Sample records for t6 spectral binary

  1. An L+T Spectral Binary with Possible AB Doradus Kinematics

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella C.; Gagné, Jonathan; Faherty, Jacqueline K.; Burgasser, Adam J.

    2018-02-01

    We present the identification of WISE J135501.90‑825838.9 as a spectral binary system with a slight possibility of planetary-mass components in the 130–200 Myr AB Doradus moving group. Peculiarities in the near-infrared spectrum of this source suggest it to be a blended-light binary with L6.0 ± 1.0 and T3.0 ± 1.8 or L7.0 ± 0.6 and T7.5 ± 0.4 components. Its proper motion and radial velocity as a combined-light source yield a high membership probability for AB Doradus. While the young L6+T3 case is underluminous in a color–magnitude diagram at the AB Doradus kinematic distance, the young L7+T7.5 case could be viable. Gravity-sensitive indicators are more consistent with a field-age binary. If confirmed as a young object member of AB Doradus, we estimate masses of 11 ± 1 M Jup and 9 ± 1 M Jup with both component masses below the Deuterium-burning mass limit. Otherwise, we find masses of {72}-5+4 and {61}-8+6 for the field L6+T3 case and {70}-4+2 and {42}-6+5 for the field L7+T7.5 case. Our identification of WISE J135501.90‑825838.9 as a candidate young spectral binary introduces a new technique for detecting and characterizing planetary-mass companions to young brown dwarfs.

  2. 2MASS J20261584-2943124: an Unresolved L0.5 + T6 Spectral Binary

    NASA Astrophysics Data System (ADS)

    Gelino, Christopher R.; Burgasser, Adam J.

    2010-07-01

    We identify the L dwarf 2MASS J20261584-2943124 as an unresolved spectral binary, based on low-resolution, near-infrared spectroscopy from IRTF/SpeX. The data reveal a peculiar absorption feature at 1.6 μm, previously noted in the spectra of other very low-mass spectral binaries, which likely arises from overlapping FeH and CH4 absorption bands in the blended light of an L dwarf/T dwarf pair. Spectral template matching analysis indicates component types of L0.5 and T6, with relative brightness ΔH = 4.2 ± 0.6. Laser guide star adaptive optics imaging observations with Keck/NIRC2 fail to resolve the source, indicating a maximum separation at the observing epoch of 0farcs25, or a projected separation of 9 AU assuming a distance of 36 ± 5 pc. With an age that is likely to be relatively older (gsim5 Gyr) based on the system's large V tan and mass ratio arguments, the relative motion of the potentially "massive" (0.06-0.08 M sun) components of 2MASS J2026-2943 may be detectable through radial velocity variations, like its earlier-type counterpart 2MASS J03202839-0446358 (M8+T5), providing dynamical mass measurements that span the hydrogen burning limit. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. The True Ultracool Binary Fraction Using Spectral Binaries

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant

  4. High Resolution Imaging of Very Low Mass Spectral Binaries: Three Resolved Systems and Detection of Orbital Motion in an L/T Transition Binary

    NASA Astrophysics Data System (ADS)

    Bardalez Gagliuffi, Daniella C.; Gelino, Christopher R.; Burgasser, Adam J.

    2015-11-01

    We present high resolution Laser Guide Star Adaptive Optics imaging of 43 late-M, L and T dwarf systems with Keck/NIRC2. These include 17 spectral binary candidates, systems whose spectra suggest the presence of a T dwarf secondary. We resolve three systems: 2MASS J1341-3052, SDSS J1511+0607 and SDSS J2052-1609 the first two are resolved for the first time. All three have projected separations <8 AU and estimated periods of 14-80 years. We also report a preliminary orbit determination for SDSS J2052-1609 based on six epochs of resolved astrometry between 2005 and 2010. Among the 14 unresolved spectral binaries, 5 systems were confirmed binaries but remained unresolved, implying a minimum binary fraction of {47}-11+12% for this sample. Our inability to resolve most of the spectral binaries, including the confirmed binaries, supports the hypothesis that a large fraction of very low mass systems have relatively small separations and are missed with direct imaging. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  5. WISE J072003.20-084651.2: an Old and Active M9.5 + T5 Spectral Binary 6 pc from the Sun

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Gillon, Michaël; Melis, Carl; Bowler, Brendan P.; Michelsen, Eric L.; Bardalez Gagliuffi, Daniella; Gelino, Christopher R.; Jehin, E.; Delrez, L.; Manfroid, J.; Blake, Cullen H.

    2015-03-01

    We report observations of the recently discovered, nearby late-M dwarf WISE J072003.20-084651.2. New astrometric measurements obtained with the TRAPPIST telescope improve the distance measurement to 6.0 ± 1.0 pc and confirm the low tangential velocity (3.5 ± 0.6 km s-1) reported by Scholz. Low-resolution optical spectroscopy indicates a spectral type of M9.5 and prominent Hα emission (< {{log }10}{{L}Hα }/{{L}bol}> = -4.68 ± 0.06), but no evidence of subsolar metallicity or Li i absorption. Near-infrared spectroscopy reveals subtle peculiarities that can be explained by the presence of a T5 binary companion, and high-resolution laser guide star adaptive optics imaging reveals a faint (ΔH = 4.1) candidate source 0\\buildrel{\\prime\\prime}\\over{.} 14 (0.8 AU) from the primary. With high-resolution optical and near-infrared spectroscopy, we measure a stable radial velocity of +83.8 ± 0.3 km s-1, indicative of old disk kinematics and consistent with the angular separation of the possible companion. We measure a projected rotational velocity of v sin i = 8.0 ± 0.5 km s-1 and find evidence of low-level variabilty (˜1.5%) in a 13 day TRAPPIST light curve, but cannot robustly constrain the rotational period. We also observe episodic changes in brightness (1%-2%) and occasional flare bursts (4%-8%) with a 0.8% duty cycle, and order-of-magnitude variations in Hα line strength. Combined, these observations reveal WISE J0720-0846 to be an old, very low-mass binary whose components straddle the hydrogen burning minimum mass, and whose primary is a relatively rapid rotator and magnetically active. It is one of only two known binaries among late M dwarfs within 10 pc of the Sun, both of which harbor a mid T-type brown dwarf companion. We show that while this specific configuration is rare (≲1.6% probability), roughly 25% of binary companions to late-type M dwarfs in the local population are likely low-temperature T or Y brown dwarfs. Some of the data presented

  6. Resolving the xi Boo Binary with Chandra, and Revealing the Spectral Type Dependence of the Coronal "Fip Effect"

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of xi Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5% respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for xi Boo) leads to the surprising conclusion that xi Boo B may dominate the wind from the binary, with xi Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of FIP effect on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries or extremely active stars with logLX 29, explaining why this correlation has not been recognized in the past.

  7. RESOLVING THE {xi} BOO BINARY WITH CHANDRA, AND REVEALING THE SPECTRAL TYPE DEPENDENCE OF THE CORONAL 'FIP EFFECT'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Brian E.; Linsky, Jeffrey L., E-mail: brian.wood@nrl.navy.mi, E-mail: jlinsky@jila.colorado.ed

    On 2008 May 2, Chandra observed the X-ray spectrum of {xi} Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of {xi} Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5%, respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for {xi} Boo) leads to the surprising conclusion that {xi} Boo B may dominate the wind from the binary, with {xi} Boo A's wind being very weak despitemore » its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of 'FIP effect' on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries, or extremely active stars with log L{sub X} >29, explaining why this correlation has not been recognized in the past.« less

  8. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy, A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL ]1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL ]1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  9. Periodic Emission from the Gamma-Ray Binary 1FGL J1018.6-5856

    DOE PAGES

    Ackermann, M.

    2012-01-12

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGLmore » J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.« less

  10. Periodic emission from the gamma-ray binary 1FGL J1018.6-5856.

    PubMed

    Fermi LAT Collaboration; Ackermann, M; Ajello, M; Ballet, J; Barbiellini, G; Bastieri, D; Belfiore, A; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Corbel, S; Corbet, R H D; Cutini, S; de Luca, A; den Hartog, P R; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Donato, D; Drell, P S; Drlica-Wagner, A; Dubois, R; Dubus, G; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hill, A B; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, T J; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Romani, R W; Roth, M; Saz Parkinson, P M; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Coe, M J; Di Mille, F; Edwards, P G; Filipović, M D; Payne, J L; Stevens, J; Torres, M A P

    2012-01-13

    Gamma-ray binaries are stellar systems containing a neutron star or black hole, with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that 1FGL J1018.6-5856 exhibits intensity and spectral modulation with a 16.6-day period. We identified a variable x-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an O6V((f)) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. 1FGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  11. Periodic Emission from the Gamma-ray Binary 1FGL J1018.6-5856

    NASA Technical Reports Server (NTRS)

    Celic, O.; Corbet, R. H. D.; Donato, D.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    Gamma-ray binaries are stellar systems containing a neutron star or black hole with gamma-ray emission produced by an interaction between the components. These systems are rare, even though binary evolution models predict dozens in our Galaxy. A search for gamma-ray binaries with the Fermi Large Area Telescope (LAT) shows that IFGL JI018.6-5856 exhibits intensity and spectral modulation with a 16.6 day period. We identified a variable X-ray counterpart, which shows a sharp maximum coinciding with maximum gamma-ray emission, as well as an 06V f) star optical counterpart and a radio counterpart that is also apparently modulated on the orbital period. IFGL J1018.6-5856 is thus a gamma-ray binary, and its detection suggests the presence of other fainter binaries in the Galaxy.

  12. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  13. WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System

    NASA Astrophysics Data System (ADS)

    Gelino, Christopher R.; Kirkpatrick, J. Davy; Cushing, Michael C.; Eisenhardt, Peter R.; Griffith, Roger L.; Mainzer, Amanda K.; Marsh, Kenneth A.; Skrutskie, Michael F.; Wright, Edward L.

    2011-08-01

    The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  14. Hunting for brown dwarf binaries with X-Shooter

    NASA Astrophysics Data System (ADS)

    Manjavacas, E.; Goldman, B.; Alcalá, J. M.; Zapatero-Osorio, M. R.; Béjar, B. J. S.; Homeier, D.; Bonnefoy, M.; Smart, R. L.; Henning, T.; Allard, F.

    2015-05-01

    The refinement of the brown dwarf binary fraction may contribute to the understanding of the substellar formation mechanisms. Peculiar brown dwarf spectra or discrepancy between optical and near-infrared spectral type classification of brown dwarfs may indicate unresolved brown dwarf binary systems. We obtained medium-resolution spectra of 22 brown dwarfs of potential binary candidates using X-Shooter at the VLT. We aimed to select brown dwarf binary candidates. We also tested whether BT-Settl 2014 atmospheric models reproduce the physics in the atmospheres of these objects. To find different spectral type spectral binaries, we used spectral indices and we compared the selected candidates to single spectra and composition of two single spectra from libraries, to try to reproduce our X-Shooter spectra. We also created artificial binaries within the same spectral class, and we tried to find them using the same method as for brown dwarf binaries with different spectral types. We compared our spectra to the BT-Settl models 2014. We selected six possible candidates to be combination of L plus T brown dwarfs. All candidates, except one, are better reproduced by a combination of two single brown dwarf spectra than by a single spectrum. The one-sided F-test discarded this object as a binary candidate. We found that we are not able to find the artificial binaries with components of the same spectral type using the same method used for L plus T brown dwarfs. Best matches to models gave a range of effective temperatures between 950 K and 1900 K, a range of gravities between 4.0 and 5.5. Some best matches corresponded to supersolar metallicity.

  15. A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density

    NASA Astrophysics Data System (ADS)

    Marocco, F.; Jones, H. R. A.; Day-Jones, A. C.; Pinfield, D. J.; Lucas, P. W.; Burningham, B.; Zhang, Z. H.; Smart, R. L.; Gomes, J. I.; Smith, L.

    2015-06-01

    We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from the United Kingdom Deep Infrared Sky Survey. Using the YJHK photometry from the Large Area Survey and the red-optical photometry from the Sloan Digital Sky Survey we selected a sample of 262 brown dwarf candidates and we have followed-up 196 of them using the echelle spectrograph X-shooter on the Very Large Telescope. The large wavelength coverage (0.30-2.48 μm) and moderate resolution (R ˜ 5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low-gravity M dwarfs. Using a spectral indices-based technique, we identified 27 unresolved binary candidates, for which we have determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity of our targets, and we determined the distribution of the sample, which is centred at -1.7 ± 1.2 km s-1 with a dispersion of 31.5 km s-1. Using our results, we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are (0.85 ± 0.55) × 10-3 to (1.00 ± 0.64) × 10-3 objects per cubic parsec in the L4-L6.5 range, (0.73 ± 0.47) × 10-3 to (0.85 ± 0.55) × 10-3 objects per cubic parsec in the L7-T0.5 range, and (0.74 ± 0.48) × 10-3 to (0.88 ± 0.56) × 10-3 objects per cubic parsec in the T1-T4.5 range. We notice that there seems to be an excess of objects in the L-T transition with respect to the late-T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L-T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following

  16. WISE J061213.85-303612.5: a new T-dwarf binary candidate

    NASA Astrophysics Data System (ADS)

    Huélamo, N.; Ivanov, V. D.; Kurtev, R.; Girard, J. H.; Borissova, J.; Mawet, D.; Mužić, K.; Cáceres, C.; Melo, C. H. F.; Sterzik, M. F.; Minniti, D.

    2015-06-01

    Context. T and Y dwarfs are among the coolest and least luminous objects detected, and they can help to understand the properties of giant planets. Up to now, there are more than 350 T dwarfs that have been identified thanks to large imaging surveys in the infrared, and their multiplicity properties can shed light on the formation process. Aims: The aim of this work is to look for companions around a sample of seven ultracoool objects. Most of them have been discovered by the WISE observatory and have not been studied before for multiplicity. Methods: We observed a sample six T dwarfs and one L9 dwarf with the Laser Guide Star (LGS) and NAOS-CONICA, the adaptive optics (AO) facility, and the near infrared camera at the ESO Very Large Telescope. We observed all the objects in one or more near-IR filters (JHKs). Results: From the seven observed objects, we have identified a subarcsecond binary system, WISE J0612-3036, composed of two similar components with spectral types of T6. We measure a separation of ρ = 350 ± 5 mas and a position angle of PA = 235 ± 1°. Using the mean absolute magnitudes of T6 dwarfs in the 2MASS JHKs bands, we estimate a distance of d = 31 ± 6 pc and derive a projected separation of ρ ~ 11 ± 2 au. Another target, WISE J2255-3118, shows a very faint object at 1.̋3 in the Ks image. The object is marginally detected in H, and we derive a near infrared color of H - Ks> 0.1 mag. HST/WFC3 public archival data reveals that the companion candidate is an extended source. Together with the derived color, this suggests that the source is most probably a background galaxy. The five other sources are apparently single, with 3-σ sensitivity limits between H = 19-21 for companions at separations ≥0.̋5. Conclusions: WISE 0612-3036 is probably a new T-dwarf binary composed of two T6 dwarfs. As in the case of other late T-dwarf binaries, it shows a mass ratio close to 1, although its projected separation, ~11 au, is larger than the average (~5 au

  17. Radio emission from RS CVn binaries. II - Polarization and spectral properties

    NASA Technical Reports Server (NTRS)

    Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.

    1987-01-01

    Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields.

  18. CFBDSIR J1458+1013B: A Very Cold (>T10) Brown Dwarf in a Binary System

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Delorme, Philippe; Dupuy, Trent J.; Bowler, Brendan P.; Albert, Loic; Artigau, Etienne; Reylé, Celine; Forveille, Thierry; Delfosse, Xavier

    2011-10-01

    We have identified CFBDSIR J1458+1013 as a 0farcs11 (2.6 AU) physical binary using Keck laser guide star adaptive optics imaging and have measured a distance of 23.1 ± 2.4 pc to the system based on near-IR parallax data from the Canada-France-Hawaii Telescope. The integrated-light near-IR spectrum indicates a spectral type of T9.5, and model atmospheres suggest a slightly higher temperature and surface gravity than the T10 dwarf UGPS J0722-05. Thus, CFBDSIR J1458+1013AB is the coolest brown dwarf binary found to date. Its secondary component has an absolute H-band magnitude that is 1.9 ± 0.3 mag fainter than UGPS J0722-05, giving an inferred spectral type of >T10. The secondary's bolometric luminosity of ~2 × 10-7 L sun makes it the least luminous known brown dwarf by a factor of 4-5. By comparing to evolutionary models and T9-T10 objects, we estimate a temperature of 370 ± 40 K and a mass of 6-15 M Jup for CFBDSIR J1458+1013B. At such extremes, atmospheric models predict the onset of novel photospheric processes, namely, the appearance of water clouds and the removal of strong alkali lines, but their impact on the emergent spectrum is highly uncertain. Our photometry shows that strong CH4 absorption persists in the H band, the J - K color is bluer than the latest known T dwarfs but not as blue as predicted by current models, and the J - H color delineates a possible inflection in the blueward trend for the latest T dwarfs. Given its low luminosity, atypical colors, and cold temperature, CFBDSIR J1458+1013B is a promising candidate for the hypothesized Y spectral class. However, regardless of its ultimate classification, CFBDSIR J1458+1013AB provides a new benchmark for measuring the properties of brown dwarfs and gas-giant planets, testing substellar models, and constraining the low-mass limit for star formation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California

  19. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  20. Young Binaries and Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang

    1996-07-01

    of 14 spatially resolved PMS binaries (separations 0.''6 to 1.prime'7) located in the above mentioned T associations both photometric and spectroscopic information has been analyzed. All binaries (originally unresolved) were identified as PMS stars based on their strong Hα emission and their association with dark clouds. Using the spectral A index, which measures the strength of the CaH band at 697.5nm relative to the nearby continuum as a luminosity class indicator, I showed that the classical T Tauri stars in the sample tend to be close to luminosity class V. Eight out of the 14 pairs could be placed on an H--R diagram. When comparing with theoretical PMS evolutionary tracks the individual components of all pairs appear to be coeval within the observational errors. This result is similar to Hartigan et al. (1994) who found two thirds of the wider pairs with separations from 400 AU to 6000 AU to be coeval. However, unlike Hartigan et al.'s finding for the wider pairs, I find no non-coeval pairs. One of the presumed binaries in our sample (ESO Hα 281) turned out to be a likely chance projection with the ``primary'' showing neither Hα emission nor Li absorption. Finally, using adaptive optics at the ESO 3.6m telescope, diffraction-limited JHK images of the region around the Herbig AeBe star NX Pup were obtained. The close companion (sep. 0.''128) to NX Pup -- originally discovered by HST -- was clearly resolved and its JHK magnitudes were determined. A third object at a separation of 7.''0 from NX Pup was identified as a classical T Tauri star so that NX Pup may in fact form a hierarchical triple system. I discuss the evolutionary status of these stars and derive estimates for their spectral types, luminosities, masses, and ages. My conclusions are that binarity is established very early in stellar evolution, that the orbital parameters of wide binaries (a >= 120AU) remain virtually unchanged during their PMS evolution, and that the components of the wide binaries

  1. DISCOVERY OF A HIGHLY UNEQUAL-MASS BINARY T DWARF WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS: A COEVALITY TEST OF SUBSTELLAR THEORETICAL MODELS AND EFFECTIVE TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Michael C.; Dupuy, Trent J.; Leggett, S. K., E-mail: mliu@ifa.hawaii.ed

    Highly unequal-mass ratio binaries are rare among field brown dwarfs, with the mass ratio distribution of the known census described by q {sup (4.9{+-}0.7)}. However, such systems enable a unique test of the joint accuracy of evolutionary and atmospheric models, under the constraint of coevality for the individual components (the 'isochrone test'). We carry out this test using two of the most extreme field substellar binaries currently known, the T1 + T6 {epsilon} Ind Bab binary and a newly discovered 0.''14 T2.0 + T7.5 binary, 2MASS J12095613-1004008AB, identified with Keck laser guide star adaptive optics. The latter is the mostmore » extreme tight binary resolved to date (q {approx} 0.5). Based on the locations of the binary components on the Hertzsprung-Russell (H-R) diagram, current models successfully indicate that these two systems are coeval, with internal age differences of log(age) = -0.8 {+-} 1.3(-1.0{sup +1.2}{sub -1.3}) dex and 0.5{sup +0.4}{sub -0.3}(0.3{sup +0.3}{sub -0.4}) dex for 2MASS J1209-1004AB and {epsilon} Ind Bab, respectively, as inferred from the Lyon (Tucson) models. However, the total mass of {epsilon} Ind Bab derived from the H-R diagram ({approx} 80 M{sub Jup} using the Lyon models) is strongly discrepant with the reported dynamical mass. This problem, which is independent of the assumed age of the {epsilon} Ind Bab system, can be explained by a {approx} 50-100 K systematic error in the model atmosphere fitting, indicating slightly warmer temperatures for both components; bringing the mass determinations from the H-R diagram and the visual orbit into consistency leads to an inferred age of {approx} 6 Gyr for {epsilon} Ind Bab, older than previously assumed. Overall, the two T dwarf binaries studied here, along with recent results from T dwarfs in age and mass benchmark systems, yield evidence for small ({approx}100 K) errors in the evolutionary models and/or model atmospheres, but not significantly larger. Future parallax, resolved

  2. Spectral and spatial imaging of the Be+sdO binary ϕ Persei

    NASA Astrophysics Data System (ADS)

    Mourard, D.; Monnier, J. D.; Meilland, A.; Gies, D.; Millour, F.; Benisty, M.; Che, X.; Grundstrom, E. D.; Ligi, R.; Schaefer, G.; Baron, F.; Kraus, S.; Zhao, M.; Pedretti, E.; Berio, P.; Clausse, J. M.; Nardetto, N.; Perraut, K.; Spang, A.; Stee, P.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.

    2015-05-01

    Aims: The rapidly rotating Be star ϕ Persei was spun up by mass and angular momentum transfer from a now stripped-down, hot subdwarf companion. Here we present the first high angular resolution images of ϕ Persei made possible by new capabilities in long-baseline interferometry at near-IR and visible wavelengths. We analyzed these images to search for the companion, to determine the binary orbit, stellar masses, and fluxes, and to examine the geometrical and kinematical properties of the outflowing disk surrounding the Be star. Methods: We observed ϕ Persei with the MIRC and VEGA instruments of the CHARA Array. MIRC was operated in six-telescope mode, whereas VEGA was configured in four-telescope mode with a change of quadruplets of telescopes during two nights to improve the (u,v) plane coverage. Additional MIRC-only observations were performed to track the orbital motion of the companion, and these were fit together with new and existing radial velocity measurements of both stars to derive the complete orbital elements and distance. We also used the MIRC data to reconstruct an image of the Be disk in the near-IR H-band. VEGA visible broadband and spectro-interferometric Hα observations were fit with analytical models for the Be star and disk, and image reconstruction was performed on the spectrally resolved Hα emission line data. Results: The hot subdwarf companion is clearly detected in the near-IR data at each epoch of observation with a flux contribution of 1.5% in the H band, and restricted fits indicate that its flux contribution rises to 3.3% in the visible. A new binary orbital solution is determined by combining the astrometric and radial velocity measurements. The derived stellar masses are 9.6 ± 0.3 M⊙ and 1.2 ± 0.2 M⊙ for the Be primary and subdwarf secondary, respectively. The inferred distance (186 ± 3 pc), kinematical properties, and evolutionary state are consistent with membership of ϕ Persei in the α Per cluster. From the cluster

  3. A Comparison Between Spectral Properties of ULXs and Luminous X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Berghea, C. T.; Colbert, E. J. M.; Roberts, T. P.

    2004-05-01

    What is special about the 1039 erg s-1 limit that is used to define the ULX class? We investigate this question by analyzing Chandra X-ray spectra of 71 X-ray bright point sources from nearby galaxies. Fifty-one of these sources are ULXs (LX(0.3-8.0 keV) ≥ 1039 erg s-1), and 20 sources (our comparison sample) are less-luminous X-ray binaries with LX(0.3-8.0 keV) = 1038-39 erg s-1. Our sample objects were selected from the Chandra archive to have ≥1000 counts and thus represent the highest quality spectra in the Chandra archives for extragalactic X-ray binaries and ULXs. We fit the spectra with one-component models (e.g., cold absorption with power-law, or cold absorption with multi-colored disk blackbody) and two-component models (e.g. absorption with both a power-law and a multi colored disk blackbody). A crude measure of the spectral states of the sources are determined observationally by calibrating the strength of the disk (blackbody) and coronal (power-law) components. These results are then use to determine if spectral properties of the ULXs are statistically distinct from those of the comparison objects, which are assumed to be ``normal'' black-hole X-ray binaries.

  4. Spectral analysis of a family of binary inflation rules

    NASA Astrophysics Data System (ADS)

    Baake, Michael; Grimm, Uwe; Mañibo, Neil

    2018-01-01

    The family of primitive binary substitutions defined by 1 \\mapsto 0 \\mapsto 0 1^m with m\\in N is investigated. The spectral type of the corresponding diffraction measure is analysed for its geometric realisation with prototiles (intervals) of natural length. Apart from the well-known Fibonacci inflation (m=1 ), the inflation rules either have integer inflation factors, but non-constant length, or are of non-Pisot type. We show that all of them have singular diffraction, either of pure point type or essentially singular continuous.

  5. The Orbit of the L Dwarf + T Dwarf Spectral Binary SDSS J080531.84+481233.0

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Blake, Cullen H.; Gelino, Christopher R.; Sahlmann, Johannes; Bardalez Gagliuffi, Daniella

    2016-08-01

    SDSS J080531.84+481233.0 is a closely separated, very-low-mass (VLM) binary identified through combined-light spectroscopy and confirmed as an astrometric variable. Here we report four years of radial velocity monitoring observations of the system that reveal significant and periodic variability, confirming the binary nature of the source. We infer an orbital period of 2.02 ± 0.03 years, a semimajor axis of 0.76{}-0.06+0.05 au, and an eccenticity of 0.46 ± 0.05, consistent with the amplitude of astrometric variability and prior attempts to resolve the system. Folding in constraints based on the spectral types of the components (L4 ± 0.7 and T5.5 ± 1.1), corresponding effective temperatures, and brown dwarf evolutionary models, we further constrain the orbital inclination of this system to be nearly edge-on (90° ± 19°), and deduce a large system mass ratio (M 2/M 1 = {0.86}-0.12+0.10), substellar components (M 1 = {0.057}-0.014+0.016 M ⊙, M 2 = {0.048}-0.010+0.008 M ⊙), and a relatively old system age (minimum age = {4.0}-1.2+1.9 Gyr). The measured projected rotational velocity of the primary ({V}{rot}\\sin I = 34.1 ± 0.7 km s-1) implies that this inactive source is a rapid rotator (period ≲ 3 hr) and a viable system for testing spin-orbit alignment in VLM multiples. Robust model-independent constraints on the component masses may be possible through measurement of the reflex motion of the secondary at wavelengths in which it contributes a greater proportion of the combined luminence, while the system may also be resolvable through sparse-aperature mask interferometry with adaptive optics. The combination of well-determined component atmospheric properties and masses near and/or below the hydrogen minimum mass make SDSS J0805+4812AB an important system for future tests of brown dwarf evolutionary models. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California

  6. The iron complex in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.

    2013-05-01

    An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.

  7. Characterization of the benchmark binary NLTT 33370 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlieder, Joshua E.; Bonnefoy, Mickaël; Herbst, T. M.

    2014-03-01

    We confirm the binary nature of the nearby, very low mass (VLM) system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity-sensitive alkali lines and strong lithium 6708 Å absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity-sensitive features and spectral morphology that is consistent with other young VLM dwarfs. We combine the constraints from all age diagnostics to estimatemore » a system age of ∼30-200 Myr. The 1.2-4.7 μm spectral energy distribution of the components point toward T {sub eff} = 3200 ± 500 K and T {sub eff} = 3100 ± 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 97{sub −48}{sup +41} M{sub Jup} and 91{sub −44}{sup +41} M{sub Jup} from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and VLMs.« less

  8. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-04-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.

  9. Spectral properties of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme

    2018-07-01

    We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15 per cent of all small asteroids). For that, an analysis of 0.8-2.5 µm near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF (Infrared Telescope Facility) is presented. Taxonomic class and meteorite analogue is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21 per cent. Most binary systems are bound in the S, X, and C classes, followed by Q and V types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C types which are under-represented among binaries.

  10. Discovery of a Highly Unequal-mass Binary T Dwarf with Keck Laser Guide Star Adaptive Optics: A Coevality Test of Substellar Theoretical Models and Effective Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Dupuy, Trent J.; Leggett, S. K.

    2010-10-01

    Highly unequal-mass ratio binaries are rare among field brown dwarfs, with the mass ratio distribution of the known census described by q (4.9±0.7). However, such systems enable a unique test of the joint accuracy of evolutionary and atmospheric models, under the constraint of coevality for the individual components (the "isochrone test"). We carry out this test using two of the most extreme field substellar binaries currently known, the T1 + T6 epsilon Ind Bab binary and a newly discovered 0farcs14 T2.0 + T7.5 binary, 2MASS J12095613-1004008AB, identified with Keck laser guide star adaptive optics. The latter is the most extreme tight binary resolved to date (q ≈ 0.5). Based on the locations of the binary components on the Hertzsprung-Russell (H-R) diagram, current models successfully indicate that these two systems are coeval, with internal age differences of log(age) = -0.8 ± 1.3(-1.0+1.2 -1.3) dex and 0.5+0.4 -0.3(0.3+0.3 -0.4) dex for 2MASS J1209-1004AB and epsilon Ind Bab, respectively, as inferred from the Lyon (Tucson) models. However, the total mass of epsilon Ind Bab derived from the H-R diagram (≈ 80 M Jup using the Lyon models) is strongly discrepant with the reported dynamical mass. This problem, which is independent of the assumed age of the epsilon Ind Bab system, can be explained by a ≈ 50-100 K systematic error in the model atmosphere fitting, indicating slightly warmer temperatures for both components; bringing the mass determinations from the H-R diagram and the visual orbit into consistency leads to an inferred age of ≈ 6 Gyr for epsilon Ind Bab, older than previously assumed. Overall, the two T dwarf binaries studied here, along with recent results from T dwarfs in age and mass benchmark systems, yield evidence for small (≈100 K) errors in the evolutionary models and/or model atmospheres, but not significantly larger. Future parallax, resolved spectroscopy, and dynamical mass measurements for 2MASS J1209-1004AB will enable a more

  11. SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.

    2013-04-01

    We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N{sub H}, and present the spectral parameters of sources with L{sub x} {approx}> 2 Multiplication-Sign 10{sup 37} erg s{sup -1}. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant ofmore » a small late-type galaxy. Our results also provide tentative support for the apparent 'gap' in the mass distribution of compact objects between {approx}2-5 M{sub Sun }. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority ({approx}70%-80%) of potential Roche lobe filling donors in the Cen A halo are {approx}> 12 Gyr old, while BH LMXBs require donors {approx}> 1 M{sub Sun} to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L{sub x} {>=} 5 Multiplication-Sign 10{sup 38} erg s{sup -1} for the XB population of early-type galaxies; for older stellar populations, there are fewer stars {approx}> 1 M{sub Sun }, which are required to form the more luminous sources.« less

  12. The Widest-separation Substellar Companion Candidate to a Binary T Tauri Star

    NASA Astrophysics Data System (ADS)

    Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R.

    2011-04-01

    The results of near-infrared imaging and spectroscopy of a substellar companion (SR12 C), with a possible planetary mass, of a binary T Tauri star (SR12 AB) in the ρ Ophiuchi star-forming region are presented. The object is separated by ~8farcs7, corresponding to ~1100 AU at 125 pc, and has an H-band brightness of 15.2 mag and infrared spectra suggesting a spectral type of M9.0 ± 0.5. It is confirmed that SR12 C is physically related to the ρ Ophiuchi star-forming region from its common proper motion with SR12 AB and its youth is confirmed by a gravity-sensitive spectral feature. Furthermore, based on the number of known members of the ρ Ophiuchi star-forming region in the area in which SR12 AB exists, the probability of a chance alignment is ~1% and it is therefore likely that SR12 C is physically associated with SR12 AB. The mass of SR12 C is estimated by comparing its estimated luminosity and assumed age with the theoretical age-luminosity relation. SR12 C is identified as an extremely low-mass (0.013 ± 0.007 M sun) object, but its separation from its parent star is the widest among planetary-mass companion (PMC) candidates imaged to date. In addition, SR12 C is the first PMC candidate directly imaged around a binary star. This discovery suggests that PMCs form via multiple star formation processes including disk gravitational instability and cloud core fragmentation.

  13. New White Dwarf-Brown Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Geier, S.; Lodieu, N.

    2017-03-01

    We present follow-up spectroscopy to 12 candidate white dwarf-brown dwarf binaries. We have confirmed that 8 objects do indeed have a white dwarf primary (7 DA, 1 DB) and two are hot subdwarfs. We have determined the Teff and log g for the white dwarfs and subdwarfs, and when combining these values with a model spectrum and the photometry, we have 3 probable white dwarf-substellar binaries with spectral types between M6 and L6.

  14. The binary system containing the classical Cepheid T Mon

    NASA Technical Reports Server (NTRS)

    Evans, Nancy Remage; Lyons, Ronald W.

    1994-01-01

    Several new results are presented for the binary system containing the 27(sup d) classical Cepheid T Mon. New radial velocities for the Cepheid have been obtained, which confirm the decreasing orbital motion at the current epoch. The spectral type of the companion (B9.8 V) has been determined from an International Ultraviolet Explorer (IUE) low resolution spectrum. An IUE high resolution spectrum has been measured to search for the velocity of the companion. A velocity signal at +36 km/s on JD 2,446,105.21 has been tentatively identified as the velocity of the companion, but confirmation of this velocity would be very valuable. Results based on this tentative identification of the velocity are that the companion does not have a high projected rotation velocity, that the companion is unlikely to be a short period binary, and that the gamma velocity of the system is between 20 and 36 km/s. The luminosity and temperature of both the Cepheid and the companion are well determined from the satellite and ground-based observations and the Cepheid PLC relation. However, the companion is above the ZAMS in the H-R diagram, which is inconsistent with the large luminosity difference between the two stars. High rotation for the companion (viewed pole-on) is a possible explanation. The lower limit to the mass function (from the lower limits to the orbital period and amplitude) requires a very high eccentricity for the system for reasonable estimates for the masses of the two stars.

  15. Discovery of a Visual T-dwarf Triple System and Binarity at the L/T Transition

    NASA Astrophysics Data System (ADS)

    Radigan, Jacqueline; Jayawardhana, Ray; Lafrenière, David; Dupuy, Trent J.; Liu, Michael C.; Scholz, Alexander

    2013-11-01

    .''1. This translates into a volume-corrected frequency of 13^{+7}_{-6}%, which is similar to values of ~9%-12% reported outside the transition. Our reported L/T transition binary fraction is roughly twice as large as the binary fraction of an equivalent L9-T4 sample selected from primary rather than unresolved spectral types (6^{+6}_{-4}%); however, this increase is not yet statistically significant and a larger sample is required to settle the issue. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Pulsed Accretion in the T Tauri Binary TWA 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Herczeg, Gregory J.

    TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolvemore » over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.« less

  17. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.

    2003-07-01

    We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231

  18. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ˜0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ˜0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  19. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  20. Optical spectroscopy of X-Mega targets - V. The spectroscopic binary HD 93161 A and its visual companion HD 93161 B*

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Antokhin, I. I.; Sana, H.; Gosset, E.; Rauw, G.

    2005-05-01

    We present the analysis of an extensive set of high-resolution spectroscopic observations of HD 93161, a visual binary with a separation of 2 arcsec. HD 93161 A is a spectroscopic binary, with both components clearly detected throughout the orbit. The primary star is most probably of spectral type O8V, while the secondary is likely an O9V. We obtain the first orbital solution for this system, characterized by a period of 8.566 +/- 0.004 d. The minimum masses of the primary and secondary stars are 22.2 +/- 0.6 and 17.0 +/- 0.4 Msolar, respectively. These values are quite large, suggesting a high inclination of the orbit. The second object, HD 93161 B, displays an O6.5V(f) spectral type and is thus slightly hotter than its neighbour. This star is at first sight single but presents radial velocity variations. Finally, we study HD 93161 in the X-ray domain. No significant variability is detected. The X-ray spectrum is well described by a 2T model with kT1~ 0.3 keV and kT2~ 0.7 keV. The X-ray luminosity is rather moderate, without any large emission excess imputable to a wind interaction.

  1. New Binaries in the ɛ Cha Association

    NASA Astrophysics Data System (ADS)

    Briceño, César; Tokovinin, Andrei

    2017-11-01

    We present Adaptive Optics-aided speckle observations of 47 young stars in the ɛ Cha association made at the 4 m Southern Astrophysical Research Telescope in the I-band. We resolved 10 new binary pairs, 5 previously known binaries, and 2 triple systems, also previously known. In the separation range between 4 and 300 au, the 30 association members of spectral types G0 and later host 6 binary companions, leading to the raw companion frequency of 0.010 ± 0.04 per decade of separation, comparable to the main sequence dwarfs in the field. On the other hand, all five massive association members of spectral types A and B have companions in this range. We discuss the newly resolved and known binaries in our sample. Observed motions in the triple system ɛ Cha, composed of three similar B9V stars, can be described by tentative orbits with periods 13 and ˜900 years and a large mutual inclination. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope.

  2. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  3. The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information

    NASA Astrophysics Data System (ADS)

    Traven, G.; Matijevič, G.; Zwitter, T.; Žerjal, M.; Kos, J.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; De Silva, G.; Freeman, K.; Lin, J.; Martell, S. L.; Schlesinger, K. J.; Sharma, S.; Simpson, J. D.; Zucker, D. B.; Anguiano, B.; Da Costa, G.; Duong, L.; Horner, J.; Hyde, E. A.; Kafle, P. R.; Munari, U.; Nataf, D.; Navin, C. A.; Reid, W.; Ting, Y.-S.

    2017-02-01

    Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited (V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort to discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE (t-distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, Hα/Hβ emission, Hα/Hβ emission superimposed on absorption, Hα/Hβ P-Cygni, Hα/Hβ inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.

  4. fd3: Spectral disentangling of double-lined spectroscopic binary stars

    NASA Astrophysics Data System (ADS)

    Ilijić, Saša

    2017-05-01

    The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.

  5. An Exercise on Calibration: DRIFTS Study of Binary Mixtures of Calcite and Dolomite with Partially Overlapping Spectral Features

    ERIC Educational Resources Information Center

    De Lorenzi Pezzolo, Alessandra

    2013-01-01

    Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…

  6. SPECTRAL STATE EVOLUTION OF 4U 1820-30: THE STABILITY OF THE SPECTRAL INDEX OF THE COMPTONIZATION TAIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarchuk, Lev; Frontera, Filippo; Seifina, Elena, E-mail: titarchuk@fe.infn.it, E-mail: lev@milkyway.gsfc.nasa.gov, E-mail: frontera@fe.infn.it, E-mail: seif@sai.msu.ru

    We analyze the X-ray spectra and their timing properties of the compact X-ray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996-2009), the source was in the soft state approximately {approx}75% of the time making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a combination of a thermal (Blackbody) component, a Comptonization component (COMPTB), and a Gaussian-line component. Thus, using this spectral analysis, we findmore » that the photon power-law index {Gamma} of the Comptonization component is almost unchangeable ({Gamma} {approx} 2), while the electron temperature kT{sub e} changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of the COMPTB component (which is proportional to the mass accretion rate M-dot ) increases by a factor of eight when kT{sub e} decreases from 21 keV to 2.9 keV. Previously, this index stability effect was also found analyzing X-ray data for the Z-source GX 340+0 and for the atolls 4U 1728-34 and GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand, in a black hole binary {Gamma} monotonically increases with M-dot and ultimately its value saturates at large M-dot .« less

  7. The Galah Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traven, G.; Zwitter, T.; Žerjal, M.

    Galah is an ongoing high-resolution spectroscopic survey with the goal of disentangling the formation history of the Milky Way using the fossil remnants of disrupted star formation sites that are now dispersed around the Galaxy. It is targeting a randomly selected magnitude-limited ( V ≤ 14) sample of stars, with the goal of observing one million objects. To date, 300,000 spectra have been obtained. Not all of them are correctly processed by parameter estimation pipelines, and we need to know about them. We present a semi-automated classification scheme that identifies different types of peculiar spectral morphologies in an effort tomore » discover and flag potentially problematic spectra and thus help to preserve the integrity of the survey results. To this end, we employ the recently developed dimensionality reduction technique t-SNE ( t -distributed stochastic neighbor embedding), which enables us to represent the complex spectral morphology in a two-dimensional projection map while still preserving the properties of the local neighborhoods of spectra. We find that the majority (178,483) of the 209,533 Galah spectra considered in this study represents normal single stars, whereas 31,050 peculiar and problematic spectra with very diverse spectral features pertaining to 28,579 stars are distributed into 10 classification categories: hot stars, cool metal-poor giants, molecular absorption bands, binary stars, H α /H β emission, H α /H β emission superimposed on absorption, H α /H β P-Cygni, H α /H β inverted P-Cygni, lithium absorption, and problematic. Classified spectra with supplementary information are presented in the catalog, indicating candidates for follow-up observations and population studies of the short-lived phases of stellar evolution.« less

  8. A SEARCH FOR L/T TRANSITION DWARFS WITH PAN-STARRS1 AND WISE. II. L/T TRANSITION ATMOSPHERES AND YOUNG DISCOVERIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene A.

    The evolution of brown dwarfs from L to T spectral types is one of the least understood aspects of the ultracool population, partly for lack of a large, well-defined, and well-characterized sample in the L/T transition. To improve the existing census, we have searched ≈28,000 deg{sup 2} using the Pan-STARRS1 and Wide-field Infrared Survey Explorer surveys for L/T transition dwarfs within 25 pc. We present 130 ultracool dwarf discoveries with estimated distances ≈9–130 pc, including 21 that were independently discovered by other authors and 3 that were previously identified as photometric candidates. Seventy-nine of our objects have near-IR spectral types ofmore » L6T4.5, the most L/T transition dwarfs from any search to date, and we have increased the census of L9–T1.5 objects within 25 pc by over 50%. The color distribution of our discoveries provides further evidence for the “L/T gap,” a deficit of objects with (J − K){sub MKO} ≈ 0.0–0.5 mag in the L/T transition, and thus reinforces the idea that the transition from cloudy to clear photospheres occurs rapidly. Among our discoveries are 31 candidate binaries based on their low-resolution spectral features. Two of these candidates are common proper motion companions to nearby main sequence stars; if confirmed as binaries, these would be rare benchmark systems with the potential to stringently test ultracool evolutionary models. Our search also serendipitously identified 23 late-M and L dwarfs with spectroscopic signs of low gravity implying youth, including 10 with vl-g or int-g gravity classifications and another 13 with indications of low gravity whose spectral types or modest spectral signal-to-noise ratio do not allow us to assign formal classifications. Finally, we identify 10 candidate members of nearby young moving groups (YMG) with spectral types L7–T4.5, including three showing spectroscopic signs of low gravity. If confirmed, any of these would be among the coolest known YMG

  9. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  10. Quantum spectral curve for ( q, t)-matrix model

    NASA Astrophysics Data System (ADS)

    Zenkevich, Yegor

    2018-02-01

    We derive quantum spectral curve equation for ( q, t)-matrix model, which turns out to be a certain difference equation. We show that in Nekrasov-Shatashvili limit this equation reproduces the Baxter TQ equation for the quantum XXZ spin chain. This chain is spectral dual to the Seiberg-Witten integrable system associated with the AGT dual gauge theory.

  11. Chandra Observations of the Eclipsing Wolf-Rayet Binary CQ CepOver a Full Orbital Cycle

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2018-06-01

    We present results of Chandra X-ray observations and simultaneous optical light curves of the short-period (1.64 d) eclipsing WN6+O9 binary system CQ Cep obtained in 2013 and 2017 covering a full binary orbit. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. Thus, X-ray variability is expected during eclipses when the hottest plasma is occulted. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. Both primary and secondary optical eclipses were clearly detected and provide an accurate orbital period determination (P = 1.6412 d). The X-ray emission remained remarkably steady throughout the orbit and statistical tests give a low probability of variability. The lack of significant X-ray variabililty during eclipses indicates that the X-ray emission is not confined along the line-of-centers but is extended on larger spatial scales, contrary to colliding wind predictions.

  12. 9 Sagittarii: uncovering an O-type spectroscopic binary with an 8.6 year period

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Sana, H.; Spano, M.; Gosset, E.; Mahy, L.; De Becker, M.; Eenens, P.

    2012-06-01

    Context. The O-type object 9 Sgr is a well-known synchrotron radio emitter. This feature is usually attributed to colliding-wind binary systems, but 9 Sgr was long considered a single star. Aims: We have conducted a long-term spectroscopic monitoring of this star to investigate its multiplicity and search for evidence for wind-wind interactions. Methods: Radial velocities are determined and analysed using various period search methods. Spectral disentangling is applied to separate the spectra of the components of the binary system. Results: We derive the first ever orbital solution of 9 Sgr. The system is found to consist of an O3.5 V((f+)) primary and an O5-5.5 V((f)) secondary moving around each other on a highly eccentric (e = 0.7), 8.6 year orbit. The spectra reveal no variable emission lines that could be formed in the wind interaction zone in agreement with the expected properties of the interaction in such a wide system. Conclusions: Our results provide further support to the paradigm of synchrotron radio emission from early-type stars being a manifestation of interacting winds in a binary system. Based on observations collected at the European Southern Observatory (La Silla, Chile and Cerro Paranal, Chile) and the San Pedro Mártir observatory (Mexico).Appendix A is available in electronic form at http://www.aanda.orgThe reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/542/A95

  13. An accessible echelle pipeline and its application to a binary star

    NASA Astrophysics Data System (ADS)

    Carmichael, Theron; Johnson, John Asher

    2018-01-01

    Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.

  14. The most plausible explanation of the cyclic period changes in close binaries: the case of the RS CVn-type binary WW Dra

    NASA Astrophysics Data System (ADS)

    Liao, W.-P.; Qian, S.-B.

    2010-07-01

    Cyclic period changes are a fairly common phenomenon in close binary systems and are usually explained as being caused either by the magnetic activity of one or both components or by the light travel time effect (LTTE) of a third body. We searched the orbital period changes in 182 EA-type (including the 101 Algol systems used by Hall), 43 EB-type and 53 EW-type binaries with known mass ratio and spectral type of the secondary component. We reproduced and improved the diagram in Hall according to the new collected data. Our plots do not support the conclusion derived by Hall that cyclic period changes are restricted to binaries having a secondary component with spectral type later than F5. The presence of period changes among systems with a secondary component of early type indicates that magnetic activity is one, but not the only, cause of the period variation. It is discovered that cyclic period changes, probably resulting from the presence of a third body, are more frequent in EW-type binaries among close systems. Therefore, the most plausible explanation of the cyclic period changes is the LTTE through the presence of a third body. Using the century-long historical record of the times of light minimum, we analysed the cyclic period change in the Algol binary WW Dra. It is found that the orbital period of the binary shows a ~112.2-yr cyclic variation with an amplitude of ~0.1977d. The cyclic oscillation can be attributed to the LTTE by means of a third body with a mass no less than 6.43Msolar. However, no spectral lines of the third body were discovered, indicating that it may be a candidate black hole. The third body is orbiting the binary at a distance closer than 14.4 au and may play an important role in the evolution of this system.

  15. Adaptive Optics Imaging of the Circumbinary Disk around the T Tauri Binary UY Aurigae: Estimates of the Binary Mass and Circumbinary Dust Grain Size Distribution

    NASA Astrophysics Data System (ADS)

    Close, L. M.; Dutrey, A.; Roddier, F.; Guilloteau, S.; Roddier, C.; Northcott, M.; Ménard, F.; Duvert, G.; Graves, J. E.; Potter, D.

