Sample records for t84 cells cultured

  1. Electrical parameters and water permeability properties of monolayers formed by T84 cells cultured on permeable supports.

    PubMed

    Ozu, M; Toriano, R; Capurro, C; Parisi, M

    2005-01-01

    T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (POSM), hydraulic permeability (PHYDR) and transport-associated net water fluxes (JW-transp), as well as short-circuit current (ISC), transepithelial resistance (RT), and potential difference (deltaVT) were measured in T84 monolayers with the following results: POSM 1.3 +/- 0.1 cm.s-1 x 10-3; PHYDR 0.27 +/- 0.02 cm.s-1; RT 2426 +/- 109 omega.cm2, and deltaVT 1.31 +/- 0.38 mV. The effect of 50 microM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in ISC induced by DCEBIO which was associated here with a modest secretory deltaJW-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between PHYDR and RT could be demonstrated and high PHYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJW-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.

  2. Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells

    PubMed Central

    Cheng, Ming; Aronson, Peter S.

    2012-01-01

    Urolithiasis remains a very common disease in Western countries. Seventy to eighty percent of kidney stones are composed of calcium oxalate, and minor changes in urinary oxalate affect stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 plays a major constitutive role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis. Using the relatively selective PKC-δ inhibitor rottlerin, we had previously found that PKC-δ activation inhibits Slc26a6 activity in mouse duodenal tissue. To identify a model system to study physiologic agonists upstream of PKC-δ, we characterized the human intestinal cell line T84. Knockdown studies demonstrated that endogenous SLC26A6 mediates most of the oxalate transport by T84 cells. Cholinergic stimulation with carbachol modulates intestinal ion transport through signaling pathways including PKC activation. We therefore examined whether carbachol affects oxalate transport in T84 cells. We found that carbachol significantly inhibited oxalate transport by T84 cells, an effect blocked by rottlerin. Carbachol also led to significant translocation of PKC-δ from the cytosol to the membrane of T84 cells. Using pharmacological inhibitors, we observed that carbachol inhibits oxalate transport through the M3 muscarinic receptor and phospholipase C. Utilizing the Src inhibitor PP2 and phosphorylation studies, we found that the observed regulation downstream of PKC-δ is partially mediated by c-Src. Biotinylation studies revealed that carbachol inhibits oxalate transport by reducing SLC26A6 surface expression. We conclude that carbachol negatively regulates oxalate transport by reducing SLC26A6 surface expression in T84 cells through signaling pathways including the M3 muscarinic receptor, phospholipase C, PKC-δ, and c-Src. PMID:21956166

  3. Sodium 4-phenylbutyrate upregulates ENaC and sodium absorption in T84 cells.

    PubMed

    Iordache, Claudiu; Duszyk, Marek

    2007-01-15

    Butyrate and other short-chain fatty acids (SCFA), produced by colonic bacterial flora, affect numerous epithelial cell functions. To better understand how SCFA regulate ion transport, we investigated the effects of 4-phenylbutyrate (4-PBA) on Na(+) absorption in T84 cells. Under standard cell culture conditions, the short circuit current did not display any amiloride-sensitive Na(+) absorption and was wholly representative of Cl(-) secretion. However, when T84 cells were grown in the presence of 5 mM 4-PBA, a gradual appearance of amiloride-sensitive Na(+) channel (ENaC) activity was observed that reached a plateau after 24 h. Quantitative RT-PCR and Western blot studies of ENaC subunit expression indicated that 4-PBA stimulated alpha and gamma subunits. Trichostatin A, an inhibitor of histone deacetylase, mimicked the effects of 4-PBA, suggesting that 4-PBA affects ENaC expression by inhibiting deacetylases. 4-PBA had no effect on ENaC expression in airway epithelial cells indicating tissue-specific effect. We conclude that butyrate plays an important role in regulating colonic Na(+) absorption by increasing ENaC transcription and activity.

  4. Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: implication of NOX1.

    PubMed

    Elatrech, Imen; Marzaioli, Viviana; Boukemara, Hanane; Bournier, Odile; Neut, Christel; Darfeuille-Michaud, Arlette; Luis, José; Dubuquoy, Laurent; El-Benna, Jamel; My-Chan Dang, Pham; Marie, Jean-Claude

    2015-05-01

    Increased reactive oxygen species (ROS) production is associated with inflamed ileal lesions in Crohn's disease colonized by pathogenic adherent-invasive Escherichia coli LF82. We investigated whether such ileal bacteria can modulate ROS production by epithelial cells, thus impacting on inflammation and mucin expression. Ileal bacteria from patients with Crohn's disease were incubated with cultured epithelial T84 cells, and ROS production was assayed using the luminol-amplified chemiluminescence method. The gentamicin protection assay was used for bacterial invasion of T84 cell. The expression of NADPH oxidase (NOX) subunits, mucin, and IL-8 was analyzed by quantitative real-time PCR and Western blots. Involvement of NOX and ROS was analyzed using diphenyleneiodonium (DPI) and N-acetylcysteine (NAC). Among different bacteria tested, only LF82 induced an increase of ROS production by T84 cells in a dose-dependent manner. This response was inhibited by DPI and NAC. Heat- or ethanol-attenuated LF82 bacteria and the mutant LF82ΔFimA, which does not express pili type 1 and poorly adheres to epithelial cells, did not induce the oxidative response. The LF82-induced oxidative response coincides with its invasion in T84 cells, and both processes were inhibited by DPI. Also, we observed an increased expression of NOX1 and NOXO1 in response to LF82 bacteria versus the mutant LF82ΔFimA. Furthermore, LF82 inhibited mucin gene expression (MUC2 and MUC5AC) in T84 cells while increasing the chemotactic IL-8 expression, both in a DPI-sensitive manner. Adherent-invasive E. coli LF82 induced ROS production by intestinal NADPH oxidase and altered mucin and IL-8 expression, leading to perpetuation of inflammatory lesions in Crohn's disease.

  5. A stromal cell free culture system generates mouse pro-T cells that can reconstitute T-cell compartments in vivo.

    PubMed

    Gehre, Nadine; Nusser, Anja; von Muenchow, Lilly; Tussiwand, Roxane; Engdahl, Corinne; Capoferri, Giuseppina; Bosco, Nabil; Ceredig, Rhodri; Rolink, Antonius G

    2015-03-01

    T-cell lymphopenia following BM transplantation or diseases such as AIDS result in immunodeficiency. Novel approaches to ameliorate this situation are urgently required. Herein, we describe a novel stromal cell free culture system in which Lineage(-) Sca1(+)c-kit(+) BM hematopoietic progenitors very efficiently differentiate into pro-T cells. This culture system consists of plate-bound Delta-like 4 Notch ligand and the cytokines SCF and IL-7. The pro-T cells developing in these cultures express CD25, CD117, and partially CD44; express cytoplasmic CD3ε; and have their TCRβ locus partially D-J rearranged. They could be expanded for over 3 months and used to reconstitute the T-cell compartments of sublethally irradiated T-cell-deficient CD3ε(-/-) mice or lethally irradiated WT mice. Pro-T cells generated in this system could partially correct the T-cell lymphopenia of pre-Tα(-/-) mice. However, reconstituted CD3ε(-/-) mice suffered from a wasting disease that was prevented by co-injection of purified CD4(+) CD25(high) WT Treg cells. In a T-cell-sufficient or T-lymphopenic setting, the development of disease was not observed. Thus, this in vitro culture system represents a powerful tool to generate large numbers of pro-T cells for transplantation and possibly with clinical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Bradley, Jillian H.; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P.; Gregg, Randal K.

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter. When

  7. T cell resistance to activation by dendritic cells requires long-term culture in simulated microgravity.

    PubMed

    Bradley, Jillian H; Stein, Rachel; Randolph, Brad; Molina, Emily; Arnold, Jennifer P; Gregg, Randal K

    2017-11-01

    Immune impairment mediated by microgravity threatens the success of space exploration requiring long-duration spaceflight. The cells of most concern, T lymphocytes, coordinate the host response against microbial and cancerous challenges leading to elimination and long-term protection. T cells are activated upon recognition of specific microbial peptides bound on the surface of antigen presenting cells, such as dendritic cells (DC). Subsequently, this engagement results in T cell proliferation and differentiation into effector T cells driven by autocrine interleukin-2 (IL-2) and other cytokines. Finally, the effector T cells acquire the weaponry needed to destroy microbial invaders and tumors. Studies conducted on T cells during spaceflight, or using Earth-based culture systems, have shown reduced production of cytokines, proliferation and effector functions as compared to controls. This may account for the cases of viral reactivation events and opportunistic infections associated with astronauts of numerous missions. This work has largely been based upon the outcome of T cell activation by stimulatory factors that target select T cell signaling pathways rather than the complex, signaling events related to the natural process of antigen presentation by DC. This study tested the response of an ovalbumin peptide-specific T cell line, OT-II TCH, to activation by DC when the T cells were cultured 24-120 h in a simulated microgravity (SMG) environment generated by a rotary cell culture system. Following 72 h culture of T cells in SMG (SMG-T) or control static (Static-T) conditions, IL-2 production by the T cells was reduced in SMG-T cells compared to Static-T cells upon stimulation by phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, when the SMG-T cells were stimulated with DC and peptide, IL-2 was significantly increased compared to Static-T cells. Such enhanced IL-2 production by SMG-T cells peaked at 72 h SMG culture time and decreased thereafter

  8. Generation of ΔF508-CFTR T84 cell lines by CRISPR/Cas9-mediated genome editing.

    PubMed

    Chung, Woo Young; Song, Myungjae; Park, Jinhong; Namkung, Wan; Lee, Jinu; Kim, Hyongbum; Lee, Min Goo; Kim, Joo Young

    2016-12-01

    To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport.

  9. Isolation of plasma membrane fractions from the intestinal epithelial model T84.

    PubMed

    Kaoutzani, P; Parkos, C A; Delp-Archer, C; Madara, J L

    1993-05-01

    The human intestinal epithelial cell line T84 is widely used as a model for studies of Cl- secretion and crypt cell biology. We report a fractionation approach that permits separation of purified apical and basolateral T84 plasma membrane domains. T84 cellular membranes were isolated by nitrogen cavitation and differential centrifugation from monolayers grown on permeable supports. Membranes were then fractionated by isopycnic sucrose density gradient sedimentation, and fractions were assessed, using enzymatic and Western blot techniques, for apical (alkaline phosphatase) and basolateral (Na(+)-K(+)-ATPase) plasma membrane markers and for cytosolic, lysosomal, Golgi, and mitochondrial markers. Buffer conditions were defined that permitted separation of enriched apical and basolateral markers. The validity of the selected markers for the apical and basolateral domains was verified by selective apical and basolateral surface labeling studies using trace iodinated wheat germ agglutinin or biotinylation. This approach allows for separation of apical and basolateral plasma membranes of T84 cells for biochemical analyses and should thus be of broad utility in studies of this model polarized and transporting epithelium.

  10. Spontaneous water secretion in T84 cells: effects of STa enterotoxin, bumetanide, VIP, forskolin, and A-23187.

    PubMed

    Toriano, R; Kierbel, A; Ramirez, M A; Malnic, G; Parisi, M

    2001-09-01

    The regulated Cl(-) secretory apparatus of T84 cells responds to several pharmacological agents via different second messengers (Ca(2+), cAMP, cGMP). However, information about water movements in T84 cells has not been available. In the absence of osmotic or chemical gradient, we observed a net secretory transepithelial volume flux (J(w) = -0.16 +/- 0.02 microl.min(-1).cm(-2)) in parallel with moderate short-circuit current values (I(sc) = 1.55 +/- 0.23 microA/cm(2)). The secretory J(w) reversibly reverted to an absorptive value when A-23187 was added to the serosal bath. Vasoactive intestinal polypeptide increased I(sc), but, unexpectedly, J(w) was not affected. Bumetanide, an inhibitor of basolateral Na(+)-K(+)-2Cl(-) cotransporter, completely blocked secretory J(w) with no change in I(sc). Conversely, serosal forskolin increased I(sc), but J(w) switched from secretory to absorptive values. Escherichia coli heat-stable enterotoxin increased secretory J(w) and I(sc). No difference between the absorptive and secretory unidirectional Cl(-) fluxes was observed in basal conditions, but after STa stimulation, a significant net secretory Cl(-) flux developed. We conclude that, under these conditions, the presence of secretory or absorptive J(w) values cannot be shown by I(sc) and ion flux studies. Furthermore, RT-PCR experiments indicate that aquaporins were not expressed in T84 cells. The molecular pathway for water secretion appears to be transcellular, moving through the lipid bilayer or, as recently proposed, through water-solute cotransporters.

  11. Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84.

    PubMed

    Ao, Mei; Venkatasubramanian, Jayashree; Boonkaewwan, Chaiwat; Ganesan, Nivetha; Syed, Asma; Benya, Richard V; Rao, Mrinalini C

    2011-02-01

    Lubiprostone, used clinically (b.i.d.) to treat constipation, has been reported to increase transepithelial Cl(-) transport in T84 cells by activating ClC-2 channels. To identify the underlying signaling pathway, we explored the effects of short-term and overnight lubiprostone treatment on second messenger signaling and Cl(-) transport. Cl(-) transport was assessed either as I(sc) across T84 monolayers grown on Transwells and mounted in Ussing chambers or by the iodide efflux assay. [cAMP](i) was measured by enzyme immunoassay, and [Ca(2+)](i) by Fluo-3 fluorescence. Quantitation of apical cell surface CFTR protein levels was assessed by Western blotting and biotinylation with the EZ-Link Sulfo-NHS-LC-LC-Biotin. ClC-2 mRNA level was studied by RT-PCR. Lubiprostone and the cAMP stimulator, forskolin, caused comparable and maximal increases of I(sc) in T84 cells. The I(sc) effects of lubiprostone and forskolin were each suppressed if the tissue had previously been treated with the other agent. These responses were unaltered even if the monolayers were treated with lubiprostone overnight. Lubiprostone-induced increases in iodide efflux were ~80% of those obtained with forskolin. Lubiprostone increased [cAMP](i). H89, bumetanide, or CFTR(inh)-172 greatly attenuated lubiprostone-stimulated Cl(-) secretion, whereas the ClC-2 inhibitor CdCl(2) did not. Compared to controls, FSK-treatment increased membrane-associated CFTR by 1.9 fold, and lubiprostone caused a 2.6-fold increase in apical membrane CFTR as seen by immunoblotting following cell surface biotinylation. Lubiprostone activates Cl(-) secretion in T84 cells via cAMP, protein kinase A, and by increasing apical membrane CFTR protein.

  12. The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking.

    PubMed

    Venkataraman, Chandrasekar; Kuo, Frederick

    2005-11-15

    The orphan G-protein coupled receptor, GPR84 is highly expressed in the bone marrow, and in splenic T cells and B cells. In this study, GPR84-deficient mice were generated to understand the biological function of this orphan receptor. The proliferation of T and B cells in response to various mitogens was normal in GPR84-deficient mice. Interestingly, primary stimulation of T cells with anti-CD3 resulted in increased IL-4 but not IL-2 or IFN-gamma production in GPR84(-/-) mice compared to wild-type mice. Augmented IL-4 production in GPR84-deficient T cells was not related to increased frequency of IL-4-secreting cells in response to anti-CD3 stimulation. In fact, stimulation with anti-CD3 and anti-CD28 resulted in increased levels of IL-4 but not IFN-gamma steady-state mRNA in GPR84(-/-) T cells. In addition, Th2 effector cells generated in vitro from GPR84(-/-) mice produced higher levels of IL-4, IL-5 and IL-13 compared to wild-type mice. However, there was no detectable difference in the extent of IL-4 and IL-5 production between the two groups of mice in response to antigen stimulation of spleen cells, isolated from mice previously immunized with OVA in alum. These studies reveal a novel role for GPR84 in regulating early IL-4 gene expression in activated T cells.

  13. Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection.

    PubMed

    Sabharwal, Harshana; Cichon, Christoph; Ölschläger, Tobias A; Sonnenborn, Ulrich; Schmidt, M Alexander

    2016-09-01

    Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection

    PubMed Central

    Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota

    2010-01-01

    Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723

  15. Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFα enhances GPR84 expression in adipocytes.

    PubMed

    Nagasaki, Hiroshi; Kondo, Takaaki; Fuchigami, Masahiro; Hashimoto, Hiroyuki; Sugimura, Yoshihisa; Ozaki, Nobuaki; Arima, Hiroshi; Ota, Akira; Oiso, Yutaka; Hamada, Yoji

    2012-02-17

    In this study we aimed to identify the physiological roles of G protein-coupled receptor 84 (GPR84) in adipose tissue, together with medium-chain fatty acids (MCFAs), the specific ligands for GPR84. In mice, high-fat diet up-regulated GPR84 expression in fat pads. In 3T3-L1 adipocytes, co-culture with a macrophage cell line, RAW264, or TNFα remarkably enhanced GPR84 expression. In the presence of TNFα, MCFAs down-regulated adiponectin mRNA expression in 3T3-L1 adipocytes. Taken together, our results suggest that GPR84 emerges in adipocytes in response to TNFα from infiltrating macrophages and exacerbates the vicious cycle between adiposity and diabesity. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  16. Enhanced clinical-scale manufacturing of TCR transduced T-cells using closed culture system modules.

    PubMed

    Jin, Jianjian; Gkitsas, Nikolaos; Fellowes, Vicki S; Ren, Jiaqiang; Feldman, Steven A; Hinrichs, Christian S; Stroncek, David F; Highfill, Steven L

    2018-01-24

    Genetic engineering of T-cells to express specific T cell receptors (TCR) has emerged as a novel strategy to treat various malignancies. More widespread utilization of these types of therapies has been somewhat constrained by the lack of closed culture processes capable of expanding sufficient numbers of T-cells for clinical application. Here, we evaluate a process for robust clinical grade manufacturing of TCR gene engineered T-cells. TCRs that target human papillomavirus E6 and E7 were independently tested. A 21 day process was divided into a transduction phase (7 days) and a rapid expansion phase (14 days). This process was evaluated using two healthy donor samples and four samples obtained from patients with epithelial cancers. The process resulted in ~ 2000-fold increase in viable nucleated cells and high transduction efficiencies (64-92%). At the end of culture, functional assays demonstrated that these cells were potent and specific in their ability to kill tumor cells bearing target and secrete large quantities of interferon and tumor necrosis factor. Both phases of culture were contained within closed or semi-closed modules, which include automated density gradient separation and cell culture bags for the first phase and closed GREX culture devices and wash/concentrate systems for the second phase. Large-scale manufacturing using modular systems and semi-automated devices resulted in highly functional clinical-grade TCR transduced T-cells. This process is now in use in actively accruing clinical trials and the NIH Clinical Center and can be utilized at other cell therapy manufacturing sites that wish to scale-up and optimize their processing using closed systems.

  17. Isolation and Ex Vivo Culture of Vδ1+CD4+γδ T Cells, an Extrathymic αβT-cell Progenitor.

    PubMed

    Welker, Christian; Handgretinger, Rupert; Schilbach, Karin

    2015-12-07

    The thymus, the primary organ for the generation of αβ T cells and backbone of the adaptive immune system in vertebrates, has long been considered as the only source of αβT cells. Yet, thymic involution begins early in life leading to a drastically reduced output of naïve αβT cells into the periphery. Nevertheless, even centenarians can build immunity against newly acquired pathogens. Recent research suggests extrathymic αβT cell development, however our understanding of pathways that may compensate for thymic loss of function are still rudimental. γδ T cells are innate lymphocytes that constitute the main T-cell subset in the tissues. We recently ascribed a so far unappreciated outstanding function to a γδ T cell subset by showing that the scarce entity of CD4(+) Vδ1(+)γδ T cells can transdifferentiate into αβT cells in inflammatory conditions. Here, we provide the protocol for the isolation of this progenitor from peripheral blood and its subsequent cultivation. Vδ1 cells are positively enriched from PBMCs of healthy human donors using magnetic beads, followed by a second step wherein we target the scarce fraction of CD4(+) cells with a further magnetic labeling technique. The magnetic force of the second labeling exceeds the one of the first magnetic label, and thus allows the efficient, quantitative and specific positive isolation of the population of interest. We then introduce the technique and culture condition required for cloning and efficiently expanding the cells and for identification of the generated clones by FACS analysis. Thus, we provide a detailed protocol for the purification, culture and ex vivo expansion of CD4(+) Vδ1(+)γδ T cells. This knowledge is prerequisite for studies that relate to this αβT cell progenitor`s biology and for those who aim to identify the molecular triggers that are involved in its transdifferentiation.

  18. Culture promotes transfer of thyroid epithelial cell hyperplasia and proliferation by reducing regulatory T cell numbers.

    PubMed

    Kayes, Timothy D; Braley-Mullen, Helen

    2013-01-01

    IFN-γ(-/-) NOD.H-2h4 mice develop a spontaneous autoimmune thyroid disease, thyroid epithelial cell hyperplasia and proliferation (TEC H/P) when given NaI in their water for 7+ mo. TEC H/P can be transferred to IFN-γ(-/-) SCID mice by splenocytes from mice with severe (4-5+) disease, and transfer of TEC H/P is improved when splenocytes are cultured prior to transfer. Older (9+ mo) IFN-γ(-/-) NOD.H-2h4 mice have elevated numbers of FoxP3(+) T reg cells, up to 2-fold greater than younger (2 mo) mice. During culture, the number of T reg decreases and this allows the improved transfer of TEC H/P. Co-culture with IL-2 prior to transfer prevents the decrease of T reg and improves their in vitro suppressive ability resulting in reduced TEC H/P in recipient mice. Therefore, culturing splenocytes improves transfer of TEC H/P by reducing the number of T reg and IL-2 inhibits transfer by preserving T reg number and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Cell-Cell Communication Between Fibroblast and 3T3-L1 Cells Under Co-culturing in Oxidative Stress Condition Induced by H2O2.

    PubMed

    Subramaniyan, Sivakumar Allur; Kim, Sidong; Hwang, Inho

    2016-10-01

    The present study was carried out to understand the interaction between fibroblast and 3T3-L1 preadipocyte cells under H 2 O 2 -induced oxidative stress condition. H 2 O 2 (40 μM) was added in co-culture and monoculture of fibroblast and 3T3-L1 cell. The cells in the lower well were harvested for analysis and the process was carried out for both cells. The cell growth, oxidative stress markers, and antioxidant enzymes were analyzed. Additionally, the mRNA expressions of caspase-3 and caspase-7 were selected for analysis of apoptotic pathways and TNF-α and NF-κB were analyzed for inflammatory pathways. The adipogenic marker such as adiponectin and PPAR-γ and collagen synthesis markers such as LOX and BMP-1 were analyzed in the co-culture of fibroblast and 3T3-L1 cells. Cell viability and antioxidant enzymes were significantly increased in the co-culture compared to the monoculture under stress condition. The apoptotic, inflammatory, adipogenic, and collagen-synthesized markers were significantly altered in H 2 O 2 -induced co-culture of fibroblast and 3T3-L1 cells when compared with the monoculture of H 2 O 2 -induced fibroblast and 3T3-L1 cells. In addition, the confocal microscopical investigation indicated that the co-culture of H 2 O 2 -induced 3T3-L1 and fibroblast cells increases collagen type I and type III expression. From our results, we suggested that co-culture of fat cell (3T3-L1) and fibroblast cells may influence/regulate each other and made the cells able to withstand against oxidative stress and aging. It is conceivable that the same mechanism might have been occurring from cell to cell while animals are stressed by various environmental conditions.

  20. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells.

    PubMed

    Gualde, N; Weinberger, O; Ratnofsky, S; Benacerraf, B; Burakoff, S J

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observed with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.

  1. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Weinberger, O.; Ratnofsky, S.

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observedmore » with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.« less

  2. The Generation of Human γδT Cell-Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture.

    PubMed

    Watanabe, Daisuke; Koyanagi-Aoi, Michiyo; Taniguchi-Ikeda, Mariko; Yoshida, Yukiko; Azuma, Takeshi; Aoi, Takashi

    2018-01-01

    γδT cells constitute a small proportion of lymphocytes in peripheral blood. Unlike αβT cells, the anti-tumor activities are exerted through several different pathways in a MHC-unrestricted manner. Thus, immunotherapy using γδT cells is considered to be effective for various types of cancer. Occasionally, however, ex vivo expanded cells are not as effective as expected due to cell exhaustion. To overcome the issue of T-cell exhaustion, researchers have generated induced pluripotent stem cells (iPSCs) that harbor the same T-cell receptor (TCR) genes as their original T-cells, which provide nearly limitless sources for antigen-specific cytotoxic T lymphocytes (CTLs). However, these technologies have focused on αβT cells and require a population of antigen-specific CTLs, which are purified by cell sorting with HLA-peptide multimer, as the origin of iPS cells. In the present study, we aimed to develop an efficient and convenient system for generating iPSCs that harbor rearrangements of the TCRG and TCRD gene regions (γδT-iPSCs) without cell-sorting. We stimulated human whole peripheral blood mononuclear cell (PBMC) culture using Interleukin-2 and Zoledronate to activate γδT cells. Gene transfer into those cells with the Sendai virus vector resulted in γδT cell-dominant expression of exogenous genes. The introduction of reprogramming factors into the stimulated PBMC culture allowed us to establish iPSC lines. Around 70% of the established lines carried rearrangements at the TCRG and TCRD gene locus. The γδT-iPSCs could differentiate into hematopoietic progenitors. Our technology will pave the way for new avenues toward novel immunotherapy that can be applied for various types of cancer. Stem Cells Translational Medicine 2018;7:34-44. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  3. CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells.

    PubMed

    Jia, Xiaoyi; Wei, Fang; Sun, Xiaojing; Chang, Yan; Xu, Shu; Yang, Xuezhi; Wang, Chun; Wei, Wei

    2016-08-02

    Total glucosides of paeony (TGP) is the first anti-inflammatory immune regulatory drug approved for the treatment of rheumatoid arthritis in China. A novel compound, paeoniflorin-6'-O-benzene sulfonate (code CP-25), comes from the structural modification of paeoniflorin (Pae), which is the effective active ingredient of TGP. The aim of the present study is to investigate the effect of CP-25 on adjuvant arthritis (AA) fibroblast-like synoviocytes (FLS) co-cultured with BAFF-activated CD4(+) T cells and the expression of BAFF-R in CD4(+) T cells. The mRNA expression of BAFF and its receptors was assessed by qPCR. The expression of BAFF receptors in CD4(+) T cells was analyzed by flow cytometry. The effect of CP-25 on AA rats was evaluated by their joint histopathology. The cell culture growth of thymocytes and FLS was detected by cell counting kit (CCK-8). The concentrations of IL-1β, TNF-α, and IL-6 were measured by Enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of BAFF and BAFF-R were enhanced in the mesenteric lymph nodes of AA rats, TACI expression was reduced, and BCMA had no change. The expression of BAFF-R in CD4(+) T cells was also enhanced. CP-25 alleviated the joint histopathology and decreased the expression of BAFF-R in CD4(+) T cells from AA rats in vivo. In vitro, CP-25 inhibited the abnormal cell culture growth of BAFF-stimulated thymocytes and FLS. In the co-culture system, IL-1β, IL-6 and TNF-α production was enhanced by FLS co-cultured with BAFF-activated CD4(+) T cells. Moreover, BAFF-stimulated CD4(+) T cells promoted the cell culture growth of FLS. The addition of CP-25 decreased the expression of BAFF-R in CD4(+) T cells and inhibited the cell culture growth and cytokine secretion ability of FLS co-cultured with BAFF-activated CD4(+) T cells. The present study indicates that CP-25 may repress the cell culture growth and cytokine secretion ability of FLS, and its inhibitory effects might be associated with its ability

  4. Vibrio cholerae ACE stimulates Ca(2+)-dependent Cl(-)/HCO(3)(-) secretion in T84 cells in vitro.

    PubMed

    Trucksis, M; Conn, T L; Wasserman, S S; Sears, C L

    2000-09-01

    ACE, accessory cholera enterotoxin, the third enterotoxin in Vibrio cholerae, has been reported to increase short-circuit current (I(sc)) in rabbit ileum and to cause fluid secretion in ligated rabbit ileal loops. We studied the ACE-induced change in I(sc) and potential difference (PD) in T84 monolayers mounted in modified Ussing chambers, an in vitro model of a Cl(-) secretory cell. ACE added to the apical surface alone stimulated a rapid increase in I(sc) and PD that was concentration dependent and immediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cl(-) and HCO(3)(-). ACE acted synergistically with the Ca(2+)-dependent acetylcholine analog, carbachol, to stimulate secretion in T84 monolayers. In contrast, the secretory response to cAMP or cGMP agonists was not enhanced by ACE. The ACE-stimulated secretion was dependent on extracellular and intracellular Ca(2+) but was not associated with an increase in intracellular cyclic nucleotides. We conclude that the mechanism of secretion by ACE involves Ca(2+) as a second messenger and that this toxin stimulates a novel Ca(2+)-dependent synergy.

  5. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells.

    PubMed

    Beltrán, Ana R; Carraro-Lacroix, Luciene R; Bezerra, Camila N A; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF-preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (JH+) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and JH+ (~63%), without altering basal pHi (range 7.144-7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and JH+ was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa-decreased dpHi/dt and JH+ was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human

  6. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells

    PubMed Central

    Beltrán, Ana R.; Carraro-Lacroix, Luciene R.; Bezerra, Camila N. A.; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A.

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF–preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (J H +) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and J H + (~63%), without altering basal pHi (range 7.144–7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and J H + was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa–decreased dpHi/dt and J H + was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function

  7. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    PubMed Central

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  8. Saccharomyces boulardii Preserves the Barrier Function and Modulates the Signal Transduction Pathway Induced in Enteropathogenic Escherichia coli-Infected T84 Cells

    PubMed Central

    Czerucka, Dorota; Dahan, Stephanie; Mograbi, Baharia; Rossi, Bernard; Rampal, Patrick

    2000-01-01

    Use of the nonpathogenic yeast Saccharomyces boulardii in the treatment of infectious diarrhea has attracted growing interest. The present study designed to investigate the effect of this yeast on enteropathogenic Escherichia coli (EPEC)-associated disease demonstrates that S. boulardii abrogated the alterations induced by an EPEC strain on transepithelial resistance, [3H]inulin flux, and ZO-1 distribution in T84 cells. Moreover, EPEC-mediated apoptosis of epithelial cells was delayed in the presence of S. boulardii. The yeast did not modify the number of adherent bacteria but lowered by 50% the number of intracellular bacteria. Infection by EPEC induced tyrosine phosphorylation of several proteins in T84 cells, including p46 and p52 SHC isoforms, that was attenuated in the presence of S. boulardii. Similarly, EPEC-induced activation of the ERK1/2 mitogen-activated protein (MAP) kinase pathway was diminished in the presence of the yeast. Interestingly, inhibition of the ERK1/2 pathway with the specific inhibitor PD 98059 decreased EPEC internalization, suggesting that modulation of the ERK1/2 MAP pathway might account for the lowering of the number of intracellular bacteria observed in the presence of S. boulardii. Altogether, this study demonstrated that S. boulardii exerts a protective effect on epithelial cells after EPEC adhesion by modulating the signaling pathway induced by bacterial infection. PMID:10992512

  9. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents.

    PubMed

    Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H

    2013-05-01

    In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.

  10. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozaki, K.; Kuriu, A.; Hirota, S.

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less

  11. Terminally differentiated CD8+ T cells and CD57−FOXP3+CD8+ T cells are highly associated with the efficacy of immunotherapy using activated autologous lymphocytes

    PubMed Central

    Akagi, Junji; Baba, Hideo; Sekine, Teruaki; Ogawa, Kenji

    2018-01-01

    Treatment with activated autologous lymphocytes (AALs) has demonstrated mixed results for cancer treatment. Preliminary results revealed that the proportion of cluster of differentiation (CD)8+CD57+ T cells is significantly increased in AALs, indicating that they are able to determine treatment outcome. Therefore, the role of CD8+CD57+ T cells in AAL efficacy was investigated. T lymphocytes were isolated from 35 patients with stage IV gastric carcinomas (17 men and 18 women; aged 41–84 years) receiving immunotherapy using AALs (IAAL). Using fluorescence activated cell sorting, CD8, CD27, CD57, and forkhead box protein 3 (FOXP3) expression was investigated on CD8+ T cell populations in CD8+ T cell differentiation prior to and following in vitro culture. The association between these populations and progression-free survival (PFS) was analyzed using Cox univariate, and multivariate analyses and Kaplan-Meier survival analysis. CD57 expression was negative in early-differentiated CD8+ T cells (CD27+CD8+CD57−), and positive in intermediate- (CD27+CD8+CD57+) and terminal- (CD27−CD8+CD57+) differentiated CD8+ T cells. Univariate analysis revealed a significant association between terminal-CD8+ T cells and longer PFS times (P=0.035), whereas CD57−FOXP3+CD8+ T cells were associated with shorter PFS times. Multivariate analysis revealed that CD57−FOXP3+CD8+ T cells was an independent poor prognostic factor, whereas CD57+FOXP3+CD8+ T cells were not associated with PFS. Although IAAL increased the proportion of terminal-CD8+ T cells relative to the pre-culture proportions, patients with a high CD57−FOXP3+CD8+ T cell percentage exhibited repressed terminal-CD8+ T cell induction, leading to poor patient prognosis. Terminally differentiated CD27−CD8+CD57+ T cells were responsible for the effectiveness of AALs; however, CD57−FOXP3+CD8+ T cells abrogated their efficacy, possibly by inhibiting their induction.

  12. Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems.

    PubMed

    Demircan, Pinar Cetinalp; Sariboyaci, Ayla Eker; Unal, Zehra Seda; Gacar, Gulcin; Subasi, Cansu; Karaoz, Erdal

    2011-11-01

    BACKGROUND AIMS. Studies performed using human and animal models have indicated the immunoregulatory capability of mesenchymal stromal cells in several lineages. We investigated whether human dental pulp-derived stem cells (hDP-SC) have regulatory effects on phytohemagglutinin (PHA)-activated CD3(+) T cells. We aimed to define the regulatory mechanisms associated with hDP-SC that occur in mixed lymphocyte reaction (MLR) and transwell systems with PHA-CD3(+) T cells and hDP-SC at a ratio of 1:1. METHODS. Proliferation, apoptosis and pro- and anti-inflammatory cytokines of PHA-CD3(+)T cells, the expression of Regulatory T cells (Treg) markers and some regulatory factors related to hDP-SC, were studied in Both transwell and MLR are co-cultures systems. RESULTS. Anti-proliferative and apoptotic effects of hDP-SC were determined in co-culture systems. Elevated expression levels of human leukocyte antigen (HLA)-G, hepatocyte growth factor (HGF)-β1, intracellular adhesion molecule (ICAM-1)-1, interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β1, vascular adhesion molecule (VCAM)-1 and vascular endothelial growth factor (VEGF) by hDP-SC were detected in the co-culture systems. We observed decreased expression levels of pro-inflammatory cytokines [interferon (IFN)-γ, IL-2, IL-6 receptor (R), IL-12, Interleukin-17A (IL-17A), tumor necrosis factor (TNF)-α] and increased expression levels of anti-inflammatory cytokine [inducible protein (IP)-10] from PHA-CD3(+) T cells in the transwell system. Expression of Treg (CD4(+) CD25(+) Foxp3(+)) markers was significantly induced by hDP-SC in both co-culture systems. We observed apoptosis of PHA-CD3(+) T cells with 24 h using time-lapse camera photographs and active caspase labeling; it is likely that paracrine soluble factors and molecular signals secreted by hDP-SC led this apoptosis. CONCLUSIONS. We suggest that hDP-SC have potent immunoregulatory functions because of their soluble factors and cytokines via paracrine

  13. Apical ammonium inhibition of cAMP-stimulated secretion in T84 cells is bicarbonate dependent.

    PubMed

    Worrell, Roger T; Best, Alison; Crawford, Oscar R; Xu, Jie; Soleimani, Manoocher; Matthews, Jeffrey B

    2005-10-01

    Normal human colonic luminal (NH(4)(+)) concentration ([NH(4)(+)]) ranges from approximately 10 to 100 mM. However, the nature of the effects of NH(4)(+) on transport, as well as NH(4)(+) transport itself, in colonic epithelium is poorly understood. We elucidate here the effects of apical NH(4)(+) on cAMP-stimulated Cl(-) secretion in colonic T84 cells. In HEPES-buffered solutions, 10 mM apical NH(4)(+) had no significant effect on cAMP-stimulated current. In contrast, 10 mM apical NH(4)(+) reduced current within 5 min to 61 +/- 4% in the presence of 25 mM HCO(3)(-). Current inhibition was not simply due to an increase in extracellular K(+)-like cations, in that the current magnitude was 95 +/- 5% with 10 mM apical K(+) and 46 +/- 3% with 10 mM apical NH(4)(+) relative to that with 5 mM apical K(+). We previously demonstrated that inhibition of Cl(-) secretion by basolateral NH(4)(+) occurs in HCO(3)(-)-free conditions and exhibits anomalous mole fraction behavior. In contrast, apical NH(4)(+) inhibition of current in HCO(3)(-) buffer did not show anomalous mole fraction behavior and followed the absolute [NH(4)(+)] in K(+)-NH(4)(+) mixtures, where K(+) concentration + [NH(4)(+)] = 10 mM. The apical NH(4)(+) inhibitory effect was not prevented by 100 microM methazolamide, suggesting no role for apical carbonic anhydrase. However, apical NH(4)(+) inhibition of current was prevented by 10 min of pretreatment of the apical surface with 500 microM DIDS, 100 microM 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), or 25 microM niflumic acid, suggesting a role for NH(4)(+) action through an apical anion exchanger. mRNA and protein for the apical anion exchangers SLC26A3 [downregulated in adenoma (DRA)] and SLC26A6 [putative anion transporter (PAT1)] were detected in T84 cells by RT-PCR and Northern and Western blots. DRA and PAT1 appear to associate with CFTR in the apical membrane. We conclude that the HCO(3)(-) dependence of apical NH(4)(+) inhibition of secretion is

  14. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    PubMed

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  15. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Guo, Yong; Lucchinetti, Claudia F; Brown, Melissa A

    2016-09-01

    GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia

    PubMed Central

    Catakovic, Kemal; Gassner, Franz Josef; Ratswohl, Christoph; Zaborsky, Nadja; Rebhandl, Stefan; Schubert, Maria; Steiner, Markus; Gutjahr, Julia Christine; Pleyer, Lisa; Egle, Alexander; Hartmann, Tanja Nicole; Greil, Richard; Geisberger, Roland

    2018-01-01

    ABSTRACT While research on T cell exhaustion in context of cancer particularly focuses on CD8+ cytotoxic T cells, the role of inhibitory receptors on CD4+ T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8+ T cells of healthy controls and CLL cells, we found an enrichment of TIGIT+ T cells in the CD4+ T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4+ TIGIT+ T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4+ TIGIT+ expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGIT+CD4+ T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGIT+CD4+T cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment. PMID:29296521

  17. Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures.

    PubMed

    Junker, Niels; Kvistborg, Pia; Køllgaard, Tania; Straten, Per thor; Andersen, Mads Hald; Svane, Inge Marie

    2012-01-01

    Ex vivo expanded tumor infiltrating lymphocytes (TILs) from malignant melanoma (MM) and head & neck squamous cell carcinoma (HNSCC) share a similar oligoclonal composition of T effector memory cells, with HLA class I restricted lysis of tumor cell lines. In this study we show that ex vivo expanded TILs from MM and HNSCC demonstrate a heterogeneous composition in frequency and magnitude of tumor associated antigen specific populations by Elispot IFNγ quantitation. TILs from MM and HNSCC shared reactivity towards NY ESO-1, cyclin B1 and Bcl-x derived peptides. Additionally we show that dominating T-cell clones and functionality persists through out expansion among an oligoclonal composition of T-cells. Our findings mirror prior results on the oligoclonal composition of TIL cultures, further indicating a potential for a broader repertoire of specific effector cells recognizing the heterogeneous tumors upon adoptive transfer; increasing the probability of tumor control by minimizing immune evasion by tumor cell escape variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Anti-inflammatory effects of Artemisia princeps in antigen-stimulated T cells and regulatory T cells.

    PubMed

    Chang, Sung Ho; Jung, Eun Jung; Park, Youn Hee; Lim, Dong Gyun; Ko, Na Young; Choi, Wahn Soo; Her, Erk; Kim, Soo Hyun; Choi, Kang Duk; Bae, Jae Ho; Kim, Sun Hee; Kang, Chi Dug; Han, Duck Jong; Kim, Song Cheol

    2009-08-01

    The aim was to investigate the anti-inflammatory effects of Artemisia princeps extract on the activity of anti-CD3/CD28-stimulated CD4(+)CD25(-) T cells and antigen-expanded regulatory T cells. CD4(+)CD25(-) T cells were activated with coated anti-CD3 and anti-CD28 and cultured in the presence or absence of various concentrations of A. princeps extract. The cultures were pulsed on Day 6 with [(3)H]thymidine and, after harvesting the cells, [(3)H]thymidine incorporation was measured. For analysis of interleukin-2 and interferon-gamma secreted from CD4(+)CD25(-) T cells, culture supernatants were collected on Days 2 and 6. For the analysis of interleukin-10 secreted from the CD4(+)CD25(-) T cells and expanded regulatory T cells, supernatants were collected after 2 and 7 days, respectively. Cytokine levels were determined using an enzyme-linked immunosorbent assay. Potential medicinal components of the A. princeps extract were determined using gas chromatography-mass spectrometry. A. princeps (30 microg/ml) effectively suppressed proliferation of CD4(+)CD25(-) T cells that were stimulated with anti-CD3/CD28 without causing cytotoxicity in spleen cells incubated under conditions lacking antigen stimulation. A. princeps inhibited production of the pro-inflammatory cytokines interleukin-2 and interferon-gamma in anti-CD3/CD28-stimulated CD4(+)CD25(-) T cells. Also, the extract slightly increased production of the anti-inflammatory cytokine interleukin-10 in these cells. In regulatory T cells expanded by anti-CD3/CD28, A. princeps increased production of interleukin-10 and Foxp3. The results suggest that A. princeps may be useful in the treatment of autoimmune diseases and organ transplantation rejection by inhibiting proliferation of inflammatory T cells, suppressing inflammatory processes in antigen-stimulated CD4(+)CD25(-) T cells and increasing activity of expanded regulatory T cells.

  19. Interleukin-7 negatively regulates the development of mature T cells in fetal thymus organ cultures.

    PubMed

    DeLuca, Dominick; Clark, Dawn R

    2002-05-01

    We added antibody specific for interleukin-7 (IL-7) to chimeric fetal thymus organ cultures (FTOC) to investigate the involvement of this cytokine at distinct stages of T cell development. We report that the neutralization of IL-7 early in fetal T cell development results in a decrease in the production of mature CD4 or CD8 ('single positive', SP) or CD4/8 negative ('double negative', DN) T cell phenotypes, as defined by their expression of CD3. This loss of T cell development was not complete, but it did include the development of gammadelta T cells. However, if IL-7 was neutralized at later stages of FTOC, the production of CD4/8 positive ('double positive', DP) T cells was increased, and if the addition of the antibody was delayed further, the production of mature SP T cells was increased. This last result could be extended to both alphabeta and gammadelta T cells. These data suggested that IL-7 played a negative regulatory role in the development of progressively mature T cells. Tissue sections of FTOC showed that IL-7 was expressed in the subcapsular region of the tissue where immature T cells reside. However, IL-7 was not detected in the medullary region where mature T cells are located. These data suggest that IL-7 not only supports the development of immature fetal T cells, but it may inhibit the development of mature T cells. The production of mature fetal T cells may, therefore, be delayed until their precursors enter the medullary microenvironment, where IL-7 production is low. In this way, T cells may be prevented from maturing until negative selection or anergy events eliminate or inactivate autoreactive clones.

  20. Biological responses of T cells encapsulated with polyelectrolyte-coated gold nanorods and their cellular activities in a co-culture system

    NASA Astrophysics Data System (ADS)

    Wattanakull, Porntida; Killingsworth, Murray C.; Pissuwan, Dakrong

    2017-11-01

    Currently, human T cell therapy is of considerable scientific interest. In addition, cell encapsulation has become an attractive approach in biomedical applications. Here, we propose an innovative technique of single-cell encapsulation of human T cells using polyelectrolytes combined with gold nanorods. We have demonstrated encapsulation of human Jurkat T cells with poly(sodium 4-styrenesulfonate) (PSS)-coated gold nanorods (PSS-GNRs). Other forms of encapsulation, using polyelectrolytes without GNRs, were also performed. After Jurkat T cells were encapsulated with poly(allylamine hydrochloride) (PAH) and/or PSS-GNRs or PSS, most cells survived and could proliferate. Jurkat T cells encapsulated with a double layer of PSS-GNR/PAH (PSS-GNR/PAH@Jurkat) showed the highest rate of cell proliferation when compared to 24-h encapsulated cells. With the exception of IL-6, no significant induction of inflammatory cytokines (IL-2, IL-1β, and TNF-α) was observed. Interestingly, when encapsulated cells were co-cultured with THP-1 macrophages, co-cultures exhibited TNF-α production enhancement. However, the co-culture of THP-1 macrophage and PSS-GNR/PAH@Jurkat or PSS/PAH@Jurkat did not enhance TNF-α production. No significant inductions of IL-2, IL-1β, and IL-6 were detected. These data provide promising results, demonstrating the potential use of encapsulated PSS-GNR/PAH@Jurkat to provide a more inert T cell population for immunotherapy application and other biomedical applications.

  1. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels

    PubMed Central

    Alzamora, Rodrigo; O’Mahony, Fiona; Ko, Wing-Hung; Yip, Tiffany Wai-Nga; Carter, Derek; Irnaten, Mustapha; Harvey, Brian Joseph

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl− secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl− secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl− conductance or basolateral Na+–K+-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl− secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl− secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKCα-dependent pathway. PMID:21747769

  2. Phase Transition of Gonococci in Mammalian Cell Cultures

    PubMed Central

    Tyeryar, Franklin J.; Quan, Alice L.; Rene, Anthony A.; Weiss, Emilio

    1974-01-01

    Neisseria gonorrhoeae was cultivated in mammalian cell cultures in an effort to determine if this environment will elicit a T4 → T1 transition. Of four avirulent (T4) isolates tested, only one, H4, yielded T1 colonies. This change was consistently obtained in HeLa, WI-38, and MK2 cells, even when the multiplicity of the gonococcal infection was less than 1 per culture. Growth of the gonococci took place primarily on the surface of the cells, as demonstrated by light and electron microscopy, but occasional bacteria were undoubtedly intracellular. T1 colonies were seen at 24 h and were the major population at 48 h. This shift was favored by the presence of viable cells, since smaller yields of T1 were obtained when the cells were irradiated or heat inactivated. It was also favored by low pH, since T1 recovery was reduced when the buffering capacity of the medium was increased. Although the results suggest that T1 gonococci derived from H4 have a selective advantage over T4 in cell cultures, this is not true of all T1 and T4 colony types. F62 T4, which does not undergo a T4 → T1 shift, propagated as well as T1 in HeLa cell cultures. The change in colony type of strain H4 to T1 was accompanied by formation of pili and by gain in capacity for deoxyribonucleic acid-mediated transformation. It is concluded that gonococci can undergo T4 → T1 phase transition in mammalian cell cultures, but this property is not retained by all strains. Images PMID:4215765

  3. Tunable swelling of polyelectrolyte multilayers in cell culture media for modulating NIH-3T3 cells adhesion.

    PubMed

    Qi, Wei; Cai, Peng; Yuan, Wenjing; Wang, Hua

    2014-11-01

    For polyelectrolyte multilayers (PEMs) assembled by the layer-by-layer (LbL) assembly technique, their nanostructure and properties can be governed by many parameters during the building process. Here, it was demonstrated that the swelling of the PEMs containing poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in cell culture media could be tuned with changing supporting salt solutions during the assembly process. Importantly, the influence of the PEMs assembled in different salt solutions on NIH-3T3 cell adhesion was observable. Specifically, the cells could possess a higher affinity for the films assembled in low salt concentration (i.e. 0.15M NaCl) or no salt, the poorly swelling films in cell culture media, which was manifested by the large cell spreading area and focal adhesions. In contrast, those were assembled in higher salt concentration, highly swelling films in cell culture media, were less attractive for the fibroblasts. As a result, the cell adhesion behaviors may be manipulated by tailoring the physicochemical properties of the films, which could be performed by changing the assembly conditions such as supporting salt concentration. Such a finding might promise a great potential in designing desired biomaterials for tissue engineering and regenerative medicine. © 2014 Wiley Periodicals, Inc.

  4. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    PubMed

    Navabi, Nazanin; McGuckin, Michael A; Lindén, Sara K

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies

  5. Gastrointestinal Cell Lines Form Polarized Epithelia with an Adherent Mucus Layer when Cultured in Semi-Wet Interfaces with Mechanical Stimulation

    PubMed Central

    Navabi, Nazanin; McGuckin, Michael A.; Lindén, Sara K.

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies

  6. Septin9 is involved in T-cell development and CD8+ T-cell homeostasis.

    PubMed

    Lassen, Louise Berkhoudt; Füchtbauer, Annette; Schmitz, Alexander; Sørensen, Annette Balle; Pedersen, Finn Skou; Füchtbauer, Ernst-Martin

    2013-06-01

    SEPTIN9 (SEPT9) is a filament-forming protein involved in numerous cellular processes. We have used a conditional knock out allele of Sept9 to specifically delete Sept9 in T-cells. As shown by fluorescence-activated cell sorting, loss of Sept9 at an early thymocyte stage in the thymus results in increased numbers of double-negative cells indicating that SEPT9 is involved in the transition from the double-negative stage during T-cell development. Accordingly, the relative numbers of mature T-cells in the periphery are decreased in mice with a T-cell-specific deletion of Sept9. Proliferation of Sept9-deleted CD8(+) T-cells from the spleen is decreased upon stimulation in culture. The altered T-cell homeostasis caused by the loss of Sept9 results in an increase of CD8(+) central memory T-cells.

  7. Stimulation of secretion by the T84 colonic epithelial cell line with dietary flavonols.

    PubMed

    Nguyen, T D; Canada, A T; Heintz, G G; Gettys, T W; Cohn, J A

    1991-06-15

    Flavonols are dietary compounds widely distributed in plants and characterized by a 2-phenyl-benzo(alpha)pyrane nucleus possessing hydroxyl and ketone groups at positions 3 and 4, respectively. Kaempferol, quercetin, and myricetin are flavonols that are further mono-, di-, or trihydroxylated on the phenyl ring, respectively. To test whether these ingested flavonols might exert a direct secretory effect on intestinal epithelial cells, monolayers of the T84 colonocyte cell line were mounted in Ussing chambers and examined for ion transport response. Twenty minutes after addition of 100 microM quercetin to either the serosal or mucosal side, the short-circuit current change was maximal at 16.6 microA/cm2. Kaempferol was less potent than quercetin, while myricetin and glycosylated quercetin (rutin) did not induce secretion. The secretion induced by quercetin did not seem to be mediated by the reactive oxygen species generated by quercetin through auto-oxidation and/or redox cycling (superoxide, hydrogen peroxide, and the hydroxyl radical) because it was neither enhanced by iron, nor inhibited by desferroxamine B or catalase (alone or in combination with superoxide dismutase). Like vasoactive intestinal peptide, quercetin induced a secretory response that was inhibited by barium chloride and bumetanide, and which exhibited synergism with carbachol. Quercetin also stimulated a modest increase in intracellular cAMP levels and the phosphorylation of endogenous protein substrates for cAMP-dependent protein kinase. Thus, quercetin is a potent stimulus of colonocyte secretion that resembles secretagogues which act via a cAMP-mediated signaling pathway.

  8. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    PubMed

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Selective retension of active cells employing low centrifugal force at the medium change during suspension culture of Chinese hamster ovary cells producing tPA.

    PubMed

    Takagi, M; Ilias, M; Yoshida, T

    2000-01-01

    The effect of centrifugal force applied for cell separation at the medium change on the growth, metabolism and tissue plasminogen activator (tPA) productivity of Chinese hamster ovary (CHO) cells suspension culture was investigated. The viability of the precipitated cells increased exponentially as the centrifugal force decreased. However, the cell recovery was lower than 91% when centrifugal forces applied for 5 min was less than 67 x g. In cultures incubated for 474 h with 7 medium changes employing centrifugal forces ranging from 67 to 364 x g, a centrifugal force lower than 119 x g resulted in higher specific rates of growth, glucose consumption, and lactate and tPA production during the whole culture period. On the other hand, daily centrifugation at 67 to 537 x g without discarding the supernatant had no effect on the specific rates. The cultures inoculated with cells precipitated at a centrifugal force of 67 x g showed apparently higher specific rates of metabolism compared to those inoculated with cells in the supernatant. The cells in the supernatant and the precipitate obtained following centrifugation at 67 x g have average diameters of 15.5 and 17.4 microm, respectively. The intracellular contents of amino acids, especially nonessential amino acids, of the precipitated cells were markedly higher than those of the cells in the supernatant. These results indicate that large cells with high amino acid content and metabolic activity were selectively retained in the culture by means of centrifugation at low forces such as 67 x g. Consequently, application of a low centrifugal force is recommended for medium change in order to maintain higher specific productivity of suspended mammalian cells in perfusion culture.

  10. Rapid expansion of T cells: Effects of culture and cryopreservation and importance of short-term cell recovery.

    PubMed

    Sadeghi, Arian; Ullenhag, Gustav; Wagenius, Gunnar; Tötterman, Thomas H; Eriksson, Fredrik

    2013-06-01

    Successful cell therapy relies on the identification and mass expansion of functional cells for infusion. Cryopreservation of cells is an inevitable step in most cell therapies which also entails consequences for the frozen cells. This study assessed the impact of cryopreservation and the widely used protocol for rapid expansion of T lymphocytes. The effects on cell viability, immunocompetence and the impact on apoptotic and immunosuppressive marker expression were analyzed using validated assays. Cryopreservation of lymphocytes during the rapid expansion protocol did not affect cell viability. Lymphocytes that underwent mass expansion or culture in high dose IL-2 were unable to respond to PHA stimulation by intracellular ATP production immediately after thawing (ATP = 16 ± 11 ng/ml). However, their reactivity to PHA was regained within 48 hours of recovery (ATP = 356 ± 61 ng/ml). Analysis of mRNA levels revealed downregulation of TGF-β and IL-10 at all time points. Culture in high dose IL-2 led to upregulation of p73 and BCL-2 mRNA levels while FoxP3 expression was elevated after culture in IL-2 and artificial TCR stimuli. FoxP3 levels decreased after short-term recovery without IL-2 or stimulation. Antigen specificity, as determined by IFNγ secretion, was unaffected by cryopreservation but was completely lost after addition of high dose IL-2 and artificial TCR stimuli. In conclusion, allowing short-time recovery of mass expanded and cryopreserved cells before reinfusion could enhance the outcome of adoptive cell therapy as the cells regain immune competence and specificity.

  11. [gammadelta T cells stimulated by zoledronate kill osteosarcoma cells].

