers, upstream Nodal signaling may represent a promising target for breast cancer diagnosis and combined therapies aimed at blocking ERK pathway activation. PMID:25073112

  7. Nodal signaling promotes a tumorigenic phenotype in human breast cancer

    PubMed Central

    Kirsammer, Gina; Strizzi, Luigi; Margaryan, Naira V.; Gilgur, Alina; Hyser, Matthew; Atkinson, Janis; Kirschmann, Dawn A.; Seftor, Elisabeth A.; Hendrix, Mary J.C.

    2014-01-01

    The Ras-ERK pathway is deregulated in approximately a third of human cancers, particularly those of epithelial origin. In aggressive, triple-negative, basal-like breast cancers, most tumors display increased MEK and ERK phosphorylation and exhibit a gene expression profile characteristic of Kras or EGFR mutant tumors; however, Ras family genetic mutations are uncommon in triple-negative breast cancer and EGFR mutations account for only a subset of these tumors. Therefore, the upstream events that activate MAPK signaling and promote tumor aggression in triple-negative breast cancers remain poorly defined. We have previously shown that a secreted TGF-β family signaling ligand, Nodal, is expressed in breast cancer in correlation with disease progression. Here we highlight key findings demonstrating that Nodal is required in aggressive human breast cancer cells to activate ERK signaling and downstream tumorigenic phenotypes both in vitro and in vivo. Experimental knockdown of Nodal signaling downregulates ERK activity, resulting in loss of c-myc, upregulation of p27, G1 cell cycle arrest, increased apoptosis and decreased tumorigenicity. The data suggest that ERK activation by Nodal signaling regulates c-myc and p27 proteins post-translationally and that this cascade is essential for aggressive breast tumor behavior in vivo. As the MAPK pathway is an important target for treating triple-negative breast cancers, upstream Nodal signaling may represent a promising target for breast cancer diagnosis and combined therapies aimed at blocking ERK pathway activation. PMID:25073112

  8. Bovine Leukemia Virus DNA in Human Breast Tissue

    PubMed Central

    Shen, Hua Min; Jensen, Hanne M.; Choi, K. Yeon; Sun, Dejun; Nuovo, Gerard

    2014-01-01

    Bovine leukemia virus (BLV), a deltaretrovirus, causes B-cell leukemia/lymphoma in cattle and is prevalent in herds globally. A previous finding of antibodies against BLV in humans led us to examine the possibility of human infection with BLV. We focused on breast tissue because, in cattle, BLV DNA and protein have been found to be more abundant in mammary epithelium than in lymphocytes. In human breast tissue specimens, we identified BLV DNA by using nested liquid-phase PCR and DNA sequencing. Variations from the bovine reference sequence were infrequent and limited to base substitutions. In situ PCR and immunohistochemical testing localized BLV to the secretory epithelium of the breast. Our finding of BLV in human tissues indicates a risk for the acquisition and proliferation of this virus in humans. Further research is needed to determine whether BLV may play a direct role in human disease. PMID:24750974

  9. Clinical impact of human breast milk metabolomics.

    PubMed

    Cesare Marincola, Flaminia; Dessì, Angelica; Corbu, Sara; Reali, Alessandra; Fanos, Vassilios

    2015-12-01

    Metabolomics is a research field concerned with the analysis of metabolome, the complete set of metabolites in a given cell, tissue, or biological sample. Being able to provide a molecular snapshot of biological systems, metabolomics has emerged as a functional methodology in a wide range of research areas such as toxicology, pharmacology, food technology, nutrition, microbial biotechnology, systems biology, and plant biotechnology. In this review, we emphasize the applications of metabolomics in investigating the human breast milk (HBM) metabolome. HBM is the recommended source of nutrition for infants since it contains the optimal balance of nutrients for developing babies, and it provides a range of benefits for growth, immunity, and development. The molecular mechanisms beyond the inter- and intra-variability of HBM that make its composition unique are yet to be well-characterized. Although still in its infancy, the study of HBM metabolome has already proven itself to be of great value in providing insights into this biochemical variability in relation to mother phenotype, diet, disease, and lifestyle. The results of these investigations lay the foundation for further developments useful to identify normal and aberrant biochemical changes as well as to develop strategies to promote healthy infant feeding practices. PMID:25689794

  10. No evidence for TSLP pathway activity in human breast cancer.

    PubMed

    Ghirelli, Cristina; Sadacca, Benjamin; Reyal, Fabien; Zollinger, Raphaël; Michea, Paula; Sirven, Philémon; Pattarini, Lucia; Martínez-Cingolani, Carolina; Guillot-Delost, Maude; Nicolas, André; Scholer-Dahirel, Alix; Soumelis, Vassili

    2016-08-01

    Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that primes dendritic cells for Th2 induction. It has been implicated in different types of allergic diseases. Recent work suggested that TSLP could play an important role in the tumor microenvironment and influence tumor progression, in particular in breast cancer. In this study we systematically assessed the production of TSLP at the mRNA and protein levels in several human breast cancer cell lines, large-scale public transcriptomics data sets, and primary human breast tumors. We found that TSLP production was marginal, and concerned less than 10% of the tumors, with very low mRNA and protein levels. In most cases TSLP was undetectable and found to be expressed at lower levels in breast cancer as compared to normal breast tissue. Last, we could not detect any functional TSLP receptor (TSLPR) expression neither on hematopoietic cells nor on stromal cells within the primary tumor microenvironment. We conclude that TSLP-TSLPR pathway activity is not significantly detected within human breast cancer. Taken together, these observations do not support TSLP targeting in breast cancer. PMID:27622057

  11. Human papillomavirus and breast cancer in Iran: a meta- analysis

    PubMed Central

    Haghshenas, Mohammad Reza; Mousavi, Tahoora; Moosazadeh, Mahmood; Afshari, Mahdi

    2016-01-01

    Objective(s): This study aims to investigate the relationship between human papillomavirus (HPV) and breast cancer using meta- analysis. Materials and Methods: Relevant studies were identified reviewing the national and international databases. We also increased the search sensitivity by investigating the references as well as interview with research centers and experts. Finally, quality assessment and implementation of inclusion/exclusion criteria determined the eligible articles for meta-analysis. Based on the heterogeneity observed among the results of the primary studies, random effects model was used to estimate the pooled prevalence of HPV infection and also pooled odds ratio between HPV and developing breast cancer using Stata SE V. 11 software. Results: This meta- analysis included 11 primary studies investigating the HPV infection prevalence among 1539 Iranian women. Pooled prevalence (95% confidence interval) of HPV infection among Iranian women with breast cancer was estimated as of 23.6% (6.7- 40.5), while, the odds ratio (95% confidence interval) between HPV infection and developing breast cancer was estimated as of 5.7% (0.7- 46.8). Conclusion: This meta- analysis showed a high prevalence of HPV infection among women with breast cancer. We also found that the odds of developing breast cancer among women with breast cancer was more than that of women without breast cancer. PMID:27114791

  12. Expression of membrane transporters and metabolic enzymes involved in estrone-3-sulphate disposition in human breast tumour tissues.

    PubMed

    Banerjee, Nilasha; Miller, Naomi; Allen, Christine; Bendayan, Reina

    2014-06-01

    Two-thirds of newly diagnosed hormone-dependent (HR?) breast cancers are detected in post-menopausal patients where estrone-3-sulphate (E3S) is the predominant source for tumour estradiol. Understanding intra-tumoral fate of E3S would facilitate in the identification of novel molecular targets for HR? post-menopausal breast cancer patients. Hence this study investigates the clinical expression of (i) organic anion-transporting polypeptides (OATPs), (ii) multidrug resistance protein (MRP-1), breast cancer resistance proteins (BCRP), and (iii) sulphatase (STS), 17β-hydroxysteroid dehydrogenase (17β-HSD-1), involved in E3S uptake, efflux and metabolism, respectively. Fluorescent and brightfield images of stained tumour sections (n = 40) were acquired at 4× and 20× magnification, respectively. Marker densities were measured as the total area of positive signal divided by the surface area of the tumour section analysed and was reported as % area (ImageJ software). Tumour, stroma and non-tumour tissue areas were also quantified (Inform software), and the ratio of optical intensity per histologic area was reported as % area/tumour, % area/stroma and % area/non-tumour. Functional role of OATPs and STS was further investigated in HR? (MCF-7, T47-D, ZR-75) and HR-(MDA-MB-231) cells by transport studies conducted in the presence or absence of specific inhibitors. Amongst all the transporters and enzymes, OATPs and STS have significantly (p < 0.0001) higher expression in HR? tumour sections with highest target signals obtained from the tumour regions of the tissues. Specific OATP-mediated E3S uptake and STS-mediated metabolism were also observed in all HR? breast cancer cells. These observations suggest the potential of OATPs as novel molecular targets for HR? breast cancers. PMID:24831777

  13. Comprehensive molecular portraits of human breast tumors

    PubMed Central

    2012-01-01

    Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer. PMID:23000897

  14. Caffeic Acid Phenethyl Ester Increases Radiosensitivity of Estrogen Receptor-Positive and -Negative Breast Cancer Cells by Prolonging Radiation-Induced DNA Damage

    PubMed Central

    Khoram, Nastaran Masoudi; Bigdeli, Bahareh; Nikoofar, Alireza

    2016-01-01

    Purpose Breast cancer is an important cause of death among women. The development of radioresistance in breast cancer leads to recurrence after radiotherapy. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound of honeybee propolis, is known to have anticancer properties. In this study, we examined whether CAPE enhanced the radiation sensitivity of MDA-MB-231 (estrogen receptor-negative) and T47D (estrogen receptor-positive) cell lines. Methods The cytotoxic effect of CAPE on MDA-MB-231 and T47D breast cancer cells was evaluated by performing an 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. To assess clonogenic ability, MDA-MB-231 and T47D cells were treated with CAPE (1 µM) for 72 hours before irradiation, and then, a colony assay was performed. A comet assay was used to determine the number of DNA strand breaks at four different times. Results CAPE decreased the viability of both cell lines in a dose- and time-dependent manner. In the clonogenic assay, pretreatment of cells with CAPE before irradiation significantly reduced the surviving fraction of MDA-MB-231 cells at doses of 6 and 8 Gy. A reduction in the surviving fraction of T47D cells was observed relative to MDA-MB-231 at lower doses of radiation. Additionally, CAPE maintained radiation-induced DNA damage in T47D cells for a longer period than in MDA-MB-231 cells. Conclusion Our results indicate that CAPE impairs DNA damage repair immediately after irradiation. The induction of radiosensitivity by CAPE in radioresistant breast cancer cells may be caused by prolonged DNA damage. PMID:27066092

  15. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    SciTech Connect

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan; and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  16. WE-E-BRE-10: Level of Breast Cancer Stem Cell Correlated with Tumor Radioresistence: An Indication for Individualized Breast Cancer Therapy Adapted to Cancer Stem Cell Fractions

    SciTech Connect

    Qi, S; Pajonk, F; McCloskey, S; Low, D; Kupelian, P; Steinberg, M; Sheng, K

    2014-06-15

    Purposes: The presence of cancer stem cells (CSCs) in a solid tumor could result in poor tumor control probability. The purposes are to study CSC radiosensitivity parameters α and β and their correlation to CSC levels to understand the underlying radioresistance mechanisms and enable individualized treatment design. Methods: Four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, and SUM159PT) were irradiated in vitro using single radiation doses of 0, 2, 4, 6, 8 or 10 Gy. The fractions of CSCs in each cell lines were determined using cancer stem cell markers. Mammosphere assays were also performed to better estimate the number of CSCs and represent the CSC repopulation in a human solid tumor. The measured cell surviving fractions were fitted using the Linear-quadratic (LQ) model with independent fitting parameters: α-TC, β-TC (TCs), α-CSC, β-CSC (CSCs), and fs (the percentage of CSCs in each sample). Results: The measured fs increased following the irradiation by MCF-7 (0.1%), T47D (0.9%), MDA-MB-231 (1.18%) and SUM159T (2.46%), while decreasing surviving curve slopes were observed, indicating greater radioresistance, in the opposite order. The fitting yielded the radiosensitive parameters for the MCF-7: α-TC=0.1±0.2Gy{sup −1}, β-TC= 0.08 ±0.14Gy{sup −2}, α-CSC=0.04±0.07Gy{sup −1}, β-CSC =0.02±0.3Gy{sup −2}; for the SUM159PT, α-TC=0.08±0.25 Gy{sup −1}, β-TC=0.02±0.02Gy{sup −2}, α-CSC=0.04±0.18Gy{sup −1}, β-CSC =0.004±0.24Gy{sup −2}. In the mammosphere assay, where fs were higher than the corresponding cell line assays, there was almost no shoulder found in the surviving curves (more radioresistant in mammosphere assays) yielding β-CSC of approximately 0. Conclusion: Breast cancer stem cells were more radioresistant characterized by smaller α and β values compared to differentiated breast cancer cells. Percentage of breast cancer stem cells strongly correlated to overall tumor radioresistance. This observation

  17. Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle.

    PubMed

    Duangmano, Suwit; Dakeng, Sumana; Jiratchariyakul, Weena; Suksamrarn, Apichart; Smith, Duncan R; Patmasiriwat, Pimpicha

    2010-01-01

    Naturally occurring cucurbitacins have been shown to have anticancer, antimicrobial and anti-inflammatory activities. In this study, we determined the effects of cucurbitacin B extracted from the Thai herb Trichosanthes cucumerina L. on telomerase regulation in three human breast cancer cell lines (T47D, SKBR-3, and MCF-7) and a mammary epithelium cell line (HBL-100). Cell viability after treatment with cucurbitacin B, which is an active ingredient of this herb, was assessed. Telomeric Repeat Amplification Protocol (TRAP) assays and RT-PCR (qualitative and realtime) were performed to investigate activity of telomerase as well as expression of human telomerase reverse transcriptase (hTERT) and c-Myc. The c-Myc protein level was also determined in SKBR-3 and HBL-100 cells. Our results show that the cucurbitacin B inhibits growth and telomerase activity in the three breast cancer cell lines and exerts an obvious inhibitory effect in the estrogen receptor (ER)-negative breast cancer SKBR-3 cells. The expression of hTERT and c-Myc were also inhibited by cucurbitacin B, In addition, a clear reduction of c-Myc protein was observed after treatment in SKBR-3 cells even with a concentration of cucurbitacin B that was ten-times lower compared to the concentration used for HBL-100. Our findings imply that cucurbitacin B exerts an anticancer effect by inhibiting telomerase via down regulating both the hTERT and c-Myc expression in breast cancer cells. PMID:21614210

  18. Antiproliferative Effects of Cucurbitacin B in Breast Cancer Cells: Down-Regulation of the c-Myc/hTERT/Telomerase Pathway and Obstruction of the Cell Cycle

    PubMed Central

    Duangmano, Suwit; Dakeng, Sumana; Jiratchariyakul, Weena; Suksamrarn, Apichart; Smith, Duncan R.; Patmasiriwat, Pimpicha

    2010-01-01

    Naturally occurring cucurbitacins have been shown to have anticancer, antimicrobial and anti-inflammatory activities. In this study, we determined the effects of cucurbitacin B extracted from the Thai herb Trichosanthes cucumerina L. on telomerase regulation in three human breast cancer cell lines (T47D, SKBR-3, and MCF-7) and a mammary epithelium cell line (HBL-100). Cell viability after treatment with cucurbitacin B, which is an active ingredient of this herb, was assessed. Telomeric Repeat Amplification Protocol (TRAP) assays and RT-PCR (qualitative and realtime) were performed to investigate activity of telomerase as well as expression of human telomerase reverse transcriptase (hTERT) and c-Myc. The c-Myc protein level was also determined in SKBR-3 and HBL-100 cells. Our results show that the cucurbitacin B inhibits growth and telomerase activity in the three breast cancer cell lines and exerts an obvious inhibitory effect in the estrogen receptor (ER)-negative breast cancer SKBR-3 cells. The expression of hTERT and c-Myc were also inhibited by cucurbitacin B, In addition, a clear reduction of c-Myc protein was observed after treatment in SKBR-3 cells even with a concentration of cucurbitacin B that was ten-times lower compared to the concentration used for HBL-100. Our findings imply that cucurbitacin B exerts an anticancer effect by inhibiting telomerase via down regulating both the hTERT and c-Myc expression in breast cancer cells. PMID:21614210