    1998-05-01

    We have obtained high-resolution (FWHM = 0.15") deep images of the UY Aur binary at J, H, and K' with the University of Hawaii adaptive optics instrument. We clearly detect an R ~ 500 AU circumbinary disk discovered with millimeter interferometry, making UY Aur the second young binary with a confirmed circumbinary disk. It appears that the disk is inclined ~42° from face on. We find that the near side of the disk is brighter than the far side by factors of 2.6, 2.7, and 6.5 times at K', H, and J, respectively. The original GG Tau circumbinary disk has been reexamined and is found to have similar flux ratios of 1.5, 2.6, and 3.6 at K', H, and J, respectively. A realistic power-law distribution (p = 4.7) of spherical dust aggregates (composed of silicates, amorphous carbon, and graphite) that reproduces the observed ISM extinction curve also predicts these observed flux ratios from Mie scattering theory. We find the observed preference of forward-scattering over back-scattering is well fitted (global χ2 minimization) by Mie scattering off particles in the range amin = 0.03 μm to amax = 0.5-0.6 μm. The existence of a significant population of grain radii larger than 0.6 μm is not supported by the scattering observations. Based on the observed disk inclination we derive an orbit for UY Aur where the mass for the binary is 1.6+0.47-0.67 M⊙. Based on the observed K7 and M0 spectral types for UY Aur A and B, accretion disk models for the inner disks around the central stars were constructed. The models suggest that small (lower limit R ~ 5-10 AU) inner disks exist around B and A. It appears that B is accreting ~5 times faster than A, and that both inner disks may be exhausted in ~102-103 yr without replenishment from the outer circumbinary disk. Our images suggest that these inner disks may indeed be resupplied with material through thin streamers of material that penetrate inside the circumbinary disk. Currently it appears that such a streamer may be a close to UY

  16. Single-hole spectral function and spin-charge separation in the t-J model

    NASA Astrophysics Data System (ADS)

    Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.

    2001-07-01

    Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1<=J/t<=0.4 on lattices with up to L×L=32×32 sites at a temperature as low as T=J/40, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.

  17. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Mawet, Dimitri; Prato, Lisa, E-mail: ji.wang@caltech.edu

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution ( R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of highmore » spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.« less

  18. Spectral types of four binaries based on photometric observations

    NASA Astrophysics Data System (ADS)

    Shimanskii, V. V.; Bikmaev, I. F.; Borisov, N. V.; Vlasyuk, V. V.; Galeev, A. I.; Sakhibullin, N. A.; Spiridonova, O. I.

    2008-09-01

    We present results of photometric and spectroscopic observations of four close binaries with subdwarf B components: PG 0918+029, PG 1000+408, PG 1116+301, PG 0001+275. We discovered that PG 1000+408 is a close binary, with the most probable orbital period being P orb = 1.041145 day. Based on a comparison of the observed light curves at selected orbital phases and theoretical predictions for their variations, all the systems are classified as doubly degenerate binaries with low-luminosity white-dwarf secondaries.

  19. Period Variations of the Eclipsing Binary Systems T LMi and VX Lac

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; İzci, D. D.; Gümüş, D.; Özavci, İ.; Selam, S. O.

    2015-07-01

    We present a period analysis of the two Algol-type eclipsing binary systems T LMi and VX Lac using all available times of minimum in the literature, as well as new minima obtained at the Ankara University Kreiken Observatory. The period analysis of T LMi suggests mass transfer between the components and also a third body that is dynamically bound to the binary system. The analysis of VX Lac also suggests mass transfer between the components, and the presence of a third and a fourth body under the assumption of a Light-Time Effect. In addition, the periodic variation of VX Lac was examined under the hypothesis of magnetic activity, and the corresponding parameters were derived. We report here the orbital parameters for both systems, along with the ones related to mass transfer, and those for the third and fourth bodies.

  20. R144 revealed as a double-lined spectroscopic binary

    NASA Astrophysics Data System (ADS)

    Sana, H.; van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; de Koter, A.; Kaper, L.; Moffat, A. F. J.; Schnurr, O.; Schneider, F. R. N.; Gies, D. R.

    2013-05-01

    R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new X-shooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope. We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km s-1 in N IV and N V lines. Furthermore, the N III and N V line Doppler shifts are anticorrelated and the N IV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from two to six months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/L⊙ ≈ 6.8) suggests a present-day total mass content in the range of about 200-300 M⊙, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 M⊙. We briefly discuss the presence of such a massive object, 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.

  1. Compact Binary Mergers and the Event Rate of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-Feng; Yu, Yun-Wei; Zhou, Xia

    2018-05-01

    Fast radio bursts (FRBs) are usually suggested to be associated with mergers of compact binaries consisting of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). We test these models by fitting the observational distributions in both redshift and isotropic energy of 22 Parkes FRBs, where, as usual, the rates of compact binary mergers (CBMs) are connected with cosmic star formation rates by a power-law distributed time delay. It is found that the observational distributions can well be produced by the CBM model with a characteristic delay time from several tens to several hundreds of megayears and an energy function index 1.2 ≲ γ ≲ 1.7, where a tentative fixed spectral index β = 0.8 is adopted for all FRBs. Correspondingly, the local event rate of FRBs is constrained to {(3{--}6)× {10}4{f}{{b}}-1({ \\mathcal T }/270{{s}})}-1{({ \\mathcal A }/2π )}-1 {Gpc}}-3 {yr}}-1 for an adopted minimum FRB energy of E min = 3 × 1039 erg, where f b is the beaming factor of the radiation, { \\mathcal T } is the duration of each pointing observation, and { \\mathcal A } is the sky area of the survey. This event rate, about an order of magnitude higher than the rates of NS–NS/NS–BH mergers, indicates that the most promising origin of FRBs in the CBM scenario could be mergers of WD–WD binaries. Here a massive WD could be produced since no FRB was found to be associated with an SN Ia. Alternatively, if all FRBs can repeat on a timescale much longer than the period of current observations, then they could also originate from a young active NS that forms from relatively rare NS–NS mergers and accretion-induced collapses of WD–WD binaries.

  2. The young, tight, and low-mass binary TWA22AB: a new calibrator for evolutionary models?. Orbit, spectral types, and temperature

    NASA Astrophysics Data System (ADS)

    Bonnefoy, M.; Chauvin, G.; Dumas, C.; Lagrange, A.-M.; Beust, H.; Desort, M.; Teixeira, R.; Ducourant, C.; Beuzit, J.-L.; Song, I.

    2009-11-01

    Context: Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims: We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods: We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (Rλ=1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results: Based on an accurate trigonometric distance (17.5 ± 0.2 pc) determination, we infer a total dynamical mass of 220 ± 21 MJup for the system. From the complete set of spectra, we find an effective temperature T_eff=2900+200-200 K for TWA22 A and T_eff=2900+200-100 K for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 ± 1 spectral type for both components, we find luminosities of log(L/L⊙) = -2.11 ± 0.13 dex and log(L/L⊙) = -2.30 ± 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary. Based on service-mode observations (072.C-0644, 073.C-0469, 075.C-0521, 076.C-0554, 078.C-0510, 080.C-0581

  3. The Young L Dwarf 2MASS J11193254-1137466 Is a Planetary-mass Binary

    NASA Astrophysics Data System (ADS)

    Best, William M. J.; Liu, Michael C.; Dupuy, Trent J.; Magnier, Eugene A.

    2017-07-01

    We have discovered that the extremely red, low-gravity L7 dwarf 2MASS J11193254-1137466 is a 0.″14 (3.6 au) binary using Keck laser guide star adaptive optics imaging. 2MASS J11193254-1137466 has previously been identified as a likely member of the TW Hydrae Association (TWA). Using our updated photometric distance and proper motion, a kinematic analysis based on the BANYAN II model gives an 82% probability of TWA membership. At TWA’s 10 ± 3 Myr age and using hot-start evolutionary models, 2MASS J11193254-1137466AB is a pair of {3.7}-0.9+1.2 {M}{Jup} brown dwarfs, making it the lowest-mass binary discovered to date. We estimate an orbital period of {90}-50+80 years. One component is marginally brighter in K band but fainter in J band, making this a probable flux-reversal binary, the first discovered with such a young age. We also imaged the spectrally similar TWA L7 dwarf WISEA J114724.10-204021.3 with Keck and found no sign of binarity. Our evolutionary model-derived {T}{eff} estimate for WISEA J114724.10-204021.3 is ≈230 K higher than for 2MASS J11193254-1137466AB, at odds with the spectral similarity of the two objects. This discrepancy suggests that WISEA J114724.10-204021.3 may actually be a tight binary with masses and temperatures very similar to 2MASS J11193254-1137466AB, or further supporting the idea that near-infrared spectra of young ultracool dwarfs are shaped by factors other than temperature and gravity. 2MASS J11193254-1137466AB will be an essential benchmark for testing evolutionary and atmospheric models in the young planetary-mass regime.

  4. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  5. Toward Understanding the B[e] Phenomenon. V. Nature and Spectral Variations of the MWC 728 Binary System.

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, A. S.; Zharikov, S. V.; Danford, S.; Manset, N.; Korčáková, D.; Kříček, R.; Šlechta, M.; Omarov, Ch. T.; Kusakin, A. V.; Kuratov, K. S.; Grankin, K. N.

    2015-08-01

    We report the results of a long-term spectroscopic monitoring of the FS CMa type object MWC 728. We found that it is a binary system with a B5 ve ({T}{eff} = 14,000 ± 1000 K) primary and a G8 iii type ({T}{eff} ˜ 5000 K) secondary. Absorption line positions of the secondary vary, with a semi-amplitude of ˜20 km s-1 and a period of 27.5 days. The system’s mass function is 2.3 × 10-2 {M}⊙ , and its orbital plane is ˜13°-15° tilted from the plane of the sky. The primary’s v\\sin i˜ 110 km s-1, combined with this tilt, implies that it rotates at a nearly breakup velocity. We detected strong variations of the Balmer and He i emission-line profiles on timescales from days to years. This points to a variable stellar wind of the primary in addition to the presence of a circum-primary gaseous disk. The strength of the absorption-line spectrum, along with the optical and near infrared (IR) continuum, suggest that the primary contributes ˜60% of the V-band flux, the disk contributes ˜30%, and the secondary contributes ˜10%. The system parameters, along with the interstellar extinction, suggest a distance of ˜1 kpc, that the secondary does not fill its Roche lobe, and that the companions’ mass ratio is q ˜ 0.5. Overall, the observed spectral variability and the presence of a strong IR-excess are in agreement with a model of a close binary system that has undergone a non-conservative mass-transfer. of the Centre National de la Recherche Scientifique de France, and the University of Hawaii as well as on observations obtained at the 2.7 m Harlan J. Smith telescope of the McDonald Observatory (Texas, USA), 2.1 m of the Observatorio Astronomico Nacional San Pedro Martir (Baja California, Mexico), 2 m telescope of the Ondřejov Observatory, Czech Republic, and 0.81 m telescope of the Three College Observatory, North Carolina, USA.

  6. Evaluation of the Subscapularis Tendon Tears on 3T Magnetic Resonance Arthrography: Comparison of Diagnostic Performance of T1-Weighted Spectral Presaturation with Inversion-Recovery and T2-Weighted Turbo Spin-Echo Sequences.

    PubMed

    Lee, Hoseok; Ahn, Joong Mo; Kang, Yusuhn; Oh, Joo Han; Lee, Eugene; Lee, Joon Woo; Kang, Heung Sik

    2018-01-01

    To compare the T1-weighted spectral presaturation with inversion-recovery sequences (T1 SPIR) with T2-weighted turbo spin-echo sequences (T2 TSE) on 3T magnetic resonance arthrography (MRA) in the evaluation of the subscapularis (SSC) tendon tear with arthroscopic findings as the reference standard. This retrospective study included 120 consecutive patients who had undergone MRA within 3 months between April and December 2015. Two musculoskeletal radiologists blinded to the arthroscopic results evaluated T1 SPIR and T2 TSE images in separate sessions for the integrity of the SSC tendon, examining normal/articular-surface partial-thickness tear (PTTa)/full-thickness tear (FTT). Diagnostic performance of T1 SPIR and T2 TSE was calculated with arthroscopic results as the reference standard, and sensitivity, specificity, and accuracy were compared using the McNemar test. Interobserver agreement was measured with kappa (κ) statistics. There were 74 SSC tendon tears (36 PTTa and 38 FTT) confirmed by arthroscopy. Significant differences were found in the sensitivity and accuracy between T1 SPIR and T2 TSE using the McNemar test, with respective rates of 95.9-94.6% vs. 71.6-75.7% and 90.8-91.7% vs. 79.2-83.3% for detecting tear; 55.3% vs. 31.6-34.2% and 85.8% vs. 78.3-79.2%, respectively, for FTT; and 91.7-97.2% vs. 58.3-61.1% and 89% vs. 78-79.3%, respectively, for PTTa. Interobserver agreement for T1 SPIR was almost perfect for T1 SPIR (κ = 0.839) and substantial for T2 TSE (κ = 0.769). T1-weighted spectral presaturation with inversion-recovery sequences is more sensitive and accurate compared to T2 TSE in detecting SSC tendon tear on 3T MRA.

  7. Eclipsing and density effects on the spectral behavior of Beta Lyrae binary system in the UV

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2010-01-01

    We analyze both long and short high resolution ultraviolet spectrum of Beta Lyrae eclipsing binary system observed with the International Ultraviolet Explorer (IUE) between 1980 and 1989. The main spectral features are P Cygni profiles originating from different environments of Beta Lyrae. A set of 23 Mg II k&h spectral lines at 2800 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H], have been identified and measured to determine their fluxes and widths. We found that there is spectral variability for these physical parameters with phase, similar to that found for the light curve [Kondo, Y., McCluskey, G.E., Jeffery, M.M.S., Ronald, S.P., Carolina, P.S. McCluskey, Joel, A.E., 1994. ApJ, 421, 787], which we attribute to the eclipse effects [Ak, H., Chadima, P., Harmanec, P., Demircan, O., Yang, S., Koubský, P., Škoda, P., Šlechta, M., Wolf, M., Božić, H., 2007. A&A, 463, 233], in addition to the changes of density and temperature of the region from which these lines are coming, as a result of the variability of mass loss from the primary star to the secondary [Hoffman, J.L., Nordsieck, K.H., Fox, G.K., 1998. AJ, 115, 1576; Linnell, A.P., Hubeny, I., Harmanec, P., 1998. ApJ, 509, 379]. Also we present a study of Fe II spectral line at 2600 Å, originating from the atmosphere of the primary star [Hack, M., 1980. IAUS, 88, 271H]. We found spectral variability of line fluxes and line widths with phase similar to that found for Mg II k&h lines. Finally we present a study of Si IV spectral line at 1394 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H]. A set of 52 Si IV spectral line at 1394 Å have been identified and measured to determine their fluxes and widths. Also we found spectral variability of these physical parameters with phase similar to that found for Mg II k&h and Fe II spectral lines.

  8. Atmospheric Properties Of T Dwarfs Inferred From Model Fits At Low Spectral Resolution

    NASA Astrophysics Data System (ADS)

    Giorla Godfrey, Paige A.; Rice, Emily L.; Filippazzo, Joseph C.; Douglas, Stephanie E.

    2016-09-01

    Brown dwarf spectral types (M, L, T, Y) correlate with spectral morphology, and generally appear to correspond with decreasing mass and effective temperature (Teff). Model fits to observed spectra suggest, however, that spectral subclasses do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. We seekto disentangle the fundamental parameters that underlie the spectral type sequence of the coolest fully populated spectral class of brown dwarfs using atmosphere models. We investigate the relationship between spectral type and best fit model parameters for a sample of over 150 T dwarfs with low resolution (R 75-100) near-infrared ( 0.8-2.5 micron) SpeX Prism spectra. We use synthetic spectra from four model grids (Saumon & Marley 2008, Morley+ 2012, Saumon+ 2012, BT Settl 2013) and a Markov-Chain Monte Carlo (MCMC) analysis to determine robust best fit parameters and their uncertainties. We compare the consistency of each model grid by performing our analysis on the full spectrum and also on individual wavelength bands (Y,J,H,K). We find more consistent results between the J band and full spectrum fits and that our best fit spectral type-Teff results agree with the polynomial relationships of Stephens+2009 and Filippazzo+ 2015 using bolometric luminosities. Our analysis consists of the most extensive low resolution T dwarf model comparison to date, and lays the foundation for interpretation of cool brown dwarf and exoplanet spectra.

  9. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Cackett, Edward; Troyer, Jon; Peille, Philippe; Barret, Didier

    2018-01-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Using data averaged over the entire RXTE archive, we show correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra for the various LMXB systems where spectral-timing analysis is possible. We find similar trends in all average spectral-timing products for the objects studied. This suggests a common origin of kHz QPOs.

  10. A Moderate Resolution NIR Spectral Library of Weak-Lined T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Cooper, Rachel; Covey, K. R.

    2013-01-01

    We present a spectral library of high-quality moderate resolution (R ~ 3500) NIR spectra for 44 weak-lined T Tauri Stars (WTTS) in the Taurus-Auriga Molecular Cloud. These spectra, obtained with the TripleSpec spectrograph on the Astrophysical Research Consortium (ARC) 3.5 meter telescope, provide full coverage of the J, H, and K near-infrared bands in a single epoch. Analyzing these spectra, along with those of dwarf and giant spectral type standards from the SpeX Spectral Library, we have identified several elemental and molecular absorption lines that vary in strength with respect to each star's spectral type and luminosity class. Calibrating each of these features as a spectral type indicator, we provide a detailed characterization for each of the WTTSs in our sample, identifying each star's NIR spectral type and line-of-sight extinction, estimated both from the shape of the overall continuum and from the fluxes of the Paschen beta and Brackett gamma emission lines. In addition to improving our understanding of the properties of these WTTSs, this well characterized spectral library will be a valuable resource for analyses of the NIR continuum veiling and line emission present in the spectra of accreting classical T Tauri stars. This research was made possible by NSF Grant AST-1004107.

  11. Spectral studies on the interaction of pinacyanol chloride with binary surfactants in aqueous medium.

    PubMed

    Manna, Kausik; Panda, Amiya Kumar

    2009-12-01

    Interaction of pinacyanol chloride (PIN) with pure and binary mixtures of cetyltrimethylammonium bromide (CTAB) and sodium deoxycholate (NaDC) was spectroscopically studied. Interaction of PIN with pure NaDC produced a blue shifted metachromatic band (at approximately 502 nm), which gradually shifted to higher wavelength region as the concentration of NaDC increased in the pre-micellar stage. For CTAB only intensity of both the bands increased without any shift. Mixed surfactant systems behaved differently than the pure components. Absorbance of monomeric band with a slight red-shift, and a simultaneous decrease in the absorbance of dimeric band of PIN, were observed for all the combinations in the post-micellar region. PIN-micelle binding constant (K(b)) for pure as well as mixed was determined from spectral data using Benesi-Hildebrand equation. Using the idea of Regular Solution Theory, micellar aggregates were assumed to be predominant than other aggregated state, like vesicles. Aggregation number was determined by fluorescence quenching method. Spectral analyses were also done to evaluate CMC values. Rubinigh's model for Regular Solution Theory was employed to evaluate the interaction parameters and micellar composition. Strong synergistic interaction between the oppositely charged surfactants was noted. Bulkier nature of NaDC lowered down its access in mixed micellar system.

  12. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I

  13. Low mass companions to nearby stars: Spectral classification and its relation to the stellar/substellar break

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. Davy; Mccarthy, Donald W., Jr.

    1994-01-01

    The relationship between mass and spectral class for main-sequence stars has never been obtained for dwarfs cooler than M6; currently, the true nature of objects classified as M7, M8, M9, or later (be they stellar or substellar) is not known. In this paper, spectral types for the components in five low mass binary systems are estimated based on previously published infrared speckle measurements, red/infrared photometry, and parallax data, together with newly acquired high signal-to-noise composite spectra of the systems and revised magnitude difference relations for M dwarfs. For two of these binaries, the secondary has a smaller mass (less than 0.09 solar mass) than any object having a dynamically measured mass and a known spectral type, thus extending the spectral class/mass relation to lower masses than has previously been possible. Data from the higher mass components (0.09 solar mass less than M less than 0.40 solar mass) are consistent with earlier results; the two lowest mass objects -- though having mass errors which could place them on either side of the M dwarf/brown dwarf dividing line (Mass is about 0.08 solar mass) -- are found to have spectral types no cooler than M6.5 V. An extrapolation of the updated spectral class/mass relation to the hydrogen-burning limit suggests that objects of type M7 and later may be substellar. Direct confirmation of this awaits the discovery of a close, very late-type binary for which dynamical masses can be measured.

  14. Effective Temperatures for Young Stars in Binaries

    NASA Astrophysics Data System (ADS)

    Muzzio, Ryan; Avilez, Ian; Prato, Lisa A.; Biddle, Lauren I.; Allen, Thomas; Wright-Garba, Nuria Meilani Laure; Wittal, Matthew

    2017-01-01

    We have observed about 100 multi-star systems, within the star forming regions Taurus and Ophiuchus, to investigate the individual stellar and circumstellar properties of both components in young T Tauri binaries. Near-infrared spectra were collected using the Keck II telescope’s NIRSPEC spectrograph and imaging data were taken with Keck II’s NIRC2 camera, both behind adaptive optics. Some properties are straightforward to measure; however, determining effective temperature is challenging as the standard method of estimating spectral type and relating spectral type to effective temperature can be subjective and unreliable. We explicitly looked for a relationship between effective temperatures empirically determined in Mann et al. (2015) and equivalent width ratios of H-band Fe and OH lines for main sequence spectral type templates common to both our infrared observations and to the sample of Mann et al. We find a fit for a wide range of temperatures and are currently testing the validity of using this method as a way to determine effective temperature robustly. Support for this research was provided by an REU supplement to NSF award AST-1313399.

  15. Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (˜daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  16. The Binary Dwarf Carbon Star SDSS J125017.90+252427.6

    NASA Astrophysics Data System (ADS)

    Margon, Bruce; Kupfer, Thomas; Burdge, Kevin; Prince, Thomas A.; Kulkarni, Shrinivas R.; Shupe, David L.

    2018-03-01

    Although dwarf carbon (dC) stars are universally thought to be binaries in order to explain the presence of C 2 in their spectra while still near main-sequence luminosity, direct observational evidence for their binarity is remarkably scarce. Here, we report the detection of a 2.92 day periodicity in both the photometry and radial velocity of SDSS J125017.90+252427.6, an r = 16.4 dC star. This is the first photometric binary dC, and only the second dC spectroscopic binary. The relative phase of the photometric period to the spectroscopic observations suggests that the photometric variations are a reflection effect due to heating from an unseen companion. The observed radial velocity amplitude of the dC component (K = 98.8 ± 10.7 km s‑1) is consistent with a white dwarf companion, presumably the evolved star that earlier donated the carbon to the dC, although substantial orbital evolution must have occurred. Large synoptic photometric surveys such as the Palomar Transient Factory, which was used for this work, may prove useful for identifying binaries among the shorter-period dC stars.

  17. Research on the Orbital Period of Massive Binaries

    NASA Astrophysics Data System (ADS)

    Zhao, E.; Qain, S.

    2011-12-01

    Massive binary is the kind of binary, whose spectral type is earlier than B5. Research on massive binary plays an important role in the mass and angular momentum transfer or loss between the components, and the evolution of binary. Some massive binaries are observed and analyzed, including O-type binary LY Aur, B-type contact binary RZ Pyx and B-type semi-detached binary AI Cru. It is found that all of their periods have a long-term increasing, which indicates that the system is undergoing a Case A slow mass transfer stage on the nuclear time-scale of the secondary. Moreover, analysis show a cyclic change of orbital period, which can be explained by the light-travel effect time of the third body.

  18. Observations and light curve solutions of a selection of middle-contact W UMa binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana Petrova; Popov, Velimir Angelov; Lyubenova Vasileva, Doroteya; Petrov, Nikola Ivanov

    2018-04-01

    Photometric observations in Sloan g‧ and i‧ bands of W UMa binaries NSVS 4340949, T-Dra0–00959, GSC 03950–00707, NSVS 4665041, NSVS 4803568, MM Peg, MM Com and NSVS 4751449 are presented. The light curve solutions revealed that the components of each target are of G and K spectral types. The binaries of the sample have middle-contact configurations whose fillout factors are within the range 0.2–0.4. The only exception is NSVS 4751449 which is in deeper contact (fillout factor of 0.55). It precisely obeys the relation between mass ratio and fillout factor for deep, low mass ratio overcontact binaries. One of the eclipses of almost all targets (except MM Peg) is an occultation and their photometric mass ratios and solutions could be accepted with confidence. We found that the target components have almost equal temperatures but differ considerably in size and mass. The components of the partially-eclipsed MM Peg have close parameters. Our solutions reveal that NSVS 4340949, T-Dra0–00959, NSVS 4803568 and MM Com are of W subtype while GSC 03950–00707, NSVS 4665041, MM Peg and NSVS 4751449 are of A subtype. This subclassification is well-determined for all totally-eclipsed binaries. The targets confirm the trends in which W-subtype systems have smaller periods and lower temperatures than A subtype binaries.

  19. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the

  20. Spectral and Timing Properties of the Black Hole X-Ray Binary H1743-322 in the Low/Hard State Studied with Suzaku

    NASA Astrophysics Data System (ADS)

    Shidatsu, M.; Ueda, Y.; Yamada, S.; Done, C.; Hori, T.; Yamaoka, K.; Kubota, A.; Nagayama, T.; Moritani, Y.

    2014-07-01

    We report on the results from Suzaku observations of the Galactic black hole X-ray binary H1743-322 in the low/hard state during its outburst in 2012 October. We appropriately take into account the effects of dust scattering to accurately analyze the X-ray spectra. The time-averaged spectra in the 1-200 keV band are dominated by a hard power-law component of a photon index of ≈1.6 with a high-energy cutoff at ≈60 keV, which is well described with the Comptonization of the disk emission by the hot corona. We estimate the inner disk radius from the multi-color disk component, and find that it is 1.3-2.3 times larger than the radius in the high/soft state. This suggests that the standard disk was not extended to the innermost stable circular orbit. A reflection component from the disk is detected with R = Ω/2π ≈ 0.6 (Ω is the solid angle). We also successfully estimate the stable disk component independent of the time-averaged spectral modeling by analyzing short-term spectral variability on a ~1 s timescale. A weak low-frequency quasi-periodic oscillation at 0.1-0.2 Hz is detected, whose frequency is found to correlate with the X-ray luminosity and photon index. This result may be explained by the evolution of the disk truncation radius.

  1. Binary fingerprints at fluctuation-enhanced sensing.

    PubMed

    Chang, Hung-Chih; Kish, Laszlo B; King, Maria D; Kwan, Chiman

    2010-01-01

    We have developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 2.5 × 10(4)-10(6). To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.

  2. Spectroscopy of hot subdwarf binaries

    NASA Astrophysics Data System (ADS)

    Kreuzer, Simon; Irrgang, Andreas; Heber, Ulrich

    2018-06-01

    We present a status report of our spectroscopic analysis of subdwarf binaries consisting of a subdwarf and a F/G/K-type main-sequence companion. These systems selected from SDSS photometry show significant excess in the (infra-)red which can not be explained by interstellar reddening. Inspection of SDSS spectra revealed that most of them are composite spectrum sdB binaries. Once their spectra are disentangled, a detailed spectral analysis can be carried out. It reveals Teff, log g and the metal abundance of each individual star. The cool companion is of particular interest, because its spectrum reveals the original chemical composition of the binary.

  3. Observations, Analysis, and Spectroscopic Classification of HO Piscium: A Bright Shallow-Contact Binary with G- and M-Type Components

    NASA Astrophysics Data System (ADS)

    Samec, Ronald G.; Smith, Paul M.; Robb, Russell; Faulkner, Danny R.; Van Hamme, W.

    2012-07-01

    We present a spectrum and a photometric analysis of the newly discovered, high-amplitude, solar-type, eclipsing binary HO Piscium. A spectroscopic identification, a period study, q-search, and a simultaneous UBVRc Ic light-curve solution are presented. The spectra and our photometric solution indicate that HO Psc is a W-type W UMa shallow-contact (fill-out ˜8%) binary system. The primary component has a G6V spectral type with an apparently precontact spectral type of M2V for the secondary component. The small fill-out indicates that the system has not yet achieved thermal contact and thus has recently come into physical contact. This may mean that this solar-type binary system has not attained its ˜0.4 mass ratio via a long period of magnetic braking, as would normally be assumed.

  4. Orbital motion in T Tauri binary systems

    NASA Astrophysics Data System (ADS)

    Woitas, J.; Köhler, R.; Leinert, Ch.

    2001-04-01

    Using speckle-interferometry we have carried out repeated measurements of relative positions for the components of 34 T Tauri binary systems. The projected separation of these components is low enough that orbital motion is expected to be observable within a few years. In most cases orbital motion has indeed been detected. The observational data is discussed in a manner similar to Ghez et al. (\\cite{Ghez95}). However, we extend their study to a larger number of objects and a much longer timespan. The database presented in this paper is valuable for future visual orbit determinations. It will yield empirical masses for T Tauri stars that now are only poorly known. The available data is however not sufficient to do this at the present time. Instead, we use short series of orbital data and statistical distributions of orbital parameters to derive an average system mass that is independent of theoretical assumptions about the physics of PMS stars. For our sample this mass is 2.0 Msun and thus in the order of magnitude one expects for the mass sum of two T Tauri stars. It is also comparable to mass estimates obtained for the same systems using theoretical PMS evolutionary models. Based on observations collected at the German-Spanish Astronomical Center on Calar Alto, Spain, and at the European Southern Observatory, La Silla, Chile. Table A.1 is only available in electronic form at the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/249

  5. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    PubMed

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  6. WISEP J061135.13-041024.0 AB: A J-band Flux Reversal Binary at the L/T Transition

    NASA Astrophysics Data System (ADS)

    Gelino, Christopher R.; Smart, R. L.; Marocco, Federico; Kirkpatrick, J. Davy; Cushing, Michael C.; Mace, Gregory; Mendez, Rene A.; Tinney, C. G.; Jones, Hugh R. A.

    2014-07-01

    We present Keck II laser guide star adaptive optics observations of the brown dwarf WISEP J061135.13-041024.0 showing it is a binary with a component separation of 0.''4. This system is one of the six known resolved binaries in which the magnitude differences between the components show a reversal in sign between the Y/J band and the H/K bands. Deconvolution of the composite spectrum results in a best-fit binary solution with L9 and T1.5 components. We also present a preliminary parallax placing the system at a distance of 21.2 ± 1.3 pc. Using the distance and resolved magnitudes we are able to place WISEP J061135.13-041024.0 AB on a color-absolute magnitude diagram, showing that this system contributes to the well-known "J-band bump" and the components' properties appear similar to other late-type L and early-type T dwarfs. Fitting our data to a set of cloudy atmosphere models suggests the system has an age >1 Gyr with WISE 0611-0410 A having an effective temperature (T eff) of 1275-1325 K and mass of 64-65 M Jup, and WISE 0611-0410 B having T eff = 1075-1115 K and mass 40-65 M Jup.

  7. Protoplanetary disk evolution and stellar parameters of T Tauri binaries in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Daemgen, S.; Petr-Gotzens, M. G.; Correia, S.; Teixeira, P. S.; Brandner, W.; Kley, W.; Zinnecker, H.

    2013-06-01

    Aims: This study aims to determine the impact of stellar binary companions on the lifetime and evolution of circumstellar disks in the Chamaeleon I (Cha I) star-forming region by measuring the frequency and strength of accretion and circumstellar dust signatures around the individual components of T Tauri binary stars. Methods: We used high-angular resolution adaptive optics JHKsL' -band photometry and 1.5-2.5 μm spectroscopy of 19 visual binary and 7 triple stars in Cha I - including one newly discovered tertiary component - with separations between ~25 and ~1000 AU. The data allowed us to infer stellar component masses and ages and, from the detection of near-infrared excess emission and the strength of Brackett-γ emission, the presence of ongoing accretion and hot circumstellar dust of the individual stellar components of each binary. Results: Of all the stellar components in close binaries with separations of 25-100 AU, 10+15-5% show signs of accretion. This is less than half of the accretor fraction found in wider binaries, which itself appears significantly reduced (~44%) compared with previous measurements of single stars in Cha I. Hot dust was found around 50+30-15% of the target components, a value that is indistinguishable from that of Cha I single stars. Only the closest binaries (<25 AU) were inferred to have a significantly reduced fraction (≲25%) of components that harbor hot dust. Accretors were exclusively found in binary systems with unequal component masses Msecondary/Mprimary < 0.8, implying that the detected accelerated disk dispersal is a function of mass-ratio. This agrees with the finding that only one accreting secondary star was found, which is also the weakest accretor in the sample. Conclusions: The results imply that disk dispersal is more accelerated the stronger the dynamical disk truncation, i.e., the smaller the inferred radius of the disk. Nonetheless, the overall measured mass accretion rates appear to be independent of the

  8. The Mass-Luminosity Relation in the L/T Transition: Individual Dynamical Masses for the New J-band Flux Reversal Binary SDSSJ105213.51+442255.7AB

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.; Liu, Michael C.; Leggett, S. K.; Ireland, Michael J.; Chiu, Kuenley; Golimowski, David A.

    2015-05-01

    We have discovered that SDSS J105213.51+442255.7 (T0.5 ± 1.0) is a binary in Keck laser guide star adaptive optics imaging, displaying a large J- to K-band flux reversal ({Δ }J=-0.45+/- 0.09 mag, {Δ }K=0.52+/- 0.05 mag). We determine a total dynamical mass from Keck orbital monitoring (88 ± 5 {{M}Jup}) and a mass ratio by measuring the photocenter orbit from CFHT/WIRCam absolute astrometry ({{M}B}/{{M}A}=0.78+/- 0.07). Combining these provides the first individual dynamical masses for any field L or T dwarfs, 49 ± 3 {{M}Jup} for the L6.5±1.5 primary and 39 ± 3 {{M}Jup} for the T1.5±1.0 secondary. Such a low mass ratio for a nearly equal luminosity binary implies a shallow mass-luminosity relation over the L/T transition ({Δ }log {{L}bol}/{Δ }log M=0.6-0.8+0.6). This provides the first observational support that cloud dispersal plays a significant role in the luminosity evolution of substellar objects. Fully cloudy models fail our coevality test for this binary, giving ages for the two components that disagree by 0.2 dex (2.0σ). In contrast, our observed masses and luminosities can be reproduced at a single age by “hybrid” evolutionary tracks where a smooth change from a cloudy to cloudless photosphere around 1300 K causes slowing of luminosity evolution. Remarkably, such models also match our observed JHK flux ratios and colors well. Overall, it seems that the distinguishing features SDSS J1052+4422AB, like a J-band flux reversal and high-amplitude variability, are normal for a field L/T binary caught during the process of cloud dispersal, given that the age (1.11-0.20+0.17 Gyr) and surface gravity (log g = 5.0-5.2) of SDSS J1052+4422AB are typical for field ultracool dwarfs. Based on data obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope, which is operated by the National Research Council of Canada, the Institute National des Sciences de l’Univers of the Centre National de la

  9. The Low-Mass X-Ray Binary X1832-330 in the Globular Cluster NGC 6652: A Serendipitous ASCA Observation

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan P.

    1999-01-01

    The Low Mass X-ray Binary (LMXB) X1832-330 in NGC 6652 is one of about 10 bright X-ray sources to have been discovered in Globular Clusters. We report on a serendipitous ASCA observation of this Globular Cluster LMXB, during which a Type I burst was detected and the persistent, non-burst emission of the source was at its brightest level recorded to date. No orbital modulation was detected, which argues against a high inclination for the X1832-330 system. The spectrum of the persistent emission can be fit with a power law plus a partial covering absorber, although other models are not ruled out. Our time-resolved spectral analysis through the burst shows, for the first time, clear evidence for spectral cooling from kT = 2.4 +/- 0.6 keV to kT = 1.0 +/- 0.1 keV during the decay. The measured peak flux during the burst is approximately 10% of the Eddington luminosity for a 1.4 Solar Mass neutron star. These are characteristic of a Type I burst, in the context of the relatively low quiescent luminosity of X1832-330.

  10. Ternary bulk heterojunction for wide spectral range organic photodetectors

    NASA Astrophysics Data System (ADS)

    Shin, Hojung; Kim, Jaehoon; Lee, Changhee

    2017-08-01

    Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.

  11. Spectral Variations of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Guenther, E.

    1994-02-01

    Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling

  12. Observations of suspected low-mass post-T Tauri stars and their evolutionary status

    NASA Technical Reports Server (NTRS)

    Mundt, R.; Walter, F. M.; Feigelson, E. D.; Finkenzeller, U.; Herbig, G. H.; Odell, A. P.

    1983-01-01

    The results of a study of five X-ray discovered weak emission pre-main-sequence stars in the Taurus-Auriga star formation complex are presented. All are of spectral type K7-M0, and about 1-2 mag above the main sequence. One is a double-lined spectroscopic binary, the first spectroscopic binary PMS star to be confirmed. The ages, masses, and radii of these stars as determined by photometry and spectroscopy are discussed. The difference in emission strength between these and the T Tauri stars is investigated, and it is concluded that these 'post-T Tauri' stars do indeed appear more evolved than the T Tauri stars, although there is no evidence of any significant difference in ages.

  13. Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Ting, Yuan-Sen; Rix, Hans-Walter; Quataert, Eliot; Weisz, Daniel R.; Cargile, Phillip; Conroy, Charlie; Hogg, David W.; Bergemann, Maria; Liu, Chao

    2018-05-01

    We develop a data-driven spectral model for identifying and characterizing spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars. Binaries and triples are identified as targets whose spectra can be significantly better fit by a superposition of two or three model spectra, drawn from the same isochrone, than any single-star model. From an initial sample of ˜20 000 main-sequence targets, we identify ˜2500 binaries in which both the primary and secondary stars contribute detectably to the spectrum, simultaneously fitting for the velocities and stellar parameters of both components. We additionally identify and fit ˜200 triple systems, as well as ˜700 velocity-variable systems in which the secondary does not contribute detectably to the spectrum. Our model simplifies the process of simultaneously fitting single- or multi-epoch spectra with composite models and does not depend on a velocity offset between the two components of a binary, making it sensitive to traditionally undetectable systems with periods of hundreds or thousands of years. In agreement with conventional expectations, almost all the spectrally identified binaries with measured parallaxes fall above the main sequence in the colour-magnitude diagram. We find excellent agreement between spectrally and dynamically inferred mass ratios for the ˜600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchical triples. We make available catalogues of stellar parameters, abundances, mass ratios, and orbital parameters.

  14. Long-term eclipse timing of white dwarf binaries: an observational hint of a magnetic mechanism at work

    NASA Astrophysics Data System (ADS)

    Bours, M. C. P.; Marsh, T. R.; Parsons, S. G.; Dhillon, V. S.; Ashley, R. P.; Bento, J. P.; Breedt, E.; Butterley, T.; Caceres, C.; Chote, P.; Copperwheat, C. M.; Hardy, L. K.; Hermes, J. J.; Irawati, P.; Kerry, P.; Kilkenny, D.; Littlefair, S. P.; McAllister, M. J.; Rattanasoon, S.; Sahman, D. I.; Vučković, M.; Wilson, R. W.

    2016-08-01

    We present a long-term programme for timing the eclipses of white dwarfs in close binaries to measure apparent and/or real variations in their orbital periods. Our programme includes 67 close binaries, both detached and semi-detached and with M-dwarfs, K-dwarfs, brown dwarfs or white dwarfs secondaries. In total, we have observed more than 650 white dwarf eclipses. We use this sample to search for orbital period variations and aim to identify the underlying cause of these variations. We find that the probability of observing orbital period variations increases significantly with the observational baseline. In particular, all binaries with baselines exceeding 10 yr, with secondaries of spectral type K2 - M5.5, show variations in the eclipse arrival times that in most cases amount to several minutes. In addition, among those with baselines shorter than 10 yr, binaries with late spectral type (>M6), brown dwarf or white dwarf secondaries appear to show no orbital period variations. This is in agreement with the so-called Applegate mechanism, which proposes that magnetic cycles in the secondary stars can drive variability in the binary orbits. We also present new eclipse times of NN Ser, which are still compatible with the previously published circumbinary planetary system model, although only with the addition of a quadratic term to the ephemeris. Finally, we conclude that we are limited by the relatively short observational baseline for many of the binaries in the eclipse timing programme, and therefore cannot yet draw robust conclusions about the cause of orbital period variations in evolved, white dwarf binaries.

  15. Spectral properties near the Mott transition in the two-dimensional t-J model with next-nearest-neighbor hopping

    NASA Astrophysics Data System (ADS)

    Kohno, Masanori

    2018-05-01

    The single-particle spectral properties of the two-dimensional t-J model with next-nearest-neighbor hopping are investigated near the Mott transition by using cluster perturbation theory. The spectral features are interpreted by considering the effects of the next-nearest-neighbor hopping on the shift of the spectral-weight distribution of the two-dimensional t-J model. Various anomalous features observed in hole-doped and electron-doped high-temperature cuprate superconductors are collectively explained in the two-dimensional t-J model with next-nearest-neighbor hopping near the Mott transition.

  16. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will

  17. Separate Spectra of the Components of the Low-mass Binary L722-22

    NASA Astrophysics Data System (ADS)

    Chance, D.; Hershey, J.

    1996-12-01

    Separate spectra have been acquired of the components of the low-mass binary L722-22A,B. Using the Hubble Space Telescope Faint Object Spectrograph in the same manner described in BAAS 27,1341 for Ross 614A,B a small aperture was placed on each star, excluding the light from the other. L722-22 was discovered to be a binary by Ianna (1988, AJ 95,1226) from a small photographic photocentric orbit found in parallax observations. The ground-based work indicated L722-22B might have a mass in the brown-dwarf range, at 0.06 M_⊙ which motivated the FOS observations. However, current HST astrometric work indicates L722-22B is at the 0.1 M_⊙ level (Taff, Hershey Space Telescope Astrometry Team 75th Meeting Report, Apr 1996). Ground based CCD spectra of M dwarf standards have been provided to us by J. Davy Kirkpatrick in the 6300 to 8500 Angstroms range. Apart from the telluric lines the FOS spectra interpolate very closely into the ground-based series across this spectral range. A classification program has been written which defines a series of spectral interval ratios, does fits for the indices of the standards as a function of spectral subtype across the M3 to M7 range of standards, and inverts the fits for the four unknown spectra of Ross 614A,B and L722-22A,B. The internal formal error of the mean from the series of indices is a small fraction of a spectral subtype. The spectral types of L722-22A and B are found to be earlier by about 3/4 of a spectral subtype than Ross 614A and B, respectively. The HST astrometry and spectroscopy yield points for these 4 binary members which lie in a very narrow locus in the mass-spectral type plane and imply that single stars of types dM6 and later, have masses less than 0.08 M_⊙, presumably substellar. Support for this work was provided by NASA through grant number 06048 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  18. THE DOUBLE-DEGENERATE NUCLEUS OF THE PLANETARY NEBULA TS 01: A CLOSE BINARY EVOLUTION SHOWCASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovmassian, Gagik; Richer, Michael G.; Yungelson, Lev

    2010-05-01

    We present a detailed investigation of SBS 1150+599A, a close binary star hosted by the planetary nebula PN G135.9+55.9 (TS 01). The nebula, located in the Galactic halo, is the most oxygen-poor known to date and is the only one known to harbor a double degenerate core. We present XMM-Newton observations of this object, which allowed the detection of the previously invisible component of the binary core, whose existence was inferred so far only from radial velocity (RV) and photometric variations. The parameters of the binary system were deduced from a wealth of information via three independent routes using themore » spectral energy distribution (from the infrared to X-rays), the light and RV curves, and a detailed model atmosphere fitting of the stellar absorption features of the optical/UV component. We find that the cool component must have a mass of 0.54 {+-} 0.2 M{sub sun}, an average effective temperature, T{sub eff}, of 58,000 {+-} 3000 K, a mean radius of 0.43 {+-} 0.3 R{sub sun}, a gravity, log g = 5.0 {+-} 0.3, and that it nearly fills its Roche lobe. Its surface elemental abundances are found to be: 12 + log He/H = 10.95 {+-} 0.04 dex, 12 + log C/H = 7.20 {+-} 0.3 dex, 12 + log N/H < 6.92, and 12 + log O/H < 6.80, in overall agreement with the chemical composition of the planetary nebula. The hot component has T{sub eff} = 160-180 kK, a luminosity of about {approx}10{sup 4} L{sub sun} and a radius slightly larger than that of a white dwarf. It is probably bloated and heated as a result of intense accretion and nuclear burning on its surface in the past. The total mass of the binary system is very close to the Chandrasekhar limit. This makes TS 01 one of the best Type Ia supernova progenitor candidates. We propose two possible scenarios for the evolution of the system up to its present stage.« less

  19. X-ray Binaries in the Central Region of M31

    NASA Astrophysics Data System (ADS)

    Trudolyubov, Sergey P.; Priedhorsky, W. C.; Cordova, F. A.

    2006-09-01

    We present the results of the systematic survey of X-ray sources in the central region of M31 using the data of XMM-Newton observations. The spectral properties and variability of 124 bright X-ray sources were studied in detail. We found that more than 80% of sources observed in two or more observations show significant variability on the time scales of days to years. At least 50% of the sources in our sample are spectrally variable. The fraction of variable sources in our survey is much higher than previously reported from Chandra survey of M31, and is remarkably close to the fraction of variable sources found in M31 globular cluster X-ray source population. We present spectral distribution of M31 X-ray sources, based on the spectral fitting with a power law model. The distribution of spectral photon index has two main peaks at 1.8 and 2.3, and shows clear evolution with source luminosity. Based on the similarity of the properties of M31 X-ray sources and their Galactic counterparts, we expect most of X-ray sources in our sample to be accreting binary systems with neutron star and black hole primaries. Combining the results of X-ray analysis (X-ray spectra, hardness-luminosity diagrams and variability) with available data at other wavelengths, we explore the possibility of distinguishing between bright neutron star and black hole binary systems, and identify 7% and 25% of sources in our sample as a probable black hole and neutron star candidates. Finally, we compare the M31 X-ray source population to the source populations of normal galaxies of different morphological type. Support for this work was provided through NASA Grant NAG5-12390. Part of this work was done during a summer workshop ``Revealing Black Holes'' at the Aspen Center for Physics, S. T. is grateful to the Center for their hospitality.

  20. The electronic structures and work functions of (100) surface of typical binary and doped REB6 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing

    2018-03-01

    The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.

  1. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2017-11-01

    Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.

  2. Physical properties and catalog of EW-type eclipsing binaries observed by LAMOST

    NASA Astrophysics Data System (ADS)

    Qian, Sheng-Bang; He, Jia-Jia; Zhang, Jia; Zhu, Li-Ying; Shi, Xiang-Dong; Zhao, Er-Gang; Zhou, Xiao

    2017-08-01

    EW-type eclipsing binaries (hereafter called EWs) are strong interacting systems in which both component stars usually fill their critical Roche lobes and share a common envelope. Numerous EWs were discovered by several deep photometric surveys and there were about 40 785 EW-type binary systems listed in the international variable star index (VSX) by 2017 March 13. 7938 of them were observed with LAMOST by 2016 November 30 and their spectral types were identified. Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations. In the paper, those EWs are cataloged and their properties are analyzed. The distributions of orbital period (P), effective temperature (T), gravitational acceleration (log(g)), metallicity ([Fe/H]) and radial velocity (RV) are presented for these observed EW-type systems. It is shown that about 80.6% of sample stars have metallicity below zero, indicating that EW-type systems are old stellar populations. This is in agreement with the conclusion that EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years. The unusually high metallicities of a few percent of EWs may be caused by contamination of material from the evolution of unseen neutron stars or black holes in the systems. The correlations between orbital period and effective temperature, gravitational acceleration and metallicity are presented and their scatters are mainly caused by (i) the presence of third bodies and (ii) sometimes wrongly determined periods. It is shown that some EWs contain evolved component stars and the physical properties of EWs mainly depend on their orbital periods. It is found that extremely short-period EWs may be older than their long-period cousins because they have lower metallicities. This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution aremainly

  3. Enhanced Hα activity at periastron in the young and massive spectroscopic binary HD 200775

    NASA Astrophysics Data System (ADS)

    Benisty, M.; Perraut, K.; Mourard, D.; Stee, P.; Lima, G. H. R. A.; Le Bouquin, J. B.; Borges Fernandes, M.; Chesneau, O.; Nardetto, N.; Tallon-Bosc, I.; McAlister, H.; Ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2013-07-01

    Context. Young close binaries clear central cavities in their surrounding circumbinary disk from which the stellar objects can still accrete material. This process takes place within the first astronomical unit and is still not well constrained because the observational evidence has been gathered, until now, only by means of spectroscopy. Theoretical models for T Tauri stars in close binaries predict a variability of the hydrogen emission lines attributable to periodic changes in the accretion rates as the secondary approaches periastron. Whether a similar scenario applies to more massive objects is unclear, and still needs to be proven observationally. Aims: The young object HD 200775 (MWC 361) is a massive spectroscopic binary (separation of ~15.9 mas, ~5.0 AU), with uncertain classification (early/late Be), that shows a strong and variable Hα emission. We aim to study the mechanisms that produce the Hα line at the AU-scale, and their dependence on binarity. Methods: Combining the radial velocity measurements and astrometric data available in the literature, we determined new orbital parameters and revised the distance to 320 ± 51 pc. With the VEGA instrument on the CHARA array, we spatially and spectrally resolved the Hα emission of HD 200775 on a scale of a few milliarcseconds, at low and medium spectral resolutions (R ~ 1600 and 5000). Our observations cover a single orbital period (~3.6 years). Spectra, spectral visibilities, and differential phases have been derived. A simple analytical model of a face-on Gaussian located along the binary axis was used to analyze the interferometric observables over the spectral range. Results: We observe that the Hα equivalent width varies with the orbital phase, and increases close to periastron, as expected from theoretical models that predict an increase of the mass transfer from the circumbinary disk to the primary disk. In addition, using spectral visibilities and differential phases, we find marginal variations

  4. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When

  5. What Can Simbol-X Do for Gamma-ray Binaries?

    NASA Astrophysics Data System (ADS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  6. A Study of Low-mass X-Ray Binaries in the Low-luminosity Regime

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Dhuga, K. S.; Göğüş, E.