    PubMed

    Jiang, Hui; Xu, Qiang; Yang, Chao; Cao, Zhen-Guo; Li, Zhao-Xu; Ye, Zhao-Ming

    2010-12-01

    To investigate the cytotoxicity of human γδT cells from PBMCs stimulated by zoledronate against osteosarcoma cell line HOS in vitro and in vivo and evaluate the relavent pathways. The peripheral blood mononuclear cells (PBMCs)of healthy donors were stimulated by single dose zoledronate and cultured in the present of IL-2 for two weeks, analysising the percentage of γδT cells on a FACSCalibur cytometer.Study the cytotoxicity of γδT cells against the osteosarcoma line HOS using LDH release assay kit. Pre-treatment of γδT cells with anti-human γδTCR antibody, anti-human NKG2D antibody and concanamycin A to bolck the relavent pathways for evaluating the mechenisms of its cytotoxicity. In vivo, BALB/c mice were inoculated subcutaneously osteosarcoma cell HOS for developing hypodermal tumors. And they were randomized into two groups: unteated group, γδT cell therapy group. Tumor volume and weight of the two groups were compared. After two weeks of culture, γδT cells from zoledronate-stimulated PBMCs could reach (95±3)%. When the E:T as 6:1, 12:1, 25:1, 50:1, the percentage of osteosarcoma cell HOS killed by γδT cells was 26.8%, 31.5%, 37.8%, 40.9%, respectively.When anti-huma γδTCR antibody, anti-human NKG2D antibody and concanamycin A blocked the relavent pathways, the percentage was 32.3%, 4.7%, 16.7% ( E:T as 25:1), respectively. In vivo, the tumor inhibition rate of the group of γδT cell therapy was 42.78%. γδT cells derived from PBMCs stimulated by zoledronate can acquired pure γδT cells. And they show strong cytoxicity against osteosarcoma cell line HOS in vitro and in vivo.

  12. Profound re-organization of cell surface proteome in equine retinal pigment epithelial cells in response to in vitro culturing.

    PubMed

    Szober, Christoph M; Hauck, Stefanie M; Euler, Kerstin N; Fröhlich, Kristina J H; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A

    2012-10-31

    The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.

  13. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution.

    PubMed

    Tol, Marc J; van der Lienden, Martijn J C; Gabriel, Tanit L; Hagen, Jacob J; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E; Verhoeven, Arthur J; Overkleeft, Hermen; Aerts, Johannes M; Argmann, Carmen A; van Eijk, Marco

    2018-01-01

    In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of "master lysosomal regulators". Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members-TFEB, TFE3 and MITF-from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results.

  14. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria.

    PubMed

    Marin, M L; Lee, J H; Murtha, J; Ustunol, Z; Pestka, J J

    1997-11-01

    When used in commercial fermented dairy products, bifidobacteria may enhance immunity by stimulating cytokine secretion by leukocytes. To assess whether interaction between bifidobacteria and leukocytes promote cytokine production, we cultured RAW 264.7 cells (macrophage model) and EL-4.IL-2 thymoma cells (helper T-cell model) in the presence of 14 representative strains of heat-killed bifidobacteria. In unstimulated RAW 264.7 cells, all bifidobacteria induced pronounced increases (up to several hundred-fold) in the production of tumor necrosis factor-alpha compared with that of controls. Interleukin-6 production by unstimulated cells also increased significantly, but less than did tumor necrosis factor-alpha. Upon concurrent stimulation of RAW 264.7 cells with lipopolysaccharide, production of tumor necrosis factor-alpha and interleukin-6 were both enhanced between 1.5- to 5.8-fold and 4.7- to 7.9-fold, respectively, when cultured with 10(8) bifidobacteria/ml. In unstimulated EL-4.IL-2 cells, bifidobacteria had no effect on the production of interleukin-2 or interleukin-5. Upon stimulation of EL-4.IL-2 with phorbol-12-myristate-13-acetate, there were variable increases in interleukin-2 secretion (up to 2.4-fold for 10(6) Bifidobacterium Bf-1/ml) and interleukin-5 secretion (up to 4.6-fold for 10(8) B. adolescentis M101-4). The results indicated that, even when variations among strains were considered, direct interaction of most bifidobacteria with macrophages enhanced cytokine production, but the effects on cytokine production by the T-cell model were less marked. Interestingly, the 4 bifidobacteria strains used commercially for diary foods showed the greatest capacity for cytokine stimulation. The in vitro approaches employed here should be useful in future characterization of the effects of bifidobacteria on gastrointestinal and systemic immunity.

  15. Setting the proportion of CD4+ and CD8+ T-cells co-cultured with canine macrophages infected with Leishmania chagasi.

    PubMed

    Viana, Kelvinson Fernandes; Aguiar-Soares, Rodrigo Dian Oliveira; Ker, Henrique Gama; Resende, Lucilene Aparecida; Souza-Fagundes, Elaine Maria; Dutra, Walderez Ornelas; Fujiwara, Ricardo Toshio; da Silveira-Lemos, Denise; Sant'Ana, Rita de Cássia Oliveira; Wardini, Amanda Brito; Araújo, Márcio Sobreira Silva; Martins-Filho, Olindo Assis; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro

    2015-07-30

    New methods for evaluating the canine immune system are necessary, not only to monitor immunological disorders, but also to provide insights for vaccine evaluations and therapeutic interventions, reducing the costs of assays using dog models, and provide a more rational way for analyzing the canine immune response. The present study intended to establish an in vitro toll to assess the parasitological/immunological status of dogs, applicable in pre-clinical trials of vaccinology, prognosis follow-up and therapeutics analysis of canine visceral leishmaniasis. We have evaluated the performance of co-culture systems of canine Leishmania chagasi-infected macrophages with different cell ratios of total lymphocytes or purified CD4(+) and CD8(+) T-cells. Peripheral blood mononuclear cells from uninfected dogs were used for the system set up. Employing the co-culture systems of L. chagasi-infected macrophages and purified CD4(+) or CD8(+) T-cell subsets we observed a microenvironment compatible with the expected status of the analyzed dogs. In this context, it was clearly demonstrated that, at this selected T-cell:target ratio, the adaptive immune response of uninfected dogs, composed by L. chagasi-unprimed T-cells was not able to perform the in vitro killing of L. chagasi-infected macrophages. Our data demonstrated that the co-culture system with T-cells from uninfected dogs at 1:5 and 1:2 ratio did not control the infection, yielding to patent in vitro parasitism (≥ 80%), low NO production (≤ 5 μM) and IL-10 modulated (IFN-γ/IL-10 ≤ 2) immunological profile in vitro. CD4(+) or CD8(+) T-cells at 1:5 or 1:2 ratio to L. chagasi-infected macrophages seems to be ideal for in vitro assays. This co-culture system may have great potential as a canine immunological analysis method, as well as in vaccine evaluations, prognosis follow-up and therapeutic interventions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Zoledronate Triggers Vδ2 T Cells to Destroy and Kill Spheroids of Colon Carcinoma: Quantitative Image Analysis of Three-Dimensional Cultures.

    PubMed

    Varesano, Serena; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    New successful anti-cancer strategies are based on the stimulation of immune reaction against tumors: however, preclinical testing of such treatments is still a challenge. To improve the screening of anti-cancer drugs, three-dimensional (3D) culture systems, including spheroids, have been validated as preclinical models. We propose the spheroid 3D system to test anti-tumor drug-induced immune responses. We show that colorectal carcinoma (CRC) spheroids, generated with the epithelial growth factor (EGF), can be co-cultured with Vδ2 T cells to evaluate the anti-tumor activity of these effector lymphocytes. By computerized image analysis, the precise and unbiased measure of perimeters and areas of tumor spheroids is achievable, beside the calculation of their volume. CRC spheroid size is related to ATP content and cell number, as parameters for cell metabolism and proliferation; in turn, crystal violet staining can check the viability of cells inside the spheroids to detect tumor killing by Vδ2 T cells. In this 3D cultures, we tested (a) zoledronate that is known to activate Vδ2 T cells and (b) the therapeutic anti-EGF receptor humanized antibody cetuximab that can elicit the antibody-dependent cytotoxicity of tumor cells by effector lymphocytes. Zoledronate triggers Vδ2 T cells to kill and degrade CRC spheroids; we detected the T-cell receptor dependency of zoledronate effect, conceivably due to the recognition of phosphoantigens produced as a drug effect on target cell metabolism. In addition, cetuximab triggered Vδ2 T lymphocytes to exert the antibody-dependent cellular cytotoxicity of CRC spheroids. Finally, the system reveals differences in the sensitivity of CRC cell lines to the action of Vδ2 T lymphocytes and in the efficiency of anti-tumor effectors from distinct donors. A limitation of this model is the absence of cells, including fibroblasts, that compose tumor microenvironment and influence drug response. Nevertheless, the system can be improved by

  17. Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk

    PubMed Central

    Charron, Lauren; Doctrinal, Axelle; Choileain, Siobhan Ni; Astier, Anne L.

    2015-01-01

    T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation. PMID:25787182

  18. Automated Expansion of Primary Human T Cells in Scalable and Cell-Friendly Hydrogel Microtubes for Adoptive Immunotherapy.

    PubMed

    Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo

    2018-05-11

    Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient Culture of Human Naïve and Memory B cells for Use as Antigen-presenting Cells

    PubMed Central

    Su, Kuei-Ying; Watanabe, Akiko; Yeh, Chen-Hao; Kelsoe, Garnett; Kuraoka, Masayuki

    2016-01-01

    The ability to culture and expand B cells in vitro has become a useful tool for studying human immunity. A limitation of current methods for human B-cell culture is the capacity to support mature B-cell proliferation. We have developed a culture method to support the efficient activation and proliferation of both naïve and memory human B cells. This culture supports extensive B-cell proliferation, with approximately 103-fold increases following 8 days in culture, and 106-fold increases when cultures are split and cultured for 8 more days. In culture, a significant fraction of naïve B cells undergo isotype switching and differentiate into plasmacytes. Culture-derived (CD) B cells are readily cryopreserved, and when recovered, retain their ability to proliferate and differentiate. Significantly, proliferating CD B cells express high levels of MHCII, CD80, and CD86. CD B cells act as APCs and present both alloantigens and microbial antigens to T cells. We are able to activate and expand antigen-specific memory B cells; these cultured cells are highly effective in presenting antigen to T cells. We have characterized the TCR repertoire of rare antigen-specific CD4+ T cells that proliferated in response to tetanus toxoid (TT) presented by autologous CD B cells. TCR Vβ usage by TT-activated CD4+ T cells differs from both resting and unspecifically activated CD4+ T cells. Moreover, we found that TT-specific TCR Vβ usage by CD4+ T cells was substantially different between donors. This culture method provides a platform for studying the BCR and TCR repertoires within a single individual. PMID:27815447

  20. HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution

    PubMed Central

    Tol, Marc J.; van der Lienden, Martijn J.C.; Gabriel, Tanit L.; Hagen, Jacob J.; Scheij, Saskia; Veenendaal, Tineke; Klumperman, Judith; Donker-Koopman, Wilma E.; Verhoeven, Arthur J.; Overkleeft, Hermen; Aerts, Johannes M.; Argmann, Carmen A.; van Eijk, Marco

    2018-01-01

    ABSTRACT In recent years, the lysosome has emerged as a highly dynamic, transcriptionally regulated organelle that is integral to nutrient-sensing and metabolic rewiring. This is coordinated by a lysosome-to-nucleus signaling nexus in which MTORC1 controls the subcellular distribution of the microphthalmia-transcription factor E (MiT/TFE) family of “master lysosomal regulators”. Yet, despite the importance of the lysosome in cellular metabolism, the impact of traditional in vitro culture media on lysosomal dynamics and/or MiT/TFE localization has not been fully appreciated. Here, we identify HEPES, a chemical buffering agent that is broadly applied in cell culture, as a potent inducer of lysosome biogenesis. Supplementation of HEPES to cell growth media is sufficient to decouple the MiT/TFE family members–TFEB, TFE3 and MITF–from regulatory mechanisms that control their cytosolic retention. Increased MiT/TFE nuclear import in turn drives the expression of a global network of lysosomal-autophagic and innate host-immune response genes, altering lysosomal dynamics, proteolytic capacity, autophagic flux, and inflammatory signaling. In addition, siRNA-mediated MiT/TFE knockdown effectively blunted HEPES-induced lysosome biogenesis and gene expression profiles. Mechanistically, we show that MiT/TFE activation in response to HEPES requires its macropinocytic ingestion and aberrant lysosomal storage/pH, but is independent of MTORC1 signaling. Altogether, our data underscore the cautionary use of chemical buffering agents in cell culture media due to their potentially confounding effects on experimental results. PMID:29455584

  1. Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody-Activated Chimeric Antigen Receptor-Modified T Cells.

    PubMed

    Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M

    2017-07-01

    The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    NASA Astrophysics Data System (ADS)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  3. INCIDENCE AND DETECTION OF PLEUROPNEUMONIA-LIKE ORGANISMS IN CELL CULTURES BY FLUORESCENT ANTIBODY AND CULTURAL PROCEDURES1

    PubMed Central

    Barile, Michael F.; Malizia, Walter F.; Riggs, Donald B.

    1962-01-01

    Barile, Michael F. (National Institutes of Health, Bethesda, Md.), Walter F. Malizia, and Donald B. Riggs. Incidence and detection of pleuropneumonia-like organisms in cell cultures by fluorescent antibody and cultural procedures. J. Bacteriol. 84:130–136. 1962—A total of 102 tissue-cell cultures from 17 separate laboratories was examined for pleuropneumonia-like organisms (PPLO) by the fluorescent antibody and cultural procedures. PPLO were isolated from 48 of the 49 tissue-cell cultures found positive for PPLO by the fluorescent antibody procedure, and results of the two procedures agreed in 101 of the 102 (99%) cases. PPLO were isolated from none of 10 primary-cell cultures prepared from six animal species and from 48 of 92 (52%) continuous-cell cultures prepared from eight animal species. Cells grown in media containing antibiotics were more frequently contaminated with PPLO (72%) than cells grown in antibiotic-free media (7%). Cultures (91%) from tissue-culture-producing laboratories and cultures (76%) used for propagation of microorganisms were contaminated with PPLO, although none used for tissue-culture metabolic studies was contaminated. In addition, our findings support the view that PPLO contamination of cell cultures is probably owing to bacterial contaminants which revert to L forms in the presence of antibiotics. Images PMID:13865001

  4. Heme oxygenase-1 protects INF-gamma primed endothelial cells from Jurkat T-cell adhesion.

    PubMed

    Du, D; Chang, S; Chen, B; Zhou, H; Chen, Z K

    2007-12-01

    The heme oxygenase-1 (HO-1) system is associated with the rate-limiting step of conversion of heme, one of the most critical roles in cytoprotective mechanisms. Our study investigated its potential role in protection of endothelial cells from T cells. The recombinant plasmid pcDNA3-HO-1 was transfected into endothelial cells. Indirect fluorescent staining was used to examine the expression of HO-1 protein. Then endothelial cells primed by INF-gamma were mixed in culture with Jurkat T cells labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). The number of adhesive Jurkat T cells was determined using FACS to evaluate the adhesion effect. After being cultured with endothelial cells, the cell cycle of Jurkat T cells was detected using FACS. Expression of HO-1 on endothelial cells conferred significant protection against Jurkat T-cell-mediated adhesion. The rate of Jurkat T-cell adhesions was reduced to 19.06%, in contrast with 31.42% in the control group (P<.05). After using ZnPP, an inhibitor of HO-1, the rate of Jurkat T-cell adhesion recovered to 29.08%. The binding activities between endothelial cells and Jurkat T cells was blocked by HO-1 expression. The proliferation of Jurkat T cells was inhibited after culture with endothelial cells, which had been transfected with HO-1, which blocked cell cycle entry of T cells. More than 60% of Jurkat T cells remained in G0/G1 compared with 40% among the control group. HO-1 directly protected endothelial cells primed by INF-gamma from Jurkat T cells and down-regulated the expression of HLA-DR on the surface of endothelial cells. These results indicated that transgenic expression of HO-1 may be useful to prevent lymphocytes from responding to endothelial cells.

  5. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells

    PubMed Central

    Witkover, Aviva; Tanaka, Yuetsu; Fields, Paul; Bangham, Charles R. M.

    2016-01-01

    There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease. PMID:27893842

  6. Osteogenic differentiation is inhibited and angiogenic expression is enhanced in MC3T3-E1 cells cultured on three-dimensional scaffolds.

    PubMed

    Jarrahy, Reza; Huang, Weibiao; Rudkin, George H; Lee, Jane M; Ishida, Kenji; Berry, Micah D; Sukkarieh, Modar; Wu, Benjamin M; Yamaguchi, Dean T; Miller, Timothy A

    2005-08-01

    Osteogenic differentiation of osteoprogenitor cells in three-dimensional (3D) in vitro culture remains poorly understood. Using quantitative real-time RT-PCR techniques, we examined mRNA expression of alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) in murine preosteoblastic MC3T3-E1 cells cultured for 48 h and 14 days on conventional two-dimensional (2D) poly(l-lactide-co-glycolide) (PLGA) films and 3D PLGA scaffolds. Differences in VEGF secretion and function between 2D and 3D culture systems were examined using Western blots and an in vitro Matrigel-based angiogenesis assay. Expression of both alkaline phosphatase and osteocalcin in cells cultured on 3D scaffolds was significantly downregulated relative to 2D controls in 48 h and 14 day cultures. In contrast, elevated levels of VEGF expression in 3D culture were noted at every time point in short- and long-term culture. VEGF protein secretion in 3D cultures was triple the amount of secretion observed in 2D controls. Conditioned medium from 3D cultures induced an enhanced level of angiogenic activity, as evidenced by increases in branch points observed in in vitro angiogenesis assays. These results collectively indicate that MC3T3-E1 cells commit to osteogenic differentiation at a slower rate when cultured on 3D PLGA scaffolds and that VEGF is preferentially expressed by these cells when they are cultured in three dimensions.

  7. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    PubMed

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  8. Hepatitis C Virus Induces Regulatory T Cells by Naturally Occurring Viral Variants to Suppress T Cell Responses

    PubMed Central

    Cusick, Matthew F.; Schiller, Jennifer J.; Gill, Joan C.; Eckels, David D.

    2011-01-01

    Regulatory T cell markers are increased in chronically infected individuals with the hepatitis C virus (HCV), but to date, the induction and maintenance of Tregs in HCV infection has not been clearly defined. In this paper, we demonstrate that naturally occurring viral variants suppress T cell responses to cognate NS3358-375 in an antigen-specific manner. Of four archetypal variants, S370P induced regulatory T cell markers in comparison to NS3358-375-stimulated CD4 T cells. Further, the addition of variant-specific CD4 T cells back into a polyclonal culture in a dose-dependent manner inhibited the T cell response. These results suggest that HCV is able to induce antigen-specific regulatory T cells to suppress the antiviral T cell response in an antigen-specific manner, thus contributing to a niche within the host that could be conducive to HCV persistence. PMID:21197453

  9. Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    PubMed

    Liang, Dongchun; Woo, Jeong-Im; Shao, Hui; Born, Willi K; O'Brien, Rebecca L; Kaplan, Henry J; Sun, Deming

    2018-01-01

    Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.

  10. [Comparative immunophenotypic characterization of human and monkey permanent lymphoid culture cells].

    PubMed

    Agrba, V Z; Lapin, B A; Medvedeva, N M; Ignatova, I E; Karal-Ogly, D D

    2007-01-01

    The aim of the study was to define the comparative immunophenotypic characteristics ofwidely spread lymphoid cell cultures, derived from Burkett's lymphoma named as Raji and P3HR-1 in comparison with analogous monkey cultures. It has been shown that P3HR-1 culture consists of similar type cells - activated B-lymphocytes CD23 with k phenotype, which demonstrates its monoclonality. Raji culture includes cells with markers of immature B-lymphocytes CD10 and CD24, as well as elements expressing CD10 antigens. T-cell markers were found in none of the cultures. In contrast to human cells, monkey lymphoid culture expressed both B- and T-cell markers. Moreover, in one of them, obtained from a green monkey, T-cells of suppressor type (CD8) prevailed. The immunophenotypic characteristics of primate lymphoid cell cultures, revealed by the study, are of great importance for their proper application to medical and biological studies.

  11. The state of T cells before cryopreservation: Effects on post-thaw proliferation and function.

    PubMed

    Luo, Ying; Wang, Peng; Liu, Hui; Zhu, Zhengyan; Li, Chenglong; Gao, Yingtang

    2017-12-01

    We aim to assess the effect of the state of T cells before cryopreservation on the post-thaw proliferative capacity, phenotype and functional response. Peripheral blood mononuclear cells (PBMCs) were isolated from a hepatocellular carcinoma (HCC) patient, and the T cells were frozen during cell culture according to our experimental design. After a period of re-culture, the proliferative capacity of the cryopreserved cells, the expression of T cell surface markers and the secretion of IFN-γ and IL-10 were assayed. There was >90% cell viability after thaw in every group. Lymphocytes cryopreserved at day 4, 8 or 12 during the cell culture were allowed to recover for 24 h, whereas lymphocytes cryopreserved while freshly isolated were allowed to recover for 72 h. After the period of re-culture, cryopreservation at day 4, 8 or 12 during T cell culture was not found to alter the T cell subpopulation. The proportions of NKT and Treg cells were unchanged when cells were cryopreserved at day 12 during T cell culture. IFN-γ secretion was not impacted by cryopreservation, and IL-10 secretion was significantly decreased when cells were cryopreserved at day 8 or 12 during T cell culture. The state of T cells before cryopreservation has effects on the post-thaw proliferation capacity, the phenotype and the secretion of IFN-γ and IL-10. Cryopreservation of lymphocytes at day 8 or 12 during the cell culture may be the best choice for T cell immunotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Three dimensional spheroid cell culture for nanoparticle safety testing.

    PubMed

    Sambale, Franziska; Lavrentieva, Antonina; Stahl, Frank; Blume, Cornelia; Stiesch, Meike; Kasper, Cornelia; Bahnemann, Detlef; Scheper, Thomas

    2015-07-10

    Nanoparticles are widely employed for many applications and the number of consumer products, incorporating nanotechnology, is constantly increasing. A novel area of nanotechnology is the application in medical implants. The widespread use of nanoparticles leads to their higher prevalence in our environment. This, in turn, raises concerns regarding potential risks to humans. Previous studies have shown possible hazardous effects of some nanoparticles on mammalian cells grown in two-dimensional (2D) cultures. However, 2D in vitro cell cultures display several disadvantages such as changes in cell shape, cell function, cell responses and lack of cell-cell contacts. For this reason, the development of better models for mimicking in vivo conditions is essential. In the present work, we cultivated A549 cells and NIH-3T3 cells in three-dimensional (3D) spheroids and investigated the effects of zinc oxide (ZnO-NP) and titanium dioxide nanoparticles (TiO2-NP). The results were compared to cultivation in 2D monolayer culture. A549 cells in 3D cell culture formed loose aggregates which were more sensitive to the toxicity of ZnO-NP in comparison to cells grown in 2D monolayers. In contrast, NIH-3T3 cells showed a compact 3D spheroid structure and no differences in the sensitivity of the NIH-3T3 cells to ZnO-NP were observed between 2D and 3D cultures. TiO2-NP were non-toxic in 2D cultures but affected cell-cell interaction during 3D spheroid formation of A549 and NIH-3T3 cells. When TiO2-NP were directly added during spheroid formation in the cultures of the two cell lines tested, several smaller spheroids were formed instead of a single spheroid. This effect was not observed if the nanoparticles were added after spheroid formation. In this case, a slight decrease in cell viability was determined only for A549 3D spheroids. The obtained results demonstrate the importance of 3D cell culture studies for nanoparticle safety testing, since some effects cannot be revealed in 2D

  13. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodega, G.; Forcada, I.; Suarez, I.

    This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neithermore » were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells.« less

  14. Increased NIH 3T3 fibroblast functions on cell culture dishes which mimic the nanometer fibers of natural tissues.

    PubMed

    Bhardwaj, Garima; Webster, Thomas J

    2015-01-01

    Traditional flat tissue cell culture dishes have consisted of polystyrene treated with plasma gases for growing, subculturing, and studying cell behavior in vitro. However, increasingly it has been observed that mimicking natural tissue properties (such as chemistry, three-dimensional structure, mechanical properties, etc) in vitro can lead to a better correlation of in vitro to in vivo cellular functions. The following studies compared traditional NIH 3T3 fibroblasts' functions on XanoMatrix scaffolds to standard tissue culture polystyrene. Results found significantly greater fibroblast adhesion and proliferation on XanoMatrix cell culture dishes which mimic the nanoscale geometry of natural tissue fibers with true, tortuous fiber beds creating a robust, consistent, and versatile growth platform. In this manner, this study supports that cell culture dishes which mimic features of natural tissues should be continually studied for a wide range of applications in which mimicking natural cellular functions are important.

  15. Cytokines affecting CD4+T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4+T regulatory cells.

    PubMed

    Nomura, Masaru; Hodgkinson, Suzanne J; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2017-06-01

    CD4 + T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4 + T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4 + T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4 + T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4 + T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4 + T cells. Tolerant CD4 + CD25 + T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4 + CD25 + T cells to third-party Lewis. Tolerant CD4 + CD25 + T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4 + CD25 + T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Correlation between thyroidal and peripheral blood total T cells, CD8+ T cells, and CD8+ T- regulatory cells and T-cell reactivity to calsequestrin and collagen XIII in patients with Graves' ophthalmopathy.

    PubMed

    Al-Ansari, Farah; Lahooti, Hooshang; Stokes, Leanne; Edirimanne, Senarath; Wall, Jack

    2018-05-22

    Purpose/aim of the study: Graves' ophthalmopathy (GO) is closely related to the thyroid autoimmune disorder Graves' disease. Previous studies have suggested roles for thyroidal CD8 +  T cells and autoimmunity against calsequestrin-1 (CASQ)-1 in the link between thyroidal and orbital autoimmune reactions in GO. A role for autoimmunity against CollXIII has also been suggested. In this study, we aimed to investigate correlations between some thyroidal and peripheral blood T-cell subsets and thyroidal T-cell reactivity against CASQ1 and CollXIII in patients with GO. Fresh thyroid tissues were processed by enzyme digestion and density gradient to isolate mononuclear cells (MNCs). Peripheral blood MNCs were also isolated using density gradient. Flow-cytometric analysis was used to identify the various T-cell subsets. T -cell reactivity to CASQ1 and CollXIII was measured by a 5-day culture of the MNCs and BrdU uptake method. We found a positive correlation between thyroidal CD8 +  T cells and CD8 +  T-regulatory (T-reg) cells in patients with GO. Thyroidal T cells from two out of the three patients with GO tested (66.7%) showed a positive response to CASQ1, while thyroidal T cells from none of the six Graves' Disease patients without ophthalmopathy (GD) tested showed a positive response to this antigen. Thyroidal T cells from these patient groups however, showed no significant differences in their response to CollXIII. Our observations provide further evidence for a possible role of thyroidal CD8 +  T cells, CD8 +  T-reg cells and the autoantigen CASQ1 in the link between thyroidal and orbital autoimmune reactions of GO.

  17. Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines

    PubMed Central

    Liévin-Le Moal, Vanessa

    2013-01-01

    SUMMARY Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses. PMID:24006470

  18. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    PubMed

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The effect of interleukin (IL)-21 and CD4+ CD25++ T cells on cytokine production of CD4+ responder T cells in patients with myasthenia gravis.

    PubMed

    Alahgholi-Hajibehzad, M; Durmuş, H; Aysal, F; Gülşen-Parman, Y; Oflazer, P; Deymeer, F; Saruhan-Direskeneli, G

    2017-11-01

    Impairment of the suppressive function of regulatory T (T reg ) cells has been reported in myasthenia gravis (MG). In this study, cytokine-related mechanisms that may lead to the defect of T reg were investigated in patients with anti-acetylcholine receptor antibody-positive MG (AChR + MG). Proliferation and cytokine production of responder T (T resp ) cells in response to polyclonal activation were measured in a suppression assay. The effect of interleukin (IL)-21 on suppression was evaluated in vitro in co-culture. IL-21 increased the proliferation of T resp cells in T resp /T reg co-cultures. T resp cells from patients with MG secreted significantly lower levels of IL-2. In patients with MG, IL-2 levels did not change with the addition of T reg to cultures, whereas it decreased significantly in controls. In T resp /T reg co-cultures, IL-4, IL-6 and IL-10 production increased in the presence of T reg in patients. Interferon (IFN)-γ was decreased, whereas IL-17A was increased in both patient and control groups. IL-21 inhibited the secretion of IL-4 in MG and healthy controls (HC), and IL-17A in HC only. The results demonstrated that IL-21 enhances the proliferation of T resp cells in the presence of T reg . An effect of IL-21 mainly on T resp cells through IL-2 is implicated. © 2017 British Society for Immunology.

  20. Bimodal ex vivo expansion of T cells from patients with head and neck squamous cell carcinoma: a prerequisite for adoptive cell transfer.

    PubMed

    Junker, Niels; Andersen, Mads Hald; Wenandy, Lynn; Dombernowsky, Sarah Louise; Kiss, Katalin; Sørensen, Christian Hjort; Therkildsen, Marianne Hamilton; Von Buchwald, Christian; Andersen, Elo; Straten, Per Thor; Svane, Inge Marie

    2011-08-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has proven effective in metastatic melanoma and should therefore be explored in other types of cancer. The aim of this study was to examine the feasibility of potentially expanding clinically relevant quantities of tumor-specific T-cell cultures from TIL from patients with head and neck squamous cell carcinoma (HNSCC) using a more rapid expansion procedure compared with previous HNSCC studies. In a two-step expansion process, initially TIL bulk cultures were established from primary and recurrent HNSCC tumors in high-dose interleukin (IL)-2. Secondly, selected bulk cultures were rapidly expanded using anti-CD3 antibody, feeder cells and high-dose IL-2. T-cell subsets were phenotypically characterized using flow cytometry. T-cell receptor (TCR) clonotype mapping was applied to examine clonotype dynamics during culture. Interferon (INF)-γ detection by Elispot and Cr(51) release assay determined the specificity and functional capacity of selected TIL pre- and post-rapid expansion. TIL bulk cultures were expanded in 80% of the patients included, showing tumor specificity in 60% of the patients. Rapid expansions generated up to 3500-fold expansion of selected TIL cultures within 17 days. The cultures mainly consisted of T-effector memory cells, with varying distributions of CD8(+) and CD4(+) subtypes both among cultures and patients. TCR clonotype mapping demonstrated oligoclonal expanded cultures, ranging from approximately 10 to 30 T-cell clonotypes. TIL from large-scale rapid expansions maintained functional capacity, and contained tumor-specific T cells. The procedure is feasible for expansion of TIL from HNSCC, ensuring clinically relevant expansion folds within 7 weeks. The cell culture kinetics and phenotypes of the TIL resemble previously published results on TIL from melanoma, setting the stage for clinical testing of this promising treatment strategy for patients with HNSCC.

  1. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure.

    PubMed

    Akahane, M; Shimizu, T; Kira, T; Onishi, T; Uchihara, Y; Imamura, T; Tanaka, Y

    2016-11-01

    To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis.Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569-576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1. © 2016 Akahane et al.

  2. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset.

    PubMed

    Gualde, N; Goodwin, J S

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  3. Direct ex vivo detection of HLA-DR3-restricted cytomegalovirus- and Mycobacterium tuberculosis-specific CD4+ T cells.

    PubMed

    Bronke, Corine; Palmer, Nanette M; Westerlaken, Geertje H A; Toebes, Mireille; van Schijndel, Gijs M W; Purwaha, Veenu; van Meijgaarden, Krista E; Schumacher, Ton N M; van Baarle, Debbie; Tesselaar, Kiki; Geluk, Annemieke

    2005-09-01

    In order to detect epitope-specific CD4+ T cells in mycobacterial or viral infections in the context of human class II major histocompatibility complex protein human leukocyte antigen (HLA)-DR3, two HLA-DR3 tetrameric molecules were successfully produced. One contained an immunodominant HLA-DR3-restricted T-cell epitope derived from the 65-kDa heat-shock protein of Mycobacterium tuberculosis, peptide 1-13. For the other tetramer, we used an HLA-DR3-restricted T-cell epitope derived from cytomegalovirus (CMV) pp65 lower matrix protein, peptide 510-522, which induced high levels of interferon (IFN)-gamma-producing CD4+ T cells in three of four HLA-DR3-positive CMV-seropositive individuals up to 0.84% of CD4+ T cells by intracellular cytokine staining. In peripheral blood mononuclear cells from M. tuberculosis-exposed, Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated, or CMV-seropositive individuals, we were able to directly detect with both tetramers epitope-specific T cells up to 0.62% and 0.45% of the CD4+ T-cell population reactive to M. tuberculosis and CMV, respectively. After a 6-day culture with peptide p510-522, the frequency of CMV-specific tetramer-binding T cells was expanded up to 9.90% tetramer+ CFSElow (5,6-carboxyfluorescein diacetate succinimidyl ester) cells within the CD4+ T-cell population, further confirming the specificity of the tetrameric molecules. Thus, HLA-DR3/peptide tetrameric molecules can be used to investigate HLA-DR3-restricted antigen-specific CD4+ T cells in clinical disease or after vaccination.

  4. FoxP3+CD4+CD25+ T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease

    PubMed Central

    Kelsen, J; Agnholt, J; Hoffmann, H J; Rømer, J L; Hvas, C L; Dahlerup, J F

    2005-01-01

    CD4+CD25+ regulatory T cells (Tregs) are involved in the maintenance of peripheral tolerance and ensure a balanced immune response competent of fighting pathogens and at the same time recognizing commensals as harmless. This feature is lost in Crohn's disease (CD). The forkhead/winged helix transcription factor FoxP3 is a master gene for Treg function and defects in the FoxP3 gene lead to a clinical picture similar to inflammatory bowel disease (IBD). Murine colitis can be cured by adoptive transfer of Tregs and ex vivo-generated gut-specific Tregs represent an attractive option for therapy in CD. Thus, defective Tregs could contribute to the development of CD. We cultured biopsies of colonic mucosa in the presence of high concentrations of interleukin (IL)-2 and IL-4 to overcome the anergic nature of naturally occurring CD4+CD25+ Tregs in the mucosa. We investigated the expression of FoxP3 and regulatory potential of gut-derived CD4+CD25+ T cells cultured from patients with CD and healthy individuals. The FoxP3 expression was analysed by reverse transcriptase polymerase chain reaction (RT-PCR), and the suppressive effect of FoxP3+CD4+CD25+ T cells on proliferation and cytokine production of autologous CD4+ T cells was assessed by flow cytometry. Cultured gut-derived T cells with CD4+CD25+ phenotype expressed FoxP3 and were able as the freshly isolated Tregs from peripheral blood to suppress proliferation and cytokine production of autologous CD4+ T cells. Thus, we demonstrate that FoxP3+CD4+CD25+ T cells with regulatory properties can be propagated in vitro from inflamed mucosa of CD patients, which may be of interest in adoptive immunotherapy. PMID:16045746

  5. Induction of suppression through human T cell interactions.

    PubMed

    Lydyard, P M; Hayward, A R

    1980-02-01

    Concanavalin A (Con A) activated T cells, devoid of cells bearing Fc receptors for IgG (T - TG) help human B lymphocytes to differentiate into plasma cells (PC) in response to pokeweed mitogen (PWM). PC differentiation is reduced when adult T cells are added to such cultures. The radiosensitivity of suppression and the radioresistance of help enabled us to show that adult T cells include a suppressor-precursor which is activated by irradiated Con A-precultured T cells. Newborn T cells which include active suppressors, are both poor stimulators of suppressor-precursors and poor helpers of B cells. Our results suggest that at least two cells may mediate Con A-induced suppression, one which suppresses directly and is radiosensitive and another which is radioresistant and stimulates suppressor-precursors in a target population of T cells.

  6. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  7. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    PubMed

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  8. Induction of suppressor cells from peripheral blood T cells by 15-hydroperoxyeicosatetraenoic acid (15-HPETE).

    PubMed

    Gualde, N; Rigaud, M; Goodwin, J S

    1985-11-01

    15-hydroperoxyeicosetetraenoic acid (15-HPETE), a lipoxygenase metabolite of arachidonic acid, inhibited polyclonal IgG and IgM production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood mononuclear cells, whereas 15-hydroxyeicosetetraenoic acid (15-HETE) had little effect in this system. T cells preincubated for 18 hr with 15-HPETE caused substantial inhibition of IgG and IgM production of fresh, autologous B and T cells stimulated by PWM. The suppressive effect of the 15-HPETE-treated cells was lost if the cells were irradiated before the PWM culture, but not by treatment with mitomycin C. The suppressive effect was also lost if OKT8+ T cells were removed after, but not before, preincubation of the T cells with 15-HPETE. OKT8- T cells incubated with 15-HPETE for 18 hr showed a large increase in the percentage of cells staining with directly fluoresceinated Leu-2, another marker for suppressor cells. Thus, 15-HPETE induces functional and phenotypic suppressor cells from resting human peripheral blood T cells.

  9. Reversal of infectious mononucleosis-associated suppressor T cell activity by D-mannose

    PubMed Central

    1983-01-01

    Epstein-Barr virus-induced infectious mononucleosis (IM) is associated with the activation of suppressor T lymphocytes that profoundly inhibit immunoglobulin (Ig) production in vitro. We have examined the nature of signals operating in the interaction between IM suppressor T cells and their targets, and explored the possibility that a lectin-like receptor molecule and its specific sugar might provide specificity to this interaction. When D-mannose or some of its derivatives, including alpha- methyl-D-mannoside, mannose-6-phosphate, and mannan, were added to suppressed cultures containing IM T lymphocytes and pokeweed mitogen (PWM)-stimulated normal mononuclear cells, a significant enhancement of Ig production was observed. These sugars had little or no effect on Ig production by the PWM-stimulated responder cells alone and thus the enhanced Ig production could be attributed to the reversal of suppression in the co-cultures by these sugars. This was further confirmed by the observation that the sugars were effective only if present during the first 24 h of culture, a time when IM suppressor T cells exert their principal effect. The effect of sugars on Ig production by suppressed cultures was similar to that achieved by decreasing by about fourfold the number of IM T cells in culture. The effect of the sugars is unlikely to represent a form of nonspecific toxicity, since inhibited cultures become responders in the presence of the sugar. Furthermore, toxicity restricted to the suppressor T cells is unlikely, since preincubation of the T cells with the sugars did not reduce their subsequent ability to suppress in secondary indicator cultures. In addition, there was no correlation between the effect of the sugars on T cell proliferation and their effect on T cell-mediated suppression. The reversal of suppression by sugars was dose dependent and demonstrated stereo-specificity in that L-mannose was without effect while D-mannose reversed suppression. These data indicate

  10. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less

  11. An approach to the unification of suppressor T cell circuits: a simplified assay for the induction of suppression by T cell-derived, antigen-binding molecules (T-ABM).

    PubMed

    Chue, B; Ferguson, T A; Beaman, K D; Rosenman, S J; Cone, R E; Flood, P M; Green, D R

    1989-01-01

    A system is presented in which the in vitro response to sheep red blood cells (SRBC) can be regulated using antigenic determinants coupled to SRBC and T cell-derived antigen-binding molecules (T-ABM) directed against the coupled determinants. T suppressor-inducer factors (TsiF's) are composed of two molecules, one of which is a T-ABM and one which bears I-J determinants (I-J+ molecule). Using two purified T-ABM which have not previously been shown to have in vitro activity, we produced antigen-specific TsiF's which were capable of inducing the suppression of the anti-SRBC response. Suppression was found to require both the T-ABM and the I-J+ molecule, SRBC conjugated with the antigen for which the T-ABM was specific, and a population of Ly-2+ T cells in the culture. Two monoclonal TsiF (or TsF1) were demonstrated to induce suppression of the anti-SRBC response in this system, provided the relevant antigen was coupled to the SRBC in culture. The results are discussed in terms of the general functions of T-ABM in the immune system. This model will be useful in direct, experimental comparisons of the function of T-ABM and suppressor T cell factors under study in different systems and laboratories.

  12. Phloretin and phlorizin promote lipolysis and inhibit inflammation in mouse 3T3-L1 cells and in macrophage-adipocyte co-cultures.

    PubMed

    Huang, Wen-Chung; Chang, Wei-Tien; Wu, Shu-Ju; Xu, Pei-Yin; Ting, Nai-Chun; Liou, Chian-Jiun

    2013-10-01

    Previous studies found that phloretin (PT) and phlorizin (PZ) could inhibit glucose transport, with PT being a better inhibitor of lipid peroxidation. This study aimed to evaluate the antiobesity effects of PT and PZ in 3T3-L1 cells and if they can modulate the relationship between adipocytes and macrophages. Differentiated 3T3-L1 cells were treated with PT or PZ. Subsequently, transcription factors of adipogenesis and lipolysis proteins were measured. In addition, RAW 264.7 macrophages treated with PT or PZ were cultured in differentiated media from 3T3-L1 cells to analyze inflammatory mediators and signaling pathways. PT significantly enhanced glycerol release and inhibited the adipogenesis-related transcription factors. PT also promoted phosphorylation of AMP-activated protein kinase and increased activity of adipose triglyceride lipase and hormone-sensitive lipase. PT suppressed the nuclear transcription factor kappa-B and mitogen-activated protein kinase pathways when RAW 264.7 cells were cultured in differentiated media from 3T3-L1 cells. PZ improved lipolysis and inhibited the macrophage inflammatory response less effectively than PT. This study suggests that PT is more effective than PZ at increasing lipolysis in adipocytes. In addition, PT also suppresses inflammatory response in macrophage that is stimulated by differentiated media from 3T3-L1 cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Immunogenicity is preferentially induced in sparse dendritic cell cultures

    PubMed Central

    Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence

    2017-01-01

    We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533

  14. Immunogenicity is preferentially induced in sparse dendritic cell cultures.

    PubMed

    Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence

    2017-03-09

    We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation.

  15. Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.

    PubMed

    Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang

    2017-06-27

    The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.

  16. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-12-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.

  17. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients

    PubMed Central

    Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984

  18. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients.

    PubMed

    Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.

  19. Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kδ inhibitors and VIP antagonists

    PubMed Central

    Petersen, Christopher T.; Hassan, Mojibade; Morris, Anna B.; Jeffery, Jasmin; Lee, Kunhee; Jagirdar, Neera; Staton, Ashley D.; Raikar, Sunil S.; Spencer, Harold T.; Sulchek, Todd; Flowers, Christopher R.

    2018-01-01

    Adoptive therapy with ex vivo–expanded genetically modified antigen-specific T cells can induce remissions in patients with relapsed/refractory cancer. The clinical success of this therapy depends upon efficient transduction and expansion of T cells ex vivo and their homing, persistence and cytotoxicity following reinfusion. Lower rates of ex vivo expansion and clinical response using anti-CD19 chimeric antigen receptor (CAR) T cells have been seen in heavily pretreated lymphoma patients compared with B-cell acute lymphoblastic leukemia patients and motivate the development of novel strategies to enhance ex vivo T cell expansion and their persistence in vivo. We demonstrate that inhibition of phosphatidylinositol 3-kinase δ (PI3Kδ) and antagonism of vasoactive intestinal peptide (VIP) signaling partially inhibits the terminal differentiation of T cells during anti-CD3/CD28 bead-mediated expansion (mean, 54.4% CD27+CD28+ T cells vs 27.4% in control cultures; P < .05). This strategy results in a mean of 83.7% more T cells cultured from lymphoma patients in the presence of PI3Kδ and VIP antagonists, increased survival of human T cells from a lymphoma patient in a murine xenograft model, enhanced cytotoxic activity of antigen-specific human CAR T cells and murine T cells against lymphoma, and increased transduction and expansion of anti-CD5 human CAR T cells. PI3Kδ and VIP antagonist-expanded T cells from lymphoma patients show reduced terminal differentiation, enhanced polyfunctional cytokine expression, and preservation of costimulatory molecule expression. Taken together, synergistic blockade of these pathways is an attractive strategy to enhance the expansion and functional capacity of ex vivo–expanded cancer-specific T cells. PMID:29386194

  20. Immortalization of T-cells is accompanied by gradual changes in CpG methylation resulting in a profile resembling a subset of T-cell leukemias.

    PubMed

    Degerman, Sofie; Landfors, Mattias; Siwicki, Jan Konrad; Revie, John; Borssén, Magnus; Evelönn, Emma; Forestier, Erik; Chrzanowska, Krystyna H; Rydén, Patrik; Keith, W Nicol; Roos, Göran

    2014-07-01

    We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  1. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia.

    PubMed

    Wei, Li; Tokizane, Kyohei; Konishi, Hiroyuki; Yu, Hua-Rong; Kiyama, Hiroshi

    2017-10-03

    Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.

  2. Dendritic cells rapidly undergo apoptosis in vitro following culture with activated CD4+ Vα24 natural killer T cells expressing CD40L

    PubMed Central

    Nieda, M; Kikuchi, A; Nicol, A; Koezuka, Y; Ando, Y; Ishihara, S; Lapteva, N; Yabe, T; Tokunaga, K; Tadokoro, K; Juji, T

    2001-01-01

    Human Vα24 natural killer T (Vα24NKT) cells are activated by α-glycosylceramide-pulsed dendritic cells (DCs) in a CD1d-dependent and T-cell receptor-mediated manner. There are two major subpopulations of Vα24NKT cells, CD4– CD8– Vα24NKT and CD4+ Vα24NKT cells. We have recently shown that activated CD4– CD8– Vα24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of Vα24NKT cells is currently limited. We aimed to investigate whether CD4+ Vα24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4+ Vα24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4+ Vα24NKT cells, but not with resting CD4+ Vα24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb. Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40–CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Vα24NKT cells. The apoptosis of DCs from normal donors, triggered by the CD40–CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4+ Vα24NKT cells by virtue of apoptosis of DCs. PMID:11260318

  3. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    PubMed

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Effects of 3-dimensional culture conditions (collagen-chitosan nano-scaffolds) on maturation of dendritic cells and their capacity to interact with T-lymphocytes.

    PubMed

    Daneshmandi, Saeed; Dibazar, Shaghayegh Pishkhan; Fateh, Shirin

    2016-01-01

    In the body, there is a natural three-dimensional (3D) microenvironment in which immune cells, including dendritic cells (DC), play their functions. This study evaluated the impact of using collagen-chitosan 3D nano-scaffolds in comparisons to routine 2D culture plates on DC phenotype and functions. Bone marrow-derived DC were cultured on scaffolds and plates and then stimulated with lipopolysaccharide (LPS) or chitosan-based nanoparticles (NP) for 24 h. Thereafter, DC viability, expression of maturation markers and levels of cytokines secretion were evaluated. In another set of studies, the DC were co-cultured with allogenic T-lymphocytes in both the 2D and 3D systems and effects on DC-induction of T-lymphocyte proliferation and cytokine release were analyzed. The results indicated that CD40, CD86 and MHC II marker expression and interleukin (IL)-12, IL-6 and tumor necrosis factor (TNF)-α secretion by DC were enhanced in 3D cultures in comparison to by cells maintained in the 2D states. The data also showed that DNA/chitosan NP activated DC more than LPS in the 3D system. T-Lymphocyte proliferation was induced to a greater extent by DNA/NP-treated DC when both cell types were maintained on the scaffolds. Interestingly, while DC induction of T-lymphocyte interferon (IFN)-γ and IL-4 release was enhanced in the 3D system (relative to controls), there was a suppression of transforming growth factor (TGF)-β production; effects on IL-10 secretion were variable. The results here suggested that collagen-chitosan scaffolds could provide a pro-inflammatory and activator environment to perform studies to analyze effects of exogenous agents on the induction of DC maturation, NP uptake and/or cytokines release, as well as for the ability of these cells to potentially interact with other immune system cells in vitro.

  5. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com; Zebrowski, Jacek; Oklejewicz, Bernadetta

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic andmore » physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.« less

  6. 'Educated' dendritic cells act as messengers from memory to naive T helper cells.

    PubMed

    Alpan, Oral; Bachelder, Eric; Isil, Eda; Arnheiter, Heinz; Matzinger, Polly

    2004-06-01

    Ingested antigens lead to the generation of effector T cells that secrete interleukin 4 (IL-4) rather than interferon-gamma (IFN-gamma) and are capable of influencing naive T cells in their immediate environment to do the same. Using chimeric mice generated by aggregation of two genotypically different embryos, we found that the conversion of a naive T cell occurs only if it can interact with the same antigen-presenting cell, although not necessarily the same antigen, as the effector T cell. Using a two-step culture system in vitro, we found that antigen-presenting dendritic cells can act as 'temporal bridges' to relay information from orally immunized memory CD4 T cells to naive CD4 T cells. The orally immunized T cells use IL-4 and IL-10 (but not CD40 ligand) to 'educate' dendritic cells, which in turn induce naive T cells to produce the same cytokines as those produced by the orally immunized memory T cells.

  7. Generation and application of human induced-stem cell memory T (iTSCM ) cells for adoptive immunotherapy.

    PubMed

    Kondo, Taisuke; Imura, Yuuki; Chikuma, Shunsuke; Hibino, Sana; Omata-Mise, Setsuko; Ando, Makoto; Akanuma, Takashi; Iizuka, Mana; Sakai, Ryota; Morita, Rimpei; Yoshimura, Akihiko

    2018-05-23

    Adoptive T cell therapy is an effective strategy for cancer immunotherapy. However, infused T cells frequently become functionally exhausted, and consequently offer a poor prognosis after transplantation into patients. Adoptive transfer of tumor antigen-specific stem cell memory T (T SCM ) cells is expected to overcome this shortcoming since T SCM cells are close to naïve T cells, but are also highly proliferative, long-lived, and produce a large number of effector T cells in response to antigen stimulation. We previously reported that activated effector T cells can be converted into T SCM -like cells (iT SCM ) by co-culturing with OP9 cells expressing Notch ligand, Delta-like 1 (OP9-hDLL1). Here we show the methodological parameters of human CD8 + iT SCM cell generation and their application to adoptive cancer immunotherapy. Regardless of the stimulation by anti-CD3/CD28 antibodies or by antigen-presenting cells, human iT SCM cells were more efficiently induced from central memory type T cells than from effector memory T cells. During the induction phase by co-culture with OP9-hDLL1 cells, IL-7 and IL-15 (but not IL-2 or IL-21) could efficiently generate iT SCM cells. Epstein Barr (EB) virus-specific iT SCM cells showed much stronger antitumor potentials than conventionally activated T cells did in humanized EB virus transformed-tumor model mice. Thus, adoptive T cell therapy with iT SCM offers a promising therapeutic strategy for cancer immunotherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells

    PubMed Central

    Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao

    2017-01-01

    Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC. PMID:29042945

  9. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed Central

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-01-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL. Images Figure 4 Figure 6 PMID:9014832

  10. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy

    PubMed Central

    Chen, Can; Tan, Wee-Kiat; Chi, Zhixia; Xu, Xue-Hu; Wang, Shu

    2016-01-01

    Gamma delta (γδ) T cells and cytokine-induced killer (CIK) cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT) cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs) using Zometa, interferon-gamma (IFN-γ), interleukin 2 (IL-2), anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR), anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer. PMID:27598655

  11. Effects of cryopreservation on chimeric antigen receptor T cell functions.

    PubMed

    Xu, Hao; Cao, Wenyue; Huang, Liang; Xiao, Min; Cao, Yang; Zhao, Lei; Wang, Na; Zhou, Jianfeng

    2018-06-14

    Chimeric antigen receptor T (CART) cell therapy has emerged as a potentially curative "drug" for cancer treatment. Cryopreservation of CART cells is necessary for their clinical application. Systematic studies on the effects of cryopreservation on the antitumor function of CART cells are lacking. Therefore, we compared the phenotypes and functions of CART cells that were cryopreserved during ex vivo expansion with those of freshly isolated populations. T cells expressing an anti-B-cell-maturation-antigen (BCMA) chimeric antigen receptor (CAR) were expanded in vitro for 10 days and then cryopreserved. After one month, the cells were resuscitated, and their transduction rates, apoptosis rates and cell subsets were examined via flow cytometry. The results indicated no significant changes in transduction rates or cell subsets, and the survival rate of the resuscitated cells was approximately 90% Furthermore, similar tumoricidal effects and degranulation functions of the resuscitated cells compared with normally cultured cells were verified by calcein release and CD107a assays. A NOD/SCID mouse model was used to estimate the differences in the in vivo antitumor effects of the cryopreserved and normally cultured T cells, but no significant differences were observed. Following co-culture with several target cell types, the cytokines released by the cryopreserved and normally cultured T cells were measured via enzyme-linked immunosorbent assays (ELISAs). The results revealed that the release of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was significantly decreased. These data demonstrated that with the exception of a decrease in cytokine release, the cryopreserved CART cells retained their antitumor functions. Copyright © 2018. Published by Elsevier Inc.

  12. Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors

    PubMed Central

    Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya

    2013-01-01

    Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112

  13. Application of cell co-culture system to study fat and muscle cells.

    PubMed

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  14. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  15. Improve T Cell Therapy in Neuroblastoma

    DTIC Science & Technology

    2015-09-01

    bioluminescence was then measured overtime. The graph is representative of one of 4 experiments using CMV-CTLs from 4 donors. Panel E. Kaplan-Meier...whole-cell vaccine expressing the iC9 gene and labeled with an enhanced firefly luciferase. Tumor growth was measured by in vivo imaging. Panel E...down regulation in LTE -T cells is not caused by specific culture conditions. T lymphocytes were activated with immobilized OKT3 (1 μg ml) and

  16. Human germinal center CD4+CD57+ T cells act differently on B cells than do classical T-helper cells.

    PubMed

    Bouzahzah, F; Bosseloir, A; Heinen, E; Simar, L J

    1995-01-01

    We have isolated two subtypes of helper T cells from human tonsils: CD4+CD57+ cells, mostly located in the germinal center (GC), and CD4+CD57- cells, distributed through the interfollicular areas but also present in the GC. In a functional study, we have compared the capacities of these T-cell subtypes to stimulate B cells in cocultures. In order to block T-cell proliferation while maintaining their activation level, we pretreated isolated T cells with mitomycin C prior to culture in the presence of B cells and added polyclonal activators such as PHA and Con A, combined or not with IL-2. Contrary to CD4+ CD57- cells, CD4+CD57+ cells did not markedly enhance B-cell proliferation. Even when sIgD.B cells typical of germinal center cells were tested, the CD4+CD57+ cells had no significant effect. This is in accordance with the location of these cells: They mainly occupy the light zones of the GC where few B cells divide. Even when added to preactivated, actively proliferating cells, CD4+CD57 cells failed to modulate B-cell multiplication. On the supernatants of B-cell-T-cell cocultures, we examined by the ELISA technique the effect of T cells on Ig synthesis. Contrary to CD57+ T cells, whose effect was strong, CD57- T cells weakly stimulated Ig synthesis. More IgM than IgG was generally found. Because CD57 antigen is a typical marker of natural killer cells, we tested the cytolytic activity of tonsillar CD4+CD57+ cells on K562 target cells. Unlike NK cells, neither CD4+CD57+ nor CD4+CD57- cells exhibit any cytotoxicity. Thus, germinal center CD4+CD57+ cells are not cytolytic and do not strongly stimulate either B-cell proliferation or Ig secretion. CD4+CD57- cells, however, enhance B-cell proliferation and differentiation, thus acting like the classical helper cells of the T-dependent areas.