  19. The Oncogenic Potential of Human Cytomegalovirus and Breast Cancer

    PubMed Central

    Herbein, Georges; Kumar, Amit

    2014-01-01

    Breast cancer is the leading causes of cancer-related death among women. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. Numerous articles indicate that breast tumors exhibit diverse phenotypes depending on their distinct physiopathological signatures, clinical courses, and therapeutic possibilities. The human cytomegalovirus (HCMV) is a multifaceted highly host specific betaherpesvirus that is regarded as asymptomatic or mildly pathogenic virus in immunocompetent host. HCMV may cause serious in utero infections as well as acute and chronic complications in immunocompromised individual. The involvement of HCMV in late inflammatory complications underscores its possible role in inflammatory diseases and cancer. HCMV targets a variety of cell types in vivo, including macrophages, epithelial cells, endothelial cells, fibroblasts, stromal cells, neuronal cells, smooth muscle cells, and hepatocytes. HCMV can be detected in the milk after delivery and thereby HCMV could spread to adjacent mammary epithelial cells. HCMV also infects macrophages and induces an atypical M1/M2 phenotype, close to the tumor-associated macrophage phenotype, which is associated with the release of cytokines involved in cancer initiation or promotion and breast cancer of poor prognosis. HCMV antigens and DNA have been detected in tissue biopsies of breast cancers and elevation in serum HCMV IgG antibody levels has been reported to precede the development of breast cancer in some women. In this review, we will discuss the potential role of HCMV in the initiation and progression of breast cancer. PMID:25202681

  20. MicroRNA Regulation of Human Breast Cancer Stem Cells

    PubMed Central

    Shimono, Yohei; Mukohyama, Junko; Nakamura, Shun-ichi; Minami, Hironobu

    2015-01-01

    MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression. PMID:26712794

  1. GSK-3 inhibition overcomes chemoresistance in human breast cancer.

    PubMed

    Ugolkov, Andrey; Gaisina, Irina; Zhang, Jin-San; Billadeau, Daniel D; White, Kevin; Kozikowski, Alan; Jain, Sarika; Cristofanilli, Massimo; Giles, Francis; O'Halloran, Thomas; Cryns, Vincent L; Mazar, Andrew P

    2016-10-01

    Glycogen Synthase Kinase-3β (GSK-3β), a serine/threonine protein kinase, is an emerging therapeutic target in the treatment of human breast cancer. In this study, we demonstrate that the pharmacological inhibition of GSK-3 by two novel small molecule GSK-3 inhibitors, 9-ING-41 and 9-ING-87, reduced the viability of breast cancer cells but had little effect on non-tumorigenic cell growth. Moreover, treatment with 9-ING-41 enhanced the antitumor effect of irinotecan (CPT-11) against breast cancer cells in vitro. We next established two patient-derived xenograft tumor models (BC-1 and BC-2) from metastatic pleural effusions obtained from patients with progressive, chemorefractory breast cancer and demonstrated that 9-ING-41 also potentiated the effect of the chemotherapeutic drug CPT-11 in vivo, leading to regression of established BC-1 and BC-2 tumors in mice. Our results suggest that the inhibition of GSK-3 is a promising therapeutic approach to overcome chemoresistance in human breast cancer, and identify the GSK-3 inhibitor 9-ING-41 as a candidate targeted agent for metastatic breast cancer therapy. PMID:27424289

  2. CHL1 is involved in human breast tumorigenesis and progression

    SciTech Connect

    He, Li-Hong; Ma, Qin; Shi, Ye-Hui; Ge, Jie; Zhao, Hong-Meng; Li, Shu-Fen; Tong, Zhong-Sheng

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  3. Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells

    PubMed Central

    Timoshenko, A V; Rastogi, S; Lala, P K

    2007-01-01

    Vascular endothelial growth factor C (VEGF-C) is a lymphangiogenic factor over-expressed in highly metastatic, cyclooxygenase (COX)-2 expressing breast cancer cells. We tested the hypothesis that tumour-derived VEGF-C may play an autocrine role in metastasis by promoting cellular motility through one or more VEGF-C-binding receptors VEGFR-2, VEGFR-3, neuropilin (NRP)-1, NRP-2, and integrin α9β1. We investigated the expression of these receptors in several breast cancer cell lines (MDA-MB-231, Hs578T, SK-BR-3, T-47D, and MCF7) and their possible requirement in migration of two VEGF-C-secreting, highly metastatic lines MDA-MB-231 and Hs578T. While cell lines varied significantly in their expression of above VEGF-C receptors, migratory activity of MDA-MB-231 and Hs578T cells was linked to one or more of these receptors. Depletion of endogenous VEGF-C by treatments with a neutralising antibody, VEGF-C siRNA or inhibitors of Src, EGFR/Her2/neu and p38 MAP kinases which inhibited VEGF-C production, inhibited cellular migration, indicating the requirement of VEGF-C for migratory function. Migration was differentially attenuated by blocking or downregulation of different VEGF-C receptors, for example treatment with a VEGFR-2 tyrosine kinase inhibitor, NRP-1 and NRP-2 siRNA or α9β1 integrin antibody, indicating the participation of one or more of the receptors in cell motility. This novel role of tumour-derived VEGF-C indicates that breast cancer metastasis can be promoted by coordinated stimulation of lymphangiogenesis and enhanced migratory activity of breast cancer cells. PMID:17912247

  4. Analysis of human breast tissues with Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhang, Lin; Liu, Jianhong; Yu, Fan; Sun, Shizhong

    2006-01-01

    Raman microspectroscopy was used to study normal, benign and malignant human breast tissues. The Raman spectrum of normal breast tissue recorded with 514.5 nm line of Ar + laser excitation contains features attributed to carotenoids and lipids. The CH II bending mode near 1447 cm -1 in normal tissue shifts up to 1454 cm -1 in diseased tissues (benign and malignant). The band near 1660 cm -1 in normal tissue is narrow and sharp; whereas the band is broaden in the diseased tissues. In the region of C-H stretching mode, the 2902-/2860-cm -1 intensity ratio shows differences among normal, benign and malignant breast tissues. The ratio is the smallest in carcinoma tissue. The observed spectra differences may be used to probe breast lesion. The results show that Raman spectroscopic technique may have clinical applications.

  5. Design, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents.

    PubMed

    Ghodsi, Razieh; Azizi, Ebrahim; Zarghi, Afshin

    2016-01-01

    A new group of 4-(Imidazolylmethyl)quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitroanti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 values in the potent range 0.063-0.090 µM, and COX-2 selectivity indexes in the 179.9 to 547.6 range. Molecular modeling studies indicated that the methylsulfonyl substituent can be inserted into the secondary pocket of COX-2 active site for interactions with Arg(513). Cytotoxicity of quinolines 9a-e against human breast cancer MCF-7 and T47D cell lines were also evaluated. All the compounds 9a-e were more cytotoxic against MCF-7 cells in comparison with those of T47D which express aromatase mRNA less than MCF-7 cells.The data showed that the increase of lipophilic properties of substituents on the C-7 and C-8 quinoline ring increased their cytotoxicity on MCF-7cells andCOX-2 inhibitory activity. Among the quinolines 9a-e, 4-((1H-Imidazol-1-yl)methyl) 7,8,9,10-tetrahydro-2-(4-methylsulfonylphenyl)-benzo[h]quinoline (9d)was identified as the most potent andselective COX-2inhibitor as well as the most cytotoxic agent against MCF-7 cells. PMID:27610157

  6. Design, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents

    PubMed Central

    Ghodsi, Razieh; Azizi, Ebrahim; Zarghi, Afshin

    2016-01-01

    A new group of 4-(Imidazolylmethyl)quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitroanti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 values in the potent range 0.063-0.090 µM, and COX-2 selectivity indexes in the 179.9 to 547.6 range. Molecular modeling studies indicated that the methylsulfonyl substituent can be inserted into the secondary pocket of COX-2 active site for interactions with Arg513. Cytotoxicity of quinolines 9a-e against human breast cancer MCF-7 and T47D cell lines were also evaluated. All the compounds 9a-e were more cytotoxic against MCF-7 cells in comparison with those of T47D which express aromatase mRNA less than MCF-7 cells.The data showed that the increase of lipophilic properties of substituents on the C-7 and C-8 quinoline ring increased their cytotoxicity on MCF-7cells andCOX-2 inhibitory activity. Among the quinolines 9a-e, 4-((1H-Imidazol-1-yl)methyl) 7,8,9,10-tetrahydro-2-(4-methylsulfonylphenyl)-benzo[h]quinoline (9d)was identified as the most potent andselective COX-2inhibitor as well as the most cytotoxic agent against MCF-7 cells. PMID:27610157

  7. Modeling Breast Tumor Development with a Humanized Mouse Model.

    PubMed

    Arendt, Lisa M

    2016-01-01

    The tumor microenvironment plays a critical role in breast cancer growth and progression to metastasis. Here, we describe a method to examine stromal-epithelial interactions during tumor formation and progression utilizing human-derived mammary epithelial cells and breast stromal cells. This method outlines the isolation of each cell type from reduction mammoplasty tissue, the culture and genetic modification of both epithelial and stromal cells using lentiviral technology, and the method of humanizing and implantation of transformed epithelial cells into the cleared mammary fat pads of immunocompromised mice. This model system may be a useful tool to dissect signaling interactions that contribute to invasive tumor behavior and therapeutic resistance. PMID:27581027

  8. Antiviral activity of purified human breast milk mucin.

    PubMed

    Habte, Habtom H; Kotwal, Girish J; Lotz, Zoë E; Tyler, Marilyn G; Abrahams, Melissa; Rodriques, Jerry; Kahn, Delawir; Mall, Anwar S

    2007-01-01

    Human breast milk is known to contain numerous biologically active components which protect breast fed infants against microbes, viruses, and toxins. The purpose of this study was to purify and characterize the breast milk mucin and determine its anti-poxvirus activity. In this study human milk mucin, free of contaminant protein and of sufficient quantity for further analysis, was isolated and purified by Sepharose CL-4B gel filtration and cesiumchloride density-gradient centrifugation. Based on the criteria of size and appearance of the bands and their electrophoretic mobility on sodium dodecyl sulfate polyacrylamide-gel electrophoresis, Western blotting together with the amino acid analysis, it is very likely that the human breast milk mucin is MUC1. It was shown that this breast milk mucin inhibits poxvirus activity by 100% using an inhibition assay with a viral concentration of 2.4 million plaque-forming units/ml. As the milk mucin seems to aggregate poxviruses prior to their entry into host cells, it is possible that this mucin may also inhibit other enveloped viruses such as HIV from entry into host cells. PMID:17361093

  9. Zeranol stimulates proliferation and aromatase activation in human breast preadipocytes.

    PubMed

    Zhong, Saiyi; Liu, Shouchun; Chen, Suhua; Lin, Huajuan; Wang, Weimin; Qin, Xiaoming

    2016-07-01

    Aromatase is a crucial enzyme for the biosynthesis of estrogens and is involved in the process of breast carcinogenesis. Concerns have been raised regarding the effects of environmental estrogens as potential regulators of aromatase expression in human breast cells. Zeranol is a non‑steroidal agent with potent estrogenic activity, which is widely used as a growth promoter for cattle in certain countries. The present study hypothesized that aromatase expression and activity may be elevated by low dose zeranol exposure, providing a source of estrogens that may stimulate cell proliferation. In the present study, primary cultured human breast preadipocytes were used as an in vitro model. The effects of zeranol on cell proliferation were measured using the MTS assay, aromatase expression levels were determined by immunocytochemical staining and reverse transcription‑polymerase chain reaction, and aromatase enzyme activity and estrogen production were analyzed using corresponding assay kits. The results demonstrated that low dose zeranol (2‑50 nM) was able to significantly promote cell proliferation, aromatase mRNA expression, aromatase activity and estrogen production in primary cultured human breast preadipocytes, thus suggesting that zeranol may act as an aromatase activator. The findings of the present study suggest that zeranol promotes breast cancer cell growth by stimulating aromatase activation and increasing estrogen biosynthesis in adipose tissue. PMID:27220457

  10. Significance of Heterogeneous Twist2 Expression in Human Breast Cancers

    PubMed Central

    Mao, Yubin; Zhang, Nini; Xu, Jinfei; Ding, Zhijie; Zong, Rongrong; Liu, Zuguo

    2012-01-01

    Background Twist2 (Dermo1) has been shown to mediate the epithelial-mesenchymal transition (EMT) to promote tumor invasion and even metastasis. However, the involvement of EMT in breast cancer progression is highly debated, partially due to clinical observations showing that the majority of human breast carcinoma metastases express E-cadherin and maintain their epithelial morphology. The molecular mechanism by which Twist2 participates in EMT of breast cancer in vivo remains poorly understood. Methods We examined Twist2 expression pattern in human breast carcinomas by western blot and tissue microarray, and analyzed Twist2 cellular localization by confocal microscopy, cell fractionation and other approaches. Results Twist2 expression was significantly increased in breast cancer. Cytoplasmic Twist2 positive cancer cells expressing E-cadherin on the cellular membrane were mainly located at tumor center of primary carcinomas and lymph metastases, while cancer cells with nuclear Twist2 clearly showed loss of E-cadherin and were detected at the invasive front in ductal breast carcinomas. In addition, ectopically stable-expressed Twist2 was found to localize in the cytoplasm of cancer cells. Collectively, these data indicate that upregulation of cytoplasmic Twist2 is correlated with tumor histological type and tumor metastasis in human breast cancers. Conclusion The differential cellular distribution of Twist2 may be associated with tumor progression. The cytoplasmic Twist2 in cancer cells at tumor center of primary carcinomas and lymph metastases contributes to the maintenance of epithelial cancer characteristics expressing E-cadherin in a noninvasive state, while the nuclear Twist2 at the cancer invasion front activates EMT to deprive epithelial property of neoplastic cells, thus facilitating invasion and metastasis. These findings suggest that heterogeneous expression of Twist2 in tumors may have a functional link to tumor progression. PMID:23133563

  11. A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer

    PubMed Central

    Kaur, Sukhbir; Elkahloun, Abdel G.; Singh, Satya P.; Chen, Qing-Rong; Meerzaman, Daoud M.; Song, Timothy; Manu, Nidhi; Wu, Weiwei; Mannan, Poonam; Garfield, Susan H.; Roberts, David D.