    2018-02-01

    A recent study of a small sample of X-ray binaries (XRBs) suggests a significant softening of spectra of neutron star (NS) binaries as compared to black hole (BH) binaries in the luminosity range 1034–1037 erg s‑1. This softening is quantified as an anticorrelation between the spectral index and the 0.5–10 keV X-ray luminosity. We extend the study to significantly lower luminosities (i.e., ∼a few × 1030 erg s‑1) for a larger sample of XRBs. We find evidence for a significant anticorrelation between the spectral index and the luminosity for a group of NS binaries in the luminosity range 1032–1033 erg s‑1. Our analysis suggests a steep slope for the correlation i.e., ‑2.12 ± 0.63. In contrast, BH binaries do not exhibit the same behavior. We examine the possible dichotomy between NS and BH binaries in terms of a Comptonization model that assumes a feedback mechanism between an optically thin hot corona and an optically thick cool source of soft photons. We gauge the NS–BH dichotomy by comparing the extracted corona temperatures, Compton-y parameters, and the Comptonization amplification factors: the mean temperature of the NS group is found to be significantly lower than the equivalent temperature for the BH group. The extracted Compton-y parameters and the amplification factors follow the theoretically predicted relation with the spectral index.

  7. Discovery of A Young L Dwarf Binary, SDSS J224953.47+004404.6AB

    NASA Astrophysics Data System (ADS)

    Allers, K. N.; Liu, Michael C.; Dupuy, Trent J.; Cushing, Michael C.

    2010-05-01

    We report discovery of a young 0farcs32 L dwarf binary, SDSS J2249+0044AB, found as the result of a Keck laser guide star adaptive optics imaging survey of young field brown dwarfs. Weak K I, Na I, and FeH features as well as strong VO absorption in the integrated-light J-band spectrum indicate a low surface gravity and hence young age for the system. From spatially resolved K-band spectra we determine spectral types of L3 ± 0.5 and L5 ± 1 for components A and B, respectively. SDSS J2249+0044A is spectrally very similar to G196-3B, an L3 companion to a young M2.5 field dwarf. Thus, we adopt 100 Myr (the age estimate of the G196-3 system) as the age of SDSS J2249+0044AB, but ages of 12-790 Myr are possible. By comparing our photometry to the absolute magnitudes of G196-3B, we estimate a distance to SDSS J2249+0044AB of 54 ± 16 pc and infer a projected separation of 17 ± 5 AU for the binary. Comparison of the luminosities to evolutionary models at an age of 100 Myr yields masses of 0.029 ± 0.006 and 0.022+0.006 -0.009 M sun for SDSS J2249+0044A and B, respectively. Over the possible ages of the system (12-790 Myr), the mass of SDSS J2249+0044A could range from 0.011 to 0.070 M sun and the mass of SDSS J2249+0044B could range from 0.009 to 0.065 M sun. Evolutionary models predict that either component could be burning deuterium, which could result in a mass ratio as low as 0.4, or alternatively, a reversal in the luminosities of the binary. We find a likely proper motion companion, GSC 00568-01752, which lies 48farcs9 away (a projected separation of 2600 AU) and has Sloan Digital Sky Survey and Two Micron All Sky Survey colors consistent with an early M dwarf. We calculate a photometric distance to GSC 00568-01752 of 53 ± 15 pc, in good agreement with our distance estimate for SDSS J2249+0044AB. The space motion of SDSS J2249+0044AB shows no obvious coincidence with known young moving groups, though radial velocity and parallax measurements are necessary to

  8. Stellar and Circumstellar Properties of Low-Mass, Young, Subarcsecond Binaries

    NASA Astrophysics Data System (ADS)

    Bruhns, Sara; Prato, L. A.

    2014-01-01

    We present a study of the stellar and circumstellar characteristics of close (< 1''), young (< 2 to 3 Myr), low-mass (<1 solar mass) binary stars in the Taurus star forming region. Low-resolution (R ~ 2000) spectra were taken in the K-band using adaptive optics to separate the observations for each component and identify the individual spectral types, extinction, and K-band excess. Combining these data with stellar luminosities allows us to estimate the stellar masses and ages. We also measured equivalent widths of the hydrogen Brackett gamma line in order to estimate the strength of gas accretion. We obtained spectra for six binary systems with separations from 1'' down to 0.3''. In the CZ Tau binary we found that the fainter secondary star spectrum appears to be of earlier spectral type than the primary; we speculate on the origin of this inversion.

  9. Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme

    2018-03-01

    We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ˜280 mCrab. Pulsations at 9.854 23(5) s were detected in the X-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential cutoff or high-energy cutoff power-law models modified with a hot blackbody at ˜3 keV. An iron emission line was also detected at 6.4 keV in the source spectrum. We did not find any signature of cyclotron absorption line in our study. Results obtained from phase-resolved and time-resolved spectroscopy are discussed in the paper.

  10. The Efficiency of Delone Coverings of the Canonical Tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) -> T^*(D6)

    NASA Astrophysics Data System (ADS)

    Papadopolos, Zorka; Kasner, Gerald

    This chapter is devoted to the coverings of the two quasiperiodic canonical tilings T}(*(A_4)) -> T^*(A4) and T}(*(D_6)) equiv {cal T}(*(2F)) -> T^*(D6) T^*(2F), obtained by projection from the root lattices A4 and D6, respectively. In the first major part of this chapter, in Sect. 5.2, we shall introduce a Delone covering T}(*(A_4)}) -> C^sT^*(A4) of the 2-dimensional decagonal tiling T}(*(A_4)) -> T^*(A4). In the second major part of this chapter, Sect. 5.3, we summarize the results related to the Delone covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6), T}(*(D_6)}) -> CT^*(D6) and determine the zero-, single-, and double- deckings and the resulting thickness of the covering. In the conclusions section, we give some suggestions as to how the definition of the Delone covering might be changed in order to reach some real (full) covering of the icosahedral tiling T}(*(D_6)) -> T^*(D6). In Section 5.2 the definition of the Delone covering is also changed in order to avoid an unnecessary large thickness of the covering.

  11. [Obtaining marker-free transgenic soybean plants with optimal frequency by constructing three T-DNAs binary vector].

    PubMed

    Ye, Xing-Guo; Qin, Hua

    2007-01-01

    Obtaining marker-free plants with high efficiency will benefit the environmental release of transgenic crops. To achieve this point, a binary vector pNB35SVIP1 with three T-DNAs was constructed by using several mediate plasmids, in which one copy of bar gene expression cassette and two copies of VIP1 gene expression cassette were included. EHA101 Agrobacterium strain harboring the final construct was applied to transform soybean (Glycine max) cotyledon nodes. Through 2 - 3 months regeneration and selection on 3 - 5mg/L glufosinate containing medium, transgenic soybean plants were confirmed to be obtained at 0.83% - 3.16%, and co-transformation efficiency of both gene in the same individual reached up to 86.4%, based on southern blot test. By the analysis of PCR, southern blot and northern blot combining with leaf painting of herbicide in T1 progenies, 41 plants were confirmed to be eliminated of bar gene with the frequency of 7.6% . Among the T1 populations tested, the loss of the alien genes happened in 22.7% lines, the silence of bar gene took place in 27.3% lines, and VIP1 gene silence existed in 37.1% marker-free plants. The result also suggested that the plasmid with three T-DNAs might be an ideal vector to generate maker-free genetic modified organism.

  12. Asymmetric distances for binary embeddings.

    PubMed

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  13. X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.

    2003-01-01

    By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.

  14. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  15. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    PubMed

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  16. Preferential solvation bromophenol blue in water-alcohol binary mixture.

    PubMed

    Dangui, Anayana Z; Santos, Vanessa M S; Gomes, Benhur S; de Castilho, Taiane S; Nicolini, Keller P; Nicolini, Jaqueline

    2018-05-29

    In this study, the perichromic behavior of bromophenol blue (BPB) in various binary solvent mixtures was investigated. The binary mixtures considered were comprised of water and methanol (MeOH), ethanol (EtOH), n-propanol (n-PrOH), isopropanol (iso-PrOH) or t-butanol (t-BuOH). The investigation of a preferential solvation model that considers the addition of small quantities of alcohol to water in the presence of bromophenol blue (BPB) is described in this paper. The data obtained were employed to study the preferential solvation (PS) of the probe. It was observed that with increases in the molar fraction of water the spontaneity of the system decreases. This can be explained by the high solubility of BPB in ethanol, with ∆G>0 at higher wavelengths (region rich in water with violet solution) and ∆G<0 at lower wavelengths (region rich in alcohol with yellow solution). The pK of the binary mixture changed in all solvents and for all ratios, and the higher the water ratio is the lower the pK In will be. In binary mixture, an increase in the hydrogen bond acceptor (HBA) nature of the solvents tested resulted in a bathochromic effect on the absorption band of BPB (Δλ=12nm). All of the data obtained showed a good nonlinear fit with the mathematical model (SD≤6.6×10 -3 ), suggesting that BPB has other potential applications besides its use as a pH indicator. Copyright © 2017. Published by Elsevier B.V.

  17. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  18. Spectral function of a hole in the t - J model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Manousakis, E.

    1991-08-01

    We give numerical solutions, on finite but large-size square lattices, of the equation for the single-hole Green's function obtained by the self-consistent approach of Schmitt-Rink {ital et} {ital al}. and Kane {ital et} {ital al}. The spectral function of the hole in a quantum antiferromagnet shows that most features describing the hole motion are in close agreement with the results of the exact diagonalization on the 4{sup 2} lattice in the region of {ital J}/{ital t}{le}0.2. Our results obtained on sufficiently large-size lattices suggest that certain important features of the spectral function survive in the thermodynamic limit while others changemore » due to finite-size effects. We find that the leading nonzero vertex correction is given by a two-loop diagram, which has a small contribution.« less

  19. Geometrical Description in Binary Composites and Spectral Density Representation

    PubMed Central

    Tuncer, Enis

    2010-01-01

    In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ=(εe-εm)(εi-εm)-1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL) [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell-shaped distributions, with

  20. THE NUCLEUS OF THE PLANETARY NEBULA EGB 6 AS A POST-MIRA BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope ( HST ) images to show that the compact nebula is a point-like source, located 0.″16 (∼118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot.more » We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I -band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ∼1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD.« less

  1. Confirmation of the binary status of Chamaeleon Hα 2 - a very young low-mass binary in Chamaeleon

    NASA Astrophysics Data System (ADS)

    Schmidt, T. O. B.; Neuhäuser, R.; Vogt, N.; Seifahrt, A.; Roell, T.; Bedalov, A.

    2008-06-01

    Context: Neuhäuser & Comerón (1998, Science, 282, 83; 1999, A&A, 350, 612) presented direct imaging evidence, as well as first spectra, of several young stellar and sub-stellar M6- to M8-type objects in the Cha I dark cloud. One of these objects is Cha Hα 2, classified as brown dwarf candidate in several publications and suggested as possible binary in Neuhäuser et al. (2002, A&A, 384, 999). Aims: We have searched around Cha Hα 2 for close and faint companions with adaptive optics imaging. Methods: Two epochs of direct imaging data were taken with the Very Large Telescope (VLT) Adaptive Optics instrument NACO in February 2006 and March 2007 in Ks-band together with a Hipparcos binary for astrometric calibration. Moreover, we took a J-band image in March 2007 to get color information. We retrieved an earlier image from 2005 from the European Southern Observatory (ESO) Science Archive Facility, increasing the available time coverage. After confirmation of common proper motion, we deduce physical parameters of the objects by spectroscopy, like temperature and mass. Results: We find Cha Hα 2 to be a very close binary of 0.16 arcsec separation, having a flux ratio of 0.91, thus having almost equal brightness and indistinguishable spectral types within the errors. We show that the two tentative components of Cha Hα 2 form a common proper motion pair, and that neither component is a non-moving background object. We even find evidence for orbital motion. A combined spectrum of both stars spanning optical and near-infrared parts of the spectral energy distribution yields a temperature of 3000 ± 100 K, corresponding to a spectral type of M6 ± 1 and a surface gravity of log{g} = 4.0+0.75-0.5, both from a comparison with GAIA model atmospheres. Furthermore, we obtained an optical extinction of AV ≃ 4.3 mag from this comparison. Conclusions: We derive masses of 0.110 M⊙ (≥0.070 M⊙) and 0.124 M⊙ (≥0.077 M⊙) for the two components of Cha Hα 2, i

  2. Study of binary and ternary organic hybrid CdSe quantum dot photodetector

    NASA Astrophysics Data System (ADS)

    Ramar, M.; Kajal, S.; Pal, Prabir; Srivastava, R.; Suman, C. K.

    2015-09-01

    The hybrid binary and ternary photodetectors (PDs) were fabricated from P3HT-PC71BM with CdSe quantum dot (QD) materials. The absorption spectra of P3HT:PC71BM (named as B1), P3HT:CdSe (B2) and P3HT:CdSe:PC71BM (T) active blended material were analyzed in the wavelength range from 350 to 800 nm. The current density-voltage characteristics of the device were measured in dark and under illumination for study of detector detectivities and the contact with electrode. The ratio at -0.5 V for PDs B1, B2 and T is 1.1 × 102, 1.9 × 102 and 1.8 × 103, respectively. The values of detectivity for B1, B2 and T are 1 × 1010, 2 × 1010 and 7 × 1011 Jones, respectively. The for PD T is ten times in comparison with B1 and B2 PDs. The linear dynamic range (LDR) value for ternary device is more than double to both binary PDs. The absorption by CdSe QD increases the photon efficiency in the ternary detector, and at the same time the ternary detectors have high detectivity in broad spectral range. The responsivity of current to the light intensity exponent θ for detector B1, B2 and T is ~0.55, 0.55 and 0.62, respectively, which represents a complex process of electron hole generation, recombination and trapping within active material.

  3. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  4. Spectral State Evolution of 4U 1820-30: the Stability of the Spectral Index of Comptonization Tail

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev G.; Seifina, Elena; Frontera, Filippo

    2013-01-01

    We analyze the X-ray spectra and their timing properties of the compact Xray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996 - 2009), the source were approximately approximately 75% of its time in the soft state making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a composition of a thermal (blackbody) component, a Comptonization component (COMPTB) and a Gaussian-line component. Thus using this spectral analysis we find that the photon power-law index Gamma of the Comptonization component is almost unchangeable (Gamma approximately 2) while the electron temperature kTe changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of COMPTB component (which is proportional to mass accretion rate ?M) increases by factor 8 when kTe decreases from 21 keV to 2.9 keV. Before this index stability effect was also found analyzing X-ray data for Z-source GX 340+0 and for atolls, 4U 1728-34, GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand in a black hole binary G monotonically increases with ?Mand ultimately its value saturates at large ?M.

  5. [The sawtooth oscillation phenomenon of visible spectral signal in HT-6M Tokamak].

    PubMed

    Xu, W; Fang, Z; Wan, B; Li, J; Luo, J; Yin, F

    1997-02-01

    The sawtooth oscillation phenomenon of visible spectral signal in HT-6M Tokamak is presented. The influences of electron temperature, electron density and atomic ground density on the spectral signal discussed. This phenomenon results mainly from the change of electron temperature at the edge.

  6. Synthesis and molecular structure of a spheroidal binary nanoscale copper sulfide cluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter

    2016-09-27

    The reaction of copper(4-(tert-butyl)phenyl)methanethiolate [CuSCH 2 C 6 H 4 t Bu] with bis(trimethylsilyl)sulfide S(SiMe 3 ) 2 in the presence of triphenylphosphine PPh 3 afforded the binary 52 nuclear copper cluster [Cu 52 S 12 (SCH 2 C 6 H 4 t Bu) 28 (PPh 3 ) 8 ]. The molecular structure of this intensely red coloured nanoscale Cu 2 S mimic was established by single crystal X-ray diffraction.

  7. Intermolecular forces in acetonitrile + ethanol binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Elangovan, A.; Shanmugam, R.; Arivazhagan, G.; Mahendraprabu, A.; Karthick, N. K.

    2015-10-01

    FTIR spectral measurements have been carried out on the binary mixtures of acetonitrile with ethanol at 1:0 (acetonitrile:ethanol), 1:1, 1:2, 1:3 and 0:1 at room temperature. DFT and isosurface calculations have been performed. The acetonitrile + ethanol binary mixtures consist of 1:1, 1:2, 1:3 and 1:4 complexes formed through both the red and blue shifting H-bonds. Inter as well as intra molecular forces are found to exist in 1:3 and 1:4 complexes.

  8. General simulation algorithm for autocorrelated binary processes.

    PubMed

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  9. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle

    2011-03-15

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg{sup 2} field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID),more » ephemeris (BJD{sub 0}, P{sub 0}), morphology type, physical parameters (T{sub eff}, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T{sub 2}/T{sub 1}, q, fillout factor, and sin i for overcontacts, and T{sub 2}/T{sub 1}, (R{sub 1} + R{sub 2})/a, esin {omega}, ecos {omega}, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be {approx}1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.« less

  10. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy.

    PubMed

    Meisamy, Sina; Hines, Catherine D G; Hamilton, Gavin; Sirlin, Claude B; McKenzie, Charles A; Yu, Huanzhou; Brittain, Jean H; Reeder, Scott B

    2011-03-01

    To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2

  11. The discovery of a very cool binary system

    NASA Astrophysics Data System (ADS)

    Burningham, Ben; Leggett, S. K.; Lucas, P. W.; Pinfield, D. J.; Smart, R. L.; Day-Jones, A. C.; Jones, H. R. A.; Murray, D.; Nickson, E.; Tamura, M.; Zhang, Z.; Lodieu, N.; Tinney, C. G.; Zapatero Osorio, M. R.

    2010-06-01

    We report the discovery of a very cool d/sdL7+T7.5p common proper motion binary system, SDSS J1416+13AB, found by cross-matching the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey Data Release 5 (UKIDSS LAS DR4) against the Sloan Digital Sky Survey Data Release 7. The d/sdL7 is blue in J - H and H - K and has other features suggestive of low metallicity and/or high gravity. The T7.5p displays spectral peculiarity seen before in earlier type dwarfs discovered in UKIDSS LAS DR4, and referred to as CH4-J-early peculiarity, where the CH4-J index, based on the absorption to the red side of the J-band peak, suggests an earlier spectral type than the H2O-J index, based on the blue side of the J-band peak, by ~2 subtypes. We suggest that CH4-J-early peculiarity arises from low metallicity and/or high gravity, and speculate as to its use for classifying T dwarfs. UKIDSS and follow-up United Kingdom Infrared Telescope/Wide Field CAMera (UKIRT/WFCAM) photometry shows the T dwarf to have the bluest near-infrared colours yet seen for such an object with H - K = -1.31 +/- 0.17. Warm Spitzer IRAC photometry shows the T dwarf to have extremely red H - [4.5] = 4.86 +/- 0.04, which is the reddest yet seen for a substellar object. The lack of parallax measurement for the pair limits our ability to estimate parameters for the system. However, applying a conservative distance estimate of 5-15 pc suggests a projected separation in range 45-135 au. By comparing H - K:H - [4.5] colours of the T dwarf to spectral models, we estimate that Teff = 500 K and [M/H] ~ - 0.30, with logg ~ 5.0. This suggests a mass of ~30 MJupiter for the T dwarf and an age of ~10 Gyr for the system. The primary would then be a 75 MJupiter object with logg ~ 5.5 and a relatively dust-free Teff ~ 1500K atmosphere. Given the unusual properties of the system we caution that these estimates are uncertain. We eagerly await parallax measurements and high-resolution imaging

  12. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, MAXI and Suzaku

    NASA Astrophysics Data System (ADS)

    Coley, Joel B.; Corbet, R.; Mukai, K.; Pottschmidt, K.

    2013-01-01

    Optical and X-ray observations of 4U 1210-64 (1ES 1210-646) suggest that the source is a High Mass X-ray Binary (HMXB) probably powered by the Be mechanism. Data acquired by the RXTE All Sky Monitor (ASM), the ISS Monitor of All-sky X-ray Image (MAXI) and Suzaku provide a detailed temporal and spectral description of this poorly understood source. Long-term data produced by ASM and MAXI indicate that the source shows two distinct high and low states. A 6.7-day orbital period of the system was found in folded light curves produced by both ASM and MAXI. A two day Suzaku observation in Dec. 2010 took place during a transition from the minimum to the maximum of the folded light curve. The two day Suzaku observation reveals large variations in flux indicative of strong orbit to orbit variability. Flares in the Suzaku light curve can reach nearly 1.4 times the mean count rate. From a spectral analysis of the Suzaku data, emission lines in the Fe K alpha region were detected at 6.4 keV, 6.7 keV and 6.97 keV interpreted as FeI, FeXXV and FeXXVI. In addition, emission lines were observed at approximately 1.0 and 2.6 keV, corresponding to NeX and SXVI respectively. Thermal bremsstrahlung or power law models both modified by interstellar and partially covering absorption provide a good fit to the continuum data. This source is intriguing for these reasons: i) No pulse period was observed; ii) 6.7 day orbital period is much less than typical orbital periods seen in Be/X-ray Binaries; iii) The optical companion is a B5V--an unusual spectral class for an HMXB; iv) There are extended high and low X-ray states.

  13. Research Note PSR B1929+10 and GSC 01060-01374 are not binary companions

    NASA Astrophysics Data System (ADS)

    Kouwenhoven, M. L. A.; van den Berg, M. C.

    2001-03-01

    We have observed the star GSC 01060-01374 to investigate whether it is in a binary with PSR B1929+10. Its spectral type is K4-6 and its luminosity class is III or II, therefore its distance is 2.4 kpc or higher. Since the dispersion measure distance of PSR B1929+10 is 0.17 kpc, we rule out the possibility that these two stars are associated in a binary. This poses further constraints on the lower limit of kick velocities in supernova explosions. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  14. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  15. Life and light: exotic photosynthesis in binary and multiple-star systems.

    PubMed

    O'Malley-James, J T; Raven, J A; Cockell, C S; Greaves, J S

    2012-02-01

    The potential for Earth-like planets within binary/multiple-star systems to host photosynthetic life was evaluated by modeling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in (i) close-binary systems; (ii) wide-binary systems, and (iii) three-star systems were investigated, and a range of stable radiation environments were found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic, forms of photosynthetic life, such as IR photosynthesizers and organisms that are specialized for specific spectral niches.

  16. Looking for the Coldest Atmospheres: a Search for Planetary Mass Companions around T and Y Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Fontanive, Clemence

    2017-08-01

    We propose to obtain WFC3/IR imaging of the very coolest brown dwarfs (T < 800 K) to search for substellar and planetary-mass companions to these objects. Companions discovered by this program would likely be analogues of the 250 K brown dwarf WISE 0855 and would provide vital benchmark objects for theoretical models, closing the gap in mass and temperature between brown dwarfs and planets. Finding such an object as a member of a binary system would be even more valuable as it would allow for the measurement of dynamical masses. We recently placed the first constraints to date on the binary frequency for brown dwarfs with spectral types >T8. This program will triple our current sample size, a requirement in order to confirm our current results and compare substellar binary properties for various spectral type and age populations. The WFC3/IR plate will allow us to probe near equal-mass binaries down to separations of 0.2 (2-3 AU for the typical distances of our targets). True cool companions should show strong absorption around 1.4 um as a result of the deep water absorption band observed at that wavelength in substellar spectra. We therefore propose observations in the WFC3 F127M and F139M filters which will allow us to robustly identify bona fide candidates and distinguish them from background stars based on this spectral feature. Most of our targets lack suitable NGS AO guide stars or LGS AO tip-tilt stars to be observed with ground-based telescopes, and the 1.4 um water band is often unobservable from the ground due to telluric water absorption. WFC3 on HST is thus the only instrument suitable for these observations.

  17. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  18. The Spectral Signatures Of BH Versus NS Sources

    NASA Astrophysics Data System (ADS)

    Seifina, E.; Titarchuk, L.

    2011-09-01

    We present a comparative analysis of spectral properties of Black Hole (BH) and Neutron Star (NS) X-ray binaries during transition events observed with BeppoSAX and RXTE satellites. In particular, we investigated the behavior of Comptonized component of X-ray spectra when object evolves from the low to high spectral states. The basic models to fit X-ray spectra of these objects are upscattering models (so called BMC and COMPTB models) which are the first principal models. These models taking into account both dynamical and thermal Comptonization and allow to study separate contributions of thermal component and Comptonization component (bulk and thermal effect of Comptonization processes). Specifically, we tested quite a few observations of BHs (GRS 1915+105 and SS 433) and NSs (4U 1728-34 and GX 3+1) applying BMC and COMPTB models. In this way it was found a crucial difference in behavior of photon index vs mass accretion rate (mdot) for BHs and NSs. Namely, we revealed the stability of the photon index around typical value of Gamma=2 versus mdot (or electron temperature) during spectral evolution of NS sources. This stability effect was previously suggested for a number of other neutron binaries (see Farinelli and Titarchuk, 2011). This intrinsic property of NS is fundamentally different from that in BH binary sources for which the index demonstrates monotonic growth with mass accretion rate followed by its saturation at high values of mdot. These index-mass accretion rate behavior during X-ray spectral transition events can be considered as signatures, which allow to differ NS from BH.

  19. Spectral Analysis Tool 6.2 for Windows

    NASA Technical Reports Server (NTRS)

    Morgan, Feiming; Sue, Miles; Peng, Ted; Tan, Harry; Liang, Robert; Kinman, Peter

    2006-01-01

    Spectral Analysis Tool 6.2 is the latest version of a computer program that assists in analysis of interference between radio signals of the types most commonly used in Earth/spacecraft radio communications. [An earlier version was reported in Software for Analyzing Earth/Spacecraft Radio Interference (NPO-20422), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 52.] SAT 6.2 calculates signal spectra, bandwidths, and interference effects for several families of modulation schemes. Several types of filters can be modeled, and the program calculates and displays signal spectra after filtering by any of the modeled filters. The program accommodates two simultaneous signals: a desired signal and an interferer. The interference-to-signal power ratio can be calculated for the filtered desired and interfering signals. Bandwidth-occupancy and link-budget calculators are included for the user s convenience. SAT 6.2 has a new software structure and provides a new user interface that is both intuitive and convenient. SAT 6.2 incorporates multi-tasking, multi-threaded execution, virtual memory management, and a dynamic link library. SAT 6.2 is designed for use on 32- bit computers employing Microsoft Windows operating systems.

  20. Light curve and SED modeling of the gamma-ray binary 1FGL J1018.6–5856: Constraints on the orbital geometry and relativistic flow

    DOE PAGES

    An, Hongjun; Romani, Roger W.

    2017-04-04

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6–5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explainmore » the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. Furthermore, the model requires an inclination of ~50° and an orbital eccentricity of ~0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.« less

  1. Light curve and SED modeling of the gamma-ray binary 1FGL J1018.6–5856: Constraints on the orbital geometry and relativistic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongjun; Romani, Roger W.

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6–5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explainmore » the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. Furthermore, the model requires an inclination of ~50° and an orbital eccentricity of ~0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.« less

  2. Preliminary application of high-definition computed tomographic Gemstone Spectral Imaging in lung cancer.

    PubMed

    Wang, Guangli; Zhang, Chengqi; Li, Mingying; Deng, Kai; Li, Wei

    2014-01-01

    To evaluate the feasibility of multiparameter quantitative measurement lung cancer by Gemstone Spectral Imaging (GSI) high-definition computed tomography. Seventy-seven patients who were found to have a lung mass or a nodule by CT plain scan for the first time received chest contrast CT scan with GSI mode on high-definition computed tomography. The GSI viewer was used to display the spectral curve, iodine-based images, water-based images, and 101 sets of monochromatic images of a selected region of interest from the relative homogeneous area of the mass or nodule. Iodine concentration, water concentration, spectral curve slope, and CT values at 40 keV of the region of interest were measured. Finally, 68 eligible patients were divided into a pneumonia group (n = 24) and a malignant tumor group (n = 44, including squamous carcinoma, n = 29, and adenocarcinoma, n = 15). Significant differences existed in iodine concentration (t = 6.459), spectral curve slope (t = 6.276), and CT values at 40 keV (t = 6.698) between the pneumonia group and the malignant tumor group (P < 0.05), as well as between squamous carcinoma and adenocarcinoma (t = 6.494, 5.634, 6.091, respectively, P < 0.05), whereas water concentrations were found to have no difference between the 2 groups (t = 0.082, P > 0.05) and between the 2 types of malignant tumors (t = 1.234, P > 0.05). High-definition computed tomographic GSI technique might be helpful to differentiate lung cancer from lung benign lesions by providing qualitative and quantitative information.

  3. The Orbit of the Gamma-Ray Binary 1FGL J1018.6−5856

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monageng, I. M.; McBride, V. A.; Kniazev, A. Y.

    2017-09-20

    Gamma-ray binaries are a small subclass of the high mass X-ray binary population that exhibit emission across the whole electromagnetic spectrum. We present the radial velocities of 1FGL J1018.6−5856 based on the observations obtained with the Southern African Large Telescope. We combine our measurements with those published in the literature to get a broad phase coverage. The mass function obtained supports a neutron star compact object, although a black hole mass is possible for the very low inclination angles. The improved phase coverage allows constraints to be placed on the orbital eccentricity ( e = 0.31 ± 0.16), which agreesmore » with the estimates from the high-energy data.« less

  4. Joint Spatial-Spectral Reconstruction and k-t Spirals for Accelerated 2D Spatial/1D Spectral Imaging of 13C Dynamics

    PubMed Central

    Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.

    2014-01-01

    Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402

  5. Circinus X-1: a Laboratory for Studying the Accretion Phenomenon in Compact Binary X-Ray Sources. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Robinson-Saba, J. L.

    1983-01-01

    Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.

  6. BD -22 5866: A Low-Mass, Quadruple-lined Spectroscopic and Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill; Hebb, Leslie; Cameron, Andrew C.; Torres, Carlos A.; Wilson, David M.

    2008-08-01

    We report our discovery of an extremely rare, low-mass, quadruple-lined spectroscopic binary BD -22 5866 (=NLTT 53279, integrated spectral type = M0 V), found during an ongoing search for the youngest M dwarfs in the solar neighborhood. From the cross-correlation function, we are able to measure relative flux levels, estimate the spectral types of the components, and set upper limits on the orbital periods and separations. The resulting system is hierarchical, composed of a K7 + K7 binary and an M1 + M2 binary with semimajor axes of aAsin iA <= 0.06 and aBsin iB <= 0.30 AU. A subsequent search of the SuperWASP photometric database revealed that the K7 + K7 binary is eclipsing with a period of 2.21 days and at an inclination angle of 85°. Within uncertainties of 5%, the masses and radii of both components appear to be equal (0.59 M⊙, 0.61 R⊙). These two tightly orbiting stars (a = 0.035 AU) are in synchronous rotation, causing the observed excess Ca II, Hα, X-ray, and UV emission. The fact that the system was unresolved with published adaptive optics imaging, limits the projected physical separation of the two binaries at the time of the observation to dABlesssim 4.1 AU at the photometric distance of 51 pc. The maximum observed radial velocity difference between the A and B binaries limits the orbit to aABsin iAB <= 6.1 AU. As this tight configuration is difficult to reproduce with current formation models of multiple systems, we speculate that an early dynamical process reduced the size of the system, such as the interaction of the two binaries with a circumquadruple disk. Intensive photometric, spectroscopic, and interferometric monitoring, as well as a parallax measurement of this rare quadruple system, is certainly warranted. Based on observations collected at the W. M. Keck Observatory and the Canada-France-Hawaii Telescope (CFHT). The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University

  7. ASCA Observation of MS 1603.6+2600 (=UW Coronae Borealis): A Dipping Low-Mass X-ray Binary in the Outer Halo?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)

    2001-01-01

    MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.

  8. Quantification of Hepatic Steatosis with T1-independent, T2*-corrected MR Imaging with Spectral Modeling of Fat: Blinded Comparison with MR Spectroscopy

    PubMed Central

    Hines, Catherine D. G.; Hamilton, Gavin; Sirlin, Claude B.; McKenzie, Charles A.; Yu, Huanzhou; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Purpose: To prospectively compare an investigational version of a complex-based chemical shift–based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24–71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r2), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2* correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Results: Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2* correction, spectral modeling of fat, and magnitude

  9. The Syntheses and Structure of the First Vanadium(IV) and Vanadium(V) Binary Azides, V(N3)4, [V(N3)6]2- and [V(N3)6]- (Preprint)

    DTIC Science & Technology

    2009-11-17

    V(N3)3(N3S2)] 2- , [22] have been reported, and no binary vanadium(V) compounds had been known except for VF5, VF6 - and V2O5 . By analogy with...valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line. [31] All reaction vessels were passivated with ClF3...successful synthesis of the [V(N3)6] - anion, the only binary vanadium(V) compound known besides VF5, VF6 - and V2O5 . N1’ N8 N9 N1 N2 N3 V N4 N5 N6 N2

  10. Improvements to the construction of binary black hole initial data

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.; Boyle, Michael; Szilágyi, Béla

    2015-12-01

    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.

  11. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-raymore » spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.« less

  12. Spectroscopic observations of the detached binary PG 1413 + 015

    NASA Technical Reports Server (NTRS)

    Fulbright, Michael S.; Liebert, James; Bergeron, P.; Green, Richard

    1993-01-01

    We present improved estimates of the stellar parameters of the eclipsing, precataclysmic binary system PG 1413 + 015 (GH Vir), which has an orbital period of only 8h16m. Model atmosphere fits a Balmer line profiles yield T(eff) = 48,800 +/- 1200 K and log g = 7.70 +/- 0.11 for the DAO white dwarf primary star, from which a mass of 0.51 +/- 0.04 solar mass is inferred using evolutionary models. An ultraviolet spectrum obtained with the IUE Observatory has a slope consistent with this temperature and the assumption of no interstellar extinction. A red CCD spectrum of the secondary star during the 12-minute total eclipse indicates a spectral type of M3 V-M5 V. Reanalysis of the eclipse light curve leads to an inferred radius of 0.15 solar radius and a mass of 0.10 solar mass for the secondary, the latter being marginally consistent with the spectral type. Reprocessing on the facing side of the secondary produces phase-dependent Balmer line emission and detectable variations in the continuum from 6500-9000 A. The observed levels of reprocessing are consistent with expectations based on the above stellar parameters.

  13. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  14. Sigma observations of the low mass X-ray binaries of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.

    1995-01-01

    The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.

  15. Orbital period study of the Algol-type eclipsing binary system TW Draconis

    NASA Astrophysics Data System (ADS)

    Qian, S. B.; Boonrucksar, S.

    2002-10-01

    The century-long times of light minimum of the Algol-type eclipsing binary star, TW Dra (BD +64°1077, Sp A5V+K2III), are investigated by considering a new pattern of period change. Two sudden period increases and two successive period decreases are discovered to superimpose on a rapid secular increase (d P/d t=+4.43×10 -6 days/year). The secular increase may be caused by a dynamical mass transfer from the secondary to the primary component (d m/d t=6.81×10 -7 M ⊙/year) that is in agreement with the semi-detached configuration of the system and with the existence of a hot spot and a gaseous stream in the binary system. The irregular period jumps superimposed on the secular increase can be explained by the structure variation of the K2-type giant via instabilities of the outer convective layer or via magnetic activity cycles.

  16. On the Nature of the Variability Power Decay toward Soft Spectral States in X-Ray Binaries: Case Study in Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2008-05-01

    A characteristic feature of the Fourier power density spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broadband-limited noise characterized by a constant below some frequency (a "break" frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time t0 is related to the phenomenological break frequency, while the PDS power-law slope above the "break" is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black holes and neutron stars) during an evolution of these sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-Ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power Px decreases approximately as the square root of the characteristic frequency of the driving oscillations νdr. The RXTE observations of Cyg X-1 allow us to infer Pdr and t0 as a function of νdr. Using the inferred dependences of the integrated power of the driving oscillations Pdr and t0 on νdr we demonstrate that the power predicted by the model also decays as Px,diff propto ν-0.5dr, which is similar to the observed Px behavior. We also apply the basic parameters of observed PDSs, power-law indices, and low-frequency quasi-periodic oscillations to infer the Reynolds number (Re) from the observations using the method developed in our previous paper. Our analysis shows that Re increases from values of about 10 in low/hard state to about 70 during the high/soft state.

  17. On the nature of the variability power decay towards soft spectral states in X-ray binaries. Case study in Cyg X-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2008-01-01

    A characteristic feature of the Fourier Power Density Spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broad band-limited noise, characterized by a constant below some frequency (a ``break'' frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time t0 is related to the phenomenological break frequency, while the PDS power-law slope above the ``break'' is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black hole and neutron star) during an evolution of theses sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power Px decreases approximately as a square root of the characteristic frequency of the driving oscillations νdr. The RXTE observations of Cyg X-1 allow us to infer Pdr and t0 as a function of νdr. Using the inferred dependences of the integrated power of the driving oscillations Pdr and t0 on νdr we demonstrate that the power predicted by the model also decays as Px,diff~νdr-0.5 that is similar to the observed Px behavior. We also apply the basic parameters of observed PDSs, power-law index and low frequency quasiperiodic oscillations, to infer Reynolds (Re) number from the observations using the method developed in our previous paper. Our analysis shows that Re-number increases from values about 10 in low/hard state to that about 70 during the high/soft state.

  18. Plasmonic spectral tunability of conductive ternary nitrides

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Bellas, D. V.; Abadias, G.; Lidorikis, E.; Patsalas, P.

    2016-06-01

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as TixTa1-xN, TixZr1-xN, TixAl1-xN, and ZrxTa1-xN share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400-700 nm) and UVA (315-400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  19. Speech Segregation based on Binary Classification

    DTIC Science & Technology

    2016-07-15

    including the IBM, the target binary mask (TBM), the IRM, the short -time Fourier transform spectral magnitude (FFT-MAG) and its corresponding mask (FFT...complementary features and a fixed DNN as the discriminative learning machine. For evaluation metrics, besides SNR, we use the Short -Time Objective...target analysis is a recent successful intelligibility test conducted on both normal-hearing (NH) and hearing-impaired (HI) listeners. The speech

  20. Essentiality of threonylcarbamoyladenosine (t6A), a universal tRNA modification, in bacteria

    PubMed Central

    Thiaville, Patrick C.; Yacoubi, Basma El; Köhrer, Caroline; Thiaville, Jennifer J.; Deutsch, Chris; Iwata-Reuyl, Dirk; Bacusmo, Jo Marie; Armengaud, Jean; Bessho, Yoshitaka; Wetzel, Collin; Cao, Xiaoyu; Limbach, Patrick A.; RajBhandary, Uttam L.; de Crécy-Lagard, Valérie

    2016-01-01

    Threonylcarbamoyladenosine (t6A) is a modified nucleoside universally conserved in tRNAs in all three kingdoms of life. The recently discovered genes for t6A synthesis, including tsaC and tsaD, are essential in model prokaryotes but not essential in yeast. These genes had been identified as antibacterial targets even before their functions were known. However, the molecular basis for this prokaryotic-specific essentiality has remained a mystery. Here, we show that t6A is a strong positive determinant for aminoacylation of tRNA by bacterial-type but not by eukaryotic-type isoleucyl-tRNA synthetases and might also be a determinant for the essential enzyme tRNAIle-lysidine synthetase. We confirm that t6A is essential in Escherichia coli and a survey of genome-wide essentiality studies shows that genes for t6A synthesis are essential in most prokaryotes. This essentiality phenotype is not universal in Bacteria as t6A is dispensable in Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803 and Streptococcus mutans. Proteomic analysis of t6A- D. radiodurans strains revealed an induction of the proteotoxic stress response and identified genes whose translation is most affected by the absence of t6A in tRNAs. Thus, although t6A is universally conserved in tRNAs, its role in translation might vary greatly between organisms. PMID:26337258

  1. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  2. Augmentation of the IUE Ultraviolet Spectral Atlas

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chao

    Most likely IUE is the only and last satellite which will support a survey program to record the ultraviolet spectrum of a large number of bright normal stars. It is important to have a library of high quality Low dispersion spectra of sufficient number of stars that provide good coverage in spectral type and luminosity class. Such a library is invaluable for stellar population synthesis of galaxies, studying the nature of distant galaxies, establishing a UV spectral classification system, providing comparison stars for interstellar extinction studies and for peculiar objects or binary systems, studying the effects of temperature, gravity and metallicity on stellar UV spectra, and as a teaching aid. We propose to continue observations of normal stars in order to provide (1) a more complete coverage of the spectral type and luminosity class, and (2) more than one star per spectral typeluminosity class combination to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given combination. Our primary goal is to collect the data and make them available to the community immediately (without claiming the 6-month proprietary right). The data will be published in the IUE Newsletter as soon as practical, and the data will be prepared for distribution by the IUE Observatory and the NSSDC.

  3. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  4. Spectral energy distributions and colours of hot subluminous stars

    NASA Astrophysics Data System (ADS)

    Heber, Ulrich; Irrgang, Andreas; Schaffenroth, Johannes

    2018-02-01

    Photometric surveys at optical, ultraviolet, and infrared wavelengths provide ever-growing datasets as major surveys proceed. Colour-colour diagrams are useful tools to identify classes of star and provide large samples. However, combining all photometric measurements of a star into a spectral energy distribution will allow quantitative analyses to be carried out. We demonstrate how to construct and exploit spectral energy distributions and colours for sublumious B (sdB) stars. The aim is to identify cool companions to hot subdwarfs and to determine atmospheric parameters of apparently single sdB stars as well as composite spectrum sdB binaries.We analyse two sdB stars with high-quality photometric data which serve as our benchmarks, the apparently single sdB HD205805 and the sdB + K5 binary PG 0749+658, briefly present preliminary results for the sample of 142 sdB binaries with known orbits, and discuss future prospects from ongoing all-sky optical space- (Gaia) and ground-based (e.g. SkyMapper) as well as NIR surveys.

  5. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less

  6. The Nucleus of the Planetary Nebula EGB 6 as a Post-Mira Binary

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.; Hawley, Steven A.; Liebert, James; Munari, Ulisse

    2016-08-01

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope (HST) images to show that the compact nebula is a point-like source, located 0.″16 (˜118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot. We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I-band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ˜1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD. Based in part on data obtained with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also based in part on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Inter-American Observatory.

  7. Multi-epoch observations with high spatial resolution of multiple T Tauri systems

    NASA Astrophysics Data System (ADS)

    Csépány, Gergely; van den Ancker, Mario; Ábrahám, Péter; Köhler, Rainer; Brandner, Wolfgang; Hormuth, Felix; Hiss, Hector

    2017-07-01

    Context. In multiple pre-main-sequence systems the lifetime of circumstellar discs appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims: We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine whether the components are gravitationally bound and orbital motion is visible, derive orbital parameters, and investigate possible correlations between the binary parameters and disc states. Methods: We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding 16 + 2 × 2 = 20 binary pairs) in the Taurus-Auriga star-forming region from a previous survey, with spectral types from K1 to M5 and separations from 0.22″ (31 AU) to 5.8″ (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results: We found ten pairs to orbit each other, five pairs that may show orbital motion, and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 μm infra-red excess varies between 0.1 and 7.2 mag (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disc. Conclusions: We have detected orbital motion in young T Tauri systems over a timescale of ≈ 20 yr. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.

  8. ASPECT spectral imaging satellite proposal to AIDA/AIM CubeSat payload

    NASA Astrophysics Data System (ADS)

    Kohout, Tomas; Näsilä, Antti; Tikka, Tuomas; Penttilä, Antti; Muinonen, Karri; Kestilä, Antti; Granvik, Mikael; Kallio, Esa

    2016-04-01

    ASPECT (Asteroid Spectral Imaging Mission) is a part of AIDA/AIM project and aims to study the composition of the Didymos binary asteroid and the effects of space weathering and shock metamorphism in order to gain understanding of the formation and evolution of the Solar System. The joint ESA/NASA AIDA (Asteroid Impact & Deflection Assessment) mission to binary asteroid Didymos consists of AIM (Asteroid Impact Mission, ESA) and DART (Double Asteroid Redirection Test, NASA). DART is targeted to impact Didymos secondary component (Didymoon) and serve as a kinetic impactor to demonstrate deflection of potentially hazardous asteroids. AIM will serve as an observational spacecraft to evaluate the effects of the impact and resulting changes in the Didymos dynamic parameters. The AIM mission will also carry two CubeSat miniaturized satellites, released in Didymoon proximity. This arrangement opens up a possibility for secondary scientific experiments. ASPECT is one of the proposed CubeSat payloads. Whereas Didymos is a space-weathered binary asteroid, the DART impactor is expected to produce a crater and excavate fresh material from the secondary component (Didymoon). Spectral comparison of the mature surface to the freshly exposed material will allow to directly deter-mine space weathering effects. It will be also possible to study spectral shock effects within the impact crater. ASPECT will also demonstrate for the first time the joint spacecraft - CubeSat operations in asteroid proximity and miniature spectral imager operation in deep-space environment. Science objectives: 1. Study of the surface composition of the Didymos system. 2. Photometric observations (and modeling) under varying phase angle and distance. 3. Study of space weathering effects on asteroids (comparison of mature / freshly exposed material). 4. Study of shock effects (spectral properties of crater interior). 5. Observations during the DART impact. Engineering objectives: 1. Demonstration of Cube

  9. A dose related response of 6-OHDA on chicken spectral sensitivity and oscillatory potentials of recording electroretinograms.

    PubMed

    Li, X; Schaeffel, F; Konrad, K; Eberhart, Z

    1996-10-01

    To further study the contribution of dopamine system to the local growth controlling mechanisms, a dose related response of 6-hydroxydopamine (6-OHDA) was studied by recording electroretinograms (ERGs). The spectral sensitivity of the b-waves and spectral efficiency function of oscillatory potentials (OPs) including OP1, OP2 and OP3 in 4 different doses group were measured. The effect of ascorbate that must be contained in solution of 6-OHDA was first tested with the spectral sensitivity of the b-waves and a correlation between response of the OPs and age, as well as a difference in both own eyes was analyzed for determining an intra-subject and inter-subject variance. An enhanced response was found in OP1, OP2 with doses of 175 micrograms and OP3 with dose of 150 micrograms, and the effect of OPs was mainly in wavelength from 620 nm to 480 nm. No significant increase was found in the spectral sensitivity of the b-waves. The dose 200 micrograms seemed to be toxic to the retina estimated by both spectral sensitivity of the b-waves and spectral efficiency function of the OPs. The dose 175 micrograms and 150 micrograms of 6-OHDA yielded an effect on the chicken retina.

  10. Time exposure studies on stress corrosion cracking of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651, and titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Terrell, J.

    1973-01-01

    The effect of a constant applied stress in crack initiation of aluminum 2014-T6, 2219-T87, 2014-T651, 7075-T651 and titanium 6Al-4V has been investigated. Aluminum c-ring specimens (1-inch diameter) and u-band titanium samples were exposed continuously to a 3.5% NaCl solution (pH 7) and organic fluids of ethyl, methyl, and iso-propyl alcohol (reagent purity), and demineralized distilled water. Corrosive action was observed to begin during the first and second day of constant exposure as evidenced by accumulation of hydrogen bubbles on the surface of stressed aluminum samples. However, titanium stressed specimens showed no reactions to its environment. Results of this investigation seems to suggest that aluminum 2014-T6, aluminum 7075-T651 and aluminum 2014-T651 are susceptible to stress corrosion cracking in chloride solution (NaCl), while aluminum 2219-T87 seem to resist stress corrosion cracking in sodium chloride at three levels of stress (25%, 50%, and 75% Y.S.). In organic fluids of methyl, ethyl, and iso-propyl alcohol, 2014-T6 and 7075-T651 did not fail by SCC; but 2014-T651 was susceptible to SCC in methly alcohol, but resistant in ethyl alcohol, iso-propyl alcohol and demineralized distilled water.