  17. Induction of IgA B cell differentiation of bone marrow-derived B cells by Peyer's patch autoreactive helper T cells.

    PubMed

    Kihira, T; Kawanishi, H

    1995-08-01

    The objective of this study was to demonstrate in vitro that bone marrow-derived pro/pre-B cells bearing mu mRNA can switch their Ig heavy-chain isotype to that of alpha mRNA-expressing B cells after contact with Peyer's patches-derived activated autoreactive CD4+ T cells. Bone marrow-derived pro/pre-B cells and activated autoreactive Peyer's patch, mesenteric lymph node, or spleen CD4+ T cells were co-cultured in the presence of recombinant (r) IL-2, rIL-7, and Con A for 3 days. The mixed cultured cells were isolated for preparation of total RNA. Dot/slot hybridization, using murine C mu (pu3741) and C alpha (P alpha J558) Ig heavy-chain cDNA probes, detected C mu and C alpha Ig heavy-chain mRNA transcripts. The magnitude of each mRNA expression was measured demsitometrically. In addition, the secreted class-specific Ig contents from the co-cultured supernatants were measured. The results indicate that activated autoreactive Peyer's patch and mesenteric lymph node CD4+ T cells provide a specific Ig heavy-chain switch from mu to alpha (Peyer's patch CD4+ T cells > mesenteric lymph node CD4+ T cells) in bone marrow-derived pro/pre-B cells and also assist to develop IgA-secreting plasma cells. The alpha heavy-chain switch and IgA production do not occur in the presence of activated autoreactive spleen CD4+ T cells. These results support the view that autoreactive gut Peyer's patch CD4+ T cells, at least, regulate IgA B cell heavy-chain switching and terminal differentiation during gut mucosal B cell development.

  18. Optimization Manufacture of Virus- and Tumor-Specific T Cells

    PubMed Central

    Lapteva, Natalia; Vera, Juan F.

    2011-01-01

    Although ex vivo expanded T cells are currently widely used in pre-clinical and clinical trials, the complexity of manufacture remains a major impediment for broader application. In this review we discuss current protocols for the ex vivo expansion of virus- and tumor-specific T cells and describe our experience in manufacture optimization using a gas-permeable static culture flask (G-Rex). This innovative device has revolutionized the manufacture process by allowing us to increase cell yields while decreasing the frequency of cell manipulation and in vitro culture time. It is now being used in good manufacturing practice (GMP) facilities for clinical cell production in our institution as well as many others in the US and worldwide. PMID:21915183

  19. [Differentiation of bone marrow derived from mesenchymal stem cells into cardiomyocyte-like cells induced by co-culture with rat myocardial cells].

    PubMed

    Zhang, Rong-Li; Jiang, Er-Lie; Wang, Mei; Zhou, Zheng; Zhai, Wen-Jing; Zhai, Wei-Hua; Wang, Hua; Wang, Zhi-Yong; Bao, Yu-Shi; DU, Hong; Han, Ming-Zhe

    2008-10-01

    The study was purposed to investigate the differentiation ability of mesenchymal stem cells (MSCs) into myocardial cells in vitro. Rat bone marrow-derived MSCs were labeled and co-cultured with neonatal rat cardiomyocytes (CM) for 5 - 7 days. The expression of cell surface antigens was detected by flow cytometry, and the expression of muscle-specific marker myosin and troponin T in labeled cells was detected by immunofluorescence. The results showed that in vitro cultured MSCs expressed CD90, CD44, CD105, CD54, not expressed CD34, CD45, CD31. After co-cultured with neonatal rat CM, labeled MSCs differentiated into cardiomyocyte-like cells expressing myosin and troponin T. It is concluded that MSCs can differentiate into cardiomyocyte-like cells when co-cultured with neonatal myocardial cells in vitro. In co-culture of two kind of cells in ratio of four to one showed obvious efficacy differentiating MSCs into CMs.

  20. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity

    NASA Technical Reports Server (NTRS)

    Woods, Chris C.; Banks, Krista E.; Gruener, Raphael; DeLuca, Dominick

    2003-01-01

    Using fetal thymus organ culture (FTOC), we examined the effects of spaceflight and vector-averaged gravity on T cell development. Under both conditions, the development of T cells was significantly attenuated. Exposure to spaceflight for 16 days resulted in a loss of precursors for CD4+, CD8+, and CD4+CD8+ T cells in a rat/mouse xenogeneic co-culture. A significant decrease in the same precursor cells, as well as a decrease in CD4-CD8- T cell precursors, was also observed in a murine C57BL/6 FTOC after rotation in a clinostat to produce a vector-averaged microgravity-like environment. The block in T cell development appeared to occur between the pre-T cell and CD4+CD8+ T cell stage. These data indicate that gravity plays a decisive role in the development of T cells.

  1. T cell-replacing factor for glucocorticosteroid-induced immunoglobulin production. A unique steroid-dependent cytokine

    PubMed Central

    1983-01-01

    Glucocorticosteroids (GCS) added to otherwise unstimulated cultures of human peripheral blood mononuclear cells (PBMC) induce the synthesis and secretion of all classes of immunoglobulin. The magnitude of this response is similar to that seen with other polyclonal B cell activators such as pokeweed mitogen (PWM), and like that of PWM, the steroid effect is dependent on both T cells and monocytes. To determine the cellular target for GCS in these cultures, separated populations of T cells and non-T cells were preincubated with steroids and then recombined. No immunoglobulin was produced in any of these preincubation experiments. As a different approach to this question, supernatants were collected from various cell populations following stimulation with PWM, concanavalin A (Con A), phytohemagglutinin (PHA), alloantigens, or GCS. These supernatants were tested for their effects on GCS-induced Ig production by B cells. Supernatants from 3-d cultures of unstimulated, as well as GCS-treated, PBMC contained a T cell- replacing factor that permitted T-depleted PBMC to produce Ig upon steroid stimulation. This supernatant factor (TRF-S) could be produced in the absence of steroid stimulation, but both the factor and GCS were necessary for the induction of Ig synthesis. Production of the TRF-S required the presence of both T cells and adherent cells in culture and was found in the highest concentrations at 3-4 d of culture. Supernatants from cultures stimulated with PWM, PHA, Con A, and alloantigens did not contain detectable TRF-S activity, and TRF-S was unable to replace helper T cells for PWM-induced Ig production. TRF-S required the presence of adherent cells in the T cell-depleted responder population for its action. Further, it was effective in inducing Ig production along with GCS in the presence of a sufficient concentration of cyclosporin A to block all T cell helper activity for primary responses of PBMC to PWM or GCS. TRF-S was inactivated by trypsin treatment

  2. Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells.

    PubMed

    Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin

    2009-02-01

    Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.

  3. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  4. IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+ T cell population of rheumatoid arthritis patients.

    PubMed

    Heo, Yu-Jung; Joo, Young-Bin; Oh, Hye-Jwa; Park, Mi-Kyung; Heo, Yang-Mi; Cho, Mi-La; Kwok, Seung-Ki; Ju, Ji-Hyeon; Park, Kyung-Su; Cho, Seok Goo; Park, Sung-Hwan; Kim, Ho-Youn; Min, Jun-Ki

    2010-01-04

    Interleukin-17-producing CD4(+) T cells (Th17 cells) are the dominant pathogenic cellular component in autoimmune inflammatory diseases, including autoimmune arthritis. IL-10 promotes the generation of Foxp3(+) regulatory T cells via the IL-10 receptor signal. The objective of this study was to examine whether IL-10, which acts as an anti-inflammatory cytokine, has a suppressive effect on the activation of human Th17 cells. Expression of IL-17 and IL-10 was examined immunohistochemically in tissue obtained from rheumatoid arthritis patients. Human peripheral blood CD4(+) T cells were isolated and cultured under various stimulatory conditions. Th17 cells and regulatory T (Treg) cells were detected by flow cytometry. The gene expression of related cytokines and transcription factors were assessed by ELISA and RT-PCR. IL-17 was overexpressed in rheumatoid arthritis patients. IL-10 treatment significantly decreased the numbers of IL-17-producing and RORc-expressing cells among human CD4(+) T cells that had been activated in vitro by Th17-differentiating conditions in autoimmune arthritis patients. IL-10 induced Foxp3(+) regulatory T cells in the human CD4(+) T cell population. Our results demonstrate that IL-17 is overexpressed in autoimmune disease patients and that IL-10 suppresses IL-17 expression. IL-10 may be useful in the treatment of autoimmune diseases.

  5. Mechanotransductive Regulation of Gap-Junction Activity Between MLO-Y4 Osteocyte-Like and MC3T3-E1 Osteoblast-Like Cells in Three-Dimensional Co-Culture.

    NASA Technical Reports Server (NTRS)

    Juran, C. M.; Blaber, E. A.; Almeida, E. A. C.

    2016-01-01

    Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesion/attachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by

  6. Suitability of human Tenon's fibroblasts as feeder cells for culturing human limbal epithelial stem cells.

    PubMed

    Scafetta, Gaia; Tricoli, Eleonora; Siciliano, Camilla; Napoletano, Chiara; Puca, Rosa; Vingolo, Enzo Maria; Cavallaro, Giuseppe; Polistena, Andrea; Frati, Giacomo; De Falco, Elena

    2013-12-01

    Corneal epithelial regeneration through ex vivo expansion of limbal stem cells (LSCs) on 3T3-J2 fibroblasts has revealed some limitations mainly due to the corneal microenvironment not being properly replicated, thus affecting long term results. Insights into the feeder cells that are used to expand LSCs and the mechanisms underlying the effects of human feeder cells have yet to be fully elucidated. We recently developed a standardized methodology to expand human Tenon's fibroblasts (TFs). Here we aimed to investigate whether TFs can be employed as feeder cells for LSCs, characterizing the phenotype of the co-cultures and assessing what human soluble factors are secreted. The hypothesis that TFs could be employed as alternative human feeder layer has not been explored yet. LSCs were isolated from superior limbus biopsies, co-cultured on TFs, 3T3-J2 or dermal fibroblasts (DFs), then analyzed by immunofluorescence (p63α), colony-forming efficiency (CFE) assay and qPCR for a panel of putative stem cell and epithelial corneal differentiation markers (KRT3). Co-cultures supernatants were screened for a set of soluble factors. Results showed that the percentage of p63α(+)LSCs co-cultured onto TFs was significantly higher than those on DFs (p = 0.032) and 3T3-J2 (p = 0.047). Interestingly, LSCs co-cultures on TFs exhibited both significantly higher CFE and mRNA expression levels of ΔNp63α than on 3T3-J2 and DFs (p < 0.0001), showing also significantly greater levels of soluble factors (IL-6, HGF, b-FGF, G-CSF, TGF-β3) than LSCs on DFs. Therefore, TFs could represent an alternative feeder layer to both 3T3-J2 and DFs, potentially providing a suitable microenvironment for LSCs culture.

  7. Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells.

    PubMed

    Gammon, Joshua M; Gosselin, Emily A; Tostanoski, Lisa H; Chiu, Yu-Chieh; Zeng, Xiangbin; Zeng, Qin; Jewell, Christopher M

    2017-10-10

    An important goal for improving vaccine and immunotherapy technologies is the ability to provide further control over the specific phenotypes of T cells arising from these agents. Along these lines, frequent administration of rapamycin (Rapa), a small molecule inhibitor of the mammalian target of rapamycin (mTOR), exhibits a striking ability to polarize T cells toward central memory phenotypes (T CM ), or to suppress immune function, depending on the concentrations and other signals present during administration. T CM exhibit greater plasticity and proliferative capacity than effector memory T cells (T EFF ) and, therefore, polarizing vaccine-induced T cells toward T CM is an intriguing strategy to enhance T cell expansion and function against pathogens or tumors. Here we combined biodegradable microparticles encapsulating Rapa (Rapa MPs) with vaccines composed of soluble peptide antigens and molecular adjuvants to test if this approach allows polarization of differentiating T cells toward T CM . We show Rapa MPs modulate DC function, enhancing secretion of inflammatory cytokines at very low doses, and suppressing function at high doses. While Rapa MP treatment reduced - but did not stop - T cell proliferation in both CD4 + and CD8 + transgenic T cell co-cultures, the expanding CD8 + T cells differentiated to higher frequencies of T CM at low doses of MP Rapa MPs. Lastly, we show in mice that local delivery of Rapa MPs to lymph nodes during vaccination either suppresses or enhances T cell function in response to melanoma antigens, depending on the dose of drug in the depots. In particular, at low Rapa MP doses, vaccines increased antigen-specific T CM , resulting in enhanced T cell expansion measured during subsequent booster injections over at least 100days. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Integration of T Cell Receptor, Notch and Cytokine Signals Programs in Mouse γδ T Cell Effector Differentiation.

    PubMed

    Zarin, Payam; In, Tracy S H; Chen, Edward L Y; Singh, Jastaranpreet; Wong, Gladys W; Mohtashami, Mahmood; Wiest, David L; Anderson, Michele K; Zúñiga-Pflücker, Juan Carlos

    2018-05-13

    γδ T-cells perform a wide range of tissue and disease specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon-γ (IFNγ) and interleukin-17 (IL-17) producing γδ T-cells remain unknown. Here, we define the cues involved in the functional programming of γδ T-cells, by examining the roles of T-cell receptor (TCR), Notch, and cytokine-receptor signaling. KN6 γδTCR-transduced Rag2 -/- T-cell progenitors were cultured on stromal cells variably expressing TCR and Notch ligands, supplemented with different cytokines. We found that distinct combinations of these signals are required to program IFNγ versus IL-17 producing γδ T cell subsets, with Notch and weak TCR ligands optimally enabling development of γδ17 cells in the presence of IL-1β, IL-21 and IL-23. Notably, these cytokines were also shown to be required for the intrathymic development of γδ17 cells. Together, this work provides a framework of how signals downstream of TCR, Notch and cytokine receptors integrate to program the effector function of IFNγ and IL-17 producing γδ T-cell subsets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. IL-23 Activated γδ T Cells Affect Th17 Cells and Regulatory T Cells by Secreting IL-21 in Children with Primary Nephrotic Syndrome.

    PubMed

    Zhang, L; Yan, J; Yang, B; Zhang, G; Wang, M; Dong, S; Liu, W; Yang, H; Li, Q

    2018-01-01

    This study (1) analysed the percentage of γδ T cells, γδ T cell subsets, Th17 cells and regulatory T cells (Treg cells) and (2) determined the role of IL-23 in primary nephrotic syndrome (PNS) patients with active disease and in remission. Eighty-four patients with PNS and 51 healthy age-matched controls were included in this study. The percentage of γδ T cells, γδ T cell subsets, Th17 cells and Treg cells in peripheral blood mononuclear cells (PBMCs) were analysed by fluorescence-activated cell sorting. PMBCs from PNS patients with active disease were cultured in the presence of IL-23, IL-23 and an IL-23 antagonist, or IL23 and an anti-IL-21 monoclonal antibody (mAb). The percentage of γδ T cells, IL-23R + γδ T cells and IL-17 + γδ T cells were significantly increased in PNS patients with active disease. There was a positive correlation between the percentage of γδ T cells, IL-23R + γδ T cells, IL-17 + γδ T cells and the Th17/Treg ratio. IL-23 increased the percentage of γδ T cells and Th17 cells and decreased the percentage of Treg cells in PBMCs isolated from PNS patients with active disease. Anti-IL-21 mAb reduced the percentage of γδ T cells and Th17 cells, but increased the percentage of Treg cells. γδ T cells, IL-17 + γδ T cells and IL-23R + γδ T cells may be involved in the pathogenesis of paediatric PNS by modulating the balance of Th17/Treg cells. γδ T cells may cause an imbalance in Th17/Treg cells by secreting IL-21 in the presence of IL-23. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  10. T Lymphocyte Activation Threshold and Membrane Reorganization Perturbations in Unique Culture Model

    NASA Technical Reports Server (NTRS)

    Adams, C. L.; Sams, C. F.

    2000-01-01

    Quantitative activation thresholds and cellular membrane reorganization are mechanisms by which resting T cells modulate their response to activating stimuli. Here we demonstrate perturbations of these cellular processes in a unique culture system that non-invasively inhibits T lymphocyte activation. During clinorotation, the T cell activation threshold is increased 5-fold. This increased threshold involves a mechanism independent of TCR triggering. Recruitment of lipid rafts to the activation site is impaired during clinorotation but does occur with increased stimulation. This study describes a situation in which an individual cell senses a change in its physical environment and alters its cell biological behavior.

  11. Suppression of pro-inflammatory T-cell responses by human mesothelial cells.

    PubMed

    Lin, Chan-Yu; Kift-Morgan, Ann; Moser, Bernhard; Topley, Nicholas; Eberl, Matthias

    2013-07-01

    Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.

  12. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.

    PubMed

    Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A

    2018-04-26

    The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.

  13. T cells expanded in presence of IL-15 exhibit increased antioxidant capacity and innate effector molecules

    PubMed Central

    Kaur, Navtej; Naga, Osama S.; Norell, Håkan; Al-Khami, Amir A.; Scheffel, Matthew J.; Chakraborty, Nitya G.; Voelkel-Johnson, Christina; Mukherji, Bijay; Mehrotra, Shikhar

    2011-01-01

    Persistence of effector cytotoxic T lymphocytes (CTLs) during an immunological response is critical for successfully controlling a viral infection or tumor growth. Various cytokines are known to play an important part in regulating the immune response. The IL-2 family of cytokines that includes IL-2 and IL-15 are known to function as growth and survival factors for antigen-experienced T cells. IL-2 and IL-15 possess similar properties, including the ability to induce T cell proliferation. Whereas long term IL-2 exposure has been shown to promote apoptosis and limit CD8+ memory T cell survival and proliferation, it is widely believed that IL-15 can inhibit apoptosis and helps maintain a memory CD8+ T-cell population. However, mechanisms for superior outcomes for IL-15 as compared to IL-2 are still under investigation. Our data shows that human T cells cultured in the presence of IL-15 exhibit increased expression of anti-oxidant molecules Glutathione reductase (GSR), Thioredoxin reductase 1 (TXNDR1), Peroxiredoxin (PRDX), Superoxide dismutase (SOD). An increased expression of cell-surface thiols, intracellular glutathione, and thioredoxins was also noted in IL-15 cultured T cells. Additionally, IL-15 cultured T cells also showed an increase in cytolytic effector molecules. Apart from increased level of Granzyme A and Granzyme B, IL-15 cultured T cells exhibit increased accumulation of reactive oxygen (ROS) and reactive nitrogen (RNS) species as compared to IL-2 cultured T cells. Overall, this study suggests that T cells cultured in IL-15 show increase persistence not only due to increased anti-apoptotic proteins but also due to increased anti-oxidant levels, which is further complimented by increased cytolytic effector functions. PMID:21602054

  14. [Immunogenicity of chimeric gene vaccine Mtb8.4/hIL12].

    PubMed

    Li, Hui; Li, Rong; Zhong, Sen; Luo, Yue-bei; Ren, Hong; Deng, Cun-liang

    2006-09-01

    To construct chimeric gene vaccine Mtb8.4/hIL-12, express it in COS-7 cells and study its immunogenicity. Chimeric gene Mtb8.4/hIL-12 was amplified by PCR and cloned into the eukaryotic vector pCI-neo to construct the recombinant plasmid pCI-neo-Mtb8.4/hIL12. After the recombinant plasmid was identified by restriction enzyme digestion analysis, PCR and DNA sequencing, COS-7 cells were transfected with pCI-neo-Mtb8.4/hIL12 through cationic liposome. 48 hours later, the expression of mRNA was detected by RT-PCR and the level of hIL-12 in culture supernatant and cell lysates were detected by Western blot. C57BL/6N mice were vaccinated with chimeric gene vaccine Mtb8.4/hIL-12 three times at the interval of 3 weeks each time. Four weeks after the final inoculation, three mice were sacrificed to assess the cytotoxicity of CTLs and response to cytokine. The recombinant plasmid pCI-neo-Mtb8.4/hIL12 was constructed successfully. After COS-7 cells were transfected with pCI-neo-Mtb8.4/hIL12, chimeric gene Mtb8.4/hIL12 was expressed in COS-7 cells. The chimeric gene vaccine could induce strong antigen-specific immune response. With the increase of IFN-gamma and IL-2 secretion and the decrease of IL-4 secretion, the cytotoxicity of specific CTLs was heightened. Recombinant plasmid pCI-neo-Mtb8.4/hIL12 has been successfully constructed and expressed in COS-7 cells. The constructed chimeric gene vaccine Mtb8.4/hIL12 is of strong immunogenicity and can obviously induce the cytotoxicity of CTLs.

  15. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    PubMed

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with

  16. BRAF and MEK Inhibitors Influence the Function of Reprogrammed T Cells: Consequences for Adoptive T-Cell Therapy.

    PubMed

    Dörrie, Jan; Babalija, Lek; Hoyer, Stefanie; Gerer, Kerstin F; Schuler, Gerold; Heinzerling, Lucie; Schaft, Niels

    2018-01-18

    BRAF and MEK inhibitors (BRAFi/MEKi), the standard treatment for patients with BRAF V600 mutated melanoma, are currently explored in combination with various immunotherapies, notably checkpoint inhibitors and adoptive transfer of receptor-transfected T cells. Since two BRAFi/MEKi combinations with similar efficacy are approved, potential differences in their effects on immune cells would enable a rational choice for triple therapies. Therefore, we characterized the influence of the clinically approved BRAFi/MEKi combinations dabrafenib (Dabra) and trametinib (Tram) vs. vemurafenib (Vem) and cobimetinib (Cobi) on the activation and functionality of chimeric antigen receptor (CAR)-transfected T cells. We co-cultured CAR-transfected CD8⁺ T cells and target cells with clinically relevant concentrations of the inhibitors and determined the antigen-induced cytokine secretion. All BRAFi/MEKi reduced this release as single agents, with Dabra having the mildest inhibitory effect, and Dabra + Tram having a clearly milder inhibitory effect than Vem + Cobi. A similar picture was observed for the upregulation of the activation markers CD25 and CD69 on CAR-transfected T cells after antigen-specific stimulation. Most importantly, the cytolytic capacity of the CAR-T cells was significantly inhibited by Cobi and Vem + Cobi, whereas the other kinase inhibitors showed no effect. Therefore, the combination Dabra + Tram would be more suitable for combining with T-cell-based immunotherapy than Vem + Cobi.

  17. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  18. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    PubMed

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  19. Extended Culture of Bone Marrow with Granulocyte Macrophage-Colony Stimulating Factor Generates Immunosuppressive Cells

    PubMed Central

    Na, Hye Young; Sohn, Moah; Ryu, Seul Hye; Choi, Wanho; In, Hyunju; Shin, Hyun Soo

    2018-01-01

    Bone marrow-derived dendritic cells (BM-DCs) are generated from bone marrow (BM) cells cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for a week. In this study we investigated the effect of duration on the BM culture with GM-CSF. Within several months, the cells in the BM culture gradually expressed homogeneous levels of CD11c and major histocompatibility complex II on surface, and they became unable to stimulate allogeneic naïve T cells in mixed lymphocyte reaction (MLR). In addition, when the BM culture were sustained for 32 wk or longer, the BM cells acquired ability to suppress the proliferation of allogeneic T cells in MLR as well as the response of ovalbumin-specific OT-I transgenic T cells in antigen-dependent manner. We found that, except for programmed death-ligand 1, most cell surface molecules were expressed lower in the BM cells cultured with GM-CSF for the extended duration. These results indicate that BM cells in the extended culture with GM-CSF undergo 2 distinct steps of functional change; first, they lose the immunostimulatory capacity; and next, they gain the immunosuppressive ability. PMID:29736292

  20. C22-bronchial and T7-alveolar epithelial cell lines of the immortomouse are excellent murine cell culture model systems to study pulmonary peroxisome biology and metabolism.

    PubMed

    Karnati, Srikanth; Palaniswamy, Saranya; Alam, Mohammad Rashedul; Oruqaj, Gani; Stamme, Cordula; Baumgart-Vogt, Eveline

    2016-03-01

    In pulmonary research, temperature-sensitive immortalized cell lines derived from the lung of the "immortomouse" (H-2k(b)-tsA58 transgenic mouse), such as C22 club cells and T7 alveolar epithelial cells type II (AECII), are frequently used cell culture models to study CC10 metabolism and surfactant synthesis. Even though peroxisomes are highly abundant in club cells and AECII and might fulfill important metabolic functions therein, these organelles have never been investigated in C22 and T7 cells. Therefore, we have characterized the peroxisomal compartment and its associated gene transcription in these cell lines. Our results show that peroxisomes are highly abundant in C22 and T7 cells, harboring a common set of enzymes, however, exhibiting specific differences in protein composition and gene expression patterns, similar to the ones observed in club cells and AECII in situ in the lung. C22 cells contain a lower number of larger peroxisomes, whereas T7 cells possess more numerous tubular peroxisomes, reflected also by higher levels of PEX11 proteins. Moreover, C22 cells harbor relatively higher amounts of catalase and antioxidative enzymes in distinct subcellular compartments, whereas T7 cells exhibit higher levels of ABCD3 and plasmalogen synthesizing enzymes as well as nuclear receptors of the PPAR family. This study suggest that the C22 and T7 cell lines of the immortomouse lung are useful models to study the regulation and metabolic function of the peroxisomal compartment and its alterations by paracrine factors in club cells and AECII.

  1. Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds.

    PubMed

    Fonseca, Ana Mafalda; Pereira, Carlos Filipe; Porto, Graça; Arosa, Fernando A

    2003-07-01

    Red blood cells (RBC) are known to modulate T cell proliferation and function possibly through downregulation of oxidative stress. By examining parameters of activation, division, and cell death in vitro, we show evidence that the increase in survival afforded by RBC is due to the maintenance of the proliferative capacity of the activated T cells. We also show that the CD3+CD8+ T cell subset was preferentially expanded and rescued from apoptosis both in bulk peripheral blood lymphocyte cultures and with highly purified CD8+ T cells. The ability of RBC to induce survival of dividing T cells was not affected by blocking the CD58/CD2 interaction. Moreover, addition of hemoglobin, heme or protoporphyrin IX to cultures of activated T cells did not reproduce the effect of intact RBC. Considering that RBC circulate throughout the body, they could play a biological role in the modulation of T cell differentiation and survival in places of active cell division. Neither CD58 nor the heme compounds studied seem to play a direct relevant role in the modulation of T cell survival.

  2. [The proliferative characteristics of cells in culture during perfusion of the medium].

    PubMed

    Akatov, V S; Lavrovskaia, V P; Lezhnev, E I

    1991-01-01

    The proliferation of Chinese hamster fibroblasts (CHF) and NIH 3T3 cells was studied at different flow rates immediately above the cells. It is shown that there is a limiting density of saturation of the perfused culture that accounts for 1.7 x 10(6) - 2.0 x 10(6) cells/cm2 for NIH 3T3 cells, and for 6 x 10(6) - 7 x 10(6) cells/cm2 for CHF. The growth curves and the distribution of cells with respect to the phases of the cell cycle during cultivation with and without perfusion are presented. Based on the results obtained it is assumed that the limit of saturation density of perfused CHF culture is due to the mass transfer of the growth-inhibiting metabolites inside the multilayer structures. The assumption seems to hold true for NIH 3T3 cells, too, even though the multilayer character of growth of this culture is less pronounced than in CHF.

  3. Chromosome aberrations in T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) from healthy adults.

    PubMed

    Fukuhara, S; Hinuma, Y; Gotoh, Y I; Uchino, H

    1983-01-01

    Chromosomes were studied in cultured T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) that were obtained from five Japanese anti-ATLA seropositive healthy adults. Chromosomally abnormal cells were observed in three of the five healthy adults, and these cells were clonal in two subjects. All cells examined in one subject had rearrangements of chromosome nos. 7 and 14. Clonal cells from the second had a minute chromosome of unknown origin. A few cells in the third had nonclonal rearrangements of chromosomes. Thus, ATLA-positive T lymphocytes in some anti-ATLA seropositive healthy people have chromosome aberrations.

  4. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture – a preliminary study

    PubMed Central

    Yang, Hongna; Sun, Jinhua; Wang, Feng; Li, Yan; Bi, Jianzhong; Qu, Tingyu

    2016-01-01

    The immunoregulatory function of T regulatory cells (Tregs) is impaired in multiple sclerosis (MS). Recent studies have shown that umbilical cord-derived mesenchymal stem cells (UC-MSCs) exert regulatory effect on the functions of immune cells. Thus, we investigated whether UC-MSCs could improve the impaired function of Tregs from MS patients. Co-cultures of UC-MSCs with PBMCs of MS patients were performed for 3 days. Flow cytometry was used to determine the frequency of Tregs. A cell proliferation assay was used to evaluate the suppressive capacity of Tregs. ELISA was conducted for cytokine analysis in the co-cultures. Our results showed that UC-MSCs significantly increased the frequency of CD4+CD25+CD127low/− Tregs in resting CD4+ T cells (p<0.01) from MS, accompanied by the significantly augmented production of cytokine prostaglandin E2, transforming growth factor (−β1, and interleukin-10, along with a reduced interferon-γ production in these co-cultures (p<0.05 - 0.01). More importantly, UC-MSC-primed Tregs of MS patients significantly inhibited the proliferation of PHA-stimulated autologous and allogeneic CD4+CD25− T effector cells (Teffs) from MS patients and healthy individuals compared to non-UC-MSC-primed (naïve) Tregs from the same MS patients (p<0.01). Furthermore, no remarkable differences in suppressing the proliferation of PHA-stimulated CD4+CD25− Teffs was observed in UC-MSC-primed Tregs from MS patients and naïve Tregs from healthy subjects. The impaired suppressive function of Tregs from MS can be completely reversed in a co-culture by UC-MSC modulation. This report is the first to demonstrate that functional defects of Tregs in MS can be repaired in vitro using a simple UC-MSC priming approach. PMID:27705922

  5. UVB radiation and human monocyte accessory function: Differential effects on pre-mitotic events in T-cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutmann, J.K.; Kammer, G.M.; Toossi, Z.

    Purified T lymphocytes fail to proliferate in response to antigenic and mitogenic stimuli when cultured in the presence of accessory cells that have been exposed in vitro to sublethal doses of UVB radiation. Because proliferation represents a final stage in the T-cell activation process, the present study was conducted to determine whether T cells were able to progress through any of the pre-mitotic stages when UVB-irradiated monocytes were used as model accessory cells. In these experiments, monoclonal anti-CD3 antibodies were employed as the mitogenic stimulus. Culture of T cells with UVB-irradiated monocytes did allow the T cells to undergo anmore » increase in intracellular free calcium, which is one of the first steps in the activation sequence. The T cells expressed interleukin-2 receptors, although at a reduced level. However, T cells failed to produce interleukin-2 above background levels when they were placed in culture with monocytes exposed to UVB doses as low as 50 J/m2. Incubation of T cells with UVB-irradiated monocytes did not affect the subsequent capacity of T cells to proliferate, since they developed a normal proliferative response in secondary culture when restimulated with anti-CD3 antibodies and unirradiated monocytes. These studies indicate that T lymphocytes become partially activated when cultured with UVB-irradiated monocytes and mitogenic anti-CD3 monoclonal antibodies. In addition, they suggest that interleukin-2 production is the T-cell activation step most sensitive to inhibition when UVB-irradiated monocytes are employed as accessory cells.« less

  6. Hepatocyte‐induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up‐regulation on hepatocytes and suppressible by regulatory T cells

    PubMed Central

    DeTemple, Daphne E.; Oldhafer, Felix; Falk, Christine S.; Chen‐Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael

    2018-01-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune‐mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte‐induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+CD25highCD127low Tregs were added to cocultures in single‐/trans‐well setups with/without supplementation of anti‐interferon γ (IFNγ) antibodies. Hepatocyte‐induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ‐induced major histocompatibility complex (MHC) class II up‐regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up‐regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte‐induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up‐regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407–419 2018 AASLD. PMID:29365365

  7. Similar disturbances in B cell activity and regulatory T cell function in Henoch-Schonlein purpura and systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beale, M.G.; Nash, G.S.; Bertovich, M.J.

    1982-01-01

    The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml)more » and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement.« less

  8. T cell activation responses are differentially regulated during clinorotation and in spaceflight

    NASA Technical Reports Server (NTRS)

    Hashemi, B. B.; Penkala, J. E.; Vens, C.; Huls, H.; Cubbage, M.; Sams, C. F.

    1999-01-01

    Studies of T lymphocyte activation with mitogenic lectins during spaceflight have shown a dramatic inhibition of activation as measured by DNA synthesis at 72 h, but the mechanism of this inhibition is unknown. We have investigated the progression of cellular events during the first 24 h of activation using both spaceflight microgravity culture and a ground-based model system that relies on the low shear culture environment of a rotating clinostat (clinorotation). Stimulation of human peripheral blood mononuclear cells (PBMCs) with soluble anti-CD3 (Leu4) in clinorotation and in microgravity culture shows a dramatic reduction in surface expression of the receptor for IL-2 (CD25) and CD69. An absence of bulk RNA synthesis in clinorotation indicates that stimulation with soluble Leu4 does not induce transition of T cells from G0 to the G1 stage of the cell cycle. However, internalization of the TCR by T cells and normal levels of IL-1 synthesis by monocytes indicate that intercellular interactions that are required for activation occur during clinorotation. Complementation of TCR-mediated signaling by phorbol ester restores the ability of PBMCs to express CD25 in clinorotation, indicating that a PKC-associated pathway may be compromised under these conditions. Bypassing the TCR by direct activation of intracellular pathways with a combination of phorbol ester and calcium ionophore in clinorotation resulted in full expression of CD25; however, only partial expression of CD25 occurred in microgravity culture. Though stimulation of purified T cells with Bead-Leu4 in microgravity culture resulted in the engagement and internalization of the TCR, the cells still failed to express CD25. When T cells were stimulated with Bead-Leu4 in microgravity culture, they were able to partially express CD69, a receptor that is constitutively stored in intracellular pools and can be expressed in the absence of new gene expression. Our results suggest that the inhibition of T cell

  9. Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.

    PubMed

    Choi, Hyuck; Myung, Kyuho

    2014-08-01

    We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P < 0.047) increased with calcitriol in 3T3-L1 cells co-cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals. © 2014 International Federation for Cell Biology.

  10. Mesenteric lymph node T cells but not splenic T cells maintain their proliferative response to concanavalin-A following peroral infection with Toxoplasma gondii.

    PubMed

    Neyer, L E; Kang, H; Remington, J S; Suzuki, Y

    1998-12-01

    The suppression of T cell responsiveness which occurs after infection with Toxoplasma gondii in mice has been widely studied using spleen cells. Because the natural route of infection with T. gondii is the peroral route, we examined the proliferative responses of mesenteric lymph node (MLN) cells, in addition to spleen cells, to Concanavalin-A (Con-A) in mice perorally infected with T. gondii. Proliferative responses of spleen cells were significantly suppressed seven and ten days after infection when compared with spleen cells from uninfected mice (62% and 91% reduction, respectively). In contrast, proliferative responses of MLN cells from these infected mice did not differ from those of normal MLN cells. Since IFN-gamma-induced reactive nitrogen intermediate (RNI) production has been reported to play a major role in suppression of proliferative responses in spleen cells of infected mice, we compared production of IFN-gamma and RNI by spleen and MLN cells following infection. MLN cells produced as much IFN-gamma as did spleen cells, but produced 70% less nitrite (as a measure of RNI) after Con-A stimulation. Proliferative responses of MLN cells were suppressed when co-cultured with spleen cells from infected mice, and addition of an inhibitor of RNI to these co-culture inhibited this suppression, suggesting that reduced RNI production by MLN cells contributes to their maintenance of higher proliferative responses. These results demonstrated a clear difference in activity of T cells in the MLN and spleen during the acute stage of the infection.

  11. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  12. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures.

    PubMed

    Vidal-Limon, Heriberto R; Almagro, Lorena; Moyano, Elisabeth; Palazon, Javier; Pedreño, Maria A; Cusido, Rosa M

    2018-01-01

    Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans -resveratrol ( t -R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t -R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t -R production in the elicited V. vinifera cell cultures.

  13. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2012-10-01

    from co-culture with EL4 -ROR1neg and EL4 -ROR1+ tumor targets. Ovarian cancer cell lines (A2780, EFO21, EFO27, IGROV1, OC314, and UPN251) were...profiled for ROR1 expression in normoxia (20% O2) and hypoxia (1% O2). Four-hour CRA was used to evaluate cytotoxicity against the OvCa and EL4 tumor...loaded aAPC for negative controls. EL4 is a murine T cell lymphoma cell line used to test specificity of CAR+ T cells with limited allo-reactivity

  14. Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor β-DAB2IP signals.

    PubMed

    Yeh, Chiuan-Ren; Ou, Zheng-Yu; Xiao, Guang-Qian; Guancial, Elizabeth; Yeh, Shuyuan

    2015-12-29

    Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.

  15. T cells fail to develop in the human skin-cell explants system; an inconvenient truth.

    PubMed

    Meek, Bob; Van Elssen, Catharina H M J; Huijskens, Mirelle J A J; van der Stegen, Sjoukje J C; Tonnaer, Siebe; Lumeij, Stijn B J; Vanderlocht, Joris; Kirkland, Mark A; Hesselink, Reinout; Germeraad, Wilfred T V; Bos, Gerard M J

    2011-02-18

    Haplo-identical hematopoietic stem cell (HSC) transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL). In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.

  16. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.

  17. GPR84 sustains aberrant β-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis.

    PubMed

    Dietrich, Philipp A; Yang, Chen; Leung, Halina H L; Lynch, Jennifer R; Gonzales, Estrella; Liu, Bing; Haber, Michelle; Norris, Murray D; Wang, Jianlong; Wang, Jenny Yingzi

    2014-11-20

    β-catenin is required for establishment of leukemic stem cells (LSCs) in acute myeloid leukemia (AML). Targeted inhibition of β-catenin signaling has been hampered by the lack of pathway components amenable to pharmacologic manipulation. Here we identified a novel β-catenin regulator, GPR84, a member of the G protein-coupled receptor family that represents a highly tractable class of drug targets. High GPR84 expression levels were confirmed in human and mouse AML LSCs compared with hematopoietic stem cells (HSCs). Suppression of GPR84 significantly inhibited cell growth by inducing G1-phase cell-cycle arrest in pre-LSCs, reduced LSC frequency, and impaired reconstitution of stem cell-derived mixed-lineage leukemia (MLL) AML, which represents an aggressive and drug-resistant subtype of AML. The GPR84-deficient phenotype in established AML could be rescued by expression of constitutively active β-catenin. Furthermore, GPR84 conferred a growth advantage to Hoxa9/Meis1a-transduced stem cells. Microarray analysis demonstrated that GPR84 significantly upregulated a small set of MLL-fusion targets and β-catenin coeffectors, and downregulated a hematopoietic cell-cycle inhibitor. Altogether, our data reveal a previously unrecognized role of GPR84 in maintaining fully developed AML by sustaining aberrant β-catenin signaling in LSCs, and suggest that targeting the oncogenic GPR84/β-catenin signaling axis may represent a novel therapeutic strategy for AML. © 2014 by The American Society of Hematology.

  18. The effect of stem cell from human exfoliated deciduous teeth on T lymphocyte proliferation.

    PubMed

    Alipour, Razieh; Adib, Minoo; Hashemi-Beni, Batool; Sadeghi, Farzaneh

    2014-01-01

    Mesenchymal stem cells (MSC), a specific type of adult tissue stem cell; have the immunosuppressive effects that make them valuable targets for regenerative medicine and treatment of many human illnesses. Hence, MSC have been the subject of numerous studies. The classical source of MSC is adult bone marrow (BM). Due to many shortcomings of harvesting MSC from BM, finding the alternative sources for MSC is an urgent. Stem cells from human exfoliated deciduous teeth (SHED) are relative new MSC populations that fulfill these criteria but their potential immunosuppressive effect has not been studied enough yet. Thus, in this work the effect of SHED on the proliferation of in vitro activated T lymphocytes were explored. In this study, both mitogen and alloantigen activated T cells were cultured in the presence of different numbers of SHED. In some co-cultures, activated T cells were in direct contact to MSCs and in other co-cultures; they were separated from SHED by a permeable membrane. In all co-cultures, the proliferation of T cells was measured by ELISA Bromodeoxyuridine proliferation assay. In general, our results showed that SHED significantly suppress the proliferation of activated T cells in a dose-dependent manner. Moreover, the suppression was slightly stronger when MSCs were in physical contact to activated T cells. This study showed that SHED likewise other MSC populations can suppress the activation of T lymphocytes, which can be used instead of BM derived MSCs in many investigational and clinical applications.

  19. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    PubMed

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. © The Author(s) 2015.

  20. Role of T cells in the B-cell response: glutaraldehyde-fixed T-helper hybridoma cells synergize with the lymphokine IL-4 to induce B-cell activation and proliferation.

    PubMed

    Kubota, E; McKenzie, D T; Dutton, R W; Swain, S L

    1991-01-01

    Antigen-unselected helper T-cell hybridomas (Th) which activate normal resting B cells to RNA synthesis and proliferation in the presence of concanavalin A (Con A) have been developed. The response is completely Th cell dependent, and not restricted by the haplotype of the B-cell major histocompatibility complex (MHC). Culture supernatants from the Con A-stimulated Th hybridomas contain interleukin-4 (IL-4) and IL-2, but undetectable level of IL-5. The supernatant alone, however, does not induce B-cell activation or proliferation. Although the Con A-mediated Th cell-dependent B-cell response occurs in an MHC-unrestricted manner, the response of resting B cells can be blocked by monoclonal Ia antibody specific for the surface class II molecules of the responding B cell. The response is also blocked by monoclonal antibody to L3T4. Significant activation and proliferation of resting B cells can also be triggered by glutaraldehyde-fixed Th hybridomas and Con A when exogenous IL-4 is added. The stimulation with fixed Th hybridomas plus IL-4 can be inhibited by monoclonal anti-L3T4 or anti-Ia. These results suggest that maximal B-cell activation requires a direct helper T cell-B cell interaction which depends on availability of Ia on the B cell and L3T4 on the T cell, even when Con A overcomes the requirement for MHC-restricted T-cell recognition. We suggest that this signal, in conjunction with T-cell produced lymphokine IL-4, is responsible for the activation and subsequent proliferation of the B cells which occurs following interaction with T cells.

  1. CD8+ memory T-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy.

    PubMed

    Xu, Aizhang; Freywald, Andrew; Xie, Yufeng; Li, Zejun; Xiang, Jim

    2017-01-01

    Whether inflation of CD8 + memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8 + T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8 + T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8 + T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8 + T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4 + T cell-independent and CD4 + T-cell-dependent CD8 + T-cell responses, respectively, and assessed Ova-specific CD8 + T-cell responses by flow cytometry. We found that Ova-specific CD8 + T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8 + mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8 + T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8 + mT-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8 + mT-cell inflation.

  2. Biochemical Testing of Potentially Hazardous Chemicals for Toxicity Using Mammalian Liver Cell Cultures.

    DTIC Science & Technology

    1992-04-09

    the culture medium. The HEPA-2 mouse cells are known to synthesize and to secrete albumin, alpha - fetoprotein , transferrin, ceruloplasmin and...Parker, C.L. and Kute, T.E. (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured mouse hepatoma cells treated with estrogens and...Infection and Immunity 34:908-914. Rosebrock, J.A., C.L. Parker and T.E. Kute (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured

  3. Preparing clinical grade Ag-specific T cells for adoptive immunotherapy trials

    PubMed Central

    DiGiusto, DL; Cooper, LJN

    2007-01-01

    The production of clinical-grade T cells for adoptive immunotherapy has evolved from the ex vivo numerical expansion of tumor-infiltrating lymphocytes to sophisticated bioengineering processes often requiring cell selection, genetic modification and other extensive tissue culture manipulations, to produce desired cells with improved therapeutic potential. Advancements in understanding the biology of lymphocyte signaling, activation, homing and sustained in vivo proliferative potential have redefined the strategies used to produce T cells suitable for clinical investigation. When combined with new technical methods in cell processing and culturing, the therapeutic potential of T cells manufactured in academic centers has improved dramatically. Paralleling these technical achievements in cell manufacturing is the development of broadly applied regulatory standards that define the requirements for the clinical implementation of cell products with ever-increasing complexity. In concert with academic facilities operating in compliance with current good manufacturing practice, the prescribing physician can now infuse T cells with a highly selected or endowed phenotype that has been uniformly manufactured according to standard operating procedures and that meets federal guidelines for quality of investigational cell products. In this review we address salient issues related to the technical, immunologic, practical and regulatory aspects of manufacturing these advanced T-cell products for clinical use. PMID:17943498

  4. Regulatory T cells in the actinic cheilitis.

    PubMed

    Gasparoto, Thaís Helena; de Souza Malaspina, Tatiana Salles; Damante, José Humberto; de Mello, Edgard Franco; Ikoma, Maura Rosane Valério; Garlet, Gustavo Pompermaier; Costa, Maria Renata Sales Nogueira; Cavassani, Karen Angélica; da Silva, João Santana; Campanelli, Ana Paula

    2014-11-01

    Actinic cheilitis (AC) is an oral potentially malignant lesion which is the counterpart of actinic keratosis of the skin and has potential to develop into squamous cell carcinoma. Regulatory T cells (Tregs) have a critical role in modulating the antitumor immune responses. The presence of regulatory T cells in potentially malignant lesions has not been described. We chose investigate the involvement of regulatory T cells in potentially malignant lesions. The frequency, phenotype, and activity of CD4+CD25+ T cells isolated from blood and lesion of AC patients were analyzed by flow cytometry. Cytokines were quantified by ELISA. Data were compared with samples from healthy subjects. The frequency and suppressor activity of circulating CD4+CD25+ T cells was similar in AC patients and control subjects. However, the frequencies of IL-10-positive Tregs were higher in AC patients, and these cells inhibited interferon-gamma (IFN-γ) and increased interleukin (IL)-10 productions in co-cultures. Furthermore, CD4+CD25+ T cells accumulate in AC lesions. Lesions-derived regulatory T cells suppressed lymphocyte proliferation and pro-inflammatory cytokine production. Moreover, high levels of IL-10 and transforming growth factor-β (TGF-β), and low IFN-γ were detected in the potentially malignant lesions. Therefore, our data show that Tregs accumulate in AC lesions, and these cells could be suppressing immune responses in a potentially malignant microenvironment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Heat Shock Enhances the Expression of the Human T Cell Leukemia Virus Type-I (HTLV-I) Trans-Activator (Tax) Antigen in Human HTLV-I Infected Primary and Cultured T Cells.

    PubMed

    Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A; Tanaka, Yuetsu

    2016-07-11

    The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo.

  6. [Regulatory T cells inhibit proliferation of mouse lymphoma cell line EL4 in vitro].

    PubMed

    Zhang, Chen; Kong, Yan; Guo, Jun; Ying, Zhi-Tao; Yuan, Zhi-Hong; Zhang, Yun-Tao; Zheng, Wen; Song, Yu-Qin; Li, Ping-Ping; Zhu, Jun

    2010-10-01

    This study was aimed to investigate the effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cells and its mechanism in vitro. C57BL/6 mouse Treg cells were isolated by magnetic cell sorting (MACS). The purity of Treg cells and their expression of Foxp3 were identified by flow cytometry (FCM) and PT-PCR respectively. The suppression of Treg cells on EL4 cells was detected by 3H-TdR method. At the same time, enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of cytokine TGF-β1 and IL-10. The results showed that CD4+CD25+ T cells could be successfully isolated by MACS with the purity reaching 94.52% and the expression of Foxp3 reaching 84.72%. After sorting, the expression of Foxp3 mRNA could be detected by RT-PCR. 3H-TdR assay confirmed that regulatory T cells could suppress the proliferation of EL4 cells with or without antigen presenting cells (APC) or dendritic cells (DC), APC or DC might effectively enhance the suppression. In addition, DC alone also suppressed the proliferation. TGF-β1 and IL-10 could be detected in the supernatant by ELISA. It is concluded that the Treg cells can obviously suppress the proliferation of T cell lymphoma cells in vitro, APC or DC can enhance this suppressive effect, while the DC alone also can suppress the proliferation of EL4 cells, the TGF-β1 and IL-10 cytokine pathway may be one of the mechanisms of suppression.

  7. Hepatocyte-induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up-regulation on hepatocytes and suppressible by regulatory T cells.

    PubMed

    DeTemple, Daphne E; Oldhafer, Felix; Falk, Christine S; Chen-Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael; Vondran, Florian W R

    2018-03-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4 + CD25 high CD127 low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4 + T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8 + T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4 + T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD. © 2018 The Authors. Liver Transplantation published by Wiley Periodicals, Inc

  8. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    PubMed

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  9. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures

    PubMed Central

    Vidal-Limon, Heriberto R.; Almagro, Lorena; Moyano, Elisabeth; Palazon, Javier; Pedreño, Maria A.; Cusido, Rosa M.

    2018-01-01

    Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans-resveratrol (t-R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t-R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t-R production in the elicited V. vinifera cell cultures. PMID:29616056

  10. In Vitro Selective Anti-Proliferative Effect of Zinc Oxide Nanoparticles Against Co-Cultured C2C12 Myoblastoma Cancer and 3T3-L1 Normal Cells.

    PubMed

    Chandrasekaran, Murugesan; Pandurangan, Muthuraman

    2016-07-01

    The zinc oxide (ZnO) nanoparticle has been widely used in biomedical applications and cancer therapy and has been reported to induce a selective cytotoxic effect on cancer cell proliferation. The present study investigated the cytotoxicity of ZnO nanoparticles against co-cultured C2C12 myoblastoma cancer cells and 3T3-L1 adipocytes. Our results showed that the ZnO nanoparticles could be cytotoxic to C2C12 myoblastoma cancer cells than 3T3-L1 cells. The messenger RNA (mRNA) expressions of p53 and bax were significantly increased 114.3 and 118.2 % in the C2C12 cells, whereas 42.5 and 40 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was reduced 38.2 and 28.5 % in the C2C12 and 3T3-L1 cells, respectively, whereas the mRNA expression of caspase-3 was increased 80.7 and 51.6 % in the C2C12 and 3T3-L1 cells, respectively. The protein expressions of p53, bax, and caspase-3 were significantly increased 40, 81.8, and 80 % in C2C12 cells, whereas 20.3, 28.2, and 37.9 % were increased in 3T3-L1 cells, respectively. The mRNA expression of bcl-2 was significantly reduced 32.2 and 22.7 % in C2C12 and 3T3-L1 cells, respectively. Caspase-3 enzyme activity and reactive oxygen species (ROS) were increased in co-cultured C2C12 cells compared to 3T3-L1 cells. Taking all these data together, it may suggest that ZnO nanoparticles severely induce apoptosis in C2C12 myoblastoma cancer cells than 3T3-L1 cells.

  11. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    PubMed

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  12. Role of heterogeneous cell population on modulation of dendritic cell phenotype and activation of CD8 T cells for use in cell-based immunotherapies.

    PubMed

    Frizzell, Hannah; Park, Jaehyung; Comandante Lou, Natacha; Woodrow, Kim A

    2017-01-01

    Dendritic cell (DC)-based immunotherapies have much utility in their ability to prime antigen-specific adaptive immune responses. However, there does not yet exist a consensus standard to how DCs should be primed. In this study, we aimed to determine the role of heterogeneous co-cultures, composed of both CD11c+ (DCs) and CD11c- cells, in combination with monophosphoryl lipid A (MPLA) stimulation on DC phenotype and function. Upon DC priming in different co-culture ratios, we observed reduced expression of MHCII and CD86 and increased antigen uptake among CD11c+ cells in a CD11c- dependent manner. DCs from all culture conditions were induced to mature by MPLA treatment, as determined by secretion of pro-inflammatory cytokines IL-12 and TNF-α. Antigen-specific stimulation of CD4+ T cells was not modulated by co-culture composition, in terms of proliferation nor levels of IFN-γ. However, the presence of CD11c- cells enhanced cross-presentation to CD8+ T cells compared to purified CD11c+ cells, resulting in increased cell proliferation along with higher IFN-γ production. These findings demonstrate the impact of cell populations present during DC priming, and point to the use of heterogeneous cultures of DCs and innate immune cells to enhance cell-mediated immunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells.

    PubMed

    Bai, Chunxiang; He, Juanjuan; Niu, Hongxia; Hu, Lina; Luo, Yanping; Liu, Xun; Peng, Liang; Zhu, Bingdong

    2018-05-01

    It is believed that central memory T cells (T CM ) provide long-term protection against tuberculosis (TB). However, the effects of TB subunit vaccine immunization schedule, especially the vaccination intervals, on T cell immune memory is still unclear. In this study, mice were immunized with fusion protein ESAT6-Ag85B-MPT64 (190-198)-Mtb8.4-Rv2626c (LT70) based subunit vaccine three times according to the following schedules: ① 0, 3rd and 6th week respectively (0-3-6w), ② 0, 4th and 12th week (0-4-12w), and ③ 0, 4th and 24th week (0-4-24w). We found that both schedules of 0-4-12w and 0-4-24w induced higher level of antigen specific IL-2, IFN-γ and TNF-α than 0-3-6w immunization. Among them, 0-4-12w induced the highest level of IL-2, which is a key cytokine mainly produced by T CM . Moreover, by cultured IFN-γ ELISPOT and cell proliferation assay etc., we found that the vaccination schedule of 0-4-12w elicited higher numbers of T CM like cells, stronger T CM - mediated immune responses and higher protective efficacy against M. bovis BCG challenge than 0-3-6w did. It suggests that prolonging the vaccination interval of TB subunit vaccine to some extent contributes to inducing more abundant T CM like cells and providing stronger immune protection against mycobacteria infection. Copyright © 2018. Published by Elsevier Ltd.

  14. T cell chronic lymphocytic leukaemia with suppressor phenotype.

    PubMed Central

    Hofman, F M; Smith, D; Hocking, W

    1982-01-01

    The peripheral blood cells from a patient with T cell chronic lymphocytic leukaemia were examined for surface marker and functional characteristics. Eighty-91% of the peripheral blood cells formed SRBC rosettes and 22-49% possessed Fc receptors; 73% of the peripheral blood cells were reactive with the OKT8 antiserum and 61% expressed DR antigens. Response to PHA stimulation was markedly reduced, whereas allogeneic responsiveness in mixed leucocyte culture was intact. The ability of Con A-stimulated peripheral blood cells to generate suppressor activity in a mixed leucocyte reaction was deficient, whereas suppression of in vitro immunoglobulin synthesis was greater than normal. The leukaemic peripheral blood cell population expressed a T suppressor phenotype. Functional studies suggest that these cells were derived from the subset of T lymphocytes with regulatory activity for immunoglobulin synthesis as opposed to mitogenic responsiveness. PMID:6215199

  15. Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation.