    2016-01-01

    CD47 is a signaling receptor for thrombospondin-1 and the counter-receptor for signal-regulatory protein-α (SIRPα). By inducing inhibitory SIRPα signaling, elevated CD47 expression by some cancers prevents macrophage phagocytosis. The anti-human CD47 antibody B6H12 inhibits tumor growth in several xenograft models, presumably by preventing SIRPα engagement. However, CD47 signaling in nontransformed and some malignant cells regulates self-renewal, suggesting that CD47 antibodies may therapeutically target cancer stem cells (CSCs). Treatment of MDA-MB-231 breast CSCs with B6H12 decreased proliferation and asymmetric cell division. Similar effects were observed in T47D CSCs but not in MCF7 breast carcinoma or MCF10A breast epithelial cells. Gene expression analysis in breast CSCs treated with B6H12 showed decreased expression of epidermal growth factor receptor (EGFR) and the stem cell transcription factor KLF4. EGFR and KLF4 mRNAs are known targets of microRNA-7, and B6H12 treatment correspondingly enhanced microRNA-7 expression in breast CSCs. B6H12 treatment also acutely inhibited EGF-induced EGFR tyrosine phosphorylation. Expression of B6H12-responsive genes correlated with CD47 mRNA expression in human breast cancers, suggesting that the CD47 signaling pathways identified in breast CSCs are functional in vivo. These data reveal a novel SIRPα-independent mechanism by which therapeutic CD47 antibodies could control tumor growth by autonomously forcing differentiation of CSC. PMID:26840086

  12. Biocompatibility of Fe(3)O(4) nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells.

    PubMed

    Ankamwar, B; Lai, T C; Huang, J H; Liu, R S; Hsiao, M; Chen, C H; Hwu, Y K

    2010-02-19

    In order to reveal the biocompatibility of Fe(3)O(4) nanoparticles and bipolar surfactant tetramethylammonium 11-aminoundecanoate cytotoxicity tests were performed as a function of concentration from low (0.1 microg ml(-1)) to higher concentration (100 microg ml(-1)) using various human glia, human breast cancer and normal cell lines. Cytotoxicity tests for human glia (D54MG, G9T, SF126, U87, U251, U373), human breast cancer (MB157, SKBR3, T47D) and normal (H184B5F5/M10, WI-38, SVGp12) cell lines exhibited almost nontoxicity and reveal biocompatibility of Fe(3)O(4) nanoparticles in the concentration range of 0.1-10 microg ml(-1), while accountable cytotoxicity can be seen at 100 microg ml(-1). The results of our studies suggest that Fe(3)O(4) nanoparticles coated with bipolar surfactant tetramethylammonium 11-aminoundecanoate are biocompatible and promising for bio-applications such as drug delivery, magnetic resonance imaging and magnetic hyperthermia. PMID:20090199

  13. Systems consequences of amplicon formation in human breast cancer

    PubMed Central

    Inaki, Koichiro; Menghi, Francesca; Woo, Xing Yi; Wagner, Joel P.; Jacques, Pierre-Étienne; Lee, Yi Fang; Shreckengast, Phung Trang; Soon, Wendy WeiJia; Malhotra, Ankit; Teo, Audrey S.M.; Hillmer, Axel M.; Khng, Alexis Jiaying; Ruan, Xiaoan; Ong, Swee Hoe; Bertrand, Denis; Nagarajan, Niranjan; Karuturi, R. Krishna Murthy; Hidalgo Miranda, Alfredo

    2014-01-01

    Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons. In a detailed reconstruction of events on chromosome 17, we found large unpaired inversions and deletions connect a tandemly duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. This series of events appeared to be unusually common when examined in larger genomic data sets of breast cancers albeit using approaches with lesser resolution. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently coamplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in ERBB2-transfected human normal mammary epithelial cells. Coamplification of other functionally tested oncogenic elements in other breast tumors examined, such as RIPK2 and MYC on chromosome 8, also parallel these findings. Our analyses suggest that structural variations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously and that such oncogenic cassettes are favored during the evolution of a cancer. PMID:25186909

  14. Systems consequences of amplicon formation in human breast cancer.

    PubMed

    Inaki, Koichiro; Menghi, Francesca; Woo, Xing Yi; Wagner, Joel P; Jacques, Pierre-Étienne; Lee, Yi Fang; Shreckengast, Phung Trang; Soon, Wendy WeiJia; Malhotra, Ankit; Teo, Audrey S M; Hillmer, Axel M; Khng, Alexis Jiaying; Ruan, Xiaoan; Ong, Swee Hoe; Bertrand, Denis; Nagarajan, Niranjan; Karuturi, R Krishna Murthy; Miranda, Alfredo Hidalgo; Liu, Edison T

    2014-10-01

    Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons. In a detailed reconstruction of events on chromosome 17, we found large unpaired inversions and deletions connect a tandemly duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. This series of events appeared to be unusually common when examined in larger genomic data sets of breast cancers albeit using approaches with lesser resolution. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently coamplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in ERBB2-transfected human normal mammary epithelial cells. Coamplification of other functionally tested oncogenic elements in other breast tumors examined, such as RIPK2 and MYC on chromosome 8, also parallel these findings. Our analyses suggest that structural variations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously and that such oncogenic cassettes are favored during the evolution of a cancer. PMID:25186909

  15. Detection of Volatile Metabolites of Garlic in Human Breast Milk

    PubMed Central

    Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-01-01

    The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography−mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO2). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO2 are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences. PMID:27275838

  16. Kif18A is involved in human breast carcinogenesis.

    PubMed

    Zhang, Chunpeng; Zhu, Changjun; Chen, Hongyan; Li, Linwei; Guo, Liping; Jiang, Wei; Lu, Shih Hsin

    2010-09-01

    Microtubule (MT) kinesin motor proteins orchestrate various cellular processes (e.g. mitosis, motility and organelle transportation) and have been implicated in human carcinogenesis. Kif18A, a plus-end directed MT depolymerase kinesin, regulates MT dynamics, chromosome congression and cell division. In this study, we report that Kif18A is overexpressed in human breast cancers and Kif18A overexpression is associated with tumor grade, metastasis and poor survival. Functional analyses reveal that ectopic overexpression of Kif18A results in cell multinucleation, whereas ablation of Kif18A expression significantly inhibits the proliferative capability of breast cancer cells in vitro and in vivo. Inhibition of Kif18A not only affects the critical mitotic function of Kif18A but also decreases cancer cell migration by stabilizing MTs at leading edges and ultimately induces anoikis of cells with inactivation of the phosphatidylinositol 3-kinase-Akt signaling pathway. Together, our results indicate that Kif18A is involved in human breast carcinogenesis and may serve as a potential therapeutic target for human breast cancer. PMID:20595236

  17. Detection of Volatile Metabolites of Garlic in Human Breast Milk.

    PubMed

    Scheffler, Laura; Sauermann, Yvonne; Zeh, Gina; Hauf, Katharina; Heinlein, Anja; Sharapa, Constanze; Buettner, Andrea

    2016-01-01

    The odor of human breast milk after ingestion of raw garlic at food-relevant concentrations by breastfeeding mothers was investigated for the first time chemo-analytically using gas chromatography-mass spectrometry/olfactometry (GC-MS/O), as well as sensorially using a trained human sensory panel. Sensory evaluation revealed a clear garlic/cabbage-like odor that appeared in breast milk about 2.5 h after consumption of garlic. GC-MS/O analyses confirmed the occurrence of garlic-derived metabolites in breast milk, namely allyl methyl sulfide (AMS), allyl methyl sulfoxide (AMSO) and allyl methyl sulfone (AMSO₂). Of these, only AMS had a garlic-like odor whereas the other two metabolites were odorless. This demonstrates that the odor change in human milk is not related to a direct transfer of garlic odorants, as is currently believed, but rather derives from a single metabolite. The formation of these metabolites is not fully understood, but AMSO and AMSO₂ are most likely formed by the oxidation of AMS in the human body. The excretion rates of these metabolites into breast milk were strongly time-dependent with large inter-individual differences. PMID:27275838

  18. Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel

    PubMed Central

    Schlaepfer, Isabel R.; Hitz, Carolyn A.; Gijón, Miguel A.; Bergman, Bryan C.; Eckel, Robert H.; Jacobsen, Britta M.

    2015-01-01

    Progestins induce lipid accumulation in progesterone receptor (PR)-positive breast cancer cells. We speculated that progestin-induced alterations in lipid biology confer resistance to chemotherapy. To examine the biology of lipid loaded breast cancer cells, we used a model of progestin-induced lipid synthesis. T47D (PR-positive) and MDA-MB-231(PR-negative) cell lines were used to study progestin response. Oil red O staining of T47D cells treated with progestin showed lipid droplet formation was PR dependent, glucose dependent and reduced sensitivity to docetaxel. This protection was not observed in PR-negative MDA-MB-231 cells. Progestin treatment induced stearoyl CoA desaturase-1 (SCD-1) enzyme expression and chemical inhibition of SCD-1 diminished lipid droplets and cell viability, suggesting the importance of lipid stores in cancer cell survival. Gas chromatography/mass spectroscopy analysis of phospholipids from progestin-treated T47D cells revealed an increase in unsaturated fatty acids, with oleic acid as most abundant. Cells surviving docetaxel treatment also contained more oleic acid in phospholipids, suggesting altered membrane fluidity as a potential mechanism of chemoresistance mediated in part by SCD-1. Lastly, intact docetaxel molecules were present within progestin induced lipid droplets, suggesting a protective quenching effect of intracellular lipid droplets. Our studies suggest the metabolic adaptations produced by progestin provide novel metabolic targets for future combinatorial therapies for progestin-responsive breast cancers. PMID:22922095

  19. Ocular input for human melatonin regulation: relevance to breast cancer

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Levin, Robert; Brainard, George C.

    2002-01-01

    The impact of breast cancer on women across the world has been extensive and severe. As prevalence of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a potential risk factor. This theory is supported by the epidemiological observations of decreased breast cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent relationship between light, melatonin and cancer, albeit complex. Recent developments in understanding melatonin regulation by light in humans are examined, with particular attention to factors that contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans and other mammalian species are discussed. Across five action spectra for circadian and other non-visual responses, a peak sensitivity between 446-484 nm was identified. Under highly controlled exposure circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it is important to continue to identify the basic related ocular physiology. Visual performance, rather than circadian function, has been the primary focus of architectural lighting systems. It is now necessary to reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physiological homeostasis and health.

  20. Inactivated Sendai Virus Strain Tianjin Induces Apoptosis in Breast Cancer MCF-7 Cells by Promoting Caspase Activation and Fas/FasL Expression

    PubMed Central

    Han, Zhe; Li, Xiao-Xia; Li, Mei; Han, Han; Chen, Jun; Zang, Sitao

    2015-01-01

    Abstract Virotherapy represents a promising new approach for treating cancer. Here the authors have analyzed the effect of ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human breast cancer MCF-7 cells in vitro and in vivo. In vitro, UV-Tianjin inhibited the proliferation of MCF-7, MDA-MB-231, and T47D breast cancer cell lines, although MCF-7 cells were most susceptible to UV-Tianjin treatment. Hoechst staining and flow cytometric analysis of UV-Tianjin-treated MCF-7 cells revealed that UV-Tianjin induced apoptosis in a dose-dependent manner. Moreover, UV-Tianjin treatment resulted in reductions in the mitochondria membrane potential of MCF-7 cells and regulated the levels and activities of Bcl-2, Bax, cyt c, caspases, Fas, and Fas ligand (FasL). In vivo, UV-Tianjin inhibited the growth of MCF-7 tumors in nude mice and increased tumor cell apoptosis compared with saline-treated controls. In addition, the percentage of tumor cells positive for cleaved versions of caspase-7, caspase-8, and caspase-9 was higher in UV-Tianjin-treated tumors than in saline-treated controls. In summary, UV-Tianjin exhibited the antitumor activity in human breast cancer MCF-7 cells both in vitro and in vivo. The UV-Tianjin treatment seemed to induce apoptosis by activating both the mitochondrial and death receptor apoptotic pathways. PMID:25517620

  1. The Gαi AND Gαq Proteins Mediate the Effects of Melatonin on Steroid/Thyroid Hormone Receptor Transcriptional Activity and Breast Cancer Cell Proliferation

    PubMed Central

    Lai, Ling; Yuan, Lin; Chen, Qi; Dong, Chunmin; Mao, Lulu; Rowan, Brian; Frasch, Tripp; Hill, Steven M.

    2016-01-01

    Melatonin, via its MT1 receptor, but not the MT2 receptor, can modulate the transcriptional activity of various nuclear receptors (ERα and RARα, but not ERβ) in MCF-7, T47D and ZR-75-1 human breast cancer cell lines. The anti-proliferative and nuclear receptor modulatory actions of melatonin are mediated via the MT1 G protein-coupled receptor expressed in human breast cancer cells. However, the specific G proteins and associated pathways involved in nuclear receptor transcriptional regulation by melatonin are not yet clear. Upon activation, the MT1 receptor specifically couples to the Gαi2, Gαi3, Gαq and Gαll proteins, and via activation of Gαi2 proteins, melatonin suppresses forskolin-induced cyclic AMP (cAMP) production, while melatonin activation of Gαq, is able to inhibit phospholipid hydrolysis and ATP’s induction of inositol triphosphate (IP3) production in MCF-7 breast cancer cells. Employing dominant-negative (DN) and dominant-positive (DP) forms of these G proteins we demonstrate that Gαi2 proteins mediate the suppression of estrogen-induced ERα transcriptional activity by melatonin, while the Gq protein mediates the enhancement of retinoid-induced RARα transcriptional activity by melatonin. However, the growth-inhibitory actions of melatonin are mediated via both Gαi2 and Gαq proteins. PMID:18705646

  2. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc).

    EPA Science Inventory

    Humans are concurrently exposed to xenoestrogens and to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in infants to high levels during pregnancy and in young women. However, few studies have addressed how xenoestrogens interact with...

  3. Modelling defined mixtures of environmental oestrogens found in domestic animal and sewage treatment effluents using an in vitro oestrogen-mediated transcriptional activation assay (T47D-KBluc

    EPA Science Inventory

    There is growing concern that exposure of fish, wildlife, and humans to water sources contaminated with estrogens could potentially impact reproductive health. Environmental estrogens can come from various sources including concentrated animal feedlot operations (CAFO), municipal...

  4. An early history of human breast cancer: West meets East

    PubMed Central

    Yan, Shou-He

    2013-01-01

    Cancer has been increasingly recognized as a global issue. This is especially true in countries like China, where cancer incidence has increased likely because of changes in environment and lifestyle. However, cancer is not a modern disease; early cases have been recorded in ancient medical books in the West and in China. Here, we provide a brief history of cancer, focusing on cancer of the breast, and review the etymology of ai, the Chinese character for cancer. Notable findings from both Western and Chinese traditional medicine are presented to give an overview of the most important, early contributors to our evolving understanding of human breast cancer. We also discuss the earliest historical documents to record patients with breast cancer. PMID:23958056

  5. Genomic signature induced by pregnancy in the human breast.

    PubMed

    Balogh, Gabriela A; Heulings, Rebecca; Mailo, Daniel A; Russo, Patricia A; Sheriff, Fathima; Russo, Irma H; Moral, Raquel; Russo, Jose

    2006-02-01

    We have postulated that the lifetime protective effect of an early pregnancy against breast cancer is due to the complete differentiation of the mammary gland characterized by a specific genomic signature imprinted by the physiological process of pregnancy. For demonstrating this hypothesis we compared the genomic profile of the epithelium and the stroma of normal breast tissues from reduction mammoplasties performed in postmenopausal parous and nulliparous women. The epithelium and the stroma were separately dissected using laser capture microdissection (LCM) and the RNA of each compartment and each sample was isolated, amplified using PCR methodology, and hybridized to cDNA glass-microarrays containing 40,000 human cDNA features. The separation of the epithelial compartment from the interlobular stroma of Lob 1 using LCM allowed us to determine that the epithelial component contained 4,828 genes that were equally expressed in both nulliparous and parous women. There were 73 known genes that included immune-modulation-, DNA repair-, programmed cell death-, chromatin remodeling- and transcription-related genes, whereas in the breast of nulliparous women there were 20 different known genes that were upregulated. Our data provide evidence that breast tissues of postmenopausal parous women express in both the epithelial and the stromal compartments numerous genes that differ significantly from those present in breast tissues of post-menopausal nulliparous women, which could be important contributors to the genomic signature induced by an early full term pregnancy. PMID:16391795

  6. Cyclin A1 Modulates the Expression of Vascular Endothelial Growth Factor and Promotes Hormone-Dependent Growth and Angiogenesis of Breast Cancer

    PubMed Central

    Kopparapu, Pradeep Kumar; Anagnostaki, Lola; Härkönen, Pirkko; Persson, Jenny Liao

    2013-01-01

    Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein–protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression. PMID:23991063

  7. GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast.

    PubMed

    Scaling, Allison L; Prossnitz, Eric R; Hathaway, Helen J

    2014-06-01

    17β-Estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized nontumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane-bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  8. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  9. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    NASA Astrophysics Data System (ADS)

    Jafari, Atefeh; Salouti, Mojtaba; Farjami Shayesteh, Saber; Heidari, Zahra; Bitarafan Rajabi, Ahmad; Boustani, Komail; Nahardani, Ali

    2015-02-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION-BBN in human blood serum. DSPION-BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION-BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T2-weighted and T2*-weighted color map MR images were acquired. The MRI study indicated that the DSPION-BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T2*-weighted color map MR images in mice with breast tumors.

  10. FT-Raman spectroscopy study of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bitar Carter, Renata A.; Martin, Airton A.; Netto, Mario M.; Soares, Fernando A.