  11. Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Ping; Wang, Hsiang-Chen; Chen, Shih-Hua; Tsai, Chung-Hung; Yang, Jen-Hung

    2014-12-01

    In this study, the spectrum of each picture element of the patient’s skin image was obtained by multi-spectral imaging technology. Spectra of normal or pathological skin were collected from 15 patients. Principal component analysis and principal component scores of skin spectra were employed to distinguish the spectral characteristics with different diseases. Finally, skin regions with suspected cutaneous T-cell lymphoma (CTCL) lesions were successfully predicted by evaluation and classification of the spectra of pathological skin. The sensitivity and specificity of this technique were 89.65% and 95.18% after the analysis of about 109 patients. The probability of atopic dermatitis and psoriasis patients misinterpreted as CTCL were 5.56% and 4.54%, respectively.

  12. The Eclipsing Binary On-Line Atlas (EBOLA)

    NASA Astrophysics Data System (ADS)

    Bradstreet, D. H.; Steelman, D. P.; Sanders, S. J.; Hargis, J. R.

    2004-05-01

    In conjunction with the upcoming release of \\it Binary Maker 3.0, an extensive on-line database of eclipsing binaries is being made available. The purposes of the atlas are: \\begin {enumerate} Allow quick and easy access to information on published eclipsing binaries. Amass a consistent database of light and radial velocity curve solutions to aid in solving new systems. Provide invaluable querying capabilities on all of the parameters of the systems so that informative research can be quickly accomplished on a multitude of published results. Aid observers in establishing new observing programs based upon stars needing new light and/or radial velocity curves. Encourage workers to submit their published results so that others may have easy access to their work. Provide a vast but easily accessible storehouse of information on eclipsing binaries to accelerate the process of understanding analysis techniques and current work in the field. \\end {enumerate} The database will eventually consist of all published eclipsing binaries with light curve solutions. The following information and data will be supplied whenever available for each binary: original light curves in all bandpasses, original radial velocity observations, light curve parameters, RA and Dec, V-magnitudes, spectral types, color indices, periods, binary type, 3D representation of the system near quadrature, plots of the original light curves and synthetic models, plots of the radial velocity observations with theoretical models, and \\it Binary Maker 3.0 data files (parameter, light curve, radial velocity). The pertinent references for each star are also given with hyperlinks directly to the papers via the NASA Abstract website for downloading, if available. In addition the Atlas has extensive searching options so that workers can specifically search for binaries with specific characteristics. The website has more than 150 systems already uploaded. The URL for the site is http://ebola.eastern.edu/.

  13. Light Curve and SED Modeling of the Gamma-Ray Binary 1FGL J1018.6–5856: Constraints on the Orbital Geometry and Relativistic Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Hongjun; Romani, Roger W., E-mail: hjan@chungbuk.ac.kr

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6−5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explainmore » the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. The model requires an inclination of ∼50° and an orbital eccentricity of ∼0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.« less

  14. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  15. Fresnel zone plate light field spectral imaging simulation

    NASA Astrophysics Data System (ADS)

    Hallada, Francis D.; Franz, Anthony L.; Hawks, Michael R.

    2017-05-01

    Through numerical simulation, we have demonstrated a novel snapshot spectral imaging concept using binary diffractive optics. Binary diffractive optics, such as Fresnel zone plates (FZP) or photon sieves, can be used as the single optical element in a spectral imager that conducts both imaging and dispersion. In previous demonstrations of spectral imaging with diffractive optics, the detector array was physically translated along the optic axis to measure different image formation planes. In this new concept the wavelength-dependent images are constructed synthetically, by using integral photography concepts commonly applied to light field (plenoptic) cameras. Light field cameras use computational digital refocusing methods after exposure to make images at different object distances. Our concept refocuses to make images at different wavelengths instead of different object distances. The simulations in this study demonstrate this concept for an imager designed with a FZP. Monochromatic light from planar sources is propagated through the system to a measurement plane using wave optics in the Fresnel approximation. Simple images, placed at optical infinity, are illuminated by monochromatic sources and then digitally refocused to show different spectral bins. We show the formation of distinct images from different objects, illuminated by monochromatic sources in the VIS/NIR spectrum. Additionally, this concept could easily be applied to imaging in the MWIR and LWIR ranges. In conclusion, this new type of imager offers a rugged and simple optical design for snapshot spectral imaging and warrants further development.

  16. Classical Cepheid luminosities from binary companions

    NASA Technical Reports Server (NTRS)

    Evans, Nancy Remage

    1991-01-01

    Luminosities for the classical Cepheids Eta Aql, W Sgr, and SU Cas are determined from IUE spectra of their binary companions. Spectral types of the companions are determined from the spectra by comparison with the spectra of standard stars. The absolute magnitude inferred from these spectral types is used to determine the absolute magnitude of the Cepheid, either directly or from the magnitude difference between the two stars. For the temperature range of the companions (A0 V), distinctions of a quarter of a spectral subclass can be made in the comparison between the companions and standard stars. The absolute magnitudes for Eta Aql and W Sgr agree well with the period-luminosity-color relation of Feast and Walker (1987). Random errors are estimated to be 0.3 mag. SU Cas, however, is overluminous for pulsation in the fundamental mode, implying that it is pulsating in an overtone.

  17. Effect of specimen thickness of fatigue-crack-growth behavior and fracture toughness of 7075-T6 and 7178-T6 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Newman, J. C., Jr.

    1973-01-01

    A study was made to determine the effects of specimen thickness on fatigue crack growth and fracture behavior of 7075-T6 and 7178-T6 aluminum alloy sheet and plate. Specimen thicknesses ranged from 5.1 to 12.7 mm (0.20 to 0.50 in.) for 7075-T6 and from 1.3 to 6.4 mm (0.05 to 0.25 in.) for 7178-T6. The stress ratios R used in the crack growth experiments were 0.02 and 0.50. For 7075-T6, specimen thickness had relatively little effect on fatigue-crack growth. However, the fracture toughness of the thickness of the thickest gage of 7075-T6 was about two-thirds of the fracture toughness of the thinner gages of 7075-T6. For 7178-T6, fatigue cracks generally grew somewhat faster in the thicker gages than in the thinnest gage. The fracture toughness of the thickest gage of 7178-T6 was about two-thirds of the fracture toughness of the thinner gages of 7178-T6. Stress intensity methods were used to analyze the experimental results. For a given thickness and value of R, the rate of fatigue crack growth was essentially a single-valued function of the stress intensity range for 7075-T6 and 7178-T6. An empirical equation developed by Forman, Kearney, and Engle fit the 7075-T6 and 7178-T6 crack growth data reasonably well.

  18. X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in

    2011-08-20

    We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less

  19. The O-type eclipsing contact binary LY Aurigae - member of a quadruple system

    NASA Astrophysics Data System (ADS)

    Mayer, Pavel; Drechsel, Horst; Harmanec, Petr; Yang, Stephenson; Šlechta, Miroslav

    2013-11-01

    The eclipsing binary LY Aur (O9 II + O9 III) belongs to the rare class of early-type contact systems. We obtained 23 new spectra at the Ondřejov and Dominion Astrophysical Observatories, which were analysed with four older Calar Alto and one ELODIE archive spectra. A new result of this study is that the visual companion of LY Aur - the spectral lines of which are clearly seen in our spectra - is also an SB1 binary having an orbital period of 20.46d, an eccentric orbit, and a radial velocity semi-amplitude of 33 km s-1. The Hα line blend contains an emission component, which shows dependence on the orbital phase of the eclipsing system, with the strongest emission around the secondary eclipse. Revised elements of the eclipsing binary and the orbital solution of the companion binary are determined from our set of spectra and new light-curve solutions of the eclipsing pair. The mass of the primary of 25.5 M⊙ agrees well with its spectral type, whereas the secondary mass of 14 M⊙ is smaller than expected. From an O-C analysis of the minimum times of LY Aur that span more than 40 years, we found that the orbital period is decreasing, indicating the presence of interaction processes. The system is likely in a phase of non-conservative mass exchange. Based on spectral observations collected at the German-Spanish Observatory, Calar Alto, Spain; Dominion Astrophysical Observatory, Canada; Ondřejov Observatory, Czech Republic, and an archival Haute Provence Observatory ELODIE spectrum.

  20. CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matranga, M.; Drake, J. J.; Kashyap, V. L.

    2010-09-10

    We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a centralmore » clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient 'destroyers of worlds' and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation.« less

  1. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    NASA Astrophysics Data System (ADS)

    Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.

    2016-10-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.

  2. SPECTRAL-TIMING ANALYSIS OF THE LOWER kHz QPO IN THE LOW-MASS X-RAY BINARY AQUILA X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyer, Jon S.; Cackett, Edward M., E-mail: jon.troyer@wayne.edu

    2017-01-10

    Spectral-timing products of kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binary (LMXB) systems, including energy- and frequency-dependent lags, have been analyzed previously in 4U 1608-52, 4U 1636-53, and 4U 1728-34. Here, we study the spectral-timing properties of the lower kHz QPO of the neutron star LMXB Aquila X-1 for the first time. We compute broadband energy lags as well as energy-dependent lags and the covariance spectrum using data from the Rossi X-ray Timing Explorer . We find characteristics similar to those of previously studied systems, including soft lags of ∼30 μ s between the 3.0–8.0 keV and 8.0–20.0 keVmore » energy bands at the average QPO frequency. We also find lags that show a nearly monotonic trend with energy, with the highest-energy photons arriving first. The covariance spectrum of the lower kHz QPO is well fit by a thermal Comptonization model, though we find a seed photon temperature higher than that of the mean spectrum, which was also seen in Peille et al. and indicates the possibility of a composite boundary layer emitting region. Lastly, we see in one set of observations an Fe K component in the covariance spectrum at 2.4- σ confidence, which may raise questions about the role of reverberation in the production of lags.« less

  3. NEUTRON STAR RADIUS MEASUREMENT WITH THE QUIESCENT LOW-MASS X-RAY BINARY U24 IN NGC 6397

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillot, Sebastien; Rutledge, Robert E.; Brown, Edward F., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca

    This paper reports the spectral and timing analyses of the quiescent low-mass X-ray binary (qLMXB) U24 observed during five archived Chandra/ACIS exposures of the nearby globular cluster NGC 6397, for a total of 350 ks. We find that the X-ray flux and the parameters of the hydrogen atmosphere spectral model are consistent with those previously published for this source. On short timescales, we find no evidence of aperiodic intensity variability, with 90% confidence upper limits during five observations ranging between <8.6% rms and <19% rms, in the 0.0001-0.1 Hz frequency range (0.5-8.0 keV); and no evidence of periodic variability, withmore » maximum observed powers in this frequency range having a chance probability of occurrence from a Poisson-deviated light curve in excess of 10%. We also report the improved neutron star (NS) physical radius measurement, with statistical accuracy of the order of {approx}10%: R{sub NS} = 8.9{sup +0.9}{sub -0.6} km for M{sub NS} = 1.4 M{sub sun}. Alternatively, we provide the confidence regions in mass-radius space as well as the best-fit projected radius R{sub {infinity}} = 11.9{sup +1.0}{sub -0.8} km, as seen by an observer at infinity. The best-fit effective temperature, kT{sub eff} = 80{sup +4}{sub -5} eV, is used to estimate the NS core temperature which falls in the range T{sub core} = (3.0-9.8) x 10{sup 7} K, depending on the atmosphere model considered. This makes U24 the third most precisely measured NS radius among qLMXBs, after those in {omega} Cen and M13.« less

  4. Synthesis, characterization stereochemistry and anti-bacterial evaluation of certain N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Kayalvizhi, R.; Jamesh, M.; Uma Maheswari, J.; Thenmozhi, M.; Ponnuswamy, M. N.

    2016-09-01

    A new series of N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones 2-6 has been synthesized and characterized using IR, mass, 1H, 13C, DEPT and 2D (COSY and HSQC) NMR spectral techniques. The NMR spectral data indicate that the N-acylpiperidin-4-ones 2-6 prefer to exist in a distorted boat conformation B1 with coplanar orientation of N-C=O moiety. The stereodynamics of these systems have been studied by recording the dynamic 1H NMR spectra of compound 4, and the energy barrier for N-CO rotation is determined to be 52.75 kJ/mol. Furthermore the compounds 1-5 show significant antibacterial activity.

  5. Solvent effects on infrared spectra of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Wang, Xiao-yan; Zhang, Hui

    2007-01-01

    The infrared spectroscopy studies of the C 3 and C 20 carbonyl stretching vibrations ( υ(C dbnd O)) of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems were undertaken to investigate the solute-solvent interactions. With the mole fraction of CHC1 3 in the binary solvent mixtures increase, three types of C 3 and C 20 carbonyl stretching vibration band of progesterone are observed, respectively. The assignments of υ(C dbnd O) of progesterone are discussed in detail. In the CHCl 3-rich binary solvent systems or pure CHCl 3 solvent, two kinds of solute-solvent hydrogen bonding interactions coexist for C 20 C dbnd O. Comparisons are drawn for the solvent sensitivities of υ(C dbnd O) for acetophenone and 5α-androstan-3,17-dione, respectively.

  6. Coevality in Young Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Simon, M.; Toraskar, Jayashree

    2017-06-01

    The ages of the components in very short period pre-main-sequence (PMS) binaries are essential to an understanding of their formation. We considered a sample of seven PMS eclipsing binaries (EBs) with ages 1-6.3 MY and component masses 0.2-1.4 {M}⊙ . The very high precision with which their masses and radii have been measured and the capability provided by the Modules for Experiments in Stellar Astrophysics to calculate their evolutionary tracks at exactly the measured masses allows the determination of age differences of the components independent of their luminosities and effective temperatures. We found that the components of five EBs, ASAS J052821+0338.5, Parenago 1802, JW 380, CoRoT 223992193, and UScoCTIO 5, formed within 0.3 MY of each other. The parameters for the components of V1174 Ori imply an implausible large age difference of 2.7 MY and should be reconsidered. The seventh EB in our sample, RX J0529.4+0041 fell outside the applicability of our analysis.

  7. Astrometric and photometric measurements of binary stars with adaptive optics: observations from 2001 to 2006

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C.; Mason, Brian D.

    2018-02-01

    The adaptive optics system at the 3.6 m Advanced Electro-Optical System telescope was used to measure the astrometry and differential magnitude in I band of binary star systems between 2002 and 2006. We report 413 astrometric and photometric measurements of 373 stellar pairs. The astrometric measurements will be of use for future orbital determination, and the photometric measurements will be of use in estimating the spectral types of the component stars. For 21 binaries that had not been observed in decades, we are able to confirm that the systems share common proper motion. Candidate new companions were detected in 24 systems; for these we show the discovery images. Follow-up observations should be able to determine if these systems share common proper motion and are gravitationally bound objects. We computed orbits for nine binaries. Of these, the orbits of five systems are improved compared to prior orbits and four systems have their orbits computed for the first time. In addition, 315 stars were unresolved and the full-width half maxima of the images are presented.

  8. Serial binary interval ratios improve rhythm reproduction.

    PubMed

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.

  9. Serial binary interval ratios improve rhythm reproduction

    PubMed Central

    Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao

    2013-01-01

    Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258

  10. Using Model Point Spread Functions to Identifying Binary Brown Dwarf Systems

    NASA Astrophysics Data System (ADS)

    Matt, Kyle; Stephens, Denise C.; Lunsford, Leanne T.

    2017-01-01

    A Brown Dwarf (BD) is a celestial object that is not massive enough to undergo hydrogen fusion in its core. BDs can form in pairs called binaries. Due to the great distances between Earth and these BDs, they act as point sources of light and the angular separation between binary BDs can be small enough to appear as a single, unresolved object in images, according to Rayleigh Criterion. It is not currently possible to resolve some of these objects into separate light sources. Stephens and Noll (2006) developed a method that used model point spread functions (PSFs) to identify binary Trans-Neptunian Objects, we will use this method to identify binary BD systems in the Hubble Space Telescope archive. This method works by comparing model PSFs of single and binary sources to the observed PSFs. We also use a method to compare model spectral data for single and binary fits to determine the best parameter values for each component of the system. We describe these methods, its challenges and other possible uses in this poster.

  11. Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution.

  12. The chemically peculiar double-lined spectroscopic binary HD 90264

    NASA Astrophysics Data System (ADS)

    Quiroga, C.; Torres, A. F.; Cidale, L. S.

    2010-10-01

    Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El

  13. Constructing binary black hole initial data with high mass ratios and spins

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  14. Excess Hα emission in chromospherically active binaries.

    NASA Astrophysics Data System (ADS)

    Montes, D.; Fernandez-Figueroa, M. J.; de Castro, E.; Cornide, M.

    1995-02-01

    We study the behaviour of the excess Hα emission in a sample of 51 chromospherically active binary systems (RS CVn and BY Dra classes), of different activity levels. This sample include the 27 stars analysed by Fernandez-Figueroa et al. (1994) and the new observations of 24 systems described by Montes et al. (1994b). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of similar spectral type and luminosity class) we obtain the active-chromosphere contribution to the Hα line in these 51 systems. We have determined the excess Hα emission equivalent widths and converted it to surface fluxes. The Hα emissions arising from each component star were obtained when it was possible to deblend both contributions. The comparison of the excess Hα emission, obtained with the spectral subtraction technique, with other Hα activity indices allows us to conclude that this is the preferable activity indicator for binaries. The behaviour of the excess Hα emission as a function of the rotation has been analyzed. A slight decline toward longer rotational periods, P_rot_, and larger Rossby numbers, R_0_, is present in agreement with previous results using others activity indicators. We have compared the derived excess Hα emission fluxes with those obtained in the Ca II K and Hɛ lines finding that a good correlation exits between these three chromospheric activity indicators. The Hα losses seem to be more important than Ca II K losses for cooler stars, in fact all the system with Hα emission above the continuum are cooler than 5000K. Correlations with other activity indicators, (C IV in the transition region, and X-rays in the corona) indicate that the exponents of the power-law relations increase with the formation temperature of the spectral features.

  15. Data-analysis driven comparison of analytic and numerical coalescing binary waveforms: Nonspinning case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Yi; Buonanno, Alessandra; McWilliams, Sean T.

    2008-01-15

    We compare waveforms obtained by numerically evolving nonspinning binary black holes to post-Newtonian (PN) template families currently used in the search for gravitational waves by ground-based detectors. We find that the time-domain 3.5PN template family, which includes the inspiral phase, has fitting factors (FFs) {>=}0.96 for binary systems with total mass M=10-20M{sub {center_dot}}. The time-domain 3.5PN effective-one-body template family, which includes the inspiral, merger, and ring-down phases, gives satisfactory signal-matching performance with FFs {>=}0.96 for binary systems with total mass M=10-120M{sub {center_dot}}. If we introduce a cutoff frequency properly adjusted to the final black-hole ring-down frequency, we find that themore » frequency-domain stationary-phase-approximated template family at 3.5PN order has FFs {>=}0.96 for binary systems with total mass M=10-20M{sub {center_dot}}. However, to obtain high matching performances for larger binary masses, we need to either extend this family to unphysical regions of the parameter space or introduce a 4PN order coefficient in the frequency-domain gravitational wave (GW) phase. Finally, we find that the phenomenological Buonanno-Chen-Vallisneri family has FFs {>=}0.97 with total mass M=10-120M{sub {center_dot}}. The main analyses use the noise-spectral density of LIGO, but several tests are extended to VIRGO and advanced LIGO noise-spectral densities.« less

  16. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  17. Searching for Unresolved Binary Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Albretsen, Jacob; Stephens, Denise

    2007-10-01

    There are currently L and T brown dwarfs (BDs) with errors in their classification of +/- 1 to 2 spectra types. Metallicity and gravitational differences have accounted for some of these discrepancies, and recent studies have shown unresolved binary BDs may offer some explanation as well. However limitations in technology and resources often make it difficult to clearly resolve an object that may be binary in nature. Stephens and Noll (2006) identified statistically strong binary source candidates from Hubble Space Telescope (HST) images of Trans-Neptunian Objects (TNOs) that were apparently unresolved using model point-spread functions for single and binary sources. The HST archive contains numerous observations of BDs using the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that have never been rigorously analyzed for binary properties. Using methods developed by Stephens and Noll (2006), BD observations from the HST data archive are being analyzed for possible unresolved binaries. Preliminary results will be presented. This technique will identify potential candidates for future observations to determine orbital information.

  18. Accuracy of Binary Black Hole Waveform Models for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team

    2016-03-01

    Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.

  19. Effects of eddy currents on selective spectral editing experiments at 3T.

    PubMed

    Oeltzschner, Georg; Snoussi, Karim; Puts, Nicolaas A; Mikkelsen, Mark; Harris, Ashley D; Pradhan, Subechhya; Tsapkini, Kyrana; Schär, Michael; Barker, Peter B; Edden, Richard A E

    2018-03-01

    To investigate frequency-offset effects in edited magnetic resonance spectroscopy (MRS) experiments arising from B 0 eddy currents. Macromolecule-suppressed (MM-suppressed) γ-aminobutyric acid (GABA)-edited experiments were performed at 3T. Saturation-offset series of MEGA-PRESS experiments were performed in phantoms, in order to investigate different aspects of the relationship between the effective editing frequencies and eddy currents associated with gradient pulses in the sequence. Difference integrals were quantified for each series, and the offset dependence of the integrals was analyzed to quantify the difference in frequency (Δf) between the actual vs. nominal expected saturation frequency. Saturation-offset N-acetyl-aspartate-phantom experiments show that Δf varied with voxel orientation, ranging from 10.4 Hz (unrotated) to 6.4 Hz (45° rotation about the caudal-cranial axis) and 0.4 Hz (45° rotation about left-right axis), indicating that gradient-related B 0 eddy currents vary with crusher-gradient orientation. Fixing the crusher-gradient coordinate-frame substantially reduced the orientation dependence of Δf (to ∼2 Hz). Water-suppression crusher gradients also introduced a frequency offset, with Δf = 0.6 Hz ("excitation" water suppression), compared to 10.2 Hz (no water suppression). In vivo spectra showed a negative edited "GABA" signal, suggesting Δf on the order of 10 Hz; with fixed crusher-gradient coordinate-frame, the expected positive edited "GABA" signal was observed. Eddy currents associated with pulsed field gradients may have a considerable impact on highly frequency-selective spectral-editing experiments, such as MM-suppressed GABA editing at 3T. Careful selection of crusher gradient orientation may ameliorate these effects. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:673-681. © 2017 International Society for Magnetic Resonance in Medicine.

  20. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    PubMed Central

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  1. The L dwarf/T dwarf transition: Multiplicity, magnetic activity and mineral meteorology across the hydrogen burning limit

    NASA Astrophysics Data System (ADS)

    Burgasser, A. J.

    2013-02-01

    The transition between the L dwarf and T dwarf spectral classes is one of the most remarkable along the stellar/brown dwarf main sequence, separating sources with photospheres containing mineral condensate clouds from those containing methane and ammonia gases. Unusual characteristics of this transition include a 1 μm brightening between late L and early T dwarfs observed in both parallax samples and coeval binaries; a spike in the multiplicity fraction; evidence of increased photometric variability, possibly arising from patchy cloud structures; and a delayed transition for young, planetary-mass objects. All of these features can be explained if this transition is governed by the ``rapid'' (nonequlibrium) rainout of clouds from the photosphere, triggered by temperature, surface gravity, metallicity and (perhaps) rotational effects. While the underlying mechanism of this rainout remains under debate, the transition is now being exploited to discover and precisely characterize tight (<1 AU) very low-mass binaries that can be used to test brown dwarf evolutionary and atmospheric theories, and resolved binaries that further constrain the properties of this remarkable transition.

  2. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  3. Plasmonic spectral tunability of conductive ternary nitrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr; Bellas, D. V.

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementionedmore » broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.« less

  4. Co-existence of t(6;13)(p21;q14.1) and trisomy 12 in chronic lymphocytic leukemia.

    PubMed

    de Oliveira, Fábio Morato; de Figueiredo Pontes, Lorena Lobo; Bassi, Sarah Cristina; Dalmazzo, Leandro Felipe Figueiredo; Falcão, Roberto Passetto

    2012-06-01

    We report a case of a 57-year-old man diagnosed with chronic lymphocytic leukemia (CLL) and presence of a rare t(6;13)(p21;q14.1) in association with an extra copy of chromosome 12. Classical cytogenetic analysis using the immunostimulatory combination of DSP30 and IL-2 showed the karyotype 47,XY,t(6;13)(p21;q14.1), +12 in 75% of the metaphase cells. Spectral karyotype analysis (SKY) confirmed the abnormality previously seen by G-banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 12 probe performed on peripheral blood cells without any stimulant agent showed trisomy of chromosome 12 in 67% of analyzed cells (134/200). To the best of our knowledge, the association of t(6;13)(p21;q14.1) and +12 in CLL has never been described. The prognostic significance of these new findings in CLL remains to be elucidated. However, the patient has been followed up since 2009 without any therapeutic intervention and has so far remained stable.

  5. Discovery of a Very Low Mass Triple with Late-M and T Dwarf Components: LP 704-48/SDSS J0006-0852AB

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Luk, Christopher; Dhital, Saurav; Bardalez Gagliuffi, Daniella; Nicholls, Christine P.; Prato, L.; West, Andrew A.; Lépine, Sébastien

    2012-10-01

    We report the identification of the M9 dwarf SDSS J000649.16-085246.3 as a spectral binary and radial velocity (RV) variable with components straddling the hydrogen-burning mass limit. Low-resolution near-infrared spectroscopy reveals spectral features indicative of a T dwarf companion, and spectral template fitting yields component types of M8.5 ± 0.5 and T5 ± 1. High-resolution near-infrared spectroscopy with Keck/NIRSPEC reveals pronounced RV variations with a semi-amplitude of 8.2 ± 0.4 km s-1. From these we determine an orbital period of 147.6 ± 1.5 days and eccentricity of 0.10 ± 0.07, making SDSS J0006-0852AB the third tightest very low mass binary known. This system is also found to have a common proper motion companion, the inactive M7 dwarf LP 704-48, at a projected separation of 820 ± 120 AU. The lack of Hα emission in both M dwarf components indicates that this system is relatively old, as confirmed by evolutionary model analysis of the tight binary. LP 704-48/SDSS J0006-0852AB is the lowest-mass confirmed triple identified to date, and one of only seven candidate and confirmed triples with total masses below 0.3 M ⊙ currently known. We show that current star and brown dwarf formation models cannot produce triple systems like LP 704-48/SDSS J0006-0852AB, and we rule out Kozai-Lidov perturbations and tidal circularization as a viable mechanism to shrink the inner orbit. The similarities between this system and the recently uncovered low-mass eclipsing triples NLTT 41135AB/41136 and LHS 6343ABC suggest that substellar tertiaries may be common in wide M dwarf pairs. Portions of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  6. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  7. DISCOVERY OF FOUR HIGH PROPER MOTION L DWARFS, INCLUDING A 10 pc L DWARF AT THE L/T TRANSITION {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, Philip J.; Gizis, John E.; Harris, Hugh C.

    2013-10-20

    We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey. WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85 ± 0.''02 yr{sup –1}, previously overlooked due to its proximity to a bright star (V ≈ 12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7 ± 1.7 pc, bringing the number of L dwarfsmore » at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH{sub 4} in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH{sub 4} in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.« less

  8. Handwritten text line segmentation by spectral clustering

    NASA Astrophysics Data System (ADS)

    Han, Xuecheng; Yao, Hui; Zhong, Guoqiang

    2017-02-01

    Since handwritten text lines are generally skewed and not obviously separated, text line segmentation of handwritten document images is still a challenging problem. In this paper, we propose a novel text line segmentation algorithm based on the spectral clustering. Given a handwritten document image, we convert it to a binary image first, and then compute the adjacent matrix of the pixel points. We apply spectral clustering on this similarity metric and use the orthogonal kmeans clustering algorithm to group the text lines. Experiments on Chinese handwritten documents database (HIT-MW) demonstrate the effectiveness of the proposed method.

  9. Modeling of debris disks in Single and Binary stars

    NASA Astrophysics Data System (ADS)

    García, L.; Gómez, M.

    2016-10-01

    Infrared space observatories such as Spitzer and Herschel have allowed the detection of likely analogs to the Kuiper Belt in single as well as binary systems. The aim of this work is to characterize debris disks in single and binary stars and to identify features shared by the disks in both types of systems, as well as possible differences. We compiled a sample of 25 single and 14 binary stars (ages > 100 Myr) with flux measurements at λ >100 μm and evidence of infrared excesses attributed to the presence of debris disks. Then, we constructed and modeled the observed spectral energy distributions (SEDs), and compared the parameters of the disks of both samples. Both types of disks are relatively free of dust in the inner region (< 3-5 AU) and extend beyond 100 AU. No significant differences in the mass and dust size distributions of both samples are found.

  10. Augmentation of the IUE Ultraviolet Spectral Atlas

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chao

    IUE is the only and last satellite which will support a survey program to record the ultraviolet spectrum of a large number of bright normal stars. It is important to have a library of high quality low dispersion spectra of sufficient number of stars that provide good coverage in spectral type and luminosity class. Such a library is invaluable for stellar population synthesis of galaxies, studying the nature of distant galaxies, establishing a UV spectral classification system, providing comparison stars for interstellar extinction studies and for peculiar objects or binary systems, studying the effects of temperature, gravity and metallicity on stellar UV spectra, and as a teaching aid. We propose to continue observations of normal stars in order to provide (1) a stellar library as complete as practical, which will be able to support astronomical research by the scientific community long into the future, and (2) a sufficient sample of stars to guard against variability and peculiarity, and to allow a finite range of temperature, gravity, and metallicity in a given spectral type-luminosity class combination. Our primary goal is to collect the data and make them available to the community immediately (without claiming the 6-month proprietary right). The data will be published in the IUE Newsletter as soon as practical, and the data will be prepared for distribution by the IUE Observatory and the NSSDC.

  11. FIRST LONG-TERM OPTICAL SPECTRAL MONITORING OF A BINARY BLACK HOLE CANDIDATE E1821+643. I. VARIABILITY OF SPECTRAL LINES AND CONTINUUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Zhdanova, V. E.

    2016-02-15

    We report the results of the first long-term (1990–2014) optical spectrophotometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift, high-luminosity, radio-quiet quasar. In the monitored period, the continua and Hγ fluxes changed about two times, while the Hβ flux changed about 1.4 times. We found periodical variations in the photometric flux with periods of 1200, 1850, and 4000 days, and 4500-day periodicity in the spectroscopic variations. However, the periodicity of 4000–4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 daysmore » in the spectroscopic light curves, buts with small significance level, while the 1850-day period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s{sup −1}. However, Hβ shows a broader mean profile and has a larger time lag (τ ∼ 120 days) than Hγ (τ ∼ 60 days). We estimate that the mass of the black hole is ∼2.6 × 10{sup 9} M{sub ⊙}. The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of the broad lines, we discuss a scenario where dense, gas-rich, cloudy-like structures are orbiting around a recoiling black hole.« less

  12. Binary statistics among population II stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.; Köhler, R.; Jahreiß, H.

    2004-08-01

    Population II stars are old, metal-poor, Galactic halo stars with high proper motion. We have carried out a visual binary survey of 164 halo stars in the solar neighborhood (median distance 100 pc), using infrared speckle interferometry, adaptive optics, and wide field direct imaging. The sample is based on the lists of Population II stars of Carney et al. (1994) and Norris (1986), with reliable distances from HIPPARCOS measurements. At face value, we found 33 binaries, 6 triples, and 1 quadruple system. When we limit ourselves to K-band flux ratios larger than 0.1 (to avoid background contamination), the numbers drop to 9 binaries and 1 triple, corresponding to a binary frequency of 6 - 7 % above our angular resolution limit of about 0.1 arcsec. If we count all systems with K-band flux ratios greater than 0.01, we obtain 15 more binaries and 3 more triples, corresponding to a binary frequency for projected separations in excess of 10 AU of around 20 %. This is to be compared with the frequency of spectroscopic binaries (up to a period of 3000 days) of Population II stars of about 15 % (Latham et al. 2002). We also determined a semi-major axis distribution for our visual Population II binary and triple systems, which appears to be remarkably different from that of Population I stars. Second epoch-observations must help confirm the reality of our results.

  13. The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2008-06-01

    We present the Class I protostellar binary separation distribution based on the data tabulated in a companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars in the separation range from 500 AU to 4500 AU. Although our sources are in nearby star-forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. A log-normal function, used by previous authors to fit the main-sequence and T Tauri binary separation distributions, poorly fits our data, and we determine that a log-uniform function is a better fit. Our observations show that the binary separation distribution changes significantly during the Class I phase, and that the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that a large number of companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the significant mass of the Class I envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. Circumstellar and circumbinary disks are expected to play an important role in the orbital evolution at closer separations. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I young stellar objects (YSOs) with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, but have experienced dynamical evolution before they are visible as Class I objects. Our analysis shows that the Class I binary frequency and the binary separation

  14. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    PubMed

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.

  15. Lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Babichev, A. V.; Karachinsky, L. Ya.

    2015-11-15

    The lasing of multiperiod quantum-cascade lasers in the spectral range of (5.6–5.8)-μm under current pumping are demonstrated. The quantum-cascade laser heterostructure is grown by molecular-beam epitaxy technique. Despite the relatively short laser cavity length and high level of external loss the laser shows the lasing in the temperature range of 80–220 K. The threshold current density below 4 kA/cm{sup 2} at 220 K with the characteristic temperature T{sub 0} = 123 K was demonstrated.

  16. Peculiar spectral statistics of ensembles of trees and star-like graphs

    NASA Astrophysics Data System (ADS)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; Valba, O.

    2017-07-01

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the ‘Lifshitz singularity’ emerging in the one-dimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.

  17. Orbital motion in pre-main sequence binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, G. H.; Prato, L.; Simon, M.

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five othermore » binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.« less

  18. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations

  19. Rotation, activity, and lithium abundance in cool binary stars

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    _rot-0.24} for binaries and {R_Hα ∝ P_rot-0.14} for singles. Its power-law difference is possibly significant. Lithium abundances in our (field-star) sample generally increase with effective temperature and are paralleled with an increase of the dispersion. The dispersion for binaries can be 1-2 orders of magnitude larger than for singles, peaking at an absolute spread of 3 orders of magnitude near T_eff≈ 5000 K. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles, as expected if the depletion mechanism is rotation dependent. We also find a trend of increased Li abundance with rotational period of form log n (Li) ∝ -0.6 log P_rot but again with a dispersion of as large as 3-4 orders of magnitude. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated with IAC, and the Automatic Photoelectric Telescopes in Arizona, jointly operated with Fairborn Observatory.

  20. Determination of the axial rotation rate using apsidal motion for early-type eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Khaliullin, Kh. F.; Khaliullina, A. I.

    2007-11-01

    Because the modern theory of stellar structure and evolution has a sound observational basis, we can consider that the apsidal parameters k2 computed in terms of this theory correctly reflect the radial density distribution in stars of different masses and spectral types. This allows us to address the problem of apsidal motion in close binary systems in a new way. Unlike the traditional approach, in this paper we use the observed apsidal periods Uobs to estimate the angular axial velocities of components, ωr, at fixed model values of k2. We use this approach to analyse the observational data for 28 eclipsing systems with known Uobs and early-type primaries (M >= 1.6 Msolar or Te >= 6000 K). We measure the age of the system in units of the synchronization time, t/tsyn. Our analysis yielded the following results. (i) There is a clear correlation between ωr/ωsyn and t/tsyn: the younger a star, the higher the angular velocity of its axial rotation in units of ωsyn, the angular velocity at pseudo-synchronization. This correlation is more significant and obvious if the synchronization time, tsyn, is computed in terms of the Zahn theory. (ii) This observational fact implies that the synchronization of early-type components in close binary systems continues on the main sequence. The synchronization times for the inner layers of the components (i.e. those that are responsible for apsidal motion) are about 1.6 and 3.1 dex longer than those predicted by the theories of Zahn and Tassoul, respectively. The average initial angular velocities (for the zero-age main sequence) are equal to ω0/ωsyn ~ 2.0. The dependence of the parameter E2 on stellar mass probably needs to be refined in the Zahn theory. (iii) Some components of the eclipsing systems of the sample studied show radially differential axial rotation. This is consistent with the Zahn theory, which predicts that the synchronization starts at the surface, where radiative damping of dynamical tides occurs, and

  1. Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions.

    PubMed

    Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2014-06-30

    In the paper, we developed a dispersive method for transmission function synthesis of collinear and quasi-collinear acousto-optic tunable filters. General theoretical consideration was performed, and modelling was made for broadband and narrowband signals. Experimental results on spectral shaping of femtosecond laser emission were obtained. Binary spectral encoding of broadband emission was demonstrated.

  2. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  3. Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects

    NASA Astrophysics Data System (ADS)

    Joseph, R.; Courbin, F.; Starck, J.-L.

    2016-05-01

    We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending of strong gravitational lenses, our method is fit to be used for any purpose related to deblending of objects in astronomical images. An example of such an application is the separation of the red and blue stellar populations of a spiral galaxy in the galaxy cluster Abell 2744. We provide a python package along with all simulations and routines used in this paper to contribute to reproducible research efforts. Codes can be found at http://lastro.epfl.ch/page-126973.html

  4. Kinetics of T-cell receptor-dependent antigen recognition determined in vivo by multi-spectral normalized epifluorescence laser scanning

    NASA Astrophysics Data System (ADS)

    Favicchio, Rosy; Zacharakis, Giannis; Oikonomaki, Katerina; Zacharopoulos, Athanasios; Mamalaki, Clio; Ripoll, Jorge

    2012-07-01

    Detection of multiple fluorophores in conditions of low signal represents a limiting factor for the application of in vivo optical imaging techniques in immunology where fluorescent labels report for different functional characteristics. A noninvasive in vivo Multi-Spectral Normalized Epifluorescence Laser scanning (M-SNELS) method was developed for the simultaneous and quantitative detection of multiple fluorophores in low signal to noise ratios and used to follow T-cell activation and clonal expansion. Colocalized DsRed- and GFP-labeled T cells were followed in tandem during the mounting of an immune response. Spectral unmixing was used to distinguish the overlapping fluorescent emissions representative of the two distinct cell populations and longitudinal data reported the discrete pattern of antigen-driven proliferation. Retrieved values were validated both in vitro and in vivo with flow cytometry and significant correlation between all methodologies was achieved. Noninvasive M-SNELS successfully quantified two colocalized fluorescent populations and provides a valid alternative imaging approach to traditional invasive methods for detecting T cell dynamics.

  5. Discovery and Characterization of Wide Binary Systems with a Very Low Mass Component

    NASA Astrophysics Data System (ADS)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne; Doyon, René; Gagné, Jonathan; Davison, Cassy L.; Malo, Lison; Robert, Jasmin; Nadeau, Daniel; Reylé, Céline

    2015-03-01

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5 m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ˜340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0-L1 at a separation in the 250-7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.

  6. International Ultraviolet Explorer observations of the peculiar variable spectrum of the eclipsing binary R Arae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E.; Kondo, Y.

    1983-01-01

    The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.

  7. Flip-flopping binary black holes.

    PubMed

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  8. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.

    2012-12-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbitsmore » are calculated for other two systems. Several systems are discussed in detail.« less

  9. X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Naze, Y.; Rauw, G.

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P{sub A} = 21 days) and B (O8 III+o9 v, P{sub B} = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT {approx_equal} 0.2, 0.7, and 2 keV, respectively,more » and a circumstellar absorption of {approx_equal}0.2 x 10{sup 22} cm{sup -2}. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of {approx_equal}7 x 10{sup -13} erg s{sup -1} cm{sup -2}, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.« less

  10. Binary Star Fractions from the LAMOST DR4

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  11. HIGH-RESOLUTION CO OBSERVATION OF THE CARBON STAR CIT 6 REVEALING THE SPIRAL STRUCTURE AND A NASCENT BIPOLAR OUTFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi

    2015-11-20

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPNs). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC{sub 3}N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB–pPN transition. We have carried out high-resolution {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescopemore » (single-dish) data. The {sup 12}CO channel maps reveal a spiral-shell pattern connecting the HC{sub 3}N segments in a continuous form and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the {sup 12}CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presence of an anisotropic mass loss to the west and a double spiral pattern. The lack of interarm emission to the west may indicate a feature corresponding to the periastron passage of a highly eccentric orbit of the binary. Spatially averaged radial and spectral profiles of {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 are compared with simple spherical radiative transfer models, suggesting a change of {sup 12}CO/{sup 13}CO abundance ratio from ∼30 to ∼50 inward in the CSE of CIT 6. The millimeter continuum emission is decomposed into extended dust thermal emission (spectral index ∼ −2.4) and compact emission from radio photosphere (spectral index ∼ −2.0)« less

  12. Orbital Solution for the Spectroscopic Binary in the GW Ori Hierarchical Triple

    NASA Astrophysics Data System (ADS)

    Prato, L.; Ruíz-Rodríguez, Dary; Wasserman, L. H.

    2018-01-01

    We present the first double-lined orbital solution for the close binary in the GW Ori triple system. Using 12 epochs of infrared spectroscopy, we detected the lines of both stars in the inner pair, previously known as single-lined only. Our preliminary infrared orbital solution has an eccentricity of e = 0.21 ± 0.10, a period of P = 241.15 ± 0.72 days, and a mass ratio of q = 0.66 ± 0.13. We find a larger semi-amplitude for the primary star, K1 = 6.57 ± 1.00 km s‑1, with an infrared-only solution compared to K1 = 4.41 ± 0.33 km s‑1 with optical data from the literature, likely the result of line blending and veiling in the optical. The component spectral types correspond to G3 and K0 stars, with v\\sin i values of 43 km s‑1 and 50 km s‑1, respectively. We obtained a flux ratio of α = 0.58 ± 0.14 in the H-band, allowing us to estimate individual masses of 3.2 and 2.7 M ⊙ for the primary and secondary, respectively, using evolutionary tracks. The tracks also yield a coeval age of 1 Myr for both components to within 1σ. GW Ori is surrounded by a circumbinary/circumtriple disk. A tertiary component has been detected in previous studies; however, we did not detect this component in our near-infrared spectra, probably the result of its relative faintness and blending in the absorption lines of these rapidly rotating stars. With these results, GW Ori joins the small number of classical T Tauri, double-lined spectroscopic binaries.

  13. Global translational impacts of the loss of the tRNA modification t6A in yeast.

    PubMed

    Thiaville, Patrick C; Legendre, Rachel; Rojas-Benítez, Diego; Baudin-Baillieu, Agnès; Hatin, Isabelle; Chalancon, Guilhem; Glavic, Alvaro; Namy, Olivier; de Crécy-Lagard, Valérie

    2016-01-01

    The universal tRNA modification t 6 A is found at position 37 of nearly all tRNAs decoding ANN codons. The absence of t 6 A 37 leads to severe growth defects in baker's yeast, phenotypes similar to those caused by defects in mcm 5 s 2 U 34 synthesis. Mutants in mcm 5 s 2 U 34 can be suppressed by overexpression of tRNA Lys UUU , but we show t 6 A phenotypes could not be suppressed by expressing any individual ANN decoding tRNA, and t 6 A and mcm 5 s 2 U are not determinants for each other's formation. Our results suggest that t 6 A deficiency, like mcm 5 s 2 U deficiency, leads to protein folding defects, and show that the absence of t 6 A led to stress sensitivities (heat, ethanol, salt) and sensitivity to TOR pathway inhibitors. Additionally, L-homoserine suppressed the slow growth phenotype seen in t 6 A-deficient strains, and proteins aggregates and Advanced Glycation End-products (AGEs) were increased in the mutants. The global consequences on translation caused by t 6 A absence were examined by ribosome profiling. Interestingly, the absence of t 6 A did not lead to global translation defects, but did increase translation initiation at upstream non-AUG codons and increased frame-shifting in specific genes. Analysis of codon occupancy rates suggests that one of the major roles of t 6 A is to homogenize the process of elongation by slowing the elongation rate at codons decoded by high abundance tRNAs and I 34 :C 3 pairs while increasing the elongation rate of rare tRNAs and G 34 :U 3 pairs. This work reveals that the consequences of t 6 A absence are complex and multilayered and has set the stage to elucidate the molecular basis of the observed phenotypes.

  14. Reflection Spectra of the Black Hole Binary Candidate MAXI J1535-571 in the Hard State Observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Xu, Yanjun; Harrison, Fiona A.; García, Javier A.; Fabian, Andrew C.; Fürst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Madsen, Kristin K.; Miller, Jon M.; Parker, Michael L.; Tomsick, John A.; Walton, Dominic J.

    2018-01-01

    We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently discovered bright black hole candidate MAXI J1535-571. NuSTAR observed the source on MJD 58003 (five days after the outburst was reported). The spectrum is characteristic of a black hole binary in the hard state. We observe clear disk reflection features, including a broad Fe Kα line and a Compton hump peaking around 30 keV. Detailed spectral modeling reveals a narrow Fe Kα line complex centered around 6.5 keV on top of the strong relativistically broadened Fe Kα line. The narrow component is consistent with distant reflection from moderately ionized material. The spectral continuum is well described by a combination of cool thermal disk photons and a Comptonized plasma with the electron temperature {{kT}}{{e}}=19.7+/- 0.4 keV. An adequate fit can be achieved for the disk reflection features with a self-consistent relativistic reflection model that assumes a lamp-post geometry for the coronal illuminating source. The spectral fitting measures a black hole spin a> 0.84, inner disk radius {R}{in}< 2.01 {r}{ISCO}, and a lamp-post height h={7.2}-2.0+0.8 {r}{{g}} (statistical errors, 90% confidence), indicating no significant disk truncation and a compact corona. Although the distance and mass of this source are not currently known, this suggests the source was likely in the brighter phases of the hard state during this NuSTAR observation.

  15. BVRI Photometric Study of the High Mass Ratio, Detached, Pre-contact W UMa Binary GQ Cancri

    NASA Astrophysics Data System (ADS)

    Samec, R. G.; Olson, A.; Caton, D.; Faulkner, D. R.

    2017-12-01

    CCD BVRcIc light curves of GQ Cancri were observed in April 2013 using the SARA North 0.9-meter Telescope at Kitt Peak National Observatory in Arizona in remote mode. It is a high-amplitude (V 0.9 magnitude) K0±V type eclipsing binary (T1 5250 K) with a photometrically-determined mass ratio of M2 / M1 = 0.80. Its spectral color type classifies it as a pre-contact W UMa Binary (PCWB). The Wilson-Devinney Mode 2 solutions show that the system has a detached binary configuration with fill-outs of 94% and 98% for the primary and secondary component, respectively. As expected, the light curve is asymmetric due to spot activity. Three times of minimum light were calculated, for two primary eclipses and one secondary eclipse, from our present observations. In total, some 26 times of minimum light covering nearly 20 years of observation were used to determine linear and quadratic ephemerides. It is noted that the light curve solution remained in a detached state for every iteration of the computer runs. The components are very similar with a computed temperature difference of only 4 K, and the flux of the primary component accounts for 53±55% of the system's light in B, V, Rc, and Ic. A 12-degree radius high latitude white spot (faculae) was iterated on the primary component.

  16. Spectral Emissivity (6 - 38 µm) of Jupiter's Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.

    2016-10-01

    Jovian Trojan asteroids, located in Jupiter's stable Lagrange points, are an extensive population of primitive bodies in the Solar System. Previous work in the visible and NIR shows Trojans have featureless, red-sloped spectra and low albedos, making mineralogical characterization difficult. However, it has been shown that three Trojans exhibit silicate emissivity features in the thermal IR (6 - 38 μm Emery et al. 2006, Icarus 182). The detected features indicate the presence of fine-grained (micron-sized) silicate dust on the surfaces, and closely resemble spectral features measured of cometary comae. We hypothesize that Trojan surface mineralogy is fairly uniform and is similar to comet dust. The principal goal of this work is, therefore, to derive primary surface mineralogy from thermal emission spectra. We present thermal IR spectra of 12 Trojans observed with NASA's Spitzer space telescope, using the InfraRed Spectrograph (IRS) in Staring Mode from June 2006 to June 2007. Eight objects were observed over the 5.2 - 38 µm spectral range, and four objects over the 7.5 - 38 µm range. Using the NEATM thermal model, we have computed size, albedo, and beaming parameter for the 12 Trojans. Results for these physical parameters are comparable to those derived from WISE data (Grav et al. 2011, ApJ 742 (1); Grav et al. 2012, ApJ 759 (49)). There are, however, some discrepancies, especially with 2797 Teucer. The emissivity spectra fall into groups that directly correlate with the red and less-red spectral slope groupings described in Emery et al. (2011, ApJ, 141(1)). Strong 10 µm emission features appear in each object, suggesting the presence of fine-grained silicates. Features found between 12-13 µm, and 18-19 µm are also observed in all spectra. We will present these new Trojan asteroid data with mineralogical estimates derived from the emissivity spectra.