    PubMed

    Carrión, Flavio; Nova, Estefania; Luz, Patricia; Apablaza, Felipe; Figueroa, Fernando

    2011-03-30

    Mesenchymal stem cells (MSCs) are multipotent progenitors with broad immunosuppressive properties. However, their therapeutic use in autoimmune disease models has shown dissimilar effects when applied at different stages of disease. We therefore investigated the effect of the addition of MSCs on the differentiation of Th1, Treg and Th17 cells in vitro, at different states of CD4(+) T cell activation. CD4(+) T lymphocytes purified by negative selection from mouse C57BL/6 splenocytes were cultured under Th1, Th17 and Treg inducing conditions with IL-12, TGF-β+IL-6 or TGF-β, respectively. C57BL/6 bone marrow derived MSCs were added to CD4(+) T cell cultures at day 0 or after 3 days of T cell polarizing activation. Intracellular cytokines for Th1, Th17 and Treg cells were quantitated at day 6 by flow cytometry. While early addition (day 0) of MSCs suppressed all CD4(+) T cell lineages, addition at day 3 only decreased IFN-γ production by Th1 polarized cells by 64% (p<0.05) while markedly increased IL-17 production by Th17 polarized cells by 50% (p<0.05) and left IL-10 production by Treg polarized cells unchanged. MSCs exhibit their typical suppressive phenotype when added early to cell cultures in the presence of CD4(+) T cell polarizing stimuli. However, once T cell activation has occurred, MSCs show an opposite stimulating effect on Th17 cells, while leaving Treg IL-10 producing cells unchanged. These results suggest that the therapeutic use of MSCs in vivo might exert opposing effects on disease activity, according to the time of therapeutic application and the level of effector T cell activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. The effect of stem cell from human exfoliated deciduous teeth on T lymphocyte proliferation

    PubMed Central

    Alipour, Razieh; Adib, Minoo; Hashemi-Beni, Batool; Sadeghi, Farzaneh

    2014-01-01

    Background: Mesenchymal stem cells (MSC), a specific type of adult tissue stem cell; have the immunosuppressive effects that make them valuable targets for regenerative medicine and treatment of many human illnesses. Hence, MSC have been the subject of numerous studies. The classical source of MSC is adult bone marrow (BM). Due to many shortcomings of harvesting MSC from BM, finding the alternative sources for MSC is an urgent. Stem cells from human exfoliated deciduous teeth (SHED) are relative new MSC populations that fulfill these criteria but their potential immunosuppressive effect has not been studied enough yet. Thus, in this work the effect of SHED on the proliferation of in vitro activated T lymphocytes were explored. Materials and Methods: In this study, both mitogen and alloantigen activated T cells were cultured in the presence of different numbers of SHED. In some co-cultures, activated T cells were in direct contact to MSCs and in other co-cultures; they were separated from SHED by a permeable membrane. In all co-cultures, the proliferation of T cells was measured by ELISA Bromodeoxyuridine proliferation assay. Results: In general, our results showed that SHED significantly suppress the proliferation of activated T cells in a dose-dependent manner. Moreover, the suppression was slightly stronger when MSCs were in physical contact to activated T cells. Conclusion: This study showed that SHED likewise other MSC populations can suppress the activation of T lymphocytes, which can be used instead of BM derived MSCs in many investigational and clinical applications. PMID:25337532

  17. Antigen-Specific CD8+ T Cells Fail To Respond to Shigella flexneri ▿

    PubMed Central

    Jehl, Stephanie P.; Doling, Amy M.; Giddings, Kara S.; Phalipon, Armelle; Sansonetti, Philippe J.; Goldberg, Marcia B.; Starnbach, Michael N.

    2011-01-01

    CD8+ T lymphocytes often play a primary role in adaptive immunity to cytosolic microbial pathogens. Surprisingly, CD8+ T cells are not required for protective immunity to the enteric pathogen Shigella flexneri, despite the ability of Shigella to actively secrete proteins into the host cytoplasm, a location from which antigenic peptides are processed for presentation to CD8+ T cells. To determine why CD8+ T cells fail to play a role in adaptive immunity to S. flexneri, we investigated whether antigen-specific CD8+ T cells are primed during infection but are unable to confer protection or, alternatively, whether T cells fail to be primed. To test whether Shigella is capable of stimulating an antigen-specific CD8+ T-cell response, we created an S. flexneri strain that constitutively secretes a viral CD8+ T-cell epitope via the Shigella type III secretion system and characterized the CD8+ T-cell response to this strain both in mice and in cultured cells. Surprisingly, no T cells specific for the viral epitope were stimulated in mice infected with this strain, and cells infected with the recombinant strain were not targeted by epitope-specific T cells. Additionally, we found that the usually robust T-cell response to antigens artificially introduced into the cytoplasm of cultured cells was significantly reduced when the antigen-presenting cell was infected with Shigella. Collectively, these results suggest that antigen-specific CD8+ T cells are not primed during S. flexneri infection and, as a result, afford little protection to the host during primary or subsequent infection. PMID:21357720

  18. Large-scale expansion of γδ T cells and peptide-specific cytotoxic T cells using zoledronate for adoptive immunotherapy.

    PubMed

    Yoshikawa, Toshiaki; Takahara, Masashi; Tomiyama, Mai; Nieda, Mie; Maekawa, Ryuji; Nakatsura, Tetsuya

    2014-11-01

    Specific cellular immunotherapy for cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that recognize tumor-associated antigens. However, it is difficult to isolate and expand functionally active T-cells ex vivo. In this study, we investigated the efficacy of a new method to induce expansion of antigen-specific CTLs for adoptive immunotherapy. We used tumor-associated antigen glypican-3 (GPC3)-derived peptide and cytomegalovirus (CMV)-derived peptide as antigens. Treatment of human peripheral blood mononuclear cells (PBMCs) with zoledronate is a method that enables large-scale γδ T-cell expansion. To induce expansion of γδ T cells and antigen-specific CTLs, the PBMCs of healthy volunteers or patients vaccinated with GPC3 peptide were cultured with both peptide and zoledronate for 14 days. The expansion of γδ T cells and peptide-specific CTLs from a few PBMCs using zoledronate yields cell numbers sufficient for adoptive transfer. The rate of increase of GPC3‑specific CTLs was approximately 24- to 170,000-fold. These CD8(+) cells, including CTLs, showed GPC3-specific cytotoxicity against SK-Hep-1/hGPC3 and T2 pulsed with GPC3 peptide, but not against SK-Hep-1/vec and T2 pulsed with human immunodeficiency virus peptide. On the other hand, CD8(-) cells, including γδ T cells, showed cytotoxicity against SK-Hep-1/hGPC3 and SK-Hep-1/vec, but did not show GPC3 specificity. Furthermore, adoptive cell transfer of CD8(+) cells, CD8(-) cells, and total cells after expansion significantly inhibited tumor growth in an NOD/SCID mouse model. This study indicates that simultaneous expansion of γδ T cells and peptide-specific CTLs using zoledronate is useful for adoptive immunotherapy.

  19. 3D printed lattices as an activation and expansion platform for T cell therapy.

    PubMed

    Delalat, Bahman; Harding, Frances; Gundsambuu, Batjargal; De-Juan-Pardo, Elena M; Wunner, Felix M; Wille, Marie-Luise; Jasieniak, Marek; Malatesta, Kristen A L; Griesser, Hans J; Simula, Antonio; Hutmacher, Dietmar W; Voelcker, Nicolas H; Barry, Simon C

    2017-09-01

    One of the most significant hurdles to the affordable, accessible delivery of cell therapy is the cost and difficulty of expanding cells to clinically relevant numbers. Immunotherapy to prevent autoimmune disease, tolerate organ transplants or target cancer critically relies on the expansion of specialized T cell populations. We have designed 3D-printed cell culture lattices with highly organized micron-scale architectures, functionalized via plasma polymerization to bind monoclonal antibodies that trigger cell proliferation. This 3D technology platform facilitate the expansion of therapeutic human T cell subsets, including regulatory, effector, and cytotoxic T cells while maintaining the correct phenotype. Lentiviral gene delivery to T cells is enhanced in the presence of the lattices. Incorporation of the lattice format into existing cell culture vessels such as the G-Rex system is feasible. This cell expansion platform is user-friendly and expedites cell recovery and scale-up, making it ideal for translating T cell therapies from bench to bedside. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  1. CD147 modulates the differentiation of T-helper 17 cells in patients with rheumatoid arthritis.

    PubMed

    Yang, Hui; Wang, Jian; Li, Yu; Yin, Zhen-Jie; Lv, Ting-Ting; Zhu, Ping; Zhang, Yan

    2017-01-01

    The role of CD147 in regulation of rheumatoid arthritis (RA) is not fully elucidated. The aim of this study was to investigate the effect of cell-to-cell contact of activated CD14 + monocytes with CD4 + T cells, and the modulatory role of CD147 on T-helper 17 (Th17) cells differentiation in patients with RA. Twenty confirmed active RA patients and twenty normal controls were enrolled. CD4 + T cells and CD14 + monocytes were purified by magnetic beads cell sorting. Cells were cultured under different conditions in CD4 + T cells alone, direct cell-to-cell contact co-culture of CD4 + and CD14 + cells, or indirect transwell co-culture of CD4 + /CD14 + cells in response to LPS and anti-CD3 stimulation with or without anti-CD147 antibody pretreatments. The proportion of IL-17-producing CD4 + T cells (defined as Th17 cells) was determined by flow cytometry. The levels of interleukin (IL)-17, IL-6, and IL-1β in the supernatants of cultured cells were measured by ELISA. The optimal condition for in vitro induction of Th17 cells differentiation was co-stimulation with 0.1 μg/mL of LPS and 100 ng/mL of anti-CD3 for 3 days under direct cell-to-cell contact co-culture of CD4 + and CD14 + cells. Anti-CD147 antibody reduced the proportion of Th17 cells, and also inhibited the productions of IL-17, IL-6, and IL-1β in PBMC culture from RA patients. The current results revealed that Th17 differentiation required cell-to-cell contact with activated monocytes. CD147 promoted the differentiation of Th17 cells by regulation of cytokine production, which provided the evidence for pathogenesis and potential therapeutic targets for RA. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  2. Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy

    PubMed Central

    Powell, Daniel J.; Dudley, Mark E.; Robbins, Paul F.; Rosenberg, Steven A.

    2007-01-01

    In humans, the pathways of memory T-cell differentiation remain poorly defined. Recently, adoptive cell transfer (ACT) of tumor-reactive T lymphocytes to metastatic melanoma patients after nonmyeloablative chemotherapy has resulted in persistence of functional, tumor-reactive lymphocytes, regression of disease, and induction of melanocyte-directed autoimmunity in some responding patients. In the current study, longitudinal phenotypic analysis was performed on melanoma antigen–specific CD8+ T cells during their transition from in vitro cultured effector cells to long-term persistent memory cells following ACT to 6 responding patients. Tumor-reactive T cells used for therapy were generally late-stage effector cells with a CD27Lo CD28Lo CD45RA− CD62 ligand− (CD62L−) CC chemokine receptor 7− (CCR7−) interleukin-7 receptor αLo (IL-7RαLo) phenotype. After transfer, rapid up-regulation and continued expression of IL-7Rα in vivo suggested an important role for IL-7R in immediate and long-term T-cell survival. Although the tumor antigen–specific T-cell population contracted between 1 and 4 weeks after transfer, stable numbers of CD27+ CD28+ tumor-reactive T cells were maintained, demonstrating their contribution to the development of long-term, melanoma-reactive memory CD8+ T cells in vivo. At 2 months after transfer, melanoma-reactive T cells persisted at high levels and displayed an effector memory phenotype, including a CD27+ CD28+ CD62L− CCR7− profile, which may explain in part their ability to mediate tumor destruction. PMID:15345595

  3. Quantitative analysis of cell-free Epstein-Barr virus DNA in the plasma of patients with peripheral T-cell and NK-cell lymphomas and peripheral T-cell proliferative diseases.

    PubMed

    Suwiwat, Supaporn; Pradutkanchana, Jintana; Ishida, Takafumi; Mitarnun, Winyou

    2007-12-01

    The level of circulating EBV DNA is a prognostic marker in patients with some EBV-associated malignant diseases. To investigate the presence and nature of Epstein-Barr virus (EBV) DNA in the plasma and to evaluate the correlation of plasma concentrations of EBV DNA with the EBV genomic status in peripheral blood T-cells and neoplastic cells and with the clinical outcome of patients with peripheral T-cell and NK-cell lymphomas (PTCL) and peripheral T-cell proliferative diseases (PTPD). EBV DNA in the plasma of 45 patients and 45 controls was measured using real-time PCR. The presence of the EBV genome in the isolated peripheral blood lymphocytes (CD3+ and CD3- cells) was analysed by PCR. Detection of EBV-encoded early RNA (EBER) in corresponding tumor tissues was carried out using in situ hybridization. DNase I digestion was applied to plasma samples to detect naked EBV DNA. Cell-free EBV DNA was detected in 32/38 (84%) of PTCL patients and 5/7 (71%) of PTPD patients, but not in the controls. Patients with EBV genome in peripheral blood CD3+ cells and EBV genome (EBER) in the tumor cells, compared to those without these findings, had significantly higher plasma EBV DNA levels. The majority of circulating EBV DNA molecules was naked form. The plasma EBV DNA levels were not related to survival. The concentration of EBV DNA in the plasma was not a prognostic marker in PTCL and PTPD patients.

  4. Expression of Master Regulators of T-cell, Helper T-cell and Follicular Helper T-cell Differentiation in Angioimmunoblastic T-cell Lymphoma.

    PubMed

    Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi

    2017-11-01

    Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.

  5. Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules.

    PubMed

    Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja; Oliver, Allen G; Dass, Amala

    2017-11-01

    We report the discovery of an unprecedentedly large, 2.2 nm diameter, thiolate protected gold nanocrystal characterized by single crystal X-ray crystallography (sc-XRD), Au 279 (SPh-tBu) 84 named Faradaurate-279 (F-279) in honor of Michael Faraday's (1857) pioneering work on nanoparticles. F-279 nanocrystal has a core-shell structure containing a truncated octahedral core with bulk face-centered cubic-like arrangement, yet a nanomolecule with a precise number of metal atoms and thiolate ligands. The Au 279 S 84 geometry was established from a low-temperature 120 K sc-XRD study at 0.90 Å resolution. The atom counts in core-shell structure of Au 279 follows the mathematical formula for magic number shells: Au@Au 12 @Au 42 @Au 92 @Au 54 , which is further protected by a final shell of Au 48 . Au 249 core is protected by three types of staple motifs, namely: 30 bridging, 18 monomeric, and 6 dimeric staple motifs. Despite the presence of such diverse staple motifs, Au 279 S 84 structure has a chiral pseudo-D 3 symmetry. The core-shell structure can be viewed as nested, concentric polyhedra, containing a total of five forms of Archimedean solids. A comparison between the Au 279 and Au 309 cuboctahedral superatom model in shell-wise growth is illustrated. F-279 can be synthesized and isolated in high purity in milligram quantities using size exclusion chromatography, as evidenced by mass spectrometry. Electrospray ionization-mass spectrometry independently verifies the X-ray diffraction study based heavy atoms formula, Au 279 S 84 , and establishes the molecular formula with the complete ligands, namely, Au 279 (SPh-tBu) 84 . It is also the smallest gold nanocrystal to exhibit metallic behavior, with a surface plasmon resonance band around 510 nm.

  6. Human Atopic Dermatitis Skin-derived T Cells can Induce a Reaction in Mouse Keratinocytes in vivo.

    PubMed

    Martel, B C; Blom, L; Dyring-Andersen, B; Skov, L; Thestrup-Pedersen, K; Skov, S; Skak, K; Poulsen, L K

    2015-08-01

    In atopic dermatitis (AD), the inflammatory response between skin-infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice through keratinocyte activation and consequently cause the development of eczematous lesions. Punch biopsies of the lesional skin from AD patients were used to establish skin-derived T cell cultures, which were transferred to NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that the subcutaneous injection of the human AD skin-derived T cells resulted in the migration of the human T cells from subcutis to the papillary dermis followed by the development of erythema and oedema in the mouse skin. Furthermore, the human T cells induced a transient proliferative response in the mouse keratinocytes shown as increased numbers of Ki-67(+) keratinocytes and increased epidermal thickness. Out of six established AD skin-derived T cell cultures, two were superior at inducing a skin reaction in the mice, and these cultures were found to contain >10% CCR10(+) T cells compared to <2% for the other cultures. In comparison, blood-derived in vitro-differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in the mouse skin through the induction of a proliferative response in the mouse keratinocytes. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  7. Tissue Non-specific Alkaline Phosphatase Expression is Needed for the Full Stimulation of T Cells and T Cell-Dependent Colitis.

    PubMed

    Hernández-Chirlaque, Cristina; Gámez-Belmonte, Reyes; Ocón, Borja; Martínez-Moya, Patricia; Wirtz, Stefan; Sánchez de Medina, Fermín; Martínez-Augustin, Olga

    2017-07-01

    Two alkaline phosphatase isoforms, intestinal [IAP] and tissue non-specific alkaline phosphatase [TNAP], are coexpressed in mouse colon, with the latter predominating in colitis. We aimed to examine the role of TNAP in T lymphocytes, using heterozygous TNAP+/- mice [as TNAP-/- mice are non-viable]. In vitro primary cultures and in vivo T cell models using TNAP+/- mice were used. Stimulated splenocytes [lipopolysaccharide and concanavalin A] and T lymphocytes [concanavalin A and a-CD3/a-CD28] showed a decreased cytokine production and expression when compared with wild-type [WT] cells. Decreased T cell activation was reproduced by the TNAP inhibitors levamisole, theophylline, and phenylalanine in WT cells. Intraperitoneal administration of anti-CD3 in vivo resulted in reduced plasma cytokine levels, and decreased activation of splenocytes and T cells ex vivo in TNAP+/- mice. We further tested the hypothesis that TNAP expressed in T lymphocytes is involved in T cell activation and inflammation, using the lymphocyte transfer model of colitis. Rag1-/- mice were transferred with T naïve cells [CD4+ CD62L+] from TNAP+/- or WT mice and developed colitis, which was attenuated in the group receiving TNAP+/- cells. Compared with WT, T cells from TNAP+/- mice showed a decreased capacity for proliferation, with no change in differentiation. Our results offer clear evidence that TNAP modulates T lymphocyte function and specifically T cell-dependent colitis. This was associated with distinct changes in the type of TNAP expressed, probably because of changes in glycosylation. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  8. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    PubMed

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  9. Insufficient interleukin-2 production from splenic CD4+ T cells causes impaired cell proliferation and early apoptosis in SAMP1, a strain of senescence-accelerated mouse

    PubMed Central

    Nishimura, Yasumitsu; Hosokawa, Tomohide; Hosono, Masamichi; Baba, Mitsuo; Hosokawa, Masanori

    2002-01-01

    We examined the proliferative and cytokine-producing activities of CD4+ T cells from young mice of the senescence-accelerated mouse strain SAMP1, which had shown markedly low T-dependent antibody-producing responses. When splenic T cells were cultured with concanavalin A (Con A), the percentage of CD4+ cells decreased earlier in SAMP1 than in C3H/He mice. At 40 hr of culture, the percentage of BrdU-labelled proliferating CD4+ cells increased strongly in C3H/He, but only slightly in SAMP1. When purified CD4+ T cells were cultured with Con A, the percentage of 5-bromo-2′-deoxyuridine (BrdU)-labelled cells peaked at around 48 hr of culture in both strains, but decreased significantly at 64 hr in SAMP1. The production of interleukin (IL)-2 but not IL-4 or interferon-γ (IFN-γ) was significantly lower in SAMP1 than in C3H/He at 48 hr of culture. IL-2 production was also markedly low in SAMP1, even under the stimulation of anti-CD3 with anti-CD28 antibodies. The frequency of cells producing IL-2 was significantly lower in SAMP1 than in C3H/He at 6–24 hr of culture with Con A. The percentage of annexin-positive and propidium iodide (PI)-negative apoptotic cells was significantly higher in SAMP1 than in C3H/He at 96 hr of culture. Exogenous IL-2 prevented the decrease in BrdU-labelled cells and the increase in apoptotic cells in the SAMP1 cell culture. These results indicate that SAMP1 CD4+ T cells cannot produce IL-2 at levels sufficient to support cell proliferation and survival. This may account for the weak T-dependent antibody response in SAMP1 mice. PMID:12383198

  10. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    PubMed

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  11. Adult T-cell leukemia-associated antigen (ATLA): detection of a glycoprotein in cell- and virus-free supernatant.

    PubMed

    Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G

    1982-01-01

    A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.

  12. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  13. The Tax-Inducible Actin-Bundling Protein Fascin Is Crucial for Release and Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1 (HTLV-1).

    PubMed

    Gross, Christine; Wiesmann, Veit; Millen, Sebastian; Kalmer, Martina; Wittenberg, Thomas; Gettemans, Jan; Thoma-Kress, Andrea K

    2016-10-01

    The delta-retrovirus Human T-cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission. Viruses are transmitted by polarized budding and by transfer of viral biofilms at the virological synapse (VS). Formation of the VS requires the viral Tax protein and polarization of the host cytoskeleton, however, molecular mechanisms of HTLV-1 cell-to-cell transmission remain incompletely understood. Recently, we could show Tax-dependent upregulation of the actin-bundling protein Fascin (FSCN-1) in HTLV-1-infected T-cells. Here, we report that Fascin contributes to HTLV-1 transmission. Using single-cycle replication-dependent HTLV-1 reporter vectors, we found that repression of endogenous Fascin by short hairpin RNAs and by Fascin-specific nanobodies impaired gag p19 release and cell-to-cell transmission in 293T cells. In Jurkat T-cells, Tax-induced Fascin expression enhanced virus release and Fascin-dependently augmented cell-to-cell transmission to Raji/CD4+ B-cells. Repression of Fascin in HTLV-1-infected T-cells diminished virus release and gag p19 transfer to co-cultured T-cells. Spotting the mechanism, flow cytometry and automatic image analysis showed that Tax-induced T-cell conjugate formation occurred Fascin-independently. However, adhesion of HTLV-1-infected MT-2 cells in co-culture with Jurkat T-cells was reduced upon knockdown of Fascin, suggesting that Fascin contributes to dissemination of infected T-cells. Imaging of chronically infected MS-9 T-cells in co-culture with Jurkat T-cells revealed that Fascin's localization at tight cell-cell contacts is accompanied by gag polarization suggesting that Fascin directly affects the distribution of gag to budding sites, and therefore, indirectly viral transmission. In detail, we found gag clusters that are interspersed with Fascin clusters, suggesting that Fascin makes room for gag in viral biofilms. Moreover, we observed short, Fascin-containing membrane extensions surrounding

  14. The Tax-Inducible Actin-Bundling Protein Fascin Is Crucial for Release and Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1 (HTLV-1)

    PubMed Central

    Wiesmann, Veit; Millen, Sebastian; Wittenberg, Thomas; Gettemans, Jan; Thoma-Kress, Andrea K.

    2016-01-01

    The delta-retrovirus Human T-cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission. Viruses are transmitted by polarized budding and by transfer of viral biofilms at the virological synapse (VS). Formation of the VS requires the viral Tax protein and polarization of the host cytoskeleton, however, molecular mechanisms of HTLV-1 cell-to-cell transmission remain incompletely understood. Recently, we could show Tax-dependent upregulation of the actin-bundling protein Fascin (FSCN-1) in HTLV-1-infected T-cells. Here, we report that Fascin contributes to HTLV-1 transmission. Using single-cycle replication-dependent HTLV-1 reporter vectors, we found that repression of endogenous Fascin by short hairpin RNAs and by Fascin-specific nanobodies impaired gag p19 release and cell-to-cell transmission in 293T cells. In Jurkat T-cells, Tax-induced Fascin expression enhanced virus release and Fascin-dependently augmented cell-to-cell transmission to Raji/CD4+ B-cells. Repression of Fascin in HTLV-1-infected T-cells diminished virus release and gag p19 transfer to co-cultured T-cells. Spotting the mechanism, flow cytometry and automatic image analysis showed that Tax-induced T-cell conjugate formation occurred Fascin-independently. However, adhesion of HTLV-1-infected MT-2 cells in co-culture with Jurkat T-cells was reduced upon knockdown of Fascin, suggesting that Fascin contributes to dissemination of infected T-cells. Imaging of chronically infected MS-9 T-cells in co-culture with Jurkat T-cells revealed that Fascin’s localization at tight cell-cell contacts is accompanied by gag polarization suggesting that Fascin directly affects the distribution of gag to budding sites, and therefore, indirectly viral transmission. In detail, we found gag clusters that are interspersed with Fascin clusters, suggesting that Fascin makes room for gag in viral biofilms. Moreover, we observed short, Fascin-containing membrane extensions

  15. Cytotoxicity Testing of Temporary Luting Cements with Two- and Three-Dimensional Cultures of Bovine Dental Pulp-Derived Cells

    PubMed Central

    Ülker, Hayriye Esra; Ülker, Mustafa; Gümüş, Hasan Önder; Yalçın, Muhammet; Şengün, Abdulkadir

    2013-01-01

    This study evaluated the cytotoxicity of eugenol-containing and eugenol-free temporary luting cements. For cytotoxicity testing, bovine pulp-derived cells transfected with Simian virus 40 Large T antigen were exposed to extracts of eugenol-containing (Rely X Temp E) and eugenol-free (Provicol, PreVISION CEM, and Rely X Temp NE) temporary luting cements for 24 h. The cytotoxicity of the same materials was also evaluated in a dentin barrier test device using three-dimensional cell cultures of bovine pulp-derived cells. The results of the cytotoxicity studies with two-dimensional cultures of bovine dental pulp-derived cells revealed that cell survival with the extracts of Rely X Temp E, Provicol, PreVISION CEM, and Rely X Temp NE was 89.1%, 84.9%, 92.3%, and 66.8%, respectively. Rely X Temp NE and Provicol showed cytotoxic effects on bovine dental pulp-derived cells (P < 0.05). The results of the dentin barrier test revealed that cell survival with the above-mentioned temporary cement was 101.5%, 91.9%, 93.5%, and 90.6%, respectively. None of the temporary luting cements significantly reduced cell survival compared with the negative control in the dentin barrier test (P > 0.05). Biologically active materials released from temporary luting cements may not influence the dentine-pulp complex if the residual dentine layer is at least 0.5 mm thick. PMID:23984419

  16. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes

    PubMed Central

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-01-01

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088

  17. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes.

    PubMed

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-04-10

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.

  18. Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes.

    PubMed

    Chen, Liang; Song, Wei; Markel, David C; Shi, Tong; Muzik, Otto; Matthew, Howard; Ren, Weiping

    2016-02-01

    Calcium polyphosphate is a biodegradable bone substitute. It remains a challenge to prepare porous calcium polyphosphate with desired gradient porous structures. In this study, a modified one-step gravity sintering method was used to prepare calcium polyphosphate scaffolds with desired-gradient-pore-size distribution. The differences of porous structure, mechanical strength, and degradation rate between gradient and homogenous calcium polyphosphate scaffolds were evaluated by micro-computed tomography, scanning electron microscopy, and mechanical testing. Preosteoblastic MC3T3-E1 cells were seeded onto gradient and homogenous calcium polyphosphate scaffolds and cultured in a flow perfusion bioreactor. The distribution, proliferation, and differentiation of the MC3T3-E1 cells were compared to that of homogenous calcium polyphosphate scaffolds. Though no significant difference of cell proliferation was found between the gradient and the homogenous calcium polyphosphate scaffolds, a much higher cell differentiation and mineralization were observed in the gradient calcium polyphosphate scaffolds than that of the homogenous calcium polyphosphate scaffolds, as manifested by increased alkaline phosphatase activity (p < 0.05). The improved distribution and differentiation of cultured cells within gradient scaffolds were further supported by both (18)F-fluorine micro-positron emission tomography scanning and in vitro tetracycline labeling. We conclude that the calcium polyphosphate scaffold with gradient pore sizes enhances osteogenic cell differentiation as well as mineralization. The in vivo performance of gradient calcium polyphosphate scaffolds warrants further investigation in animal bone defect models. © The Author(s) 2015.

  19. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-07

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  20. Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro.

    PubMed

    Kahaleh, M B; Fan, P S; Otsuka, T

    1999-05-01

    In view of the documented perivascular mononuclear cell infiltration in the involved organs in scleroderma (SSc) and the reported accumulation of gammadelta-T cells in SSc skin and lung, we evaluated gammadelta-T cell interaction with endothelial cells (EC) in vitro. gammadelta- and alphabeta-T cells were isolated from BPMN of SSc patients with early diffuse disease and of matched control subjects by an immunomagnetic method after stimulation with mycobacterium lysate and interleukin-2 for 2 weeks. Lymphocyte adhesion, proliferation, and cytotoxicity to EC were investigated. SSc gammadelta-T cells adhered to cultured EC and proliferated at higher rates than control cells. Furthermore, significant EC cytotoxicity by SSc gammadelta was seen. The cytotoxicity was blocked by addition of anti-gammadelta-TCR antibody and by anti-granzyme A antibody but not by anti-MHC class I and II antibodies. Expression of granzyme A mRNA was seen in five/five SSc gammadelta-T cells and in one/five control cells. alphabeta-T cells from both SSc and control subjects were significantly less interactive with EC than gammadelta-T cells. The data demonstrate EC recognition by SSc gammadelta-T cells and propose gammadelta-T cells as a possible effector cell type in the immune pathogenesis of SSc. Copyright 1999 Academic Press.

  1. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Oxygen consumption in T-47D cells immobilized in alginate.

    PubMed

    Larsen, B E; Sandvik, J A; Karlsen, J; Pettersen, E O; Melvik, J E

    2013-08-01

    Encapsulation or entrapment of cells is increasingly being used in a wide variety of scientific studies for tissue engineering and development of novel medical devices. The effect on cell metabolism of such systems is, in general, not well characterized. In this work, a simple system for monitoring respiration of cells embedded in 3-D alginate cultures was characterized. T-47D cells were cultured in alginate gels. Oxygen concentration curves were recorded within cell-gel constructs using two different sensor systems, and cell viability and metabolic state were characterized using confocal microscopy and commercially available stains. At sufficient depth within constructs, recorded oxygen concentration curves were not significantly influenced by influx of oxygen through cell-gel layers and oxygen consumption rate could be calculated simply by dividing oxygen loss in the system per time, by the number of cells. This conclusion was supported by a 3-D numeric simulation. For the T-47D cells, the oxygen consumption rate was found to be 61 ± 6 fmol/cell/h, 3-4 times less than has previously been found for these cells, when grown exponentially in monolayer culture. The experimental set-up presented here may be varied in multiple ways by changing the cell-gel construct 3-D microenvironment, easily allowing investigation of a variety of factors on cell respiration. © 2013 John Wiley & Sons Ltd.

  3. Preparative electrophoresis of cultured human cells: Effect of cell cycle phase

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.

    1985-01-01

    Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.

  4. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  5. Yersinia enterocolitica-Induced Interleukin-8 Secretion by Human Intestinal Epithelial Cells Depends on Cell Differentiation

    PubMed Central

    Schulte, Ralf; Autenrieth, Ingo B.

    1998-01-01

    In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416

  6. MERTK as negative regulator of human T cell activation

    PubMed Central

    Cabezón, Raquel; Carrera-Silva, E. Antonio; Flórez-Grau, Georgina; Errasti, Andrea E.; Calderón-Gómez, Elisabeth; Lozano, Juan José; España, Carolina; Ricart, Elena; Panés, Julián; Rothlin, Carla Vanina; Benítez-Ribas, Daniel

    2015-01-01

    The aim of this study was to test the hypothesis whether MERTK, which is up-regulated in human DCs treated with immunosuppressive agents, is directly involved in modulating T cell activation. MERTK is a member of the TAM family and contributes to regulating innate immune response to ACs by inhibiting DC activation in animal models. However, whether MERTK interacts directly with T cells has not been addressed. Here, we show that MERTK is highly expressed on dex-induced human tol-DCs and participates in their tolerogenic effect. Neutralization of MERTK in allogenic MLR, as well as autologous DC–T cell cultures, leads to increased T cell proliferation and IFN-γ production. Additionally, we identify a previously unrecognized noncell-autonomous regulatory function of MERTK expressed on DCs. Mer-Fc protein, used to mimic MERTK on DCs, suppresses naïve and antigen-specific memory T cell activation. This mechanism is mediated by the neutralization of the MERTK ligand PROS1. We find that MERTK and PROS1 are expressed in human T cells upon TCR activation and drive an autocrine proproliferative mechanism. Collectively, these results suggest that MERTK on DCs controls T cell activation and expansion through the competition for PROS1 interaction with MERTK in the T cells. In conclusion, this report identified MERTK as a potent suppressor of T cell response. PMID:25624460

  7. Rapamycin increases RSV RNA levels and survival of RSV-infected dendritic cell depending on T cell contact.

    PubMed

    do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de

    2016-10-01

    The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  9. NAD+ protects against EAE by regulating CD4+ T-cell differentiation

    PubMed Central

    Tullius, Stefan G.; Biefer, Hector Rodriguez Cetina; Li, Suyan; Trachtenberg, Alexander J.; Edtinger, Karoline; Quante, Markus; Krenzien, Felix; Uehara, Hirofumi; Yang, Xiaoyong; Kissick, Haydn T.; Kuo, Winston P.; Ghiran, Ionita; de la Fuente, Miguel A.; Arredouani, Mohamed S.; Camacho, Virginia; Tigges, John C.; Toxavidis, Vasilis; El Fatimy, Rachid; Smith, Brian D.; Vasudevan, Anju; ElKhal, Abdallah

    2014-01-01

    CD4+ T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD+) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4+IFNγ+IL-10+ T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD+ regulates CD4+ T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD+, the frequency of T-bet−/− CD4+IFNγ+ T cells was twofold higher than wild-type CD4+ T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4+ T-cell differentiation and demonstrate that NAD+ may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases. PMID:25290058

  10. T-dependent activation of resting B cells mediated by concanavalin A.

    PubMed

    Ratcliffe, M J; Julius, M H

    1984-03-01

    In cultures containing long-term cultured lines of antigen-specific helper T (Th) cells, normal unprimed B cells and concanavalin A (Con A), induction of B cells to immunoglobulin secretion and DNA synthesis was observed. The plaque-forming cell (PFC) response was large (frequently greater than 75 000 PFC/10(6) input B cells) demonstrating the polyspecific nature of the response. Con A-mediated maturation and induction to DNA synthesis of responding B cells was completely Th cell dependent and inhibited with methyl-alpha-D-mannoside. Both resting and blasted B cells, separated by Percoll density centrifugation, were induced to DNA synthesis and immunoglobulin secretion. Responses were completely unrestricted by the B cell major histocompatibility complex, even at the level of the resting B cell. The polyclonal nature of the response taken together with the Con A-mediated bypassing of T cell specificity and restricting haplotype indicates that this response is analogous to lectin-mediated cytotoxicity.

  11. Reactive glia promote development of CD103+ CD69+ CD8+ T-cells through programmed cell death-ligand 1 (PD-L1).

    PubMed

    Prasad, Sujata; Hu, Shuxian; Sheng, Wen S; Chauhan, Priyanka; Lokensgard, James R

    2018-06-01

    Previous work from our laboratory has demonstrated in vivo persistence of CD103 + CD69 + brain resident memory CD8 + T-cells (bT RM ) following viral infection, and that the PD-1: PD-L1 pathway promotes development of these T RM cells within the brain. Although glial cells express low basal levels of PD-L1, its expression is upregulated upon IFN-γ-treatment, and they have been shown to modulate antiviral T-cell effector responses through the PD-1: PD-L1 pathway. We performed flow cytometric analysis of cells from co-cultures of mixed glia and CD8 + T-cells obtained from wild type mice to investigate the role of glial cells in the development of bT RM . In this study, we show that interactions between reactive glia and anti-CD3 Ab-stimulated CD8 + T-cells promote development of CD103 + CD69 + CD8 + T-cells through engagement of the PD-1: PD-L1 pathway. These studies used co-cultures of primary murine glial cells obtained from WT animals along with CD8 + T-cells obtained from either WT or PD-1 KO mice. We found that αCD3 Ab-stimulated CD8 + T-cells from WT animals increased expression of CD103 and CD69 when co-cultured with primary murine glial cells. In contrast, significantly reduced expression of CD103 and CD69 was observed using CD8 + T-cells from PD-1 KO mice. We also observed that reactive glia promoted high levels of CD127, a marker of memory precursor effector cells (MPEC), on CD69 + CD8 + T-cells, which promotes development of T RM cells. Interestingly, results obtained using T-cells from PD-1 KO animals showed significantly reduced expression of CD127 on CD69 + CD8 + cells. Additionally, blocking of glial PD-L1 resulted in decreased expression of CD103, along with reduced CD127 on CD69 + CD8 + T-cells. Taken together, these results demonstrate a role for activated glia in promoting development of bT RM through the PD-1: PD-L1 pathway. © 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  12. Functional characterization of T cells in abdominal aortic aneurysms.

    PubMed

    Forester, Nerys D; Cruickshank, Sheena M; Scott, D Julian A; Carding, Simon R

    2005-06-01

    Abdominal aortic aneurysms (AAA) exhibit features of a chronic inflammatory disorder. The functional attributes of the T cells in AAA tissue are unclear, with little quantitative or functional data. Using a novel, non-enzymatic method to isolate viable cells from AAA tissue, functional properties of AAA T cells were investigated for the first time. Composition and phenotype of AAA T cells was determined by flow cytometry and verified by immunohistochemistry. Tissue mononuclear cells (MNCs) were cultured in the presence of T-cell mitogens, and cell cycle analysis and cytokine production assessed. Typical cell yield was 4.5 x 10(6) cells per gram of AAA tissue. The majority (58.1+/-5.3%) of haematopoietic (CD45+) cells recovered were CD3+ T cells, B cells comprised 41.1+/-5.7%, natural killer cells 7.3+/-2.5%, and macrophages 2%. Freshly isolated T cells were in resting (G1) state, with 25% expressing the activation-associated cell surface antigens major histocompatibility complex II and CD25. When stimulated in vitro, a significant proportion entered S and G2 phase of the cell cycle, up-regulated CD25, and secreted tumour necrosis factor-alpha, interferon-gamma, interleukin (IL)-5 and IL-6. Despite patient differences, the composition of the AAA inflammatory infiltrate was remarkably consistent, and when re-stimulated ex-vivo T cells produced a stereotypical cytokine response, consistent with the hypothesis that AAA T cells can promote tissue inflammation by secretion of proinflammatory cytokines, and in addition provide signals for B-cell help.

  13. Application of speckle dynamics for studying metabolic activity of cell cultures with herpes virus

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. P.; Bakharev, A. A.; Malygin, A. S.; Mikhaylova, J. A.; Borodin, E. M.; Poryvayeva, A. P.; Glinskikh, N. P.

    2014-05-01

    The report considers the results of the experiments in which digital values of light intensity I and the image area correlation index η values were recorded on a real-time basis for one or two days. Three cell cultures with viruses along with intact cultures were investigated. High correlation of dependence of η values on time t values was demonstrated for three cultures. The η=η(t) and I=I(t) dependences for cells with and without viruses differ considerably. It was shown that the presence of viruses could be determined as early as ten minutes after measurements were started.

  14. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ping, E-mail: fanpinggoodluck@163.com; He, Lan; Pu, Dan

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertolimore » cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  15. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells.

    PubMed Central

    Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M

    1988-01-01

    Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203

  16. A Microfluidic Localized, Multiple Cell Culture Array using Vacuum Actuated Cell Seeding: Integrated Anticancer Drug Testing

    PubMed Central

    Gao, Yan; Li, Peng

    2013-01-01

    In this study, we introduced a novel and convenient approach to culture multiple cells in localized arrays of microfluidic chambers using one-step vacuum actuation. In one device, we integrated 8 individually addressable regions of culture chambers, each only requiring one simple vacuum operation to seed cells lines. Four cell lines were seeded in designated regions in one device via sequential injection with high purity (99.9%-100%) and cultured for long-term. The on-chip simultaneous culture of HuT 78, Ramos, PC-3 and C166-GFP cells for 48 h was demonstrated with viabilities of 92%+/−2%, 94%+/−4%, 96%+/−2% and 97%+/−2%, respectively. The longest culture period for C166-GFP cells in this study was 168 h with a viability of 96%+/−10%. Cell proliferation in each individual side channel can be tracked. Mass transport between the main channel and side channels was achieved through diffusion and studied using fluorescein solution. The main advantage of this device is the capability to perform multiple cell-based assays on the same device for better comparative studies. After treating cells with staurosporine or anti-human CD95 for 16 h, the apoptotic cell percentage of HuT 78, CCRF-CEM, PC-3 and Ramos cells were 36%+/−3%, 24%+/−4%, 12%+/−2%, 18%+/−4% for staurosporine, and 63%+/−2%, 45%+/−1%, 3%+/−3%, 27%+/−12% for anti-human CD95, respectively. With the advantages of enhanced integration, ease of use and fabrication, and flexibility, this device will be suitable for long-term multiple cell monitoring and cell based assays. PMID:23813077

  17. Antigen presenting cells (APCs) from thermally injured and/or septic rats modulate CD4+ T cell responses of naive rat.

    PubMed

    Fazal, Nadeem; Raziuddin, Syed; Khan, Mehdi; Al-Ghoul, Walid M

    2006-01-01

    Regulation of immune response is marked by complex interactions among the cells that recognize and present antigens. Antigen presenting cells (APCs), the antigen presenting cell component of the innate immune response plays an important role in effector CD4+ T cell response. Thermal injury and/or superimposed sepsis in rats' leads to suppressed CD4+ T cell functions. We investigated modulations of CD4+ T cell function by APCs (purified non-T cells) from thermally injured and/or septic rats. Rats were subjected to 30% total body surface area scald burn or exposed to 37 degrees C water (Sham burn) and sepsis was induced by cecal-ligation and puncture (CLP) method. At day 3 post-injury animals were sacrificed and CD4+ T cells and APCs from mesenteric lymph nodes (MLN) were obtained using magnetic microbead isolation procedure. APCs from injured rats were co-cultured with sham rat MLN CD4+ T cells and proliferative responses (thymidine incorporation), phenotypic changes (Flow cytometry), IL-2 production (ELISA) and CTLA-4 mRNA (RT-PCR) were determined in naive rat CD4+ T cells. The data indicate that APCs from thermally injured and/or septic rats when co-cultured with CD4+ T cells suppressed CD4+ T cell effector functions. This lack of CD4+ T cell activation was accompanied with altered co-stimulatory molecules, i.e., CD28 and/or CTLA-4 (CD152). In conclusion, our studies indicated that defective APCs from thermally injured and/or septic rats modulate CD4+ T cell functions via changes in co-stimulatory molecules expressed on naive CD4+ T cells. This altered APC: CD4+ T cell interaction leads to suppressed CD4+ T cell activation of healthy animals.

  18. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    PubMed

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P < 0.01). By using a dynamic three-dimensional cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  19. Prostaglandin E2 induces expression of P-selectin (CD62P) on cultured human umbilical vein endothelial cells and enhances endothelial binding of CD4-T-cells.

    PubMed

    Hailer, N P; Oppermann, E; Leckel, K; Cinatl, J; Markus, B H; Blaheta, R A

    2000-07-15

    Interaction of endothelial P-selectin with sialyl Lewis(x)-glycoprotein or P-selectin glycoprotein ligand (PSGL)-1 on leukocytes represents an early step in leukocyte recruitment. Redistribution of P-selectin to the endothelial cell surface occurs rapidly after challenge with several proinflammatory agents, for example, histamine, leucopterins, or lipopolysaccharide. We present evidence that prostaglandin E2 (PGE2) is an efficient inductor of surface P-selectin on cultured human umbilical vein endothelial cells (HUVEC). The increase in P-selectin-immunoreactivity coincided with redistribution of cytoplasmic P-selectin-reactive granulae to the endothelial cell surface, as visualized by confocal laser microscopic examination. CD4-T-cell adhesion to PGE2-stimulated HUVEC was also enhanced by a factor of 4, and blocking mAb directed against the binding site of P-selectin almost completely abrogated this increase in CD4-T-cell adhesion. In summary, our findings show that liberation of PGE2 is an important inductor of P-selectin surface expression on endothelial cells, resulting in enhanced recruitment of inflammatory cells.

  20. Naive T-cell receptor transgenic T cells help memory B cells produce antibody

    PubMed Central

    Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B

    2006-01-01

    Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314

  1. Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer

    PubMed Central

    Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.

    2018-01-01

    Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915

  2. T cells which proliferate in response to concanavalin A include cells which proliferate in mixed leucocyte reactions.

    PubMed

    Watanabe, T; Fathman, C G; Coutinho, A

    1977-09-01

    Selection in long-term culture of alloreactive T cells, by successive in vitro restimulation with semi-allogeneic cells, results in primed responder cell populations which maintain full proliferative reactivity to allogeneic cells as well as to the T cell mitogens concanavalin A (Con A) and phytohemagglutinin (PHA) but are depleted of cells which can effect target cell destruction in either a specific or nonspecific manner. Con A-induced T cell blasts (selected by velocity sedimentation) can revert to small resting lymphocytes in the presence of inert "filler" cells. Con A blasts which have reverted, readily proliferate in response to Con A or allogeneic stimulator cells but are largely depleted of effector killer cells and PHA-responsive cells.

  3. Cell culture contamination.

    PubMed

    Stacey, Glyn N

    2011-01-01

    Microbial contamination is a major issue in cell culture, but there are a range of procedures which can be adopted to prevent or eliminate contamination. Contamination may arise from the operator and the laboratory environment, from other cells used in the laboratory, and from reagents. Some infections may present a risk to laboratory workers: containment and aseptic technique are the key defence against such risks. Remedial management of suspected infection may simply mean discarding a single potentially infected culture. However, if a more widespread problem is identified, then all contaminated cultures and associated unused media that have been opened during this period should be discarded, equipment should be inspected and cleaned, cell culture operations reviewed, and isolation from other laboratories instituted until the problem is solved. Attention to training of staff, laboratory layout, appropriate use of quarantine for new cultures or cell lines, cleaning and maintenance, and quality control are important factors in preventing contamination in cell culture laboratories.

  4. Conformation-dependent recognition of a protein by T-lymphocytes: apomyoglobin-specific T-cell clone recognizes conformational changes between apomyoglobin and myoglobin

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    A T-cell clone specific to apomyoglobin was generated. It was prepared from a T-cell culture obtained by in vitro driving of lymph node cells with apomyoglobin from SJL mice that have been primed in vivo with apomyoglobin. In proliferative assays, the T-cell clone responded to apomyoglobin but did not recognize native myoglobin or any of the synthetic peptides corresponding to the six T sites of myoglobin. The demonstration that a T-cell clone can be isolated, whose specificity is directed entirely to apomyoglobin and not to its counterpart myoglobin, with an identical amino acid composition, indicates the importance of the three-dimensional structure in the presentation of the protein to T cells.

  5. Elimination of human T cell leukemia virus type-1-infected cells by neutralizing and antibody-dependent cellular cytotoxicity-inducing antibodies against human t cell leukemia virus type-1 envelope gp46.

    PubMed

    Tanaka, Yuetsu; Takahashi, Yoshiaki; Tanaka, Reiko; Kodama, Akira; Fujii, Hideki; Hasegawa, Atsuhiko; Kannagi, Mari; Ansari, Aftab A; Saito, Mineki

    2014-06-01

    Human T cell leukemia virus type-1 (HTLV-1) is prevalent worldwide with foci of high prevalence. However, to date no effective vaccine or drug against HTLV-1 infection has been developed. In efforts to define the role of antibodies in the control of HTLV-1 infection, we capitalized on the use of our previously defined anti-gp46 neutralizing monoclonal antibody (mAb) (clone LAT-27) and high titers of human anti-HTLV-1 IgG purified from HAM/TSP patients (HAM-IgG). LAT-27 and HAM-IgG completely blocked syncytium formation and T cell immortalization mediated by HTLV-1 in vitro. The addition of these antibodies to cultures of CD8(+) T cell-depleted peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients at the initiation of culture not only decreased the numbers of Tax-expressing cells and the production of HTLV-1 p24 but also inhibited the spontaneous immortalization of T cells. Coculture of in vitro-HTLV-1-immortalized T cell lines with autologous PBMCs in the presence of LAT-27 or HAM-IgG, but not an F(ab')2 fragment of LAT-27 or nonneutralizing anti-gp46 mAbs, resulted in depletion of HTLV-1-infected cells. A 24-h (51)Cr release assay showed the presence of significant antibody-dependent cellular cytotoxicity (ADCC) activity in LAT-27 and HAM-IgG, but not F(ab')2 of LAT-27, resulting in the depletion of HTLV-1-infected T cells by autologous PBMCs. The depletion of natural killer (NK) cells from the effector PBMCs reduced this ADCC activity. Altogether, the present data demonstrate that the neutralizing and ADCC-inducing activities of anti-HTLV-1 antibodies are capable of reducing infection and eliminating HTLV-1-infected cells in the presence of autologous PBMCs.

  6. Augmentation of autologous T cell reactivity with acute myeloid leukemia (AML) blasts by Toll-like receptor (TLR) agonists

    PubMed Central

    Zhong, RuiKun; Li, Hongying; Messer, Karen; Lane, Thomas A.; Zhou, Jiehua; Ball, Edward D.

    2016-01-01

    This study investigated whether TNF-α, Toll-like receptors (TLRs) 7/8 agonist resiquimod (R848), the TLR4 agonist lipopolysaccharide (LPS) and their combinations can enhance autologous AML-reactive T cell generation in an in vitro culture. AML peripheral blood or bone marrow mononuclear cells were cultured in medium supplemented with GM-CSF/IL-4 to induce dendritic cell (DC) differentiation of AML blasts (AML-DC). The impact of TNF-α, LPS, R848 and their combinations on AML-DC cultures was analyzed. Significantly enhanced CD80, CD40, CD83, CD54, HLADR and CD86 expression of AML cells was observed by addition of TNF-α, LPS, R848 alone or combinations. Induced CD80 expression of AML cells was significantly higher through the combination of TNF-α, LPS and R848 (T + L + R) than that by T alone. CTL induced from T + L + R, T + R, T + L, L + R and R, but not T, L alone stimulated cultures showed significantly higher IFN-γ release than the medium control in response to autologous AML cells. IFN-γ release by T + L + R was significantly higher than T or L alone, and T + R was significantly higher than T alone. CTL generated from T + L + R, T + L, T + R, L + R and L alone exerted significantly higher AML cell killing than medium control. AML cell killing by T + L + R and T + R was significantly higher than T or R alone. These results indicate that the combination of T + L + R induces a significantly enhanced antigen presentation effect of AML-DC. We speculate that the complementary effects of reagent combinations may better address the heterogeneity of responses to any single agent in AML cells from different patients. PMID:25795133

  7. Influence of MC3T3-E1 preosteoblast culture on the corrosion of a T6-treated AZ91 alloy

    PubMed Central

    Brooks, Emily K.; Tobias, Menachem E.; Yang, Shuying; Bone, Lawrence B.; Ehrensberger, Mark T.

    2015-01-01

    This study investigated the corrosion of artificially aged T6 heat-treated Mg-9%Al-1%Zn (AZ91) for biomedical applications. Corrosion tests and surface analysis were completed both with and without a monolayer of mouse preosteoblast MC3T3-E1 cells cultured on the sample. Electrochemical impedance spectroscopy (EIS) and inductively coupled plasma mass spectroscopy (ICPMS) were used to explore the corrosion processes after either 3 or 21 days of AZ91 incubation in cell culture medium (CCM). The EIS showed both the inner layer resistance (Rin) and outer layer resistance (Rout) were lower for samples without cells cultured on the surface at 3 days (Rin = 2.64 e4 Ω/cm2, Rout = 140 Ω/cm2) compared to 21 days (Rin = 3.60 e4 Ω/cm2, Rout = 287 Ω/cm2) due to precipitation of magnesium and calcium phosphates over time. Samples with preosteoblasts cultured on the surface had a slower initial corrosion (3 day, Rin = 1.88 e5 Ω/cm2, Rout = 1060 Ω/cm2) which was observed to increase over time (21 day, Rin = 2.99 e4 Ω/cm2, Rout = 287 Ω/cm2). Changes in the corrosion processes were thought to be related to changes in the coverage provided by the cell layer. Our results reveal that the presence of cells and biological processes are able to significantly influence the corrosion rate of AZ91. PMID:25715925

  8. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    PubMed Central

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  9. Polyclonal activation of human lymphocytes in vitro-II. Reappraisal of T and B cell-specific mitogens.

    PubMed

    Dosch, H M; Schuurman, R K; Gelfand, E W

    1980-08-01

    The capacity of the T cell mitogens phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), and Staphylococcus protein A (SpA) to induce B cell proliferation and differentiation was compared with the B cell mitogen, formalinized Staphylococcus aureus (STA). Lymphocyte subpopulations from normal donors and patients with various immunodeficiency diseases were studied. In the presence of the T cell mitogens, irradiated T cells were capable of providing a helper cell activity that enabled co-cultured B lymphocytes to proliferate in response to these mitogens and to differentiate into IgM-secreting (direct) hemolytic plaque-forming cells (PFC). In the PFC response, radioresistant T-helper and radiosensitive T-suppressor cell activities could be demonstrated. T-suppressor cell activity outweighed helper activity only in nonirradiated co-cultures stimulated with Con A. Patients with severe combined immunodeficiency lacked mitogen-induced helper T cells, whereas patients with various forms of humoral immune deficiency were normal in this respect. These findings and the tissue distribution of the helper activity is aquired early in post-thymic T cell differentiation. The data suggest that experiments with cell lineage-specific lymphocyte mitogens should be considered in the context of more complex cell-cell interactions.

  10. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

    PubMed Central

    Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H

    1999-01-01

    Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625

  11. IDO and galectin-3 hamper the ex vivo generation of clinical grade tumor-specific T cells for adoptive cell therapy in metastatic melanoma.

    PubMed

    Melief, Sara M; Visser, Marten; van der Burg, Sjoerd H; Verdegaal, Els M E

    2017-07-01

    Adoptive T cell transfer (ACT) with ex vivo-expanded tumor-reactive T cells proved to be successful for the treatment of metastatic melanoma patients. Mixed lymphocyte tumor cell cultures (MLTC) can be used to generate tumor-specific T cells for ACT; however, in a number of cases tumor-reactive T cell, expansion is far from optimal. We hypothesized that this is due to tumor intrinsic and extrinsic factors and aimed to identify and manipulate these factors so to optimize our clinical, GMP-compliant MLTC protocol. We found that the tumor cell produced IDO and/or galectin-3, and the accumulation of CD4 + CD25 hi FoxP3 + T cells suppressed the expansion of tumor-specific T cells in the MLTC. Strategies to eliminate CD4 + CD25 hi FoxP3 + T cells during culture required the depletion of the whole CD4 + T cell population and were found to be undesirable. Blocking of IDO and galectin-3 was feasible and resulted in improved efficiency of the MLTC. Implementation of these findings in clinical protocols for ex vivo expansion of tumor-reactive T cells holds promise for an increased therapeutic potential of adoptive cell transfer treatments with tumor-specific T cells.

  12. Comparability of automated human induced pluripotent stem cell culture: a pilot study.

    PubMed

    Archibald, Peter R T; Chandra, Amit; Thomas, Dave; Chose, Olivier; Massouridès, Emmanuelle; Laâbi, Yacine; Williams, David J

    2016-12-01

    Consistent and robust manufacturing is essential for the translation of cell therapies, and the utilisation automation throughout the manufacturing process may allow for improvements in quality control, scalability, reproducibility and economics of the process. The aim of this study was to measure and establish the comparability between alternative process steps for the culture of hiPSCs. Consequently, the effects of manual centrifugation and automated non-centrifugation process steps, performed using TAP Biosystems' CompacT SelecT automated cell culture platform, upon the culture of a human induced pluripotent stem cell (hiPSC) line (VAX001024c07) were compared. This study, has demonstrated that comparable morphologies and cell diameters were observed in hiPSCs cultured using either manual or automated process steps. However, non-centrifugation hiPSC populations exhibited greater cell yields, greater aggregate rates, increased pluripotency marker expression, and decreased differentiation marker expression compared to centrifugation hiPSCs. A trend for decreased variability in cell yield was also observed after the utilisation of the automated process step. This study also highlights the detrimental effect of the cryopreservation and thawing processes upon the growth and characteristics of hiPSC cultures, and demonstrates that automated hiPSC manufacturing protocols can be successfully transferred between independent laboratories.

  13. Introduction to cell culture.

    PubMed

    Philippeos, Christina; Hughes, Robin D; Dhawan, Anil; Mitry, Ragai R

    2012-01-01

    The basics of cell culture as applied to human cells are discussed. Biosafety when working with human tissue, which is often pathogenic, is important. The requirements for a tissue culture laboratory are described, particularly the range of equipment needed to carry out cell isolation, purification, and culture. Steps must be taken to maintain aseptic conditions to prevent contamination of cultures with micro-organisms. Basic cell-handling techniques are discussed, including choice of media, primary culture, and cryopreservation of cells so they can be stored for future use. Common assays which are used to determine cell viability and activity are considered.