    2004-07-01

    Optical spectroscopy has been extensively studied as a potential in vivo diagnostic tool to provide information about the chemical and morphologic structure of tissue. Raman Spectroscpy is an inelastic scattering process that can provide a wealth of spectral features that can be related to the specific molecular structure of the sample. This article reports results of an in vitro study of the FT-Raman human breast tissue spectra. An Nd:YAG laser at 1064nm was used as the excitation source in the FT-Raman Spectrometer. The neoplastic human breast samples, both Fibroadenoma and ICD, were obtained during therapeutical routine medical procedures required by the primary disease, and the non-diseased human tissue was obtained in plastic surgery. No sample preparation was needed for the FT-Raman spectra collection. The FT-Raman spectra were recorded from normal, benign (Fibroadenomas) and malignant (IDC-Intraductal Carcinoma) samples, adding up 51 different areas. The main spectral differences of a typical FT-Raman spectra of a Normal (Non-diseased), Fibroadenoma, and Infiltrating Ductal Carcinoma (IDC) breast tissue at the interval of 600 to 1800cm-1, which may differentiate diagnostically the sample, were found in the bands of 1230 to 1295cm-1, 1440 to 1460 cm-1 and 1650 to 1680 cm-1, assigned to the vibrational bands of the carbohydrate-amide III, proteins and lipids, and carbohydrate-amide I, respectively.

  11. Modelling defined mixtures of environmental oestrogens found in domestic animal and sewage treatment effluents using an in vitro oestrogen-mediated transcriptional activation assay (T47D-KBluc).

    PubMed

    Bermudez, Dieldrich S; Gray, L Earl; Wilson, Vickie S

    2012-06-01

    There is growing concern of exposure of fish, wildlife and humans to water sources contaminated with oestrogens and the potential impact on reproductive health. Environmental oestrogens can come from various sources including concentrated animal feedlot operations (CAFO), municipal waste, agricultural and industrial effluents. US EPA's drinking water contaminant candidate list 3 (CCL3) includes several oestrogenic compounds. Although these contaminants are currently not subject to any proposed or promulgated national primary drinking water regulations, they are known or anticipated to occur in public water systems and may require future regulation under the Safe Drinking Water Act. Using an in vitro transcriptional activation assay, this study evaluated oestrogens from CCL3 both individually and as a seven oestrogen mixture (fixed ray design) over a broad range of concentrations, including environmentally relevant concentrations. Log EC(50) and Hillslope values for individual oestrogens were as follows: estrone, -11.92, 1.283; estradiol-17α, -9.61, 1.486; estradiol-17β, 11.77, 1.494; estriol, -11.14, 1.074; ethinyl estradiol-17α, -12.63, 1.562; Mestranol, -11.08, 0.809 and Equilin, -11.48, 0.946. In addition, mixtures that mirrored the primary oestrogens found in swine, poultry and dairy CAFO effluent (fixed-ratio ray design), and a ternary mixture (4 × 4 × 4 factorial design) of oestrogens found in hormone replacement therapy and/or oral contraceptives were tested. Mixtures were evaluated for additivity using both the concentration addition (CA) model and oestrogen equivalence (EEQ) model. For each of the mixture studies, a broad range of concentrations were tested, both above and below environmentally relevant concentrations. Results show that the observed data did not vary consistently from either the CA or EEQ predictions for any mixture. Therefore, either the CA or EEQ model should be useful predictors for modelling oestrogen mixtures. PMID:22612477

  12. A Hormone-responsive 3D Culture Model of the Human Mammary Gland Epithelium.

    PubMed

    Speroni, Lucia; Sweeney, Michael F; Sonnenschein, Carlos; Soto, Ana M

    2016-01-01

    The process of mammary epithelial morphogenesis is influenced by hormones. The study of hormone action on the breast epithelium using 2D cultures is limited to cell proliferation and gene expression endpoints. However, in the organism, mammary morphogenesis occurs in a 3D environment. 3D culture systems help bridge the gap between monolayer cell culture (2D) and the complexity of the organism. Herein, we describe a 3D culture model of the human breast epithelium that is suitable to study hormone action. It uses the commercially available hormone-responsive human breast epithelial cell line, T47D, and rat tail collagen type 1 as a matrix. This 3D culture model responds to the main mammotropic hormones: estradiol, progestins and prolactin. The influence of these hormones on epithelial morphogenesis can be observed after 1- or 2-week treatment according to the endpoint. The 3D cultures can be harvested for analysis of epithelial morphogenesis, cell proliferation and gene expression. PMID:26891095

  13. Engineering targeted chromosomal amplifications in human breast epithelial cells.

    PubMed

    Springer, Simeon; Yi, Kyung H; Park, Jeenah; Rajpurohit, Anandita; Price, Amanda J; Lauring, Josh

    2015-07-01

    Chromosomal amplifications are among the most common genetic alterations found in human cancers. However, experimental systems to study the processes that lead to specific, recurrent amplification events in human cancers are lacking. Moreover, some common amplifications, such as that at 8p11-12 in breast cancer, harbor multiple driver oncogenes, which are poorly modeled by conventional overexpression approaches. We sought to develop an experimental system to model recurrent chromosomal amplification events in human cell lines. Our strategy is to use homologous-recombination-mediated gene targeting to deliver a dominantly selectable, amplifiable marker to a specified chromosomal location. We used adeno-associated virus vectors to target human MCF-7 breast cancer cells at the ZNF703 locus, in the recurrent 8p11-12 amplicon, using the E. coli inosine monophosphate dehydrogenase (IMPDH) enzyme as a marker. We applied selective pressure using IMPDH inhibitors. Surviving clones were found to have increased copy number of ZNF703 (average 2.5-fold increase) by droplet digital PCR and FISH. Genome-wide array comparative genomic hybridization confirmed that amplifications had occurred on the short arm of chromosome 8, without changes on 8q or other chromosomes. Patterns of amplification were variable and similar to those seen in primary human breast cancers, including "sawtooth" patterns, distal copy number loss, and large continuous regions of copy number gain. This system will allow study of the cis- and trans-acting factors that are permissive for chromosomal amplification and provide a model to analyze oncogene cooperativity in amplifications harboring multiple candidate driver genes. PMID:26099605

  14. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line

    PubMed Central

    Khanavi, Mahnaz; Gheidarloo, Razieh; Sadati, Nargess; Ardekani, Mohammad Reza Shams; Nabavi, Seyed Mohammad Bagher; Tavajohi, Shohreh; Ostad, Seyed Nasser

    2012-01-01

    Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70%) extract and partition fractions of hexane, chloroform (CHCl3), ethyl acetate (EtOAc), and MeOH–H2O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH 3T3) cell lines by MTT assay. Statistical Analysis Used: IC50 (median growth inhibitory concentration) values were calculated by Sigmaplot (10) software. Results: Hexane fraction of Chondria dasyphylla (IC50 82.26 ± 4.09 μg/ml) and MeOH-H2O fraction of Ulva flexuosa (IC50 116.92 ± 8.58 μg/ml) showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC50 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml), respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC50 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml). Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines. PMID:22438665

  15. A comparative study of canine and human breast cancer.

    PubMed

    Owen, L N

    1979-01-01

    The incidence of mammary tumours in the bitch is probably three times as great as in women. While many of these tumours are mixed mammary tumours about one-third are carcinomas which resemble human breast carcinomas. Allowing for differences in life span, the age at onset is similar in both species. The World Health Organization classification of tumours and dysplasias of the canine mammary gland follows as far as possible the WHO classification for human breast tumours. Clinical staging of canine mammary tumours has now been completed. Some prognostic factors are similar in both species but regional lymph node metastasis does not seem to be of major importance in the bitch; mitotic activity may also not be as important as in women. Metastatic spread is broadly similar in both species except that involvement of the liver and skeleton is not as common in the bitch as in women. In older normal Beagles hyperplastic and neoplastic nodules commonly appear in the mammary gland, and they occur earlier in animals receiving large doses of progestogens. This has produced problems for the drug industry when conducting long-term carcinogenicity tests on progestogens present in the human contraceptive pill. Despite considerable endocrinological differences between the two species, oophorectomy is sparing for breast cancer in both. As in women, oestrogen and progesterone receptors have been detected in mammary carcinomas in bitches. Canine tumours can be grown in tissue culture but cloned cell lines have not yet been obtained. Transplantation can be made into nude mice and immunosuppressed neonatal dogs. The prognosis following mastectomy for invasive tubular adenocarcinoma and invasive solid carcinoma in the bitch is poor and these histological types make the best models for breast cancer in women. International trials are planned using chemotherapy and/or immunotherapy following mastectomy and, as results can be obtained within 3 years of commencement, it is expected that

  16. Persistent organic pollutants in human breast milk from Asian countries.

    PubMed

    Tanabe, Shinsuke; Kunisue, Tatsuya

    2007-03-01

    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk. PMID:16949712

  17. Complex CGH alterations on chromosome arm 8p at candidate tumor suppressor gene loci in breast cancer cell lines.

    PubMed

    Venter, Deon J; Ramus, Susan J; Hammet, Fleur M A; de Silva, Melanie; Hutchins, Anne-Marie; Petrovic, Vida; Price, Gareth; Armes, Jane E

    2005-07-15

    Loss of genetic material from chromosome arm 8p occurs frequently in human breast carcinomas, consistent with this region of the genome harboring one or more tumor suppressor genes (TSGs). We used the complementary techniques of microsatellite-based LOH, high-density FISH, and conventional CGH on 6 breast cancer cell lines (MCF7, SKBR3, T47D, MDA MB453, BT549, and BT474) to investigate the molecular cytogenetic changes occurring on chromosome 8 during tumorigenesis, with particular emphasis on 6 potential TSGs on 8p. We identified multiple alterations of chromosome 8, including partial or complete deletion of 8p or 8q, duplication of 8q, and isochromosome 8q. The detailed FISH analysis showed several complex rearrangements of 8p with differing breakpoints of varying proximity to the genes of interest. High rates of LOH were observed at markers adjacent to or within PCM1, DUSP4/MKP2, NKX3A, and DLC1, supporting their status as candidate TSGs. Due to the complex ploidy status of these cell lines, relative loss of 8p material detected by CGH did not always correlate with microsatellite-based LOH results. These results extend our understanding of the mechanisms accompanying the dysregulation of candidate tumor suppressor loci on chromosome arm 8p, and identify appropriate cellular systems for further investigation of their biological properties. PMID:15993269

  18. AIB1 Cooperates with ERα to Promote Epithelial Mesenchymal Transition in Breast Cancer through SNAI1 Activation

    PubMed Central

    Wang, Miao; Zhao, Feng; Li, Shujing; Chang, Alan K.; Jia, Zhaojun; Chen, Yixuan; Xu, Feihong; Pan, Hongming; Wu, Huijian

    2013-01-01

    Epithelial Mesenchymal Transition (EMT) plays a major role in cancer metastasis. Several genes have been shown to play a role in EMT, and one of these is Amplified-in-breast cancer 1 (AIB1), which has oncogenic function and is known to be amplified in breast cancer. However, the role of AIB1 in EMT remains largely undefined at the molecular level. In this study, the effect of AIB1 overexpression on the EMT of the breast cancer cell line T47D was investigated. Overexpression of AIB1 disrupted the epithelial morphology of the cells. At the same time, the cells displayed a strong metastasis and reduced level of the epithelial marker E-cadherin. In contrast, knockdown of AIB1 in T47D cells increased cell-cell adhesion and produced weak metastasis, as well as a higher level of E-cadherin expression. We proposed that the regulation of EMT by AIB1 occurred through the action of the transcription factor SNAI1, and demonstrated that such interaction required the participation of ERα and the presence of ERα-binding site on SNAI1 promoter. The expression level of E-cadherin and the extent of cell migration and invasion in SNAI1-knocked down T47D cells that overexpressed AIB1 were similar to those of T47D cells that did not overexpress AIB1 and had no SNAI1 knockdown. Taken together, these results suggested that AIB1 exerted its effect on EMT through its interaction with ERα, which could directly bind to the ERα-binding site on the SNAI1 promoter, allowing the AIB1-ERα complex to promote the transcription of SNAI1 and eventually led to repression of E-cadherin expression, consistent with the loss of E-cadherin being a hallmark of EMT. PMID:23762395

  19. Paclitaxel Combined with Inhibitors of Glucose and Hydroperoxide Metabolism Enhances Breast Cancer Cell Killing Via H2O2-Mediated Oxidative Stress

    PubMed Central

    Hadzic, Tanja; Aykin-Burns, Nükhet; Zhu, Yueming; Coleman, Mitchell C.; Leick, Katie; Jacobson, Geraldine M.; Spitz, Douglas R.

    2010-01-01

    Cancer cells (relative to normal cells) demonstrate alterations in oxidative metabolism characterized by increased steady-state levels of reactive oxygen species [i.e. hydrogen peroxide, H2O2] that may be compensated for by increased glucose metabolism but the therapeutic significance of these observations is unknown. In the current study, inhibitors of glucose [i.e., 2-deoxy-D-glucose, 2DG] and hydroperoxide [i.e., L-buthionine-S, R-sulfoximine, BSO] metabolism were utilized in combination with a chemotherapeutic agent paclitaxel [PTX], thought to induce oxidative stress, to treat breast cancer cells. 2DG+PTX were found to be more toxic than either agent alone in T47D and MDA-MB231 human breast cancer cells, but not in normal human fibroblasts or normal human mammary epithelial cells. Increases in parameters indicative of oxidative stress, including steady-state levels of H2O2, total glutathione, and glutathione disulfide accompanied the enhanced toxicity of 2DG+PTX in cancer cells. Antioxidants, including N-acetyl-cysteine [NAC], polyethylene glycol-conjugated catalase [PEG-CAT] and superoxide dismutase [PEG-SOD], inhibited the toxicity of 2DG+PTX and suppressed parameters indicative of oxidative stress in cancer cells, while inhibition of glutathione synthesis using BSO further sensitized breast cancer cells to 2DG+PTX. These results show that combining inhibitors of glucose [2DG] and hydroperoxide [BSO] metabolism with PTX selectively (relative to normal cells) enhances breast cancer cell killing via H2O2-induced metabolic oxidative stress, and suggests that this biochemical rationale may be effectively utilized to treat breast cancers. PMID:20083194

  20. Cystathionine: A novel oncometabolite in human breast cancer.

    PubMed

    Sen, Suvajit; Kawahara, Brain; Mahata, Sushil K; Tsai, Rebecca; Yoon, Alexander; Hwang, Lin; Hu-Moore, Kayla; Villanueva, Carissa; Vajihuddin, Abdulqadir; Parameshwar, Pooja; You, Michelle; Bhaskar, Divya Lakshmi; Gomez, Omar; Faull, Kym F; Farias-Eisner, Robin; Chaudhuri, Gautam

    2016-08-15

    In this study, we have identified cystathionine (CTH), a sulfur containing metabolite, to be selectively enriched in human breast cancer (HBC) tissues (∼50-100 pmoles/mg protein) compared with undetectable levels in normal breast tissues. The accumulation of CTH, specifically in HBC, was attributed to the overexpression of cystathionine beta synthase (CBS), its synthesizing enzyme, and the undetectable levels of its downstream metabolizing enzyme, cystathionine gamma lyase (CGL). Interestingly both CBS and CGL could not be detected in normal breast tissues. We further observed that CTH protected HBC cells against excess reactive oxygen species (ROS) and chemotherapeutic drug-induced apoptosis. Moreover, CTH promoted both mitochondrial and endoplasmic reticulum homeostasis in HBC cells. As both the mitochondria and the endoplasmic reticulum are key organelles regulating the onset of apoptosis, we reasoned that endogenous CTH could be contributing towards increasing the apoptotic threshold in HBC cells. An increased apoptotic threshold is a hallmark of all cancer types, including HBC, and is primarily responsible for drug resistance. Hence this study unravels one of the possible pathways that may contribute towards drug resistance in HBC. PMID:27311614

  1. Marker evaluation of human breast and bladder cancers

    SciTech Connect

    Mayall, B.H.; Carroll, P.R.; Chen, Ling-Chun; Cohen, M.B.; Goodson, W.H. III; Smith, H.S.; Waldman, F.M. )

    1990-11-02

    We are investigating multiple markers in human breast and bladder cancers. Our aim is to identify markers that are clinically relevant and that contribute to our understanding of the disease process in individual patients. Good markers accurately assess the malignant potential of a cancer in an individual patient. Thus, they help identify those cancers that will recur, and they may be used to predict more accurately time to recurrence, response to treatment, and overall prognosis. Therapy and patient management may then be optimized to the individual patient. Relevant markers reflect the underlying pathobiology of individual tumors. As a tissue undergoes transformation from benign to malignant, the cells lose their differentiated phenotype. As a generalization, the more the cellular phenotype, cellular proliferation and cellular genotype depart from normal, the more advanced is the tumor in its biological evolution and the more likely it is that the patient has a poor prognosis. We use three studies to illustrate our investigation of potential tumor markers. Breast cancers are labeled in vivo with 5-bromodeoxyuridine (BrdUrd) to give a direct measure of the tumor labeling index. Bladder cancers are analyzed immunocytochemically using an antibody against proliferation. Finally, the techniques of molecular genetics are used to detect allelic loss in breast cancers. 6 refs., 3 figs.