  17. Viscosities of Fe Ni, Fe Co and Ni Co binary melts

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Sugisawa, Koji; Aoki, Daisuke; Yamamura, Tsutomu

    2005-02-01

    Viscosities of three binary molten alloys consisting of the iron group elements, Fe, Ni and Co, have been measured by using an oscillating cup viscometer over the entire composition range from liquidus temperatures up to 1600 °C with high precision and excellent reproducibility. The viscosities measured showed good Arrhenius linearity for all the compositions. The viscosities of Fe, Ni and Co as a function of temperature are as follows: \\eqalign{ & \\log \\eta={-}0.6074 + 2493/T\\qquad for\\quad Fe\\\\ & \\log \\eta={-}0.5695 + 2157/T\\qquad for\\quad Ni \\\\ & \\log \\eta={-}0.6620 + 2430/T\\qquad for\\quad Co.} The isothermal viscosities of Fe-Ni and Fe-Co binary melts increase monotonically with increasing Fe content. On the other hand, in Ni-Co binary melt, the isothermal viscosity decreases slightly and then increases with increasing Co. The activation energy of Fe-Co binary melt increased slightly on mixing, and those of Fe-Ni and Ni-Co melts decreased monotonically with increasing Ni content. The above behaviour is discussed based on the thermodynamic properties of the alloys.

  18. The Plutino Population: An Abundance of Contact Binaries

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Sheppard, Scott S.

    2018-06-01

    We observed 12 Plutinos over two separated years with the 4.3 m Lowell’s Discovery Channel Telescope. Here, we present the first light-curve data for those objects. Three of them (2014 JL80, 2014 JO80, and 2014 JQ80) display a large light-curve amplitude explainable by a single elongated object, but they are most likely caused by a contact binary system due to their light-curve morphology. These potential contact binaries have rotational periods from 6.3 to 34.9 hr and peak-to-peak light-curve variability between 0.6 and 0.8 mag. We present partial light curves, allowing us to constrain the light-curve amplitude and the rotational period of another nine Plutinos. By merging our data with the literature, we estimate that up to ∼40% of the Plutinos could be contact binaries. Interestingly, we found that all of the suspected contact binaries in the 3:2 resonance are small with absolute magnitude H > 6 mag. Based on our sample and the literature, up to ∼50% of the small Plutinos are potential contact binaries.

  19. Spectral gamuts and spectral gamut mapping

    NASA Astrophysics Data System (ADS)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  20. Progress on type-II InAs/GaSb superlattice (T2SL) infrared photodetector : from MWIR to VLWIR spectral domains

    NASA Astrophysics Data System (ADS)

    Christol, P.; Rodriguez, J.-B.

    2017-11-01

    Infrared photodetectors based on type-II InAs/GaSb superlattice (T2SL) material has been given a lot of attention this past decade, in particular by U.S. laboratories. Among the advantages of this material system, one can cite the possibility to span a large Infrared (IR) range (3μm to 30 μm) by tailoring the band-gap independently from the lattice constant, allowing addressing many applications by the same fabrication process and the realization of multi-color IR sensors for high performance imaging systems. Recently, the maturity of the growth of the quantum structure by molecular beam epitaxy (MBE) and progress on the processing resulted in the demonstration of high-performance mega-pixel focal plane arrays (FPA) in both the mid-wavelength (MWIR) and the long-wavelength (LWIR) infrared spectral bands [1]. Consequently, InAs/GaSb T2SL photodetector can be now considered as a new infrared technology which can be complementary to InSb, MCT or QWIPs technologies. After some reminders on InAs/GaSb T2SL quantum structure properties, we present in this communication the results obtained by the IES laboratory, from Montpellier University, France, for photodiodes operating in the MWIR spectral domains. We then complete the paper by the main results reached by others laboratories for T2SL detectors operating from MWIR to VLWIR spectral ranges.

  1. Texture Classification by Texton: Statistical versus Binary

    PubMed Central

    Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane

    2014-01-01

    Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346

  2. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE PAGES

    Kovaleva, V.; Maximov, Yu; Nechaev, S.; ...

    2017-07-11

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  3. Peculiar spectral statistics of ensembles of trees and star-like graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovaleva, V.; Maximov, Yu; Nechaev, S.

    In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less

  4. Spectral Energy Distribution and Bolometric Luminosity of the Cool Brown Dwarf Gliese 229B

    NASA Technical Reports Server (NTRS)

    Matthews, K.; Nakajima, T.; Kulkarni, S. R.; Oppenheimer, B. R.

    1996-01-01

    Infrared broadband photometry of the cool brown dwarf Gliese 229B extending in wavelength from 0.8 to 10.5 micron is reported. These results are derived from both new data and reanalyzed, previously published data. Existing spectral data reported have been rereduced and recalibrated. The close proximity of the bright Gliese 229A to the dim Gliese 229B required the use of special techniques for the observations and also for the data analysis. We describe these procedures in detail. The observed luminosity between 0.8 and 10.5 micron is (4.9 +/- 0.6) x 10(exp -6) solar luminosity. The observed spectral energy distribution is in overall agreement with a dust-free model spectrum by Tsuji et al. for T(eff) approx. equal to 900 K. If this model is used to derive the bolometric correction, the best estimate of the bolometric luminosity is 6.4 x 10(exp -6) solar luminosity and 50% of this luminosity ties between 1 and 2.5 microns. Our best estimate of the effective temperature is 900 K. From the observed near-infrared spectrum and the spectral energy distribution, the brightness temperatures (T(sub B) are estimated. The highest, T(sub B) = 1640 K, is seen at the peak of the J band spectrum, while the lowest, T(sub B) is less than or equal to 600 K, is at 3.4 microns, which corresponds to the location of the fundamental methane band.

  5. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    NASA Astrophysics Data System (ADS)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-03-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically-selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  6. A translocation t(6;14) in two cases of leiomyosarcoma: Molecular cytogenetic and array-based comparative genomic hybridization characterization.

    PubMed

    de Graaff, Marieke A; de Jong, Daniëlle; Briaire-de Bruijn, Inge H; Hogendoorn, Pancras C W; Bovée, Judith V M G; Szuhai, Károly

    2015-11-01

    Leiomyosarcomas are malignant mesenchymal tumors that recapitulate smooth muscle cell differentiation. Tumors are characterized by a genetic heterogeneity with complex karyotypes without a tumor-specific genetic aberration. Their pathobiology is still poorly understood and no specific targeted treatment is currently available for these aggressive tumors. For six leiomyosarcomas, cells were cultured and analyzed by combined binary ratio labeling fluorescence in situ hybridization (COBRA-FISH) karyotyping. A t(6;14) was identified in two cases. FISH breakpoint mapping of case L1339 reveals a breakpoint at chromosome 6p21.31 close to HMGA1, and a small deletion was observed on the distal side of the gene. A small homozygous deletion was also found in the breakpoint region of chromosome 14q24.1 involving ACTN1. The second case revealed a der(6)t(6;14)(p21.1;q21.3), with a duplication adjacent to the breakpoint at chromosome 6. Confirmatory FISH revealed a second leiomyosarcoma with an aberration at 14q24.1. Alterations at this locus were found in 5% (2 of 39) of the leiomyosarcomas in this study. The other identified breakpoints appeared to be non-recurrent, because they were not detected in other leiomyosarcomas, uterine leiomyomas, undifferentiated spindle cell sarcomas, or undifferentiated pleomorphic sarcomas. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Measuring the Number of M Dwarfs per M Dwarf Using Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Shan, Yutong; Johnson, John A.; Morton, Timothy D.

    2015-11-01

    We measure the binarity of detached M dwarfs in the Kepler field with orbital periods in the range of 1-90 days. Kepler’s photometric precision and nearly continuous monitoring of stellar targets over time baselines ranging from 3 months to 4 years make its detection efficiency for eclipsing binaries nearly complete over this period range and for all radius ratios. Our investigation employs a statistical framework akin to that used for inferring planetary occurrence rates from planetary transits. The obvious simplification is that eclipsing binaries have a vastly improved detection efficiency that is limited chiefly by their geometric probabilities to eclipse. For the M-dwarf sample observed by the Kepler Mission, the fractional incidence of eclipsing binaries implies that there are {0.11}-0.04+0.02 close stellar companions per apparently single M dwarf. Our measured binarity is higher than previous inferences of the occurrence rate of close binaries via radial velocity techniques, at roughly the 2σ level. This study represents the first use of eclipsing binary detections from a high quality transiting planet mission to infer binary statistics. Application of this statistical framework to the eclipsing binaries discovered by future transit surveys will establish better constraints on short-period M+M binary rate, as well as binarity measurements for stars of other spectral types.

  8. GX 3+1: THE STABILITY OF SPECTRAL INDEX AS A FUNCTION OF MASS ACCRETION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifina, Elena; Titarchuk, Lev, E-mail: seif@sai.msu.ru, E-mail: titarchuk@fe.infn.it, E-mail: lev@milkyway.gsfc.nasa.gov

    2012-03-10

    We present an analysis of the spectral and timing properties observed in X-rays from neutron star (NS) binary GX 3+1 (4U 1744-26) during long-term transitions between the faint and bright phases superimposed on short-term transitions between lower banana (LB) and upper banana (UB) branches in terms of its color-color diagram. We analyze all observations of this source obtained with the Rossi X-ray Timing Explorer and Beppo SAX satellites. We find that the X-ray broadband energy spectra during these spectral transitions can be adequately reproduced by a composition of a low-temperature blackbody component, a Comptonized component (COMPTB), and a Gaussian component.more » We argue that the electron temperature kT{sub e} of the Compton cloud monotonically increases from 2.3 keV to 4.5 keV, when GX 3+1 makes a transition from UB to LB. We also detect an evolution of noise components (a very low frequency noise and a high-frequency noise) during these LB-UB transitions. Using a disk seed photon normalization of COMPTB, which is proportional to the mass accretion rate, we find that the photon power-law index {Gamma} is almost constant ({Gamma} = 2.00 {+-} 0.02) when mass accretion rate changes by a factor of four. In addition, we find that the emergent spectrum is dominated by the strong Comptonized component. We interpret this quasi-stability of the index {Gamma} and a particular form of the spectrum in the framework of a model in which the energy release in the transition layer located between the accretion disk and NS surface dominates that in the disk. Moreover, this index stability effect now established for GX 3+1 was previously found in the atoll source 4U 1728-34 and suggested for a number of other low-mass X-ray NS binaries (see Farinelli and Titarchuk). This intrinsic behavior of NSs, in particular for atoll sources, is fundamentally different from that seen in black hole binary sources where the index monotonically increases during spectral transition from

  9. Characterization of a compact 6-band multifunctional camera based on patterned spectral filters in the focal plane

    NASA Astrophysics Data System (ADS)

    Torkildsen, H. E.; Hovland, H.; Opsahl, T.; Haavardsholm, T. V.; Nicolas, S.; Skauli, T.

    2014-06-01

    In some applications of multi- or hyperspectral imaging, it is important to have a compact sensor. The most compact spectral imaging sensors are based on spectral filtering in the focal plane. For hyperspectral imaging, it has been proposed to use a "linearly variable" bandpass filter in the focal plane, combined with scanning of the field of view. As the image of a given object in the scene moves across the field of view, it is observed through parts of the filter with varying center wavelength, and a complete spectrum can be assembled. However if the radiance received from the object varies with viewing angle, or with time, then the reconstructed spectrum will be distorted. We describe a camera design where this hyperspectral functionality is traded for multispectral imaging with better spectral integrity. Spectral distortion is minimized by using a patterned filter with 6 bands arranged close together, so that a scene object is seen by each spectral band in rapid succession and with minimal change in viewing angle. The set of 6 bands is repeated 4 times so that the spectral data can be checked for internal consistency. Still the total extent of the filter in the scan direction is small. Therefore the remainder of the image sensor can be used for conventional imaging with potential for using motion tracking and 3D reconstruction to support the spectral imaging function. We show detailed characterization of the point spread function of the camera, demonstrating the importance of such characterization as a basis for image reconstruction. A simplified image reconstruction based on feature-based image coregistration is shown to yield reasonable results. Elimination of spectral artifacts due to scene motion is demonstrated.

  10. Rotation invariant deep binary hashing for fast image retrieval

    NASA Astrophysics Data System (ADS)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  11. Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1994-01-01

    We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to

  12. A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Gandhi, P.; Altamirano, D.; Uttley, P.; Tomsick, J. A.; Charles, P. A.; Fürst, F.; Rahoui, F.; Walton, D. J.

    2016-05-01

    We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multitemperature disc with an inner disc temperature kTin = 0.252 ± 0.003 keV scattered into a steep power-law with photon index Γ =6.39^{+0.08}_{-0.02} and an additional hard power-law tail (Γ = 1.79 ± 0.02). We report on the emergence of a strong disc-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ˜10 yr prolonged outburst. Using reasonable estimates for the distance to the source (3 kpc) and black hole mass (5 M⊙), we find the unabsorbed luminosity (0.1-100 keV) to be ≈0.60 per cent of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disc extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be R_{in}=28.0^{+0.7}_{-0.4} R_g or ˜12Rg, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f = 1.7 and a binary inclination I = 55°.

  13. DISCOVERY AND CHARACTERIZATION OF WIDE BINARY SYSTEMS WITH A VERY LOW MASS COMPONENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron, Frédérique; Lafrenière, David; Artigau, Étienne

    2015-03-20

    We report the discovery of 14 low-mass binary systems containing mid-M to mid-L dwarf companions with separations larger than 250 AU. We also report the independent discovery of nine other systems with similar characteristics that were recently discovered in other studies. We have identified these systems by searching for common proper motion sources in the vicinity of known high proper motion stars, based on a cross-correlation of wide area near-infrared surveys (2MASS, SDSS, and SIMP). An astrometric follow-up, for common proper motion confirmation, was made with SIMON and/or CPAPIR at the Observatoire du Mont Mégantic 1.6 m and CTIO 1.5more » m telescopes for all the candidates identified. A spectroscopic follow-up was also made with GMOS or GNIRS at Gemini to determine the spectral types of 11 of our newly identified companions and 10 of our primaries. Statistical arguments are provided to show that all of the systems we report here are very likely to be physical binaries. One of the new systems reported features a brown dwarf companion: LSPM J1259+1001 (M5) has an L4.5 (2M1259+1001) companion at ∼340 AU. This brown dwarf was previously unknown. Seven other systems have a companion of spectral type L0–L1 at a separation in the 250–7500 AU range. Our sample includes 14 systems with a mass ratio below 0.3.« less

  14. Composite hot subdwarf binaries - I. The spectroscopically confirmed sdB sample

    NASA Astrophysics Data System (ADS)

    Vos, Joris; Németh, Péter; Vučković, Maja; Østensen, Roy; Parsons, Steven

    2018-01-01

    Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts that these objects are circularized before the onset of Roche lobe overflow (RLOF). To increase our understanding of binary interaction processes during the RLOF phase, we started a long-term observing campaign to study wide sdB binaries. In this paper, we present a sample of composite binary sdBs, and the results of the spectral analysis of nine such systems. The grid search in stellar parameters (GSSP) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also to characterize the hot subdwarfs, we used the independent XTGRID code, which employs TLUSTY non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and PHOENIX synthetic spectra for the cool companions. The independent GSSP and XTGRID codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, we make an estimate for the mass accreted during the RLOF phase and the minimum duration of that phase. We find that the mass transfer to the companion is minimal during the subdwarf formation.

  15. IS NSVS 5066754 A NEAR-CONTACT OR A MARGINAL CONTACT BINARY?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samec, Ronald G.; Nyaude, Ropafadzo; Caton, Daniel B.

    BVR{sub cIc} light curves of NSVS 5066754 were taken on 2014 May at Dark Sky Observatory in North Carolina. This variable is a solar-type eclipsing binary ( T 1 ∼ 5750 K) with a period of only 0.3751689(1) days. It appeared to be one of the shortest periods in Shaw’s list of near-contact binaries. The Binary Maker fits and our Wilson–Devinney solutions show that the binary could have both semidetached and marginal contact binary configurations. Five new times of minimum light were calculated, along with two minima determined from archived All Sky Automated Survey observations. From these minima and the discovery epoch, amore » quadratic ephemeris was determined. Thus, a magnetic braking scenario is possible. Both semidetached and contact models were explored. A marginal contact solution had the best sum of square residuals. It gave a mass ratio of ∼0.5, and a component temperature difference of ∼360 K, albeit somewhat large for a contact binary. Two substantial cool spots were determined in this solution with 37° and 28° radii and t-factors or 0.94 and 0.78 respectively. The fill-out is very shallow, ∼106%. It may have recently achieved contact.« less

  16. A Spectral Element Ocean Model on the Cray T3D: the interannual variability of the Mediterranean Sea general circulation

    NASA Astrophysics Data System (ADS)

    Molcard, A. J.; Pinardi, N.; Ansaloni, R.

    A new numerical model, SEOM (Spectral Element Ocean Model, (Iskandarani et al, 1994)), has been implemented in the Mediterranean Sea. Spectral element methods combine the geometric flexibility of finite element techniques with the rapid convergence rate of spectral schemes. The current version solves the shallow water equations with a fifth (or sixth) order accuracy spectral scheme and about 50.000 nodes. The domain decomposition philosophy makes it possible to exploit the power of parallel machines. The original MIMD master/slave version of SEOM, written in F90 and PVM, has been ported to the Cray T3D. When critical for performance, Cray specific high-performance one-sided communication routines (SHMEM) have been adopted to fully exploit the Cray T3D interprocessor network. Tests performed with highly unstructured and irregular grid, on up to 128 processors, show an almost linear scalability even with unoptimized domain decomposition techniques. Results from various case studies on the Mediterranean Sea are shown, involving realistic coastline geometry, and monthly mean 1000mb winds from the ECMWF's atmospheric model operational analysis from the period January 1987 to December 1994. The simulation results show that variability in the wind forcing considerably affect the circulation dynamics of the Mediterranean Sea.

  17. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth duemore » to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.« less

  18. Hidden slow pulsars in binaries

    NASA Technical Reports Server (NTRS)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  19. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  20. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, F. D.; Charles, P. A.; Foster, D. L.

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  1. Environmental Assessment: T-6 Aircraft Basing and Operation

    DTIC Science & Technology

    2004-06-01

    The operating characteristics of the T -6 are similar to the T-37. Thus, the T-6 traffic pattern aircraft ground tracks, profiles , and airspeeds are...low-income populations.” Adverse is defined by the Federal Interagency Working Group on Environmental Justice as “having a deleterious effect on...types of aircraft (i.e., large and trainer) was considered a significant safety issue. Safety concerns include mixing the flight profiles of two

  2. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue

    NASA Astrophysics Data System (ADS)

    Ren, J.-J.; Rebassa-Mansergas, A.; Parsons, S. G.; Liu, X.-W.; Luo, A.-L.; Kong, X.; Zhang, H.-T.

    2018-07-01

    We present the data release (DR) 5 catalogue of white dwarf-main sequence (WDMS) binaries from the Large sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST). The catalogue contains 876 WDMS binaries, of which 757 are additions to our previous LAMOST DR1 sample and 357 are systems that have not been published before. We also describe a LAMOST-dedicated survey that aims at obtaining spectra of photometrically selected WDMS binaries from the Sloan Digital Sky Survey (SDSS) that are expected to contain cool white dwarfs and/or early-type M dwarf companions. This is a population under-represented in previous SDSS WDMS binary catalogues. We determine the stellar parameters (white dwarf effective temperatures, surface gravities and masses, and M dwarf spectral types) of the LAMOST DR5 WDMS binaries and make use of the parameter distributions to analyse the properties of the sample. We find that, despite our efforts, systems containing cool white dwarfs remain under-represented. Moreover, we make use of LAMOST DR5 and SDSS DR14 (when available) spectra to measure the Na I λλ 8183.27, 8194.81 absorption doublet and/or Hα emission radial velocities of our systems. This allows identifying 128 binaries displaying significant radial velocity variations, 76 of which are new. Finally, we cross-match our catalogue with the Catalina Surveys and identify 57 systems displaying light-curve variations. These include 16 eclipsing systems, two of which are new, and nine binaries that are new eclipsing candidates. We calculate periodograms from the photometric data and measure (estimate) the orbital periods of 30 (15) WDMS binaries.

  3. ISM DUST GRAINS AND N-BAND SPECTRAL VARIABILITY IN THE SPATIALLY RESOLVED SUBARCSECOND BINARY UY Aur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.

    2010-03-10

    The 10 {mu}m silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries ({approx}<3''; {approx}< 420 AU) at the distances of the nearest star-forming regions ({approx}140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0.''88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR,more » and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk.« less

  4. Learning to assign binary weights to binary descriptor

    NASA Astrophysics Data System (ADS)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  5. Close binary systems among very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Jeffries, R. D.; Maxted, P. F. L.

    2005-12-01

    Using Monte Carlo simulations and published radial velocity surveys we have constrained the frequency and separation (a) distribution of very low-mass star (VLM) and brown dwarf (BD) binary systems. We find that simple Gaussian extensions of the observed wide binary distribution, with a peak at 4 AU and 0.6<\\sigma_{\\log(a/AU)}<1.0, correctly reproduce the observed number of close binary systems, implying a close (a<2.6 AU) binary frequency of 17-30 % and overall frequency of 32-45 %. N-body models of the dynamical decay of unstable protostellar multiple systems are excluded with high confidence because they do not produce enough close binary VLMs/BDs. The large number of close binaries and high overall binary frequency are also completely inconsistent with published smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMs/BDs.

  6. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  7. Spectral Properties of Composite Excitations in the t-J Model

    NASA Astrophysics Data System (ADS)

    Otaki, Takashi; Yahagi, Yuta; Matsueda, Hiroaki

    2017-08-01

    In quantum many-body systems, the equation of motion for a simple fermionic operator does not close, and higher-order processes induce composite operators dressed with several types of nonlocal quantum fluctuation. We systematically examine the spectral properties of these composite excitations in the t-J model in one spatial dimension by both numerical and theoretical approaches. Of particular interest, with the help of the Bethe ansatz for the large-U Hubbard model, is the classification of which composite excitations are due to the string excitation, which is usually hidden in the single-particle spectrum, as well as the spinon and holon branches. We examine how the mixing between the spinon and string excitations is prohibited in terms of the composite operator method. Owing to the dimensionality independent nature of the present approach, we discuss the implications of the mixing in close connection with the pseudogap in high-Tc cuprates.

  8. SRT Evaluation of AIRS Version-6.02 and Version-6.02 AIRS Only (6.02 AO) Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Molnar, Gyula; Blaisdell, John

    2012-01-01

    Version-6 contains a number of significant improvements over Version-5. This report compares Version-6 products resulting from the advances listed below to those from Version-5. 1. Improved methodology to determine skin temperature (T(sub s)) and spectral emissivity (Epsilon(sub v)). 2. Use of Neural-net start-up state. 3. Improvements which decrease the spurious negative Version-5 trend in tropospheric temperatures. 4. Improved QC methodology. Version-6 uses separate QC thresholds optimized for Data Assimilation (QC=0) and Climate applications (QC=0,1) respectively. 5. Channel-by-channel clear-column radiances R-hat(sub tau) QC flags. 6. Improved cloud parameter retrieval algorithm. 7. Improved OLR RTA. Our evaluation compared V6.02 and V6.02 AIRS Only (V6.02 AO) Quality Controlled products with those of Version-5.0. In particular we evaluated surface skin temperature T(sub s), surface spectral emissivity Epsilon(sub v), temperature profile T(p), water vapor profile q(p), OLR, OLR(sub CLR), effective cloud fraction alpha-Epsilon, and cloud cleared radiances R-hat(sub tau) . We conducted two types of evaluations. The first compared results on 7 focus days to collocated ECMWF truth. The seven focus days are: September 6, 2002; January 25, 2003; September 29, 2004; August 5, 2005; February 24, 2007; August 10, 2007; and May 30, 2010. In these evaluations, we show results for T(sub s), Epsilon(sub v), T(p), and q(p) in terms of yields, and RMS differences and biases with regard to ECMWF. We also show yield trends as well as bias trends of these quantities relative to ECMWF truth. We also show yields and accuracy of channel by channel QC d values of R-hat(sub tau) for V6.02 and V6.02 AO. Version-5 did not contain channel by channel QC d values of R-hat(sub tau). In the second type of evaluation, we compared V6.03 monthly mean Level-3 products to those of Version-5.0, for four different months: January, April, July, and October; in 3 different years 2003, 2007, and 2011

  9. Formation of wide binaries by turbulent fragmentation

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.

    2017-08-01

    Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.

  10. ThermoData Engine Database - Pure Compounds and Binary Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 103b NIST ThermoData Engine Version 6.0 - Pure CompoThermoData Engine Database - Pure Compounds and Binary Mixtures (PC database for purchase)   This database contains property data for more than 21,000 pure compounds, 37,500 binary mixtures, 10,000 ternary mixtures, and 6,000 chemical reactions.

  11. On the orbital evolution of radiating binary systems

    NASA Astrophysics Data System (ADS)

    Bekov, A. A.; Momynov, S. B.

    2018-05-01

    The evolution of dynamic parameters of radiating binary systems with variable mass is studied. As a dynamic model, the problem of two gravitating and radiating bodies is considered, taking into account the gravitational attraction and the light pressure of the interacting bodies with the additional assumption of isotropic variability of their masses. The problem combines the Gylden-Meshchersky problem, acquiring a new physical meaning, and the two-body photogravitational Radzievsky problem. The evolving orbit is presented, unlike Kepler, with varying orbital elements - parameter and eccentricity, defines by the parameter µ(t), area integral C and quasi-integral energy h(t). Adiabatic invariants of the problem, which are of interest for the slow evolution of orbits, are determined. The general course of evolution of orbits of binary systems with radiation are determined by the change of the parameter µ(t) and the total energy of the system.

  12. Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval.

    PubMed

    Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent

    2013-12-01

    This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.

  13. Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Brügmann, Bernd; Gopakumar, Achamveedu

    2008-11-01

    We compare results from numerical simulations of spinning binaries in the “orbital hang-up” case, where the binary completes at least nine orbits before merger, with post-Newtonian results using the approximants Taylor T1, T4, and Et. We find that, over the ten cycles before the gravitational-wave frequency reaches Mω=0.1, the accumulated phase disagreement between numerical relativity (NR) and 2.5 post-Newtonian (PN) results is less than three radians, and is less than 2.5 radians when using 3.5PN results. The amplitude disagreement between NR and restricted PN results increases with the black holes’ spin, from about 6% in the equal-mass case to 12% when the black holes’ spins are Si/Mi2=0.85. Finally, our results suggest that the merger waveform will play an important role in estimating the spin from such inspiral waveforms.

  14. 3D Doppler Tomography of the X-Ray Binary System Cygnus X-1 from Spectral Observations in 2007 in the HeII λ 4686 Å Line

    NASA Astrophysics Data System (ADS)

    Agafonov, M. I.; Karitskaya, E. A.; Sharova, O. I.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar', A. V.; Sidorov, M. Yu.

    2018-02-01

    The results of a 3D Doppler tomography analysis for the X-ray binary system Cyg X-1 in the HeII λ 4686 Å line are presented. Information about the motions of gaseous flows outside the orbital plane has been obtained for the first time. Line profiles obtained in June 2007 on the 2-m telescope of the Terskol Branch of the Institute of Astronomy (Russia) and on the 2.1-m telescope of the National Astronomical Observatory of Mexico were used. A detailed analysis of these spectral data is presented: the distribution of the data in time, distribution of orbital phases for the projections, comparison of the line profile shapes for the data from two observatories. The geometry of the total transfer function obtained in the reconstruction is considered. The possibility of applying the profiles obtained to realize 3D tomography is justified. The resolution of the constructed 3D tomogram in velocity space is 60 × 60 × 40 km/s for V x , V y , V z . Fifteen cross sections for 15 different V z values perpendicular to the orbital plane are presented. The intensity distributions corresponding to the velocities of gaseous structures in the binary system are obtained. The reconstruction was realized using the radio-astronomical approach, developed for solving problems in tomography with a limited number of projections.

  15. Examination of Spectral Transformations on Spectral Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  16. 3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar

    NASA Astrophysics Data System (ADS)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-09-01

    We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.

  17. A binary catalyst system of a cationic Ru-CNC pincer complex with an alkali metal salt for selective hydroboration of carbon dioxide.

    PubMed

    Ng, Chee Koon; Wu, Jie; Hor, T S Andy; Luo, He-Kuan

    2016-09-27

    Binary catalyst systems comprising a cationic Ru-CNC pincer complex and an alkali metal salt were developed for selective hydroboration of CO 2 utilizing pinacolborane at r.t. and 1 atm CO 2 , with the combination of [Ru(CNC Bn )(CO) 2 (H)][PF 6 ] and KOCO 2 t Bu producing formoxyborane in 76% yield. A bicyclic catalytic mechanism was proposed and discussed.

  18. Spectral and Timing States in Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Wilms, J.

    Results on the long term variability of galactic black hole candidates are reviewed. I mainly present the results of a > 2 year long campaign with RXTE to monitor the canonical soft state black hole candidates LMC X-1 and LMC X-3 using monthly observations. These observations are presented within the context of the RXTE-ASM long term quasi-periodic variability on timescales of about 150d. For LMC X-3, times of low ASM count rate are correlated with a significant hardening of the X-ray spectrum. The observation with the lowest flux during the whole monitoring campaign can be modeled with a simple γ=1.7 power law -- a hard state spectrum. Since these spectral hardenings occur on the 150 d timescale it is probable that they are associated with periodic changes in the accretion rate. Possible causes for this behavior are discussed, e.g. a wind driven limit-cycle or long-term variability of the donor star.

  19. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  20. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  1. Binary star speckle measurements during 1992-1997 from the SAO 6-m and 1-m telescopes in Zelenchuk

    NASA Astrophysics Data System (ADS)

    Balega, I. I.; Balega, Y. Y.; Maksimov, A. F.; Pluzhnik, E. A.; Shkhagosheva, Z. U.; Vasyuk, V. A.

    1999-12-01

    We present the results of speckle interferometric measurements of binary stars made with the television photon-counting camera at the 6-m Big Azimuthal Telescope (BTA) and 1-m telescope of the Special Astrophysical Observatory (SAO) between August 1992 and May 1997. The data contain 89 observations of 62 star systems on the large telescope and 21 on the smaller one. For the 6-m aperture 18 systems remained unresolved. The measured angular separation ranged from 39 mas, two times above the BTA diffraction limit, to 1593 mas.

  2. Stability of binaries. Part 1: Rigid binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2015-09-01

    We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.

  3. Deciphering IR Excess Observed by the Spitzer Space Telescope in Short Period Interacting Cataclysmic Binaries

    NASA Astrophysics Data System (ADS)

    Chun, Howard; Brinkworth, Carolyn; Ciardi, David; Hoard, Don; Howell, Steve; Stefaniak, Linda; Thomas, Beth

    2006-03-01

    During the first year of the Spitzer Space Telescope Observing Program for Students and Teachers, our team observed a small sample of short orbital period interacting white dwarf binaries. Our scientific investigation was aimed at detection and characterization of the low mass, cool, brown dwarf-like mass donors in these systems. We used the Infrared Array Camera to obtain photometric observations of the polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 microns. In all our targets, we detected excess emission in the 3-8 micron region over that expected from a brown dwarf alone. One of the exciting discoveries we made with our IRAC observations is that the star EF Eri was found to be unexpectedly bright in the mid-IR (compared to its 2MASS magnitudes). This fact highlights an opportunity for us to observe EF Eri with the IRS as a follow-up proposal. EF Eri has a flux level of ~700 ?Jy at 8 microns. Thus, we are asking for time to obtain IRS data for only this star, our brightest source. We plan to obtain SL1 (7.4-14.5 microns) and SL2 (5.2-8.7 microns) spectroscopy only. We know the IRAC fluxes so our integration toies are well constrained and the spectral region covered by SL1, SL2 will yield sufficient S/N to differentiate between cool dust (rising BB like spectrum with PAH and other molecular features allowing us to determine dust size, temperature, and disk extent) and a T type dwarf showing characteristic spectral signatures and a falling Rayleigh-Jeans tail.

  4. 26 CFR 1.103(n)-6T - Determinations of population (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...(n)-6T Section 1.103(n)-6T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-6T Determinations of population (temporary). Q-1: What is the proper method for determining...(n)-6T: Example. County Q is located within State R. There are no constitutional home rule cities in...

  5. Resolving the stellar activity of the Mira AB binary with ALMA

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Ramstedt, S.; O'Gorman, E.; Humphreys, E. M. L.; Wittkowski, M.; Baudry, A.; Karovska, M.

    2015-05-01

    Aims: We present the size, shape, and flux densities at millimeter continuum wavelengths, based on ALMA science verification observations in Band 3 (~94.6 GHz) and Band 6 (~228.7 GHz), from the binary Mira A (o Ceti) and Mira B. Methods: The Mira AB system was observed with ALMA at a spatial resolution down to ~25 mas. The extended atmosphere of Mira A and the wind around Mira B sources were resolved, and we derived the sizes of Mira A and of the ionized region around Mira B. The spectral indices within Band 3 (between 89-100 GHz) and between Bands 3 and 6 were also derived. Results: The spectral index of Mira A is found to change from 1.71 ± 0.05 within Band 3 to 1.54 ± 0.04 between Bands 3 and 6. The spectral index of Mira B is 1.3 ± 0.2 in Band 3, in good agreement with measurements at longer wavelengths; however, it rises to 1.72 ± 0.11 between the bands. For the first time, the extended atmosphere of a star is resolved at these frequencies, and for Mira A the diameter is ~3.8 × 3.2 AU in Band 3 (with brightness temperature Tb ~ 5300 K) and ~4.0 × 3.6 AU in Band 6 (Tb ~ 2500 K). Additionally, a bright hotspot ~0.4 AU, with Tb ~ 10 000 K, is found on the stellar disk of Mira A. The size of the ionized region around the accretion disk of Mira B is found to be ~2.4 AU. Conclusions: The emission around Mira B is consistent with emission from a partially ionized wind of gravitationally bound material from Mira A close to the accretion disk of Mira B. The Mira A atmosphere does not fully match predictions with brightness temperatures in Band 3 significantly higher than expected, potentially owing to shock heating. The hotspot is very likely due to magnetic activity and could be related to the previously observed X-ray flare of Mira A. Appendices are available in electronic form at http://www.aanda.org

  6. Spectral characteristics of convolutionally coded digital signals

    NASA Technical Reports Server (NTRS)

    Divsalar, D.

    1979-01-01

    The power spectral density of the output symbol sequence of a convolutional encoder is computed for two different input symbol stream source models, namely, an NRZ signaling format and a first order Markov source. In the former, the two signaling states of the binary waveform are not necessarily assumed to occur with equal probability. The effects of alternate symbol inversion on this spectrum are also considered. The mathematical results are illustrated with many examples corresponding to optimal performance codes.

  7. Properties of the Closest Young Binaries. I. DF Tau’s Unequal Circumstellar Disk Evolution

    NASA Astrophysics Data System (ADS)

    Allen, T. S.; Prato, L.; Wright-Garba, N.; Schaefer, G.; Biddle, L. I.; Skiff, B.; Avilez, I.; Muzzio, R.; Simon, M.

    2017-08-01

    We present high-resolution, spatially resolved, near-infrared spectroscopy and imaging of the two components of DF Tau, a young, low-mass, visual binary in the Taurus star-forming region. With these data, we provide a more precise orbital solution for the system, determine component spectral types, radial velocity, veiling and v\\sin I values, and construct individual spectral energy distributions. We estimate the masses of both stars to be ˜ 0.6 {M}⊙ . We find markedly different circumstellar properties for DF Tau A and B: evidence for a disk, such as near-infrared excess and accretion signatures, is clearly present for the primary, while it is absent for the secondary. Additionally, the v\\sin I and rotation period measurements show that the secondary is rotating significantly more rapidly than the primary. We interpret these results in the framework of disk-locking and argue that DF Tau A is an example of disk-modulated rotation in a young system. The DF Tau system raises fundamental questions about our assumptions of universal disk formation and evolution.

  8. 26 CFR 1.41-6T - Aggregation of expenditures (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Aggregation of expenditures (temporary). 1.41-6T Section 1.41-6T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Credits Against Tax § 1.41-6T Aggregation of expenditures (temporary). (a) [Reserved] For further...

  9. Apparatus and system for multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2003-06-24

    An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

  10. In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya

    PubMed Central

    Perrochia, Ludovic; Crozat, Estelle; Hecker, Arnaud; Zhang, Wenhua; Bareille, Joseph; Collinet, Bruno; van Tilbeurgh, Herman; Forterre, Patrick

    2013-01-01

    N6-threonylcarbamoyladenosine (t6A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon–anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t6A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t6A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t6A in nature. These findings shed light on the reaction mechanism of t6A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells. PMID:23258706

  11. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    NASA Astrophysics Data System (ADS)

    Palmese, A.; Hartley, W.; Tarsitano, F.; Conselice, C.; Lahav, O.; Allam, S.; Annis, J.; Lin, H.; Soares-Santos, M.; Tucker, D.; Brout, D.; Banerji, M.; Bechtol, K.; Diehl, H. T.; Fruchter, A.; García-Bellido, J.; Herner, K.; Levan, A. J.; Li, T. S.; Lidman, C.; Misra, K.; Sako, M.; Scolnic, D.; Smith, M.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Neilsen, E.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schindler, R.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Walker, A. R.; Weller, J.; Zhang, Y.; Zuntz, J.

    2017-11-01

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an I-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as {R}{NSM}{gal}={5.7}-3.3+0.57× {10}-6{{yr}}-1. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is {0.038}-0.022+0.004, as opposed to ˜0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer ≲ 200 Myr prior to the BNS coalescence.

  12. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; et al.

    2017-11-09

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational wave event, the GRB170817A short gamma-ray burst (sGRB) and the AT2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC4993 is a nearby (40 Mpc) early-type galaxy, withmore » $i$$-band S\\'ersic index $$n=4.0$ and low asymmetry ($$A=0.04\\pm 0.01$$). These properties are unusual for sGRB hosts. However, NGC4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially-resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as $$R_{NSM}^{gal}= 5.7^{+0.57}_{-3.3} \\times 10^{-6} {\\rm yr}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $$0.038^{+0.004}_{-0.022}$$, as opposed to $$\\sim 0.5$$ from all galaxy types. Hypothesizing that the binary system formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred $$t_{\\rm mer}\\lesssim 200~{\\rm Myr}$$ prior to the BNS coalescence.« less

  13. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; Hartley, W.; Tarsitano, F.

    Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less

  14. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    DOE PAGES

    Palmese, A.; Hartley, W.; Tarsitano, F.; ...

    2017-11-09

    Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less

  15. VizieR Online Data Catalog: Excess CaII H&K emission in active binaries (Montes+, 1996)

    NASA Astrophysics Data System (ADS)

    Montes, D.; Fernandez-Figueroa, M. J.; Cornide, M.; de Castro, E.

    1996-05-01

    In this work we analyze the behaviour of the excess CaII H & K and H_epsilon emissions in a sample of 73 chromospherically active binary systems (RS CVn and BY Dra classes), of different activity levels and luminosity classes. This sample includes the 53 stars analyzed by Fernandez-Figueroa et al. (1994) and the observations of 28 systems described by Montes et al. (1995). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of spectral type and luminosity class similar to those of the binary star components) we obtain the active-chromosphere contribution to the CaII H & K lines in these 73 systems. We have determined the excess CaII H & K emission equivalent widths and converted them into surface fluxes. The emissions arising from each component were obtained when it was possible to deblend both contributions. (4 data files).

  16. The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination

    PubMed Central

    Ronnebaum, Sarah M.; Wu, Yaxu; McDonough, Holly

    2013-01-01

    The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging. PMID:24043303

  17. Improved estimates of the physical properties of the O-star binary V1007 Sco = HD 152248 and notes on several other binaries in the NGC 6231 cluster

    NASA Astrophysics Data System (ADS)

    Mayer, P.; Harmanec, P.; Nesslinger, S.; Lorenz, R.; Drechsel, H.; Morrell, N.; Wolf, M.

    2008-04-01

    Context: In spite of the importance of massive O-type stars for astrophysics, their accurate masses and other fundamental properties are still a matter of debate. Determining them reliably is hampered by various factors (stellar winds and other forms of circumstellar matter), and the agreement of derived properties with the model predictions is far from satisfactory. Careful studies of O-type binaries, especially of those in stellar clusters, are therefore desirable. Aims: Having obtained new series of electronic spectra and UB{}V photometry of V1007 Sco, we analysed these data in an effort to check whether the observed properties of V1007 Sco indeed disagree with the prediction of stellar evolutionary models. We briefly analysed data for a few other binaries in NGC 6231, too. Methods: Spectral reductions were carried out with the MIDAS program, photometry reduced using the HEC22 program, the orbital elements were derived with the FOTEL program and the final solutions obtained with the program PHOEBE. Results: Our analysis led to an accurate determination of the apsidal advance, dotω = (0.00884±0.00012) deg d-1, based on a simultaneous solution of all usable radial-velocity and photometric data. This implies an apsidal period of 111.5 years. It is also demonstrated that the orbital inclination must be close to 67°. We arrived at the following preliminary values for masses and radii: M1 = (29.5±0.4) M⊙, M2 = (30.1±0.4) M⊙, R1 = (15.8±0.7) R⊙, and R2 = (15.3±0.5) R⊙. These values clearly indicate a log g of about 3.5 [CGS], implying that the stars are giants and not supergiants, as the standard spectral classification criteria indicate. Based on spectral and photometric observations from ESO La Silla and Cerro Tololo observatories. Tables 4 and 6 are available only in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/481/183

  18. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  19. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values.

    PubMed

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-05

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD=0.12], 0.67-23.19 [LOD=0.13] and 0.73-25.12 [LOD=0.15] μgmL(-1) for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Investigating the discrimination potential of linear and nonlinear spectral multivariate calibrations for analysis of phenolic compounds in their binary and ternary mixtures and calculation pKa values

    NASA Astrophysics Data System (ADS)

    Rasouli, Zolaikha; Ghavami, Raouf

    2016-08-01

    Vanillin (VA), vanillic acid (VAI) and syringaldehyde (SIA) are important food additives as flavor enhancers. The current study for the first time is devote to the application of partial least square (PLS-1), partial robust M-regression (PRM) and feed forward neural networks (FFNNs) as linear and nonlinear chemometric methods for the simultaneous detection of binary and ternary mixtures of VA, VAI and SIA using data extracted directly from UV-spectra with overlapped peaks of individual analytes. Under the optimum experimental conditions, for each compound a linear calibration was obtained in the concentration range of 0.61-20.99 [LOD = 0.12], 0.67-23.19 [LOD = 0.13] and 0.73-25.12 [LOD = 0.15] μg mL- 1 for VA, VAI and SIA, respectively. Four calibration sets of standard samples were designed by combination of a full and fractional factorial designs with the use of the seven and three levels for each factor for binary and ternary mixtures, respectively. The results of this study reveal that both the methods of PLS-1 and PRM are similar in terms of predict ability each binary mixtures. The resolution of ternary mixture has been accomplished by FFNNs. Multivariate curve resolution-alternating least squares (MCR-ALS) was applied for the description of spectra from the acid-base titration systems each individual compound, i.e. the resolution of the complex overlapping spectra as well as to interpret the extracted spectral and concentration profiles of any pure chemical species identified. Evolving factor analysis (EFA) and singular value decomposition (SVD) were used to distinguish the number of chemical species. Subsequently, their corresponding dissociation constants were derived. Finally, FFNNs has been used to detection active compounds in real and spiked water samples.

  1. The double-lined spectroscopic binary Iota Pegasi

    NASA Technical Reports Server (NTRS)

    Fekel, F. C.; Tomkin, J.

    1983-01-01

    Reticon observations of the spectroscopic binary Iota Peg at 6430 A show the secondary star's weak, but well defined lines. Determinations have accordingly been made of the secondary velocity curve as well as that of the primary, together with the orbits and the minimum masses of the two components. The 1.31 + or - 0.02 and 0.81 + or - 0.01 solar mass minimum masses are sufficiently close to the expected actual masses to suggest eclipses, despite the relatively long, 10.2-day period. The spectral type of the secondary is estimated to be G8 V.

  2. Weak Magnetic Fields in Two Herbig Ae Systems: The SB2 AK Sco and the Presumed Binary HD 95881

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Carroll, T. A.; Hubrig, S.; Ilyin, I.; Schöller, M.; Castelli, F.; Hummel, C. A.; Petr-Gotzens, M. G.; Korhonen, H.; Weigelt, G.; Pogodin, M. A.; Drake, N. A.

    2018-05-01

    We report the detection of weak mean longitudinal magnetic fields in the Herbig Ae double-lined spectroscopic binary AK Sco and in the presumed spectroscopic Herbig Ae binary HD 95881 using observations with the High Accuracy Radial velocity Planet Searcher polarimeter (HARPSpol) attached to the European Southern Observatory’s (ESO’s) 3.6 m telescope. Employing a multi-line singular value decomposition method, we detect a mean longitudinal magnetic field < {B}{{z}}> =-83+/- 31 G in the secondary component of AK Sco on one occasion. For HD 95881, we measure < {B}{{z}}> =-93+/- 25 G and < {B}{{z}}> =105+/- 29 G at two different observing epochs. For all the detections the false alarm probability is smaller than 10‑5. For AK Sco system, we discover that accretion diagnostic Na I doublet lines and photospheric lines show intensity variations over the observing nights. The double-lined spectral appearance of HD 95881 is presented here for the first time.

  3. Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis.

    PubMed

    Mandai, Yasushi; Takahashi, Daisuke; Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4(+) T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4(+) T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4(+) T cells expressed CXCR6 in the CD45RB(high) T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn's disease. Although surface marker analysis demonstrated that both CXCR6(+) and CXCR6(-) CD4(+) T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6(+) subset produced IFN-γ and TNF-α compared to CXCR6(-) subset, and only the CXCR6(+) subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6(+) T cells into Rag1 (-/-) recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6(-) cells evoked colitis similar to that observed in CD4(+)CD45RB(high) T cell-transferred mice, and resulted in their conversion into CXCR6(+) cells. Collectively, these observations suggest that the CXCR6(+)CD4(+) T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6(-)CD4(+) T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6(+)CD4(+) T cells.

  4. Mining Planet Search Data for Binary Stars: The ψ1 Draconis system

    NASA Astrophysics Data System (ADS)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2015-12-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ1 Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ1 Draconis C as M2 = 0.70 ± 0.07M⊙, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  5. The Spectrum analysis of three chromospherically active binary stars.

    NASA Astrophysics Data System (ADS)

    Gu, Shenghong; Tan, Huisong; Liu, Yuefu

    1999-12-01

    The authors present the research results on new CCD spectroscopic observations of three chromospherically active binary stars (BY Dra class), which were obtained by means of Coudé echelle spectrograph fed by the 2.16 m telescope at Beijing Astronomical Observatory. With the aid of stellar model atmosphere, the autors have analyzed these spectra and derived the average metal abundance and Li abundance of three systems. Using two special spectral lines, they have alsop discussed the chromospheric activity indicators of them.

  6. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, Nachhatter; Joshi, Vasant; Harris, Bryan

    2009-06-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.

  7. The Structure and Composition Statistics of 6A Binary and Ternary Crystalline Materials.

    PubMed

    Hever, Alon; Oses, Corey; Curtarolo, Stefano; Levy, Ohad; Natan, Amir

    2018-01-16

    The fundamental principles underlying the arrangement of elements into solid compounds with an enormous variety of crystal structures are still largely unknown. This study presents a general overview of the structure types appearing in an important subset of the solid compounds, i.e., binary and ternary compounds of the 6A column oxides, sulfides and selenides. It contains an analysis of these compounds, including the prevalence of various structure types, their symmetry properties, compositions, stoichiometries and unit cell sizes. It is found that these compound families include preferred stoichiometries and structure types that may reflect both their specific chemistry and research bias in the available empirical data. Identification of nonoverlapping gaps and missing stoichiometries in these structure populations may be used as guidance in the search for new materials.

  8. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  9. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  10. Constraining the equation of state of neutron stars from binary mergers.