  14. Adoptive cell therapy using PD-1+ myeloma-reactive T cells eliminates established myeloma in mice.

    PubMed

    Jing, Weiqing; Gershan, Jill A; Blitzer, Grace C; Palen, Katie; Weber, James; McOlash, Laura; Riese, Matthew; Johnson, Bryon D

    2017-01-01

    Adoptive cellular therapy (ACT) with cancer antigen-reactive T cells following lymphodepletive pre-conditioning has emerged as a potentially curative therapy for patients with advanced cancers. However, identification and enrichment of appropriate T cell subsets for cancer eradication remains a major challenge for hematologic cancers. PD-1 + and PD-1 - T cell subsets from myeloma-bearing mice were sorted and analyzed for myeloma reactivity in vitro. In addition, the T cells were activated and expanded in culture and given to syngeneic myeloma-bearing mice as ACT. Myeloma-reactive T cells were enriched in the PD-1 + cell subset. Similar results were also observed in a mouse AML model. PD-1 + T cells from myeloma-bearing mice were found to be functional, they could be activated and expanded ex vivo, and they maintained their anti-myeloma reactivity after expansion. Adoptive transfer of ex vivo-expanded PD-1 + T cells together with a PD-L1 blocking antibody eliminated established myeloma in Rag-deficient mice. Both CD8 and CD4 T cell subsets were important for eradicating myeloma. Adoptively transferred PD-1 + T cells persisted in recipient mice and were able to mount an adaptive memory immune response. These results demonstrate that PD-1 is a biomarker for functional myeloma-specific T cells, and that activated and expanded PD-1 + T cells can be effective as ACT for myeloma. Furthermore, this strategy could be useful for treating other hematologic cancers.

  15. Nucleotide composition analysis of tRNA from leukemia patient cell samples and human cell lines.

    PubMed Central

    Agris, P F

    1975-01-01

    A technique developed for analysis of less than microgram quantities of tRNA has been applied to the study of human leukemia. Leucocytes from peripheal blood and bone marrow samples of six, untreated leukemia patients and cells of five different established human cell lines were maintained for 18 hours in media containing (32P)-phosphate. Incorporation of radioactive phosphate into the cells from the patient samples was slightly less than that of the cell lines. Likewise, incorporation of (32P)-phosphate into the tRNA of the patient samples (approximately 5 x 106 DPM/mug tRNA) was also less then that incorporated into the tRNA of the cell lines. The major and minor nucleotide compositions of the unfractionated tRNA preparations from each patient sample and each cell line were determined and compared. Similarities and differences in the major and minor nucleotide compositions of the tRNA preparations are discussed with reference to types of leukemia and the importance of patient sample analysis versus analysis of cultured human cells. PMID:1057159

  16. Hand-made cloned goat (Capra hircus) embryos—a comparison of different donor cells and culture systems.

    PubMed

    Akshey, Yogesh S; Malakar, Dhruba; De, Arun K; Jena, Manoj K; Garg, Shweta; Dutta, Rahul; Pawar, Sachin Kumar; Mukesh, Manisha

    2010-10-01

    Nuclear transfer is a very effective method for propagation of valuable, extinct, and endangered animals. Hand-made cloning (HMC) is an efficient alternative to the conventional micromanipulator-based technique in some domestic species. The present study was carried out for the selection of suitable somatic cells as a nuclear donor and development of an optimum culture system for in vitro culture of zona-free goat cloned embryos. Cleavage and blastocyst rates were observed 72.06 ± 2.94% and 0% for fresh cumulus cells, 81.95 ± 3.40% and 12.74 ± 2.12% for cultured cumulus cells, and 92.94 ± 0.91% and 23.78 ± 3.33% for fetal fibroblast cells, respectively. There was a significant (p < 0.05) increase in blastocyst production in goats when cultured on a flat surface (FS) (23.78 ± 3.33 %) than well of wells (WOW) (15.84 ± 2.12 %) and microdrops (MD) (0.7 ± 0.7%). Furthermore, cleavage and blastocyst production rates were significantly (p < 0.05) more in the WOW (15.84 ± 2.12%) than the MD (0.7 ± 0.7%) system. The quality of HMC blastocysts was studied by differential staining. Genetic similarity was confirmed by polymerase chain reaction (PCR)-based amplification of the second exon of the MHC class II DRB gene, which gave similar bands in electrophoresis (286 bp) both in cloned embryos and donor cells. In conclusion, the present study describes that the fetal fibroblast cell is a suitable candidate as nuclear donor, and the flat surface culture system is suitable for zona-free blastocyst development by the hand-made cloning technique in the goat.

  17. CD3-T cell receptor modulation is selectively induced in CD8 but not CD4 lymphocytes cultured in agar.

    PubMed Central

    Oudrhiri, N; Farcet, J P; Gourdin, M F; M'Bemba, E; Gaulard, P; Katz, A; Divine, M; Galazka, A; Reyes, F

    1990-01-01

    The CD3-T cell receptor (TcR) complex is central to the immune response. Upon binding by specific ligands, internalized CD3-TcR molecules increase, and either T cell response or unresponsiveness may ensue depending on the triggering conditions. Using semi-solid agar culture, we have shown previously that quiescent CD4 but not CD8 lymphocytes generate clonal colonies under phytohaemagglutinin stimulation. Here we have demonstrated that the agar induces selective CD3-TcR modulation in the CD8 and not in the CD4 subset. CD8 lymphocytes preactivated in liquid culture and recultured in agar with exogenous recombinant interleukin-2 generate colonies with a modulated CD3-TcR surface expression. The peptides composing the CD3-TcR complex are synthesized in CD8 colonies as well as in CD4; however, the CD3 gamma chain is phosphorylated at a higher level in CD8 colonies. A component of the agar polymer, absent in agarose, appears to be the ligand that induces differential CD3-TcR modulation in the CD8 subset. In contrast to agar culture, CD8 colonies can be derived from quiescent CD8 lymphocytes in agarose. These CD8 colonies express unmodulated CD-TcR. CD3-TcR modulation with anti-CD3 monoclonal antibody prior to culturing in agarose inhibits the colony formation. We conclude that given triggering conditions can result in both CD3-TcR modulation and inhibition of the proliferative response selectively in the CD8 lymphocyte subset and not in the CD4. Images Fig. 3 Fig. 4 Fig. 5 PMID:2146997

  18. Visualization of Cytolytic T Cell Differentiation and Granule Exocytosis with T Cells from Mice Expressing Active Fluorescent Granzyme B

    PubMed Central

    Mouchacca, Pierre; Schmitt-Verhulst, Anne-Marie; Boyer, Claude

    2013-01-01

    To evaluate acquisition and activation of cytolytic functions during immune responses we generated knock in (KI) mice expressing Granzyme B (GZMB) as a fusion protein with red fluorescent tdTomato (GZMB-Tom). As for GZMB in wild type (WT) lymphocytes, GZMB-Tom was absent from naïve CD8 and CD4 T cells in GZMB-Tom-KI mice. It was rapidly induced in most CD8 T cells and in a subpopulation of CD4 T cells in response to stimulation with antibodies to CD3/CD28. A fraction of splenic NK cells expressed GZMB-Tom ex vivo with most becoming positive upon culture in IL-2. GZMB-Tom was present in CTL granules and active as a protease when these degranulated into cognate target cells, as shown with target cells expressing a specific FRET reporter construct. Using T cells from mice expressing GZMB-Tom but lacking perforin, we show that the transfer of fluorescent GZMB-Tom into target cells was dependent on perforin, favoring a role for perforin in delivery of GZMB at the target cells’ plasma membranes. Time-lapse video microscopy showed Ca++ signaling in CTL upon interaction with cognate targets, followed by relocalization of GZMB-Tom-containing granules to the synaptic contact zone. A perforin-dependent step was next visualized by the fluorescence signal from the non-permeant dye TO-PRO-3 at the synaptic cleft, minutes before the labeling of the target cell nucleus, characterizing a previously undescribed synaptic event in CTL cytolysis. Transferred OVA-specific GZMB-Tom-expressing CD8 T cells acquired GZMB-Tom expression in Listeria monocytogenes-OVA infected mice as soon as 48h after infection. These GZMB-Tom positive CD8 T cells localized in the splenic T-zone where they interacted with CD11c positive dendritic cells (DC), as shown by GZMB-Tom granule redistribution to the T/DC contact zone. GZMB-Tom-KI mice thus also provide tools to visualize acquisition and activation of cytolytic function in vivo. PMID:23840635

  19. SurR9C84A protects and recovers human cardiomyocytes from hypoxia induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashok, Ajay; Department of Pathology, Case Western Reserve University, 2103 Cornell Rd. WRB 5128, Cleveland, OH 44106-7288; Kanwar, Jagat Rakesh

    Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxicmore » microenvironment in vitro, well characterized HCM were treated with 100 µm (48 h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1 µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic

  20. Functional characterization of T cells in abdominal aortic aneurysms

    PubMed Central

    Forester, Nerys D; Cruickshank, Sheena M; Scott, D Julian A; Carding, Simon R

    2005-01-01

    Abdominal aortic aneurysms (AAA) exhibit features of a chronic inflammatory disorder. The functional attributes of the T cells in AAA tissue are unclear, with little quantitative or functional data. Using a novel, non-enzymatic method to isolate viable cells from AAA tissue, functional properties of AAA T cells were investigated for the first time. Composition and phenotype of AAA T cells was determined by flow cytometry and verified by immunohistochemistry. Tissue mononuclear cells (MNCs) were cultured in the presence of T-cell mitogens, and cell cycle analysis and cytokine production assessed. Typical cell yield was 4·5 × 106 cells per gram of AAA tissue. The majority (58·1 ± 5·3%) of haematopoietic (CD45+) cells recovered were CD3+ T cells, B cells comprised 41·1 ± 5·7%, natural killer cells 7·3 ± 2·5%, and macrophages 2%. Freshly isolated T cells were in resting (G1) state, with 25% expressing the activation-associated cell surface antigens major histocompatibility complex II and CD25. When stimulated in vitro, a significant proportion entered S and G2 phase of the cell cycle, up-regulated CD25, and secreted tumour necrosis factor-α, interferon-γ, interleukin (IL)-5 and IL-6. Despite patient differences, the composition of the AAA inflammatory infiltrate was remarkably consistent, and when re-stimulated ex-vivo T cells produced a stereotypical cytokine response, consistent with the hypothesis that AAA T cells can promote tissue inflammation by secretion of proinflammatory cytokines, and in addition provide signals for B-cell help. PMID:15885133

  1. In vitro evaluation of BacT/Alert FA blood culture bottles and T2Candida assay for the detection of Candida in the presence of antifungals.

    PubMed

    Beyda, Nicholas D; Amadio, Jonathan; Rodriguez, Jose R; Malinowski, Karen; Garey, Kevin W; Wanger, Audrey; Ostrosky-Zeichner, Luis

    2018-06-13

    The T2Candida assay is a novel, non-culture based assay for the diagnosis of candidemia directly from whole blood. The impact of antifungals on the performance of the T2Candida assay and blood culture bottles have not been well described. In this study, the performance of the T2Candida assay was compared to that of blood culture in detecting Candida spp. in spiked blood cultures with or without the presence of antifungals. Clinical bloodstream isolates of Candida spp. were inoculated into human whole blood at low (1 - 5 cells/mL) and high (10-50 cells/mL) concentrations with or without presence of caspofungin and fluconazole. Time to detection (TTD) was assessed for prepared samples using BacTAlert FA aerobic blood culture bottles or the T2Candida assay. In the absence of antifungals, T2Candida assay sensitivity was comparable to that of blood culture at both the low and high inoculum (95% vs. 97.5% and 100% vs. 100%, respectively) and had an average TTD that was significantly faster (5.1 hrs vs 27.2 - 30 hrs, respectively). Neither caspofungin nor fluconazole was observed to impact the sensitivity or TTD of the T2Candida assay, while fluconazole reduced overall blood culture sensitivity by 7.5% - 12.5% (at low and high inoculum, respectively) and significantly prolonged the TTD of C. albicans, C. tropicalis , and C. parapsilosis by 14.8 - 67 hrs. Neither caspofungin nor fluconazole impacted the performance of the T2Candida assay in-vitro and may be useful for the diagnosis of candidemia in patients receiving antifungal therapy. Copyright © 2018 American Society for Microbiology.

  2. Lymphocyte functional antigens stabilize agglutination between Reed-Sternberg cells and T cells, but are not responsible for homotypic binding of Hodgkin's Reed-Sternberg cells.

    PubMed Central

    Hsu, S. M.; Hsu, P. L.

    1990-01-01

    The neoplastic (Hodgkin's Reed-Sternberg [H-RS]) cells in Hodgkin's disease (HD) are known for their unique capacity to form rosettes with unprimed T cells. Recently, a family of leukocyte-adherence molecules (LFA-1 and LFA-2) has been identified on T lymphocytes. The molecules bind to intercellular-adhesion molecules (ICAMs) and to LFA-3, respectively, which are associated with antigen-presenting cells. In this study, the authors examined whether these molecules are responsible for the homotypic and heterotypic agglutination that occurs in the cultured H-RS cells HDLM-1, HDLM-1d, and KM-H2. Despite their similar expressions of LFA-3 and ICAM-1, the different H-RS cells tested showed different growth patterns in culture. HDLM-1 cells grew singly, whereas HDLM-1d and KM-H2 cells grew in clumps. The HDLM-1 cells formed clumps when mixed with peripheral-blood T lymphocytes, cells of two lymphoblastic T-cell lines (MOLT-3 and MOLT-4), and cells of two monocyte lines (ML-1 and U-937). The addition of anti-LFA and ICAM-1 antibodies to cultures did not result in disassembly of the homotypic clusters of HDLM-1d or KM-H2 cells and it did not cause any significant changes in the size of heterotypic clusters or in the timing of cluster formation of HDLM-1 cells with other types of cells. In all studies, the cell clusters formed during homotypic and heterotypic aggregation were disassembled only minimally by cell shearing with pipetting. The disaggregation by pipetting was slightly more prominent in the presence of antibodies than was that of control cultures. However, in no case did the use of monoclonal antibodies (MAbs) and cell shearing cause complete disaggregation of homotypic and heterotypic clusters. The result seems to suggest that binding between H-RS cells and T cells and between H-RS cells and monocytes is not mediated primarily by LFAs and ICAMs, but that the binding may be strengthened in the presence of these molecules. Images Figure 1 Figure 3 Figure 4 Figure 5

  3. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    PubMed

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  4. cAMP is an essential signal in the induction of antibody production by B cells but inhibits helper function of T cells.

    PubMed

    Gilbert, K M; Hoffmann, M K

    1985-09-01

    Dibutyryl cAMP and IL 1 were found to stimulate antigen-specific and polyclonal antibody production when added together to cultures of highly purified B cells. We propose that IL 1 and an elevation in cytoplasmic cAMP represent minimal signal requirements for B cell activation. In contrast to its effect on B cells, dibutyryl cAMP inhibited helper T cell activity. Cyclic AMP suppressed the production of IL 2 and T cell replacing factor (TRF) by T cells and thus abrogated the ability of helper T cells to enhance SRBC-specific antibody production by B cells. Cyclic AMP did not inhibit the generation by T cells of B cell growth factor (BCGF). BCGF, not normally detected in Con A supernatant, was found in the culture supernatant of spleen cells that were stimulated with Con A in the presence of cAMP. Our findings indicate that cAMP blocks the production of an inhibitor of BCGF activity. cAMP had no effect on the production by macrophages of IL 1.

  5. Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Pierson, D. L.; Sams, C. F.

    2001-01-01

    The ability to detect cytomegalovirus-specific T-cells (CD4(+)) in the peripheral blood by flow cytometry has been recently described by Picker et al. In this method, cells are incubated with viral antigen and responding (cytokine producing) T-cells are then identified by flow cytometry. To date, this technique has not been reliably used to detect Epstein-Barr virus (EBV)-specific T-cells primarily due to the superantigen/mitogenic properties of the virus which non-specifically activate T-cells. By modifying culture conditions under which the antigens are presented, we have overcome this limitation and developed an assay to detect and quantitate EBV-specific T-cells. The detection of cytokine producing T-cells by flow cytometry requires an extremely strong signal (such as culture in the presence of PMA and ionomycin). Our data indicate that in modified culture conditions (early removal of viral antigen) the non-specific activation of T-cells by EBV is reduced, but antigen presentation will continue uninhibited. Using this method, EBV-specific T-cells may be legitimately detected using flow cytometry. No reduction in the numbers of antigen-specific T-cells was observed by the early removal of target antigen when verified using cytomegalovirus antigen (a virus with no non-specific T-cell activation properties). In EBV-seropositive individuals, the phenotype of the EBV-specific cytokine producing T-cells was evaluated using four-color flow cytometry and found to be CD45(+), CD3(+), CD4(+), CD45RA(-), CD69(+), CD25(-). This phenotype indicates the stimulation of circulating previously unactivated memory T-cells. No cytokine production was observed in CD4(+) T-cells from EBV-seronegative individuals, confirming the specificity of this assay. In addition, the use of four color cytometry (CD45, CD3, CD69, IFNgamma/IL-2) allows the total quantitative assessment of EBV-specific T-cells while monitoring the interference of EBV non-specific mitogenic activity. This method may

  6. B cell helper factors. II. Synergy among three helper factors in the response of T cell- and macrophage-depleted B cells.

    PubMed

    Liebson, H J; Marrack, P; Kappler, J

    1982-10-01

    The concanavalin A- (Con A) stimulated supernatant of normal spleen cells (normal Con A SN) was shown to contain a set of helper factors sufficient to allow T cell- and macrophage- (M phi) depleted murine splenic B cells to produce a plaque-forming cell response to the antigen sheep red blood cells (SRBC). The activity of normal Con A SN could be reconstituted by a mixture of three helper factor preparations. The first was the interleukin 2- (IL 2) containing Con A SN of the T cell hybridoma, FS6-14.13. The second was a normal Con A SN depleted of IL 2 by extended culture with T cell blasts from which the 30,000 to 50,000 m.w. factors were isolated (interleukin X, IL X). The third was a SN either from the M phi tumor cell line P388D1 or from normal M phi taken from Corynebacterium parvum-immune mice. The combination of all three helper factor preparations was required to equal the activity of normal Con A SN; however, the M phi SN had the least overall effect. The M phi SN and IL 2 had to be added at the initiation of the culture period for a maximal effect, but the IL X preparation was most effective when added 24 hr after the initiation of culture. These results indicate that at least three nonspecific helper factors contribute to the helper activity in normal Con A SN.

  7. Allogeneic substitution for nominal antigen-specific T-cell clone reactivity in schistosomiasis.

    PubMed Central

    Linette, G P; Lammie, P J; Phillips, S M

    1986-01-01

    The present studies have established the nature of a T-cell clone which demonstrates dual reactivity directed against Schistosoma mansoni antigen presented by syngeneic antigen presenting cells and against allogeneic cells. Clone G4, when stimulated by either antigen (SEA) or allogeneic cells (PL/J), exhibits similar functional and phenotypic characteristics. A subclone of G4, G4A.1, which has been maintained in continuous mixed lymphocyte culture for 12 months (in the absence of SEA), retains comparable reactivity with respect to proliferation and ability to produce lymphokines, transfer delayed-type hypersensitivity, and produce in vitro granulomas in response to SEA. Normal antigenic stimulation is highly contingent upon I-Ab compatibility while antibody blocking experiments map allo-reactivity to I-Eu. The failure of B10.PL spleen cells to stimulate G4, however, suggests that alloreactivity may be directed against the recently described Mls X locus. Both allogeneic and nominal antigen induced T-cell activation are blocked by antibody directed against L3T4A, confirming Class II MHC restriction for both types of stimulation. These studies suggest that stimulation of T cells by either alloantigen or nominal antigen elicits qualitatively similar functional profiles, and further suggest the feasibility of producing large numbers of nominal antigen reactive cloned T cells in the absence of nominal antigen under mixed lymphocyte culture conditions. PMID:2420707

  8. Adhesion of Epstein–Barr virus-positive natural killer cell lines to cultured endothelial cells stimulated with inflammatory cytokines

    PubMed Central

    Kanno, H; Watabe, D; Shimizu, N; Sawai, T

    2008-01-01

    Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is characterized by chronic recurrent infectious mononucleosis-like symptoms. Approximately one-fourth of CAEBV patients develop vascular lesions with infiltration of EBV-positive lymphoid cells. Furthermore, EBV-positive natural killer (NK)/T cell lymphomas often exhibit angiocentric or angiodestructive lesions. These suggest an affinity of EBV-positive NK/T cells to vascular components. In this study, we evaluated the expression of adhesion molecules and cytokines in EBV-positive NK lymphoma cell lines, SNK1 and SNK6, and examined the role of cytokines in the interaction between NK cell lines and endothelial cells. SNKs expressed intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) at much higher levels than those in EBV-negative T cell lines. SNKs produced the larger amount of tumour necrosis factor (TNF)-α, which caused increased expression of ICAM-1 and VCAM-1 in cultured human endothelial cells, than that from EBV-negative T cell lines. Furthermore, SNKs exhibited increased adhesion to cultured endothelial cells stimulated with TNF-α or interleukin (IL)-1β, and the pretreatment of cytokine-stimulated endothelial cells with anti-VCAM-1-antibodies reduced cell adhesion. These indicate that the up-regulated expression of VCAM-1 on cytokine-stimulated endothelial cells would be important for the adhesion of EBV-positive NK cells and might initiate the vascular lesions. PMID:18190605

  9. Human amniotic epithelial cells cultured in substitute serum medium maintain their stem cell characteristics for up to four passages.

    PubMed

    Evron, Ayelet; Goldman, Shlomit; Shalev, Eliezer

    2011-11-01

    The common applied culture medium in which human amniotic epithelial cells (hAECs) maintain their stem cell characteristics contains fetal calf serum (FCS) and thus is not compatible with possible future clinical applications due to the danger of animal derived pathogens. To overcome this problem, we replaced FCS with serum substitute supplement, a serum substitute used in the in vitro fertilization for embryo development, in the common applied culture medium and cultured hAECs in this substitute serum medium (SSM). Purity validation and characterization of freshly isolated and cultured hAECs was assessed through the expression of stem cell specific markers by RT-PCR (gene expression), by immunofluorescence staining and FACS (protein expression). Furthermore, karyotype was performed at passage four in order to exclude possible chromosome anomalies in hAECs cultured in SSM. The differentiation potential of hAECs into the cardiomyogenic lineage was tested through cardiac Troponin T expression by immunohistochemistry. hAECs cultured in SSM maintained expression of all the major pluripotent genes Sox-2, Oct-4 and Nanog as well as the expression of the embryonic stem cell specific surface antigens SSEA-4, SSEA-3 and TRA-1-60 over four passages. Using cardiac differentiation medium containing 10% serum substitute supplement, hAECs differentiated into cardiac troponin T expressing cells. We can conclude that, hAECs maintain their stem cell characteristics when cultured in SSM for up to 4 passages. This makes possible future clinical applications of these cells more feasible.

  10. Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells.

    PubMed

    Jaleco, A C; Blom, B; Res, P; Weijer, K; Lanier, L L; Phillips, J H; Spits, H

    1997-07-15

    The presence of T and NK cells in the human fetal liver and the fact that fetal liver hemopoietic progenitor cells develop into T and NK cells suggest a role for the fetal liver compartment in T and NK cell development. In this work, we show that the capacity of fetal liver progenitors to develop into T cells, in a human/mouse fetal thymic organ culture system, is restricted to an immature subset of CD34+ CD38- cells. No T cell-committed precursors are contained within the more differentiated CD34+ CD38+ population. This conclusion is supported by the observations that no TCR-delta gene rearrangements and no pre-TCR-alpha expression can be detected in this population. However, NK cells were derived from CD34+ CD38- and CD34+ CD38+ fetal liver cells cultured in the presence of IL-15, IL-7, and Flt-3 ligand. Eighty to ninety percent of cells arising from the CD34+ CD38+ population expressed the NK cell-associated markers CD56, CD16, CD94, and NKR-P1A. Several subpopulations of NK cell precursors were identified by differential expression of these receptors. Based on the detection of populations with a similar antigenic profile in freshly isolated fetal liver cells, we propose a model of NK cell differentiation. Collectively, our findings suggest that CD34+ cells differentiate into NK cells, but not into mature T cells, in the human fetal liver.

  11. I-309/T cell activation gene-3 chemokine protects murine T cell lymphomas against dexamethasone-induced apoptosis.

    PubMed

    Van Snick, J; Houssiau, F; Proost, P; Van Damme, J; Renauld, J C

    1996-09-15

    We have previously reported that cytokines such as IL-9, IL-4, and IL-6 protect murine thymic lymphoma cell lines against dexamethasone-induced apoptosis. A similar activity, which could not be ascribed to any of these factors, was found in a number of human T cell supernatants that enabled mouse BW5147 thymic lymphoma not only to escape apoptosis but also to maintain proliferation. The protein responsible for this activity was purified to homogeneity from the culture medium of activated leukemic T cells and was found to be identical with the I-309 chemokine. Half-maximal anti-apoptotic activity was obtained with approximately 1 ng/ml, a concentration considerably lower than that required for the monocyte chemotactic activity of this molecule, as measured on THP-1 cells. The purified I-309 also improved the survival of two other mouse thymic lymphoma cell lines. This activity was as potent as that of IL-9, which was the strongest anti-apoptotic factor found to date for these cells. Similar results were obtained for BW5147 cells with recombinant I-309 and with T cell activation gene-3, the murine homologue of I-309, but not with other members of the chemokine family, including IL-8, neutrophil-activating peptide-2, granulocyte chemotactic protein-2, macrophage inflammatory protein-1a, RANTES (regulated upon activation, normal T cell expressed and secreted), monocyte chemotactic protein-1 (MCP-1), and MCP-2. MCP-3, however, showed a minor, but significant effect in this model. Unlike that of IL-9, the activity of I-309 was completely inhibited in the presence of pertussis toxin, indicating the involvement of a G protein in this process.

  12. Measuring bovine gamma delta T cell function at the site of Mycobacterium bovis infection

    USDA-ARS?s Scientific Manuscript database

    Bovine gamma delta T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/gamma delta T cell co-culture system to eluc...

  13. Interactions between peripheral blood CD8 T lymphocytes and intestinal epithelial cells (iEC).

    PubMed

    Arosa, F A; Irwin, C; Mayer, L; de Sousa, M; Posnett, D N

    1998-05-01

    Intestinal intraepithelial lymphocytes (iIEL) are primarily CD8 cells and most of them have a CD28- phenotype, the phenotype of effector cytotoxic T cells. We asked whether the predominance of CD8+CD28- T cells in the gut may result from peripheral blood T cells preferentially migrating to the iIEL compartment and adhering to iEC. Compared with CD4 cells, adhesion of resting CD8+ T cells to iEC cell lines was significantly higher. Adhesion could be blocked with a MoAb to gp180, a molecule expressed on iEC which is known to interact with CD8/lck. No significant difference in the level of adhesion was observed between CD8+CD28+ and CD8+CD28- T cells. Thus CD8 cells may preferentially migrate to the iIEL compartment, but loss of CD28 expression could occur in situ after migration. Consistent with this hypothesis, the CD8+CD28- cells became enriched after co-culturing T cells with iEC cell lines and primary iEC. Induction of the CD8+CD28- phenotype in cord blood and adult T cells was observed in co-cultures with iEC and also with mitogens and superantigens. In the latter case, CD28 down-modulation was seen specifically in the Vbeta subset targeted by the superantigen, indicating that loss of CD28 expression is a direct result of T cell receptor (TCR)-mediated stimulation. The combined results suggest that CD8+CD28- T cells are antigen experienced T cells, and that they may have a survival advantage in the presence of gut epithelial cells in vitro. This may contribute to the predominance of CD8+CD28- T cells in the iIEL compartment.

  14. Interactions between peripheral blood CD8 T lymphocytes and intestinal epithelial cells (iEC)

    PubMed Central

    Arosa, F A; Irwin, C; Mayer, L; De Sousa, M; Posnett, D N

    1998-01-01

    Intestinal intraepithelial lymphocytes (iIEL) are primarily CD8 cells and most of them have a CD28− phenotype, the phenotype of effector cytotoxic T cells. We asked whether the predominance of CD8+ CD28− T cells in the gut may result from peripheral blood T cells preferentially migrating to the iIEL compartment and adhering to iEC. Compared with CD4 cells, adhesion of resting CD8+ T cells to iEC cell lines was significantly higher. Adhesion could be blocked with a MoAb to gp180, a molecule expressed on iEC which is known to interact with CD8/lck. No significant difference in the level of adhesion was observed between CD8+ CD28+ and CD8+ CD28− T cells. Thus CD8 cells may preferentially migrate to the iIEL compartment, but loss of CD28 expression could occur in situ after migration. Consistent with this hypothesis, the CD8+ CD28− cells became enriched after co-culturing T cells with iEC cell lines and primary iEC. Induction of the CD8+ CD28− phenotype in cord blood and adult T cells was observed in co-cultures with iEC and also with mitogens and superantigens. In the latter case, CD28 down-modulation was seen specifically in the Vβ subset targeted by the superantigen, indicating that loss of CD28 expression is a direct result of T cell receptor (TCR)-mediated stimulation. The combined results suggest that CD8+ CD28− T cells are antigen experienced T cells, and that they may have a survival advantage in the presence of gut epithelial cells in vitro. This may contribute to the predominance of CD8+ CD28− T cells in the iIEL compartment. PMID:9649184

  15. Magnetostatic Field System for Uniform Cell Cultures Exposure

    PubMed Central

    Vergallo, Cristian; Piccoli, Claudia; Romano, Alberto; Panzarini, Elisa; Serra, Antonio; Manno, Daniela; Dini, Luciana

    2013-01-01

    The aim of the present work has been the design and the realization of a Magnetostatic Field System for Exposure of Cell cultures (MaFiSEC) for the uniform and the reproducible exposure of cell cultures to static magnetic fields (SMFs) of moderate magnetic induction. Experimental and computer-simulated physical measurements show that MaFiSEC: i) generates a SMF with magnetic induction that can be chosen in the range of 3 to 20 mT; ii) allows the uniform SMF exposure of cells growing in adhesion and in suspension; iii) is cheap and easy to use. The efficacy and reproducibility of MaFiSEC has been tested by comparing the biological effects exerted on isolated human lymphocytes by 72 h of exposure to a magnet (i.e. Neodymium Magnetic Disk, NMD) placed under the culture Petri dish. Lymphocytes morphology, viability, cell death, oxidative stress and lysosomes activity were the parameters chosen to evaluate the SMF biological effects. The continuous exposure of cells to a uniform SMF, achieved with MaFiSEC, allows highly reproducible biochemical and morphological data. PMID:23977284

  16. Ex vivo immunosuppressive effects of mesenchymal stem cells on Crohn's disease mucosal T cells are largely dependent on indoleamine 2,3-dioxygenase activity and cell-cell contact.

    PubMed

    Ciccocioppo, Rachele; Cangemi, Giuseppina C; Kruzliak, Peter; Gallia, Alessandra; Betti, Elena; Badulli, Carla; Martinetti, Miryam; Cervio, Marila; Pecci, Alessandro; Bozzi, Valeria; Dionigi, Paolo; Visai, Livia; Gurrado, Antonella; Alvisi, Costanza; Picone, Cristina; Monti, Manuela; Bernardo, Maria E; Gobbi, Paolo; Corazza, Gino R

    2015-07-24

    Crohn's disease (CD) is a disabling chronic enteropathy sustained by a harmful T-cell response toward antigens of the gut microbiota in genetically susceptible subjects. Growing evidence highlights the safety and possible efficacy of mesenchymal stem cells (MSCs) as a new therapeutic tool for this condition. Therefore, we aimed to investigate the effects of bone marrow-derived MSCs on pathogenic T cells with a view to clinical application. T-cell lines from both inflamed and non-inflamed colonic mucosal specimens of CD patients and from healthy mucosa of control subjects were grown with the antigen muramyl-dipeptide in the absence or presence of donors' MSCs. The MSC effects were evaluated in terms of T-cell viability, apoptotic rate, proliferative response, immunophenotype, and cytokine profile. The role of the indoleamine 2,3-dioxygenase (IDO) was established by adding a specific inhibitor, the 1-methyl-DL-tryptophan, and by using MSCs transfected with the small interfering RNA (siRNA) targeting IDO. The relevance of cell-cell contact was evaluated by applying transwell membranes. A significant reduction in both cell viability and proliferative response to muramyl-dipeptide, with simultaneous increase in the apoptotic rate, was found in T cells from both inflamed and non-inflamed CD mucosa when co-cultured with MSCs and was reverted by inhibiting IDO activity and expression. A reduction of the activated CD4(+)CD25(+) subset and increase of the CD3(+)CD69(+) population were also observed when T-cell lines from CD mucosa were co-cultured with MSCs. In parallel, an inhibitory effect was evident on the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interferon-γ, interleukin-17A and -21, whereas that of the transforming growth factor-β and interleukin-6 were increased, and production of the tolerogenic molecule soluble HLA-G was high. These latter effects were almost completely eliminated by blocking the IDO, whose activity was upregulated in

  17. Anti-ATLA (antibody to adult T-cell leukemia-lymphoma virus-associated antigen)-negative adult T-cell leukemia-lymphoma.

    PubMed

    Shimoyama, M; Minato, K; Tobinai, K; Nagai, M; Setoya, T; Watanabe, S; Hoshino, H; Miwa, M; Nagoshi, H; Ichiki, N; Fukushima, N; Sugiura, K; Funaki, N

    1983-01-01

    Five cases of adult T-cell leukemia-lymphoma (ATL) having typical clinicohematologic and morphologic features but negative for anti-ATLA [antibody to ATL virus (ATLV)-associated antigen (ATLA)] are presented. Some differences in immunologic, epidemiologic, and serologic data between anti-ATLA-positive and -negative ATLs are also described. Expression of ATLA in early primary cultured leukemic cells was found to be negative in three patients tested (Cases 1, 2 and 4), however, a long-term cultured cell line, ATL-6A, derived from peripheral blood leukemia cells from Case 1, was found to express ATLA. Mother of Case 1 and a daughter of Case 2 were anti-ATLA negative. These results indicate that ATLV was involved in certain anti-ATLA-negative ATL patients, at least in Case 1, and that the patient had no detectable immune response against ATLV and ATLA. However, in other cases in which no ATLA reactivity of serum and no ATLA expression in cultured leukemic cells were observed, another possibility such as activation of an unknown cellular oncogene specific for ATL without ATLV involvement may be considered. In order to prove these possibilities definitely, it is necessary to elucidate whether or not proviral DNA of ATLV is integrated into chromosomal DNA of ATL cells and to find a cellular oncogene specific for ATL in the future.

  18. Secretory production of cell wall components by Saccharomyces cerevisiae protoplasts in static liquid culture.

    PubMed

    Aoyagi, Hideki; Ishizaka, Mikiko; Tanaka, Hideo

    2012-04-01

    When protoplasts of Saccharomyces cerevisiae T7 and IFO 0309 are cultured in a static liquid culture at 2.5 × 10(6) protoplasts/ml, cell wall regeneration does not occur and cell wall components (CWC) are released into the culture broth. By using a specialized fluorometer, the concentrations of CWC could be measured on the basis of the fluorescence intensity of the CWC after staining with Fluostain I. The inoculum concentration, pH, and osmotic pressure of the medium were important factors for the production of CWC in culture. Under optimal culture conditions, S. cerevisiae T7 protoplasts produced 0.91 mg/ml CWC after 24 h. The CWC induced the tumor necrosis factor-α production about 1.3 times higher than that of the commercially available β-1,3/1,6-glucan from baker's yeast cells.

  19. Anti-fibrotic characteristics of Vγ9+ γδ T cells in systemic sclerosis.

    PubMed

    Markovits, Noa; Bendersky, Anna; Loebstein, Ronen; Brusel, Marina; Kessler, Efrat; Bank, Ilan

    2016-01-01

    γδ T cells of the Vγ9Vδ2 subtype secrete anti-fibrotic cytokines upon isopentenyl pyrophosphate (IPP) stimulation. In this study, we sought to compare IPP and Zoledronate, an up-regulator of IPP, effects on proliferation and cytokine secretion of Vγ9+ T cells from systemic sclerosis (SSc) patients and healthy controls (HCs). We also examined the effect of IPP-triggered peripheral blood mononuclear cells (PBMC) on fibroblast procolla- gen secretion. PBMC from SSc patients and HCs were stimulated by increasing concentrations of Zoledronate, with or without IPP, and Vγ9+ T cell percentages were calculated using FACScan analysis. Subsequently, PBMC were cultured with IPP or toxic shock syndrome toxin-1 (TSST-1), and contents of the anti-fibrotic cytokines tumour necrosis factor (TNF)-α and interferon (IFN)-γ were measured by ELISA kits. Finally, supernatants of IPP-triggered Vγ9+ T cells from SSc patients were added to fibroblast cultures, and relative intensities of procollagen α1 chains were determined by densinometry. Higher concentrations of Zoledronate were required for maximal proliferation of Vγ9+ T cells in 9 SSc patients compared to 9 HCs, irrespective of exogenous IPP. When compared to stimulation by TSST-1, a non-Vγ9+ selective reagent, secretion of the anti-fibrotic cytokines TNF-α and IFN-γ in response to IPP was relatively diminished in SSc but not in HCs. Reduction of procollagen secretion by fibroblasts cultured with supernatants of IPP-stimulated PBMC was observed only in some SSc patients. Activated Vγ9+ T cells could act as anti-fibrotic mediators in SSc, although decreased responsiveness to IPP may play a role in the pathological fibrosis of this disease.

  20. Microenvironment Induced Spheroid to Sheeting Transition of Immortalized Human Keratinocytes (HaCaT) Cultured in Microbubbles Formed in Polydimethylsiloxane

    PubMed Central

    Chandrasekaran, Siddarth; Giang, Ut-Binh; King, Michael R.; DeLouise, Lisa A

    2011-01-01

    The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, and disease development and progression. In this study we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling. Microbubbles (MB) are small spherical cavities about 100–300 µm in diameter formed in hydrophobic polymer polydimethylsiloxane (PDMS) with ~60–100 µm circular openings and aspect ratio ~3.5. We demonstrate that the unique architecture of the microbubble compartment is advantaged for cell culture using HaCaT cells, an immortalized keratinocyte cell line. We observe that HaCaT cells, seeded in microbubbles (15–20 cells / MB) and cultured under standard conditions, adopt a compact 3-D spheroidal morphology. Within 2–3 days, the cells transition to a sheeting morphology. Through experimentation and simulation we show that this transition in morphology is due to the unique architecture of the microbubble compartment which enables cells to condition their local microenvironment. The small media volume per cell and the development of shallow concentration gradients allow factors secreted by the cells to rise to bioactive levels. The kinetics of the morphology transition depends on the number of cells seeded per microbubble; higher cell seeding induces a more rapid transition. HaCaT cells seeded onto PDMS cured in 96-well plates also form compact spheroids but they do not transition to a sheeting morphology even after several weeks of culture. The importance of soluble factor accumulation in driving

  1. Superior Cervical Ganglia Neurons Induce Foxp3+ Regulatory T Cells via Calcitonin Gene-Related Peptide.

    PubMed

    Szklany, Kirsten; Ruiter, Evelyn; Mian, Firoz; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Karimi, Khalil

    2016-01-01

    The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body's internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.

  2. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  3. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  4. Influence of MC3T3-E1 preosteoblast culture on the corrosion of a T6-treated AZ91 alloy.

    PubMed

    Brooks, Emily K; Tobias, Menachem E; Yang, Shuying; Bone, Lawrence B; Ehrensberger, Mark T

    2016-02-01

    This study investigated the corrosion of artificially aged T6 heat-treated Mg-9%Al-1%Zn (AZ91) for biomedical applications. Corrosion tests and surface analysis were completed both with and without a monolayer of mouse preosteoblast MC3T3-E1 cells cultured on the sample. Electrochemical impedance spectroscopy (EIS) and inductively coupled plasma mass spectroscopy (ICPMS) were used to explore the corrosion processes after either 3 or 21 days of AZ91 incubation in cell culture medium (CCM). The EIS showed both the inner layer resistance (Rin ) and outer layer resistance (Rout ) were lower for samples without cells cultured on the surface at 3 days (Rin  = 2.64 e4 Ω/cm(2) , Rout  = 140 Ω/cm(2) ) compared to 21 days (Rin  = 3.60 e4 Ω/cm(2) , Rout  = 287 Ω/cm(2) ) due to precipitation of magnesium and calcium phosphates over time. Samples with preosteoblasts cultured on the surface had a slower initial corrosion (3 day, Rin  = 1.88 e5 Ω/cm(2) , Rout  = 1060 Ω/cm(2) ) which was observed to increase over time (21 day, Rin  = 2.99 e4 Ω/cm(2) , Rout  = 287 Ω/cm(2) ). Changes in the corrosion processes were thought to be related to changes in the coverage provided by the cell layer. Our results reveal that the presence of cells and biological processes are able to significantly influence the corrosion rate of AZ91. © 2015 Wiley Periodicals, Inc.

  5. [The relationship of the saturation density of multilayer cell cultures to their mass exchange with the medium].

    PubMed

    Akatov, V S; Lavrovskaia, V P

    1991-01-01

    Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.

  6. Background ELF magnetic fields in incubators: a factor of importance in cell culture work.

    PubMed

    Mild, Kjell Hansson; Wilén, Jonna; Mattsson, Mats-Olof; Simko, Myrtill

    2009-07-01

    Extremely low frequency (ELF) magnetic fields in cell culture incubators have been measured. Values of the order of tens of muT were found which is in sharp contrast to the values found in our normal environment (0.05-0.1microT). There are numerous examples of biological effects found after exposure to MF at these levels, such as changes in gene expression, blocked cell differentiation, inhibition of the effect of tamoxifen, effects on chick embryo development, etc. We therefore recommend that people working with cell culture incubators check for the background magnetic field and take this into account in performing their experiments, since this could be an unrecognised factor of importance contributing to the variability in the results from work with cell cultures.

  7. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy.

    PubMed

    Guo, Haiying; Xing, Yizhan; Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen; Li, Yuhong

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  8. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    PubMed Central

    Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells. PMID:29383288

  9. [Amplification of γδ T cells in PBMCs of healthy donors and osteosarcoma patients stimulated by zoledronate].

    PubMed

    Li, Zhao-xu; Sun, Ling-ling; Cheng, Rui-lin; Sun, Zheng-wang; Ye, Zhao-ming

    2012-08-01

    To investigate the amplification and cytotoxicity of γδ T cells in peripheral blood mononuclear cells (PBMCs) of healthy donors and osteosarcoma patients stimulated by zoledronate (Zol) and IL-2. PBMCs from healthy donors and osteosarcoma patients were stimulated with IL-2 and Zol+IL-2, respectively. After 14-day culture, the purity of γδ T cells was assessed by flow cytometry. The cytotoxicity of γδ T cells against target cells was analyzed using a standard lactate dehydrogenase release assay with γδ T lymphocyte-sensitive Daudi cells, γδ T lymphocyte-resistant Raji cells and human osteoblast cell line, hFOB, as the target cells. After 2-week culture ex vivo of PBMCs from healthy donors and osteosarcoma patients, compared with stimulation of IL-2, Zol+IL-2 significantly promoted the amplification of γδ T cells. In addition, γδ T cells showed the higher cytotoxicity against Daudi cells, but no cytotoxic effect on normal cells like hFOB. γδ T cells of high purity and high cytotoxicity can be obtained by the stimulation of Zol combined with IL-2 on PBMCs from healthy donors and osteosarcoma patients.

  10. A CB2-Selective Cannabinoid Suppresses T-cell Activities and Increases Tregs and IL-10

    PubMed Central

    Robinson, Rebecca H.; Meissler, Joseph J.; Fan, Xiaoxuan; Yu, Daohai; Adler, Martin W.; Eisenstein, Toby K.

    2015-01-01

    We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability. PMID:25980325

  11. T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency.

    PubMed

    Walton, Senta M; Torti, Nicole; Mandaric, Sanja; Oxenius, Annette

    2011-08-01

    CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Human regulatory T cells do not suppress the antitumor immunity in the bone marrow: a role for bone marrow stromal cells in neutralizing regulatory T cells.

    PubMed

    Guichelaar, Teun; Emmelot, Maarten E; Rozemuller, Henk; Martini, Bianka; Groen, Richard W J; Storm, Gert; Lokhorst, Henk M; Martens, Anton C; Mutis, Tuna

    2013-03-15

    Regulatory T cells (Tregs) are potent tools to prevent graft-versus-host disease (GVHD) induced after allogeneic stem cell transplantation or donor lymphocyte infusions. Toward clinical application of Tregs for GVHD treatment, we investigated the impact of Tregs on the therapeutic graft-versus-tumor (GVT) effect against human multiple myeloma tumors with various immunogenicities, progression rates, and localizations in a humanized murine model. Immunodeficient Rag2(-/-)γc(-/-) mice, bearing various human multiple myeloma tumors, were treated with human peripheral blood mononuclear cell (PBMC) alone or together with autologous ex vivo cultured Tregs. Mice were analyzed for the in vivo engraftment, homing of T-cell subsets, development of GVHD and GVT. In additional in vitro assays, Tregs that were cultured together with bone marrow stromal cells were analyzed for phenotype and functions. Treatment with PBMC alone induced variable degrees of antitumor response, depending on the immunogenicity and the growth rate of the tumor. Coinfusion of Tregs did not impair the antitumor response against tumors residing within the bone marrow, irrespective of their immunogenicity or growth rates. In contrast, Tregs readily inhibited the antitumor effect against tumors growing outside the bone marrow. Exploring this remarkable phenomenon, we discovered that bone marrow stroma neutralizes the suppressive activity of Tregs in part via production of interleukin (IL)-1β/IL-6. We furthermore found in vitro and in vivo evidence of conversion of Tregs into IL-17-producing T cells in the bone marrow environment. These results provide new insights into the Treg immunobiology and indicate the conditional benefits of future Treg-based therapies.

  13. Adipose-derived stem cells were impaired in restricting CD4+T cell proliferation and polarization in type 2 diabetic ApoE-/- mouse.

    PubMed

    Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming

    2017-07-01

    Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The impact of pregnancy on the HIV-1-specific T cell function in infected pregnant women.

    PubMed

    Hygino, Joana; Vieira, Morgana M; Kasahara, Taissa M; Xavier, Luciana F; Blanco, Bernardo; Guillermo, Landi V C; Filho, Renato G S; Saramago, Carmen S M; Lima-Silva, Agostinho A; Oliveira, Ariane L; Guimarães, Vander; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-12-01

    Evidences indicate that pregnancy can alter the Ag-specific T-cell responses. This work aims to evaluate the impact of pregnancy on the in vitro HIV-1-specific immune response. As compared with non-pregnant patients, lower T-cell proliferation and higher IL-10 production were observed in T-cell cultures from pregnant patients following addition of either mitogens or HIV-1 antigens. In our system, the main T lymphocyte subset involved in producing IL-10 was CD4(+)FoxP3(-). Depletion of CD4(+) cells elevated TNF-α and IFN-γ production. Interestingly, the in vitro HIV-1 replication was lower in cell cultures from pregnant patients, and it was inversely related to IL-10 production. In these cultures, the neutralization of IL-10 by anti-IL-10 mAb elevated TNF-α release and HIV-1 replication. In conclusion, our results reveal that pregnancy-related events should favor the expansion of HIV-1-specific IL-10-secreting CD4(+) T-cells in HIV-1-infected women, which should, in the scenario of pregnancy, help to reduce the risk of vertical HIV-1 transmission. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells.

    PubMed

    Fraietta, Joseph A; Schwab, Robert D; Maus, Marcela V

    2016-04-01

    Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and redirecting the immune system against cancer. This review will briefly summarize T-cell therapies in development for CLL disease. We discuss the role of T-cell function and phenotype, T-cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    PubMed

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  17. Polyomavirus BK-specific CD8+ T cell responses in patients after allogeneic stem cell transplant.

    PubMed

    Schneidawind, Dominik; Schmitt, Anita; Wiesneth, Markus; Mertens, Thomas; Bunjes, Donald; Freund, Mathias; Schmitt, Michael

    2010-06-01

    Polyomavirus BK (BKV) is known as an important etiologic agent in the development of hemorrhagic cystitis (HC) after allogeneic stem cell transplant (SCT). To define T cell epitopes of the BKV proteins VP1 and sT, eight potential HLA-A2-binding peptides were synthesized based on computer algorithms. These peptides were co-incubated with CD8 + T cells from the peripheral blood (PB) of 25 healthy volunteers and seven patients suffering from HC after allogeneic SCT in a mixed-lymphocyte peptide culture (MLPC), which were subsequently screened by enzyme-linked immunospot (ELISPOT) assays and fluorescence-activated cell sorting (FACS) analysis. We found that CD8 + T cells from five of seven (71%) patients with HC presensitized with the BKV peptide VP1 p108 (LLMWEAVTV) specifically recognized T2 cells pulsed with VP1 p108. In contrast, only seven of 25 (28%) healthy volunteers had CD8 + T cells reactive with VP1 p108-pulsed T2 cells. The presence of VP1 p108-specific T cells could be confirmed by FACS analysis. The BKV peptide VP1 p108 seems to play an important role as an immunodominant peptide in the pathogenesis of HC in patients after allogeneic SCT, and might be a promising target for immunotherapies or even strategies to prevent the development of BKV-associated HC.

  18. Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Managlia, Elizabeth Z.; Landay, Alan; Al-Harthi, Lena

    2006-07-05

    Interleukin (IL)-7 plays several roles critical to T cell maturation, survival, and homeostasis. Because of these functions, IL-7 is under investigation as an immune-modulator for therapeutic use in lymphopenic clinical conditions, including HIV. We reported that naive T cells, typically not permissive to HIV, can be productively infected when pre-treated with IL-7. We evaluated the mechanism by which IL-7-mediates this effect. IL-7 potently up-regulated the transcriptional factor NFAT, but had no effect on NF{kappa}B. Blocking NFAT activity using a number of reagents, such as Cyclosporin A, FK-506, or the NFAT-specific inhibitor known as VIVIT peptide, all markedly reduced IL-7-mediated inductionmore » of HIV replication in naive T cells. Additional neutralization of cytokines present in IL-7-treated cultures and/or those that have NFAT-binding sequences within their promotors indicated that IL-10, IL-4, and most significantly IFN{gamma}, all contribute to IL-7-induction of HIV productive replication in naive T cells. These data clarify the mechanism by which IL-7 can overcome the block to HIV productive infection in naive T cells, despite their quiescent cell status. These findings are relevant to the treatment of HIV disease and understanding HIV pathogenesis in the naive CD4+ T cell compartment, especially in light of the vigorous pursuit of IL-7 as an in vivo immune modulator.« less

  19. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishi, Minoru; Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp; Abe, Yasuhisa

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cellsmore » induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.« less

  20. Ex vivo culture of tumor cells from N-methyl-N-nitrosourea-induced bladder cancer in rats: Development of organoids and an immortalized cell line.

    PubMed

    Yoshida, Takahiro; Kates, Max; Sopko, Nikolai A; Liu, Xiaopu; Singh, Alok K; Bishai, William R; Joice, Gregory; McConkey, David J; Bivalacqua, Trinity J

    2018-04-01

    We ex vivo cultured primary tumor cells from N-methyl-N-nitrosourea (MNU)-induced bladder tumors in rats and established an immortalized cell line from them. Bladder tumors in rats were induced by instillation of MNU into the murine bladder. Primary tumor cells were prepared by the cancer-tissue originated spheroid method. An immortalized cell line was established by co-culture with fibroblasts. The cultured tumor cells were molecularly and functionally characterized by quantitative real-time polymerase chain reaction, Western blot, growth assay, and transwell migration assay. Primary tumor cells were successfully prepared as multicellular spheroids from MNU-induced bladder tumors. The differentiation marker expression patterns observed in the original tumors were largely retained in the spheroids. We succeeded in establishing a cell line from the spheroids and named it T-MNU-1. Although basal markers (CK14 and CK5) were enriched in T-MNU-1 compared to the spheroids, T-MNU-1 expressed both luminal and basal markers. T-MNU-1 was able to migrate through a transwell. Tumor cells in MNU-induced bladder tumors were successfully cultured ex vivo as organoids, and an immortalized cell line was also established from them. The ex vivo models offer a platform that enables analysis of intrinsic characteristics of tumor cells excluding influence of microenvironment in MNU-induced bladder tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. [Regulatory T cells].

    PubMed

    Marinić, Igor; Gagro, Alenka; Rabatić, Sabina

    2006-12-01

    Regulatory T-cells are a subset of T cells that have beene extensively studied in modern immunology. They are important for the maintenance of peripheral tolerance, and have an important role in various clinical conditions such as allergy, autoimmune disorders, tumors, infections, and in transplant medicine. Basically, this population has a suppressive effect on the neighboring immune cells, thus contributing to the local modulation and control of immune response. There are two main populations of regulatory T cells - natural regulatory T cells, which form a distinct cellular lineage, develop in thymus and perform their modulatory action through direct intercellular contact, along with the secreted cytokines; and inducible regulatory T cells, which develop in the periphery after contact with the antigen that is presented on the antigen presenting cell, and their primary mode of action is through the interleukin 10 (IL-10) and transforming growth factor beta (TGF-alpha) cytokines. Natural regulatory T cells are activated through T cell receptor after contact with specific antigen and inhibit proliferation of other T cells in an antigen independent manner. One of the major difficulties in the research of regulatory T cells is the lack of specific molecular markers that would identify these cells. Natural regulatory T cells constitutively express surface molecule CD25, but many other surface and intracellular molecules (HLA-DR, CD122, CD45RO, CD62, CTLA-4, GITR, PD-1, Notch, FOXP3, etc.) are being investigated for further phenotypic characterization of these cells. Because regulatory T cells have an important role in establishing peripheral tolerance, their importance is manifested in a number of clinical conditions. In the IPEX syndrome (immunodysregulation, polyendocrinopathy and enteropathy, X-linked), which is caused by mutation in Foxp3 gene that influences the development and function of regulatory T cells, patients develop severe autoimmune reactions that

  2. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    PubMed

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  3. Cytokine-mediated induction of endothelial adhesion molecule and histocompatibility leukocyte antigen expression by cytomegalovirus-activated T cells.

    PubMed Central

    Waldman, W. J.; Knight, D. A.

    1996-01-01

    Cytomegalovirus (CMV) has been associated with allograft rejection and transplantation-associated arteriosclerosis. CMV infects endothelium, the interface between allograft tissue and the host immune system; however, mechanisms by which such interaction might exacerbate the rejection process remain unresolved. Here we test the hypothesis that host immune activity, triggered by CMV-infected graft endothelial cells (ECs), can result in the production of cytokines capable of enhancing the alloimmunogenicity of nearby uninfected endothelia. To model these phenomena in vitro, confluent monolayers of ECs derived from human umbilical vein or adult gonadal vein were incubated 5 days beneath trans-well culture inserts containing CMV-seropositive or CMV-seronegative donor-derived CD3+ or CD4+ T cells alone or in combination with CMV-infected or uninfected allogeneic ECs. The extent of T cell proliferation was determined by [3H]thymidine labeling of trans-well contents after transfer to microtiter plates. Endothelial responses to soluble factors elaborated by CMV-activated T cells were determined by immunohistochemical staining and immunofluorescence flow cytometric analysis of underlying EC monolayers. Results of experiments with CMV-seropositive donor-derived CD4+ T cells demonstrated enhancement of ICAM-1 and histocompatibility leukocyte antigen class I, as well as induction of histocompatibility leukocyte antigen DR on ECs incubated beneath T cell/EC/CMV trans-well co-cultures. Total (CD3+) T cells co-cultured with EC/CMV induced VCAM-1 as well. Furthermore, [3H]thymidine incorporation by these T cells indicated a strong proliferative response. Endothelial responses to T cells alone or in combination with uninfected ECs were minimal, and T cells cultured under these conditions showed little proliferative activity. Similarly, little or no endothelial responses were apparent in monolayers beneath trans-wells containing T cells isolated from CMV-seronegative individuals

  4. Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.