  2. Therapeutic Metformin/AMPK Activation Promotes the Angiogenic Phenotype in the ERα Negative MDA-MB-435 Breast Cancer Model

    PubMed Central

    Phoenix, Kathryn N.; Vumbaca, Frank; Claffey, Kevin P.

    2008-01-01

    Metformin, a first line treatment for type 2 diabetes, has been implicated as a potential anti-neoplastic agent for breast cancers as well as other cancers. Metformin is known to work in part through the activation of AMP-dependent kinase (AMPK). AMPK is a key regulator of cellular energy homeostasis, especially under stress conditions where biosynthetic pathways are blocked by the phosphorylation of downstream AMPK substrates. Stimulation of AMPK by metformin resulted in a significant repression of cell proliferation and active MAPK1/2 in both estrogen receptor α (ERα) negative (MDA-MB-231, MDA-MB-435) and positive (MCF-7, T47D) human breast cancer cell lines. However, when ERα negative MDA-MB-435 cells were treated with metformin, they demonstrated increased expression of vascular endothelial growth factor (VEGF) in an AMPK dependent manner; while the ERα positive MCF-7 cells did not. Systemic therapy with metformin was tested for efficacy in an orthotopic model of ERα negative breast cancer performed in athymic nude mice. Surprisingly, metformin therapy significantly improved tumorigenic progression as compared to untreated controls. The metformin-treated group showed increased VEGF expression, intratumoral microvascular density and reduced necrosis. Metformin treatment was sufficient, however, to reduce systemic IGF-1 and the proliferation rate of tumor cells in vascularized regions. The data presented here suggests that, although metformin significantly represses breast cancer cell growth in vitro, the efficacy with respect to its therapeutic application for ERα negative breast cancer lesions in vivo may result in promotion of the angiogenic phenotype and increased tumorigenic progression. PMID:18256928

  3. Characterization of a tissue-specific CDP/Cux isoform, p75, activated in breast tumor cells.

    PubMed

    Goulet, Brigitte; Watson, Peter; Poirier, Madeleine; Leduy, Lam; Bérubé, Ginette; Meterissian, Sarkis; Jolicoeur, Paul; Nepveu, Alain

    2002-11-15

    Two isoforms of the CCAAT-displacement protein/cut homeobox (CDP/Cux) transcription factor have been characterized thus far. The full length protein, p200, which contains four DNA binding domains, transiently binds to DNA and carries the CCAAT-displacement activity. The p110 isoform is generated by proteolytic processing at the G1-S transition and is capable of stable interaction with DNA. Here we demonstrate the existence of a shorter CDP/Cux isoform, p75, which contains only two DNA binding domains, Cut repeat 3 and the Cut homeodomain, and binds more stably to DNA. CDP/Cux p75 was able to repress a reporter carrying the promoter for the cyclin-dependent kinase inhibitor p21 gene and to activate a DNA polymerase alpha gene reporter. Expression of CDP/Cux p75 involved a novel mechanism: transcription initiation within intron 20. The intron 20-initiated mRNA (I20-mRNA) was expressed at higher level in the thymus and in CD4+/CD8+ and CD4+ T cells. I20-mRNA was expressed only weakly or not at all in normal human mammary epithelial cells and normal breast tissues but was detected in many breast tumor cells lines and breast tumors. In invasive tumors a significant association was established between higher I20-mRNA expression and a diffuse infiltrative growth pattern (n = 41, P = 0.0137). In agreement with these findings, T47D breast cancer cells stably expressing p75 could not form tubule structures in collagen but rather developed as solid undifferentiated aggregates of cells. Taken together, these results suggest that aberrant expression of the CDP/Cux p75 isoform in mammary epithelial cells may be associated with the process of tumorigenesis in breast cancer. PMID:12438259

  4. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease.

    PubMed

    Hieken, Tina J; Chen, Jun; Hoskin, Tanya L; Walther-Antonio, Marina; Johnson, Stephen; Ramaker, Sheri; Xiao, Jian; Radisky, Derek C; Knutson, Keith L; Kalari, Krishna R; Yao, Janet Z; Baddour, Larry M; Chia, Nicholas; Degnim, Amy C

    2016-01-01

    Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention. PMID:27485780

  5. The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease

    PubMed Central

    Hieken, Tina J.; Chen, Jun; Hoskin, Tanya L.; Walther-Antonio, Marina; Johnson, Stephen; Ramaker, Sheri; Xiao, Jian; Radisky, Derek C.; Knutson, Keith L.; Kalari, Krishna R.; Yao, Janet Z.; Baddour, Larry M.; Chia, Nicholas; Degnim, Amy C.

    2016-01-01

    Globally breast cancer is the leading cause of cancer death among women. The breast consists of epithelium, stroma and a mucosal immune system that make up a complex microenvironment. Growing awareness of the role of microbes in the microenvironment recently has led to a series of findings important for human health. The microbiome has been implicated in cancer development and progression at a variety of body sites including stomach, colon, liver, lung, and skin. In this study, we assessed breast tissue microbial signatures in intraoperatively obtained samples using 16S rDNA hypervariable tag sequencing. Our results indicate a distinct breast tissue microbiome that is different from the microbiota of breast skin tissue, breast skin swabs, and buccal swabs. Furthermore, we identify distinct microbial communities in breast tissues from women with cancer as compared to women with benign breast disease. Malignancy correlated with enrichment in taxa of lower abundance including the genera Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus. This work confirms the existence of a distinct breast microbiome and differences between the breast tissue microbiome in benign and malignant disease. These data provide a foundation for future investigation on the role of the breast microbiome in breast carcinogenesis and breast cancer prevention. PMID:27485780

  6. Effects of Combination of Estradiol with Selective Progesterone Receptor Modulators (SPRMs) on Human Breast Cancer Cells In Vitro and In Vivo.

    PubMed

    Nair, Hareesh B; Santhamma, Bindu; Krishnegowda, Naveen K; Dileep, Kalarikkal V; Nickisch, Klaus J

    2016-01-01

    Use of estrogen or estrogen/progestin combination was an approved regimen for menopausal hormonal therapy (MHT). However, more recent patient-centered studies revealed an increase in the incidence of breast cancer in women receiving menopausal hormone therapy with estrogen plus progestin rather than estrogen alone. Tissue selective estrogen complex (TSEC) has been proposed to eliminate the progesterone component of MHT with supporting evidences. Based on our previous studies it is evident that SPRMs have a safer profile on endometrium in preventing unopposed estrogenicity. We hypothesized that a combination of estradiol (E2) with selective progesterone receptor modulator (SPRM) to exert a safer profile on endometrium will also reduce mammary gland proliferation and could be used to prevent breast cancer when used in MHT. In order to test our hypothesis, we compared the estradiol alone or in combination with our novel SPRMs, EC312 and EC313. The compounds were effectively controlled E2 mediated cell proliferation and induced apoptosis in T47D breast cancer cells. The observed effects were found comparable that of BZD in vitro. The effects of SPRMs were confirmed by receptor binding studies as well as gene and protein expression studies. Proliferation markers were found downregulated with EC312/313 treatment in vitro and reduced E2 induced mammary gland proliferation, evidenced as reduced ductal branching and terminal end bud growth in vivo. These data supporting our hypothesis that E2+EC312/EC313 blocked the estrogen action may provide basic rationale to further test the clinical efficacy of SPRMs to prevent breast cancer incidence in postmenopausal women undergoing MHT. PMID:27011208

  7. Effects of Combination of Estradiol with Selective Progesterone Receptor Modulators (SPRMs) on Human Breast Cancer Cells In Vitro and In Vivo

    PubMed Central

    Nair, Hareesh B.; Santhamma, Bindu; Krishnegowda, Naveen K.; Dileep, Kalarikkal V.; Nickisch, Klaus J.

    2016-01-01

    Use of estrogen or estrogen / progestin combination was an approved regimen for menopausal hormonal therapy (MHT). However, more recent patient-centered studies revealed an increase in the incidence of breast cancer in women receiving menopausal hormone therapy with estrogen plus progestin rather than estrogen alone. Tissue selective estrogen complex (TSEC) has been proposed to eliminate the progesterone component of MHT with supporting evidences. Based on our previous studies it is evident that SPRMs have a safer profile on endometrium in preventing unopposed estrogenicity. We hypothesized that a combination of estradiol (E2) with selective progesterone receptor modulator (SPRM) to exert a safer profile on endometrium will also reduce mammary gland proliferation and could be used to prevent breast cancer when used in MHT. In order to test our hypothesis, we compared the estradiol alone or in combination with our novel SPRMs, EC312 and EC313. The compounds were effectively controlled E2 mediated cell proliferation and induced apoptosis in T47D breast cancer cells. The observed effects were found comparable that of BZD in vitro. The effects of SPRMs were confirmed by receptor binding studies as well as gene and protein expression studies. Proliferation markers were found downregulated with EC312/313 treatment in vitro and reduced E2 induced mammary gland proliferation, evidenced as reduced ductal branching and terminal end bud growth in vivo. These data supporting our hypothesis that E2+EC312/EC313 blocked the estrogen action may provide basic rationale to further test the clinical efficacy of SPRMs to prevent breast cancer incidence in postmenopausal women undergoing MHT. PMID:27011208

  8. Isoflavones in human breast milk and other biological fluids.

    PubMed

    Franke, A A; Custer, L J; Tanaka, Y

    1998-12-01

    We established a method for using HPLC and diode-array ultraviolet scanning to quantitate soy isoflavonoids in foods and in human plasma, urine, and breast milk. The analytes occurring as glycoside conjugates were hydrolyzed enzymatically before HPLC analysis if extracted from biological matrices or were subjected to direct HPLC analysis after extraction from foods. We monitored the isoflavones daidzein, genistein, glycitein, formononetin, and biochanin-A and their mammalian metabolites equol and O-desmethylangolensin in human plasma, urine, and breast milk. Analytes were identified by absorbance patterns, fluorometric and electrochemical detection. and comparison with internal and external standards. In addition, we identified analytes by using gas chromatography-mass spectrometry after trimethylsilylation. The HPLC method was also used to measure concentrations of isoflavones and their glucoside conjugates in various soy-based infant formulas. Total isoflavone concentrations varied between 155 and 281 mg/kg. After one woman received a moderate challenge with 20 g roasted soybeans (equivalent to 37 mg isoflavones), we detected mean total isoflavone concentrations of approximately 2.0 micromol/L in plasma, 0.2 micromol/L in breast milk, and 3.0 micromol/h in urine. According to our measurements, with adjustment for body weight, isoflavonoid exposure is 4-6 times higher in infants fed soy-based formula than in adults eating a diet rich in soyfoods (approximately 30 g/d). Implications of the presented results for the potential cancer-preventing activity of isoflavones by exposing newborn infants to these phytochemicals are discussed. PMID:9848518

  9. Synthesis and evaluation of Lys¹(α,γ-Folate)Lys³(¹⁷⁷Lu-DOTA)-Bombesin(1-14) as a potential theranostic radiopharmaceutical for breast cancer.

    PubMed

    Aranda-Lara, Liliana; Ferro-Flores, Guillermina; Azorín-Vega, Erika; Ramírez, Flor de María; Jiménez-Mancilla, Nallely; Ocampo-García, Blanca; Santos-Cuevas, Clara; Isaac-Olivé, Keila

    2016-01-01

    The aim of this work was to synthesize Lys(1)(α,γ-Folate)-Lys(3)((177)Lu-DOTA)-Bombesin (1-14) ((177)Lu-Folate-BN), as well as to assess its potential for molecular imaging and targeted radiotherapy of breast tumors expressing folate receptors (FR) and gastrin-releasing peptide receptors (GRPR). Radiation absorbed doses of (177)Lu-Folate-BN (74 MBq, i.v.) estimated in athymic mice with T47D-induced breast tumors (positive to FR and GRPR), showed tumor doses of 23.9±2.1 Gy. T47D-tumors were clearly visible (Micro-SPECT/CT images). (177)Lu-Folate-BN demonstrated properties suitable as a theranostic radiopharmaceutical. PMID:26545016

  10. Polyamines in human breast milk for preterm and term infants.

    PubMed

    Plaza-Zamora, J; Sabater-Molina, M; Rodríguez-Palmero, M; Rivero, M; Bosch, V; Nadal, J M; Zamora, S; Larqué, E

    2013-08-28

    Maternal milk is the first source of exogenous polyamines for the newborn. Polyamines modulate gut maturation in neonates, but no studies are available on polyamine concentration in human milk of preterm babies, even though they could be important for their immature gut. The present study aimed to determine polyamine concentration in human breast milk of mothers with preterm or term infants during the first month of lactation. Human milk samples were obtained during the first month of lactation from twenty-seven mothers with preterm babies and twelve mothers with babies born at term. The polyamine concentration in human milk was quantified by HPLC. During the first month of lactation, the total polyamine concentration was significantly higher in preterm milk than in term milk samples (7590 (SD 4990) v. 4660 (SD 4830) nmol/l, respectively (P ¼ 0·034)), as well as individual polyamine concentrations. Polyamine concentration in mature milk for preterm babies was significantly higher than that in mature milk for babies at term, and a similar trend was observed in colostrum and transition human milk. The spermidine/spermine ratio was higher in transition milk in preterm v. term samples, while in mature milk, the ratio was significantly lower in preterm than in term babies. In conclusion, the polyamine concentration was significantly higher in human milk for preterm than for term infants. This and the different spermidine/spermine ratios could influence the gut development of premature babies. PMID:23286699

  11. Co-transplantation of human hematopoietic stem cells and human breast cancer cells in NSG mice

    PubMed Central

    Wege, Anja K; Schmidt, Marcus; Ueberham, Elke; Ponnath, Marvin; Ortmann, Olaf; Brockhoff, Gero; Lehmann, Jörg

    2014-01-01

    Humanized tumor mice (HTM) were generated by the co-transplantation of human hematopoietic stem cells and human breast cancer cells overexpressing HER2 into neonatal NOD-scid IL2Rγnull (NSG) mice. These mice are characterized by the development of a human immune system in combination with human breast cancer growth. Due to concurrent transplantation into newborn mice, transfer of MHC-mismatched tumor cells resulted in solid coexistence and immune cell activation (CD4+ T cells, natural killer cells, and myeloid cells), but without evidence for rejection. Histological staining of the spleen of HTM revealed co-localization of human antigen-presenting cells together with human T and B cells allowing MHC-dependent interaction, and thereby the generation of T cell-dependent antibody production. Here, we investigated the capability of these mice to generate human tumor-specific antibodies and correlated immunoglobulin titers with tumor outgrowth. We found detectable IgM and also IgG amounts in the serum of HTM, which apparently controlled tumor development when IgG serum concentrations were above 10 µg/ml. Western blot analyses revealed that the tumor-specific antibodies generated in HTM did not recognize HER2/neu antigens, but different, possibly relevant antigens for breast cancer therapy. In conclusion, HTM offer a novel approach to generate complete human monoclonal antibodies that do not require further genetic manipulation (e. g., humanization) for a potential application in humans. In addition, efficacy and safety of the generated antibodies can be tested in the same mouse model under human-like conditions. This might be of particular interest for cancer subtypes with no currently available antibody therapy. PMID:24870377

  12. [Binding capability of lidamycin apoprotein to human breast cancer detected by tissue microarrays].