    PubMed

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  11. UV Chromospheric Activity in Cool, Short-Period Contact Binaries

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    We have completed our analysis of the IUE spectra of the short-period contact binary OO Aql. OO Aql is a rare W UMa-type eclipsing binary in which the two solar-type stars may have only recently evolved into contact. The binary has an unusually high mass ratio (0.84), and a relatively long orbital period (0.506 d) for its spectral type (mid-G). Twelve ultraviolet spectra of OO Aql were obtained in 1988 with the IUE satellite, including a series of consecutive observations that cover nearly a complete orbital cycle. Chromospheric activity is studied by means of the Mg II h+k emission at 2800 A. The Mg II emission is found to vary, even when the emission is normalized to the adjacent continuum flux. This variation may be correlated with orbital phase in the 1988 observations. It also appears that the normalized Mg H emission varies with time, as seen in spectra obtained at two different epochs in 1988 and when compared with two spectra obtained several years earlier. The level of chromospheric activity in OO Aql is less than that of other W UMa-type binaries of similar colors, but this is attributed to its early stage of contact binary evolution. Ultraviolet light curves were composed from measurements of the ultraviolet continuum in the spectra. These were analyzed along with visible light curves of OO Aql to determine the system parameters. The large wavelength range in the light curves enabled a well-constrained fit to a cool spot in the system. A paper on these results is scheduled for publication in the February 2001 issue of the Astronomical Journal.

  12. ISM Dust Grains and N-band Spectral Variability in the Spatially Resolved Subarcsecond Binary UY Aur

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Greene, Thomas P.; Males, Jared R.; Beck, Tracy L.

    2010-03-01

    The 10 μm silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (lsim3''; <~ 420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0farcs88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. The observations reported here were partially obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.

  13. Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Johnson, John Asher; Fortney, Jonathan J.; Desert, Jean-Michel

    2016-05-01

    There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. Here, we analyze four Spitzer observations of secondary eclipses of LHS 6343 C behind LHS 6343 A. Jointly fitting the eclipses with a Gaussian process noise model of the instrumental systematics, we measure eclipse depths of 1.06 ± 0.21 ppt at 3.6 μm and 2.09 ± 0.08 ppt at 4.5 μm, corresponding to brightness temperatures of 1026 ± 57 K and 1249 ± 36 K, respectively. We then apply brown dwarf evolutionary models to infer a bolometric luminosity {log}({L}\\star /{L}⊙ )=-5.16+/- 0.04. Given the known physical properties of the brown dwarf and the two M dwarfs in the LHS 6343 system, these depths are consistent with models of a 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 ± 130 K. We investigate the possibility that the orbit of LHS 6343 C has been altered by the Kozai-Lidov mechanism and propose additional astrometric or Rossiter-McLaughlin measurements of the system to probe the dynamical history of the system.

  14. Effects of binary stellar populations on direct collapse black hole formation

    NASA Astrophysics Data System (ADS)

    Agarwal, Bhaskar; Cullen, Fergus; Khochfar, Sadegh; Klessen, Ralf S.; Glover, Simon C. O.; Johnson, Jarrett

    2017-06-01

    The critical Lyman-Werner (LW) flux required for direct collapse blackholes (DCBH) formation, or Jcrit, depends on the shape of the irradiating spectral energy distribution (SED). The SEDs employed thus far have been representative of realistic single stellar populations. We study the effect of binary stellar populations on the formation of DCBH, as a result of their contribution to the LW radiation field. Although binary populations with ages > 10 Myr yield a larger LW photon output, we find that the corresponding values of Jcrit can be up to 100 times higher than single stellar populations. We attribute this to the shape of the binary SEDs as they produce a sub-critical rate of H- photodetaching 0.76 eV photons as compared to single stellar populations, reaffirming the role that H- plays in DCBH formation. This further corroborates the idea that DCBH formation is better understood in terms of a critical region in the H2-H- photodestruction rate parameter space, rather than a single value of LW flux.

  15. Black hole/pulsar binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  16. Emission-line diagnostics of nearby H II regions including interacting binary populations

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  17. Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2005-01-01

    A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.

  18. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  19. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  20. Tissues segmentation based on multi spectral medical images

    NASA Astrophysics Data System (ADS)

    Li, Ya; Wang, Ying

    2017-11-01

    Each band image contains the most obvious tissue feature according to the optical characteristics of different tissues in different specific bands for multispectral medical images. In this paper, the tissues were segmented by their spectral information at each multispectral medical images. Four Local Binary Patter descriptors were constructed to extract blood vessels based on the gray difference between the blood vessels and their neighbors. The segmented tissue in each band image was merged to a clear image.

  1. Two New Long-period Hot Subdwarf Binaries with Dwarf Companions

    NASA Astrophysics Data System (ADS)

    Barlow, Brad N.; Liss, Sandra E.; Wade, Richard A.; Green, Elizabeth M.

    2013-07-01

    Hot subdwarf stars with F-K main sequence binary companions have been known for decades, but the first orbital periods for such systems were published just recently. Current observations suggest that most have long periods, on the order of years, and that some are or once were hierarchical triple systems. As part of a survey with the Hobby-Eberly Telescope, we have been monitoring the radial velocities of several composite-spectra binaries since 2005 in order to determine their periods, velocities, and eccentricities. Here we present observations and orbital solutions for two of these systems, PG 1449+653 and PG 1701+359. Similar to the other sdB+F/G/K binaries with solved orbits, their periods are long, 909 and 734 days, respectively, and pose a challenge to current binary population synthesis models of hot subdwarf stars. Intrigued by their relatively large systemic velocities, we also present a kinematical analysis of both targets and find that neither is likely a member of the Galactic thin disk. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  2. Physical Properties and Evolutionary States of EA-type Eclipsing Binaries Observed by LAMOST

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Zhang, J.; He, J.-J.; Zhu, L.-Y.; Zhao, E.-G.; Shi, X.-D.; Zhou, X.; Han, Z.-T.

    2018-03-01

    About 3196 EA-type binaries (EAs) were observed by LAMOST by 2017 June 16 and their spectral types were derived. Meanwhile, the stellar atmospheric parameters of 2020 EAs were determined. In this paper, those EAs are cataloged and their physical properties and evolutionary states are investigated. The period distribution of EAs suggests that the period limit of tidal locking for the close binaries is about 6 days. It is found that the metallicity of EAs is higher than that of EW-type binaries (EWs), indicating that EAs are generally younger than EWs and they are the progenitors of EWs. The metallicities of long-period EWs (0.4< P< 1 days) are the same as those of EAs with the same periods, while their values of Log (g) are usually smaller than those of EAs. These support the evolutionary process that EAs evolve into long-period EWs through the combination of angular momentum loss (AML) via magnetic braking and case A mass transfer. For short-period EWs, their metallicities are lower than those of EAs, while their gravitational accelerations are higher. These reveal that they may be formed from cool short-period EAs through AML via magnetic braking with little mass transfer. For some EWs with high metallicities, they may be contaminated by material from the evolution of unseen neutron stars and black holes or they have third bodies that may help them to form rapidly through a short timescale of pre-contact evolution. The present investigation suggests that the modern EW populations may have formed through a combination of these mechanisms.

  3. On the Nature of the Variability Power Decay towards Soft Spectral States in X-Ray Binaries. Case Study in Cyg X-1

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhinikov, Nikolai

    2007-01-01

    A characteristic feature of the Fourier Power Density Spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broad band-limited noise, characterized by a constant below some frequency (a "break" frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time to is related to the phenomenological break frequency, while the PDS power-law slope above the "break" is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black hole and neutron star) during an evolution of theses sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power P(sub x), decreases approximately as a square root of the characteristic frequency of the driving oscillations v(sub dr). The RXTE observations of Cyg X-1 allow us to infer P(sub dr), and t(sub o) as a function of v(sub dr). We also apply the basic parameters of observed PDSs, power-law index and low frequency quasiperiodic oscillations. to infer Reynolds (Re) number from the observations using the method developed in our previous paper. Our analysis shows that Re-number increases from values about 10 in low/hard state to that about 70 during the high/soft state. Subject headings: accretion, accretion disks-black hole physics-stars:individual (Cyg X-1) :radiation mechanisms: nonthermal-physical data and processes

  4. TIME-SERIES SPECTROSCOPY OF THE ECLIPSING BINARY Y CAM WITH A PULSATING COMPONENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Kyeongsoo; Lee, Jae Woo; Kim, Seung-Lee

    We present the physical properties of the semi-detached Algol-type eclipsing binary Y Cam based on high resolution spectra obtained using the Bohyunsan Optical Echelle Spectrograph. This is the first spectroscopic monitoring data obtained for this interesting binary system, which has a δ Sct-type pulsating component. We obtained a total of 59 spectra over 14 nights from 2009 December to 2011 March. Double-lined spectral features from the hot primary and cool secondary components were well identified. We determined the effective temperatures of the two stars to be T{sub eff,1} = 8000 ± 250 K and T{sub eff,2} = 4629 ± 150more » K. The projected rotational velocities are v{sub 1}sin i{sub 1} = 51 ± 4 km s{sup −1} and v{sub 2}sin i{sub 2} = 50 ± 10 km s{sup −1}, which are very similar to a synchronous rotation with the orbital motion. Physical parameters of each component were derived by analyzing our radial velocity data together with previous photometric light curves from the literature. The masses and radii are M{sub 1} = 2.08 ± 0.09 M{sub ⊙}, M{sub 2} = 0.48 ± 0.03 M{sub ⊙}, R{sub 1} = 3.14 ± 0.05 R{sub ⊙}, and R{sub 2} = 3.33 ± 0.05 R{sub ⊙}, respectively. A comparison of these parameters with the theoretical evolution tracks showed that the primary component is located between the zero-age main sequence and the terminal-age main sequence, while the low-mass secondary is noticeably evolved. This indicates that the two components have experienced mass exchange with each other and the primary has undergone an evolution process different from that of single δ Sct-type pulsators.« less

  5. A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH Robo-AO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Reed L.; Bui, Khanh; Dekany, Richard G.

    2015-01-20

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 containmore » such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 10{sup 3.5} to 10{sup 5} days is 0.12 ± 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10{sup 6} to 10{sup 7.5} days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 ± 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.« less

  6. Effect of Preexisting Corrosion on Fatigue Cracking of Aluminum Alloys 2024-T3 and 7075-T6

    DTIC Science & Technology

    1995-08-01

    alloys 2024 -T3 and 7075-T6. It was determined that preexisting corrosion has a detrimental effect on the fatigue life of aluminum alloys 2024 -T3 and...following conclusions were drawn: 1. Preexisting corrosion has a detrimental effect on the fatigue life of aluminum alloys 2024 -T3 and 7075-T6. The...corrosion has a detrimental effect on the fatigue life of aluminum alloys

  7. A Binary Nature of the Marginal CP Star Sigma Sculptoris

    NASA Astrophysics Data System (ADS)

    Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian

    2018-05-01

    The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.

  8. The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Shenar, Tomer; Roy-Loubier, Olivier; Schaefer, Gail; Moffat, Anthony F. J.; St-Louis, Nicole; Gies, Douglas R.; Farrington, Chris; Hill, Grant M.; Williams, Peredur M.; Gordon, Kathryn; Pablo, Herbert; Ramiaramanantsoa, Tahina

    2016-10-01

    We report on interferometric observations with the CHARA Array of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR,137 = 0.59 ± 0.04; fWR,138 = 0.67 ± 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edge-on. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.

  9. RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.

    2007-01-01

    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.

  10. Distinct Roles for CXCR6+ and CXCR6− CD4+ T Cells in the Pathogenesis of Chronic Colitis

    PubMed Central

    Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6− CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6−CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells. PMID:23840334

  11. Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2013-04-01

    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  13. Power spectral analysis of heart rate in hyperthyroidism.

    PubMed

    Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M

    1996-08-01

    The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P < 0.01); standing, 6.0 +/- 2.7 vs. 15.0 +/- 4.0 NU (P < 0.01); mean +/- SEM]. On the other hand components were comparable in the 2 groups (lying, 64.0 +/- 6.9 vs. 62.0 +/- 6.5 NU; standing, 77.0 +/- 6.5 vs. 78.0 +/- 5.4 NU). Hence, the LF/HF ratio, which is considered an index of sympathovagal balance, was increased in hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P < 0.05) and standing (54.0 +/- 12.6 vs. 9.8 +/- 2.6; P < 0.02). This parameter was positively correlated with both T3 (r = 0.61; P < 0.05) and free T4 (r = 0.63; P < 0.05) serum levels. Among traditional cardiovascular autonomic tests, the reflex response of heart rate during lying to standing was significantly lower in hyperthyroid patients than in controls (1

  14. A model of V356 Sagittarii. [eclipsing binary star

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Caldwell, C. N.

    1978-01-01

    It is pointed out that V356 Sgr is an abnormal member of the Algol class of binaries. According to Popper (1955), the primary component is of spectral type B3V and is rotating rapidly, while the secondary is of type A2II and is rotating at least approximately in synchronism with the orbital motion. The system is either semidetached or quite near to being semidetached. The main anomalies are related to the ratio of eclipse depths, the very small reflection effect of the light curves, differences between the duration of the primary and the secondary eclipse, and the unusual characteristics of the primary eclipse. It is concluded that the lack of agreement between theory and observation can be due only to an important attribute of the binary which has not yet been incorporated into the theory. The peculiarities can most reasonably be explained in terms of a geometrically and optically thick disk which surrounds the primary component.

  15. Hypersynchrony in MEG spectral amplitude in prospectively-identified 6-month-old infants prenatally exposed to alcohol.

    PubMed

    Stephen, Julia M; Flynn, Lucinda; Kabella, Danielle; Schendel, Megan; Cano, Sandra; Savage, Daniel D; Rayburn, William; Leeman, Lawrence M; Lowe, Jean; Bakhireva, Ludmila N

    2018-01-01

    Early identification of children who experience developmental delays due to prenatal alcohol exposure (PAE) remains a challenge for individuals who do not exhibit facial dysmorphia. It is well-established that children with PAE may still exhibit the cognitive and behavioral difficulties, and individuals without facial dysmorphia make up the majority of individuals affected by PAE. This study employed a prospective cohort design to capture alcohol consumption patterns during pregnancy and then followed the infants to 6 months of age. Infants were assessed using magnetoencephalography to capture neurophysiological indicators of brain development and the Bayley Scales of Infant Development-III to measure behavioral development. To account for socioeconomic and family environmental factors, we employed a two-by-two design with pregnant women who were or were not using opioid maintenance therapy (OMT) and did or did not consume alcohol during pregnancy. Based on prior studies, we hypothesized that infants with PAE would exhibit broad increased spectral amplitude relative to non-PAE infants. We also hypothesized that the developmental shift from low to high frequency spectral amplitude would be delayed in infants with PAE relative to controls. Our results demonstrated broadband increased spectral amplitude, interpreted as hypersynchrony, in PAE infants with no significant interaction with OMT. Unlike prior EEG studies in neonates, our results indicate that this hypersynchrony was highly lateralized to left hemisphere and primarily focused in temporal/lateral frontal regions. Furthermore, there was a significant positive correlation between estimated number of drinks consumed during pregnancy and spectral amplitude revealing a dose-response effect of increased hypersynchrony corresponding to greater alcohol consumption. Contrary to our second hypothesis, we did not see a significant group difference in the contribution of low frequency to high frequency amplitude at 6

  16. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE PAGES

    Grinberg, V.; Hell, N.; El Mellah, I.; ...

    2017-12-15

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  17. The clumpy absorber in the high-mass X-ray binary Vela X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinberg, V.; Hell, N.; El Mellah, I.

    Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannotmore » be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. Finally, these features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.« less

  18. Commission 45: Spectral Classification

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta

    This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.

  19. Primordial main equence binary stars in the globular cluster M71

    NASA Technical Reports Server (NTRS)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the

  20. Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: a molecular simulation study.

    PubMed

    Wang, Wenjuan; Peng, Xuan; Cao, Dapeng

    2011-06-01

    Adsorption of H(2)S and SO(2) pure gases and their selective capture from the H(2)S-CH(4), H(2)S-CO(2), SO(2)-N(2), and SO(2)-CO(2) binary mixtures by the single-walled carbon nanotubes (SWNT) are investigated via using the grand canonical Monte Carlo (GCMC) method. It is found that the (20, 20) SWNT with larger diameter shows larger capacity for H(2)S and SO(2) pure gases at T = 303 K, in which the uptakes reach 16.31 and 16.03 mmol/g, respectively. However, the (6,6) SWNT with small diameter exhibits the largest selectivity for binary mixtures containing trace sulfur gases at T = 303 K and P = 100 kPa. By investigating the effect of pore size on the separation of gas mixtures, we found that the optimized pore size is 0.81 nm for separation of H(2)S-CH(4), H(2)S-CO(2), and SO(2)-N(2) binary mixtures, while it is 1.09 nm for the SO(2)-CO(2) mixture. The effects of concentration and temperature on the selectivity of sulfide are also studied at the optimal pore size. It is found that the concentration (ppm) of sulfur components has little effect on selectivity of SWNTs for these binary mixtures. However, the selectivity decreases obviously with the increase of temperature. To improve the adsorption capacities, we further modify the surface of SWNTs with the functional groups. The selectivities of H(2)S-CO(2) and SO(2)-CO(2) mixtures are basically uninfluenced by the site density, while the increase of site density can improve the selectivity of H(2)S-CH(4) mixture doubly. It is expected that this work could provide useful information for sulfur gas capture.

  1. Performance Evaluation of the T6 Ion Engine

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Goebel, Dan M.; Hofer, Richard R.; Polk, James E.; Wallace, Neil C.; Simpson, Huw

    2010-01-01

    The T6 ion engine is a 22-cm diameter, 4.5-kW Kaufman-type ion thruster produced by QinetiQ, Ltd., and is baselined for the European Space Agency BepiColombo mission to Mercury and is being qualified under ESA sponsorship for the extended range AlphaBus communications satellite platform. The heritage of the T6 includes the T5 ion thruster now successfully operating on the ESA GOCE spacecraft. As a part of the T6 development program, an engineering model thruster was subjected to a suite of performance tests and plume diagnostics at the Jet Propulsion Laboratory. The engine was mounted on a thrust stand and operated over its nominal throttle range of 2.5 to 4.5 kW. In addition to the typical electrical and flow measurements, an E x B mass analyzer, scanning Faraday probe, thrust vector probe, and several near-field probes were utilized. Thrust, beam divergence, double ion content, and thrust vector movement were all measured at four separate throttle points. The engine performance agreed well with published data on this thruster. At full power the T6 produced 143 mN of thrust at a specific impulse of 4120 seconds and an efficiency of 64%; optimization of the neutralizer for lower flow rates increased the specific impulse to 4300 seconds and the efficiency to nearly 66%. Measured beam divergence was less than, and double ion content was greater than, the ring-cusp-design NSTAR thruster that has flown on NASA missions. The measured thrust vector offset depended slightly on throttle level and was found to increase with time as the thruster approached thermal equilibrium.

  2. Contact binaries in the Trans-neptunian Belt

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Sheppard, Scott S.

    2017-10-01

    A contact binary is made up of two objects that are almost touching or in contact with each other. These systems have been found in the Near-Earth Object population, the main belt of asteroids, the Jupiter Trojans, the comet population and even in the Trans-neptunian belt.Several studies suggest that up to 30% of the Trans-Neptunian Objects (TNOs) could be contact binaries (Sheppard & Jewitt 2004, Lacerda 2011). Contact binaries are not resolvable with the Hubble Space Telescope because of the small separation between the system's components (Noll et al. 2008). Only lightcurves with a characteristic V-/U-shape at the minimum/maximum of brightness and a large amplitude can identify these contact binaries. Despite an expected high fraction of contact binaries, 2001 QG298 is the only confirmed contact binary in the Trans-Neptunian belt, and 2003 SQ317 is a candidate to this class of systems (Sheppard & Jewitt 2004, Lacerda et al. 2014).Recently, using the Lowell’s 4.3m Discovery Channel Telescope and the 6.5m Magellan Telescope, we started a search for contact binaries at the edge of our Solar System. So far, our survey focused on about 40 objects in different dynamical groups of the Trans-Neptunian belt for sparse or complete lightcurves. We report the discovery of 5 new potential contact binaries converting the current estimate of potential/confirmed contact binaries to 7 objects. With one epoch of observations per object, we are not able to model in detail the systems, but we derive estimate for basic information such as shape, size, density of both objects as well as the separation between the system’s components. In this work, we will present these new systems, their basic characteristics, and we will discuss the potential main reservoir of contact binaries in the Trans-neptunian belt.

  3. The physical properties of double degenerate common proper motion binaries

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Oswalt, Terry D.; Liebert, James; Hintzen, Paul

    1991-01-01

    Spectral types and spectrophotometry are presented for 21 double degenerate (DD) common proper motion binaries, along with estimates of their colors, absolute visual and bolometric magnitudes, and cooling ages. The oldest pairs in the sample are 9 x 10 to the 9th yr; the differential cooling ages range from 0.01 to 0.84. The median and mean separations of the DD pairs are 426 and 407 Au, respectively, both apparently smaller than the WD+MS values. The average UVW motions and velocity dispersions are significantly larger than the average velocities and dispersions associated with selected samples of single white dwarfs and MS+WD binaries when the latter are restricted to the same color/Mv range as the DD systems. This may be a result of the dynamical inflation of the velocity dispersion of DD systems due to their extremely ancient total stellar ages.

  4. Hyper-Spectral Synthesis of Active OB Stars Using GLaDoS

    NASA Astrophysics Data System (ADS)

    Hill, N. R.; Townsend, R. H. D.

    2016-11-01

    In recent years there has been considerable interest in using graphics processing units (GPUs) to perform scientific computations that have traditionally been handled by central processing units (CPUs). However, there is one area where the scientific potential of GPUs has been overlooked - computer graphics, the task they were originally designed for. Here we introduce GLaDoS, a hyper-spectral code which leverages the graphics capabilities of GPUs to synthesize spatially and spectrally resolved images of complex stellar systems. We demonstrate how GLaDoS can be applied to calculate observables for various classes of stars including systems with inhomogenous surface temperatures and contact binaries.

  5. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    PubMed

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  6. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm

    PubMed Central

    Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Background and objective Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Methods Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Results Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). Conclusion The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training

  7. Probing Intermolecular Interactions in Binary Liquid Mixtures Using Femtosecond Laser-Induced Self-Defocusing.

    PubMed

    Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata

    2016-06-13

    Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔT P-V ) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.

  8. 26 CFR 1.103(n)-6T - Determinations of population (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... formula: P = $200,000,000×.5×Y/Z, where P, Y, and Z have the same meaning as above. (Secs. 103(n) and 7805...(n)-6T Section 1.103(n)-6T Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY....103(n)-6T Determinations of population (temporary). Q-1: What is the proper method for determining...

  9. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Observatory in California indicated that the object was likely a binary quasar in the midst of a galaxy merger. Carnegie's Mulchaey then used the 6.5 meter Baade-Magellan telescope at the Las Campanas observatory in Chile to obtain deeper images and more detailed spectroscopy of the merging galaxies. "Just because you see two galaxies that are close to each other in the sky doesn't mean they are merging," says Mulchaey. "But from the Magellan images we can actually see tidal tails, one from each galaxy, which suggests that the galaxies are in fact interacting and are in the process of merging." Thomas Cox, now a fellow at the Carnegie Observatories, corroborated this conclusion using computer simulations of the merging galaxies. When Cox's model galaxies merged, they showed features remarkably similar to what Mulchaey observed in the Magellan images. "The model verifies the merger origin for this binary quasar system," he says. "It also hints that this kind of galaxy interaction is a key component of the growth of black holes and production of quasars throughout our universe." * The authors of the paper published in the Astrophysical Journal are Paul J. Green of the Harvard-Smithsonian Center for Astrophysics, Adam D. Myers of the University of Illinois at Urbana-Champaign, Wayne A. Barkhouse of the University of North Dakota, John S. Mulchaey of the Observatories of the Carnegie Institution for Science, Vardha N. Bennert of the Department of Physics, University of California, Santa Barbara, Thomas J. Cox of the Observatories of the Carnegie Institution for Science, Thomas L. Aldcroft of the Harvard-Smithsonian Center for Astrophysics, and Joan M. Wrobel of National Radio Astronomy Observatory, Socorro, NM. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  10. A TRANSIENT SUB-EDDINGTON BLACK HOLE X-RAY BINARY CANDIDATE IN THE DUST LANES OF CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.

    2012-04-20

    We report the discovery of a bright X-ray transient CXOU J132527.6-430023 in the nearby early-type galaxy NGC 5128. The source was first detected over the course of five Chandra observations in 2007, reaching an unabsorbed outburst luminosity of (1-2) Multiplication-Sign 10{sup 38} erg s{sup -1} in the 0.5-7.0 keV band before returning to quiescence. Such luminosities are possible for both stellar-mass black hole and neutron star (NS) X-ray binary transients. Here, we attempt to characterize the nature of the compact object. No counterpart has been detected in the optical or radio sky, but the proximity of the source to themore » dust lanes allows for the possibility of an obscured companion. The brightness of the source after a >100-fold increase in X-ray flux makes it either the first confirmed transient non-ultraluminous X-ray black hole system in outburst to be subject to detailed spectral modeling outside the Local Group, or a bright (>10{sup 38} erg s{sup -1}) transient NS X-ray binary, which are very rare. Such a large increase in flux would appear to lend weight to the view that this is a black hole transient. X-ray spectral fitting of an absorbed power law yielded unphysical photon indices, while the parameters of the best-fit absorbed disk blackbody model are typical of an accreting {approx}10 M{sub Sun} black hole in the thermally dominant state.« less

  11. Black hole binaries dynamically formed in globular clusters

    NASA Astrophysics Data System (ADS)

    Park, Dawoo; Kim, Chunglee; Lee, Hyung Mok; Bae, Yeong-Bok; Belczynski, Krzysztof

    2017-08-01

    We investigate properties of black hole (BH) binaries formed in globular clusters via dynamical processes, using directN-body simulations. We pay attention to effects of BH mass function on the total mass and mass ratio distributions of BH binaries ejected from clusters. First, we consider BH populations with two different masses in order to learn basic differences from models with single-mass BHs only. Secondly, we consider continuous BH mass functions adapted from recent studies on massive star evolution in a low metallicity environment, where globular clusters are formed. In this work, we consider only binaries that are formed by three-body processes and ignore stellar evolution and primordial binaries for simplicity. Our results imply that most BH binary mergers take place after they get ejected from the cluster. Also, mass ratios of dynamically formed binaries should be close to 1 or likely to be less than 2:1. Since the binary formation efficiency is larger for higher-mass BHs, it is likely that a BH mass function sampled by gravitational-wave observations would be weighed towards higher masses than the mass function of single BHs for a dynamically formed population. Applying conservative assumptions regarding globular cluster populations such as small BH mass fraction and no primordial binaries, the merger rate of BH binaries originated from globular clusters is estimated to be at least 6.5 yr-1 Gpc-3. Actual rate can be up to more than several times of our conservative estimate.

  12. Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balzer, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Lui, R.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Żywucka, N.

    2015-05-01

    Re-observations with the HESS telescope array of the very high-energy (VHE) source HESS J1018-589 A that is coincident with the Fermi-LAT γ-ray binary 1FGL J1018.6-5856 have resulted in a source detection significance of more than 9σ and the detection of variability (χ2/ν of 238.3/155) in the emitted γ-ray flux. This variability confirms the association of HESS J1018-589 A with the high-energy γ-ray binary detected by Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of HESS J1018-589 A is best fit with a power-law function with photon index Γ = 2.20 ± 0.14stat ± 0.2sys. Emission is detected up to ~20 TeV. The mean differential flux level is (2.9 ± 0.4) × 10-13 TeV-1 cm-2 s-1 at 1 TeV, equivalent to ~1% of the flux from the Crab Nebula at the same energy. Variability is clearly detected in the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the observed X-ray and high-energy phaseograms. The fit of the HESS phaseogram to a constant flux provides evidence of periodicity at the level of Nσ> 3σ. The shape of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with amodest impact from VHE γ-ray absorption due to pair production (τ ≲ 1 at 300 GeV).

  13. SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Daniela; Tinney, C. G.; Faherty, Jacqueline K.

    The NASA Wide-field Infrared Survey Explorer (WISE) has discovered almost all the known members of the new class of Y-type brown dwarfs. Most of these Y dwarfs have been identified as isolated objects in the field. It is known that binaries with L- and T-type brown dwarf primaries are less prevalent than either M-dwarf or solar-type primaries, they tend to have smaller separations and are more frequently detected in near-equal mass configurations. The binary statistics for Y-type brown dwarfs, however, are sparse, and so it is unclear if the same trends that hold for L- and T-type brown dwarfs alsomore » hold for Y-type ones. In addition, the detection of binary companions to very cool Y dwarfs may well be the best means available for discovering even colder objects. We present results for binary properties of a sample of five WISE Y dwarfs with the Gemini Multi-Conjugate Adaptive Optics System. We find no evidence for binary companions in these data, which suggests these systems are not equal-luminosity (or equal-mass) binaries with separations larger than ∼0.5–1.9 AU. For equal-mass binaries at an age of 5 Gyr, we find that the binary binding energies ruled out by our observations (i.e., 10{sup 42} erg) are consistent with those observed in previous studies of hotter ultra-cool dwarfs.« less

  14. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  15. Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Wilson, R. E.; Vaccaro, T. R.

    2014-01-01

    Four years of Kepler observations have revealed a phenomenon in the light curves of short-period Algol-type eclipsing binaries that has never been reported from ground-based photometry. These systems display unequal brightness at their quadrature phases that numerically reverses over a time scale of about 100-400 days. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Twenty-one such systems have so far been identified in the Kepler database and at least three classes of L/T behavior have been identified. The prototype is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. The Kepler light curves are being analyzed with the 2013 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 T_phot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Echelle spectra were recently secured with the KPNO 4-m telescope to determine the mass ratios of the L/T systems and their spectral types. This information will allow us to assess whether the hot or cool spot model explains the L/T activity. Progress toward this goal will be presented. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  16. The variable X-ray spectrum of the Wolf-Rayet binary WR140 with Suzaku

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji; Corcoran, Michael; Pollock, Andy; Moffat, Anthony; Williams, Peredur; Dougherty, Sean; Pittard, Julian

    2011-01-01

    We report the preliminary results of the Suzaku observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is less absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the cool component with kT=0.1--0.6 keV, one for a dominant high-temperature component with kT ˜3 keV, and one for the hardest power-law component with the photon index of ˜2. As periastron approached, the column density of the high-temperature component increased, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high-temperature component is not inversely proportional to the distance between the two stars.

  17. Young Brown Dwarfs and Giant Planets as Companions to Weak-Line T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang; Frink, Sabine; Kohler, Rainer; Kunkel, Michael

    Weak-line T Tauri stars, contrary to classical T Tauri stars, no longer possess massive circumstellar disks. In weak-line T Tauri stars, the circumstellar matter was either accreted onto the T Tauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association. In the course of follow-up observations, we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line T Tauri stars. We have initiated a program to spatially resolve young brown dwarfs and young giant planets as companions to single weak-line T Tauri stars using adaptive optics at the ESO 3.6 m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations. An update on the program status can be found at http://www.astro.uiuc.edu/~brandner/text/bd/bd.html

  18. The massive star binary fraction in young open clusters - II. NGC6611 (Eagle Nebula)

    NASA Astrophysics Data System (ADS)

    Sana, H.; Gosset, E.; Evans, C. J.

    2009-12-01

    Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is fmin = 0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75 per cent of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC 6611, despite the difference in age and environment of the two clusters.

  19. BE Ursae Majoris: A detached binary with a unique reprocessing spectrum

    NASA Technical Reports Server (NTRS)

    Steiner, Joao E.; Ferguson, Donald H.; Liebert, James; Tokarz, Susan; Cutri, Roc; Green, Richard F.; Willner, S. P.

    1987-01-01

    New infrared photometry, optical and UV spectrophotometry, and a photographic ephemeris are presented for the detached binary BE UMa. Results show the primary to be a DO white dwarf with an effective temperature of 80,000 + or - 15,000 K and a mass of 0.6 + or - 0.1 solar masses. No evidence is found for variability of the primary. The main sequence secondary star is shown to be of early M spectral type, with a formal range of M1 to M5 being possible. A reflection effect in reprocessed line and continuum radiation is produced by EUV radiation from the primary incident on the secondary atmosphere. It is suggested that the temperature of the reprocessed component of the secondary's atmosphere is in the 5000 to 8500 K range, and that emission lines of decreasing ionization form deeper in the irradiated envelope. Relatively narrow He II and high excitation metal lines are formed from recombination and continuum fluorescence processes.

  20. On the development and applications of automated searches for eclipsing binary stars

    NASA Astrophysics Data System (ADS)

    Devor, Jonathan

    Eclipsing binary star systems provide the most accurate method of measuring both the masses and radii of stars. Moreover, they enable testing tidal synchronization and circularization theories, as well as constraining models of stellar structure and dynamics. With the recent availability of large-scale multi-epoch photometric datasets, we are able to study eclipsing binary stars en masse. In this thesis, we analyzed 185,445 light curves from ten TrES fields, and 218,699 light curves from the OGLE II bulge fields. In order to manage such large quantities of data, we developed a pipeline with which we systematically identified eclipsing binaries, solved for their geometric orientations, and then found their components' absolute properties. Following this analysis, we assembled catalogs of eclipsing binaries with their models, computed statistical distributions of their properties, and located rare cases for further follow-up. Of particular importance are low-mass eclipsing binaries, which are rare, yet critical for resolving the ongoing mass-radius discrepancy between theoretical models and observations. To this end, we have discovered over a dozen new low-mass eclipsing binary candidates, and spectroscopically confirmed the masses of five of them. One of these confirmed candidates, T-Lyr1-17236, is especially interesting because of its uniquely long orbital period. We examined T-Lyr1-17236 in detail and found that it is consistent with the magnetic disruption hypothesis for explaining the observed mass-radius discrepancy. Both the source code of our pipeline and the complete list of our candidates are freely available.

  1. HIP 13962 - The Possible Former Member of Binary System with Supernova

    NASA Astrophysics Data System (ADS)

    Yushchenko, V.; Yushchenko, A.; Gopka, V.; Shavrina, A.; Kovtyukh, V.; Hong, K. S.; Mkrtichian, D.; Thano, N. A.

    2016-12-01

    The runaway supergiant star HIP 13962 (spectral type G0Ia) was recently pointed as a possible former binary companion of young pulsar PSR J0826+2637. The spectra of HIP 13962 were obtained in Haute-Provence observatory (France), in Bohuynsan observatory (Korea), and also in NARIT (Thailand) with 1.9, 1.8, and 2.4 meter telescopes respectively. The spectra were obtained in 1995, 2003, 2005, 2014, and 2015. Significant variations of the spectrum are detected. The cores of strong lines show complicated structure, the brightness of the star is variable. The cycles of photometric variations have been changed. We analyzed the spectral observations and present the preliminary chemical composition for elements from iron to lead. The abundance pattern can not be fitted by solar system r- & s-process abundance distribution.

  2. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Joshi, V. S.; Harris, B. W.

    2009-12-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.

  3. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  4. Extending color primary set in spectral vector error diffusion by multilevel halftoning

    NASA Astrophysics Data System (ADS)

    Norberg, Ole; Nyström, Daniel

    2013-02-01

    micro dot can be a combination of all ten inks the number of possible ink combinations gets huge. Therefore, the initial study has been focused on including lighter colors to the intrinsic primary set. Results from this study shows that by this approach the color reproduction accuracy increases significantly. The RMS spectral difference to target color for multilevel halftoning is less than 1/6 of the difference achieved by binary halftoning.

  5. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in Greek newborns: the Mediterranean C563T mutation screening.

    PubMed

    Molou, Elina; Schulpis, Kleopatra H; Thodi, Georgia; Georgiou, Vassiliki; Dotsikas, Yannis; Papadopoulos, Konstantinos; Biti, Sofia; Loukas, Yannis L

    2014-04-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) gene is located at the X-chromosome at Xq28 and the disease is recessively inherited predominantly in males. More than 400 variants have been proposed based on clinical and enzymatic studies. The aim of the current study was to identify C563T mutation in G6PD-deficient newborns and to correlate the enzyme residual activity with the presence of the mutation. Some 1189 full-term neonates aged 3-5 days old were tested for G6PD activity in dried blood spots from Guthrie cards using a commercial kit. DNA extraction from Guthrie cards and mutation identification among the deficient samples were performed with current techniques. A total of 92 (7.7%) newborns were G6PD-deficient. In 46 (50%), the mutation C563T was identified. The residual activity in C563T hemizygote males (n = 28) was statistically significantly lower (1.23 ± 0.93 U/g Hb) than that in non-C563T G6PD-deficient males (n = 25) (4.01 ± 1.20 U/g Hb, p < 0.0001) and in controls (13.6 ± 2.9 U/g Hb, p < 0.0001). In C563T heterozygote females, the estimated enzyme activity was lower than that determined in non-C563T females. Male C563T hemizygotes suffer from G6PD deficiency and severe neonatal jaundice. G6PD activity showed statistically significant correlation with total bilirubin blood levels.

  6. Properties of binary transition-metal arsenides (TAs)

    NASA Astrophysics Data System (ADS)

    Saparov, Bayrammurad; Mitchell, Jonathan E.; Sefat, Athena S.

    2012-08-01

    We present thermodynamic and transport properties of transition-metal (T) arsenides, TAs, with T = Sc to Ni (3d), Zr, Nb, Ru (4d), Hf and Ta (5d). Characterization of these binaries is carried out with powder x-ray diffraction, temperature- and field-dependent magnetization and resistivity, temperature-dependent heat capacity, Seebeck coefficient, and thermal conductivity. All binaries show metallic behavior except TaAs and RuAs. TaAs, NbAs, ScAs and ZrAs are diamagnetic, while CoAs, VAs, TiAs, NiAs and RuAs show approximately Pauli paramagnetic behavior. FeAs and CrAs undergo antiferromagnetic ordering below TN ≈ 71 K and TN ≈ 260 K, respectively. MnAs is a ferromagnet below TC ≈ 317 K and undergoes hexagonal-orthorhombic-hexagonal transitions at TS ≈ 317 K and 384 K, respectively. For TAs, Seebeck coefficients vary between + 40 and - 40 μV K-1 in the 2-300 K range, whereas thermal conductivity values stay below 18 W m-1 K-1. The Sommerfeld coefficients γ are less than 10 mJ K-2 mol-1. At room temperature with application of 8 T magnetic field, large positive magnetoresistance is found for TaAs (˜25%), MnAs (˜90%) and NbAs (˜75%).

  7. A 2007 photometric study and UV spectral analysis of the Wolf-Rayet binary V444 Cyg

    NASA Astrophysics Data System (ADS)

    Eriş, F. Z.; Ekmekçi, F.

    2011-07-01

    Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson-Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR=10.64 M⊙, MO=24.68 M⊙, RWR=7.19 R⊙, RO=6.85 R⊙, TWR=31 000 K, and TO=40 000 K , respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The O-C analysis of the system revealed a period lengthening of 0.139±0.018 s yr-1, implying a mass loss rate of (6.76 ± 0.39) × 10-6 M⊙ yr-1 for the WR component. Moreover, 106 IUE-NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200-2000 \\rA) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s-1. Tables 2 and 3 and Figs. 4 and 8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr or via http:://cdsweb.u-strasbg.fr/AN/332/616

  8. Late type close binary system CM Dra

    NASA Astrophysics Data System (ADS)

    Kalomeni, Belinda

    2015-08-01

    In this study, we present new observations of the close binary system CM Dra. We analyzed all the available data of the system and estimated the physical parameters of the system stars highly accurately. Using the newly obtained parameters the distance of the system is determined to be 11.6 pc. A possible giant planet orbiting the close binary system has been detected. This orbital period would likely make it one of the longest known orbital period planet.

  9. High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6-11 μm range

    NASA Astrophysics Data System (ADS)

    Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven

    2017-08-01

    The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.

  10. M dwarf spectra from 0.6 to 1.5 micron - A spectral sequence, model atmosphere fitting, and the temperature scale

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. D.; Kelly, Douglas M.; Rieke, George H.; Liebert, James; Allard, France; Wehrse, Rainer

    1993-01-01

    Red/infrared (0.6-1.5 micron) spectra are presented for a sequence of well-studied M dwarfs ranging from M2 through M9. A variety of temperature-sensitive features useful for spectral classification are identified. Using these features, the spectral data are compared to recent theoretical models, from which a temperature scale is assigned. The red portion of the model spectra provide reasonably good fits for dwarfs earlier than M6. For layer types, the infrared region provides a more reliable fit to the observations. In each case, the wavelength region used includes the broad peak of the energy distribution. For a given spectral type, the derived temperature sequence assigns higher temperatures than have earlier studies - the difference becoming more pronounced at lower luminosities. The positions of M dwarfs on the H-R diagram are, as a result, in closer agreement with theoretical tracks of the lower main sequence.

  11. Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior

    NASA Astrophysics Data System (ADS)

    Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.

    2018-03-01

    Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.

  12. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  13. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  14. Evidence for Quasi-Periodic X-ray Dips from an ULX: Implications for the Binary Motion and the Orbital Inclination

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2012-01-01

    We report results from long-term X-ray (0.3-8.0 keY) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Our primary results are: (1) the discovery of quasi-periodic dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy-dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days the amplitude of which decreases during the second half of the light curve and (3) energy spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data, possibly due to a change in the ionization state of the circumbinary material. We interpret the X-ray modulations in the context of binary motion in analogy to that seen in high-inclination low-mass X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days in contrast to the 115.5 day quasi-sinusoidal period previously reported. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk (similar to the phenomenon of dipping LMXBs), this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination approx > 60 deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  15. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  16. Modelling the energy dependence of black hole binary flows

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ra'ad D.; Done, Chris

    2018-01-01

    We build a full spectral-timing model for the low/hard state of black hole binaries assuming that the spectrum of the X-ray hot flow can be produced by two Comptonization zones. Slow fluctuations generated at the largest radii/softest spectral region of the flow propagate down to modulate the faster fluctuations produced in the spectrally harder region close to the black hole. The observed spectrum and variability are produced by summing over all regions in the flow, including its emission reflected from the truncated disc. This produces energy-dependent Fourier lags qualitatively similar to those in the data. Given a viscous frequency prescription, the model predicts Fourier power spectral densities and lags for any energy bands. We apply this model to archival Rossi X-ray Timing Explorer data from Cyg X-1, using the time-averaged energy spectrum together with an assumed emissivity to set the radial bounds of the soft and hard Comptonization regions. We find that the power spectra cannot be described by any smooth model of generating fluctuations, instead requiring that there are specific radii in the flow where noise is preferentially produced. We also find fluctuation damping between spectrally distinct regions is required to prevent all the variability power generated at large radii being propagated into the inner regions. Even with these additions, we can fit either the power spectra at each energy or the lags between energy bands, but not both. We conclude that either the spectra are more complex than two zone models, or that other processes are important in forming the variability.

  17. MINING PLANET SEARCH DATA FOR BINARY STARS: THE ψ{sup 1} DRACONIS SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ{sup 1} Draconis A, which has a known roughly equal-mass companion at ∼680 AU.more » We measure the mass of ψ{sup 1} Draconis C as M{sub 2} = 0.70 ± 0.07M{sub ⊙}, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.« less

  18. Optical Study of the Critical Behaviour of Pure Fluids and Binary Mixtures.

    NASA Astrophysics Data System (ADS)

    Narger, Ulrike

    1990-01-01

    Optical techniques were used to study the critical behaviour of the pure fluids CHF_3, CClF_3 and Xe, and binary mixtures He-Xe and nicotine + water. We find that for all these substances, the order parameter is described by a power law in the reduced temperature t = (T _{c} - T)/T_{c} with a leading exponent beta = 0.327 +/- 0.002. Also, we determine the first correction to scaling exponent to be Delta = 0.43 +/- 0.02 for the pure fluids and Delta = 0.50 +/- 0.02 for the He-Xe system. The coexistence curve diameter in CHF _3 and CClF_3 exhibits a deviation from recti-linear diameter, in agreement with a modern theory which interprets this behaviour as resulting from three-body effects. In contrast, no such deviation is observed in Xe where, according to that theory, it should be more pronounced than in other substances. In the polar fluid CHF_3, the order parameter, isothermal compressibility and the chemical potential along the critical isotherm were simultaneously measured in the same experiment in an effort to ensure self-consistency of the results. From the data, two amplitude ratios which are predicted to be universal are determined: Gamma_sp{0}{+} /Gamma_sp{0}{ -} = 4.8 +/- 0.6 and D_0 Gamma_sp{0}{+ } B_sp{0}{delta-1} = 1.66 +/- 0.14. In the binary liquid system nicotine + water, the diffusivity was measured both by light scattering and by interferometry. The results agree qualitatively, but differ by a factor of ~2. From the light scattering data, the critical exponent of the viscosity is found to be z_{eta } = 0.044 +/- 0.008. The interferometric experiments on Xe and He-Xe furnish a direct way to measure the effects of wetting: From the data, the exponent of the surface tension is found to be n = 1.24 +/- 0.06. The similarity of the order parameter and compressibility in Xe and a He-Xe mixture containing 5% He indicate that the phase transition in this He-Xe mixture is of the liquid -gas type rather than the binary liquid type.

  19. Effect of service usage on tensile, fatigue, and fracture properties of 7075-T6 and 7178-T6 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1975-01-01

    A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained showed no significant difference between service and new materials.

  20. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    NASA Technical Reports Server (NTRS)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  1. Flow-through micro-capillary refractive index sensor based on T/R spectral shift monitoring.

    PubMed

    Rigamonti, Giulia; Guardamagna, Marco; Bello, Valentina; Marconi, Stefania; Auricchio, Ferdinando; Merlo, Sabina

    2017-10-01

    We present a flow-through refractive index sensor for measuring the concentration of glucose solutions based on the application of rectangular glass micro-capillaries, with channel depth of 50 µm and 30 µm. A custom designed and 3D printed polymeric shell protects the tiny capillaries, ensuring an easier handling and interconnection with the macro-fluidic path. By illuminating the capillary with broadband radiation centered at λ~1.55 µm, both the transmitted (T) and reflected (R) optical spectrum from the capillary are detected with an optical spectrum analyzer, exploiting an all-fiber setup. Monitoring the spectral shift of the ratio T/R in response to increasing concentration of glucose solutions in water we have obtained sensitivities up to 530.9 nm/RIU and limit of detection in the range of 10 -5 -10 -4 RIU. Experimental results are in agreement with the theoretically predicted principle of operation. After the demonstration of amplitude detection at a single wavelength, we finally discuss the impact of the capillary parameters on the sensitivity.

  2. A Broad-band Spectral and Timing Study of the X-Ray Binary System Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Audley, Michael Damian

    1998-01-01

    This dissertation describes a multi-mission investigation of the high mass X-ray binary pulsar Centaurus X-3. Cen X-3 was observed with the Broad Band X-Ray Telescope (BBXRT) in December 1990. This was the first high-resolution solid state X-ray spectrometer to cover the iron K fluorescence region. The Fe K emission feature was resolved into two components for the first time. A broad 6.7 keV feature was found to be a blend of lines from Fe XXI-Fe XXVI with energies ranging from 6.6 to 6.9 keV due to photoionization of the companion's stellar wind. A narrow line at 6.4 keV due to fluorescence of iron in relatively low ionization states was also found. The quasi-periodic oscillations (QPO) at about 40 mHz were used to estimate the surface magnetic field of Cen X-3 as approx. 2.6 x 10(exp 12) G and to predict that there should be a cyclotron scattering resonance absorption feature (CSRF) near 30 keV. In order to further resolve the iron line complex and to investigate the pulse-phase dependence of the iron line intensities, Cen X-3 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA). Using ASCA's state-of-the-art non-dispersive X-ray spectrometers the 6.4 keV fluorescent iron line was found to be pulsing while the intensities of the 6.7 and 6.9 keV recombination lines do not vary with pulse phase. This confirms that the 6.4 keV line is due to reflection by relatively neutral matter close to the neutron star while the recombination lines originate in the extended stellar wind. The continuum spectrum was found to be modified by reflection from matter close to the neutron star. Observations with the EXOSAT GSPC were used to search for a CSRF. The EXOSAT spectra were consistent with the presence of a CSRF but an unambiguous detection was not possible because of a lack of sensitivity at energies higher than the cyclotron energy. Cen X-3 was then observed with the Rossi X-Ray Timing Explorer (RXTE) and evidence for a CSRF at 25.1 +/- 0.3 keV was

  3. Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems

    NASA Astrophysics Data System (ADS)

    Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek

    2016-07-01

    We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.