    PubMed Central

    Riedlinger, J; Grencis, R K; Wakelin, D

    1986-01-01

    T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438

  5. Epicubenol and Ferruginol induce DC from human monocytes and differentiate IL-10-producing regulatory T cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takei, Masao; Umeyama, Akemi; Arihara, Shigenobu

    2005-11-18

    Epicubenol and 19-hydroxyferruginol (Ferruginol) are sesquiterpenes isolated from the black heartwood of Cryptomeria japonica. Dendritic cells (DC) are specialized antigen-presenting cells that monitor the antigenic environment and activate naive T cells. The role of DC is not only to sense danger but also to tolerize the immune system to antigens encountered in the absence of maturation/inflammatory stimuli. In this study, we attempted to investigate the effects of Epicubenol and Ferruginol on the phenotypic and functional maturation of human monocytes-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days under standard conditions, followed by another 2more » days with Epicubenol or Ferruginol. The expression levels of CD1a, CD83, and HLA-DR as expressed by mean fluorescence intensity (MFI) on Epicubenol-primed DC or Ferruginol-primed DC were enhanced. Allogeneic Epicubenol-primed DC or Ferruginol-primed DC co-cultured with naive T cells at 1:5 ratio, secreted IL-10 and TGF-{beta}, but little IL-4. Moreover, T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and naive T cells at 1:5 ratio suppressed the proliferation of autologous T cells at Treg cells: Ttarget cells and this suppression of proliferation was inhibited by anti-IL-10 mAb. The expression of FoxP3 mRNA on T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and naive T cells was lower. From these results, Epicubenol and Ferruginol may induce IL-10-producing Treg 1 cells from naive T cells by modulating DC function. It seems that Epicubenol and Ferruginol appear to be a target for tolerance after transplantation and in autoimmune diseases.« less

  6. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3.

    PubMed

    Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S

    2014-05-29

    Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.

  7. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3

    PubMed Central

    2014-01-01

    Background Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. Results We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Conclusions Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT. PMID:24884430

  8. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    PubMed Central

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  9. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    PubMed

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  10. T-cell tropism of simian T-cell leukaemia virus type 1 and cytokine profiles in relation to proviral load and immunological changes during chronic infection of naturally infected mandrills (Mandrillus sphinx).

    PubMed

    Souquière, Sandrine; Mouinga-Ondeme, Augustin; Makuwa, Maria; Beggio, Paola; Radaelli, Antonia; De Giuli Morghen, Carlo; Mortreux, Franck; Kazanji, Mirdad

    2009-08-01

    Although a wide variety of non-human primates are susceptible to simian T-cell leukaemia virus type 1 (STLV-1), little is known about the virological or molecular determinants of natural STLV-1 infection. We determined STLV-1 virus tropism in vivo and its relation to the immune response by evaluating cytokine production and T-cell subsets in naturally infected and uninfected mandrills. With real-time PCR methods, we found that STLV-1 in mandrills infects both CD4(+) and CD8(+) T cells; however, proviral loads were significantly higher (P = 0.01) in CD4(+) than in CD8(+) cells (mean STLV-1 copies number per 100 cells (+/- SD) was 7.8 +/- 8 in CD4(+) T cells and 3.9 +/- 4.5 in CD8(+) T cells). After culture, STLV-1 provirus was detected in enriched CD4(+) but not in enriched CD8(+) T cells. After 6 months of culture, STLV-1-transformed cell lines expressing CD3(+), CD4(+) and HLADR(+) were established, and STLV-1 proteins and tax/rex mRNA were detected. In STLV-1 infected monkeys, there was a correlation between high proviral load and elevated levels of interleukin (IL)-2, IL-6, IL-10, interferon-gamma and tumour necrosis factor-alpha. The two monkeys with the highest STLV-1 proviral load had activated CD4(+)HLADR(+) and CD8(+)HLADR(+) T-cell subsets and a high percentage of CD25(+) in CD4(+) and CD8(+) T cells. Our study provides the first cellular, immunological and virological characterization of natural STLV-1 infection in mandrills and shows that they are an appropriate animal model for further physiopathological studies of the natural history of human T-cell leukaemia viruses.

  11. Early exposure to interleukin-21 limits rapidly generated anti-Epstein-Barr virus T-cell line differentiation.

    PubMed

    Orio, Julie; Carli, Cédric; Janelle, Valérie; Giroux, Martin; Taillefer, Julie; Goupil, Mathieu; Richaud, Manon; Roy, Denis-Claude; Delisle, Jean-Sébastien

    2015-04-01

    The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines. We adapted a clinically validated protocol to rapidly generate EBV-specific T-cell lines in 12 to 14 days and tested whether the addition of IL-21 at the initiation of the culture would affect T-cell expansion and differentiation. We generated clinical-scale EBV-restricted T-cell line expansion with balanced T-cell subset ratios. The addition of IL-21 at the beginning of the culture decreased both T-cell expansion and effector memory T-cell accumulation, with a relative increase in less-differentiated T cells. Within CD4 T-cell subsets, exogenous IL-21 was notably associated with the cell surface expression of CD27 and high KLF2 transcript levels, further arguing for a role of IL-21 in the control of late T-cell differentiation. Our results show that IL-21 has profound effects on T-cell differentiation in a rapid T-cell line generation protocol and as such should be further explored as a novel approach to program anti-viral T cells with features associated with early differentiation and optimal therapeutic efficacy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle.

    PubMed

    Butler, W B

    1984-08-15

    A procedure is described for preparing nuclei from cells in monolayer culture so that they may be counted using an electronic particle counter. It takes only 10 to 15 min, and consists of swelling the cells in hypotonic buffer and then lysing them with the quaternary ammonium salt, ethylhexadecyldimethylammonium bromide. The cells are completely lysed, yielding a suspension of clean single nuclei which is stable, free of debris, and easily counted. The method was developed for a cell line of epithelial origin (MCF-7), which is often difficult to trypsinize to single cells. It works equally well at all cell densities up to and beyond confluence, and has been used with a variety of cells in culture, including 3T3 cells, bovine macrophages, rat mammary epithelial cells, mouse mammary tumor cell lines, and human fibroblasts. The size of the nuclei produced by this procedure is related to their DNA content, and the method is thus suitable for following cultures of synchronized cells through the cell cycle, and for performing differential counts of cells with substantial differences in DNA content.

  13. T-Cell Mineralocorticoid Receptor Controls Blood Pressure by Regulating Interferon-Gamma.

    PubMed

    Sun, Xue-Nan; Li, Chao; Liu, Yuan; Du, Lin-Juan; Zeng, Meng-Ru; Zheng, Xiao-Jun; Zhang, Wu-Chang; Liu, Yan; Zhu, Mingjiang; Kong, Deping; Zhou, Li; Lu, Limin; Shen, Zhu-Xia; Yi, Yi; Du, Lili; Qin, Mu; Liu, Xu; Hua, Zichun; Sun, Shuyang; Yin, Huiyong; Zhou, Bin; Yu, Ying; Zhang, Zhiyuan; Duan, Sheng-Zhong

    2017-05-12

    Hypertension remains to be a global public health burden and demands novel intervention strategies such as targeting T cells and T-cell-derived cytokines. Mineralocorticoid receptor (MR) antagonists have been clinically used to treat hypertension. However, the function of T-cell MR in blood pressure (BP) regulation has not been elucidated. We aim to determine the role of T-cell MR in BP regulation and to explore the mechanism. Using T-cell MR knockout mouse in combination with angiotensin II-induced hypertensive mouse model, we demonstrated that MR deficiency in T cells strikingly decreased both systolic and diastolic BP and attenuated renal and vascular damage. Flow cytometric analysis showed that T-cell MR knockout mitigated angiotensin II-induced accumulation of interferon-gamma (IFN-γ)-producing T cells, particularly CD8 + population, in both kidneys and aortas. Similarly, eplerenone attenuated angiotensin II-induced elevation of BP and accumulation of IFN-γ-producing T cells in wild-type mice. In cultured CD8 + T cells, T-cell MR knockout suppressed IFN-γ expression whereas T-cell MR overexpression and aldosterone both enhanced IFN-γ expression. At the molecular level, MR interacted with NFAT1 (nuclear factor of activated T-cells 1) and activator protein-1 in T cells. Finally, T-cell MR overexpressing mice manifested more elevated BP compared with control mice after angiotensin II infusion and such difference was abolished by IFN-γ-neutralizing antibodies. MR may interact with NFAT1 and activator protein-1 to control IFN-γ in T cells and to regulate target organ damage and ultimately BP. Targeting MR in T cells specifically may be an effective novel approach for hypertension treatment. © 2017 American Heart Association, Inc.

  14. Ganoderic acid Me induces the apoptosis of competent T cells and increases the proportion of Treg cells through enhancing the expression and activation of indoleamine 2,3-dioxygenase in mouse lewis lung cancer cells.

    PubMed

    Que, Zujun; Zou, Fangyuan; Zhang, Anle; Zheng, Yuanhong; Bi, Ling; Zhong, Jianjiang; Tian, Jianhui; Liu, Jianwen

    2014-11-01

    The indoleamine 2,3-dioxygenase-(IDO-) mediated microenvironment plays an important role in tumor immune escape. It is known that ganoderic acid Me can enhance IFN-γ expression and IDO is preferentially induced by IFN-γ. However, whether GA-Me can induce IDO expression has not been clarified yet. We established stable clones of IDO-overexpressing 2 LL cells (2LL-EGFP-IDO). After co-culturing with IDO expressing or control vector-transfected 2LL-EGFP cells, T cell apoptosis was determined and the proportion of the regulatory T cells (Tregs) and CD8+ T cell subset was measured. The total cellular protein samples of 2 LL-EGFP-IDO cells were isolated for detecting JAK-STAT1 signalling pathway. Co-culture supernatants were used to detect amino acids and cytokines. IDO transfected 2 LL cells yielded high level of IDO enzymatic activity, resulting in complete depletion of tryptophan from the culture medium. We found that apoptosis occurred in T cells after cocultured with IDO+2LL cells and the proportion of CD4+CD25+ cells and FoxP3+ cells increased while CD8+ cells decreased. The specific inhibitor of IDO, 1-D-MT and GA-Me efficiently enhanced T cell apoptosis, increased Tregs, and reduced CD8+ T cells in vitro. Increased expression of IDO, p-JAK1 and p-STAT1 were confirmed by Western blot analysis. The levels of IFN-γ, IL-10, LDH and kynurenine in co-culture supernatant correspondingly increased, while tryptophan reduced. These results suggest that GA-Me contributing to IDO helps to create a tolerogenic milieu in lung tumors by directly inducing T cell apoptosis, restraining CD8+ T cell activation, and enhancing Treg-mediated immunosuppression. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    PubMed

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  16. Involvement of Semaphorin (Sema4D) in T-Dependent Activation of B Cells.

    PubMed

    Kuklina, Е М; Nekrasova, I V; Valieva, Yu V

    2017-08-01

    The involvement of endogenous semaphorin (Sema4D) into the key stage of T-dependent differentiation of B cells, formation of plasmoblasts, was demonstrated in vitro in T/B cell co-culture under conditions of polyclonal activation of T cells. The effect of semaphorin was not associated with activation of high-affinity Sema4D receptor plexin B1, but involves lowaffinity receptor CD72. These data indicate that Sema4D-dependent signal regulates not only the initial stage of B-cell activation, proliferative response to the antigen, but also further differentiation of B cells into plasma cells.

  17. Activation of Antigen-Specific CD8(+) T Cells by Poly-DL-Lactide/Glycolide (PLGA) Nanoparticle-Primed Gr-1(high) Cells.

    PubMed

    Luo, Wen-Hui; Yang, Ya-Wun

    2016-04-01

    The aim of this study was to investigate the induction of antigen-specific T cell activation and cell cycle modulation by a poly-DL-lactide/glycolide (PLGA) nanoparticle (NP)-primed CD11b(+)Gr-1(high) subset isolated from mouse bone marrow. PLGA NPs containing the ovalbumin (OVA) antigen were prepared using the double emulsion and solvent evaporation method, and protein release rate and cell viability were determined. The Lin2(¯)CD11b(+)Gr-1(high)Ly6c(low) (Gr-1(high)) subset was sorted from the bone marrow of C57BL/6 J mice by fluorescence-activated cell sorting (FACS) and co-cultured with OT-I CD8(+) splenic T cells. Proliferation of OT-I CD8(+) T cells was monitored, and cell cycles were determined by 5-bromo-2'-deoxyuridine (BrdU) labeling. Treatment of Gr-1(high) cells with PLGA/OVA NPs upregulated expression of the SIINFEKL-H2K(b) complex in the context of MHC I. Co-cultures of OT-I CD8(+) T cells with the PLGA/OVA NP-primed Gr-1(high) cells induced the proliferation of T cells in vitro and modulated cell division and morphology. Treatment of Gr-1(high) cells with PLGA/OVA NPs also induced cell apoptosis and necrosis. This study demonstrated the function of PLGA/OVA NPs in the activation of OT-I CD8(+) T cells and the capability of cross-presentation via the Gr-1(high) polymorphonuclear subset from mouse bone marrow.

  18. Infiltration of γ⁢δ T cells, IL-17+ T cells and FoxP3+ T cells in human breast cancer

    PubMed Central

    Allaoui, Roni; Hagerling, Catharina; Desmond, Eva; Warfvinge, Carl-Fredrik; Jirström, Karin; Leandersson, Karin

    2017-01-01

    BACKGROUND: Tumor-infiltrating lymphocytes (TILs) have a strong prognostic value in various forms of cancers. These data often refer to use of the pan-T cell marker CD3, or the cytotoxic T lymphocyte marker CD8α. However, T cells are a heterogeneous group of cells with a wide array of effector mechanisms ranging from immunosuppression to cytotoxicity. OBJECTIVE: In this study we have investigated the prognostic effects of some unconventional T cell subtypes in breast cancer; γ⁢δ T cells, IL-17+ T cells and FoxP3+ T cells (Tregs) in relation to the conventional CD3 and CD8α T cell markers. METHODS: This was done using immunohistochemistry on a human breast cancer tissue microarray consisting of 498 consecutive cases of primary breast cancer. RESULTS: Infiltration of γ⁢δ T cells and T cell infiltration in general (CD3), correlated with a good prognosis, while Treg infiltration with a worse. Infiltration of γ⁢δ T cells was associated with a significantly improved clinical outcome in all breast cancer subtypes except triple negative tumors. Only infiltration of either CD3+ or CD8α+ cells was independently associated with better prognosis for all breast cancer patients. CONCLUSIONS: This study sheds further light on the prognostic impact of various T cell subtypes in breast cancer. PMID:29060923

  19. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    PubMed

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  20. Red blood cells inhibit activation-induced cell death and oxidative stress in human peripheral blood T lymphocytes.

    PubMed

    Fonseca, A M; Porto, G; Uchida, K; Arosa, F A

    2001-05-15

    Red blood cells (RBCs) are known to perform one prominent function: to carry and deliver oxygen to the tissues. Earlier studies, however, suggested a role for RBCs in potentiating T-cell proliferation in vitro. Here it is shown that the presence of RBCs in cultures of stimulated human peripheral blood lymphocytes strengthens T-cell proliferation and survival. Analysis of phosphatidylserine externalization and DNA fragmentation showed that RBCs inhibit T-cell apoptosis. This inhibition correlated with a reduction in CD71 but not CD95 expression. RBCs enhanced T-cell proliferation and survival upon activation with phytohemagglutinin and with OKT3 antibodies. Studies aimed at characterizing the cellular and molecular basis of the protection afforded to T cells by RBCs showed that (1) optimal protection required intact RBCs and red cell/T-cell contact but not monocytes; (2) RBCs markedly reduced the level of intracellular reactive oxygen species; and (3) RBCs inhibited the formation of protein-bound acrolein, a peroxidation adduct in biologic systems. Overall, these data indicate that human RBCs protect T cells from activation-induced cell death, at least in part by reducing the pro-oxidant state, and suggest a role for RBCs as conceivable modulators of T-cell homeostasis.

  1. Cell culture purity issues and DFAT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Shengjuan; Department of Animal Sciences, Washington State University, Pullman, WA 99164; Bergen, Werner G.

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for themore » alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.« less

  2. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  3. Functional and phenotypic characterization of CD8+CD28+ and CD28- T cells in atopic individuals sensitized to Dermatophagoides pteronyssinus.

    PubMed

    Lourenço, O; Fonseca, A M; Paiva, A; Arosa, F A; Taborda-Barata, L

    2006-01-01

    CD8+ T suppressor cells may play a role in immunoregulation. Recent studies have characterized this population by the lack of the CD28 molecule. These CD8+CD28 T cells differ phenotypically and functionally from CD8 + CD28 + T cells. Little is known about CD8 + CD28 cells in atopy. Our aim was to analyze the phenotype and functional properties of CD8 + CD28T cells in atopic and non-atopic individuals. Peripheral blood mononuclear cells (PBMC) were obtained after density gradient centrifugation. CD8 + CD28 and CD8 + CD28 + T cells were isolated using immunomagnetic beads. Relative percentages of these cells and expression of several phenotypic markers were analyzed by flow cytometry. Proliferation was assessed by thymidine incorporation in isolated populations and in co-cultures with PBMC using Dermatophagoides pteronyssinus as stimulus. Cytokine synthesis was evaluated in culture supernatants by cytometric bead array. The relative percentages of CD8+CD28 T cells and their phenotypic expression in atopic and non-atopic volunteers were not significantly different. However, CD8 + CD28 T cells showed greater proliferation than did CD8+CD28+ T cells when stimulated with D. pteronyssinus, although cytokine synthesis patterns were similar. CD8+CD28 co-cultures with PBMC showed greater proliferation than CD8+CD28+ T cell co-cultures, but cytokine synthesis patterns were not different. Our data confirm phenotypic and functional differences between CD28+ and CD28 T cells, irrespective of atopic status. Purified human CD8+CD28 T cells, freshly isolated from peripheral blood, do not have suppressor properties on allergen-specific proliferation or on cytokine synthesis in PBMC.

  4. Aromatase inhibitor (anastrozole) affects growth of endometrioma cells in culture.

    PubMed

    Badawy, Shawky Z A; Brown, Shereene; Kaufman, Lydia; Wojtowycz, Martha A

    2015-05-01

    To study the effects of aromatase inhibitor (anastrozole) on the growth and estradiol secretion of endometrioma cells in culture. Endometrioma cells are grown in vitro until maximum growth before used in this study. This was done in the research laboratory for tissue culture, in an academic hospital. Testosterone at a concentration of 10 μg/mL was added as a substrate for the intracellular aromatase. In addition, aromatase inhibitor was added at a concentration of 200 and 300 μg/mL. The effect on cell growth and estradiol secretion is evaluated using Student's t-test. The use of testosterone increased estradiol secretion by endometrioma cells in culture. The use of aromatase inhibitor significantly inhibited the growth of endometrioma cells, and estradiol secretion. Aromatase inhibitor (anastrozole) may be an effective treatment for endometriosis due to inhibition of cellular aromatase. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of Biodegradable Shape-Memory Polymers on Proliferation of 3T3 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Shuo-Gui; Zhang, Peng; Zhu, Guang-Ming; Jiang, Ying-Ming

    2011-07-01

    This article evaluates the in vitro biocompatibility for biodegradable shape-memory polymers (BSMP) invented by the authors. 3T3 cells (3T3-Swiss albino GNM 9) of primary and passaged cultures were inoculated into two kinds of carriers: the BSMP carrier and the control group carrier. Viability, proliferation, and DNA synthesis (the major biocompatibility parameters), were measured and evaluated for both the BSMP and naked carrier via cell growth curve analysis, MTT colorimetry and addition of 3H-TdR to culture media. The results showed that there was no difference between the BSMP carrier and the control dish in terms of viability, proliferation, and metabolism of the 3T3 cells. Overall, the BSMP carrier provides good biocompatibility and low toxicity to cells in vitro, and could indicate future potential for this medium as a biological material for implants in vivo.

  6. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  7. Universal Artificial Antigen Presenting Cells to Selectively Propagate T Cells Expressing Chimeric Antigen Receptor Independent of Specificity

    PubMed Central

    Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.

    2014-01-01

    T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354

  8. Expression of the Tpl2/Cot oncogene in human T-cell neoplasias.

    PubMed

    Christoforidou, Anna V; Papadaki, Helen A; Margioris, Andrew N; Eliopoulos, George D; Tsatsanis, Christos

    2004-12-03

    Tpl2/Cot oncogene has been identified in murine T-cell lymphomas as a target of MoMuLV insertion. Animal and tissue culture studies have shown that Tpl2/Cot is involved in interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) production by T-cells contributing to T-cell proliferation. In the present report we examined a series of 12 adult patients with various T-cell malignancies, all with predominant leukemic expression in the periphery, for the expression of Tpl2/Cot oncogene in order to determine a possible involvement of Tpl2/Cot in the pathogenesis of these neoplasms. Our results showed that Tpl2/Cot was overexpressed in all four patients with Large Granular Lymphocyte proliferative disorders (LGL-PDs) but in none of the remaining eight patients with other T-cell neoplasias. Interestingly, three of the LGL-PD patients displayed neutropenia, one in association with sarcoidosis. Serum TNF-alpha levels were increased in all Tpl2/Cot overexpressing patients while serum IL-2 was undetectable in all subjects studied. Genomic DNA analysis revealed no DNA amplification at the Tpl2/Cot locus in any of the samples analyzed. We conclude that Tpl2/Cot, a gene extensively studied in animal and tissue culture T-cell models may be also involved in the development of human LGL-PD and may have a role in the pathogenesis of immune manifestations associated with these diseases. This is the first report implicating Tpl2/Cot in human T-cell neoplasias and provides a novel molecular event in the development of LGL-PDs.

  9. Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism

    PubMed Central

    Moreno-Fernandez, Maria E.; Rueda, Cesar Mauricio; Rusie, Laura K.

    2011-01-01

    We hypothesized that regulatory T cells (Tregs) could play a beneficial role during HIV infection by controlling HIV replication in conventional T cells (Tcons). Purified Tregs and Tcons from healthy donors were activated separately. Tcons were infected with the X4 or R5 HIV strains and cultured with or without autologous Tregs. Coculture of Tcons and Tregs resulted in a dose-dependent inhibition of Tcon infection, which was significant when a 1:1 Treg:Tcon ratio was used. Treg suppression of HIV infection was largely mediated by contact-dependent mechanisms. Blockage of cytotoxic T-lymphocyte–associated antigen-4 did not significantly reduce Treg function. In contrast, Tregs acted through cAMP-dependent mechanisms, because the decrease of cAMP levels in Tregs, the blockade of gap junction formation between Tregs and Tcons, the blockage of CD39 activity, and the blockage of protein kinase A in Tcons all abolished Treg-mediated suppression of HIV replication. Our data suggest a complex role for Tregs during HIV infection. Although Tregs inhibit specific immune responses, their inhibition of HIV replication in Tcons may play a beneficial role, particularly during early HIV infection, when the effector immune cells are not yet activated. Such a protective role of Tregs could have a profound impact on infection outcome. PMID:21436067

  10. A subset of anti-rotavirus antibodies directed against the viral protein VP7 predicts the onset of celiac disease and induces typical features of the disease in the intestinal epithelial cell line T84.

    PubMed

    Dolcino, Marzia; Zanoni, Giovanna; Bason, Caterina; Tinazzi, Elisa; Boccola, Elisa; Valletta, Enrico; Contreas, Giovanna; Lunardi, Claudio; Puccetti, Antonio

    2013-07-01

    Celiac disease (CD) is an autoimmune disorder of the small intestine triggered by environmental factors in genetically predisposed individuals. A strong association between type 1 diabetes (T1DM) and CD has been reported. We have previously shown that rotavirus infection may be involved in the pathogenesis of CD through a mechanism of molecular mimicry. Indeed, we identified a subset of anti-transglutaminase IgA antibodies that recognize the rotavirus viral protein VP7. In this study, we aimed at evaluating whether such antibodies may predict the onset of CD in children affected by T1DM. Moreover, to further analyze the link between rotavirus infection and pathogenesis of CD, we analyzed the effect of anti-rotavirus VP7 antibodies on T84 intestinal epithelial cells using the gene-array technique, complemented by the analysis of molecules secreted in the supernatant of stimulated cells. We found that anti-rotavirus VP7 antibodies are present in the vast majority (81%) of T1DM-CD tested sera, but are detectable also in a fraction (27%) of T1DM children without CD. Moreover, we found that anti-rotavirus VP7 antibodies are present before the CD onset, preceding the detection of anti-tTG and anti-endomysium antibodies. The gene-array analysis showed that purified anti-rotavirus VP7 antibodies modulate genes that are involved in apoptosis, inflammation, and alteration of the epithelial barrier integrity in intestinal epithelial cells, all typical features of CD. Taken together, these new data further support the involvement of rotavirus infection in the pathogenesis of CD and suggest a predictive role of anti-rotavirus VP7 antibodies.

  11. B cells as accessory cells in a Con A response of a T cell clone.

    PubMed

    Takeuchi, M; Kakiuchi, T; Taira, S; Nariuchi, H

    1987-12-01

    Accessory cell (AC) function of B cells was examined in Con A response of a cloned T cell line, 22-9D, which is Thy 1+,L3T4+,Lyt2-,H-2KbDb+ and I-Ab-.22-9D cells produced IL 2 in the presence of Con A without participation of AC. For the initiation of a proliferative response to Con A, the addition of spleen cells or spleen adherent cells was required. B cells as AC were unable to induce the proliferative response. In the presence of culture supernatant of spleen cells stimulated with Con A (CAS), 22-9D cells showed proliferative response to Con A with B cell AC. The response was inhibited by a relevant monoclonal anti-I-A antibody. Although irradiated spleen cells as AC induced IL 2 receptor expression of 22-9D cells in the presence of Con A, B cells were shown to require the addition of unknown factor(s) in CAS, which was suggested to be different from IL 1, IL 2, IL 3, or IFN-gamma, for the induction of the receptor expression on 22-9D cells.

  12. Human HLA-A*02:01/CHM1+ allo-restricted T cell receptor transgenic CD8+ T Cells specifically inhibit Ewing sarcoma growth in vitro and in vivo

    PubMed Central

    Kirschner, Andreas; Thiede, Melanie; Rubio, Rebeca Alba; Schirmer, David; Kirchner, Thomas; Richter, Gunther H.S.; Mall, Sabine; Klar, Richard; Riddell, Stanley; Busch, Dirk H.; Krackhardt, Angela; Grunewald, Thomas G.P.; Burdach, Stefan

    2016-01-01

    The endochondral bone protein Chondromodulin-I (CHM1) provides oncogene addiction in Ewing sarcoma (ES). We pre-clinically tested the targetability of CHM1 by TCR transgenic, allo-restricted, peptide specific T cells to treat ES. We previously generated allo-restricted wildtype CD8+ T cells directed against the ES specific antigen CHM1319 causing specific responses against ES. However, utilization of these cells in current therapy protocols is hampered due to high complexity in production, relatively low cell numbers, and rapid T cell exhaustion. In order to provide off-the-shelf products in the future, we successfully generated HLA-A*02:01-restricted T cell receptor (TCR) transgenic T cells directed against CHM1319 by retroviral transduction. After short-term expansion a 100% purified CHM1319-TCR-transgenic T cell population expressed a CD62L+/CD45RO and CD62L+/CD45RA+ phenotype. These cells displayed specific in vitro IFNg and granzyme B release in co-culture with HLA-A*02:01+ ES cell lines expressing CHM1. When co-injected with ES cells in Rag2−/−ɣc−/− mice, CHM1-specific TCR-transgenic T cells significantly inhibited the formation of lung and liver metastases in contrast to control mice. Lungs and livers of representative mice displayed CD8+ T cell infiltration in the presence (control group treated with unspecific T cells) and in the absence (study group) of metastatic disease, respectively. Furthermore, mice receiving unspecific T cells showed signs of graft-versus-host-disease in contrast to all mice, receiving CHM1319-TCR-transgenic T cells. CHM1319 specific TCR-transgenic T cells were successfully generated causing anti-ES responses in vitro and in vivo. In the future, CHM1319-TCR-transgenic T cells may control minimal residual disease rendering donor lymphocyte infusions more efficacious and less toxic. PMID:27281613

  13. Leptin Metabolically Licenses T Cells for Activation to Link Nutrition and Immunity

    PubMed Central

    Saucillo, Donte C.; Gerriets, Valerie A.; Sheng, John; Rathmell, Jeffrey C.; MacIver, Nancie J.

    2013-01-01

    Immune responses are highly energy dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. While it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show here that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell-intrinsic and specific to activated effector T cells, as naïve T cells and Treg did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency. PMID:24273001

  14. Peroxisome Proliferator-Activated Receptor γ Deficiency in T Cells Accelerates Chronic Rejection by Influencing the Differentiation of CD4+ T Cells and Alternatively Activated Macrophages

    PubMed Central

    Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong

    2014-01-01

    Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620

  15. γδ T cell homeostasis is established in competition with αβ T cells and NK cells

    PubMed Central

    French, Jena D.; Roark, Christina L.; Born, Willi K.; O'Brien, Rebecca L.

    2005-01-01

    γδ T cells are a diverse population of lymphocytes that play an important role in immune regulation. The size of the γδ T cell pool is tightly regulated, comprising only 1-10% of total lymphoid T cells in mice and humans. We examined the homeostatic regulation of γδ T cells using a model of lymphopenia-induced homeostatic expansion. We found that IL-15 and, to a lesser extent, IL-7 play an important role in lymphoid γδ T cell homeostasis. Moreover, γδ T cell homeostatic expansion was limited not only by γδ T cells themselves but also by natural killer cells and αβ T cells. Our results suggest that CD8+ αβ T cells are the most potent inhibitors of γδ T cell homeostasis and exert their effect by competing for IL-15. PMID:16203967

  16. tRNA modification profiles of the fast-proliferating cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Chao; Niu, Leilei; Song, Wei

    Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In additionmore » to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.« less

  17. T-Cell Tropism of Simian Varicella Virus during Primary Infection

    PubMed Central

    Ouwendijk, Werner J. D.; Mahalingam, Ravi; de Swart, Rik L.; Haagmans, Bart L.; van Amerongen, Geert; Getu, Sarah; Gilden, Don; Osterhaus, Albert D. M. E.; Verjans, Georges M. G. M.

    2013-01-01

    Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host. PMID:23675304

  18. Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients.

    PubMed

    Hoffmann, Jean-Marc; Schubert, Maria-Luisa; Wang, Lei; Hückelhoven, Angela; Sellner, Leopold; Stock, Sophia; Schmitt, Anita; Kleist, Christian; Gern, Ulrike; Loskog, Angelica; Wuchter, Patrick; Hofmann, Susanne; Ho, Anthony D; Müller-Tidow, Carsten; Dreger, Peter; Schmitt, Michael

    2017-01-01

    Therapy with chimeric antigen receptor T (CART) cells for hematological malignancies has shown promising results. Effectiveness of CART cells may depend on the ratio of naive (T N ) vs. effector (T E ) T cells, T N cells being responsible for an enduring antitumor activity through maturation. Therefore, we investigated factors influencing the T N /T E ratio of CART cells. CART cells were generated upon transduction of peripheral blood mononuclear cells with a CD19.CAR-CD28-CD137zeta third generation retroviral vector under two different stimulating culture conditions: anti-CD3/anti-CD28 antibodies adding either interleukin (IL)-7/IL-15 or IL-2. CART cells were maintained in culture for 20 days. We evaluated 24 healthy donors (HDs) and 11 patients with chronic lymphocytic leukemia (CLL) for the composition of cell subsets and produced CART cells. Phenotype and functionality were tested using flow cytometry and chromium release assays. IL-7/IL-15 preferentially induced differentiation into T N , stem cell memory (T SCM : naive CD27+ CD95+), CD4+ and CXCR3+ CART cells, while IL-2 increased effector memory (T EM ), CD56+ and CD4+ T regulatory (T Reg ) CART cells. The net amplification of different CART subpopulations derived from HDs and untreated CLL patients was compared. Particularly the expansion of CD4+ CART N cells differed significantly between the two groups. For HDs, this subtype expanded >60-fold, whereas CD4+ CART N cells of untreated CLL patients expanded less than 10-fold. Expression of exhaustion marker programmed cell death 1 on CART N cells on day 10 of culture was significantly higher in patient samples compared to HD samples. As the percentage of malignant B cells was expectedly higher within patient samples, an excessive amount of B cells during culture could account for the reduced expansion potential of CART N cells in untreated CLL patients. Final T N /T E ratio stayed <0.3 despite stimulation condition for patients, whereas this ratio was >2 in

  19. The signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation

    PubMed Central

    Huang, Weishan; August, Avery

    2015-01-01

    T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling can synergize with or antagonize cytokine-mediated signaling to fine tune T cell fate; however, the latter is less investigated. Murine models with attenuated TCR signaling strength have revealed that TCR signaling can function as regulatory feedback machinery for T cell homeostasis and differentiation in differential cytokine milieus, such as IL-2-mediated Treg development; IL-7-mediated, naïve CD8+ T cell homeostasis; and IL-4-induced innate memory CD8+ T cell development. In this review, we discuss the symphonic cross-talk between TCR and cytokine-mediated responses that differentially control T cell behavior, with a focus on the negative tuning by TCR activation on the cytokine effects. PMID:25525115

  20. Depressed primary in vitro antibody response in untreated systemic lupus erythematosus. T helper cell defect and lack of defective suppressor cell function.

    PubMed Central

    Delfraissy, J F; Segond, P; Galanaud, P; Wallon, C; Massias, P; Dormont, J

    1980-01-01

    The in vitro antibody response of peripheral blood lymphocytes (PBL) from 19 patients with untreated systemic lupus erythematosus (SLE) was compared with that of 20 control patients and 44 normal subjects. Trinitrophenyl polyacrylamide beads (TNP-PAA) were used to induce IgM anti-TNP plaque-forming cells. SLE patients displayed a markedly depressed, and in most instances virtually absent, response. This was not due to an unusual kinetics of the response; nor could it be induced by preincubation of SLE patients' PBL. In co-cultures of SLE patients and normal PBL, the former, with few exceptions, did not exert a suppressive effect. In four patients the anti-TNP response of either unfractionated or T-depleted SLE PBL could be restored by T cells from a normal individual. Conversely in three of these patients, SLE T cells could not support the response of normal B cells, suggesting a T helper cell defect in SLE PBL. Concanavalin A (Con A)-induced suppressor cells of the antibody response could be assayed by two approaches: (a) in responder SLE patients, by the direct addition of Con A to TNP-PAA-stimulated cultures; (b) in seven patients by transfer of Con A-activated cells to the responding culture of a normal allogeneic donor. In both cases SLE PBL were able to exert a suppressive effect to the same extent as normal PBL. PMID:6447163

  1. Th17 cells and CD4(+) multifunctional T cells in patients with systemic lupus erythematosus.

    PubMed

    Araújo, Júlio Antônio Pereira; Mesquita, Danilo; de Melo Cruvinel, Wilson; Salmazi, Karina Inácio; Kallás, Esper Georges; Andrade, Luis Eduardo Coelho

    2016-01-01

    Recent evidence suggests that abnormalities involving Th17 lymphocytes are associated with the pathophysiology of systemic lupus erythematosus (SLE). In addition, multifunctional T cells (MFT), i.e., those producing multiple cytokines simultaneously, are present in the inflammatory milieu and may be implicated in the autoimmune process observed in SLE. In the present study, we aimed to characterize the functional status of CD4(+) T cells in SLE by simultaneously determining the concentration of IL-2, IFN-γ and IL-17 in lymphocyte cultures under exogenous and self-antigenic stimuli. Eighteen patients with active disease, 18 with inactive disease, and 14 healthy controls had functional status of CD4(+) T cells analyzed. We found that SLE patients presented a decreased number of total CD4(+) cells, an increased number of activated T cells, and an increased frequency of Th17 cells compared to healthy controls (HC). MFT cells had increased frequency in SLE patients and there was an increased frequency of tri-functional MFT in patients with active SLE compared with those with inactive SLE. Interestingly, MTF cells produced larger amounts of IFNγ than mono-functional T cells in patients and controls. Taken together these data indicate the participation of recently activated Th17 cells and MTF cells in the SLE pathophysiology. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  2. Three-dimensional cultures modeling premalignant progression of human breast epithelial cells: role of cysteine cathepsins.

    PubMed

    Mullins, Stefanie R; Sameni, Mansoureth; Blum, Galia; Bogyo, Matthew; Sloane, Bonnie F; Moin, Kamiar

    2012-12-01

    The expression of the cysteine protease cathepsin B is increased in early stages of human breast cancer.To assess the potential role of cathepsin B in premalignant progression of breast epithelial cells, we employed a 3D reconstituted basement membrane overlay culture model of MCF10A human breast epithelial cells and isogenic variants that replicate the in vivo phenotypes of hyper plasia(MCF10AneoT) and atypical hyperplasia (MCF10AT1). MCF10A cells developed into polarized acinar structures with central lumens. In contrast, MCF10AneoT and MCF10AT1 cells form larger structures in which the lumens are filled with cells. CA074Me, a cell-permeable inhibitor selective for the cysteine cathepsins B and L,reduced proliferation and increased apoptosis of MCF10A, MCF10AneoT and MCF10AT1 cells in 3D culture. We detected active cysteine cathepsins in the isogenic MCF10 variants in 3D culture with GB111, a cell-permeable activity based probe, and established differential inhibition of cathepsin B in our 3D cultures. We conclude that cathepsin B promotes proliferation and premalignant progression of breast epithelial cells. These findings are consistent with studies by others showing that deletion of cathepsin B in the transgenic MMTV-PyMT mice, a murine model that is predisposed to development of mammary cancer, reduces malignant progression.

  3. Immunosuppressive Effects of Bryoria sp. (Lichen-Forming Fungus) Extracts via Inhibition of CD8+ T-Cell Proliferation and IL-2 Production in CD4+ T Cells.

    PubMed

    Hwang, Yun-Ho; Lee, Sung-Ju; Kang, Kyung-Yun; Hur, Jae-Seoun; Yee, Sung-Tae

    2017-06-28

    Lichen-forming fungi are known to have various biological activities, such as antioxidant, antimicrobial, antitumor, antiviral, anti-inflammation, and anti proliferative effects. However, the immunosuppressive effects of Bryoria sp. extract (BSE) have not previously been investigated. In this study, the inhibitory activity of BSE on the proliferation of CD8 + T cells and the mixed lymphocytes reaction (MLR) was evaluated in vitro. BSE was non-toxic in spleen cells and suppressed the growth of splenocytes induced by anti-CD3. The suppressed cell population in spleen cells consisted of CD8 + T cells and their proliferation was inhibited by the treatment with BSE. This extract significantly suppressed the IL-2 associated with T cell growth and IFN-γ as the CD8 + T cell marker. Furthermore, BSE reduced the expression of the IL-2 receptor alpha chain (IL-2Rα) on CD8 + T cells and CD86 on dendritic cells by acting as antigen-presenting cells. Finally, the MLR produced by the co-culture of C57BL/6 and MMC-treated BALB/c was suppressed by BSE. IL-2, IFN-γ, and CD69 on CD8 + T cells in MLR condition were inhibited by BSE. These results indicate that BSE inhibits the MLR via the suppression of IL-2Rα expression in CD8 + T cells. BSE has the potential to be developed as an anti-immunosuppression agent for organ transplants.

  4. The hydroxyflavone, fisetin, suppresses mast cell activation induced by interaction with activated T cell membranes

    PubMed Central

    Nagai, K; Takahashi, Y; Mikami, I; Fukusima, T; Oike, H; Kobori, M

    2009-01-01

    Background and purpose: Cell-to-cell interactions between mast cells and activated T cells are increasingly recognized as a possible mechanism in the aetiology of allergic or non-allergic inflammatory disorders. To determine the anti-allergic effect of fisetin, we examined the ability of fisetin to suppress activation of the human mast cell line, HMC-1, induced by activated Jurkat T cell membranes. Experimental approach: HMC-1 cells were incubated with or without fisetin for 15 min and then co-cultured with Jurkat T cell membranes activated by phorbol-12-myristate 13-acetate for 16 h. We determined gene expression in activated HMC-1 cells by DNA microarray and quantitative reverse transcription (RT)-PCR analysis. We also examined activation of the transcription factor NF-κB and MAP kinases (MAPKs) in activated HMC-1 cells. Key results: Fisetin suppresses cell spreading and gene expression in HMC-1 cells stimulated by activated T cell membranes. Additionally, we show that these stimulated HMC-1 cells expressed granzyme B. The stimulatory interaction also induced activation of NF-κB and MAPKs; these activations were suppressed by fisetin. Fisetin also reduced the amount of cell surface antigen CD40 and intercellular adhesion molecule-1 (ICAM-1) on activated HMC-1 cells. Conclusions and implications: Fisetin suppressed activation of HMC-1 cells by activated T cell membranes by interfering with cell-to-cell interaction and inhibiting the activity of NF-κB and MAPKs and thereby suppressing gene expression. Fisetin may protect against the progression of inflammatory diseases by limiting interactions between mast cells and activated T cells. PMID:19702784

  5. Clonal nature of spontaneously immortalized 3T3 cells.

    PubMed

    Rittling, S R

    1996-11-25

    Mouse embryo fibroblasts (MEFs), when plated at appropriate densities, proliferate vigorously for several passages, and then the growth rate of the culture slows considerably. If the cells are plated at a high enough density and continuously passed, the cultures will eventually overcome this "crisis" period and resume rapid growth. Here, we have addressed the question of what the changes are that cells undergo in overcoming the growth restraints of crisis. Primary MEF cells were infected with a retrovirus which confers G418 resistance and selected in G418. The resultant pre-crisis population comprised cells which each contained a retrovirus integrated at a unique genomic location. These cells were then passed according to the 3T3 protocol until immortal, rapidly growing cells emerged. The integration pattern of the retrovirus in the immortal population was examined. In two independent experiments, the immortal population of cells grown in the presence of G418 comprised two independent clones of cells, with additional clones undetectable at the level of detection of the assays used. The integration pattern was also examined in parallel infected cultures grown in the absence of selection. In one experiment the unselected immortal population contained the same labeled clone that appeared in the sister infected culture, indicating that an immortal precursor was present in the precrisis population. These results are consistent with the idea that a mutation is responsible for the immortal phenotype.

  6. Endothelial microparticles interact with and support the proliferation of T cells

    PubMed Central

    Wheway, Julie; Latham, Sharissa L; Combes, Valery; Grau, Georges ER

    2014-01-01

    Endothelial cells (EC) closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of EC microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, e.g. atherosclerosis, sepsis, multiple sclerosis and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for antigen presentation and T cell co-stimulation, i.e., β2-microglobulin, MHC II, CD40 and ICOSL. HBEC were able to take up fluorescently labeled antigens with EMP also containing fluorescent antigens suggestive of antigen carryover from HBEC to EMP. In co-cultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4+ and CD8+ subsets, with higher proportions of T cells binding EMP from cytokine stimulated cells. The increased binding of EMP from cytokine stimulated HBEC to T cells was VCAM-1 and ICAM-1-dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4+ T cells and that of CD8+ T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing antigen presentation, thereby pointing towards a novel role for MP in neuro-immunological complications of infectious diseases. PMID:25187656

  7. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  8. Mammalian Cell Tissue Culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2017-07-11

    Cultured mammalian cells are used extensively in the field of human genetics. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Phenotypic and functional characterization of T cells from patients with myasthenia gravis.

    PubMed Central

    Mokhtarian, F; Pino, M; Ofosu-Appiah, W; Grob, D

    1990-01-01

    A study of cell surface phenotypes of PBL of myasthenia gravis (MG) patients showed that their T cells had a significantly higher percentage of 4B4+ T cells (the helper/inducer subset) than age- and sex-matched controls. The PBL of MG patients proliferated significantly higher than those of normal subjects (NS) in response to the purified alpha chain of the acetylcholine receptor (AChR). Anti-AChR antibody was present in sera of 88% of MG and none of the NS. The PBL B cells from MG only, when cultured with autologous T cells and stimulated with either pokeweed mitogen (69%), or AChR-alpha chain (38%), secreted antibody to AChR-alpha chain, whereas T and B cells alone secreted no antibody. T cells from PBL of MG patients were more readily cloned than T cells of NS, by limiting dilution, in the presence of recombinant IL-2 and in the absence of AChR-alpha chain. About 50% of T cell clones from MG patients, compared to none from NS, proliferated to AChR-alpha chain. This response was HLA-DR restricted. MG T cell clones did not display significant cytotoxic activity, as compared to control T cell clones. Our results indicate that in MG, 4B4+ regulatory T cells play their role in the pathogenesis of MG, not by cytotoxicity, but more likely by their ability to stimulate specific antibody production by B cells. Images PMID:1979338

  10. Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia.

    PubMed

    Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R

    2009-07-15

    Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.

  11. Acquisition of T regulatory function in cathepsin L-inhibited T cells by eye-derived CTLA-2alpha during inflammatory conditions.

    PubMed

    Sugita, Sunao; Horie, Shintaro; Nakamura, Orie; Maruyama, Kazuichi; Takase, Hiroshi; Usui, Yoshihiko; Takeuchi, Masaru; Ishidoh, Kazumi; Koike, Masato; Uchiyama, Yasuo; Peters, Christoph; Yamamoto, Yoshimi; Mochizuki, Manabu

    2009-10-15

    Pigment epithelium isolated from the eye possesses immunosuppressive properties such as regulatory T (Treg) cell induction; e.g., cultured retinal pigment epithelium (RPE) converts CD4(+) T cells into Treg cells in vitro. RPE constitutively expresses a novel immunosuppressive factor, CTLA-2alpha, which is a cathepsin L (CathL) inhibitor, and this molecule acts via RPE to induce Treg cells. To clarify CTLA-2alpha's role in the T cell response to RPE in ocular inflammation, we used the experimental autoimmune uveitis (EAU) animal model to examine this new immunosuppressive property of RPE. In EAU models, TGF-beta, but not IFN-gamma inflammatory cytokines, promotes the up-regulation of the expression of CTLA-2alpha in RPE. Similarly, CTLA-2alpha via RPE was able to promote TGF-beta production by the CD4(+) T cells. The RPE-exposed T cells (RPE-induced Treg cells) greatly produced TGF-beta and suppressed bystander effector T cells. There was less expression of CathL by the RPE-exposed T cells, and CathL-inhibited T cells were able to acquire the Treg phenotype. Moreover, CathL-deficient mice spontaneously produced Treg cells, with the increase in T cells potentially providing protection against ocular inflammation. More importantly, CD4(+) T cells from EAU in CathL knockout mice or rCTLA-2alpha from EAU animals were found to contain a high population of forkhead box p3(+) T cells. In both EAU models, there was significant suppression of the ocular inflammation. These results indicate that RPE secretes CTLA-2alpha, thereby enabling the bystander T cells to be converted into Treg cells via TGF-beta promotion.

  12. CD147 stimulates hepatoma cells escaping from immune surveillance of T cells by interaction with Cyclophilin A.

    PubMed

    Ren, Yi-Xin; Wang, Shu-Jing; Fan, Jian-Hui; Sun, Shi-Jie; Li, Xia; Padhiar, Arshad Ahmed; Zhang, Jia-Ning

    2016-05-01

    T cells play an important role in tumor immune surveillance. CD147 is a member of immunoglobulin superfamily present on the surface of many tumor cells and mediates malignant cell behaviors. Cyclophilin A (CypA) is an intracellular protein promoting inflammation when released from cells. CypA is a natural ligand for CD147. In this study, CD147 specific short hairpin RNAs (shRNA) were transfected into murine hepatocellular carcinoma Hepa1-6 cells to assess the effects of CD147 on hepatoma cells escaping from immune surveillance of T cells. We found extracellular CypA stimulated cell proliferation through CD147 by activating ERK1/2 signaling pathway. Downregulation of CD147 expression on Hepa1-6 cells significantly suppressed tumor progression in vivo, and decreased cell viability when co-cultured with T cells in vitro. Importantly, knockdown of CD147 on Hepa1-6 cells resulted in significantly increased T cells chemotaxis induced by CypA both in vivo and in vitro. These findings provide novel mechanisms how tumor cells escaping from immune surveillance of T cells. We provide a potential therapy for hepatocellular carcinoma by targeting CD147 or CD147-CypA interactions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Accumulation of human T lymphotropic virus (HTLV)-I-specific T cell clones in HTLV-I-associated myelopathy/tropical spastic paraparesis patients.

    PubMed

    Höger, T A; Jacobson, S; Kawanishi, T; Kato, T; Nishioka, K; Yamamoto, K

    1997-08-15

    Human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraperesis (HAM/TSP) is a slowly progressive neurologic disorder following infection with HTLV-I. It is characterized by spasticity and hyper-reflexia of the lower extremities, urinary bladder disturbance, lower extremity muscle weakness, and sensory disturbances. HTLV-I, as an inducer of a strong humoral and cytotoxic response, is a well-known pathogenic factor for the progression of HAM/TSP. Peptides derived from proviral tax and env genes provide epitopes recognized by T cells. We herein report an accumulation of distinct clonotypes of alpha/beta TCR+ peripheral blood T lymphocytes from HAM/TSP patients in comparison with that observed in both asymptomatic carriers and healthy controls, using the reverse-transcriptase PCR/single-strand conformation polymorphism method. We also found that some of the accumulated T cell clones in the peripheral blood and cerebrospinal fluid are HTLV-I Tax(11-19) peptide specific. Such clones were found to expand strongly after being cultured with an HTLV-I Tax(11-19) peptide. Moreover, the cultured samples exhibited a strong MHC class I-restricted cytotoxic activity against HTLV-I Tax(11-19) peptide-expressing targets, and therefore most likely also include the disease-associated T cell clones observed in the patients. This is the first report of a direct assessment of Ag-specific T cell responses in fresh PBL and cerebrospinal fluid.

  14. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing

    PubMed Central

    Kaminski, Rafal; Chen, Yilan; Fischer, Tracy; Tedaldi, Ellen; Napoli, Alessandro; Zhang, Yonggang; Karn, Jonathan; Hu, Wenhui; Khalili, Kamel

    2016-01-01

    We employed an RNA-guided CRISPR/Cas9 DNA editing system to precisely remove the entire HIV-1 genome spanning between 5′ and 3′ LTRs of integrated HIV-1 proviral DNA copies from latently infected human CD4+ T-cells. Comprehensive assessment of whole-genome sequencing of HIV-1 eradicated cells ruled out any off-target effects by our CRISPR/Cas9 technology that might compromise the integrity of the host genome and further showed no effect on several cell health indices including viability, cell cycle and apoptosis. Persistent co-expression of Cas9 and the specific targeting guide RNAs in HIV-1-eradicated T-cells protected them against new infection by HIV-1. Lentivirus-delivered CRISPR/Cas9 significantly diminished HIV-1 replication in infected primary CD4+ T-cell cultures and drastically reduced viral load in ex vivo culture of CD4+ T-cells obtained from HIV-1 infected patients. Thus, gene editing using CRISPR/Cas9 may provide a new therapeutic path for eliminating HIV-1 DNA from CD4+ T-cells and potentially serve as a novel and effective platform toward curing AIDS. PMID:26939770

  15. Fish Stem Cell Cultures

    PubMed Central

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056

  16. Fish stem cell cultures.

    PubMed

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  17. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer.

    PubMed

    Kobold, Sebastian; Steffen, Julius; Chaloupka, Michael; Grassmann, Simon; Henkel, Jonas; Castoldi, Raffaella; Zeng, Yi; Chmielewski, Markus; Schmollinger, Jan C; Schnurr, Max; Rothenfußer, Simon; Schendel, Dolores J; Abken, Hinrich; Sustmann, Claudio; Niederfellner, Gerhard; Klein, Christian; Bourquin, Carole; Endres, Stefan

    2015-01-01

    One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40(+) and EpCAM(+)). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met(+) human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase(+) melanoma cells by TCR-, as well as of CEA(+) colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Platelet activation suppresses HIV-1 infection of T cells

    PubMed Central

    2013-01-01

    Background Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. Results We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Conclusions Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens. PMID:23634812

  19. Platelet activation suppresses HIV-1 infection of T cells.

    PubMed

    Solomon Tsegaye, Theodros; Gnirß, Kerstin; Rahe-Meyer, Niels; Kiene, Miriam; Krämer-Kühl, Annika; Behrens, Georg; Münch, Jan; Pöhlmann, Stefan

    2013-05-01

    Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.

  20. Isolation of Lysosomes from Mammalian Tissues and Cultured Cells.

    PubMed

    Aguado, Carmen; Pérez-Jiménez, Eva; Lahuerta, Marcos; Knecht, Erwin

    2016-01-01

    Lysosomes participate within the cells in the degradation of organelles, macromolecules, and a wide variety of substrates. In any study on specific roles of lysosomes, both under physiological and pathological conditions, it is advisable to include methods that allow their reproducible and reliable isolation. However, purification of lysosomes is a difficult task, particularly in the case of cultured cells. This is mainly because of the heterogeneity of these organelles, along with their low number and high fragility. Also, isolation methods, while disrupting plasma membranes, have to preserve the integrity of lysosomes, as the breakdown of their membranes releases enzymes that could damage all cell organelles, including themselves. The protocols described below have been routinely used in our laboratory for the specific isolation of lysosomes from rat liver, NIH/3T3, and other cultured cells, but can be adapted to other mammalian tissues or cell lines.

  1. The leukocyte receptor CD84 inhibits Fc epsilon RI-mediated signaling through homophilic interaction in transfected RBL-2H3 cells.

    PubMed

    Oliver-Vila, Irene; Saborit-Villarroya, Ifigènia; Engel, Pablo; Martin, Margarita

    2008-04-01

    Signaling through the high-affinity receptor for immunoglobulin E (Fc epsilon RI) results in the coordinated activation of tyrosine kinases, thus leading to calcium mobilization, degranulation, and leukotriene and cytokine synthesis. Here, we show that CD84, a member of the CD150 family of leukocyte receptors, inhibits Fc epsilon RI-mediated mast cell degranulation in CD84-transfected rat basophilic leukaemia-2H3 mast cell line cells (RBL-2H3) through homophilic interaction. There was no reduction in overall protein phosphorylation following IgE triggering in CD84 RBL-2H3 cells. Indeed, phosphorylation of Dok-1 and c-Cbl increased in CD84 RBL-2H3, suggesting that inhibition is mediated by these molecules. MAP kinase phosphorylation (ERK1/2, JNK and p38) and cytokine synthesis were impaired in CD84 RBL-2H3. This inhibitory mechanism was independent of SAP and SHP-2 recruitment. Interestingly, CD84 mutants in tyrosines (Y279F and DeltaY324) reversed this inhibitory profile. These data suggest that CD84 may play a role in modulating Fc epsilon RI-mediated signaling in mast cells. Thus, CD84 could play a protective role against undesired allergic and inflammatory responses.