    PubMed

    Cai, Lin; Gao, Rui-Juan; Guo, Xiao-Zhong; Li, Yi; Zhen, Yong-Su

    2010-05-01

    This study is to investigate the binding capability of lidamycin apoprotein (LDP), an enediyne-associated apoprotein of the chromoprotein antitumor antibiotic family, to human breast cancer and normal tissues, the correlation of LDP binding capability to human breast cancer tissues and the expression of tumor therapeutic targets such as VEGF and HER2. In this study, the binding capability of LDP to human breast cancer tissues was detected with tissue microarray. The correlation study of LDP binding capability to human breast tumor tissues and relevant therapeutic targets was performed on breast cancer tissue microarrays. Immunocytochemical examination was used to detect the binding capability of LDP to human breast carcinoma MCF-7 cells. As a result, tissue microarray showed that LDP staining of 73.2% (30/41) of breast cancer tissues was positive, whereas that of 48.3% (15/31) of the adjacent normal breast specimens was positive. The difference between the tumor and normal samples was significant (Chi2 = 4.63, P < 0.05). LDP immunoreactivity in breast cancer correlated significantly with the overexpression of VEGF and HER2 (P < 0.001 and < 0.01, r = 0.389 and 0.287, respectively). Determined with confocal immunofluorescent analysis, LDP showed the binding capability to mammary carcinoma MCF-7 cells. It is demonstrated that LDP can bind to human breast cancer tissues and there is significant difference between the breast cancer tissues and the corresponding normal tissues. Notably, the binding reactivity shows positive correlation with the expression of VEGF and HER2 in breast carcinoma tissues. The results imply that LDP may have a potential use as targeting drug carrier in the research and development of new anticancer therapeutics. This study may provide reference for drug combination of LDM and other therapeutic agents. PMID:20931759

  13. Cytotoxic Activity of the Methanolic Extract of Turnera diffusa Willd on Breast Cancer Cells

    PubMed Central

    Avelino-Flores, María del Carmen; Cruz-López, María del Carmen; Jiménez-Montejo, Fabiola E.; Reyes-Leyva, Julio

    2015-01-01

    Abstract Turnera diffusa Willd, commonly known as Damiana, is employed in traditional medicine as a stimulant, aphrodisiac, and diuretic. Its leaves and stems are used for flavoring and infusion. Damiana is considered to be safe for medicinal use by the FDA. Pharmacological studies have established the hypoglycemic, antiaromatase, prosexual, estrogenic, antibacterial, and antioxidant activity of T. diffusa. The aim of the present study was to evaluate the possible cytotoxic effect of extracts and organic fractions of this plant on five tumor cell lines (SiHa, C-33, Hep G2, MDA-MB-231, and T-47D) and normal human fibroblasts. The results show that the methanolic extract (TdM) displayed greater activity on MDA-MB-231 breast cancer cells (with an IC50 of 30.67 μg/mL) than on the other cancer cell lines. Four organic fractions of this extract exhibited activity on this cancer cell line. In the most active fraction (F4), two active compounds were isolated, arbutin (1) and apigenin (2). This is the first report of a cytotoxic effect by T. diffusa on cancer cells. The IC50 values suggest that the methanolic extract of T. diffusa has potential as an anticancer therapy. PMID:25299247

  14. Cytotoxic activity of the methanolic extract of Turnera diffusa Willd on breast cancer cells.

    PubMed

    Avelino-Flores, María Del Carmen; Cruz-López, María del Carmen; Jiménez-Montejo, Fabiola E; Reyes-Leyva, Julio

    2015-03-01

    Turnera diffusa Willd, commonly known as Damiana, is employed in traditional medicine as a stimulant, aphrodisiac, and diuretic. Its leaves and stems are used for flavoring and infusion. Damiana is considered to be safe for medicinal use by the FDA. Pharmacological studies have established the hypoglycemic, antiaromatase, prosexual, estrogenic, antibacterial, and antioxidant activity of T. diffusa. The aim of the present study was to evaluate the possible cytotoxic effect of extracts and organic fractions of this plant on five tumor cell lines (SiHa, C-33, Hep G2, MDA-MB-231, and T-47D) and normal human fibroblasts. The results show that the methanolic extract (TdM) displayed greater activity on MDA-MB-231 breast cancer cells (with an IC50 of 30.67 μg/mL) than on the other cancer cell lines. Four organic fractions of this extract exhibited activity on this cancer cell line. In the most active fraction (F4), two active compounds were isolated, arbutin (1) and apigenin (2). This is the first report of a cytotoxic effect by T. diffusa on cancer cells. The IC50 values suggest that the methanolic extract of T. diffusa has potential as an anticancer therapy. PMID:25299247

  15. A third human retinoic acid receptor, hRAR-. gamma

    SciTech Connect

    Krust, A.; Kastner, Ph.; Petkovich, M.; Zelent, A.; Chambon, P. )

    1989-07-01

    Retinoic acid receptors (RARs) are retinoic acid (RA)-inducible enhancer factors belonging to the superfamily of steroid/thyroid nuclear receptors. The authors have previously characterized two human RAR (hRAR-{alpha} and hRAR-{beta}) cDNAs and have recently cloned their murine cognates (mRAR-{alpha} and mRAR-{beta}) together with a third RAR (mRAR-{gamma}) whose RNA was detected predominantly in skin, a well-known target for RA. mRAR-{gamma} cDNA was used here to clone its human counterpart (hRAR-{gamma}) from a T47D breast cancer cell cDNA library. Using a transient transfection assay in HeLa cells and a reporter gene harboring a synthetic RA responsive element, they demonstrate that hRAR-{gamma} cDNA indeed encodes a RA-inducible transcriptional trans-activator. Interestingly, comparisons of the amino acid sequences of all six human and mouse RARs indicate that the interspecies conservation of a given member of the RAR subfamily (either {alpha}, {beta}, or {gamma}) is much higher than the conservation of all three receptors within a given species. These observations indicate that RAR-{alpha}, -{beta}, and -{gamma} may perform specific functions. They show also that hRAR-{gamma} RNA is the predominant RAR RNA species in human skin, which suggests that hRAR-{gamma} mediates some of the retinoid effects in this tissue.

  16. QSAR analysis of drug excretion into human breast milk.

    PubMed

    Meskin, M S; Lien, E J

    1985-09-01

    Breast feeding has increased by approximately 25% in the United States during the past decade and this trend appears to be continuing. The number of drugs available to lactating women is also growing at a rapid pace. The excretion of drugs into breast-milk presents a potential danger to infants. In spite of this, little is known about the excretion of drugs into breast-milk. The ability to predict which drugs are potential hazards would be very useful in the clinical setting. This study quantitatively correlates the human milk to plasma concentration ratio of various basic and acidic drugs (log M/P) with the square root of the molecular weight, the partition coefficient (log P) and the degree of dissociation (log U/D). For basic drugs there is a negative-dependence on both log P and log U/D. High lipophilicity favours protein binding and reduces the amount of drug available for diffusion into milk. Therefore, as log P increases, the log M/P decreases. The negative-dependence on log U/D indicates that the higher the degree of dissociation of the base in plasma, the greater the log M/P will be. This fits well with the concept of ion-trapping. A strong base is more likely to be transferred and then trapped in milk which has a lower pH than plasma. For acidic drugs there is a negative-dependence on both square root (MW) and log P. The negative-dependence on square root (MW) suggests that large molecules are less likely to be able to diffuse into the milk. A negative-dependence on log P appears to hold true for bases and acids. Log M/P decreases as log P increases. This is probably due to increased protein binding by lipophilic drugs through non-specific hydrophobic interaction with plasma protein. PMID:4066977

  17. Effect of soy isoflavones on the growth of human breast tumors: findings from preclinical studies

    PubMed Central

    Kwon, Youngjoo

    2014-01-01

    Breast cancer is the most common cancer among women worldwide, and many women with breast cancer live more than 5 years after their diagnosis. Breast cancer patients and survivors have a greater interest in taking soy foods and isoflavone supplements. However, the effect of isoflavones on breast cancer remains controversial. Thus, it is critical to determine if and when isoflavones are beneficial or detrimental to breast cancer patients. According to the available preclinical data, high concentrations of isoflavones inhibit the proliferation of breast cancer cells, regardless of their estrogen receptor (ER) status. In comparison, genistein, a major isoflavone, has stimulated tumor growth at low concentrations and mitigated tamoxifen efficacy in ER-positive breast cancer. Studies have indicated that the relative levels of genistein and estrogen at the target site are important to determine the genistein effect on the ER-positive tumor growth. However, studies using ovariectomized mice and subcutaneous xenograft models might not truly reflect estrogen concentrations in human breast tumors. Moreover, it may be an oversimplification that isoflavones stimulate hormone-dependent tumor growth due to their potential estrogenic effect since studies also suggest nonestrogenic anticancer effects of isoflavones and ER-independent anticancer activity of tamoxifen. Therefore, the concentrations of isoflavones and estrogen in human breast tumors should be considered better in future preclinical studies and the parameters that can estimate those levels in breast tumors are required in human clinical/epidemiological investigation. In addition, it will be important to identify the molecular mechanisms that either inhibit or promote the growth of breast cancer cells by soy isoflavones, and use those molecules to evaluate the relevance of the preclinical findings to the human disease and to predict the health effects of isoflavones in human breast tumors. PMID:25493176

  18. GT198 Expression Defines Mutant Tumor Stroma in Human Breast Cancer.

    PubMed

    Yang, Zheqiong; Peng, Min; Cheng, Liang; Jones, Kimya; Maihle, Nita J; Mivechi, Nahid F; Ko, Lan

    2016-05-01

    Human breast cancer precursor cells remain to be elucidated. Using breast cancer gene product GT198 (PSMC3IP; alias TBPIP or Hop2) as a unique marker, we revealed the cellular identities of GT198 mutant cells in human breast tumor stroma. GT198 is a steroid hormone receptor coactivator and a crucial factor in DNA repair. Germline mutations in GT198 are present in breast and ovarian cancer families. Somatic mutations in GT198 are present in ovarian tumor stromal cells. Herein, we show that human breast tumor stromal cells carry GT198 somatic mutations and express cytoplasmic GT198 protein. GT198(+) stromal cells share vascular smooth muscle cell origin, including myoepithelial cells, adipocytes, capillary pericytes, and stromal fibroblasts. Frequent GT198 mutations are associated with GT198(+) tumor stroma but not with GT198(-) tumor cells. GT198(+) progenitor cells are mostly capillary pericytes. When tested in cultured cells, mutant GT198 induces vascular endothelial growth factor promoter, and potentially promotes angiogenesis and adipogenesis. Our results suggest that multiple lineages of breast tumor stromal cells are mutated in GT198. These findings imply the presence of mutant progenitors, whereas their descendants, carrying the same GT198 mutations, are collectively responsible for forming breast tumor microenvironment. GT198 expression is, therefore, a specific marker of mutant breast tumor stroma and has the potential to facilitate diagnosis and targeted treatment of human breast cancer. PMID:27001628

  19. Blockade of MUC1 expression by glycerol guaiacolate inhibits proliferation of human breast cancer cells.

    PubMed

    Smith, J S; Colon, J; Madero-Visbal, R; Isley, B; Konduri, S D; Baker, C H

    2010-10-01

    We sought to determine whether administration of glycerol guaiacolate at an optimal biological dose inhibits human breast cancer cell growth. Human breast cancer MCF-7 and ZR-75-1 cells were treated with glycerol guaiacolate and the therapeutic efficacy and biological activity of this drug was investigated on breast cancer cell growth. MCF-7 cells were injected into the mammary fat pad of overectamized female athymic nude mice. Ten days later, animals were treated with daily intraperitoneal injections of glycerol guaiacolate for six weeks. Tumor size and volume was monitored and immunohistochemistry analysis on MUC1, p21 and ki-67 was performed. Glycerol guaiacolate decreased breast cancer cell growth in a dose-dependent manner, decreased cell migration, and caused G1 cell cycle arrest. Our results demonstrate that glycerol guaiacolate inhibits MUC1 protein and mRNA expression levels and significantly increased p21 expression in human breast cancer cells as well as induced PARP cleavage. Similarly, glycerol guaiacolate inhibited breast tumor growth in vivo as well as enhanced p21 expression and decreased breast tumor cell proliferation (ki-67 expression). Collectively, our results demonstrate that glycerol guaiacolate decreased MUC1 expression and enhanced cell growth inhibition by inducing p21 expression in breast cancer cells. These findings suggest that glycerol guaiacolate may provide a novel and effective approach for the treatment of human breast cancer. PMID:21184665

  20. Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum.

    PubMed

    Barr, L; Metaxas, G; Harbach, C A J; Savoy, L A; Darbre, P D

    2012-03-01

    The concentrations of five esters of p-hydroxybenzoic acid (parabens) were measured using HPLC-MS/MS at four serial locations across the human breast from axilla to sternum using human breast tissue collected from 40 mastectomies for primary breast cancer in England between 2005 and 2008. One or more paraben esters were quantifiable in 158/160 (99%) of the tissue samples and in 96/160 (60%) all five esters were measured. Variation was notable with respect to individual paraben esters, location within one breast and similar locations in different breasts. Overall median values in nanograms per gram tissue for the 160 tissue samples were highest for n-propylparaben [16.8 (range 0-2052.7)] and methylparaben [16.6 (range 0-5102.9)]; levels were lower for n-butylparaben [5.8 (range 0-95.4)], ethylparaben [3.4 (range 0-499.7)] and isobutylparaben 2.1 (range 0-802.9). The overall median value for total paraben was 85.5 ng g(-1) tissue (range 0-5134.5). The source of the paraben cannot be identified, but paraben was measured in the 7/40 patients who reported never having used underarm cosmetics in their lifetime. No correlations were found between paraben concentrations and age of patient (37-91 years), length of breast feeding (0-23 months), tumour location or tumour oestrogen receptor content. In view of the disproportionate incidence of breast cancer in the upper outer quadrant, paraben concentrations were compared across the four regions of the breast: n-propylparaben was found at significantly higher levels in the axilla than mid (P = 0.004 Wilcoxon matched pairs) or medial (P = 0.021 Wilcoxon matched pairs) regions (P = 0.010 Friedman ANOVA). PMID:22237600

  1. Depletion of Human Histone H1 Variants Uncovers Specific Roles in Gene Expression and Cell Growth

    PubMed Central

    Sancho, Mónica; Diani, Erika; Beato, Miguel; Jordan, Albert

    2008-01-01

    At least six histone H1 variants exist in somatic mammalian cells that bind to the linker DNA and stabilize the nucleosome particle contributing to higher order chromatin compaction. In addition, H1 seems to be actively involved in the regulation of gene expression. However, it is not well known whether the different variants have distinct roles or if they regulate specific promoters. We have explored this by inducible shRNA-mediated knock-down of each of the H1 variants in a human breast cancer cell line. Rapid inhibition of each H1 variant was not compensated for by changes of expression of other variants. Microarray experiments have shown a different subset of genes to be altered in each H1 knock-down. Interestingly, H1.2 depletion caused specific effects such as a cell cycle G1-phase arrest, the repressed expression of a number of cell cycle genes, and decreased global nucleosome spacing. On its side, H1.4 depletion caused cell death in T47D cells, providing the first evidence of the essential role of an H1 variant for survival in a human cell type. Thus, specific phenotypes are observed in breast cancer cells depleted of individual histone H1 variants, supporting the theory that distinct roles exist for the linker histone variants. PMID:18927631

  2. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  3. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells

    SciTech Connect

    Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1 mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.

  4. Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells.