  4. Neutron-star–black-hole binaries produced by binary-driven hypernovae

    DOE PAGES

    Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...

    2015-12-04

    Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E iso ≳10 52 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differentlymore » than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less

  5. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    PubMed

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  6. Trojan Binaries

    NASA Astrophysics Data System (ADS)

    Noll, K. S.

    2017-12-01

    The Jupiter Trojans, in the context of giant planet migration models, can be thought of as an extension of the small body populations found beyond Neptune in the Kuiper Belt. Binaries are a distinctive feature of small body populations in the Kuiper Belt with an especially high fraction apparent among the brightest Cold Classicals. The binary fraction, relative sizes, and separations in the dynamically excited populations (Scattered, Resonant) reflects processes that may have eroded a more abundant initial population. This trend continues in the Centaurs and Trojans where few binaries have been found. We review new evidence including a third resolved Trojan binary and lightcurve studies to understand how the Trojans are related to the small body populations that originated in the outer protoplanetary disk.

  7. Tracing the young massive high-eccentricity binary system θ^1Orionis C through periastron passage

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Weigelt, G.; Balega, Y. Y.; Docobo, J. A.; Hofmann, K.-H.; Preibisch, T.; Schertl, D.; Tamazian, V. S.; Driebe, T.; Ohnaka, K.; Petrov, R.; Schöller, M.; Smith, M.

    2009-04-01

    Context: The nearby high-mass star binary system θ^1Ori C is the brightest and most massive of the Trapezium OB stars at the core of the Orion Nebula Cluster, and it represents a perfect laboratory to determine the fundamental parameters of young hot stars and to constrain the distance of the Orion Trapezium Cluster. Aims: By tracing the orbital motion of the θ^1Ori C components, we aim to refine the dynamical orbit of this important binary system. Methods: Between January 2007 and March 2008, we observed θ^1Ori C with VLTI/AMBER near-infrared (H- and K-band) long-baseline interferometry, as well as with bispectrum speckle interferometry with the ESO 3.6 m and the BTA 6 m telescopes (B'- and V'-band). Combining AMBER data taken with three different 3-telescope array configurations, we reconstructed the first VLTI/AMBER closure-phase aperture synthesis image, showing the θ^1Ori C system with a resolution of ˜ 2 mas. To extract the astrometric data from our spectrally dispersed AMBER data, we employed a new algorithm, which fits the wavelength-differential visibility and closure phase modulations along the H- and K-band and is insensitive to calibration errors induced, for instance, by changing atmospheric conditions. Results: Our new astrometric measurements show that the companion has nearly completed one orbital revolution since its discovery in 1997. The derived orbital elements imply a short-period (P ≈ 11.3 yr) and high-eccentricity orbit (e ≈ 0.6) with periastron passage around 2002.6. The new orbit is consistent with recently published radial velocity measurements, from which we can also derive the first direct constraints on the mass ratio of the binary components. We employ various methods to derive the system mass (M_system = 44 ± 7 M⊙) and the dynamical distance (d = 410 ± 20 pc), which is in remarkably good agreement with recently published trigonometric parallax measurements obtained with radio interferometry. Based on observations made

  8. The behaviour of the excess CA II H and K and Hɛ emissions in chromospherically active binaries.

    NASA Astrophysics Data System (ADS)

    Montes, D.; Fernandez-Figueroa, M. J.; Cornide, M.; de Castro, E.

    1996-08-01

    In this work we analyze the behaviour of the excess Ca II H and K and Hɛ emissions in a sample of 73 chromospherically active binary systems (RS CVn and BY Dra classes), of different activity levels and luminosity classes. This sample includes the 53 stars analyzed by Fernandez-Figueroa et al. (1994) and the observations of 28 systems described by Montes et al. (1995c). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of spectral type and luminosity class similar to those of the binary star components) we obtain the active-chromosphere contribution to the Ca II H and K lines in these 73 systems. We have determined the excess Ca II H and K emission equivalent widths and converted them into surface fluxes. The emissions arising from each component were obtained when it was possible to deblend both contributions. We have found that the components of active binaries are generally stronger emitters than single active stars for a given effective temperature and rotation rate. A slight decline of the excess Ca II H and K emissions towards longer rotation periods, P_rot_, and larger Rossby numbers, R_0_, is found. When we use R_0_ instead of P_rot_ the scatter is reduced and a saturation at R_0_=~0.3 is observed. A good correlation between the excess Ca II K and Hɛ chromospheric emission fluxes has been found. The correlations obtained between the excess Ca II K emission and other activity indicators, (C IV in the transition region, and X-rays in the corona) indicate that the exponents of the power-law relations increase with the formation temperature of the spectral features.

  9. Dielectric properties of binary mixtures of ethylene glycol monophenyl ether and methanol

    NASA Astrophysics Data System (ADS)

    Vaghela, K. C.; Vankar, H. P.; Trivedi, C. M.; Rana, V. A.

    2017-05-01

    Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of ethylene glycol monophenyl ether (EGMPE), methanol (MeOH) and their binary mixtures of varying concentrations have been measured at room temperature (T=299.15 K). The investigation showed a systematic change in permittivity with change in concentration of MeOH in binary mixture system. Measured data have been used to calculate the various dielectric parameters such as E E excess static permittivity (ɛ0E), excess permittivity at optical frequency (ɛ∞E) and Bruggeman factor (fB). Determined parameters provided some information about the molecular interaction among the molecular species of the binary mixtures.

  10. Evidence Of A Black Hole In The X-ray Binary System Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Lombardi, C.; Virgilli, E.; Titarchuk, L.; Frontera, F.; Farinelli, R.

    2011-09-01

    Recently a close correlation between the photon index of the power law component and either the frequency of Quasi Periodic Oscillations (QPOs) or the flow of accretion disk has been found in the X-ray data concerning Black Holes (BH) in binary systems. The shape of this relationship, characterized by a saturation index when the system achieves high spectral brightness, finds a natural explanation in the processes of thermal and bulk Comptonization which are unique characteristic of the presence of a BH. For the whole set of observation we adopted a model consisting of the spectral component of BMC (Bulk Motion Comptonization model) that takes into account the direct emission of black body and the Comptonization process.

  11. Synthesis and characterization of binary (CuO)0.6(CeO2)0.4 nanoparticles via a simple heat treatment method

    NASA Astrophysics Data System (ADS)

    Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Kamari, Halimah Mohamed; Saion, Elias; Chyi, Josephine Liew Ying; Abdullah, Che Azurahanim Che

    2018-06-01

    A binary (CuO)0.6 (CeO2)0.4 nanoparticles were prepared via thermal treatment method, using copper nitrate, cerium nitrate as precursors, PVP as capping agent and de-ionized water as a solvent. The structures, morphology, composition of the element and optical properties of these nanoparticles have been studied under different temperatures using various techniques. The XRD spectrum of the samples at 500 °C and above confirmed the existence of both monoclinic (CuO) and cubic fluorite (CeO2) structures. The findings of FESEM and TEM exhibited the average practical size and agglomeration increment with an elevation in the calcination temperature. The synthesized nanoparticles were also characterized by FTIR, which indicated the formation of binary Cu-O and Ce-O bonds. The EDX analysis was performed to indicate the chemical composition of the sample. The double energy band gaps of (CuO)0.6(CeO2)0.4 reduction with rising calcination temperature, can be referred to the enhancement of the crystallinity of the samples. PL intensity of (CuO)0.6(CeO2)0.4 nanoparticles peaks, which increased with the elevation of the calcination temperature to 800 °C was observed from the PL spectrum; this was due to the increment of the particle size that occurred.

  12. T-6A Texan II Systems Engineering Case Study

    DTIC Science & Technology

    2010-01-01

    response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...Appendix C. T-6 Type Certificate Data Sheet….……………………………...……….....74 Appendix D. Amendment……………….………………...………………...………….….78 T-6A Texan II...DOCUMENT (SRD) ANTHROPOMETRY , REQUIRED VERSUS DESIRED

  13. Structural conservation, variability, and immunogenicity of the T6 backbone pilin of serotype M6 Streptococcus pyogenes.

    PubMed

    Young, Paul G; Moreland, Nicole J; Loh, Jacelyn M; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N

    2014-07-01

    Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  15. Radiation-induced polymerization of glass-forming systems. V. Initial polymerization rate in binary glass-forming systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, Isao; Okubo, Hiroshi; Ito, Akihiko

    1973-06-01

    The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by T/sub g/ (glass transition temperature) and T/sub v/ of the system (30-50 deg C higher than T/sub g/), which are functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the T of the glass- forming solvent. The composition and temperature dependences in the glycidyl methacrylate --triacetin system as a typical homogeneous polymerization system were studied inmore » detail, and the polymerizations of hydroxyethyl methacrylate triacetln and hydroxyethyl methacrylate --isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower T/sub g/ monomer and higher T/sub g/ solvent and the latter typifies a system consisting of higher T/sub g/ monomer and lower T/sub g/ solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to T/sub v/ and T/sub g/ of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect. (auth)« less

  16. Testing the Binary Black Hole Nature of a Compact Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  17. Testing the Binary Black Hole Nature of a Compact Binary Coalescence.

    PubMed

    Krishnendu, N V; Arun, K G; Mishra, Chandra Kant

    2017-09-01

    We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.

  18. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  19. Spectral analysis of variable-length coded digital signals

    NASA Astrophysics Data System (ADS)

    Cariolaro, G. L.; Pierobon, G. L.; Pupolin, S. G.

    1982-05-01

    A spectral analysis is conducted for a variable-length word sequence by an encoder driven by a stationary memoryless source. A finite-state sequential machine is considered as a model of the line encoder, and the spectral analysis of the encoded message is performed under the assumption that the sourceword sequence is composed of independent identically distributed words. Closed form expressions for both the continuous and discrete parts of the spectral density are derived in terms of the encoder law and sourceword statistics. The jump part exhibits jumps at multiple integers of per lambda(sub 0)T, where lambda(sub 0) is the greatest common divisor of the possible codeword lengths, and T is the symbol period. The derivation of the continuous part can be conveniently factorized, and the theory is applied to the spectral analysis of BnZS and HDBn codes.

  20. Clinical and Microbiologic Characteristics of Clostridium difficile Infection Caused by Binary Toxin Producing Strain in Korea.

    PubMed

    Kim, Jieun; Seo, Mi-Ran; Kang, Jung Oak; Choi, Tae Yeal; Pai, Hyunjoo

    2013-06-01

    Binary toxin-producing Clostridium difficile infections (CDI) are known to be more severe and to cause higher case fatality rates than those by binary toxin-negative isolates. There has been few data of binary toxin-producing CDI in Korea. Objective of the study is to characterize clinical and microbiological trait of CDI cause by binary-toxin producing isolates in Korea. From September 2008 through January 2010, clinical characteristics, medication history and treatment outcome of all the CDI patients were collected prospectively. Toxin characterization, PCR ribotyping and antibiotic susceptibility were performed with the stool isolates of C. difficile. During the period, CDI caused by 11binary toxin-producing isolates and 105 toxin A & toxin B-positive binary toxin-negative isolates were identified. Comparing the disease severity and clinical findings between two groups, leukocytosis and mucoid stool were more frequently observed in patients with binary toxin-positive isolates (OR: 5.2, 95% CI: 1.1 to 25.4, P = 0.043; OR: 7.6, 95% CI: 1.6 to 35.6, P = 0.010, respectively), but clinical outcome of 2 groups did not show any difference. For the risk factors for acquisition of binary toxin-positive isolates, previous use of glycopeptides was the significant risk factor (OR: 6.2, 95% CI: 1.4 to 28.6, P = 0.019), but use of probiotics worked as an inhibitory factor (OR: 0.1, 95% CI: 0.0 to 0.8; P = 0.026). PCR ribotypes of binary toxinproducing C. difficile showed variable patterns: ribotype 130, 4 isolates; 027, 3 isolates; 267 and 122, 1 each isolate and unidentified C1, 2 isolates. All 11 binary toxin-positive isolates were highly susceptible to clindamycin, moxifloxacin, metronidazole, vancomycin and piperacillin-tazobactam, however, 1 of 11 of the isolates was resistant to rifaximin. Binary toxin-producing C. difficile infection was not common in Korea and those isolates showed diverse PCR ribotypes with high susceptibility to antimicrobial agents. Glycopeptide

  1. Clinical and Microbiologic Characteristics of Clostridium difficile Infection Caused by Binary Toxin Producing Strain in Korea

    PubMed Central

    Kim, Jieun; Seo, Mi-ran; Kang, Jung Oak; Choi, Tae Yeal

    2013-01-01

    Background Binary toxin-producing Clostridium difficile infections (CDI) are known to be more severe and to cause higher case fatality rates than those by binary toxin-negative isolates. There has been few data of binary toxin-producing CDI in Korea. Objective of the study is to characterize clinical and microbiological trait of CDI cause by binary-toxin producing isolates in Korea. Materials and Methods From September 2008 through January 2010, clinical characteristics, medication history and treatment outcome of all the CDI patients were collected prospectively. Toxin characterization, PCR ribotyping and antibiotic susceptibility were performed with the stool isolates of C. difficile. Results During the period, CDI caused by 11binary toxin-producing isolates and 105 toxin A & toxin B-positive binary toxin-negative isolates were identified. Comparing the disease severity and clinical findings between two groups, leukocytosis and mucoid stool were more frequently observed in patients with binary toxin-positive isolates (OR: 5.2, 95% CI: 1.1 to 25.4, P = 0.043; OR: 7.6, 95% CI: 1.6 to 35.6, P = 0.010, respectively), but clinical outcome of 2 groups did not show any difference. For the risk factors for acquisition of binary toxin-positive isolates, previous use of glycopeptides was the significant risk factor (OR: 6.2, 95% CI: 1.4 to 28.6, P = 0.019), but use of probiotics worked as an inhibitory factor (OR: 0.1, 95% CI: 0.0 to 0.8; P = 0.026). PCR ribotypes of binary toxinproducing C. difficile showed variable patterns: ribotype 130, 4 isolates; 027, 3 isolates; 267 and 122, 1 each isolate and unidentified C1, 2 isolates. All 11 binary toxin-positive isolates were highly susceptible to clindamycin, moxifloxacin, metronidazole, vancomycin and piperacillin-tazobactam, however, 1 of 11 of the isolates was resistant to rifaximin. Conclusions Binary toxin-producing C. difficile infection was not common in Korea and those isolates showed diverse PCR ribotypes with high

  2. On the frequency of close binary systems among very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Jeffries, R. D.

    2005-09-01

    We have used Monte Carlo simulation techniques and published radial velocity surveys to constrain the frequency of very low-mass star (VLMS) and brown dwarf (BD) binary systems and their separation (a) distribution. Gaussian models for the separation distribution with a peak at a= 4au and 0.6 <=σlog(a/au)<= 1.0, correctly predict the number of observed binaries, yielding a close (a < 2.6au) binary frequency of 17-30 per cent and an overall VLMS/BD binary frequency of 32-45 per cent. We find that the available N-body models of VLMS/BD formation from dynamically decaying protostellar multiple systems are excluded at >99 per cent confidence because they predict too few close binary VLMS/BDs. The large number of close binaries and high overall binary frequency are also very inconsistent with recent smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMS/BDs.

  3. V773 Cas, QS Aql, AND BR Ind: ECLIPSING BINARIES AS PARTS OF MULTIPLE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasche, P.; Juryšek, J.; Nemravová, J.

    2017-01-01

    Eclipsing binaries remain crucial objects for our understanding of the universe. In particular, those that are components of multiple systems can help us solve the problem of the formation of these systems. Analysis of the radial velocities together with the light curve produced for the first time precise physical parameters of the components of the multiple systems V773 Cas, QS Aql, and BR Ind. Their visual orbits were also analyzed, which resulted in slightly improved orbital elements. What is typical for all these systems is that their most dominant source is the third distant component. The system V773 Cas consists of two similarmore » G1-2V stars revolving in a circular orbit and a more distant component of the A3V type. Additionally, the improved value of parallax was calculated to be 17.6 mas. Analysis of QS Aql resulted in the following: the inner eclipsing pair is composed of B6V and F1V stars, and the third component is of about the B6 spectral type. The outer orbit has high eccentricity of about 0.95, and observations near its upcoming periastron passage between the years 2038 and 2040 are of high importance. Also, the parallax of the system was derived to be about 2.89 mas, moving the star much closer to the Sun than originally assumed. The system BR Ind was found to be a quadruple star consisting of two eclipsing K dwarfs orbiting each other with a period of 1.786 days; the distant component is a single-lined spectroscopic binary with an orbital period of about 6 days. Both pairs are moving around each other on their 148 year orbit.« less

  4. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  5. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  6. Spectroscopic and photometric study of the eclipsing interacting binary V495 Centauri

    NASA Astrophysics Data System (ADS)

    Rosales Guzmán, J. A.; Mennickent, R. E.; Djurašević, G.; Araya, I.; Curé, M.

    2018-05-01

    Double Periodic Variables (DPV) are among the new enigmas of semidetached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of 33.492 ± 0.002 d and a long period of 1283 d. We find a cool evolved star of M2=0.91± 0.2 M_{⊙}, T2 = 6000 ± 250 K and R2=19.3 ± 0.5 R_{⊙} and a hot companion of M1= 5.76± 0.3 M_{⊙}, T1 = 16960 ± 400 K and R=4.5± 0.2 R_{⊙}. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension Rd= 40.2± 1.3 R_{⊙} contributing ˜11 per cent to the total luminosity of the system at the V band. The system is seen under inclination 84.8° ± 0.6° and it is at a distance d = 2092 ± 104.6 pc. The light-curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 per cent hotter than the surrounding disc material. The persistent V < R asymmetry of the Hα emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.

  7. Direct Exoplanet Detection with Binary Differential Imaging

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy J.; Weinberger, Alycia; Mamajek, Eric E.; Males, Jared R.; Close, Laird M.; Morzinski, Katie; Hinz, Philip M.; Kaib, Nathan

    2015-10-01

    Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at a high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4″ with MagAO/Clio-2 at 3.9 μm, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI’s 5σ contrast is ˜0.5 mag better than ADI’s within ˜1″ for the particular binary we observed. Because planets typically reside close to their host stars, BDI is a promising technique for discovering exoplanets in stellar systems that are often ignored. BDI is also 2-4× more efficient than ADI and classical reference PSF subtraction, since planets can be detected around both the target and PSF reference simultaneously. We are currently exploiting this technique in a new MagAO survey for giant planets in 140 young nearby visual binaries. BDI on a space-based telescope would not be limited by isoplanatism effects and would therefore be an even more powerful tool for imaging and discovering planets. This paper includes data obtained at the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. A search for X-ray binary stars in their quiescent phase

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1980-01-01

    Fourteen early-type stars representative of systems which may be harboring a neutron star companion and are thus potential progenitors of massive X-ray binaries have been examined for X-ray emission with the HEAO A-1 experiment. Limits on the 0.5-20 keV luminosity for these objects lie in the range 10 to the 31-33 erg/sec. In several cases, the hypothesis of a collapsed companion, in combination with the X-ray limit, places a serious constraint on the mass-loss rate of the primary star. In one instance, an X-ray source was discovered coincident with a candidate star, although the luminosity of 5 x 10 to the 31 is consistent with that expected from a single star of the same spectral type. The prospects for directly observing the quiescent phase of a binary X-ray source with the Einstein Observatory are discussed in the context of these results.

  9. X-ray Binaries in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Cowley, Anne P.

    1993-05-01

    For more than two decades astronomers have been aware that the most X-ray luminous stellar sources (L_x > 10(35) erg s(-1) ) are interacting binaries where one component is a neutron star or black hole. While other types of single and multiple stars are known X-ray sources, none compare in X-ray luminosity with the ``classical" X-ray binaries. In these systems X-ray emission results from accretion of material from a non-degenerate companion onto the compact star through several alternate mechanisms including Roche lobe overflow, stellar winds, or periastron effects in non-circular orbits. It has been recognized for many years that X-ray binaries divide into two broad groups, characterized primarily by the mass of the non-degenerate star: 1) massive X-ray binaries (MXRB), in which the optical primary is a bright, early-type star, and 2) low-mass X-ray binaries (LMXB), where a lower main-sequence or subgiant star is the mass donor. A broad variety of observational characteristics further subdivide these classes. In the Galaxy these two groups appear to be spatially and kinematically associated with the disk and the halo populations, respectively. A few dozen MXRB are known in the Galaxy. A great deal of information about their physical properties has been learned from observational study. Their optical primaries can be investigated by conventional techniques. Furthermore, most MXRB contain X-ray pulsars, allowing accurate determination of their orbital parameters. From these data masses have been determined for the neutron stars, all of which are ~ 1.4 Msun, within measurement errors. By contrast, the LMXB have been much more difficult to study. Although there are ~ 150 LMXB in the Galaxy, most are distant and faint, requiring use of large telescopes for their study. Their optical light is almost always dominated by an accretion disk, rather than the mass-losing star, making interpretation of their spectral and photometric properties difficult. Their often uncertain

  10. Mass and p-factor of the Type II Cepheid OGLE-LMC-T2CEP-098 in a Binary System

    NASA Astrophysics Data System (ADS)

    Pilecki, Bogumił; Gieren, Wolfgang; Smolec, Radosław; Pietrzyński, Grzegorz; Thompson, Ian B.; Anderson, Richard I.; Bono, Giuseppe; Soszyński, Igor; Kervella, Pierre; Nardetto, Nicolas; Taormina, Mónica; Stȩpień, Kazimierz; Wielgórski, Piotr

    2017-06-01

    We present the results of a study of the type II Cepheid (P puls = 4.974 days) in the eclipsing binary system OGLE-LMC-T2CEP-098 (P orb = 397.2 days). The Cepheid belongs to the peculiar W Vir group, for which the evolutionary status is virtually unknown. It is the first single-lined system with a pulsating component analyzed using the method developed by Pilecki et al. We show that the presence of a pulsator makes it possible to derive accurate physical parameters of the stars even if radial velocities can be measured for only one of the components. We have used four different methods to limit and estimate the physical parameters, eventually obtaining precise results by combining pulsation theory with the spectroscopic and photometric solutions. The Cepheid radius, mass, and temperature are 25.3+/- 0.2 {R}⊙ , 1.51+/- 0.09 {M}⊙ , and 5300+/- 100 {{K}}, respectively, while its companion has a similar size (26.3 {R}⊙ ), but is more massive (6.8 {M}⊙ ) and hotter (9500 K). Our best estimate for the p-factor of the Cepheid is 1.30+/- 0.03. The mass, position on the period-luminosity diagram, and pulsation amplitude indicate that the pulsating component is very similar to the Anomalous Cepheids, although it has a much longer period and is redder in color. The very unusual combination of the components suggest that the system has passed through a mass-transfer phase in its evolution. More complicated internal structure would then explain its peculiarity. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.

  11. An optimal algorithm for reconstructing images from binary measurements

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Lu, Yue M.; Sbaiz, Luciano; Vetterli, Martin

    2010-01-01

    We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due to its highly sensitive photon detection mechanism. We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary sensor measurements of the gigavision camera. We prove that when the threshold T is "1", the negative loglikelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization. Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our algorithm also works for estimating conventional images from multiple binary images. Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the proposed algorithm. Experimental results also show that estimation performance can be improved by increasing the oversampling factor or the number of binary images.

  12. Impurity identifications, concentrations and particle fluxes from spectral measurements of the EXTRAP T2R plasma

    NASA Astrophysics Data System (ADS)

    Menmuir, S.; Kuldkepp, M.; Rachlew, E.

    2006-10-01

    An absolute intensity calibrated 0.5 m spectrometer with optical multi-channel analyser detector was used to observe the visible-UV radiation from the plasma in the EXTRAP T2R reversed field pinch experiment. Spectral lines were identified indicating the presence of oxygen, chromium, iron and molybdenum impurities in the hydrogen plasma. Certain regions of interest were examined in more detail and at different times in the plasma discharge. Impurity concentration calculations were made using the absolute intensities of lines of OIV and OV measured at 1-2 ms into the discharge generating estimates of the order of 0.2% of ne in the central region rising to 0.7% of ne at greater radii for OIV and 0.3% rising to 0.6% for OV. Edge electron temperatures of 0.5-5 eV at electron densities of 5-10×1011 cm-3 were calculated from the measured relative intensities of hydrogen Balmer lines. The absolute intensities of hydrogen lines and of multiplets of neutral chromium and molybdenum were used to determine particle fluxes (at 4-5 ms into the plasma) of the order 1×1016, 7×1013 and 3×1013 particles cm-2 s-1, respectively.

  13. Wide- and contact-binary formation in substructured young stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  14. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    NASA Astrophysics Data System (ADS)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  15. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge

  16. Uncovering the identities of compact objects in high-mass X-ray binaries and gamma-ray binaries by astrometric measurements

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M. S.; Yano, T.; Gouda, N.

    2018-03-01

    We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.

  17. INTEGRAL and XMM-Newton observations of the puzzling binary system LSI +61 303

    NASA Astrophysics Data System (ADS)

    Chernyakova, Masha; Neronov, A.; Walter, R.

    LSI +61° 303 is one of the few X-ray binaries with Be star companion from which both radio and high-energy gamma-ray emission have been observed. We present XMM-Newton and INTE- GRAL observations which reveal variability of the X-ray spectral index of the system. The X-ray spectrum is hard (photon index Γ ≃ 1.5) during the orbital phases of both high and low X-ray flux. However, the spectrum softens at the moment of transition from high to low X-ray state. The spectrum of the system in the hard X-ray band does not reveal the presence of a cut-off (or, at least a spectral break) at 10-60 keV energies, expected if the compact object is an accreting neu- tron star. The observed spectrum and spectral variability can be explained if the compact object in the system is a rotation powered pulsar. In this case the recently found X-ray spectral variability of the system on the several kiloseconds time scale can be explained by the clumpy structure of the Be star disk.

  18. Intra-QT Spectral Coherence as a Possible Noninvasive Marker of Sustained Ventricular Tachycardia

    PubMed Central

    Piccirillo, Gianfranco; Moscucci, Federica; Di Barba, Daniele; Pappadà, Maria Antonella; Rossi, Pietro; Quaglione, Raffaele; Barillà, Francesco; Magrì, Damiano

    2014-01-01

    Sudden cardiac death is the main cause of mortality in patients affected by chronic heart failure (CHF) and with history of myocardial infarction. No study yet investigated the intra-QT phase spectral coherence as a possible tool in stratifying the arrhythmic susceptibility in patients at risk of sudden cardiac death (SCD). We, therefore, assessed possible difference in spectral coherence between the ECG segment extending from the q wave to the T wave peak (QTp) and the one from T wave peak to the T wave end (T e) between patients with and without Holter ECG-documented sustained ventricular tachycardia (VT). None of the QT variability indexes as well as most of the coherences and RR power spectral variables significantly differed between the two groups except for the QTp-T e spectral coherence. The latter was significantly lower in patients with sustained VT than in those without (0.508 ± 0.150 versus 0.607 ± 0.150, P < 0.05). Although the responsible mechanism remains conjectural, the QTp-T e spectral coherence holds promise as a noninvasive marker predicting malignant ventricular arrhythmias. PMID:25133170

  19. The binary companion of the classical Cepheid AW Per

    NASA Technical Reports Server (NTRS)

    Evans, Nancy Remage

    1989-01-01

    An analysis of IUE spectra of the companion of AW Per shows it to be an extreme BpSi/HeW star with a spectral type of B7 V to B8 V. The flux of the composite spectrum from 1200 A through V is found to be well matched by F7 Ib and B8 V standard stars with Delta M(V) = 3.1 mag. The results suggest that the mass of the Cepheid must be greater than 4.7 solar masses. The flux distribution of the star and the mass limits from the orbit are consistent with a companion that is itself a binary.

  20. NuSTAR and Swift joint view of neutron star X-ray binary 4U 1728-34: disc reflection in the island and lower banana states

    NASA Astrophysics Data System (ADS)

    Mondal, Aditya S.; Pahari, Mayukh; Dewangan, G. C.; Misra, R.; Raychaudhuri, B.

    2017-04-01

    We analyse two simultaneous NuSTAR and Swift data of the Atoll-type neutron star (NS) X-ray binary 4U 1728-34 observed on 2013 October 1 and 3. We infer that the first and the second observations belong to the island state and the lower banana state, respectively. During island state, four type-I X-ray bursts are observed within 60 ks exposure. From the time-resolved spectral analysis of each burst with NuSTAR, the blackbody temperature kTbb are found to vary between 1.3 and 3.0 keV, while the blackbody normalizations (km/10 kpc)2 vary in the range 20-200, which translates to blackbody radii of 3.5-7.4 km for an assumed distance of 5 kpc. The persistent, joint energy spectra from Swift and NuSTAR for both observations in the energy band 1-79 keV are well described with thermal emission from the NS surface (kTbb ≃ 1-2.5 keV), Comptonized emission of thermal seed photons from the hot boundary layer/corona and the strong reflection component from the accretion disc. We detect a broad iron line in the 5-8 keV band and reflection hump in the 15-30 keV band modelled by the relxill reflection model. Joint spectral fitting constrains the inclination angle of the binary system and inner disc radius to be 22°-40° and (2.0-4.3) × RISCO, respectively. We estimate the magnetic field to be (1.8-6.5) × 108 G. The X-ray luminosity of the source during the island and lower banana states are found to be LX = 1.1 and 1.6 × 1037 erg s-1, respectively, which correspond to ˜6 per cent and ˜9 per cent of the Eddington luminosity.

  1. Spitzer Trigonometric Parallaxes of L, T, and Y Dwarfs: Complementing Gaia's Optically-selected Census of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; Smart, Richard; Marocco, Federico; Martin, Emily; Faherty, Jacqueline; Tinney, Christopher; Cushing, Michael; Beichman, Charles; Gelino, Christopher; Schneider, Adam; Wright, Edward; Lowrance, Patrick; Ingalls, James

    2018-05-01

    We now find ourselves at a moment in history where a parallax-selected census of nearby objects from the hottest A stars to the coldest Y dwarfs is almost a reality. With the release of Gaia DR2 in April of this year, we will be able to extract a volume-limited sample of stars out to 20 pc down to a spectral type of L5. Extending the census to colder types is much more difficult but nonetheless possible and essential. Ground-based astrometric monitoring of some of these colder dwarfs can be done with deep infrared detections on moderate to large (4+ meter) telescopes, but given the amount of time needed, only a portion of the colder objects believed to lie within 20 pc has been monitored. Our prior Spitzer observations have already enabled direct distance measures for T6 through Y dwarfs, but many 20-pc objects with spectral types between L5 and T5.5 have still not been astrometrically monitored, leaving a hole in our knowledge of this important all-sky sample. Spitzer Cycle 14 observations of modest time expenditure can rectify this problem by providing parallaxes for the 150+ objects remaining. Analysis of the brown dwarfs targeted by Spitzer is particularly important because it will provide insight into the low-mass cutoff of star formation, the shape of the mass function as inferred from the observed temperature distribution, the binary fraction of near-equal mass doubles, and the prevalence of extremely young (low-gravity) and extremely old (low metallicity) objects within the sample - all of which can be used to test and further refine model predictions of the underlying mass function.

  2. Wide Binaries in TGAS: Search Method and First Results

    NASA Astrophysics Data System (ADS)

    Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.

    2018-04-01

    Half of all stars reside in binary systems, many of which have orbital separations in excess of 1000 AU. Such binaries are typically identified in astrometric catalogs by matching the proper motions vectors of close stellar pairs. We present a fully Bayesian method that properly takes into account positions, proper motions, parallaxes, and their correlated uncertainties to identify widely separated stellar binaries. After applying our method to the >2 × 106 stars in the Tycho-Gaia astrometric solution from Gaia DR1, we identify over 6000 candidate wide binaries. For those pairs with separations less than 40,000 AU, we determine the contamination rate to be ~5%. This sample has an orbital separation (a) distribution that is roughly flat in log space for separations less than ~5000 AU and follows a power law of a -1.6 at larger separations.

  3. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.

    PubMed

    Tyan, R C; Sun, P C; Scherer, A; Fainman, Y

    1996-05-15

    We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

  4. A catalogue of potentially bright close binary gravitational wave sources

    NASA Technical Reports Server (NTRS)

    Webbink, Ronald F.

    1985-01-01

    This is a current print-out of results of a survey, undertaken in the spring of 1985, to identify those known binary stars which might produce significant gravitational wave amplitudes at earth, either dimensionless strain amplitudes exceeding a threshold h = 10(exp -21), or energy fluxes exceeding F = 10(exp -12) erg cm(exp -2) s(exp -1). All real or putative binaries brighter than a certain limiting magnitude (calculated as a function of primary spectral type, orbital period, orbital eccentricity, and bandpass) are included. All double degenerate binaries and Wolf-Rayet binaries with known or suspected orbital periods have also been included. The catalog consists of two parts: a listing of objects in ascending order of Right Ascension (Equinox B1950), followed by an index, listing of objects by identification number according to all major stellar catalogs. The object listing is a print-out of the spreadsheets on which the catalog is currently maintained. It should be noted that the use of this spreadsheet program imposes some limitations on the display of entries. Text entries which exceed the cell size may appear in truncated form, or may run into adjacent columns. Greek characters are not available; they are represented here by the first two or three letters of their Roman names, the first letter appearing as a capital or lower-case letter according to whether the capital or lower-case Greek character is represented. Neither superscripts nor subscripts are available; they appear here in normal position and type-face. The index provides the Right Ascension and Declination of objects sorted by catalogue number.

  5. Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments

    NASA Astrophysics Data System (ADS)

    Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group

    2018-01-01

    We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.

  6. A Catalog of 1022 Bright Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Gettel, S. J.; Geske, M. T.; McKay, T. A.

    2006-01-01

    In this work we describe a large new sample of contact binary stars extracted in a uniform manner from sky patrol data taken by the ROTSE-I telescope. Extensive ROTSE-I light-curve data are combined with J-, H-, and K-band near-infrared data taken from the Two Micron All Sky Survey to add color information. Contact binary candidates are selected using the observed period-color relation. Candidates are confirmed by visual examination of the light curves. To enhance the utility of this catalog, we derive a new J-H period-color-luminosity relation and use this to estimate distances for the entire catalog. From these distance estimates we derive an estimated contact binary space density of (1.7+/-0.6)×10-5 pc-3.

  7. The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um)

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea J.; King, Trude V.V.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 498 spectra of 444 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 um . The spectral resolution (Full Width Half Maximum) of the reflectance data is <= 4 nm in the visible (0.2-0.8 um) and <= 10 nm in the NIR (0.8-2.35 um). All spectra were corrected to absolute reflectance using an NIST Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from borate, carbonate, chloride, element, halide, hydroxide, nitrate, oxide, phosphate, sulfate, sulfide, sulfosalt, and the silicate (cyclosilicate, inosilicate, nesosilicate, phyllosilicate, sorosilicate, and tectosilicate) classes are represented. X-Ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses. The library and software are available as a series of U.S.G.S. Open File reports. PC user software is available to convert the binary data to ascii files (a separate U.S.G.S. open file report). Additionally, a binary data files are on line at the U.S.G.S. in Denver for anonymous ftp to users on the Internet. The library search software enables a user to search on documentation parameters as well as spectral features. The

  8. Measuring tides and binary parameters from gravitational wave data and eclipsing timings of detached white dwarf binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Sweta; Nelemans, Gijs, E-mail: s.shah@astro.ru.nl

    The discovery of the most compact detached white dwarf (WD) binary SDSS J065133.33+284423.3 has been discussed in terms of probing the tidal effects in WDs. This system is also a verification source for the space-based gravitational wave (GW) detector, eLISA, or the evolved Laser Interferometer Space Antenna, which will observe short-period compact Galactic binaries with P {sub orb} ≲ 5 hr. We address the prospects of performing tidal studies using eLISA binaries by showing the fractional uncertainties in the orbital decay rate, f-dot , and the rate of that decay, f{sup ¨} expected from both the GW and electromagnetic (EM)more » data for some of the high-f binaries. We find that f-dot and f{sup ¨} can be measured using GW data only for the most massive WD binaries observed at high frequencies. From timing the eclipses for ∼10 yr, we find that f-dot can be known to ∼0.1% for J0651. We find that from GW data alone, measuring the effects of tides in binaries is (almost) impossible. We also investigate the improvement in the knowledge of the binary parameters by combining the GW amplitude and inclination with EM data with and without f-dot . In our previous work, we found that EM data on distance constrained the 2σ uncertainty in chirp mass to 15%-25% whereas adding f-dot reduces it to 0.11%. EM data on f-dot also constrain the 2σ uncertainty in distance to 35%-19%. EM data on primary mass constrain the secondary mass m {sub 2} to factors of two to ∼40% whereas adding f-dot reduces this to 25%. Finally, using single-line spectroscopic data constrains 2σ uncertainties in both the m {sub 2}, d to factors of two to ∼40%. Adding EM data on f-dot reduces these 2σ uncertainties to ≤25% and 6%-19%, respectively. Thus we find that EM measurements of f-dot and radial velocity are valuable in constraining eLISA binary parameters.« less

  9. Probing the interstellar dust towards the Galactic Centre: dust-scattering halo around AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall

    2017-07-01

    AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.

  10. The black hole binary V404 Cygni: a highly accreting obscured AGN analogue

    NASA Astrophysics Data System (ADS)

    Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Giustini, M.; Kuulkers, E.

    2017-06-01

    Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow on to the black hole and outflows from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent plateau and low-luminosity states, with a dynamical intensity range of several orders of magnitude on time-scales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these plateau states. The simultaneous Swift/XRT + INTRGRAL/JEM-X + INTEGRAL/IBIS-ISGRI spectrum is reminiscent of that of obscured/absorbed active galactic nuclei (AGN). It can be modelled as a Comptonization spectrum, heavily absorbed by a partial covering, high column density material (NH ≈ 1-3 × 1024 cm-2), and a dominant reprocessed component, including a narrow iron Kα line. Such spectral distribution can be produced by a geometrically thick accretion flow able to launch a clumpy outflow, likely responsible for both the high intrinsic absorption and the intense reprocessed emission observed. Similarly to what happens in certain obscured AGN, the low-flux states might not be (solely) related to a decrease in the intrinsic luminosity, but could instead be caused by an almost complete obscuration of the inner accretion flow.

  11. Adaptable Binary Programs

    DTIC Science & Technology

    1994-04-01

    a variation of Ziv - Lempel compression [ZL77]. We found that using a standard compression algorithm rather than semantic compression allowed simplified...mentation. In Proceedings of the Conference on Programming Language Design and Implementation, 1993. (ZL77] J. Ziv and A. Lempel . A universal algorithm ...required by adaptable binaries. Our ABS stores adaptable binary information using the conventional binary symbol table and compresses this data using

  12. Study of binary asteroids with three space missions

    NASA Astrophysics Data System (ADS)

    Kovalenko, Irina; Doressoundiram, Alain; Hestroffer, Daniel

    Binary and multiple asteroids are common in the Solar system and encountered in various places going from Near-Earth region, to the main-belt, Trojans and Centaurs, and beyond Neptune. Their study can provide insight on the Solar System formation and its subsequent dynamical evolution. Binaries are also objects of high interest because they provide fundamental physical parameters such as mass and density, and hence clues on the early Solar System, or other processes that are affecting asteroid over time. We will present our current project on analysis of such systems based on three space missions. The first one is the Herschel space observatory (ESA), the largest infrared telescope ever launched. Thirty Centaurs and trans-Neptunian binaries were observed by Herschel and the measurement allowed to define size, albedo and thermal properties [1]. The second one is the satellite Gaia (ESA). This mission is designed to chart a three-dimensional map of the Galaxy. Gaia will provide positional measurements of Solar System Objects - including asteroid binaries - with unprecedented accuracy [2]. And the third one is the proposed mission AIDA, which would study the effects of crashing a spacecraft into an asteroid [3]. The objectives are to demonstrate the ability to modify the trajectory of an asteroid, to precisely measure its trajectory change, and to characterize its physical properties. The target of this mission is a binary system: (65803) Didymos. This encompasses orbital characterisations for both astrometric and resolved binaries, as well as unbound orbit, study of astrometric binaries, derivation of densities, and general statistical analysis of physical and orbital properties of trans-Neptunian and other asteroid binaries. Acknowledgements : work supported by Labex ESEP (ANR N° 2011-LABX-030) [1] Müller T., Lellouch E., Stansberry J. et al. 2009. TNOs are Cool: A Survey of the Transneptunian Region. EM&P 105, 209-219. [2] Mignard F., Cellino A., Muinonen K. et

  13. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis

    NASA Astrophysics Data System (ADS)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian

    2018-01-01

    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  14. Human exposure to power frequency magnetic fields up to 7.6 mT: An integrated EEG/fMRI study.

    PubMed

    Modolo, Julien; Thomas, Alex W; Legros, Alexandre

    2017-09-01

    We assessed the effects of power-line frequency (60 Hz in North America) magnetic fields (MF) in humans using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Twenty-five participants were enrolled in a pseudo-double-blind experiment involving "real" or "sham" exposure to sinusoidal 60 Hz MF exposures delivered using the gradient coil of an MRI scanner following two conditions: (i) 10 s exposures at 3 mT (10 repetitions); (ii) 2 s exposures at 7.6 mT (100 repetitions). Occipital EEG spectral power was computed in the alpha range (8-12 Hz, reportedly the most sensitive to MF exposure in the literature) with/without exposure. Brain functional activation was studied using fMRI blood oxygen level-dependent (BOLD, inversely correlated with EEG alpha power) maps. No significant effects were detected on occipital EEG alpha power during or post-exposure for any exposure condition. Consistent with EEG results, no effects were observed on fMRI BOLD maps in any brain region. Our results suggest that acute exposure (2-10 s) to 60 Hz MF from 3 to 7.6 mT (30,000 to 76,000 times higher than average public exposure levels for 60 Hz MF) does not induce detectable changes in EEG or BOLD signals. Combined with previous findings in which effects were observed on the BOLD signal after 1 h exposure to 3 mT, 60 Hz MF, this suggests that MF exposure in the low mT range (<10 mT) might require prolonged durations of exposure to induce detectable effects. Bioelectromagnetics. 38:425-435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Effect of the physicochemical properties of binary ionic liquids on lipase activity and stability.

    PubMed

    Yao, Peipei; Yu, Xinxin; Huang, Xirong

    2015-01-01

    In the present study, the lipase-catalyzed hydrolysis of p-nitrophenyl butyrate is used as a model reaction to determine the activity and stability of Candida rugosa lipase in binary ionic liquids (ILs). The binary ILs consist of hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) and a small amount of hydrophilic 1-butyl-3-methylimidazolium nitrate ([Bmim]NO3) or 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim]CF3SO3) or 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4). The activity and the stability of lipase are first correlated with the physicochemical properties of the binary ILs. In the three binary IL systems, both the hydrophilicity and the polarity of the systems increase with the increase of the content of hydrophilic ILs (HILs). At a fixed concentration of HIL, they vary in a descending order of [Bmim]PF6/[Bmim]NO3>[Bmim]PF6/[Bmim]CF3SO3>[Bmim]PF6/[Bmim]BF4. This order is in contrast with the order of the lipase conformation stability, i.e., the higher the polarity of ILs, the more unstable the lipase conformation. However, both the activity and the stability of lipase depend on the type and the content of the HIL in binary ILs, showing a complex dependency. Analysis shows that the catalytic performance of lipase in the binary ILs is affected not only by the direct influence of the ILs on lipase conformation, but also through their indirect influence on the physicochemical properties of water. The present study helps to explore binary IL mixtures suitable for lipase-based biocatalysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. New prospects for observing and cataloguing exoplanets in well-detached binaries

    NASA Astrophysics Data System (ADS)

    Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á.

    2016-08-01

    This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well-detached binary-star systems using eclipse timing variations (ETVs). We investigated the dynamics of well-detached binary star systems with a star separation from 0.5 to 3 au, to determine the probability of the detection of such variations with ground-based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary-star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well-detached binary star systems from several catalogues and discussed the possibility of further candidates.

  17. Orbital Dynamics of Candidate Transitional Millisecond Pulsar 3FGL J1544.6-1125: An unusually face-on system

    NASA Astrophysics Data System (ADS)

    Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo

    2018-01-01

    We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.

  18. Structured Forms Reference Set of Binary Images II (SFRS2)

    National Institute of Standards and Technology Data Gateway

    NIST Structured Forms Reference Set of Binary Images II (SFRS2) (Web, free access)   The second NIST database of structured forms (Special Database 6) consists of 5,595 pages of binary, black-and-white images of synthesized documents containing hand-print. The documents in this database are 12 different tax forms with the IRS 1040 Package X for the year 1988.

  19. Binary Sources and Binary Lenses in Microlensing Surveys of MACHOs

    NASA Astrophysics Data System (ADS)

    Petrovic, N.; Di Stefano, R.; Perna, R.

    2003-12-01

    Microlensing is an intriguing phenomenon which may yield information about the nature of dark matter. Early observational searches identified hundreds of microlensing light curves. The data set consisted mainly of point-lens light curves and binary-lens events in which the light curves exhibit caustic crossings. Very few mildly perturbed light curves were observed, although this latter type should constitute the majority of binary lens light curves. Di Stefano (2001) has suggested that the failure to take binary effects into account may have influenced the estimates of optical depth derived from microlensing surveys. The work we report on here is the first step in a systematic analysis of binary lenses and binary sources and their impact on the results of statistical microlensing surveys. In order to asses the problem, we ran Monte-Carlo simulations of various microlensing events involving binary stars (both as the source and as the lens). For each event with peak magnification > 1.34, we sampled the characteristic light curve and recorded the chi squared value when fitting the curve with a point lens model; we used this to asses the perturbation rate. We also recorded the parameters of each system, the maximum magnification, the times at which each light curve started and ended and the number of caustic crossings. We found that both the binarity of sources and the binarity of lenses increased the lensing rate. While the binarity of sources had a negligible effect on the perturbation rates of the light curves, the binarity of lenses had a notable effect. The combination of binary sources and binary lenses produces an observable rate of interesting events exhibiting multiple "repeats" in which the magnification rises above and dips below 1.34 several times. Finally, the binarity of lenses impacted both the durations of the events and the maximum magnifications. This work was supported in part by the SAO intern program (NSF grant AST-9731923) and NASA contracts NAS8

  20. Dynamics of glycerine and water transport across human skin from binary mixtures.

    PubMed

    Ventura, S A; Kasting, G B

    2017-04-01

    Skin transport properties of glycerine and water from binary mixtures contacting human skin were determined to better understand the mechanism of skin moisturization by aqueous glycerine formulations. Steady-state permeation for 3 H 2 O and 14 C-glycerine across split-thickness human skin in vitro and desorption dynamics of the same permeants in isolated human stratum corneum (HSC) were experimentally determined under near equilibrium conditions. These data were compared to a priori values developed in the context of a thermodynamic model for binary mixtures of glycerine and water and a previously determined water sorption isotherm for HSC. This allowed the estimation of diffusion and partition coefficients for each permeant in the HSC, as well as HSC thickness, as a function of composition of the contacting solution. These data may be used to estimate water retention and associated HSC swelling related to the absorption and slow release of glycerine from the skin. It took 6+ days for glycerine to completely desorb from HSC immersed in glycerine/water binary solutions. Desorption of both 3 H 2 O and 14 C-glycerine from HSC was slower in pure water than from binary mixtures, a result that is largely explained by the greater swelling of HSC in water. Parametric relationships were developed for water and glycerine intradiffusivities in HSC as functions of HSC water content, and a mutual diffusion coefficient was estimated by analogy with glycerine/water binary solutions. The intradiffusivity of 14 C-glycerine in HSC as inferred from sorption/desorption experiments was shown to be approximately 10-fold less than that inferred from permeation experiments, whereas the corresponding values for 3 H 2 O were comparable. These studies confirm that glycerine enters HSC in substantial quantities and has a long residence time therein. The coupling between bulk water and glycerine transport projected from binary solution data suggests the net effect of glycerine is to slow water

  1. Low-Loss Coupling of Quantum Cascade Lasers into Hollow-Core Waveguides with Single-Mode Output in the 3.7-7.6 μm Spectral Range.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Mihai, Laura; Giglio, Marilena; Kriesel, Jason; Sporea, Dan; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2016-04-13

    We demonstrated low-loss and single-mode laser beam delivery through hollow-core waveguides (HCWs) operating in the 3.7-7.6 μm spectral range. The employed HCWs have a circular cross section with a bore diameter of 200 μm and metallic/dielectric internal coatings deposited inside a glass capillary tube. The internal coatings have been produced to enhance the spectral response of the HCWs in the range 3.5-12 µm. We demonstrated Gaussian-like outputs throughout the 4.5-7.6 µm spectral range. A quasi single-mode output beam with only small beam distortions was achieved when the wavelength was reduced to 3.7 μm. With a 15-cm-long HCW and optimized coupling conditions, we measured coupling efficiencies of >88% and transmission losses of <1 dB in the investigated infrared spectral range.