  2. Characterization of lentiviral vector production using microwell suspension cultures of HEK293T-derived producer cells.

    PubMed

    Guy, Heather M; McCloskey, Laura; Lye, Gary J; Mitrophanous, Kyriacos A; Mukhopadhyay, Tarit K

    2013-04-01

    ProSavin(®) is a lentiviral vector (LV)-based gene therapy for Parkinson's disease. ProSavin(®) is currently in a Phase I/II clinical trial using material that was generated by transient transfection of adherent human embryonic kidney (HEK)293T cells. For future large-scale productions of ProSavin(®), we have previously reported the development and characterization of two inducible producer cell lines, termed PS5.8 and PS46.2. PS46.2 has been successfully adapted to grow in suspension cultures. The present study describes the creation of a small-scale (<2 ml) microwell-based experimental platform for the parallel investigation of ProSavin(®) production using suspension-adapted PS46.2. This is combined with statistical design of experiments (DoE) techniques to enable rapid characterization of the process conditions that impact cell growth and LV production. The effects of postinduction period, microwell liquid fill volume, and concentration of inducer (doxycycline) on ProSavin(®) titer and the particle:infectivity (P:I) ratio was investigated using three rounds of DoE, in order to identify appropriate factor ranges and optimize production conditions. We identified an optimal "harvest window" between approximately 26-46 hr within which maximal titers of around 6×10(4) transducing units (TU)/ml were obtained (an approximately 30-fold improvement compared to starting microwell conditions), providing that the fill volume was maintained at or below 1 ml and the doxycycline concentration was at least 1.0 μg/ml. Insights from the microwell studies were subsequently used to rapidly establish operating conditions for ProSavin(®) production in a 0.5-L wave bioreactor culture. The information presented herein thus aids the design and evaluation of scalable production processes for LVs.

  3. Disorders of B cells and helper T cells in the pathogenesis of the immunoglobulin deficiency of patients with ataxia telangiectasia.

    PubMed Central

    Waldmann, T A; Broder, S; Goldman, C K; Frost, K; Korsmeyer, S J; Medici, M A

    1983-01-01

    The pathogenesis of the immunoglobulin deficiency of 20 patients with ataxia telangiectasia was studied using an in vitro immunoglobulin biosynthesis system. 10 patients had no detectable IgA in their serum as assessed by radial diffusion in agar and 3 had a reduced serum IgA concentration. The peripheral blood mononuclear cells of 17 of the patients and 17 normal controls were cultured with pokeweed mitogen for 12 d and the immunoglobulin in the supernatants measured. The immunoglobulin synthesis was below the lower limit of the normal 95% confidence interval for IgM in 5 patients, for IgG in 8, and for IgA in 14. The mononuclear cells from 9 of the 10 patients with a serum IgA concentration less than 0.1 mg/ml failed to synthesize IgA in vitro. None of the patients manifested excessive suppressor cell activity. All patients had reduced but measurable helper T cell activity for immunoglobulin synthesis by co-cultured normal pokeweed mitogen-stimulated B cells (geometric mean 22% of normal). Furthermore, the addition of normal irradiated T cells to patient peripheral blood mononuclear cells led to an augmentation of IgM synthesis in 15 of 17 and to increased IgG synthesis in 9 of the 17 patients studied, including 9 of the 12 patients who had synthesized IgG before the addition of the irradiated T cells. In addition, IgA synthesis was increased in all eight patients examined that had serum IgA concentrations greater than 0.1 mg/ml. These studies suggest that a helper T cell defect contributes to the diminished immunoglobulin synthesis. However, a helper T cell defect does not appear to be the sole cause since there was no IgA synthesis by the peripheral blood mononuclear cells of 9 of the 10 patients with a profoundly reduced serum IgA even when co-cultured with normal T cells. Furthermore, the cells of the nine patients with profoundly reduced IgA levels examined also failed to produce IgA when stimulated with the relatively helper T cell-independent polyclonal

  4. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. © 2015 by The American Society of Hematology.

  5. Vaccine of engineered tumor cells secreting stromal cell-derived factor-1 induces T-cell dependent antitumor responses.

    PubMed

    Shi, Meiqing; Hao, Siguo; Su, Liping; Zhang, Xueshu; Yuan, Jinying; Guo, Xuling; Zheng, Changyu; Xiang, Jim

    2005-08-01

    The CXC chemokine SDF-1 has been characterized as a T-cell chemoattractant both in vitro and in vivo. To determine whether SDF-1 expression within tumors can influence tumor growth, we transfected an expression vector pCI-SDF-1 for SDF-1 into J558 myeloma cells and tested their ability to form tumors in BALB/c. Production of biologically active SDF-1 (1.2 ng/mL) was detected in the culture supernatants of cells transfected with the expression vector pCI-SDF-1. J558 cells gave rise to a 100% tumor incidence, whereas SDF-1-expressing J558/SDF-1 tumors invariably regressed in BALB/c mice and became infiltrated with CD4(+) and CD8(+) T cells. Regression of the J558/SDF-1 tumors was dependent on both CD4(+) and CD8(+) T-cells. Our data also indicate that TIT cells containing both CD4(+) and CD8(+) T-cells within J558/SDF-1 tumors express the SDF-1 receptor CXCR4, and that SDF-1 specifically chemoattracts these cells in vitro. Furthermore, immunization of mice with engineered J558/SDF-1 cells elicited the most potent protective immunity against 0.5 x 10(6) cells J558 tumor challenge in vivo, compared to immunization with the J558 alone, and this antitumor immunity mediated by J558/SDF-1 tumor cell vaccination in vivo appeared to be dependent on CD8(+) CTL. Thus, SDF-1 has natural adjuvant activities that may augment antitumor responses through their effects on T-cells and thereby could be important in gene transfer immunotherapies for some cancers.

  6. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    PubMed

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Specific T-cell activation in an unspecific T-cell repertoire.

    PubMed

    Van Den Berg, Hugo A; Molina-París, Carmen; Sewell, Andrew K

    2011-01-01

    T-cells are a vital type of white blood cell that circulate around our bodies, scanning for cellular abnormalities and infections. They recognise disease-associated antigens via a surface receptor called the T-cell antigen receptor (TCR). If there were a specific TCR for every single antigen, no mammal could possibly contain all the T-cells it needs. This is clearly absurd and suggests that T-cell recognition must, to the contrary, be highly degenerate. Yet highly promiscuous TCRs would appear to be equally impossible: they are bound to recognise self as well as non-self antigens. We review how contributions from mathematical analysis have helped to resolve the paradox of the promiscuous TCR. Combined experimental and theoretical work shows that TCR degeneracy is essentially dynamical in nature, and that the T-cell can differentially adjust its functional sensitivity to the salient epitope, "tuning up" sensitivity to the antigen associated with disease and "tuning down" sensitivity to antigens associated with healthy conditions. This paradigm of continual modulation affords the TCR repertoire, despite its limited numerical diversity, the flexibility to respond to almost any antigenic challenge while avoiding autoimmunity.

  8. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  9. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  10. Pumps for microfluidic cell culture.

    PubMed

    Byun, Chang Kyu; Abi-Samra, Kameel; Cho, Yoon-Kyoung; Takayama, Shuichi

    2014-02-01

    In comparison to traditional in vitro cell culture in Petri dishes or well plates, cell culture in microfluidic-based devices enables better control over chemical and physical environments, higher levels of experimental automation, and a reduction in experimental materials. Over the past decade, the advantages associated with cell culturing in microfluidic-based platforms have garnered significant interest and have led to a plethora of studies for high throughput cell assays, organs-on-a-chip applications, temporal signaling studies, and cell sorting. A clear concern for performing cell culture in microfluidic-based devices is deciding on a technique to deliver and pump media to cells that are encased in a microfluidic device. In this review, we summarize recent advances in pumping techniques for microfluidic cell culture and discuss their advantages and possible drawbacks. The ultimate goal of our review is to distill the large body of information available related to pumps for microfluidic cell culture in an effort to assist current and potential users of microfluidic-based devices for advanced in vitro cellular studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The effect of phloretin on human γδ T cells killing colon cancer SW-1116 cells.

    PubMed

    Zhu, Sheng-Ping; Liu, Gang; Wu, Xiao-Ting; Chen, Fu-Xing; Liu, Jun-Quan; Zhou, Zhong-Hai; Zhang, Jian-Fu; Fei, Su-Juan

    2013-01-01

    To explore the effect and mechanism of Phloretin on human γδ T cells killing colon cancer SW-1116 cells. γδ T cells were amplified in vitro from human peripheral blood mononuclear cells through isopentenyl pyrophosphate method (IPP). After cocultured different concentrations of Phloretin with γδ T cells or SW-1116 cells for 48h respectively, MTT assay was used to test the growth curve of these two cells; Flow cytometry to test the expression of Granzyme B (GraB), perforin (PFP), CD107a and IFN-γ of γδ T cells; Lactate dehydrogenase (LDH) release assay to test the cytotoxic activity of the γδ T cells on SW-1116 cells; and Western blot to test the Wnt3a expression of the γδ T cells. After cultured with IPP for ten days, the percentage of γδ T cells increased from 3.31±3.00% to 78.40±10.30%. Compared to the control group, when the concentration of Phloretin increased from 2.35μg/ml to 18.75μg/ml, it could significantly proliferate the γδ T cell growth (P<0.05) and inhibit the growth of SW-1116 cells in dose-response, and the expression of GraB, PFP, CD107a and Wnt3a significantly increased (P<0.05). Significant positive relationships were observed among CD107a and PFP, GraB, cytotoxicity (P<0.05). The percentage of IFN-γ producing γδ T cells treated with Phloretin was significantly higher than control group. Phloretin can enhance the killing effect of γδ T cells on SW-1116 cells; the mechanism may be that Phloretin could proliferate the γδ T cell growth, increase the expression of PFP and GraB, activate the Wnt signaling pathway, and produce higher level of IFN-γ. Indeed CD107a expression probably correlates quite well with antitumor activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Adenosine production by human B cells and B cell–mediated suppression of activated T cells

    PubMed Central

    Saze, Zenichiro; Schuler, Patrick J.; Hong, Chang-Sook; Cheng, Dongmei; Jackson, Edwin K.

    2013-01-01

    Antibody-independent role of B cells in modulating T-cell responses is incompletely understood. Freshly isolated or cultured B cells isolated from the peripheral blood of 30 normal donors were evaluated for CD39 and CD73 coexpression, the ability to produce adenosine 5′-monophosphate (AMP) and adenosine (ADO) in the presence of exogenous adenosine triphosphate (ATP) as well as A1, A2A, A2B, and A3 adenosine receptor (ADOR) expression. Human circulating B cells coexpress ectonucleotidases CD39 and CD73, hydrolyze exogenous ATP to 5′-AMP and ADO, and express messenger RNA for A1R, A2AR, and A3R. 2-chloroadenosine inhibited B-cell proliferation and cytokine expression, and only A3R selective antagonist restored B-cell functions. This suggested that B cells use the A3R for autocrine signaling and self-regulation. Mediated effects on B-cell growth ± ADOR antagonists or agonists were tested in carboxyfluorescein diacetate succinimidyl ester assays. In cocultures, resting B cells upregulated functions of CD4+ and CD8+ T cells. However, in vitro–activated B cells downregulated CD73 expression, mainly produced 5′-AMP, and inhibited T-cell proliferation and cytokine production. These B cells acquire the ability to restrict potentially harmful effects of activated T cells. Thus, B cells emerge as a key regulatory component of T cell–B cell interactions, and their dual regulatory activity is mediated by the products of ATP hydrolysis, 5′-AMP, and ADO. PMID:23678003

  13. Supernatural T cells: genetic modification of T cells for cancer therapy.

    PubMed

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  14. Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications

    PubMed Central

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein

  15. Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.

    PubMed

    Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore

    2015-01-01

    Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.

  16. Improving Therapy of Chronic Lymphocytic Leukemia (CLL) with Chimeric Antigen Receptor (CAR) T Cells

    PubMed Central

    Fraietta, Joseph A.; Schwab, Robert D.; Maus, Marcela V.

    2016-01-01

    Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically-engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and re-directing the immune system against cancer. This review will briefly summarize T cell therapies in development for CLL disease. We discuss the role of T cell function and phenotype, T cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL. PMID:27040708

  17. Suppressor cell hyperactivity relative to allogeneic lymphocyte proliferation as a manifestation of defective T-T-cell interactions in systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenina, M.A.; Potapova, A.A.; Biryukov, A.V.

    1987-01-01

    The authors study the state of immunoregulatory process in patients with systemic lupus erythematosus at the T-T-cell interaction level and seek to test the possibility of the pharmacological modulation of this process. The proliferative activity of mononuclear lymphocytes, extracted from the blood of ten lupus patients, was assessed by measuring the incorporation of tritiated thymidine into cultures stimulated by phytohemagglutinin, concanavalin, and theophylline. The comparative effects of each of these agents on the immunoregulatory and proliferative activity of the lymphocytes are reported.

  18. Response of Vitis vinifera cell cultures to Eutypa lata and Trichoderma atroviride culture filtrates: expression of defence-related genes and phenotypes.

    PubMed

    Mutawila, C; Stander, C; Halleen, F; Vivier, M A; Mostert, L

    2017-03-01

    Cell suspension cultures of Vitis vinifera cv. Dauphine berries were used to study the response to the vascular pathogen, Eutypa lata, in comparison with a biological control agent, Trichoderma atroviride, that was previously shown to be effective in pruning wound protection. The expression of genes coding for enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins was profiled over a 48-h period using quantitative reverse transcriptase PCR. The cell cultures responded to elicitors of both fungi with a hypersensitive-like response that lead to a decrease in cell viability. Similar genes were triggered by both the pathogen and biocontrol agent, but the timing patterns and magnitude of expression was dependent on the specific fungal elicitor. Culture filtrates of both fungi caused upregulation of phenylalanine ammonia-lyase (PAL), 4-coumaroyl Co-A ligase (CCo-A) and stilbene synthase (STS), and a downregulation of chalcone synthase (CHS) genes. The pathogen filtrate caused a biphasic pattern in the upregulation of PAL and STS genes which was not observed in cells treated with filtrates of the biocontrol agent. Analytical assays showed significantly higher total phenolic content and chitinolytic enzyme activity in the cell cultures treated with the T. atroviride filtrate compared to the pathogen filtrate. These results corresponded well to the higher expression of PAL and chitinase class IV genes. The response of the cell cultures to T. atroviride filtrate provides support for the notion that the wound protection by the biocontrol agent at least partially relies on the induction of grapevine resistance mechanisms.

  19. Desiring T, desiring self: "T-style" pop singers and lesbian culture in China.

    PubMed

    Kam, Lucetta Y L

    2014-01-01

    This article examines an emerging group of "T-style" female singers in the popular music scene in China. The expression "T," which is developed from the term "tomboy," refers to lesbians with masculine gender style. It is a widely used form of identification in local lesbian communities in China. The emergence of "T-style" female singers coincided with the rapid development of local lesbian communities in major cities in China. By exploring the intersections-or mutual modeling-of "T-style" singers and local lesbian gender culture, this article also analyzes the different receptions of "T-style" singers by local lesbian women, and explores whether "T-style" singers are seen as a "cultural resource" that aids the construction of lesbian gender and sexual identities.

  20. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    PubMed

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  1. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    PubMed

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.

  2. Human neuroblastoma (SH-SY5Y) cell culture and differentiation in 3-D collagen hydrogels for cell-based biosensing.

    PubMed

    Desai, Anu; Kisaalita, William S; Keith, Charles; Wu, Z-Z

    2006-02-15

    Cell-based three-dimensional systems are desirable in the field of high throughput screening assays due to their potential similarity to in vivo environment. We have used SH-SY5Y human neuroblastoma cells cultured in 3-D collagen hydrogel, confocal microscopy and immunofluorescence staining, to assess the merit of the system as a functional, cell-based biosensor. Our results show differences between 2-D and 3-D resting membrane potential development profile upon differentiation. There was no statistically significant difference in SH-SY5Y proliferation rate between 2-D monolayer and 3-D collagen culture formats. A large percentage of cells (2-D, 91.30% and 3-D, 84.93%) did not develop resting membrane potential value equal to or lower than -40 mV; instead cells exhibited a heterogeneous resting membrane potential distribution. In response to high K(+) (50 mM) depolarization, 3-D cells were less responsive in terms of increase in intracellular Ca(2+), in comparison to 2-D cells, supporting the hypothesis that 2-D cell calcium dynamics may be exaggerated. L-Type Ca(2+) expression levels based on staining results was inconsistent with Bay K 8644 channel activation results, strongly suggesting that either the majority of the channels were non-functional or could not be activated by Bay K 8644. In general, the results in this study confirm the depolarization-induced differences in intracellular calcium release when cultured using a 2-D versus a 3-D matrix.

  3. Proliferation of Peripheral Blood Lymphocytes and Mesenchymal Stromal Cells Derived from Wharton's Jelly in Mixed and Membrane-Separated Cultures.

    PubMed

    Poltavtsev, A M; Poltavtseva, R A; Yushina, M N; Pavlovich, S V; Svirshchevskaya, E V

    2017-08-01

    We studied the effect of mesenchymal stromal cells on proliferation of CFSE-stained T cells in mixed and membrane-separated (Transwell) cultures and in 3D culture of mesenchymal stromal cells from Wharton's jelly. The interaction of mesenchymal stromal cells with mitogen-activated peripheral blood lymphocytes from an allogeneic donor was followed by suppression of T-cell proliferation in a wide range of cell proportions. Culturing in the Transwell system showed the absence of suppression assessed by the fraction of proliferating cells and by the cell cycle analysis. In 3D cultures, contact interaction of mesenchymal stromal cells and lymphocytes was demonstrated that led to accumulation of G2/M phase lymphocytes and G0/G1 phase mesenchymal stromal cells. The suppressive effect of mesenchymal stromal cells from Wharton's jelly is mediated by two mechanisms. The effects are realized within 6 days, which suggests that the therapeutic effects of mesenchymal stromal cells persist until their complete elimination from the body.

  4. Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4.

    PubMed

    Marçais, Antoine; Coupet, Charles-Antoine; Walzer, Thierry; Tomkowiak, Martine; Ghittoni, Raffaella; Marvel, Jacqueline

    2006-10-01

    Immunological memory is associated with the display of improved effector functions. The maintenance by CD8 memory cells of high levels of untranslated CCL5 mRNA allows these cells to immediately secrete this chemokine upon Ag stimulation. Untranslated mRNA storage is a newly described process supporting the immediate display of an effector function by memory lymphocytes. We have tested the capacity of different cytokines to regulate the memorization of CCL5 by memory CD8 T cells. We found that IL-4 treatment of murine CD8 T cells impairs immediate CCL5 secretion capacity by inhibiting CCL5 mRNA transcription through a STAT6-dependent pathway. The inhibition by IL-4 is reversible, as memory CD8 T cells reconstitute their CCL5 mRNA stores and reacquire their immediate CCL5 secretion capacity when IL-4 is withdrawn. This recovery is cell autonomous because it proceeds in culture medium in the absence of exogenous growth factors, suggesting that CCL5 expression by memory CD8 T cells is a default process. Overall, these results indicate that the expression of CCL5 is an intrinsic property acquired by memory CD8 T cells that is regulated by environmental factors.

  5. Ex vivo detection of adenovirus specific CD4{sup +} T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of T{sub HELPER} cells following stem cell transplantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.

    2010-02-20

    Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4{sup +} T-cell responses against the Hexon-protein, but the frequency of specific T{sub HELPER} cells is extremely low or not detectable ex vivo and preference for different CD4{sup +} T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4{sup +}-responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highlymore » conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4{sup +}-proliferation in >50% of individuals, confirmed by intracellular IFN-gamma detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4{sup +} T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4{sup +} T cells for adoptive T-cell transfer against HAdV-infection post SCT.« less

  6. Development of Third-generation Cocal Envelope Producer Cell Lines for Robust Lentiviral Gene Transfer into Hematopoietic Stem Cells and T-cells.

    PubMed

    Humbert, Olivier; Gisch, Don W; Wohlfahrt, Martin E; Adams, Amie B; Greenberg, Phil D; Schmitt, Tom M; Trobridge, Grant D; Kiem, Hans-Peter

    2016-08-01

    Lentiviral vectors (LVs) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G) have demonstrated great promise in gene therapy trials employing hematopoietic stem cell and T-cells. The VSV-G envelope confers broad tropism and stability to the vector but is toxic when constitutively expressed, which has impeded efforts to generate stable producer cell lines. We previously showed that cocal pseudotyped LVs offer an excellent alternative to VSV-G vectors because of their broad tropism and resistance to human serum inactivation. In this study, we demonstrate that cocal LVs transduce CD34(+) and CD4(+) T-cells more efficiently than VSV-G LVs and share the same receptor(s) for cell entry. 293T-cells stably expressing the cocal envelope produced significantly higher LV titers than VSV-G expressing cells. We developed cocal pseudotyped, third-generation, self-inactivating LV producer cell lines for a GFP reporter and for a WT1 tumor-specific T-cell receptor, which achieved concentrated titers above 10(8) IU/ml and were successfully adapted for growth in suspension, serum-free culture. The resulting LVs were at least as effective as standard LVs in transducing CD34(+) and CD4(+) T-cells. Our stable cocal LV producer cell lines should facilitate the production of large-scale, high titer clinical grade vectors.

  7. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors

    PubMed Central

    Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis

    2013-01-01

    A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536

  8. In Situ Activation of Antigen-Specific CD8+ T Cells in the Presence of Antigen in Organotypic Brain Slices1

    PubMed Central

    Ling, Changying; Verbny, Yakov I.; Banks, Matthew I.; Sandor, Matyas; Fabry, Zsuzsanna

    2012-01-01

    The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8+ T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c+ cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c+ cells stimulate Ag-specific naive CD8+ T cells locally in the CNS and may contribute to immune responses in the brain. PMID:18523307

  9. Effect of all-trans retinoic acid (ATRA) on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells.

    PubMed

    Bidad, Katayoon; Salehi, Eisa; Oraei, Mona; Saboor-Yaraghi, Ali-Akbar; Nicknam, Mohammad Hossein

    2011-12-01

    All-trans retinoic acid (ATRA), as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were separated from heparinized blood of healthy donors and were cultured in conditions, some with, some without ATRA. Viability was assessed by PI flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription factors (FOXP3, RORγt and T-bet) were examined by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM) caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not adversely affect cell viability and proliferation in comparison to culture medium without ATRA. Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared to culture medium without ATRA. ATRA could increase FOXP3+ and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+ T cells in terms of cell viability, proliferation and activation. We could also show that ATRA diverts the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.

  10. HIV Envelope gp120 Alters T Cell Receptor Mobilization in the Immunological Synapse of Uninfected CD4 T Cells and Augments T Cell Activation

    PubMed Central

    Deng, Jing; Mitsuki, Yu-ya; Shen, Guomiao; Ray, Jocelyn C.; Cicala, Claudia; Arthos, James; Dustin, Michael L.

    2016-01-01

    ABSTRACT HIV is transmitted most efficiently from cell to cell, and productive infection occurs mainly in activated CD4 T cells. It is postulated that HIV exploits immunological synapses formed between CD4 T cells and antigen-presenting cells to facilitate the targeting and infection of activated CD4 T cells. This study sought to evaluate how the presence of the HIV envelope (Env) in the CD4 T cell immunological synapse affects synapse formation and intracellular signaling to impact the downstream T cell activation events. CD4 T cells were applied to supported lipid bilayers that were reconstituted with HIV Env gp120, anti-T cell receptor (anti-TCR) monoclonal antibody, and ICAM-1 to represent the surface of HIV Env-bearing antigen-presenting cells. The results showed that the HIV Env did not disrupt immunological synapse formation. Instead, the HIV Env accumulated with TCR at the center of the synapse, altered the kinetics of TCR recruitment to the synapse and affected synapse morphology over time. The HIV Env also prolonged Lck phosphorylation at the synapse and enhanced TCR-induced CD69 upregulation, interleukin-2 secretion, and proliferation to promote virus infection. These results suggest that HIV uses the immunological synapse as a conduit not only for selective virus transmission to activated CD4 T cells but also for boosting the T cell activation state, thereby increasing its likelihood of undergoing productive replication in targeted CD4 T cells. IMPORTANCE There are about two million new HIV infections every year. A better understanding of how HIV is transmitted to susceptible cells is critical to devise effective strategies to prevent HIV infection. Activated CD4 T cells are preferentially infected by HIV, although how this is accomplished is not fully understood. This study examined whether HIV co-opts the normal T cell activation process through the so-called immunological synapse. We found that the HIV envelope is recruited to the center of the

  11. A simple and efficient method for generating Nurr1-positive neuronal stem cells from human wisdom teeth (tNSC) and the potential of tNSC for stroke therapy.

    PubMed

    Yang, Kuo-Liang; Chen, Mei-Fang; Liao, Chia-Hsin; Pang, Cheng-Yoong; Lin, Py-Yu

    2009-01-01

    We have isolated human neuronal stem cells from exfoliated third molars (wisdom teeth) using a simple and efficient method. The cultured neuronal stem cells (designated tNSC) expressed embryonic and adult stem cell markers, markers for chemotatic factor and its corresponding ligand, as well as neuron proteins. The tNSC expressed genes of Nurr1, NF-M and nestin. They were used to treat middle cerebral artery occlusion (MCAO) surgery-inflicted Sprague-Dawley (SD) rats to assess their therapeutic potential for stroke therapy. For each tNSC cell line, a normal human impacted wisdom tooth was collected from a donor with consent. The tooth was cleaned thoroughly with normal saline. The molar was vigorously shaken or vortexed for 30 min in a 50-mL conical tube with 15-20mL normal saline. The mixture of dental pulp was collected by centrifugation and cultured in a 25-cm(2) tissue culture flask with 4-5mL Medium 199 supplemented with 5-10% fetal calf serum. The tNSC harvested from tissue culture, at a concentration of 1-2x10(5), were suspended in 3 microL saline solution and injected into the right dorsolateral striatum of experimental animals inflicted with MCAO. Behavioral measurements of the tNSC-treated SD rats showed a significant recovery from neurologic dysfunction after MCAO treatment. In contrast, a sham group of SD rats failed to recover from the surgery. Immunohistochemistry analysis of brain sections of the tNSC-treated SD rats showed survival of the transplanted cells. These results suggest that adult neuronal stem cells may be procured from third molars, and tNSC thus cultivated have potential for treatment of stroke-inflicted rats.

  12. T cell immunoregulation in active ocular toxoplasmosis.

    PubMed

    Cordeiro, Cynthia A; Vieira, Erica L M; Castro, Vinicius M; Dutra, Walderez O; Costa, Rogerio A; Orefice, Juliana L; Campos, Wesley R; Orefice, Fernando; Young, Lucy H; Teixeira, Antonio Lucio

    2017-04-01

    Toxoplasma gondii infection is an important cause of infectious ocular disease. The physiopathology of retinochoroidal lesions associated with this infection is not completely understood. The present study was undertaken to investigate cytokine production by T cells from individuals with active toxoplasmic retinochoroiditis (TR) comparing with controls. Eighteen patients with active TR and 15 healthy controls (6 controls IgG + to Toxoplasma and 9 negative controls) were included in the study. Peripheral blood mononuclear cells were incubated in the presence or absence of T. gondii antigen (STAg), and stained against CD4, CD8, TNF, IL-10 and IFN-γ. Baseline expression of cytokines was higher in TR/IgG + patients in comparison with controls. Cytokine expression was not increased by STAg in vitro stimulation in controls. After stimulation, TR/IgG + patients' lymphocytes increased cytokine as compared to cultures from both controls. While T cells were the main source of IL-10, but also IFN-γ and TNF, other lymphocyte populations were relevant source of inflammatory cytokines. Interestingly, it was observed a negative correlation between ocular lesion size and IL-10 expression by CD4 + lymphocytes. This study showed that T cells are the main lymphocyte populations expressing IL-10 in patients with TR. Moreover, expression of IL-10 plays a protective role in active TR. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  14. Differences In Early T-Cell Signaling In Cultures Grown In a Rotating Clinostat vs. Static Controls

    NASA Technical Reports Server (NTRS)

    Alexamder. M.; Nelman-Gonzales, M.; Penkala, J.; Sams, C.

    1999-01-01

    Altered gravity has previously been demonstrated to be a stress that can influence components of the immune system. Specifically, T-cell activation has been shown to be affected by changes in gravity, exhibiting a decrease in proliferative response to in vitro stimulation in microgravity. Subsequent ground based studies utilizing a rotating clinostat to model some of the effects of microgravity have been consistent with earlier flight based experiments. These ground and flight experiments have examined T-cell activation by measuring various responses including production of cytokines, DNA synthesis and the production of various cell surface activation markers. These indicators of T-cell activation were measured anywhere from 4 to 72 hours after stimulation. Prior to the work described here, the initial signaling events in T-cell activation had not been directly examined. The goal of this project was to determine how the process of early signal transduction was affected by growth in a rotating clinostat. Here we directly show a defect in signaling from TCR to MAPK in purified peripheral T-cells activated in the clinostat by OKT3/antiCD28 coated microbeads as compared to static controls.

  15. Effector and memory T cell subsets in the response to bovine tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14 days) cultured IFN-gamma ELISPOT assays of peripheral blood mononuclear cells (PBMC) are used to access T cell central memory (Tcm) responses in both cattle and humans. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT response correlates with protection; how...

  16. CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy.

    PubMed

    Sapoznik, Sivan; Ortenberg, Rona; Galore-Haskel, Gilli; Kozlovski, Stav; Levy, Daphna; Avivi, Camila; Barshack, Iris; Cohen, Cyrille J; Besser, Michal J; Schachter, Jacob; Markel, Gal

    2012-10-01

    Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.

  17. A High RORγT/CD3 Ratio is a Strong Prognostic Factor for Postoperative Survival in Advanced Colorectal Cancer: Analysis of Helper T Cell Lymphocytes (Th1, Th2, Th17 and Regulatory T Cells).

    PubMed

    Yoshida, Naohiro; Kinugasa, Tetsushi; Miyoshi, Hiroaki; Sato, Kensaku; Yuge, Kotaro; Ohchi, Takafumi; Fujino, Shinya; Shiraiwa, Sachiko; Katagiri, Mitsuhiro; Akagi, Yoshito; Ohshima, Koichi

    2016-03-01

    Tumor-infiltrating lymphocytes (TILs), part of the host immune response, have been widely reported as influential factors in the tumor microenvironment for the clinical outcome of colorectal cancer (CRC). However, the network of helper T cells is very complex, and which T-cell subtypes affect the progression of CRC and postoperative prognosis remains unclear. This study investigated the expression of several subtypes of TILs including T helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) cells to determine their correlation with clinicopathologic features and postoperative prognosis. The study investigated the expression of TILs using immunohistochemistry of tissue microarray samples for 199 CRC patients. The number of each T-cell subtype infiltrating tumors was counted using ImageJ software. The relationship between TIL marker expression, clinicopathologic features, and prognosis was analyzed. A high RORγT/CD3 ratio (Th17 ratio) was significantly correlated with lymph node metastasis (p = 0.002), and a high of Foxp3/CD3 ratio (Treg ratio) was correlated with tumor location in the colon (p = 0.04), as shown by the Chi square test. In multivariate analysis, a high RORγT/CD3 ratio was the only independent prognostic factor for overall survival (p = 0.04; hazard ratio [HR], 1.84; 95% confidence interval [CI] 1.02-3.45). This study confirmed a high RORγT/CD3 ratio as a strong prognostic marker for postoperative survival. The immunohistochemistry results suggest that Th17 may affect lymph node metastasis in CRC. If new immunotherapies reducing Th17 expression are established, they may improve the efficiency of cancer treatment and prolong the survival of patients with CRC.

  18. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy.

    PubMed

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J; Rivière, Isabelle

    2009-01-01

    On the basis of promising preclinical data demonstrating the eradication of systemic B-cell malignancies by CD19-targeted T lymphocytes in vivo in severe combined immunodeficient-beige mouse models, we are launching phase I clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia. We present here the validation of the bioprocess which we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semiclosed culture system using the Wave Bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in severe combined immunodeficient-beige mice bearing disseminated tumors. The validation requirements in terms of T-cell expansion, T-cell transduction with the 1928z CAR, biologic activity, quality control testing, and release criteria were met for all 4 validation runs using apheresis products from patients with CLL. Additionally, after expansion of the T cells, the diversity of the skewed Vbeta T-cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemorefractory CLL and in patients with relapsed acute lymphoblastic leukemia. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any CAR or T-cell receptor.

  19. Functional characterization of a regulatory human T-cell subpopulation increasing during autologous MLR.

    PubMed Central

    Cosulich, M E; Risso, A; Canonica, G W; Bargellesi, A

    1986-01-01

    The present study was undertaken to investigate the heterogeneity of helper T cells in humans using two different monoclonal antibodies: 5/9 and MLR4. The former identifies 15-20% of resting T lymphocytes from peripheral blood and corresponds to an anti-helper/inducer T cell. The second antibody, MLR4, recognizes 5% of total T lymphocytes and partially overlaps with the 5/9+ T cells. In order to investigate functional differences within the 5/9+ cells, we separated two different subsets (5/9+ MLR+ and 5/9+ MLR4-) by a rosetting technique. Although both subsets provide help for Ig synthesis in a PWM-stimulated culture, only the 5/9+ MLR4- fraction gave a proliferative response in both autologous and allogeneic MLR and to soluble protein antigens. The effect of radiation on the ability of the two subsets to provide help for Ig synthesis showed that the 5/9+ MLR4+ subset is highly radiation-sensitive, while 5/9+ MLR- is relatively radiation-resistant. In a further series of experiments, 5/9+ MLR4+ cells isolated after activation in an autologous MLR but not by Con A, were no longer able to induce T-cell differentiation but now showed a strong suppressor effect. The 5/9+ MLR4- subset separated from the same cultures did not display any suppressor function. These data demonstrate in fresh PBL the existence of a radiation-sensitive regulatory subset exerting a helper activity, and which acquires suppressor activity after activation in autologous MLR. PMID:2936679

  20. Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells

    PubMed Central

    Sloan, Derek D.; Lam, Chia-Ying Kao; Irrinki, Alivelu; Liu, Liqin; Tsai, Angela; Pace, Craig S.; Kaur, Jasmine; Murry, Jeffrey P.; Balakrishnan, Mini; Moore, Paul A.; Johnson, Syd; Nordstrom, Jeffrey L.; Cihlar, Tomas; Koenig, Scott

    2015-01-01

    HIV reservoirs and production of viral antigens are not eliminated in chronically infected participants treated with combination antiretroviral therapy (cART). Novel therapeutic strategies aiming at viral reservoir elimination are needed to address chronic immune dysfunction and non-AIDS morbidities that exist despite effective cART. The HIV envelope protein (Env) is emerging as a highly specific viral target for therapeutic elimination of the persistent HIV-infected reservoirs via antibody-mediated cell killing. Dual-Affinity Re-Targeting (DART) molecules exhibit a distinct mechanism of action via binding the cell surface target antigen and simultaneously engaging CD3 on cytotoxic T lymphocytes (CTLs). We designed and evaluated Env-specific DARTs (HIVxCD3 DARTs) derived from known antibodies recognizing diverse Env epitopes with or without broadly neutralizing activity. HIVxCD3 DARTs derived from PGT121, PGT145, A32, and 7B2, but not VRC01 or 10E8 antibodies, mediated potent CTL-dependent killing of quiescent primary CD4 T cells infected with diverse HIV isolates. Similar killing activity was also observed with DARTs structurally modified for in vivo half-life extension. In an ex vivo model using cells isolated from HIV-infected participants on cART, combinations of the most potent HIVxCD3 DARTs reduced HIV expression both in quiescent and activated peripheral blood mononuclear cell cultures isolated from HIV-infected participants on suppressive cART. Importantly, HIVxCD3 DARTs did not induce cell-to-cell virus spread in resting or activated CD4 T cell cultures. Collectively, these results provide support for further development of HIVxCD3 DARTs as a promising therapeutic strategy for targeting HIV reservoirs. PMID:26539983

  1. Identification of novel gammadelta T-cell subsets following bacterial infection in the absence of Vgamma1+ T cells: homeostatic control of gammadelta T-cell responses to pathogen infection by Vgamma1+ T cells.

    PubMed

    Newton, Darren J; Andrew, Elizabeth M; Dalton, Jane E; Mears, Rainy; Carding, Simon R

    2006-02-01

    Although gammadelta T cells are a common feature of many pathogen-induced immune responses, the factors that influence, promote, or regulate the response of individual gammadelta T-cell subsets to infection is unknown. Here we show that in the absence of Vgamma1+ T cells, novel subsets of gammadelta T cells, expressing T-cell receptor (TCR)-Vgamma chains that normally define TCRgammadelta+ dendritic epidermal T cells (DETCs) (Vgamma5+), intestinal intraepithelial lymphocytes (iIELs) (Vgamma7+), and lymphocytes associated with the vaginal epithelia (Vgamma6+), are recruited to the spleen in response to bacterial infection in TCR-Vgamma1-/- mice. By comparison of phenotype and structure of TCR-Vgamma chains and/or -Vdelta chains expressed by these novel subsets with those of their epithelium-associated counterparts, the Vgamma6+ T cells elicited in infected Vgamma1-/- mice were shown to be identical to those found in the reproductive tract, from where they are presumably recruited in the absence of Vgamma1+ T cells. By contrast, Vgamma5+ and Vgamma7+ T cells found in infected Vgamma1-/- mice were distinct from Vgamma5+ DETCs and Vgamma7+ iIELs. Functional analyses of the novel gammadelta T-cell subsets identified for infected Vgamma1-/- mice showed that whereas the Vgamma5+ and Vgamma7+ subsets may compensate for the absence of Vgamma1+ T cells by producing similar cytokines, they do not possess cytocidal activity and they cannot replace the macrophage homeostasis function of Vgamma1+ T cells. Collectively, these findings identify novel subsets of gammadelta T cells, the recruitment and activity of which is under the control of Vgamma1+ T cells.

  2. Prion protein- and cardiac troponin T-marked interstitial cells from the adult myocardium spontaneously develop into beating cardiomyocytes

    PubMed Central

    Omatsu-Kanbe, Mariko; Nishino, Yuka; Nozuchi, Nozomi; Sugihara, Hiroyuki; Matsuura, Hiroshi

    2014-01-01

    Atypically-shaped cardiomyocytes (ACMs) constitute a novel subpopulation of beating heart cells found in the cultures of cardiac myocyte-removed crude fraction cells obtained from adult mouse cardiac ventricles. Although ~500 beating ACMs are observed under microscope in the cell cultures obtained from the hearts of either male or female mice, the origin of these cells in cardiac tissue has yet to be elucidated due to the lack of exclusive markers. In the present study, we demonstrate the efficacy of cellular prion protein (PrP) as a surface marker of ACMs. Cells expressing PrP at the plasma membrane in the culture of the crude fraction cells were found to develop into beating ACMs by themselves or fuse with each other to become larger multinuclear beating ACMs. Combining PrP with a cardiac-specific contractile protein cardiac troponin T (cTnT) allowed us to identify native ACMs in the mouse cardiac ventricles as either clustered or solitary cells. PrP- and cTnT-marked cells were also found in the adult, even aged, human cardiac ventricles. These findings suggest that interstitial cells marked by PrP and cTnT, native ACMs, exhibit life-long survival in the cardiac ventricles of both mice and humans. PMID:25466571

  3. Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune Protection

    PubMed Central

    Boyd, Anders; Almeida, Jorge R.; Darrah, Patricia A.; Sauce, Delphine; Seder, Robert A.; Appay, Victor; Gorochov, Guy; Larsen, Martin

    2015-01-01

    Introduction Understanding the factors that delineate the efficacy of T cell responses towards pathogens is crucial for our ability to develop potent therapies against infectious diseases. Multidimensional evaluation of T cell functionality at the single-cell level enables exhaustive analysis of combinatorial functional properties, hence polyfunctionality. We have recently invented an algorithm that quantifies polyfunctionality, the Polyfunctionality Index (Larsen et al. PLoS One 2012). Here we demonstrate that quantitative assessment of T cell polyfunctionality correlates with T cell efficacy measured as the capacity to kill target cells in vitro and control infection in vivo. Methods We employed the polyfunctionality index on two datasets selected for their unique ability to evaluate the polyfunctional imprint on T cell efficacy. 1) HIV-specific CD8+ T cells and 2) Leishmania major-specific CD4+ T cells were analysed for their capacity to secrete multiple effector molecules, kill target cells and control infection. Briefly, employing the Polyfunctionality Index algorithm we determined the parameter estimates resulting in optimal correlation between T cell polyfunctionality and T cell efficacy. Results T cell polyfunctionality is correlated with T cell efficacy measured as 1) target killing (r=0.807, P<0.0001) and 2) lesion size upon challenge with Leishmania major (r=-0.50, P=0.004). Contrary to an approach relying on the Polyfunctionality Index algorithm, quantitative evaluation of T cell polyfunctionality traditionally ignores the gradual contribution of more or less polyfunctional T cells. Indeed, comparing both approaches we show that optimal description of T cell efficacy is obtained when gradually integrating all levels of polyfunctionality in accordance with the Polyfunctionality Index. Conclusions Our study presents a generalizable methodology to objectively evaluate the impact of polyfunctionality on T cell efficacy. We show that T cell polyfunctionality

  4. The suppression of mitogen responses associated with resistance to experimental autoimmune encephalomyelitis requires adherent and T cells.

    PubMed

    Lyman, W D; Brosnan, C F; Kadish, A S; Raine, C S

    1984-05-01

    Resistance to experimental autoimmune encephalomyelitis (EAE) in Hartley guinea pigs has previously been reported to be associated with disease-specific antigen-induced suppression of mitogen responses in vitro. The present studies were initiated to investigate the requirement for different cell populations in this suppression. Intact and adherent-cell-depleted cultures of spleen cells from experimental and control animals were incubated with myelin basic protein (MBP), the major antigen of EAE, with the T-cell mitogen concanavalin A (Con A) alone or with Con A in the presence of MBP. In agreement with previous studies, MBP-induced suppression of the Con A response was observed only in cultures derived from resistant animals. In addition, it was observed that this suppression was abrogated by depletion of adherent cells. When cells from resistant and susceptible animals were mixed, suppression occurred only in the presence of nonadherent cells from resistant guinea pigs. Adherent cells from either resistant or susceptible animals functioned equally well. Cultures of purified E-rosette-forming cells (E+) from resistant animals (i.e., T cells) showed no suppression. Similarly, cells from these same animals which were depleted of E+ cells (i.e., non-T cells) did not demonstrate suppression in vitro. Upon reconstitution of spleen cell populations from resistant guinea pigs by mixing E+ and E- cells, suppression was restored. These experiments show that this model of suppression in vitro requires adherent cells as well as T cells and suggests that antigen-induced suppression of mitogen responses is dependent upon a cell-mediated immunologic mechanism.

  5. Henrietta Lacks, HeLa cells, and cell culture contamination.

    PubMed

    Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M

    2009-09-01

    Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.

  6. Impact of Diverse Immune Evasion Mechanisms of Cancer Cells on T Cells Engaged by EpCAM/CD3-Bispecific Antibody Construct AMG 110

    PubMed Central

    Deisting, Wibke; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A.; Münz, Markus

    2015-01-01

    Background Bispecific T cell engager (BiTE®) are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR) specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β), interleukin-10 (IL-10) and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells. Methods The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO) target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells. Findings An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-βand PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not. Conclusions Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct. PMID:26510188

  7. Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts.

    PubMed

    Raud, Brenda; McGuire, Peter J; Jones, Russell G; Sparwasser, Tim; Berod, Luciana

    2018-05-01

    CD8 + T cells are key members of the adaptive immune response against infections and cancer. As we discuss in this review, these cells can present diverse metabolic requirements, which have been intensely studied during the past few years. Our current understanding suggests that aerobic glycolysis is a hallmark of activated CD8 + T cells, while naive and memory (T mem ) cells often rely on oxidative phosphorylation, and thus mitochondrial metabolism is a crucial determinant of CD8 + T mem cell development. Moreover, it has been proposed that CD8 + T mem cells have a specific requirement for the oxidation of long-chain fatty acids (LC-FAO), a process modulated in lymphocytes by the enzyme CPT1A. However, this notion relies heavily on the metabolic analysis of in vitro cultures and on chemical inhibition of CPT1A. Therefore, we introduce more recent studies using genetic models to demonstrate that CPT1A-mediated LC-FAO is dispensable for the development of CD8 + T cell memory and protective immunity, and question the use of chemical inhibitors to target this enzyme. We discuss insights obtained from those and other studies analyzing the metabolic characteristics of CD8 + T mem cells, and emphasize how T cells exhibit flexibility in their choice of metabolic fuel. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Evaluating the behavior of cultured sertoli cells in the presence and absence of spermatogonial stem cell

    PubMed Central

    Jabarpour, Masoome

    2018-01-01

    Background The complex process of spermatogenesis is regulated by various factors. Several studies have been conducted to proliferate cells involved in the spermatogenesis process, in culture by used growth factors, different hormones and feeder cells. This study was conducted to evaluate the role of Sertoli cells on gene expression of fibroblast growth factor (FGF2) and glial cell derived neurotrophic factor (GDNF) after removal of spermatogonial stem cells (SSCs) from the culture medium. Methods Following isolation, bovine SSCs were co-cultured with Sertoli cells and follicular stimulating hormone (FSH) for 12 days. In the treatment group, SSCs were removed from the culture medium; in the control group no intervention was done in the culture. Colony formation of SSCs was evaluated by using an inverted microscope. Then, the expression of factors genes were assessed by quantitative RT-PCR. Data was analyzed by using paired-samples t-test. Results The results showed that removal of SSCs led to the increase in expression of GDNF and FGF2. These findings suggest that loss of SSCs population or decline in its population leads to changing in behavior of somatic cells which forming niche and consequently stimulates self-renewal and inhibits differentiation of SSCs. Conclusions The present study showed that removal of SSCs from the culture medium could be a model for damage to SSCs; the results revealed that niche cells respond to SSCs removal by upregulation of FGF2 and GDNF to stimulate self-renewal of SSCs and abrogation of differentiation. PMID:29430457

  9. Effects of interleukins on connective tissue type mast cells co-cultured with fibroblasts.

    PubMed Central

    Levi-Schaffer, F; Segal, V; Shalit, M

    1991-01-01

    We investigated the effects of interleukin-2 (IL-2), interleukin-3 (IL-3) and interleukin-4 (IL-4) on mouse and rat peritoneal mast cells (MC) co-cultured with 3T3 fibroblasts (MC/3T3). The continuous presence of these cytokines for 7-9 days in the culture media was neither toxic nor caused proliferation of MC, as determined by the stability of MC numbers in culture. Long-term incubation of mouse MC/3T3 with IL-2 (100 U/ml), IL-3 (50 U/ml), IL-4 (50 U/ml) or a mixture of IL-3 and IL-4 (25 U/ml) induced an increase in basal histamine release of 79.3 +/- 19.0%, 41.0 +/- 17.3%, 25.2 +/- 10.4% and 30.2 +/- 3.2%, respectively, over control cells incubated with medium alone. When rat MC/3T3 were incubated for 7 days with the various interleukins an enhancement in histamine release similar to that observed with mouse MC/3T3 was found. Preincubation (1 hr) of rat MC/3T3 with interleukins prior to immunological activation with anti-IgE antibodies enhanced histamine release. The highest effect was observed with IL-3 + IL-4 (60.4 +/- 10.8% increase) followed by IL-2 (51.5 +/- 4.5%), IL-4 (28.6 +/- 10.3%) and IL-3 (13.2 +/- 4.2%). This study demonstrates that when mouse and rat peritoneal MC are cultured with fibroblasts in the presence of interleukins they do not proliferate, suggesting that they preserve their connective tissue type MC phenotype. Moreover, interleukins display a pro-inflammatory effect on these cells by enhancing both basal and anti-IgE-mediated histamine release. PMID:2016117

  10. Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells

    PubMed Central

    Singh, Harjeet; Figliola, Matthew J.; Dawson, Margaret J.; Olivares, Simon; Zhang, Ling; Yang, Ge; Maiti, Sourindra; Manuri, Pallavi; Senyukov, Vladimir; Jena, Bipulendu; Kebriaei, Partow; Champlin, Richard E.; Huls, Helen; Cooper, Laurence J. N.

    2013-01-01

    Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion. PMID:23741305

  11. Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway.

    PubMed

    Liu, Junfeng; Hua, Rong; Gong, Zhangbin; Shang, Bin; Huang, Yongyi; Guo, Lihe; Liu, Te; Xue, Jun

    2017-01-01

    In the pathogenesis of acute kidney injury (AKI), the release of multiple interleukins can lead to increased kidney damage. Human amniotic epithelial cells (HuAECs) can inhibit immune cell activation in vivo and in vitro. We hypothesized that HuAECs could weaken patient-derived peripheral blood CD4+ T-cell activation and decreasing the ability of these cells to express and release IL-2. -Cell proliferation assay revealed that under the same culture conditions, activated AKI patient-derived CD4+ T cells had a significantly reduced proliferation rate when were co-cultured with HuAECs. And the level of IL-2 released was also significantly reduced. Western blot and qRT-PCR assays showed that the expression of c-Rel in the CD4+ T cells was also significantly reduced. However, the expression level of endogenous miR-101 in the CD4+ T cells co-cultured with HuAECs was significantly increased. Luciferase reporter assay results suggested that miR-101 could bind to a specific site in the c-Rel 3' UTR and induce the post-transcriptional silencing of c-Rel. Subsequently, we over-expressed miR-101 in AKI patient-derived CD4+ T cells. The qRT-PCR and western blot assay results revealed that the expression of endogenous c-Rel was significantly reduced, while the ELISA results indicated that the level of IL-2 released was also significantly decreased. Finally, ChIP-PCR assay results showed that the miR-101-overexpressing CD4+ T-cell group and the HuAEC co-culture CD4+ T-cell group exhibited significantly decreased binding capacities between the 'c-Rel-NFκB' complex and the IL-2 gene promoter, and the transcriptional activity of IL-2 was also significantly decreased. Therefore, we confirmed that HuAECs can stimulate miR-101 expression in AKI patient-derived peripheral blood CD4+ T cells, thus inhibiting the expression of the miR-101 target gene c-Rel and leading to a reduction in IL-2 expression and release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mammalian Cell Tissue Culture Techniques.

    PubMed

    Phelan, Katy; May, Kristin M

    2016-06-01

    Cultured tissues and cells are used extensively in physiological and pharmacological studies. In vitro cultures provide a means of examining cells and tissues without the complex interactions that would be present if the whole organism were studied. A number of special skills are required in order to preserve the structure, function, behavior, and biology of cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  13. The Absence of Interleukin 1 Receptor–Related T1/St2 Does Not Affect T Helper Cell Type 2 Development and Its Effector Function

    PubMed Central

    Hoshino, Katsuaki; Kashiwamura, Shin-ichiro; Kuribayashi, Kozo; Kodama, Taku; Tsujimura, Tohru; Nakanishi, Kenji; Matsuyama, Tomohiro; Takeda, Kiyoshi; Akira, Shizuo

    1999-01-01

    T1/ST2, an orphan receptor with homology with the interleukin (IL)-1 receptor family, is expressed constitutively and stably on the surface of T helper type 2 (Th2) cells, but not on Th1 cells. T1/ST2 is also expressed on mast cells, which are critical for Th2-mediated effector responses. To evaluate whether T1/ST2 is required for Th2 responses and mast cell function, we have generated T1/ST2-deficient (T1/ST2−/−) mice and examined the roles of T1/ST2. Naive CD4+ T cells isolated from T1/ST2−/− mice developed to Th2 cells in response to IL-4 in vitro. T1/ST2−/− mice showed normal Th2 responses after infection with the helminthic parasite Nippostrongylus brasiliensis as well as in the mouse model of allergen-induced airway inflammation. In addition, differentiation and function of bone marrow–derived cultured mast cells were unaffected. These findings demonstrate that T1/ST2 does not play an essential role in development and function of Th2 cells and mast cells. PMID:10562328

  14. Toxicity of Functional Nano-Micro Zinc Oxide Tetrapods: Impact of Cell Culture Conditions, Cellular Age and Material Properties

    PubMed Central

    Papavlassopoulos, Heike; Mishra, Yogendra K.; Kaps, Sören; Paulowicz, Ingo; Abdelaziz, Ramzy; Elbahri, Mady; Maser, Edmund; Adelung, Rainer; Röhl, Claudia

    2014-01-01

    With increasing production and applications of nanostructured zinc oxide, e.g., for biomedical and consumer products, the question of safety is getting more and more important. Different morphologies of zinc oxide structures have been synthesized and accordingly investigated. In this study, we have particularly focused on nano-micro ZnO tetrapods (ZnO-T), because their large scale fabrication has been made possible by a newly introduced flame transport synthesis approach which will probably lead to several new applications. Moreover, ZnO-T provide a completely different morphology then classical spherical ZnO nanoparticles. To get a better understanding of parameters that affect the interactions between ZnO-T and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity. Our results demonstrate that the cell density of fibroblasts in culture along with their age, i.e., the number of preceding cell divisions, strongly affect the cytotoxic potency of ZnO-T. Concerning the material properties, the toxic potency of ZnO-T is found to be significantly lower than that of spherical ZnO nanoparticles. Furthermore, the morphology of the ZnO-T influenced cellular toxicity in contrast to surface charges modified by UV illumination or O2 treatment and to the material age. Finally, we have observed that direct contact between tetrapods and cells increases their toxicity compared to transwell culture models which allow only an indirect effect via released zinc ions. The results reveal several parameters that can be of importance for the assessment of ZnO-T toxicity in cell cultures and for particle development. PMID:24454775

  15. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells.

    PubMed

    Laranjeira, Paula; Pedrosa, Monia; Pedreiro, Susana; Gomes, Joana; Martinho, Antonio; Antunes, Brigida; Ribeiro, Tania; Santos, Francisco; Trindade, Helder; Paiva, Artur

    2015-01-05

    The different distribution of T cells among activation/differentiation stages in immune disorders may condition the outcome of mesenchymal stromal cell (MSC)-based therapies. Indeed, the effect of MSCs in the different functional compartments of T cells is not completely elucidated. We investigated the effect of human bone marrow MSCs on naturally occurring peripheral blood functional compartments of CD4(+) and CD8(+) T cells: naive, central memory, effector memory, and effector compartments. For that, mononuclear cells (MNCs) stimulated with phorbol myristate acetate (PMA) plus ionomycin were cultured in the absence/presence of MSCs. The percentage of cells expressing tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), and interleukin-2 (IL-2), IL-17, IL-9, and IL-6 and the amount of cytokine produced were assessed by flow cytometry. mRNA levels of IL-4, IL-10, transforming growth factor-beta (TGF-β), and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) in purified CD4(+) and CD8(+) T cells, and phenotypic and mRNA expression changes induced by PMA + ionomycin stimulation in MSCs, were also evaluated. MSCs induced the reduction of the percentage of CD4(+) and CD8(+) T cells producing TNF-α, IFNγ, and IL-2 in all functional compartments, except for naive IFNγ(+)CD4(+) T cells. This inhibitory effect differentially affected CD4(+) and CD8(+) T cells as well as the T-cell functional compartments; remarkably, different cytokines showed distinct patterns of inhibition regarding both the percentage of producing cells and the amount of cytokine produced. Likewise, the percentages of IL-17(+), IL-17(+)TNF-α(+), and IL-9(+) within CD4(+) and CD8(+) T cells and of IL-6(+)CD4(+) T cells were decreased in MNC-MSC co-cultures. MSCs decreased IL-10 and increased IL-4 mRNA expression in stimulated CD4(+) and CD8(+) T cells, whereas TGF-β was reduced in CD8(+) and augmented in CD4(+) T cells, with no changes for CTLA4. Finally, PMA

  16. Soluble FGL2, a novel effector molecule of activated hepatic stellate cells, regulates T-cell function in cirrhotic patients with hepatocellular carcinoma.