    PubMed

    Lu, Wenyan; Lin, Cuihong; King, Taj D; Chen, Honghong; Reynolds, Robert C; Li, Yonghe

    2012-12-01

    Silibinin is a natural compound isolated from milk thistle seed extracts, and has traditionally been used as a hepatoprotectant. A number of studies have also established the cancer therapeutic and chemopreventive role of silibinin in both in vitro and in vivo models. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for the Wnt/β-catenin pathway and represents a promising target for cancer prevention and therapy. In the present study, we found that silibinin was able to repress endogenous LRP6 expression and block Wnt3A-induced LRP6 phosphorylation and Wnt/β-catenin signaling activation in HEK293 cells. Importantly, silibinin was also able to suppress endogenous LRP6 expression and phosphorylation and block Wnt/β-catenin signaling in prostate cancer PC-3 and DU-145 cells and breast cancer MDA-MB-231 and T-47D cells. Mechanistically, silibinin inhibited LRP6 promoter activity and decreased LRP6 mRNA levels in prostate and breast cancer cells. Finally, we demonstrated that silibinin displayed anticancer activity with IC(50) values comparable to those shown to suppress LRP6 expression and Wnt/β-catenin signaling activities in prostate and breast cancer cells. Our data indicate that silibinin is a novel small molecule Wnt/β-catenin signaling inhibitor by suppressing Wnt co-receptor LRP6 expression at the transcription level, and that the anti-cancer activity of silibinin is associated with its inhibitory effect on Wnt/LRP6 signaling. PMID:22820499

  5. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival

    PubMed Central

    2009-01-01

    Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Methods Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. Results In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Conclusions Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation

  6. Antitumor effects of crocin on human breast cancer cells

    PubMed Central

    Lu, Pengwei; Lin, Huan; Gu, Yuanting; Li, Lin; Guo, Hong; Wang, Fang; Qiu, Xinguang

    2015-01-01

    Crocin is a chemical extracted from saffron and it is the most important kind of pigment of saffron. It has been proposed as a promising candidate for cancer prevention. In this study, we investigate the growth inhibition and the apoptosis of MCF-7 cells induced by Crocin, and explore the underlying molecular mechanism. We found that Crocin can significantly inhibit the proliferation of MCF-7 cells, and induce their apoptosis through mitochondrial signaling pathways including the activation of Caspase-8, upregulation of Bax, the disruption of mitochondrial membrane potential (MMP), and the release of cytochrome c. The studies showed that Crocin induced apoptosis of MCF-7 cells partially through caspase-8 mediated mitochondrial pathway. Therefore, we postulate that Crocin might have cancer-preventive and cancer-therapeutic benefit for human breast cancer. PMID:26884946

  7. Multiplexed ion beam imaging (MIBI) of human breast tumors

    PubMed Central

    Angelo, Michael; Bendall, Sean C.; Finck, Rachel; Hale, Matthew B.; Hitzman, Chuck; Borowsky, Alexander D.; Levenson, Richard M.; Lowe, John B.; Liu, Scot D.; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P.

    2014-01-01

    Immunohistochemistry (IHC) is a tool for visualizing protein expression employed as part of the diagnostic work-up for the majority of solid tissue malignancies. Existing IHC methods use antibodies tagged with fluorophores or enzyme reporters that generate colored pigments. Because these reporters exhibit spectral and spatial overlap when used simultaneously, multiplexed IHC is not routinely used in clinical settings. We have developed a method that uses secondary ion mass spectrometry to image antibodies tagged with isotopically pure elemental metal reporters. Multiplexed ion beam imaging (MIBI) is capable of analyzing up to 100 targets simultaneously over a five-log dynamic range. Here, we used MIBI to analyze formalin-fixed, paraffin-embedded (FFPE) human breast tumor tissue sections stained with ten labels simultaneously. The resulting data suggest that MIBI will provide new insights by integrating tissue microarchitecture with highly multiplexed protein expression patterns, and will be valuable for basic research, drug discovery and clinical diagnostics. PMID:24584119

  8. Crosstalk between the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) and the vitamin D receptor (VDR) in human breast cancer cells: PPAR{gamma} binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} mediated transactivation

    SciTech Connect

    Alimirah, Fatouma; Peng, Xinjian; Yuan, Liang; Mehta, Rajeshwari R.; Knethen, Andreas von; Choubey, Divaker; Mehta, Rajendra G.

    2012-11-15

    Heterodimerization and cross-talk between nuclear hormone receptors often occurs. For example, estrogen receptor alpha (ER{alpha}) physically binds to peroxisome proliferator-activated receptor gamma (PPAR{gamma}) and inhibits its transcriptional activity. The interaction between PPAR{gamma} and the vitamin D receptor (VDR) however, is unknown. Here, we elucidate the molecular mechanisms linking PPAR{gamma} and VDR signaling, and for the first time we show that PPAR{gamma} physically associates with VDR in human breast cancer cells. We found that overexpression of PPAR{gamma} decreased 1{alpha},25-dihydroxyvitamin D{sub 3} (1,25D{sub 3}) mediated transcriptional activity of the vitamin D target gene, CYP24A1, by 49% and the activity of VDRE-luc, a vitamin D responsive reporter, by 75% in T47D human breast cancer cells. Deletion mutation experiments illustrated that helices 1 and 4 of PPAR{gamma}'s hinge and ligand binding domains, respectively, governed this suppressive function. Additionally, abrogation of PPAR{gamma}'s AF2 domain attenuated its repressive action on 1,25D{sub 3} transactivation, indicating that this domain is integral in inhibiting VDR signaling. PPAR{gamma} was also found to compete with VDR for their binding partner retinoid X receptor alpha (RXR{alpha}). Overexpression of RXR{alpha} blocked PPAR{gamma}'s suppressive effect on 1,25D{sub 3} action, enhancing VDR signaling. In conclusion, these observations uncover molecular mechanisms connecting the PPAR{gamma} and VDR pathways. -- Highlights: PPAR{gamma}'s role on 1{alpha},25-dihydroxyvitamin D{sub 3} transcriptional activity is examined. Black-Right-Pointing-Pointer PPAR{gamma} physically binds to VDR and inhibits 1{alpha},25-dihydroxyvitamin D{sub 3} action. Black-Right-Pointing-Pointer PPAR{gamma}'s hinge and ligand binding domains are important for this inhibitory effect. Black-Right-Pointing-Pointer PPAR{gamma} competes with VDR for the availability of their binding partner, RXR{alpha}.

  9. Pharmacokinetic interactions of breast cancer chemotherapeutics with human doxorubicin reductases.

    PubMed

    Hofman, Jakub; Skarka, Adam; Havrankova, Jana; Wsol, Vladimir

    2015-08-01

    Paclitaxel (PTX), docetaxel (DTX), 5-fluorouracil (5-FU), cyclophosphamide (CYC) or tamoxifen (TMX) are combined with doxorubicin (DOX) in first-line chemotherapy regimens that are indicated for breast cancer patients. Although the efficacies of these drugs in combination treatments have been demonstrated in clinical practice, their possible interference with DOX metabolism has not been described in detail to date. In the present study, we investigated the possible interactions of human carbonyl reducing enzymes with 5-FU, PTX, DTX, CYC and TMX. First, the reducing activities of carbonyl reducing enzymes toward DOX were tested using incubations with purified recombinant enzymes. In the subsequent studies, we investigated the possible effects of the tested anticancer agents on the DOX-reducing activities of the most potent enzymes (AKR1C3, CBR1 and AKR1A1) and on the DOX metabolism driven by MCF7, HepG2 and human liver cytosols. In both of these assays, we observed that CYC and its active metabolites inhibited DOX metabolism. In the final study, we tracked the changes in AKR1C3, CBR1 and AKR1A1 expression levels following exposure to the tested cytostatics in MCF7 and HepG2 cells. Consequently, no significant changes in the expression levels of tested enzymes were detected in either cell line. Based on these findings, it is feasible to presume that inhibition rather than induction plays a role in the interactions of the tested anticancer agents with DOX-reducing enzymes. In conclusion, our results describe important molecular events that occur during combination breast cancer therapies and might modulate pharmacokinetic DOX resistance and/or behaviour. PMID:25986883

  10. Gene Expression Analysis in Human Breast Cancer Associated Blood Vessels

    PubMed Central

    Jones, Dylan T.; Lechertier, Tanguy; Mitter, Richard; Herbert, John M. J.; Bicknell, Roy; Jones, J. Louise; Li, Ji-Liang; Buffa, Francesca; Harris, Adrian L.; Hodivala-Dilke, Kairbaan

    2012-01-01

    Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5–72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel

  11. Anaplastic lymphoma kinase is expressed in different subtypes of human breast cancer

    SciTech Connect

    Perez-Pinera, Pablo; Chang, Y.; Astudillo, A.; Mortimer, J.; Deuel, T.F. . E-mail: tfdeuel@scripps.edu

    2007-06-29

    Pleiotrophin (PTN, Ptn) is an 18 kDa cytokine expressed in human breast cancers. Since inappropriate expression of Ptn stimulates progression of breast cancer in transgenic mice and a dominant negative PTN reverses the transformed phenotype of human breast cancer cells that inappropriately express Ptn, it is suggested that constitutive PTN signaling in breast cancer cells that inappropriately express Ptn activates pathways that promote a more aggressive breast cancer phenotype. Pleiotrophin signals by inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP){beta}/{zeta}, and, recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTP{beta}/{zeta} signaling pathway in PTN-stimulated cells, not through a direct interaction of PTN with ALK and thus not through the PTN-enforced dimerization of ALK. Since full-length ALK is activated in different malignant cancers and activated ALK is a potent oncogenic protein, we examined human breast cancers to test the possibility that ALK may be expressed in breast cancers and potentially activated through the PTN/RPTP{beta}/{zeta} signaling pathway; we now demonstrate that ALK is strongly expressed in different histological subtypes of human breast cancer; furthermore, ALK is expressed in both nuclei and cytoplasm and, in the 'dotted' pattern characteristic of ALK fusion proteins in anaplastic large cell lymphoma. This study thus supports the possibility that activated ALK may be important in human breast cancers and potentially activated either through the PTN/RPTP{beta}/{zeta} signaling pathway, or, alternatively, as an activated fusion protein to stimulate progression of breast cancer in humans.

  12. Assessment of Cytokeratin-19 Gene Expression in Peripheral Blood of Breast Cancer Patients and Breast Cancer Cell Lines.

    PubMed

    Keyvani, Saeideh; Karimi, Nasrin; Orafa, Zahra; Bouzari, Saeid; Oloomi, Mana

    2016-01-01

    Detection of cytokeratin-19 (CK19) expression as an epithelial-specific marker in circulating tumor cells (CTCs) of breast cancer patients can be important for diagnostic purposes. Comparison of CK19 expression in breast cancer cell lines can indicate that expression of this marker is different in various breast cancer cell lines based on their category. Thirty-five breast cancer patients were evaluated for detection of CK19 mRNA in their peripheral blood using CK19-specific primers and a nested reverse transcriptase polymerase chain reaction (RT-PCR) technique. CK19 expression levels were detected in MCF7, T47D, SK-BR-3, and MDA-MB-231 cell lines by semiquantitative RT-PCR and Western blot analyses. Statistical analysis of our data indicates that there is no significant difference between CK19 expression and histopathological parameters and some molecular markers, including Ki-67, HER-2, and P53, but there are statistically significant correlations between estrogen receptor (P = 0.040) and progesterone receptor (P = 0.046) with CK19 expression. CK19 expression was detected in MCF7, T47D, and SK-BR-3 cell lines but not in MDA-MB-231 cell line. More studies are needed to determine the relationship between this marker and other markers in the diagnosis and treatment of breast cancer. On the other hand, the study of different markers using breast cancer cell lines as experimental models of breast cancer could have an impact on improving the health outcomes of patients with breast cancer. PMID:27147896

  13. Assessment of Cytokeratin-19 Gene Expression in Peripheral Blood of Breast Cancer Patients and Breast Cancer Cell Lines

    PubMed Central

    Keyvani, Saeideh; Karimi, Nasrin; Orafa, Zahra; Bouzari, Saeid; Oloomi, Mana

    2016-01-01

    Detection of cytokeratin-19 (CK19) expression as an epithelial-specific marker in circulating tumor cells (CTCs) of breast cancer patients can be important for diagnostic purposes. Comparison of CK19 expression in breast cancer cell lines can indicate that expression of this marker is different in various breast cancer cell lines based on their category. Thirty-five breast cancer patients were evaluated for detection of CK19 mRNA in their peripheral blood using CK19-specific primers and a nested reverse transcriptase polymerase chain reaction (RT-PCR) technique. CK19 expression levels were detected in MCF7, T47D, SK-BR-3, and MDA-MB-231 cell lines by semiquantitative RT-PCR and Western blot analyses. Statistical analysis of our data indicates that there is no significant difference between CK19 expression and histopathological parameters and some molecular markers, including Ki-67, HER-2, and P53, but there are statistically significant correlations between estrogen receptor (P = 0.040) and progesterone receptor (P = 0.046) with CK19 expression. CK19 expression was detected in MCF7, T47D, and SK-BR-3 cell lines but not in MDA-MB-231 cell line. More studies are needed to determine the relationship between this marker and other markers in the diagnosis and treatment of breast cancer. On the other hand, the study of different markers using breast cancer cell lines as experimental models of breast cancer could have an impact on improving the health outcomes of patients with breast cancer. PMID:27147896

  14. Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts.

    PubMed

    Al Marzouqi, Nadia; Iratni, Rabah; Nemmar, Abderrahim; Arafat, Kholoud; Ahmed Al Sultan, Mahmood; Yasin, Javed; Collin, Peter; Mester, Jan; Adrian, Thomas E; Attoub, Samir

    2011-10-01

    Breast cancer is a major challenge for pharmacologists to develop new drugs to improve the survival of cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa. It has been demonstrated that Frondoside A inhibited the growth of pancreatic cancer cells in vitro and in vivo. We investigated the impact of Frondoside A on human breast cancer cell survival, migration and invasion in vitro, and on tumor growth in nude mice, using the human estrogen receptor-negative breast cancer cell line MDA-MB-231. The non-tumorigenic MCF10-A cell line derived from normal human mammary epithelium was used as control. Frondoside A (0.01-5 μM) decreased the viability of breast cancer cells in a concentration- and time-dependent manner, with 50%-effective concentration (EC50) of 2.5 μM at 24h. MCF10-A cells were more resistant to the cytotoxic effect of Frondoside A (EC50 superior to 5 μM at 24 h). In the MDA-MB-231 cells, Frondoside A effectively increased the sub-G1 (apoptotic) cell fraction through the activation of p53, and subsequently the caspases 9 and 3/7 cell death pathways. In addition, Frondoside A induced a concentration-dependent inhibition of MDA-MB-231 cell migration and invasion. In vivo, Frondoside A (100 μg/kg/dayi.p. for 24 days) strongly decreased the growth of MDA-MB-231 tumor xenografts in athymic mice, without manifest toxic side-effects. Moreover, we found that Frondoside A could enhance the killing of breast cancer cells induced by the chemotherapeutic agent paclitaxel. These findings identify Frondoside A as a promising novel therapeutic agent for breast cancer. PMID:21741966

  15. Automated quantification of aligned collagen for human breast carcinoma prognosis

    PubMed Central

    Bredfeldt, Jeremy S.; Liu, Yuming; Conklin, Matthew W.; Keely, Patricia J.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries. PMID:25250186

  16. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  17. c-MYC is a radiosensitive locus in human breast cells.