  2. Photometric studies for two contact binaries: V532 Monocerotis and GU Orionis

    NASA Astrophysics Data System (ADS)

    Yang, Yuangui; Dai, Haifeng; Yuan, Huiyu; Zhang, Xiliang; Zhang, Liyun

    2017-08-01

    We present photometry and spectroscopy data for V532 Mon and GU Ori, observed in 2011 and 2016. From the spectral observations, the spectral types are determined to be F5V for V532 Mon and G0V for GU Ori. With the 2015-version Wilson-Devinney program, the photometric solutions are simultaneously deduced from VR light curves (LCs). The intrinsic variability for V532 Mon is found by comparing LCs in 2004 and 2011, while the asymmetric LCs for GU Ori are modeled by a cool spot on the more massive component. The results imply that the two stars are A-type contact binaries. The mass ratios and fill-out factors are, respectively, q = 0.190(±0.006) and f = 43.7(±0.9)% for V532 Mon and q = 0.455(±0.020) and f = 26.9(±1.3)% for GU Ori. From the (O - C) curves, it is found that their orbital periods may be undergoing long-term variations. The rates of period change are dP/dt = -1.72(±0.05) × 10-7 d yr-1 for V532 Mon and dP/dt = +1.45(±0.01) × 10-7 d yr-1 for GU Ori. V532 Mon with a decreasing period will evolve into a deep-contact binary, while GU Ori with an increasing period may evolve into a broken-contact case.

  3. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Ohme, Frank; Müller, Doreen; Brügmann, Bernd

    2010-12-01

    We present gravitational waveforms for the last orbits and merger of black-hole-binary systems along two branches of the black-hole-binary parameter space: equal-mass binaries with equal nonprecessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein’s equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each black hole is χi=Si/Mi2∈[-0.85,0.85], and along the unequal-mass branch the mass ratio is q=M2/M1∈[1,4]. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged black hole, and compare the last 8-10 gravitational-wave cycles up to Mω=0.1 with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins χi>-0.75. When high-order amplitude corrections are included, the PN amplitude of the (ℓ=2,m=±2) modes is larger than the numerical relativity amplitude by between 2-4%.

  4. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    PubMed Central

    Joshi, Rubin N.; Binai, Nadine A.; Marabita, Francesco; Sui, Zhenhua; Altman, Amnon; Heck, Albert J. R.; Tegnér, Jesper; Schmidt, Angelika

    2017-01-01

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4+CD25− T cells (Tcons) independently of IP3 levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP3 receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer. PMID:28993769

  5. Hole spectral functions in lightly doped quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Kar, Satyaki; Manousakis, Efstratios

    2011-11-01

    We study the hole and magnon spectral functions as a function of hole doping in the two-dimensional t-J and t-t'-t''-J models working within the limits of spin-wave theory by linearizing the hole-spin-deviation interaction and by adapting the noncrossing approximation. We find that the staggered magnetization decreases rather rapidly with doping and it goes to zero at a few percent of hole concentration in both t-J and t-t'-t''-J models. Furthermore, our results show that the residue of the quasiparticle peak at G⃗=(±π/2,±π/2) decreases very rapidly with doping. We also find pockets centered at G⃗, (i) with an elliptical shape with large eccentricity along the antinodal direction in the case of the t-J model and (ii) with an almost circular shape in the case of the t-t'-t''-J model. Last, we show that the spectral intensity distribution in the doped antiferromagnet has a waterfall-like pattern along the nodal direction of the Brillouin zone, a feature that is also seen in angle-resolved photoemission spectroscopy measurements.

  6. Image Retrieval using Integrated Features of Binary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Agarwal, Megha; Maheshwari, R. P.

    2011-12-01

    In this paper a new approach for image retrieval is proposed with the application of binary wavelet transform. This new approach facilitates the feature calculation with the integration of histogram and correlogram features extracted from binary wavelet subbands. Experiments are performed to evaluate and compare the performance of proposed method with the published literature. It is verified that average precision and average recall of proposed method (69.19%, 41.78%) is significantly improved compared to optimal quantized wavelet correlogram (OQWC) [6] (64.3%, 38.00%) and Gabor wavelet correlogram (GWC) [10] (64.1%, 40.6%). All the experiments are performed on Corel 1000 natural image database [20].

  7. Spectroscopic and Chemometric Analysis of Binary and Ternary Edible Oil Mixtures: Qualitative and Quantitative Study.

    PubMed

    Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica

    2016-04-19

    The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.

  8. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Shao, Y.

    2017-07-01

    use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.

  9. Fusion of LBP and SWLD using spatio-spectral information for hyperspectral face recognition

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Jiang, Peng; Zhang, Shuai; Xiong, Jinquan

    2018-01-01

    Hyperspectral imaging, recording intrinsic spectral information of the skin cross different spectral bands, become an important issue for robust face recognition. However, the main challenges for hyperspectral face recognition are high data dimensionality, low signal to noise ratio and inter band misalignment. In this paper, hyperspectral face recognition based on LBP (Local binary pattern) and SWLD (Simplified Weber local descriptor) is proposed to extract discriminative local features from spatio-spectral fusion information. Firstly, the spatio-spectral fusion strategy based on statistical information is used to attain discriminative features of hyperspectral face images. Secondly, LBP is applied to extract the orientation of the fusion face edges. Thirdly, SWLD is proposed to encode the intensity information in hyperspectral images. Finally, we adopt a symmetric Kullback-Leibler distance to compute the encoded face images. The hyperspectral face recognition is tested on Hong Kong Polytechnic University Hyperspectral Face database (PolyUHSFD). Experimental results show that the proposed method has higher recognition rate (92.8%) than the state of the art hyperspectral face recognition algorithms.

  10. EXPLORING A 'FLOW' OF HIGHLY ECCENTRIC BINARIES WITH KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Subo; Katz, Boaz; Socrates, Aristotle

    2013-01-20

    With 16-month of Kepler data, 15 long-period (40-265 days) eclipsing binaries on highly eccentric orbits (minimum e between 0.5 and 0.85) are identified from their closely separated primary and secondary eclipses ({Delta}t{sub I,II} = 3-10 days). These systems confirm the existence of a previously hinted binary population situated near a constant angular momentum track at P(1 - e {sup 2}){sup 3/2} {approx} 15 days, close to the tidal circularization period P{sub circ}. They may be presently migrating due to tidal dissipation and form a steady-state 'flow' ({approx}1% of stars) feeding the close-binary population (few % of stars). If so, futuremore » Kepler data releases will reveal a growing number (dozens) of systems at longer periods, following dN/dlgP {proportional_to} P {sup 1/3} with increasing eccentricities reaching e {yields} 0.98 for P {yields} 1000 days. Radial-velocity follow-up of long-period eclipsing binaries with no secondary eclipses could offer a significantly larger sample. Orders of magnitude more (hundreds) may reveal their presence from periodic 'eccentricity pulses', such as tidal ellipsoidal variations near pericenter passages. Several new few-day-long eccentricity-pulse candidates with long periods (P = 25-80 days) are reported.« less

  11. 6-mercaptopurine promotes energetic failure in proliferating T cells

    PubMed Central

    Fernández-Ramos, Ana A.; Marchetti-Laurent, Catherine; Poindessous, Virginie; Antonio, Samantha; Laurent-Puig, Pierre; Bortoli, Sylvie; Loriot, Marie-Anne; Pallet, Nicolas

    2017-01-01

    The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects. PMID:28574837

  12. 6-mercaptopurine promotes energetic failure in proliferating T cells.

    PubMed

    Fernández-Ramos, Ana A; Marchetti-Laurent, Catherine; Poindessous, Virginie; Antonio, Samantha; Laurent-Puig, Pierre; Bortoli, Sylvie; Loriot, Marie-Anne; Pallet, Nicolas

    2017-06-27

    The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.

  13. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6)

    PubMed Central

    Dormady, Shane P.; Zhang, Xin-Min; Basch, Ross S.

    2000-01-01

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively γ-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be γ-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  14. Final binary star results from the ESO VLT Lunar occultations program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richichi, A.; Fors, O.; Cusano, F.

    2014-03-01

    We report on 13 subarcsecond binaries, detected by means of lunar occultations in the near-infrared at the ESO Very Large Telescope (VLT). They are all first-time detections except for the visual binary HD 158122, which we resolved for the first time in the near-infrared. The primaries have magnitudes in the range K = 4.5-10.0, and companions in the range K = 6.8-11.1. The magnitude differences have a median value of 2.4, with the largest being 4.6. The projected separations are in the range of 4-168 mas, with a median of 13 mas. We discuss and compare our results with themore » available literature. With this paper, we conclude the mining for binary star detections in the 1226 occultations recorded at the VLT with the ISAAC instrument. We expect that the majority of these binaries may be unresolvable by adaptive optics on current telescopes, and they might be challenging for long-baseline interferometry. However, they constitute an interesting sample for future larger telescopes and for astrometric missions such as GAIA.« less

  15. MIX and match: mobile T6SS MIX-effectors enhance bacterial fitness

    PubMed Central

    Salomon, Dor

    2016-01-01

    ABSTRACT Protein secretion systems that mediate interbacterial competition secret a wide repertoire of antibacterial toxins. A major player in these competitions is the newly discovered bacterial type VI secretion system (T6SS). We recently found that a subset of polymorphic MIX-effectors, which are a widespread class of effectors secreted by T6SSs, are horizontally shared between marine bacteria and are used to diversify their T6SS effector repertoires, thus enhancing their environmental fitness. In this commentary, I expand on the ideas that were introduced in the previous report, and further speculate on the possible mobility of other MIX-effectors. In addition, I discuss the possible role of horizontal gene transfer in the dissemination of MIX-effectors through bacterial genomes, as well as its possible role in diversifying the T6SS effector repertoire. PMID:27066305

  16. The Very Short Period M Dwarf Binary SDSS J001641-000925

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.; Becker, Andrew C.; West, Andrew A.; Bochanski, John J.; Hawley, Suzanne L.; Holtzman, Jon; Gunning, Heather C.; Hilton, Eric J.; Munshi, Ferah A.; Albright, Meagan

    2013-02-01

    We present follow-up observations and analysis of the recently discovered short period low-mass eclipsing binary, SDSS J001641-000925. With an orbital period of 0.19856 days, this system has one of the shortest known periods for an M dwarf binary system. Medium-resolution spectroscopy and multi-band photometry for the system are presented. Markov Chain Monte Carlo modeling of the light curves and radial velocities yields estimated masses for the stars of M 1 = 0.54 ± 0.07 M ⊙ and M 2 = 0.34 ± 0.04 M ⊙, and radii of R 1 = 0.68 ± 0.03 R ⊙ and R 2 = 0.58 ± 0.03 R ⊙, respectively. This solution places both components above the critical Roche overfill limit, providing strong evidence that SDSS J001641-000925 is the first verified M-dwarf contact binary system. Within the follow-up spectroscopy we find signatures of non-solid body rotation velocities, which we interpret as evidence for mass transfer or loss within the system. In addition, our photometry samples the system over nine years, and we find strong evidence for period decay at the rate of \\dot{P}\\sim 8 s yr-1. Both of these signatures raise the intriguing possibility that the system is in over-contact, and actively losing angular momentum, likely through mass loss. This places SDSS J001641-000925 as not just the first M-dwarf over-contact binary, but one of the few systems of any spectral type known to be actively undergoing coalescence. Further study of SDSS J001641-000925 is ongoing to verify the nature of the system, which may prove to be a unique astrophysical laboratory. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Support for the design and construction of the Magellan Echellette Spectrograph was received from the Observatories of the Carnegie Institution of Washington, the

  17. NUSTAR AND XMM-Newton Observations of the Neutron Star X-Ray Binary 1RXS J180408.9-34205

    NASA Astrophysics Data System (ADS)

    Ludlam, Renee; Miller, Jon M.; Cackett, Edward; Fabian, Andrew C.; Bachetti, Matteo; Parker, Michael; Tomsick, John; Barret, Didier; Natalucci, Lorenzo; Rana, Vikram; Harrison, Fiona

    2016-04-01

    We report on observations of the neutron star (NS) residing in the low-mass X-ray binary 1RXS J180408.9-34205 taken 2015 March by NuSTAR and XMM-Newton while the source was in the hard spectral state. We findmultiple reflection features (Fe Kα detected with NuSTAR N VII, O VII, and O VIII detected in the RGS) fromdifferent ionization zones. Through joint fits using the self consistent relativistic reflection model RELXILL,we determine the inner radius to be 6.6(+13.2,-0.6) Rg. We find the inclination of the system to be between 18-29 degrees.If the disk is truncated at a radius greater than the innermost stable circular orbit (ISCO), then the position at which the inner disk terminates likely corresponds to the magnetospheric radius. For a spin parameter of a = 0, we estimate a conservative upper limit on the strength of the magnetic field to be B ≤ (0.9 - 3.0) × 109 G at the magnetic poles depending on the choice of conversion factor between spherical and disk accretion.

  18. Orbital period changes of OB-type contact binaries and their implications for the triplicity, formation and evolution of this type of binary stars

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Kreiner, J. M.; Liu, L.; He, J.-J.; Zhu, L.-Y.; Yuan, J.-Z.; Dai, Z.-B.

    2007-08-01

    Orbital period variations of NINE well-observed OB-type contact binary stars, LY Aur, BH Cen, V382 CYg, V729 Cyg, AW Lac, TU Mus, RZ Pyx, V701 Sco and CT Tau, are investigated in detail. Of the nine systems, V701 Sco and CT Tau are two contact binaries containing twin components with a mass ratio of unit, LY Aur and V729 Cyg have the longest period among contact binary stars (P=4.0 and 6.6 days, respectively), and BH Cen and V701 Sco are the members of two extremely young galactic cluster IC 2994 and NGC 6383. It is discovered that, apart from the two systems with twin components (V701 Sco and CT Tau), the orbital periods of the rest SEVEN binary stars show a long-term increase. This is different from the situations of the late-type (W UMa-type) contact binaries where both secular period increase and decrease are usually encountered, indicating that magnetic field may play an important role in causing the long-term period decrease of W UMa-type contact binary stars. The fact that no long-term continuous period variations were found for V701 Sco and CT Tau may suggest that contact binary with twin components can be in an equilibrium. Based on the rates of period changes (dP/dt) of the SEVEN sample binary stars, statistical relations between dP/dt and orbital period (P) and the mean density of the secondary component were found. Our results suggest that the period increases of the short-period systems (P<2 days) may be mainly caused by a mass transfer from the less massive component to the more massive one, while for the long-period ones (P>2 days), LY Aur and V729 Cyg, their period increases may be resulted from a combination of stellar wind and mass transfer from the secondary to the primary. Meanwhile, cyclic period changes are found for all of the nine binary systems. Those periodic variations can be plausibly explained as the results of light-travel time effects suggesting that they are triple systems. The astrophysical parameters of the tertiary components in

  19. Isobaric vapor-liquid equilibria for binary systems α-phenylethylamine + toluene and α-phenylethylamine + cyclohexane at 100 kPa

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoru; Gao, Yingyu; Ban, Chunlan; Huang, Qiang

    2016-09-01

    In this paper the results of the vapor-liquid equilibria study at 100 kPa are presented for two binary systems: α-phenylethylamine(1) + toluene (2) and (α-phenylethylamine(1) + cyclohexane(2)). The binary VLE data of the two systems were correlated by the Wilson, NRTL, and UNIQUAC models. For each binary system the deviations between the results of the correlations and the experimental data have been calculated. For the both binary systems the average relative deviations in temperature for the three models were lower than 0.99%. The average absolute deviations in vapour phase composition (mole fractions) and in temperature T were lower than 0.0271 and 1.93 K, respectively. Thermodynamic consistency has been tested for all vapor-liquid equilibrium data by the Herrington method. The values calculated by Wilson and NRTL equations satisfied the thermodynamics consistency test for the both two systems, while the values calculated by UNIQUAC equation didn't.

  20. The 4U 0115+63: Another energetic gamma ray binary pulsar

    NASA Technical Reports Server (NTRS)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  1. Searching for Intermediate Mass Black Holes in Ultraluminous X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fritze, Hannah; Wright, Simon; Kilgard, Roy

    2018-01-01

    X-ray observations of nearby galaxies provide one of the best laboratories in the universe for studying two exotic classes of object: black holes and neutron stars. These observations allow us to study the dramatic effect such objects have on their surroundings, as well as the high-energy physics involved in their emission. We conduct a volume-limited archival survey of X-ray sources in all galaxies observed with the Chandra X-ray observatory within 15 Mpc, and identify a set of ultraluminous X-ray sources for detailed spectral analysis. We perform this analysis with the aim of searching for signatures of spectral state transitions and super-Eddington accretion that could indicate the presence of an Intermediate Mass Black Hole (IMBH) binary system. Here, we identify 43 potential IMBH sources that have signatures of super-Eddington accretion. We plan to follow up this initial selection with a multiwavelength analysis of these sources, in order to place further constraints on their nature and surrounding environment.

  2. Trojan Binary Candidate: A Slow-Rotating Mission Target

    NASA Astrophysics Data System (ADS)

    Noll, Keith

    2015-10-01

    A mission to the unexplored Jupiter Trojans is explicitly called for in the Planetary Decadal and HST observations in early 2016 can influence mission plans for both Discovery and New Frontiers. We propose to observe a Trojan that will be targeted by the step-1 Discovery mission, Lucy. (11351) 1997 TS25 is a Trojan that is notable for having one of the longest known rotation periods of any small body, T=514 h. A possible cause for this long period would be the existence of a tidally locked binary similar to the already-known long-period binary Trojan, (617) Patroclus. If so, the components will be separated by 0.18 arcsec at lightcurve maximum, resolvable by WFC3. We will coordinate with groundbased observations to schedule near a maximum and thus require only a single orbit to confidently test whether (11351) 1997 TS25 is binary. Binary Trojans offer scientific benefits beyond the impact to any specific mission. Orbit-derived mass and density can be used to constrain planetary migration models. Low density is characteristic of bodies found in the dynamically cold Kuiper Belt, a remnant of the solar system's protoplanetary disk. Only one undisputed density has been measured in the Trojans, that of the binary (617) Patroclus, which has a low density of 0.8 g/cm3, similar to the low densities found in the Kuiper Belt. Evidence for or against a possible common origin linking Trojans and KBOs is a key constraint for planetesimal formation and planetary migration models relevant to the solar system and to planetary systems in general.

  3. Hemolysis and Mediterranean G6PD mutation (c.563 C>T) and c.1311 C>T polymorphism among Palestinians at Gaza Strip.

    PubMed

    Sirdah, Mahmoud; Reading, N Scott; Perkins, Sherrie L; Shubair, Mohammad; Aboud, Lina; Prchal, Josef T

    2012-04-15

    The G6PD c.563 C>T deficient mutation is endemic among Mediterranean populations but its clinical significance is not well delineated. We set up to estimate the proportion of G6PD deficient children presenting with hemolytic anemia at Al Nasser Pediatric Hospital at Gaza Strip, Palestine. We then established the prevalence of c.563T Mediterranean mutation and its linkage to c.1311 C>T polymorphism in this population. G6PD deficiency was identified in children presenting with hemolytic anemia at Al Nasser Pediatric Hospital by spectrophotometric measurement of G6PD activity. G6PD exon 6 and exon 11 were amplified from genomic DNA and evaluated for c.563T mutation by sequencing and the c.1311T polymorphism by restriction fragment analysis. Seventy X-chromosomes (60 males and 5 females) from G6PD deficient patients and 40 X-chromosomes from a control group known to be not G6PD deficient were tested. Over 80% of these children presenting with hemolytic anemia were G6PD deficient and 34% of these had the Mediterranean G6PD deficient variant. The allelic frequencies of Mediterranean c.563T and c.1311T polymorphisms among G6PD deficient patients were 0.33 and 0.38 respectively. The c.1311T polymorphism was linked in 95.2% of patients with the Mediterranean mutation, an allele frequency of 0.87, compared to the control non-G6PD deficient group with an allele frequency of 0.18. We conclude that G6PD deficiency accounts for majority of hemolytic anemia encountered in Gaza children treated at Al Nasser Pediatric Hospital Emergency department. The Mediterranean mutation c.563T, while not accounting for a majority of G6PD deficiency, is common among G6PD deficient Gaza Strip Palestinians and is frequently, but not always, linked to the c.1311T polymorphism. This work provides a foundation for the population screening of Palestinians for G6PD deficiency and for investigations of ancestral origin of the Mediterranean variant in world populations. Copyright © 2012 Elsevier Inc

  4. Advanced Colloids Experiment (Temperature Controlled) - ACE-T6

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Bailey, Kelly; Eustace, John; Abbott-Hearn, Amber; Lynch, Matthew

    2016-01-01

    Increment 51 - 52 Science Symposium presentation of Advanced Colloids Experiment (ACE-T6) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  5. Advanced Colloids Experiment (Temperature Controlled) - ACE-T6

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Bailey, Kelly; Eustace, John; Lynch, Matthew

    2017-01-01

    Increment 53 - 54 Science Symposium presentation of Advanced Colloids Experiment (ACE-T6) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  6. Spectral Estimation: An Overdetermined Rational Model Equation Approach.

    DTIC Science & Technology

    1982-09-15

    A-A123 122 SPECTRAL ESTIMATION: AN OVERDETERMINEO RATIONAL MODEL 1/2 EQUATION APPROACH..(U) ARIZONA STATE UNIV TEMPE DEPT OF ELECTRICAL AND COMPUTER...2 0 447,_______ 4. TITLE (mAd Sabile) S. TYPE or REPORT a PEP40D COVERED Spectral Estimation; An Overdeteruined Rational Final Report 9/3 D/8 to...andmmd&t, by uwek 7a5 4 Rational Spectral Estimation, ARMA mo~Ie1, AR model, NMA Mdle, Spectrum, Singular Value Decomposition. Adaptivb Implementatlan

  7. Asteroseismology of KIC 7107778: a binary comprising almost identical subgiants

    NASA Astrophysics Data System (ADS)

    Li, Yaguang; Bedding, Timothy R.; Li, Tanda; Bi, Shaolan; Murphy, Simon J.; Corsaro, Enrico; Chen, Li; Tian, Zhijia

    2018-05-01

    We analyse an asteroseismic binary system: KIC 7107778, a non-eclipsing, unresolved target, with solar-like oscillations in both components. We used Kepler short cadence time series spanning nearly 2 yr to obtain the power spectrum. Oscillation mode parameters were determined using Bayesian inference and a nested sampling Monte Carlo algorithm with the DIAMONDS package. The power profiles of the two components fully overlap, indicating their close similarity. We modelled the two stars with MESA and calculated oscillation frequencies with GYRE. Stellar fundamental parameters (mass, radius, and age) were estimated by grid modelling with atmospheric parameters and the oscillation frequencies of l = 0, 2 modes as constraints. Most l = 1 mixed modes were identified with models searched using a bisection method. Stellar parameters for the two sub-giant stars are MA = 1.42 ± 0.06 M⊙, MB = 1.39 ± 0.03 M⊙, RA = 2.93 ± 0.05 R⊙, RB = 2.76 ± 0.04 R⊙, tA = 3.32 ± 0.54 Gyr and tB = 3.51 ± 0.33 Gyr. The mass difference of the system is ˜1 per cent. The results confirm their simultaneous birth and evolution, as is expected from binary formation. KIC 7107778 comprises almost identical twins, and is the first asteroseismic sub-giant binary to be detected.

  8. NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Bianchi, S.; Muñoz-Darias, T.; Mori, K.; De, K.; Rau, A.; De Marco, B.; Hailey, C.; Tomsick, J.; Madsen, K. K.; Clavel, M.; Rahoui, F.; Lal, D. V.; Roy, S.; Stern, D.

    2018-01-01

    AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) low-mass X-ray binary showcasing intense ionized Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data sets (obtained between 2013 and 2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state, the emission can be described by a disc blackbody (kT ∼ 1.1-1.2 keV and inner disc radius rDBB ∼ 14 km), plus hot (kT ∼ 2.2-3.0 keV) blackbody radiation with a small emitting radius (rBB ∼ 0.5 - 0.8 km) likely associated with the boundary layer or NS surface, plus a faint Comptonization component. Imprinted on the spectra are clear absorption features created by both neutral and ionized matter. Additionally, positive residuals suggestive of an emission Fe K α disc line and consistent with relativistic ionized reflection are present during the soft state, while such residuals are not significant during the hard state. The hard-state spectra are characterized by a hard (Γ ∼ 1.9-2.1) power law, showing no evidence for a high energy cut-off (kTe > 60-140 keV) and implying a small optical depth (τ < 1.6). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad-band spectral energy distribution as typically observed in accreting NSs.

  9. Two W-subtype contact binaries: GQ Boo and V1367 Tau

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Qian, Sheng-Bang; Han, Zhong-Tao; Wu, Yue

    2017-04-01

    Two contact binaries, GQ Boo and V1367 Tau, were observed and analysed with a new method to obtain the absolute parameters. The light-curve analysis shows that both of them are obvious W-subtype contact binaries, with much more massive but apparently cooler components (M2/M1 ≃ 2 and 4, T2/T1 ≃ 0.95 and 0.94). The orbital periods were studied using the O-C diagrams, and it is thought that the minima timings were heavily affected by the longstanding magnetic activities on the star surface, so the minima timings cannot represent the real period changes. The mass-radius relationships were proposed by the light-curve analysis alone, which is equivalent to the mean density. The density and temperature can determine the other absolute parameters in most of the time. With the almost complete star parameter space provided by PARSEC, approximate masses and radii were obtained (0.52 ± 0.08 M⊙ and 1.01 ± 0.15 M⊙ for GQ Boo, and 0.22 ± 0.01 M⊙ and 0.92 ± 0.06 M⊙ for V1367 Tau). The mass-radius relationship is a neglected useful tool to calculate the mass and radius, especially for the detached binaries.

  10. THE MULTI-WAVELENGTH CHARACTERISTICS OF THE TeV BINARY LS I+61°303

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, L.; Chitnis, V. R.; Shukla, A.

    2016-06-01

    We study the characteristics of the TeV binary LS I+61°303 in radio, soft X-ray, hard X-ray, and gamma-ray (GeV and TeV) energies. The long-term variability characteristics are examined as a function of the phase of the binary period of 26.496 days as well as the phase of the superorbital period of 1626 days, dividing the observations into a matrix of 10 × 10 phases of these two periods. We find that the long-term variability can be described by a sine function of the superorbital period, with the phase and amplitude systematically varying with the binary period phase. We also findmore » a definite wavelength-dependent change in this variability description. To understand the radiation mechanism, we define three states in the orbital/superorbital phase matrix and examine the wideband spectral energy distribution. The derived source parameters indicate that the emission geometry is dominated by a jet structure showing a systematic variation with the orbital/superorbital period. We suggest that LS I+61°303 is likely a microquasar with a steady jet.« less

  11. IGR J17329-2731: The birth of a symbiotic X-ray binary

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.

    2018-05-01

    We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.

  12. Formation of Thorne-Żytkow objects in close binaries

    NASA Astrophysics Data System (ADS)

    Hutilukejiang, Bumareyamu; Zhu, Chunhua; Wang, Zhaojun; Lü, Guoliang

    2018-04-01

    Thorne-Żytkow objects (TŻOs), originally proposed by Thorne and Żytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of TŻOs in close binary stars. The Galactic birth rate of TŻOs is about 1.5× 10^{-4} yr^{-1}. Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of TŻOs via the above different progenitors are 1.7× 10^{-5}, 1.2× 10^{-4}, 0.7× 10^{-5}, 0.6× 10^{-5} yr^{-1}, respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.

  13. Viscosity minima in binary mixtures of ionic liquids + molecular solvents.

    PubMed

    Tariq, M; Shimizu, K; Esperança, J M S S; Canongia Lopes, J N; Rebelo, L P N

    2015-05-28

    The viscosity (η) of four binary mixtures (ionic liquids plus molecular solvents, ILs+MSs) was measured in the 283.15 < T/K < 363.15 temperature range. Different IL/MS combinations were selected in such a way that the corresponding η(T) functions exhibit crossover temperatures at which both pure components present identical viscosity values. Consequently, most of the obtained mixture isotherms, η(x), exhibit clear viscosity minima in the studied T-x range. The results are interpreted using auxiliary molecular dynamics (MD) simulation data in order to correlate the observed η(T,x) trends with the interactions in each mixture, including the balance between electrostatic forces and hydrogen bonding.

  14. Spectroscopic study of the strontium AM binaries HD 434 and 41 Sex A

    NASA Astrophysics Data System (ADS)

    Sreedhar Rao, S.; Abhyankar, K. D.

    1992-10-01

    Improved spectroscopic orbital elements of the single-line Am binary HD 434 are presented, and cover large gaps in the radial velocity curve obtained earlier by Hube and Gulliver (1985). The MK morphology of the spectrum of HD 434 is examined, and the classification of its metallic line types in the violet and blue regions, along with its revised K- and H-line spectral types, are given for the first time. The strontium anomaly in its spectrum is discussed. 41 Sex A is found to be a prototype of an Am star exhibiting transitional characteristics, forming an evolutionary link between Ap and Am groups of CP stars. Its spectroscopic orbital elements are confirmed using our own velocities. The MK morphology of its spectrum and its spectral line behavior, especially that of the Sr II 4077 line, are briefly discussed.

  15. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.

    PubMed

    Chourashi, Rhishita; Das, Suman; Dhar, Debarpan; Okamoto, Keinosuke; Mukhopadhyay, Asish K; Chatterjee, Nabendu Sekhar

    2018-05-01

    Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

  16. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  17. FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline

    We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol})more » and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.« less

  18. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannam, Mark; School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA; Husa, Sascha

    We present gravitational waveforms for the last orbits and merger of black-hole-binary systems along two branches of the black-hole-binary parameter space: equal-mass binaries with equal nonprecessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each black hole is {chi}{sub i}=S{sub i}/M{sub i}{sup 2}(set-membership sign)[-0.85,0.85], and along the unequal-mass branch the mass ratio is q=M{sub 2}/M{sub 1}(set-membership sign)[1,4]. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties ofmore » the final merged black hole, and compare the last 8-10 gravitational-wave cycles up to M{omega}=0.1 with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN TaylorT1 approximant (including spin terms up to only 2.5PN order) gives the most robust performance, but it is possible to treat TaylorT4 in such a way that it gives the best accuracy for spins {chi}{sub i}>-0.75. When high-order amplitude corrections are included, the PN amplitude of the (l=2, m={+-}2) modes is larger than the numerical relativity amplitude by between 2-4%.« less

  19. Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Luciano; Escala, Andrés, E-mail: ldelvalleb@gmail.com

    We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation thatmore » is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.« less

  20. Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Bahramian, A.; Bozzo, E.; Heinke, C.; Altamirano, D.; Wijnands, R.; Degenaar, N.; Maccarone, T.; Riggio, A.; Di Salvo, T.; Iaria, R.; Burgay, M.; Possenti, A.; Ferrigno, C.; Papitto, A.; Sivakoff, G. R.; D'Amico, N.; Burderi, L.

    2018-02-01

    We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation that implies an orbital period of 46 min and a projected semi-major axis of 5 lt-ms, which makes IGR J16597-3704 an ultracompact X-ray binary system. We estimated a minimum companion mass of 6.5 × 10-10 M⊙, assuming a neutron star mass of 1.4 M⊙, and an inclination angle of <75° (suggested by the absence of eclipses or dips in its light curve). The broad-band energy spectrum of the source is well described by a disk blackbody component (kT 1.4 keV) plus a comptonised power-law with photon index 2.3 and an electron temperature of 30 keV. Radio pulsations from the source were unsuccessfully searched for with the Parkes Observatory.

  1. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  2. Building a laboratory foundation for interpreting spectral emission from x-ray binary and black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume

    2016-10-01

    Emission from accretion powered objects accounts for a large fraction of all photons in the universe and is a powerful diagnostic for their behavior and structure. Quantitative interpretation of spectrum emission from these objects requires a spectral synthesis model for photoionized plasma, since the ionizing luminosity is so large that photon driven atomic processes dominate over collisions. This is a quandary because laboratory experiments capable of testing the spectral emission models are non-existent. The models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. We have used a decade of research at the Z facility to achieve the first simultaneous measurements of emission and absorption from photoionized plasmas. The extraordinary spectra are reproducible to within +/-2% and the E/dE 500 spectral resolution has enabled unprecedented tests of atomic structure calculations. The absorption spectra enable determination of plasma density, temperature, and charge state distribution. The emission spectra then enable tests of spectral emission models. The emission has been measured from plasmas with varying size to elucidate the radiation transport effects. This combination of measurements will provide strong constraints on models used in astrophysics. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  3. Discovery of wide low and very low-mass binary systems using Virtual Observatory tools

    NASA Astrophysics Data System (ADS)

    Gálvez-Ortiz, M. C.; Solano, E.; Lodieu, N.; Aberasturi, M.

    2017-04-01

    The frequency of multiple systems and their properties are key constraints of stellar formation and evolution. Formation mechanisms of very low-mass (VLM) objects are still under considerable debate, and an accurate assessment of their multiplicity and orbital properties is essential for constraining current theoretical models. Taking advantage of the virtual observatory capabilities, we looked for comoving low and VLM binary (or multiple) systems using the Large Area Survey of the UKIDSS LAS DR10, SDSS DR9 and the 2MASS Catalogues. Other catalogues (WISE, GLIMPSE, SuperCosmos, etc.) were used to derive the physical parameters of the systems. We report the identification of 36 low and VLM (˜M0-L0 spectral types) candidates to binary/multiple system (separations between 200 and 92 000 au), whose physical association is confirmed through common proper motion, distance and low probability of chance alignment. This new system list notably increases the previous sampling in their mass-separation parameter space (˜100). We have also found 50 low-mass objects that we can classify as ˜L0-T2 according to their photometric information. Only one of these objects presents a common proper motion high-mass companion. Although we could not constrain the age of the majority of the candidates, probably most of them are still bound except four that may be under disruption processes. We suggest that our sample could be divided in two populations: one tightly bound wide VLM systems that are expected to last more than 10 Gyr, and other formed by weak bound wide VLM systems that will dissipate within a few Gyr.

  4. The X-ray Spectral Evolution of eta Carinae as Seen by ASCA

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Fredericks, A. C.; Petre, R.; Swank, J. H.; Drake, S. A.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Using data from the ASCA X-ray observatory, we examine the variations in the X-ray spectrum of the supermassive star nu Carinae with an unprecedented combination of spatial and spectral resolution. We include data taken during the recent X-ray eclipse in 1997-1998, after recovery from the eclipse, and during and after an X-ray flare. We show that the eclipse variation in the X-ray spectrum is apparently confined to a decrease in the emission measure of the source. We compare our results with a simple colliding wind binary model and find that the observed spectral variations are only consistent, with the binary model if there is significant high-temperature emission far from the star and/or a substantial change in the temperature distribution of the hot plasma. If contamination in the 2-10 keV band is important, the observed eclipse spectrum requires an absorbing column in excess of 10(exp 24)/sq cm for consistency with the binary model, which may indicate an increase in the first derivative of M from nu Carinae near the time of periastron passage. The flare spectra are consistent with the variability seen in nearly simultaneous RXTE observations and thus confirm that nu Carinae itself is the source of the flare emission. The variation in the spectrum during the flare seems confined to a change in the source emission measure. By comparing 2 observations obtained at the same phase in different X-ray cycles, we find that the current, X-ray brightness of the source is slightly higher than the brightness of the source during the last cycle perhaps indicative of a long-term increase in the first derivative of M, not associated with the X-ray cycle.

  5. Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations

    NASA Astrophysics Data System (ADS)

    Galley, Chad R.; Rothstein, Ira Z.

    2017-05-01

    We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.

  6. Properties of the Binary Black Hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Carbon Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vañó-Viñuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügamin, B.; Campanelli, M.; Clark, M.; Hamberger, D.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 3 6-4+5M⊙ and 2 9-4+4M⊙ ; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 41 0-180+160 Mpc , corresponding to a redshift 0.0 9-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2 , primarily in the southern hemisphere. The binary merges into a black hole of mass 6 2-4+4M⊙ and spin 0.6 7-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  7. Commission 42: Close Binary Stars

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Ribas, Ignasi; Giménez, Alvaro; Harmanec, Petr; Hilditch, Ronald W.; Kaluzny, Janusz; Niarchos, Panayiotis; Nordström, Birgitta; Oláh, Katalin; Richards, Mercedes T.; Scarfe, Colin D.; Sion, Edward M.; Torres, Guillermo; Vrielmann, Sonja

    Two meetings of interest to close binaries took place during the reporting period: A full day session on short-period binary stars mostly CV's (Milone et al. 2008) during the 2006 AAS Spring meeting in Calgary and the very broadly designed IAU Symposium No. 240 on Binary Stars as Critical Tools and Tests in Contemporary Astrophysics in Prague, 2006, with many papers on close binaries [Hartkopf et al. 2007]. In addition, the book by Eggleton (2006), which is a comprehensive summary of evolutionary processes in binary and multiple stars, was published.

  8. The fate of close encounters between binary stars and binary supermassive black holes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  9. Coarsening of AA6013-T6 Precipitates During Sheet Warm Forming Applications

    NASA Astrophysics Data System (ADS)

    Di Ciano, M.; DiCecco, S.; Esmaeili, S.; Wells, M. A.; Worswick, M. J.

    2018-03-01

    The use of warm forming for AA6xxx-T6 sheet is of interest to improve its formability; however, the effect warm forming may have on the coarsening of precipitates and the mechanical strength of these sheets has not been well studied. In this research, the coarsening behavior of AA6013-T6 precipitates has been explored, in the temperature range of 200-300 °C, and time of 30 s up to 50 h. Additionally, the effect of warm deformation on coarsening behavior was explored using: (1) simulated warm forming tests in a Gleeble thermo-mechanical simulator and (2) bi-axial warm deformation tests. Using a strong obstacle model to describe the yield strength (YS) evolution of the AA6013-T6 material, and a Lifshitz, Slyozov, and Wagner (LSW) particle coarsening law to describe the change in precipitate size with time, the coarsening kinetics were modeled for this alloy. The coarsening kinetics in the range of 220-300 °C followed a trend similar to that previously found for AA6111 for the 180-220 °C range. There was strong evidence that coarsening kinetics were not altered due to warm deformation above 220 °C. For warm forming between 200 and 220 °C, the YS of the AA6013-T6 material increased slightly, which could be attributed to strain hardening during warm deformation. Finally, a non-isothermal coarsening model was used to assess the potential reduction in the YS of AA6013-T6 for practical processing conditions related to auto-body manufacturing. The model calculations showed that 90% of the original AA6013-T6 YS could be maintained, for warm forming temperatures up to 280 °C, if the heating schedule used to get the part to the warm forming temperature was limited to 1 min.

  10. Quantitative Study of Longitudinal Relaxation (T 1) Contrast Mechanisms in Brain MRI

    NASA Astrophysics Data System (ADS)

    Jiang, Xu

    Longitudinal relaxation (T1) contrast in MRI is important for studying brain morphology and is widely used in clinical applications. Although MRI only detects signals from water hydrogen ( 1H) protons (WPs), T1 contrast is known to be influenced by other species of 1H protons, including those in macromolecules (MPs), such as lipids and proteins, through magnetization transfer (MT) between WPs and MPs. This complicates the use and quantification of T1 contrast for studying the underlying tissue composition and the physiology of the brain. MT contributes to T1 contrast to an extent that is generally dependent on MT kinetics, as well as the concentration and NMR spectral properties of MPs. However, the MP spectral properties and MT kinetics are both difficult to measure directly, as the signal from MPs is generally invisible to MRI. Therefore, to investigate MT kinetics and further quantify T1 contrast, we first developed a reliable way to indirectly measure the MP fraction and their exchange rate with WPs, with minimal dependence on the spectral properties of MPs. For this purpose, we used brief, highpower radiofrequency (RF) NMR excitation pulses to almost completely saturate the magnetization of MPs. Based on this, both MT kinetics and the contribution of MPs to T1 contrast through MT were studied. The thus obtained knowledge allowed us to subsequently infer the spectral properties of MPs by applying low-power, frequencyselective off-resonance RF pulses and measuring the offset-frequency dependent effect of MPs on the WP MRI signal. A two-pool exchange model was used in both cases to account for direct effects of the RF pulse on WP magnetization. Consistent with earlier works using MRI at low-field and post-mortem analysis of brain tissue, our novel measurement approach found that MPs constitute an up to 27% fraction of the total 1H protons in human brain white matter, and their spectrum follows a super-Lorentzian line with a T2 of 9.6+/-0.6 mus and a resonance

  11. Application of fiber spectrometers for etch depth measurement of binary computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Korolkov, V. P.; Konchenko, A. S.; Poleshchuk, A. G.

    2013-01-01

    Novel spectrophotometric method of computer-generated holograms depth measurement is presented. It is based on spectral properties of binary phase multi-order gratings. An intensity of zero order is a periodical function of illumination light wave number. The grating grooves depth can be calculated as it is inversely proportional to the period. Measurement in reflection allows one to increase a phase depth of the grooves by factor of 2 and measure more precisely shallow phase gratings. Diffraction binary structures with depth from several hundreds to thousands nanometers could be measured by the method. Measurement uncertainty is mainly defined by following parameters - shifts of the spectrum maximums that are occurred due to the tilted grooves sidewalls, uncertainty of light incidence angle measurement, and spectrophotometer wavelength error. It is theoretically and experimentally shown that the method can ensure 0.25-1% error for desktop spectrophotometers. However fiber spectrometers are more convenient for creation of real measurement system with scanning measurement of large area computer-generated holograms which are used for optical testing of aspheric optics. Especially diffractive Fizeau null lenses need to be carefully tested for uniformity of etch depth. Experimental system for characterization of binary computer-generated holograms was developed using spectrophotometric unit of confocal sensor CHR-150 (STIL SA).

  12. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  13. Argentina spectral-agronomic multitemporal data set

    NASA Technical Reports Server (NTRS)

    Helmer, D.; Kinzler, C.; Tomppkins, M. A.; Badhwar, G. D.

    1983-01-01

    A multitemporal LANDSAT spectral data set was created. The data set is over five 5 nm-by-6 nm areas over Argentina and contains by field, the spectral data, vegetation type and cloud cover information.

  14. Onboard spectral imager data processor

    NASA Astrophysics Data System (ADS)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  15. Mechanism of N6-threonylcarbamoyladenonsine (t(6)A) biosynthesis: isolation and characterization of the intermediate threonylcarbamoyl-AMP.

    PubMed

    Lauhon, Charles T

    2012-11-06

    Genetic and biochemical studies have recently implicated four proteins required in bacteria for the biosynthesis of the universal tRNA modified base N6-threonylcarbamoyl adenosine (t(6)A). In this work, t(6)A biosynthesis in Bacillus subtilis has been reconstituted in vitro and found to indeed require the four proteins YwlC (TsaC), YdiB (TsaE), YdiC (TsaB) and YdiE (TsaD). YwlC was found to catalyze the conversion of L-threonine, bicarbonate/CO(2) and ATP to give the intermediate L-threonylcarbamoyl-AMP (TC-AMP) and pyrophosphate as products. TC-AMP was isolated by HPLC and characterized by mass spectrometry and (1)H NMR. NMR analysis showed that TC-AMP decomposes to give AMP and a nearly equimolar mixture of L-threonine and 5-methyl-2-oxazolidinone-4-carboxylate as final products. Under physiological conditions (pH 7.5, 37 °C, 2 mM MgCl(2)), the half-life of TC-AMP was measured to be 3.5 min. Both YwlC (in the presence of pyrophosphatase) and its Escherichia coli homologue YrdC catalyze the formation of TC-AMP while producing only a small molar fraction of AMP. This suggests that CO(2) and not an activated form of bicarbonate is the true substrate for these enzymes. In the presence of pyrophosphate, both enzymes catalyze clean conversion of TC-AMP back to ATP. Purified TC-AMP is efficiently processed to t(6)A by the YdiBCE proteins in the presence of tRNA substrates. This reaction is ATP independent in vitro, despite the known ATPase activity of YdiB. The estimated rate of conversion of TC-AMP by YdiBCE to t(6)A is somewhat lower than the initial rate from L-threonine, bicarbonate and ATP, which together with the stability data, is consistent with previous studies that suggest channeling of this intermediate.

  16. Topics in spectral methods

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1985-01-01

    After detailing the construction of spectral approximations to time-dependent mixed initial boundary value problems, a study is conducted of differential equations of the form 'partial derivative of u/partial derivative of t = Lu + f', where for each t, u(t) belongs to a Hilbert space such that u satisfies homogeneous boundary conditions. For the sake of simplicity, it is assumed that L is an unbounded, time-independent linear operator. Attention is given to Fourier methods of both Galerkin and pseudospectral method types, the Galerkin method, the pseudospectral Chebyshev and Legendre methods, the error equation, hyperbolic partial differentiation equations, and time discretization and iterative methods.

  17. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  18. The Death Spiral of T Pyxidis

    NASA Astrophysics Data System (ADS)

    Patterson, J.; Oksanen, A.; Monard, B.; Rea, R.; Hambsch, F.; McCormick, J.; Nelson, P.; Kemp, J.; Allen, W.; Krajci, T.; Lowther, S.; Dvorak, S.; Richards, T.; Myers, G.; Bolt, G.

    2014-12-01

    We report a long campaign to track the 1.8 hr photometric wave in the recurrent nova T Pyxidis, using the global telescope network of the Center for Backyard Astrophysics. During 1996-2011, that wave was highly stable in amplitude and waveform, resembling the orbital wave commonly seen in supersoft binaries. The period, however, was found to increase on a timescale P/P =3 ×105 yr. This suggests a mass transfer rate of ˜ 10-7 M⊙/yr in quiescence. The orbital signal became vanishingly weak (< 0.003 mag) near maximum light of the 2011 eruption. After it returned to visibility near V=11, the orbital period had increased by 0.0054(6) %. This is a measure of the mass ejected in the nova outburst. For a plausible choice of binary parameters, that mass is at least 3×10-5 M⊙, and probably more. This represents > 300 yr of accretion at the pre-outburst rate, but the time between outbursts was only 45 yr. Thus the erupting white dwarf seems to have ejected at least 6 × more mass than it accreted. If this eruption is typical, the white dwarf must be eroding, rather than growing, in mass — dashing the star's hopes of ever becoming famous via a supernova explosion. Instead, it seems likely that the binary dynamics are basically a suicide pact between the eroding white dwarf and the low-mass secondary, excited and rapidly whittled down, probably by the white dwarf's EUV radiation.

  19. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    NASA Astrophysics Data System (ADS)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  20. Immunology mini-review: the basics of T(H)17 and interleukin-6 in transplantation.

    PubMed

    Nakagiri, T; Inoue, M; Minami, M; Shintani, Y; Okumura, M

    2012-05-01

    The outcomes of organ transplantation are determined by graft rejection, the mechanisms of which are some of the most important areas of study in the transplantation field. The main cause of rejection is the immunologic response of the recipient toward the transplanted organ. The immunologic responses are regulated by T-cell subsets, especially helper T-cells, which have been characterized as T(H)1 or T(H)2 cells according to their profiles of cytokines production. A unique subset of recently identified lymphocytes, the regulatory T cells (T(reg)s), seem to play a role in tolerance. The recently identified T(H)17 cells are a subset of effector-helper lymphocytes that specifically secrete interleukin (IL) 17. Interestingly, T(H)17 and T(reg) both develop from naïve T cells on stimulation by transforming growth factor β. The difference is only the existence of IL-6, a proinflammatory cytokine. T(H)17 clears pathogens that are not adequately handled by T(H)1 and T(H)2 elements, as well as contributing to autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and inflammatory diseases. Autoimmune diseases are caused by reactions to self-antigens. T(H)17 (or IL-17) and IL-6 are also thought to be involved in rejection after organ transplantation. We examined the contributions of T(H)17 and IL-6 in bronchiolitis obliterans (BO), the histologic finding in chronic rejection of lung transplantations. Earlier studies have reported that T(H)17 and IL-6 contribute not only to chronic rejection of lung transplantations, but also to the rejection of other solid organs, e.g., heart, liver, and kidney. In addition, prospective avenues of research on T(H)17 and IL-6 in transplantation have emerged from the perspectives of recent studies. Copyright © 2012 Elsevier Inc. All rights reserved.