    PubMed

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-09-17

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  18. c-MYC is a radiosensitive locus in human breast cells

    PubMed Central

    Wade, M A; Sunter, N J; Fordham, S E; Long, A; Masic, D; Russell, L J; Harrison, C J; Rand, V; Elstob, C; Bown, N; Rowe, D; Lowe, C; Cuthbert, G; Bennett, S; Crosier, S; Bacon, C M; Onel, K; Scott, K; Scott, D; Travis, L B; May, F E B; Allan, J M

    2015-01-01

    Ionising radiation is a potent human carcinogen. Epidemiological studies have shown that adolescent and young women are at increased risk of developing breast cancer following exposure to ionising radiation compared with older women, and that risk is dose-dependent. Although it is well understood which individuals are at risk of radiation-induced breast carcinogenesis, the molecular genetic mechanisms that underlie cell transformation are less clear. To identify genetic alterations potentially responsible for driving radiogenic breast transformation, we exposed the human breast epithelial cell line MCF-10A to fractionated doses of X-rays and examined the copy number and cytogenetic alterations. We identified numerous alterations of c-MYC that included high-level focal amplification associated with increased protein expression. c-MYC amplification was also observed in primary human mammary epithelial cells following exposure to radiation. We also demonstrate that the frequency and magnitude of c-MYC amplification and c-MYC protein expression is significantly higher in breast cancer with antecedent radiation exposure compared with breast cancer without a radiation aetiology. Our data also demonstrate extensive intratumor heterogeneity with respect to c-MYC copy number in radiogenic breast cancer, suggesting continuous evolution at this locus during disease development and progression. Taken together, these data identify c-MYC as a radiosensitive locus, implicating this oncogenic transcription factor in the aetiology of radiogenic breast cancer. PMID:25531321

  19. Near-infrared laser speckle imaging of human breast tissue

    NASA Astrophysics Data System (ADS)

    Bean, Robert Speer

    Current methods of breast cancer diagnostics (self-exam, clinical exam, x-ray mammography) fail to diagnose a significant number of cases while still in readily operable stages. This is especially true in younger women, where fibrotic tissue reduces the efficacy of x-ray mammography. Near infrared (NIR) laser photons pass diffusively through human tissue, creating a speckle pattern in a detector after transmission. The high and low intensity variations of the speckle have the appearance of random noise, but are not. The speckle pattern will have an intensity distribution that is informative about the scattering and absorption properties of the tissue that is imaged. Adaptations to the Los Alamos National Laboratory MCNP code are described that allow simulation of NIR laser transport through human tissue. A HeNe laser was used to create laser intensity patterns via transmission through homogeneous and non-homogeneous tissue phantoms. The Kolmogorov-Smirnov test was used to compare the cumulative distribution functions of the laser intensity patterns, and identify the presence of a non-homogeneity. Laser speckle techniques offer the ability to image tumors with few (<3) millimeter resolution without ionizing radiation dose.

  20. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  1. Ultra-small volume interdigital sensors for the measurement of human breast milk

    NASA Astrophysics Data System (ADS)

    Keating, A.; Pang, W. W.; Lai, C. T.; Hartmann, P.

    2007-12-01

    A palm-size interdigital impedance sensor incorporating a 10 μL sample reservoir, temperature sensor and hybrid heater was fabricated to determine the feasibility of measuring macronutrients in ultra-small volumes of human breast milk. Comparisons with previous measurements of homogenized cows milk show excellent agreement with fat measurement. Human breast milk however shows no correlation with fat but a surprising correlation with protein. Our investigations and proposed methods to improve the correlation and measurement accuracy are discussed.

  2. MicroRNA-490 inhibits tumorigenesis and progression in breast cancer

    PubMed Central

    Zhao, Lin; Zheng, Xin-Yu

    2016-01-01

    MicroRNAs are consistently reported to regulate gene expression in all cancer cell types by modulating a wide range of biological processes, including cell proliferation, differentiation, and apoptosis, which are associated with tumor development and progression. Previous studies have revealed that miR-490-3p regulates cell proliferation and apoptosis in cancers, such as hepatocellular carcinoma, lung cancer, bladder cancer, and ovarian carcinoma. In this study, we explored the hitherto unrevealed role of miR-490-3p in breast cancer. We tested miR-490-3p expression in breast cancer tissue and paracarcinoma tissue using reverse transcription–polymerase chain reaction. We also transfected the human breast cancer cell lines MCF-7 and T47D with miR-490-3p; subsequently, we determined the cell phenotype and the expression of Ras homolog gene family member A (RhoA), Bcl-xL, matrix metalloproteinase-9, and P70S6K (P70S6 kinase). Dual-luciferase reporter assay and a xenograft mouse model were used to reveal the roles of miR-490-3p and its target gene RHOA. We found that the levels of miR-490-3p were lower in the breast cancer tissue than in the paracarcinoma tissues. The overexpression of miR-490-3p suppressed breast cancer cell proliferation and promoted early stage apoptosis. Western blotting results revealed that the miR-490-3p overexpression reduced RhoA, Bcl-XL, matrix metalloproteinase-9, and P70S6K protein expression. The dual-luciferase reporter assay confirmed that RhoA is a target of miR-490-3p. The xenograft mouse model confirmed that miR-490-3p overexpression suppressed tumor growth and reduced RhoA expression. Our results indicate that miR-490-3p acts as oncosuppressive microRNA to inhibit breast cancer tumorigenesis and progression by targeting RhoA directly. It may contribute to breast cancer diagnosis and treatment. PMID:27524906

  3. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells

    PubMed Central

    Fan, S; Meng, Q; Auborn, K; Carter, T; Rosen, E M

    2006-01-01

    Indole-3-carbinol (I3C) and genistein are naturally occurring chemicals derived from cruciferous vegetables and soy, respectively, with potential cancer prevention activity for hormone-responsive tumours (e.g., breast and prostate cancers). Previously, we showed that I3C induces BRCA1 expression and that both I3C and BRCA1 inhibit oestrogen (E2)-stimulated oestrogen receptor (ER-α) activity in human breast cancer cells. We now report that both I3C and genistein induce the expression of both breast cancer susceptibility genes (BRCA1 and BRCA2) in breast (MCF-7 and T47D) and prostate (DU-145 and LNCaP) cancer cell types, in a time- and dose-dependent fashion. Induction of the BRCA genes occurred at low doses of I3C (20 μM) and genistein (0.5–1.0 μM), suggesting potential relevance to cancer prevention. A combination of I3C and genistein gave greater than expected induction of BRCA expression. Studies using small interfering RNAs (siRNAs) and BRCA expression vectors suggest that the phytochemical induction of BRCA2 is due, in part, to BRCA1. Functional studies suggest that I3C-mediated cytoxicity is, in part, dependent upon BRCA1 and BRCA2. Inhibition of E2-stimulated ER-α activity by I3C and genistein was dependent upon BRCA1; and inhibition of ligand-inducible androgen receptor (AR) activity by I3C and genistein was partially reversed by BRCA1-siRNA. Finally, we provide evidence suggesting that the phytochemical induction of BRCA1 expression is due, in part, to endoplasmic reticulum stress response signalling. These findings suggest that the BRCA genes are molecular targets for some of the activities of I3C and genistein. PMID:16434996

  4. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening

    PubMed Central

    2014-01-01

    Introduction Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to its receptors, TRAIL-receptor 1 (TRAIL-R1) and TRAIL-receptor 2 (TRAIL-R2), leading to apoptosis by activation of caspase-8 and the downstream executioner caspases, caspase-3 and caspase-7 (caspase-3/7). Triple-negative breast cancer (TNBC) cell lines with a mesenchymal phenotype are sensitive to TRAIL, whereas other breast cancer cell lines are resistant. The underlying mechanisms that control TRAIL sensitivity in breast cancer cells are not well understood. Here, we performed small interfering RNA (siRNA) screens to identify molecular regulators of the TRAIL pathway in breast cancer cells. Methods We conducted siRNA screens of the human kinome (691 genes), phosphatome (320 genes), and about 300 additional genes in the mesenchymal TNBC cell line MB231. Forty-eight hours after transfection of siRNA, parallel screens measuring caspase-8 activity, caspase-3/7 activity, or cell viability were conducted in the absence or presence of TRAIL for each siRNA, relative to a negative control siRNA (siNeg). A subset of genes was screened in cell lines representing epithelial TNBC (MB468), HER2-amplified breast cancer (SKBR3), and estrogen receptor-positive breast cancer (T47D). Selected putative negative regulators of the TRAIL pathway were studied by using small-molecule inhibitors. Results The primary screens in MB231 identified 150 genes, including 83 kinases, 4 phosphatases, and 63 nonkinases, as potential negative regulators of TRAIL. The identified genes are involved in many critical cell processes, including apoptosis, growth factor-receptor signaling, cell-cycle regulation, transcriptional regulation, and DNA repair. Gene-network analysis identified four genes (PDPK1, IKBKB, SRC, and BCL2L1) that formed key nodes within the interaction network of negative regulators. A secondary screen of a subset of the genes identified in additional cell lines representing different breast cancer

  5. Gadd45a levels in human breast cancer are hormone receptor dependent

    PubMed Central

    2013-01-01

    Background Gadd45a is a member of the Gadd45 family of genes that are known stress sensors. Gadd45a has been shown to serve as an effector in oncogenic stress in breast carcinogenesis in murine models. The present study was aimed at clarifying the expression of Gadd45a in human breast cancer and its correlation with clinicopathologic features. Methods The expression levels of Gadd45a in breast tissue samples of female breast surgery cases were examined by immunohistochemistry (IHC) using a Gadd45a antibody. Percent staining was determined and statistical analyses were applied to determine prognostic correlations. Results 56 female breast surgery cases were studied: Normal (11), Luminal A (9), Luminal B (11), HER2+ (10), Triple Negative (15). There was a highly significant difference in percent Gadd45a staining between groups [Mean]: Normal 16.3%; Luminal A 65.3%; Luminal B 80.7%; HER2+ 40.5%; TN 32%, P < 0.001, ANOVA. Gadd45a IHC levels for Normal cases found 82% negative/low. Luminal A breast cancer cases were found to be 67% high. Luminal B breast cancers were 100% high. Her2+ cases were 50% negative/low. Triple Negative cases were 67% negative/low. This difference in distribution of Gadd45a levels across breast cancer receptor subtypes was significant, P = 0.0009. Conclusions Gadd45a levels are significantly associated with hormone receptor status in human breast cancer. Normal breast tissue displays low Gadd45a levels. High Gadd45a levels are associated with Luminal A and Luminal B subtypes. Absence of hormone receptors in Triple Negative subtype is associated with Negative/Low levels of Gadd45a. Further studies are indicated to elucidate the role of Gadd45a in breast cancer as a potential prognosticator or target for treatment. PMID:23706118

  6. Apoptotic effect of tannic acid on fatty acid synthase over-expressed human breast cancer cells.

    PubMed

    Nie, Fangyuan; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-02-01

    Breast cancer is one of the most common cancers and is the second leading cause of cancer mortality in women worldwide. Novel therapies and chemo-therapeutic drugs are urgently needed to be developed for the treatment of breast cancer. Increasing evidence suggests that fatty acid synthase (FAS) plays an important role in breast cancer, for the expression of FAS is significantly higher in human breast cancer cells than in normal cells. Tannic acid (TA), a natural polyphenol, possesses significant biological functions, including bacteriostasis, hemostasis, and anti-oxidant. Our previous studies demonstrated that TA is a natural FAS inhibitor whose inhibitory activity is stronger than that of classical FAS inhibitors, such as C75 and cerulenin. This study further assessed the effect and therapeutic potential of TA on FAS over-expressed breast cancer cells, and as a result, TA had been proven to possess the functions of inhibiting intracellular FAS activity, down-regulating FAS expression in human breast cancer MDA-MB-231 and MCF-7 cells, and inducing cancer cell apoptosis. Since high-expressed FAS is recognized as a molecular marker for breast cancer and plays an important role in cancer prognosis, these findings suggest that TA is a potential drug candidate for treatment of breast cancer. PMID:26349913

  7. Combined photoacoustic and ultrasound imaging of human breast in vivo in the mammographic geometry

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Lee, Won-Mean; Hooi, Fong Ming; Fowlkes, J. Brian; Pinsky, Renee W.; Mueller, Dean; Wang, Xueding; Carson, Paul L.

    2013-03-01

    This photoacoustic volume imaging (PAVI) system is designed to study breast cancer detection and diagnosis in the mammographic geometry in combination with automated 3D ultrasound (AUS). The good penetration of near-infrared (NIR) light and high receiving sensitivity of a broad bandwidth, 572 element, 2D PVDF array at a low center-frequency of 1MHz were utilized with 20 channel simultaneous acquisition. The feasibility of this system in imaging optically absorbing objects in deep breast tissues was assessed first through experiments on ex vivo whole breasts. The blood filled pseudo lesions were imaged at depths up to 49 mm in the specimens. In vivo imaging of human breasts has been conducted. 3D PAVI image stacks of human breasts were coregistered and compared with 3D ultrasound image stacks of the same breasts. Using the designed system, PAVI shows satisfactory imaging depth and sensitivity for coverage of the entire breast when imaged from both sides with mild compression in the mammographic geometry. With its unique soft tissue contrast and excellent sensitivity to the tissue hemodynamic properties of fractional blood volume and blood oxygenation, PAVI, as a complement to 3D ultrasound and digital tomosynthesis mammography, might well contribute to detection, diagnosis and prognosis for breast cancer.

  8. Prolactin/Stat5 and androgen R1881 coactivate carboxypeptidase-D gene in breast cancer cells.

    PubMed

    Koirala, Samir; Thomas, Lynn N; Too, Catherine K L

    2014-03-01

    Plasma membrane-bound carboxypeptidase-D (CPD) cleaves C-terminal arginine from extracellular substrates. In the cell, arginine is converted to nitric oxide (NO). We have reported that up-regulation of CPD mRNA/protein levels by 17β-estradiol and prolactin (PRL) in breast cancer cells, and by testosterone in prostate cancer cells, increased NO production and cell survival. The CPD promoter contains a consensus γ-interferon-activated sequence (GAS) and 3 putative androgen response elements (ARE.1, ARE.2, ARE.3) that could potentially bind PRL-activated transcription factor Stat5 (signal transducer and activator of transcription 5) and the liganded androgen receptor (AR), respectively. This study showed that synthetic androgen R1881 and PRL elevated CPD mRNA/protein levels in human MCF-7 and T47D breast cancer cells in a time-/dose-dependent manner. PRL/R1881-elevated CPD expression was blocked by actinomycin-D, and a CPD promoter construct containing these GAS and AREs was stimulated by PRL or R1881, indicating transcriptional regulation by both hormones. Luciferase reporter assays showed that GAS and the adjacent ARE.1 only were active. Mutation of GAS in the ΔGAS-CPD construct (ARE.1 intact) abolished CPD promoter activity in response to PRL and, surprisingly, to R1881 as well. ΔGAS-CPD promoter activity was restored by PRL+R1881 in combination, and enhanced by ectopic Stat5, but abolished by Stat5 gene knockdown. Chromatin immunoprecipitation analysis confirmed binding of activated Stat5 and liganded AR to GAS and ARE.1, respectively. Activated Stat5 also induced binding of unliganded AR to ARE.1, and liganded AR induced binding of unactivated Stat5 to GAS. In summary, PRL and R1881, acting through Stat5 and AR, act cooperatively to stimulate CPD gene transcription in breast cancer cells. PMID:24433040

  9. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  10. Weightlessness acts on human breast cancer cell line MCF-7

    NASA Astrophysics Data System (ADS)

    Vassy, J.; Portet, S.; Beil, M.; Millot, G.; Fauvel-Lafève, F.; Gasset, G.; Schoevaert, D.

    2003-10-01

    Because cells are sensitive to mechanical forces, weightlessness might act on stress-dependent cell changes. Human breast cancer cells MCF-7, flown in space in a Photon capsule, were fixed after 1.5, 22 and 48 h in orbit. Cells subjected to weightlessness were compared to 1g in-flight and ground controls. Post-flight, fluorescent labeling was performed to visualize cell proliferation (Ki-67), three cytoskeleton components and chromatin structure. Confocal microscopy and image analysis were used to quantify cycling cells and mitosis, modifications of the cytokeratin network and chromatin structure. Several main phenomena were observed in weightlessness: The perinuclear cytokeratin network and chromatin structure were looser. More cells were cycling and mitosis was prolonged. Finally, cell proliferation was reduced as a consequence of a cell-cycle blockade. Microtubules were altered in many cells. The results reported in the first point are in agreement with basic predictions of cellular tensegrity. The prolongation of mitosis can be explained by an alteration of microtubules. We discuss here the different mechanisms involved in weightlessness alteration of microtubules: i) alteration of their self-organization by reaction-diffusion processes, and a mathematical model is proposed, ii) activation or desactivation of microtubules stabilizing proteins, acting on both microtubule and microfilament networks in cell cortex.