    PubMed

    Sun, Ying; Xi, Dong; Ding, Wen; Wang, Faxi; Zhou, Haili; Ning, Qin

    2014-10-01

    To investigate the effects of soluble FGL2 (sFGL2) secreted by hepatic stellate cells (HSCs) on immune suppression in cirrhotic patients with hepatocellular carcinoma (HCC). Serum sFGL2 levels were examined by ELISA in 40 patients with HCC, liver cirrhosis (LC) or chronic HBV (CHB) infection. A double staining of the immunofluorescence analysis of α-SMA and FGL2 was performed in two cirrhotic liver specimens. The expression of FGL2 in the LX2 cell line was analyzed by immunofluorescence, Western blot and flow cytometry. T-cells purified from HCC patients using magnetic beads were cultured with LX2 cells at different ratios with anti-CD3-stimulating or FGL2-blocking antibodies. The proliferation index (PI) of CD8 + T cells was assessed by flow cytometry, and the secretion of IFN-γ was measured by ELISA. sFGL2 levels are significantly higher in patients with HCC or LC compared with those with CHB (p = 0.0039/p = 0.0020). Among HCC patients, those with cirrhosis exhibited significantly higher levels of sFGL2 compared with non-cirrhotic individuals (p = 0.0108). The expressions of FGL2 and α-SMA overlapped in HSCs in liver specimens. FGL2 protein secreted by LX2 cells inhibited T-cell proliferation of HCC patients in a dose-dependent manner in vitro. The PI of CD8 + T cells was significantly enhanced following addition of FGL2 antibody to the culture system (LX2/T-cell ratio of 1:10, p = 0.002). The level of IFN-γ in mixed cultures was inversely correlated with the number of HSCs and was reversed by incubation with FGL2 blocking antibody. sFGL2 protein is a novel effector molecule of activated HSCs, which suppresses CD8 + T cell proliferation and interferon-γ production, and it subsequently might contribute to immune suppression during fibrosis and tumorigenesis in the liver.

  17. Adoptive T-cell therapy for cancer: The era of engineered T cells.

    PubMed

    Bonini, Chiara; Mondino, Anna

    2015-09-01

    Tumors originate from a number of genetic events that deregulate homeostatic mechanisms controlling normal cell behavior. The immune system, devoted to patrol the organism against pathogenic events, can identify transformed cells, and in several cases cause their elimination. It is however clear that several mechanisms encompassing both central and peripheral tolerance limit antitumor immunity, often resulting into progressive diseases. Adoptive T-cell therapy with either allogeneic or autologous T cells can transfer therapeutic immunity. To date, genetic engineering of T cells appears to be a powerful tool for shaping tumor immunity. In this review, we discuss the most recent achievements in the areas of suicide gene therapy, and TCR-modified T cells and chimeric antigen receptor gene-modified T cells. We provide an overview of current strategies aimed at improving the safety and efficacy of these approaches, with an outlook on prospective developments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions.

    PubMed

    Bouchard, Caroline; Pagé, Julie; Bédard, Andréanne; Tremblay, Pierrot; Vallières, Luc

    2007-06-01

    G protein-coupled receptor 84 (GPR84) is a recently discovered member of the seven transmembrane receptor superfamily whose function and regulation are unknown. Here, we report that in mice suffering from endotoxemia, microglia express GPR84 in a strong and sustained manner. This property is shared by subpopulations of peripheral macrophages and, to a much lesser extent, monocytes. The induction of GPR84 expression by endotoxin is mediated, at least in part, by proinflammatory cytokines, notably tumor necrosis factor (TNF) and interleukin-1 (IL-1), because mice lacking either one or both of these molecules have fewer GPR84-expressing cells in their cerebral cortex than wild-type mice during the early phase of endotoxemia. Moreover, when injected intracerebrally or added to microglial cultures, recombinant TNF stimulates GPR84 expression through a dexamethasone-insensitive mechanism. Finally, we show that microglia produce GPR84 not only during endotoxemia, but also during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In conclusion, this study reports the identification of a new sensitive marker of microglial activation, which may play an important regulatory role in neuroimmunological processes, acting downstream to the effects of proinflammatory mediators.

  19. Differences in Aspergillus-specific immune recovery between T-cell-replete and T-cell-depleted hematopoietic transplants.

    PubMed

    Perruccio, Katia; Topini, Fabiana; Tosti, Antonella; Gazzola, Maria Vittoria; Messina, Chiara; Martelli, Massimo F; Caniglia, Maurizio; Velardi, Andrea; Cesaro, Simone

    2015-12-01

    After hematopoietic stem cell transplantation, invasive aspergillosis remains one of the most lethal infections. Susceptibility may be due to prophylaxis and treatment of graft-vs.-host disease in T-cell-replete transplants, and delayed immune rebuilding due to T-cell depletion in haploidentical transplantation. We monitored CD4(+) T-cell recovery and anti-Aspergillus immune competence in pediatric recipients of T-cell-replete matched transplants and of prevalently adult recipients of T-cell-depleted matched or haploidentical transplants for hematological malignancies. Although CD4(+) T-cell counts were higher in T-cell-replete transplant recipients at all post-transplant time points, Aspergillus-specific T cells were first detected 15-18 months after T-cell-replete matched, 7-9 months after T-cell-depleted matched, and 9-12 months after haploidentical transplantation, respectively. Incidence of invasive aspergillosis was 22% with 10% mortality after T-cell-replete transplants, 0% after T-cell-depleted matched, and 7% with 4% mortality after haploidentical transplants. Although T-cell counts were significantly higher after T-cell-replete transplants, post-transplant immune suppression/GvHD appeared to impair their function. Specific Aspergillus immune competence recovered faster after T-cell-depleted transplants, whether matched or haploidentical. T-cell-replete transplants were associated with a higher incidence of invasive aspergillosis and Aspergillus-related deaths. These results showed that T-cell depletion without post-transplant immunosuppression is associated to a faster immune recovery than T-cell-replete transplantation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cellsmore » caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.« less

  1. Trans-infection but not infection from within endosomal compartments after cell-to-cell HIV-1 transfer to CD4+ T cells.

    PubMed

    Permanyer, Marc; Ballana, Ester; Badia, Roger; Pauls, Eduardo; Clotet, Bonaventura; Esté, José A

    2012-09-14

    Cellular contacts between HIV-1-infected donor cells and uninfected primary CD4(+) T lymphocytes lead to virus transfer into endosomes. Recent evidence suggests that HIV particles may fuse with endosomal membranes to initiate a productive infection. To explore the role of endocytosis in the entry and replication of HIV, we evaluated the infectivity of transferred HIV particles in a cell-to-cell culture model of virus transmission. Endocytosed virus led to productive infection of cells, except when cells were cultured in the presence of the anti-gp120 mAb IgGb12, an agent that blocks virus attachment to CD4, suggesting that endocytosed virus was recycled to the outer cell surface. Confocal microscopy confirmed the colocalization of internalized virus antigen and the endosomal marker dynamin. Additionally, virus transfer, fusion, or productive infection was not blocked by dynasore, dynamin-dependent endosome-scission inhibitor, at subtoxic concentrations, suggesting that the early capture of virus into intracellular compartments did not depend on endosomal maturation. Our results suggest that endocytosis is not a mechanism of infection of primary CD4 T cells, but may serve as a reservoir capable of inducing trans-infection of cells after the release of HIV particles to the extracellular environment.

  2. Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture

    PubMed Central

    Modulevsky, Daniel J.; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E.

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment. PMID:24842603

  3. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    PubMed

    Modulevsky, Daniel J; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  4. Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes

    PubMed Central

    Michels, Aaron W.; Landry, Laurie G.; McDaniel, Kristen A.; Yu, Liping; Campbell-Thompson, Martha; Kwok, William W.; Jones, Kenneth L.; Gottlieb, Peter A.; Kappler, John W.; Tang, Qizhi; Roep, Bart O.; Atkinson, Mark A.; Mathews, Clayton E.

    2017-01-01

    Type 1 diabetes results from chronic autoimmune destruction of insulin-producing β-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19–35, and two clones from separate donors responded to insulin B-chain amino acids 9–23 (B:9–23), which are known to be a critical self-antigen–driving disease progress in animal models of autoimmune diabetes. These B:9–23–specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9–23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment. PMID:27920090

  5. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A F; Drexler, Hans G

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation.

  6. NKL homeobox gene activities in hematopoietic stem cells, T-cell development and T-cell leukemia

    PubMed Central

    Pommerenke, Claudia; Scherr, Michaela; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; MacLeod, Roderick A. F.; Drexler, Hans G.

    2017-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) cells represent developmentally arrested T-cell progenitors, subsets of which aberrantly express homeobox genes of the NKL subclass, including TLX1, TLX3, NKX2-1, NKX2-5, NKX3-1 and MSX1. Here, we analyzed the transcriptional landscape of all 48 members of the NKL homeobox gene subclass in CD34+ hematopoietic stem and progenitor cells (HSPCs) and during lymphopoiesis, identifying activities of nine particular genes. Four of these were expressed in HSPCs (HHEX, HLX1, NKX2-3 and NKX3-1) and three in common lymphoid progenitors (HHEX, HLX1 and MSX1). Interestingly, our data indicated downregulation of NKL homeobox gene transcripts in late progenitors and mature T-cells, a phenomenon which might explain the oncogenic impact of this group of genes in T-ALL. Using MSX1-expressing T-ALL cell lines as models, we showed that HHEX activates while HLX1, NKX2-3 and NKX3-1 repress MSX1 transcription, demonstrating the mutual regulation and differential activities of these homeobox genes. Analysis of a public T-ALL expression profiling data set comprising 117 patient samples identified 20 aberrantly activated members of the NKL subclass, extending the number of known NKL homeobox oncogene candidates. While 7/20 genes were also active during hematopoiesis, the remaining 13 showed ectopic expression. Finally, comparative analyses of T-ALL patient and cell line profiling data of NKL-positive and NKL-negative samples indicated absence of shared target genes but instead highlighted deregulation of apoptosis as common oncogenic effect. Taken together, we present a comprehensive survey of NKL homeobox genes in early hematopoiesis, T-cell development and T-ALL, showing that these genes generate an NKL-code for the diverse stages of lymphoid development which might be fundamental for regular differentiation. PMID:28151996

  7. Metamorphosis of mesothelial cells with active horizontal motility in tissue culture.

    PubMed

    Nagai, Hirotaka; Chew, Shan Hwu; Okazaki, Yasumasa; Funahashi, Satomi; Namba, Takashi; Kato, Takuya; Enomoto, Atsushi; Jiang, Li; Akatsuka, Shinya; Toyokuni, Shinya

    2013-01-01

    Mesothelial cells, which have diverse roles in physiology and pathology, constitute the mesothelium along with connective tissue and the basement membrane; the mesothelium serves to shield the somatic cavities. After mesothelial injury, mesothelial cells undergo tissue recovery. However, the mechanism of mesothelial regeneration remains poorly understood. In this study, we used confocal time-lapse microscopy to demonstrate that transformed mesothelial cells (MeT5A) and mouse peritoneal mesothelial cells can randomly migrate between cells in cell culture and in ex vivo tissue culture, respectively. Moreover, peritoneal mesothelial cells changed their morphology from a flattened shape to a cuboidal one prior to the migration. Conversely, MDCKII epithelial cells forming tight cell-cell contacts with one another do not alter the arrangement of adjacent cells during movement. Our evidence complements the current hypotheses of mesothelial regeneration and suggests that certain types of differentiated mesothelial cells undergo morphological changes before initiating migration to repair injured sites.

  8. The impact of ex vivo clinical grade activation protocols on human T-cell phenotype and function for the generation of genetically modified cells for adoptive cell transfer therapy.

    PubMed

    Tumeh, Paul C; Koya, Richard C; Chodon, Thinle; Graham, Nicholas A; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni

    2010-10-01

    Optimized conditions for the ex vivo activation, genetic manipulation, and expansion of human lymphocytes for adoptive cell therapy may lead to protocols that maximize their in vivo function. We analyzed the effects of 4 clinical grade activation and expansion protocols over 3 weeks on cell proliferative rate, immunophenotype, cell metabolism, and transduction efficiency of human peripheral blood mononuclear cells (PBMCs). Peak lentiviral transduction efficiency was early (days 2 to 4), at a time when cells showed a larger size, maximal uptake of metabolic substrates, and the highest level of proximal T-cell receptor signaling engagement. Anti-CD2/3/28 activation beads induced greater proliferation rate and skewed PBMCs early on to a CD4 phenotype when compared with the cells cultured in OKT3. Multicolor surface phenotyping demonstrated that changes in T-cell surface markers that define T-cell functional phenotypes were dependent on the time spent in culture as opposed to the particular activation protocol. In conclusion, ex vivo activation of human PBMCs for adoptive cell therapy demonstrate defined immunophenotypic and functional signatures over time, with cells early on showing larger sizes, higher transduction efficiency, maximal metabolic activity, and zeta-chain-associated protein-70 activation.

  9. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy

    PubMed Central

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J.; Rivière, Isabelle

    2009-01-01

    Summary Based on promising pre-clinical data demonstrating the eradication of systemic B cell malignancies by CD19-targeted T lymphocytes in vivo in SCID beige mouse models, we are launching Phase 1 clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We present here the validation of the bioprocess we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads® CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semi-closed culture system using the Wave bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in SCID beige mice bearing disseminated tumors. The validation requirements in terms of T cell expansion, T cell transduction with the 1928z CAR, biological activity, quality control testing and release criteria were met for all four validation runs using apheresis products from patients with CLL. Additionally, following expansion of the T cells, the diversity of the skewed Vβ T cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemo-refractory CLL and in patients with relapsed ALL. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any chimeric antigen receptor or T cell receptor. PMID:19238016

  10. γ/δ T cell subsets in human aging using the classical α/β T cell model.

    PubMed

    Vasudev, Anusha; Ying, Crystal Tan Tze; Ayyadhury, Shamini; Puan, Kia Joo; Andiappan, Anand Kumar; Nyunt, Ma Shwe Zin; Shadan, Nurhidaya Binte; Mustafa, Seri; Low, Ivy; Rotzschke, Olaf; Fulop, Tamas; Ng, Tze Pin; Larbi, Anis

    2014-10-01

    Aging is associated with an increased susceptibility to infections and diseases. It has also been associated with reduced functionality and altered distribution of immune cells, especially T cells. Whereas classical α/β T cells, especially CD8(+) T cells, were shown to be highly susceptible to aging, the effects of viral persistent stimulations on the fate of γ/δ T cells are much less documented. Healthy, elderly individuals of Chinese ethnical background were recruited under the aegis of SLAS-II. In this observational study, γ/δ T cell populations were characterized by flow cytometry and compared with the α/β CD4(+) and CD8(+) T cells in elderly and young controls. In our study, we identified a reduced frequency of γ/δ T cells but not α/β T cells with aging. The classical markers of α/β T cell aging, including CD28, CD27, and CD57, did not prove significant for γ/δ T cells. The extreme range of expression of these markers in γ/δ T cells was responsible for the lack of relationship between γ/δ T cell subsets, CD4/CD8 ratio, and anti-CMV titers that was significant for α/β T cells and, especially, CD8(+) T cells. Although markers of aging for γ/δ T cells are not clearly identified, our data collectively suggest that the presence of CD27 γ/δ T cells is associated with markers of α/β T cell aging. © 2014 Society for Leukocyte Biology.

  11. Dendritic cell internalization of α-galactosylceramide from CD8 T cells induces potent antitumor CD8 T-cell responses.

    PubMed

    Choi, Dong Hoon; Kim, Kwang Soon; Yang, Se Hwan; Chung, Doo Hyun; Song, Boyeong; Sprent, Jonathan; Cho, Jae Ho; Sung, Young Chul

    2011-12-15

    Dendritic cells (DC) present α-galactosylceramide (αGalCer) to invariant T-cell receptor-expressing natural killer T cells (iNKT) activating these cells to secrete a variety of cytokines, which in turn results in DC maturation and activation of other cell types, including NK cells, B cells, and conventional T cells. In this study, we showed that αGalCer-pulsing of antigen-activated CD8 T cells before adoptive transfer to tumor-bearing mice caused a marked increase in donor T-cell proliferation, precursor frequency, and cytotoxic lymphocyte activity. This effect was interleukin (IL)-2 dependent and involved both natural killer T cells (NKT) and DCs, as mice lacking IL-2, NKTs, and DCs lacked any enhanced response to adoptively transferred αGalCer-loaded CD8 T cells. iNKT activation was mediated by transfer of αGalCer from the cell membrane of the donor CD8 T cells onto the αGalCer receptor CD1d which is present on host DCs. αGalCer transfer was increased by prior activation of the donor CD8 T cells and required AP-2-mediated endocytosis by host DCs. In addition, host iNKT cell activation led to strong IL-2 synthesis, thereby increasing expansion and differentiation of donor CD8 T cells. Transfer of these cells led to improved therapeutic efficacy against established solid tumors in mice. Thus, our findings illustrate how αGalCer loading of CD8 T cells after antigen activation in vitro may leverage the therapeutic potential of adoptive T-cell therapies.

  12. Notch ligands Delta1 and Jagged1 transmit distinct signals to T-cell precursors

    PubMed Central

    Lehar, Sophie M.; Dooley, James; Farr, Andrew G.; Bevan, Michael J.

    2009-01-01

    Signaling through the Notch pathway plays an essential role in inducing T-lineage commitment and promoting the maturation of immature thymocytes. Using an in vitro culture system, we show that 2 different classes of Notch ligands, Jagged1 or Delta1, transmit distinct signals to T-cell progenitors. OP9 stromal cells expressing either Jagged1 or Delta1 inhibit the differentiation of DN1 thymocytes into the B-cell lineage, but only the Delta1-expressing stromal cells promote the proliferation and maturation of T-cell progenitors through the early double-negative (DN) stages of thymocyte development. Whereas the majority of bone marrow-derived stem cells do not respond to Jagged1 signals, T-cell progenitors respond to Jagged1 signals during a brief window of their development between the DN1 and DN3 stages of thymic development. During these stages, Jagged1 signals can influence the differentiation of immature thymocytes along the natural killer (NK) and γδ T-cell lineages. PMID:15486060

  13. Characterization of Effector and Memory T Cell Subsets in the Immune Response to Bovine Tuberculosis in Cattle

    PubMed Central

    Maggioli, Mayara F.; Palmer, Mitchell V.; Thacker, Tyler C.; Vordermeier, H. Martin; Waters, W. Ray

    2015-01-01

    Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection. PMID:25879774

  14. Tax unleashed: fulminant Tax-positive Adult T-cell Leukemia/Lymphoma after failed allogeneic stem cell transplantation.

    PubMed

    Ghez, David; Renand, Amédée; Lepelletier, Yves; Sibon, David; Suarez, Felipe; Rubio, Marie-Thérèse; Delarue, Richard; Buzyn, Agnès; Beljord, Kheira; Tanaka, Yuetsu; Varet, Bruno; Hermine, Olivier

    2009-12-01

    The human retrovirus HTLV-1 causes Adult T-cell Leukemia/Lymphoma (ATLL), a malignant lymphoproliferative disease of CD4+ T cells of dismal prognosis, in 3-5% of the 20 million infected individuals (Proietti et al.(1) and Bazarbachi et al.(2)). Infection with HTLV-1 represents a prototypical model of virus-mediated oncogenesis by virtue of the viral transactivator Tax, a potent oncogenic protein that exerts pleiotropic effects through its ability to deregulate the transcription of various cellular genes and signal transduction pathways and inhibit DNA repair enzymes, which are critical for T-cell homeostasis and genetic stability (Matsuoka and Jeang(3)) (et Boxus Retrovirology 2009). However, the oncogenic potential of Tax remains a conundrum. Tax protein expression is undetectable using conventional methods in freshly harvested ATLL cells and in non-malignant infected CD4+ T cells (Furukawa et al.(4)) but is up regulated after only a few hours of culture in vitro (Hanon et al.(5)). These observations strongly suggest that a host-derived mechanism is able to either actively repress the transcription of viral proteins in vivo or refrain the emergence of Tax-expressing cells, which would have a growth advantage. We report herein a unique case of CD4+ T-cell leukemia highly expressing Tax following rejection of an allogenic peripheral blood stem cell graft for an HTLV-1 associated lymphoma.

  15. ArtinM Mediates Murine T Cell Activation and Induces Cell Death in Jurkat Human Leukemic T Cells

    PubMed Central

    Oliveira-Brito, Patrícia Kellen Martins; Gonçalves, Thiago Eleutério; Vendruscolo, Patrícia Edivânia; Roque-Barreira, Maria Cristina

    2017-01-01

    The recognition of cell surface glycans by lectins may be critical for the innate and adaptive immune responses. ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus, activates antigen-presenting cells by recognizing TLR2 N-glycans and induces Th1 immunity. We recently demonstrated that ArtinM stimulated CD4+ T cells to produce proinflammatory cytokines. Here, we further studied the effects of ArtinM on adaptive immune cells. We showed that ArtinM activates murine CD4+ and CD8+ T cells, augmenting their positivity for CD25, CD69, and CD95 and showed higher interleukin (IL)-2 and interferon (IFN)-γ production. The CD4+ T cells exhibited increased T-bet expression in response to ArtinM, and IL-2 production by CD4+ and CD8+ T cells depended on the recognition of CD3εγ-chain glycans by ArtinM. The ArtinM effect on aberrantly-glycosylated neoplastic lymphocytes was studied in Jurkat T cells, in which ArtinM induced IL-2, IFN-γ, and IL-1β production, but decreased cell viability and growth. A higher frequency of AnnexinV- and propidium iodide-stained cells demonstrated the induction of Jurkat T cells apoptosis by ArtinM, and this apoptotic response was reduced by caspases and protein tyrosine kinase inhibitors. The ArtinM effects on murine T cells corroborated with the immunomodulatory property of lectin, whereas the promotion of Jurkat T cells apoptosis may reflect a potential applicability of ArtinM in novel strategies for treating lymphocytic leukemia. PMID:28665310

  16. Cloning and expansion of antigen-specific T cells using iPS cell technology: development of "off-the-shelf" T cells for the use in allogeneic transfusion settings.

    PubMed

    Kawamoto, Hiroshi; Masuda, Kyoko; Nagano, Seiji; Maeda, Takuya

    2018-03-01

    Recent advances in adoptive immunotherapy using cytotoxic T lymphocytes (CTLs) have led to moderate therapeutic anti-cancer effects in clinical trials. However, a critical issue, namely that CTLs collected from patients are easily exhausted during expansion culture, has yet to be solved. To address this issue, we have been developing a strategy which utilizes induced pluripotent stem cell (iPSC) technology. This strategy is based on the idea that when iPSCs are produced from antigen-specific CTLs, CTLs regenerated from such iPSCs should show the same antigen specificity as the original CTLs. Pursuing this idea, we previously succeeded in regenerating melanoma antigen MART1-specific CTLs, and more recently in producing potent CTLs expressing CD8αβ heterodimer. We are now developing a novel method by which non-T derived iPSCs are transduced with exogenous T cell receptor genes. If this method is applied to Human Leukocyte Antigen (HLA) haplotype-homozygous iPSC stock, it will be possible to prepare "off-the-shelf" T cells. As a first-in-human trial, we are planning to apply our strategy to relapsed acute myeloid leukemia patients by targeting the WT1 antigen.

  17. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells

    PubMed Central

    Chmielewski, Markus; Hombach, Andreas A.; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient’s T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a “tumor-associated antigen” and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer. PMID:24273543

  18. Antigen-Specific T-Cell Activation Independently of the MHC: Chimeric Antigen Receptor-Redirected T Cells.

    PubMed

    Chmielewski, Markus; Hombach, Andreas A; Abken, Hinrich

    2013-01-01

    Adoptive T-cell therapy has recently shown promise in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T-cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC) expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR) which consists in the extracellular part of an antibody-derived domain for binding with a "tumor-associated antigen" and in the intracellular part of a T-cell receptor (TCR)-derived signaling moiety for T-cell activation. The specificity of CAR-mediated T-cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T-cell targeting by an engineered CAR in comparison to TCR modified T cells and the impact of the CAR activation threshold on redirected T-cell activation. Finally we review most significant progress recently made in early stage clinical trials to treat cancer.

  19. Stilbene content and expression of stilbene synthase genes in cell cultures of Vitis amurensis treated with cinnamic and caffeic acids.

    PubMed

    Tyunin, Alexey P; Nityagovsky, Nikolay N; Grigorchuk, Valeria P; Kiselev, Konstantin V

    2018-03-01

    It has previously been shown that exogenous application of p-coumaric acid (CA), a precursor of phenolic compounds, improved stilbene production in cell cultures of Vitis amurensis. This study examines the effect of cinnamic (Cin) and caffeic (Caf) acids, which are also phenolic precursors, on stilbene biosynthesis in the cell cultures. Five stilbenes, t-resveratrol diglucoside, t-piceid (t-resveratrol glucoside), t-resveratrol, t-ε-viniferin, and t-δ-viniferin, were found in the treated and untreated cells. Cin acid increased the total stilbene production in the grape cell cultures 2.3-3.5 times in comparison with that in the untreated cells. Caf acid increased the total stilbene production by 1.8- to 1.9-fold, but this increase was not considerably different from stilbene production in the untreated cells. Cin acid affected the total stilbene production via a marked increase in the content of t-resveratrol diglucoside (up to 2.2 times), t-piceid (up to three times), t-resveratrol (up to 5.1 times), t-ε-viniferin (up to eight times), and t-δ-viniferin (up to 9.2 times). Transcription levels of VaSTS5, 6, 7, 8, and 10 genes considerably increased under 0.1, 0.25, and 0.5 mM Cin acid. These results indicate that Cin acid increased stilbene production in V. amurensis calli via a selective enhancement of STS gene expression. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  20. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    PubMed Central

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  1. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions*

    PubMed Central

    Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M.; Barron, Luke; Qualls, Joseph E.; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O.; Wynn, Thomas A.; Murray, Peter J.

    2017-01-01

    Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. PMID:27903651

  2. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  3. A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion.

    PubMed

    Sabra, Georges; Vermette, Patrick

    2013-02-01

    The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Copyright © 2012 Wiley Periodicals, Inc.

  4. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  5. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  6. CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells

    PubMed Central

    Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming

    2013-01-01

    The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942

  7. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  8. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  9. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  10. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  11. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue cultures...

  12. Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells

    PubMed Central

    Cui, Junqing; Watanabe, Naohiro; Kawano, Tetsu; Yamashita, Masakatsu; Kamata, Tohru; Shimizu, Chiori; Kimura, Motoko; Shimizu, Eiko; Koike, Jyunzo; Koseki, Haruhiko; Tanaka, Yujiro; Taniguchi, Masaru; Nakayama, Toshinori

    1999-01-01

    Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation. PMID:10499917

  13. Expansion of natural killer cell receptor (CD94/NKG2A)-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit.

    PubMed

    Tanaka, Junji; Sugita, Junichi; Kato, Naoko; Toubai, Tomomi; Ibata, Makoto; Shono, Yusuke; Ota, Shuichi; Kondo, Takeshi; Kobayashi, Takahiko; Kobayashi, Masanobu; Asaka, Masahiro; Imamura, Masahiro

    2007-10-01

    Cord blood contains a significant number of precursor cells that differentiate to cytotoxic effector cells and immunoregulatory cells. We tried to expand inhibitory natural killer cell receptor CD94-expressing CD8 T cells with cytolytic activity and CD4(+)CD25(+) regulatory T cells from the same cord cell unit. Cytotoxic CD94-expressing CD8 T cells were expanded from CD4-depleted cord blood using an immobilized anti-CD3 monoclonal antibody and a cytokine and also CD4(+)CD25(+) regulatory T cells were expanded from a CD4-enriched fraction derived from the same cord blood unit using anti-CD3/CD28 monoclonal antibody-coated Dynabeads and cytokines. We were able to obtain a more than 1000-fold expansion of CD94-expressing CD8 T cells and a more than 50-fold expansion of CD4(+)CD25(+) cells from the same cord blood unit. These expanded CD4(+)CD25(+) cells expressed FoxP3 mRNA at a level about 100-fold higher than that in isolated CD25(-) cells and could suppress allogeneic mixed lymphocyte culture by >80% (effector cells: CD4(+)CD25(+) cells = 2:1). Cytolytic activities of purified CD94-expressing cells detected by a 4-hour (51)Cr release assay against K562 were >60%. Coculture of CD94-expressing cells with expanded CD4(+)CD25(+) cells did not have any effect on cytolytic activities of purified CD94-expressing cells against K562 cells. These expanded cytolytic CD94-expressing CD8 cells might be able to induce a graft-vs-leukemia effect without enhancing graft-vs-host disease, and CD4(+)CD25(+) cells might be able to suppress allogeneic responses, including graft-vs-host disease and graft rejection after cord blood transplantation.

  14. Synovial T cell hyporesponsiveness to myeloid dendritic cells is reversed by preventing PD-1/PD-L1 interactions.

    PubMed

    Moret, Frederique M; van der Wurff-Jacobs, Kim M G; Bijlsma, Johannes W J; Lafeber, Floris P J G; van Roon, Joel A G

    2014-11-30

    The aim of this study was to investigate PD-1/PD-L1 involvement in the hyporesponsiveness of rheumatoid arthritis (RA) synovial fluid (SF) CD4 T cells upon stimulation by thymic stromal lymphopoietin (TSLP)-primed CD1c myeloid dendritic cells (mDCs). Expression of PD-1 on naïve (Tn), central memory (Tcm) and effector memory (Tem) CD4 T cell subsets was assessed by flow cytometry. PD-L1 expression and its regulation upon TSLP stimulation of mDCs from peripheral blood (PB) and SF of RA patients were investigated by quantitative RT-PCR and flow cytometry. The involvement of PD-1/PD-L1 interactions in SF T cell hyporesponsiveness upon (TSLP-primed) mDC activation was determined by cell culture in the presence of PD-1 blocking antibodies, with or without interleukin 7 (IL-7) as a recognized suppressor of PD-1 expression. PD-1 expression was increased on CD4 T cells derived from SF compared with PB of RA patients. TSLP increased PD-L1 mRNA expression in both PB and SF mDCs. PD-L1 protein expression was increased on SF mDCs compared with PB mDCs and was associated with T cell hyporesponsiveness. Blockade of PD-1, as well as IL-7 stimulation, during cocultures of memory T cells and (TSLP-primed) mDCs from RA patients significantly recovered T cell proliferation. SF T cell hyporesponsiveness upon (TSLP-primed) mDC stimulation in RA joints is partially dependent on PD-1/PD-L1 interactions, as PD-1 and PD-L1 are both highly expressed on SF T cells and mDCs, respectively, and inhibiting PD-1 availability restores T cell proliferation. The potential of IL-7 to robustly reverse this hyporesponsiveness suggests that such proinflammatory cytokines in RA joints strongly contribute to memory T cell activation.

  15. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiler, Monica; Schmetzer, Helga; German Research Center for Environmental Health, Munich

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3{sup +}T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP andmore » GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.« less

  16. Immunostimulation by cytomegalovirus (CMV): helper T cell-dependent activation of immunoglobulin production in vitro by lymphocytes from CMV-immune donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yachie, A.; Tosato, G.; Straus, S.E.

    1985-08-01

    Cytomegalovirus (CMV) is the cause of a number of different diseases ranging from self-limited benign infections in healthy adults to life threatening illnesses among immunocompromised hosts and newborns. Suppression of cell-mediated immunity is often found in cases of acute CMV infection, and in addition, the virus may also be a potent stimulant of lymphoid cells in vivo. The authors studied cellular proliferation and immunoglobulin (Ig) production induced by CMV to determine its effect on human lymphocytes in vitro. The CMV that was added to cultures of lymphocytes from CMV-seronegative donors failed to induce either significant cellular proliferation or Ig production.more » By contrast, CMV-stimulated cultures from CMV-seropositive donors induced both prominent cellular proliferation and Ig production. B cell differentiation into Ig-secreting cells required the presence of T cells, and this T cell help was sensitive to irradiation with 2000 rad and to treatment with cyclosporin A. When T cells were depleted of OKT4+ cells with monoclonal antibody and complement, the co-cultured B cells failed to produce Ig, whereas the depletion of OKT8+ cells had no effect on the Ig-secreting cell response. Inactivation of CMV before culture did not result in a reduction of either cellular proliferation or Ig production. Thus, infection of target cells is not required for in vitro lymphocyte activation by CMV. These results demonstrate that CMV is a potent activator of B cells inducing Ig production in vitro, and that this process requires the presence of virus-specific memory T cells.« less

  17. Type I collagen-induced YAP nuclear expression promotes primary cilia growth and contributes to cell migration in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Xiaoling; Liu, Weiwei; Hayashi, Toshihiko; Yamato, Masayuki; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2018-05-30

    The extracellular matrix (ECM) is a major biomechanical environment for all cells in vivo, and tightly controls wound healing and cancer progression. Type I collagen (Col I) is the most abundant component in ECM and plays an essential role for cell motility control and migration beyond structural support. Our previous results showed that Col I increased the length of primary cilia and the expression of primary cilia-associated proteins in 3T3-L1 cells. The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes for the development and maintenance of tissue functions. In this study, we investigated the role of Hippo/YAP signaling in primary cilia growth of cells cultured on Col I-coated plate, as well as the potential link between primary cilia and migration. At 2-day post-confluence, YAP localization in the nucleus was dramatically increased when the cells were cultured on Col I-coated plate, accompanied by cilia growth. YAP inhibitor verteporfin repressed the growth of primary cilia as well as the expressions of ciliogenesis-associated proteins in confluent 3T3-L1 cells cultured on Col I-coated plate. Moreover, knockdown of either YAP or IFT88, one of the ciliogenesis-associated proteins, reversed the migration of confluent 3T3-L1 cells promoted by Col I-coating. In conclusion, activation of YAP pathway by Col I-coating of culture plate for confluent 3T3-L1 cells is positively associated with the primary cilia growth, which eventually results in promoted migration.

  18. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  19. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    PubMed

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  20. Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    PubMed Central

    Barrio, María Marcela; Abes, Riad; Colombo, Marina; Pizzurro, Gabriela; Boix, Charlotte; Roberti, María Paula; Gélizé, Emmanuelle; Rodriguez-Zubieta, Mariana

    2012-01-01

    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter. PMID:22768350

  1. Notch/Delta signaling constrains reengineering of pro-T cells by PU.1

    PubMed Central

    Franco, Christopher B.; Scripture-Adams, Deirdre D.; Proekt, Irina; Taghon, Tom; Weiss, Angela H.; Yui, Mary A.; Adams, Stephanie L.; Diamond, Rochelle A.; Rothenberg, Ellen V.

    2006-01-01

    PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion. Dysregulated PU.1 expression inhibits pro-T cell survival, proliferation, and passage through β-selection by blocking essential T cell transcription factors, signaling molecules, and Rag gene expression, which expression of a rearranged T cell antigen receptor transgene cannot rescue. However, Bcl2 transgenic cells are protected from this attenuation and may even undergo β-selection, as shown by PU.1 transduction of defined subsets of Bcl2 transgenic fetal thymocytes with differentiation in OP9-DL1 and OP9 control cultures. The outcome of PU.1 expression in these cells depends on Notch/Delta signaling. PU.1 can efficiently divert thymocytes toward a myeloid-like state with multigene regulatory changes, but Notch/Delta signaling vetoes diversion. Gene expression analysis distinguishes sets of critical T lineage regulatory genes with different combinatorial responses to PU.1 and Notch/Delta signals, suggesting particular importance for inhibition of E proteins, Myb, and/or Gfi1 (growth factor independence 1) in diversion. However, Notch signaling only protects against diversion of cells that have undergone T lineage specification after Thy-1 and CD25 up-regulation. The results imply that in T cell precursors, Notch/Delta signaling normally acts to modulate and channel PU.1 transcriptional activities during the stages from T lineage specification until commitment. PMID:16880393

  2. CXCR5-Dependent Entry of CD8 T Cells into Rhesus Macaque B-Cell Follicles Achieved through T-Cell Engineering.

    PubMed

    Ayala, Victor I; Deleage, Claire; Trivett, Matthew T; Jain, Sumiti; Coren, Lori V; Breed, Matthew W; Kramer, Joshua A; Thomas, James A; Estes, Jacob D; Lifson, Jeffrey D; Ott, David E

    2017-06-01

    Follicular helper CD4 T cells, T FH , residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles. Engineered CD8 T cells expressing human CXCR5 (CD8 hCXCR5 ) exhibited ligand-specific signaling and chemotaxis in vitro Six infected rhesus macaques were infused with differentially fluorescent dye-labeled autologous CD8 hCXCR5 and untransduced CD8 T cells and necropsied 48 h later. Flow cytometry of both spleen and lymph node samples revealed higher frequencies of CD8 hCXCR5 than untransduced cells, consistent with preferential trafficking to B-cell follicle-containing tissues. Confocal fluorescence microscopy of thin-sectioned lymphoid tissues demonstrated strong preferential localization of CD8 hCXCR5 T cells within B-cell follicles with only rare cells in extrafollicular locations. CD8 hCXCR5 T cells were present throughout the follicles with some observed near infected T FH In contrast, untransduced CD8 T cells were found in the extrafollicular T-cell zone. Our ability to direct localization of unselected CD8 T cells into B-cell follicles using CXCR5 expression provides a strategy to place highly effective virus-specific CD8 T cells into these AIDS virus sanctuaries and potentially suppress residual viral replication. IMPORTANCE AIDS virus persistence in individuals under effective drug therapy or those who spontaneously control viremia remains an obstacle to definitive treatment. Infected follicular helper CD4 T cells, T FH , present inside B-cell follicles represent a

  3. Thyroid Hormone Induces Apoptosis in Primary Cell Cultures of Tadpole Intestine: Cell Type Specificity and Effects of Extracellular Matrix

    PubMed Central

    Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo

    1997-01-01

    Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758

  4. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

    PubMed Central

    Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N.; Moyes, Judy S.; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J.; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A.; Lee, Dean A.; Hackett, Perry B.; Champlin, Richard E.; Cooper, Laurence J.N.

    2016-01-01

    BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS. SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details. PMID:27482888

  5. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells.

    PubMed

    Kebriaei, Partow; Singh, Harjeet; Huls, M Helen; Figliola, Matthew J; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J; Kumaresan, Pappanaicken R; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N; Moyes, Judy S; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A; Lee, Dean A; Hackett, Perry B; Champlin, Richard E; Cooper, Laurence J N

    2016-09-01

    T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.

  6. Foxp3+ regulatory T cells impede the priming of protective CD8+ T cells

    PubMed Central

    Ertelt, James M.; Rowe, Jared H.; Mysz, Margaret A.; Singh, Charanjeet; Roychowdhury, Monika; Aguilera, Marijo N.; Way, Sing Sing

    2011-01-01

    T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. Herein, we explored the impacts of Foxp3+ regulatory T cell (Treg) suppression in priming antigen-specific T cell activation under non-infection and infection conditions. We find the transient ablation of Foxp3+ Tregs unleashes the robust expansion and activation of peptide stimulated CD8+ T cells that provide protection against Listeria monocytogenes (Lm) infection in an antigen-specific fashion. By contrast, Treg-ablation had non-significant impacts on the CD8+ T cell response primed by infection with recombinant Lm. Similarly, non-recombinant Lm administered with peptide stimulated the expansion and activation of CD8+ T cells that paralleled the response primed by Treg-ablation. Interestingly, these adjuvant properties of Lm did not require CD8+ T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3+ Treg suppressive potency. Therefore, Foxp3+ Tregs impose critical barriers that when overcome naturally during infection or artificially with ablation allows the priming of protective antigen-specific CD8+ T cells. PMID:21810602

  7. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance.

    PubMed

    McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li

    2016-01-01

    Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.

  8. Vitamin C treatment of mouse bone marrow-derived dendritic cells enhanced CD8(+) memory T cell production capacity of these cells in vivo.

    PubMed

    Jeong, Young-Joo; Kim, Jin-Hee; Hong, Jun-Man; Kang, Jae Seung; Kim, Hang-Rae; Lee, Wang Jae; Hwang, Young-il

    2014-07-01

    Vitamin C has been found to stimulate dendritic cells (DCs) to secrete more IL-12 and thereby drive naïve CD4(+) T cells to differentiate into Th1 cells. In the present study, we evaluated the effect of these vitamin C-treated DCs on CD8(+) T cell differentiation both in vitro and in vivo. Mouse bone marrow-derived DCs were prepared in the presence of GM-CSF and IL-15. With vitamin C treatment, these DCs, when LPS-stimulated, secreted more IL-12p70 and IL-15 than did untreated DCs. And when co-cultured with T cells, they yielded a higher frequency of IFN-γ(+) CD8(+) T cells. Moreover, we found that administering vitamin C-treated and tumor lysate-loaded DCs into mice yielded a higher frequency of CD44(high) CD62L(low) CD8(+) effector and effector memory T cells, which showed an increased ex vivo killing effect of the tumor cells. These DCs also elicited enhanced protective effects against inoculated tumor cells, most probably by way of the increased cytotoxic T cells, as was revealed by the decreased growth of the inoculated tumor cells in these mice. This ex vivo vitamin C treatment effect on DCs can be considered as a strategy for boosting DC vaccination potency against tumors. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Direct observation of CD4 T cell morphologies and their cross-sectional traction force derivation on quartz nanopillar substrates using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Won-Yong; Hong, Chang-Hee; Lee, Sang-Kwon

    2013-07-01

    Direct observations of the primary mouse CD4 T cell morphologies, e.g., cell adhesion and cell spreading by culturing CD4 T cells in a short period of incubation (e.g., 20 min) on streptavidin-functionalized quartz nanopillar arrays (QNPA) using a high-content scanning electron microscopy method were reported. Furthermore, we first demonstrated cross-sectional cell traction force distribution of surface-bound CD4 T cells on QNPA substrates by culturing the cells on top of the QNPA and further analysis in deflection of underlying QNPA via focused ion beam-assisted technique.

  10. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Hematopoietic progenitor cells grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-6 (GAS6)

    PubMed Central

    Dormady, Shane P.; Zhang, Xin-Min; Basch, Ross S.

    2000-01-01

    Pluripotential hematopoietic stem cells grow in close association with bone marrow stromal cells, which play a critical role in sustaining hematopoiesis in long-term bone marrow cultures. The mechanisms through which stromal cells act to support pluripotential hematopoietic stem cells are largely unknown. This study demonstrates that growth arrest-specific gene-6 (GAS6) plays an important role in this process. GAS6 is a ligand for the Axl (Ufo/Ark), Sky (Dtk/Tyro3/Rse/Brt/Tif), and Mer (Eyk) family of tyrosine kinase receptors and binds to these receptors via tandem G domains at its C terminus. After translation, GAS6 moves to the lumen of the endoplasmic reticulum, where it is extensively γ-carboxylated. The carboxylation process is vitamin K dependent, and current evidence suggests that GAS6 must be γ-carboxylated to bind and activate any of the cognate tyrosine kinase receptors. Here, we show that expression of GAS6 is highly correlated with the capacity of bone marrow stromal cells to support hematopoiesis in culture. Nonsupportive stromal cell lines express little to no GAS6, whereas supportive cell lines express high levels of GAS6. Transfection of the cDNA encoding GAS6 into 3T3 fibroblasts is sufficient to render this previously nonsupportive cell line capable of supporting long-term hematopoietic cultures. 3T3 cells, genetically engineered to stably express GAS6 (GAS6-3T3), produce a stromal layer that supports the generation of colony-forming units in culture (CFU-c) for up to 6 wk. Hematopoietic support by genetically engineered 3T3 is not vitamin K dependent, and soluble recombinant GAS6 does not substitute for coculturing the hematopoietic progenitors with genetically modified 3T3 cells. PMID:11050245

  12. Suppression of in vitro murine T cell proliferation by human adipose tissue-derived mesenchymal stem cells is dependent mainly on cyclooxygenase-2 expression

    PubMed Central

    Kim, Jin-Hee; Lee, Yong-Taek; Hong, Jun Man

    2013-01-01

    Mesenchymal stem cells (MSCs) of human origin have been frequently applied to experimental animal models to evaluate their immunomodulatory functions. MSCs are known to be activated by cytokines from T cells, predominantly by interferon-γ (IFN-γ), in conjunction with other cytokines such as tumor necrosis factor-α (TNF-α) and interlukin-1β. Because IFN-γ is not cross-reactive between human and mouse species, the manner in which human MSCs administered in experimental animals are activated and stimulated to function has been questioned. In the present study, we established MSCs from human adipose tissue. They successfully suppressed the proliferation of not only human peripheral blood mononuclear cells but also mouse splenic T cells. When these human MSCs were stimulated with a culture supernatant of mouse T cells or recombinant murine TNF-α, they expressed cyclooxygenase-2 (COX-2), but not indoleamine 2,3-dioxygenase. The dominant role of COX-2 in suppressing mouse T cell proliferation was validated by the addition of COX-2 inhibitor in the co-culture, wherein the suppressed proliferation was almost completely recovered. In conclusion, human MSCs in a murine environment were activated, at least in part, by TNF-α and mainly used COX-2 as a tool for the suppression of in vitro T cell proliferation. These results should be considered when interpreting results for human MSCs in experimental animals. PMID:24386599

  13. Effects of Aloe barbadensis Mill. extract (AVH200®) on human blood T cell activity in vitro.

    PubMed

    Ahluwalia, Bani; Magnusson, Maria K; Isaksson, Stefan; Larsson, Fredrik; Öhman, Lena

    2016-02-17

    Aloe barbadensis Mill. (Aloe vera) is a widely used medicinal plant well reputed for its diverse therapeutic applications. It has been used for thousands of years in folk medicine to treat various conditions and the Aloe vera gel has been reported to possess anti-inflammatory as well as immunostimulatory and immunomodulatory properties. However, the mode of action is still unclear. The aim of this study was determine the effects of two well-defined A. barbadensis Mill. extracts AVH200® and AVE200 on human blood T cells in vitro. Peripheral blood mononuclear cells (PBMC) from healthy donors were stimulated polyclonally in the presence or absence of AVH200® and AVE200. The T cell phenotype was investigated by flow cytometry, cell proliferation was determined by CFSE dye and thymidine assay, respectively and cytokine secretion was determined by MSD® Multi-Spot Assay system and ELISA. The presence of AVH200® resulted in a reduced expression of CD25 among CD3(+) T cells and suppression of T cell proliferation in a dose dependent manner. Furthermore, AVH200® reduced the expression of CD28 on CD3(+) T cells. AVH200® also reduced the secretion of IL-2, IFN-γ and IL-17A in PBMC cultures. The AVH200® dose dependent reduction in T cell activation and proliferation recorded in the cell cultures was not due to apoptosis or cell death. Additionally, AVH200® was found to be more effective as compared to AVE200 in reducing T cell activation and proliferation. AVH200® has the potential to reduce the activation, proliferation and cytokine secretion of healthy human blood T cells. Our study suggests that AVH200® has a suppressive effect on human blood T cells in vitro. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Recent thymic emigrants and mature naive T cells exhibit differential DNA methylation at key cytokine loci.

    PubMed

    Berkley, Amy M; Hendricks, Deborah W; Simmons, Kalynn B; Fink, Pamela J

    2013-06-15

    Recent thymic emigrants (RTEs) are the youngest T cells in the lymphoid periphery and exhibit phenotypic and functional characteristics distinct from those of their more mature counterparts in the naive peripheral T cell pool. We show in this study that the Il2 and Il4 promoter regions of naive CD4(+) RTEs are characterized by site-specific hypermethylation compared with those of both mature naive (MN) T cells and the thymocyte precursors of RTEs. Thus, RTEs do not merely occupy a midpoint between the thymus and the mature T cell pool, but represent a distinct transitional T cell population. Furthermore, RTEs and MN T cells exhibit distinct CpG DNA methylation patterns both before and after activation. Compared with MN T cells, RTEs express higher levels of several enzymes that modify DNA methylation, and inhibiting methylation during culture allows RTEs to reach MN T cell levels of cytokine production. Collectively, these data suggest that the functional differences that distinguish RTEs from MN T cells are influenced by epigenetic mechanisms and provide clues to a mechanistic basis for postthymic maturation.

  15. Analysis of the cross-talk of Epstein–Barr virus-infected B cells with T cells in the marmoset

    PubMed Central

    Dunham, Jordon; van Driel, Nikki; Eggen, Bart JL; Paul, Chaitali; ‘t Hart, Bert A; Laman, Jon D; Kap, Yolanda S

    2017-01-01

    Despite the well-known association of Epstein–Barr virus (EBV), a lymphocryptovirus (LCV), with multiple sclerosis, a clear pathogenic role for disease progression has not been established. The translationally relevant experimental autoimmune encephalomyelitis (EAE) model in marmoset monkeys revealed that LCV-infected B cells have a central pathogenic role in the activation of T cells that drive EAE progression. We hypothesized that LCV-infected B cells induce T-cell functions relevant for EAE progression. In the current study, we examined the ex vivo cross-talk between lymph node mononuclear cells (MNCs) from EAE marmosets and (semi-) autologous EBV-infected B-lymphoblastoid cell lines (B-LCLs). Results presented here demonstrate that infection with EBV B95-8 has a strong impact on gene expression profile of marmoset B cells, particularly those involved with antigen processing and presentation or co-stimulation to T cells. At the cellular level, we observed that MNC co-culture with B-LCLs induced decrease of CCR7 expression on T cells from EAE responder marmosets, but not in EAE monkeys without clinically evident disease. B-LCL interaction with T cells also resulted in significant loss of CD27 expression and reduced expression of IL-23R and CCR6, which coincided with enhanced IL-17A production. These results highlight the profound impact that EBV-infected B-LCL cells can have on second and third co-stimulatory signals involved in (autoreactive) T-cell activation. PMID:28243437

  16. Induction of specific T helper-9 cells to inhibit glioma cell growth

    PubMed Central

    Zheng, Haiyan; Yang, Baohua; Xu, Dedong; Wang, Wenbo; Tan, Jie; Sun, Liyuan; Li, Qinghua; Sun, Li; Xia, Xuewei

    2017-01-01

    The effects of Staphylococcal enterotoxin B (SEB) on regulation of immune response have been recognized; whether SEB can enhance the effects of immunotherapy on glioma remains to be investigated. This study tests a hypothesis that administration with SEB enhances the effects of specific immunotherapy on glioma growth in mice. In this study, a glioma-bearing mouse model was developed by adoptive transfer with GL261 cells (a mouse glioma cell line). The mice were treated with the GL261 cell extracts (used as an Ag) with or without administration of SEB. We observed that treating glioma-bearing mice with the glioma Ag and SEB induced glioma-specific Th9 cells in both glioma tissue and the spleen. Treating CD4+ CD25− T cells with SEB increased p300 phosphorylation, histone H3K4 acetylation at the interleukin (IL)-9 promoter locus, and increased the IL-9 transcriptional factor binding to the IL-9 promoter. Treating CD4+ CD25− T cells with both SEB and glioma Ag induced glioma-specific Th9 cells. The glioma-specific Th9 cells induced glioma cell apoptosis in the culture. Treating the glioma-bearing mice with SEB and glioma Ag significantly inhibited the glioma growth. In conclusion, SEB plus glioma Ag immunotherapy inhibits the experimental glioma growth, which may be a novel therapeutic remedy for the treatment of glioma. PMID:28002799

  17. Adult T-Cell Leukemia/Lymphoma

    MedlinePlus

    ... Adult T-Cell Leukemia/Lymphoma Adult T-Cell Leukemia/Lymphoma Adult T-cell A type of white ... immune responses by destroying harmful substances or cells. leukemia Disease generally characterized by the overproduction of abnormal ...

  18. T Cell Phenotype and T Cell Receptor Repertoire in Patients with Major Depressive Disorder

    PubMed Central

    Patas, Kostas; Willing, Anne; Demiralay, Cüneyt; Engler, Jan Broder; Lupu, Andreea; Ramien, Caren; Schäfer, Tobias; Gach, Christian; Stumm, Laura; Chan, Kenneth; Vignali, Marissa; Arck, Petra C.; Friese, Manuel A.; Pless, Ole; Wiedemann, Klaus; Agorastos, Agorastos; Gold, Stefan M.

    2018-01-01

    While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case–control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/− cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vβ repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR β chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder. PMID:29515587

  19. Cyclosporin a inhibits T cell-mediated augmentation of mouse natural killer activity.

    PubMed

    Yanagihara, R H; Adler, W H

    1982-06-01

    Cyclosporin A (CSA) in vitro inhibited the spontaneous cytotoxic activity of mouse spleen cells against YAC target cells in a 4 hr 51Cr release assay. While natural killer (NK) cells were inhibited directly by CSA, these suppressive effects were largely reversible by coculture of effector cells for an optimal period with polyinosinic-polycytidylic acid (Poly I:C) or lipopolysaccharide (LPS). In contrast concanavalin A (Con A), in the presence of CSA, was unable to augment NK activity. The supernatant, however, of mouse spleen cells cultured with Con A was fully able to augment the NK the activity by freshly cultured spleen cells in the presence of CSA. The results indicate that CSA inhibits NK activity by two distinct mechanisms: a) a direct inactivation of NK cells and b) a suppression of production or release of an NK-activating factor from T cells, but not B cells or macrophages.

  20. Functional analysis of T cells expressing Ia antigens. I. Demonstration of helper T-cell heterogeneity.

    PubMed

    Swierkosz, J E; Marrack, P; Kappler, J W

    1979-12-01

    We have examined the expression of I-region antigens on functional subpopulations of murine T cells. A.TH anti-A.TL (anti-Ik, Sk, Gk) alloantiserum was raised by immunization of recipients with concanavalin A (Con A) stimulated thymic and peripheral T-cell blasts. In contrast to similar antisera made by conventional methods, the anti-Ia blast serum was highly cytotoxic for purified T lymphocytes. Moreover, it reacted in a specific fashion with T cells having particular functions. Treatment of keyhole limpet hemocyanin (KLH)-primed B10.A (H-2 alpha) T cells with this antiserum plus complement resulted in the elimination of helper activity for B-cell responses to trinitrophenyl-KLH. Inhibition was shown to be a result of the selective killing of one type of helper T cell whose activity could be replaced by a factor(s) found in the supernate of Con A-activated spleen cells. A second type of helper cell required for responses to protein-bound antigens appeared to be Ia-. By absorption and analysis on H-2 recombinants, at least two specificities were detectable on helper T cells; one mapping in the I-A subregion and a second in a region(s) to the right of I-J. In addition, the helper T cell(s) involved in the generation of alloreactive cytotoxic lymphocytes was shown to be Ia+, whereas cytotoxic effector cells and their precursors were Ia- with this antiserum. These results provide strong evidence for the selective expression of I-region determinants on T-cell subsets and suggest that T-cell-associated Ia antigens may play an important role in T-lymphocyte function.

  1. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients.

    PubMed

    Wei, Ping; Hu, Guo-Hua; Kang, Hou-Yong; Yao, Hong-Bing; Kou, Wei; Liu, Hong; Zhang, Cheng; Hong, Su-Ling

    2014-05-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). The aryl hydrocarbon receptor (AhR) exhibits strong immunomodulation potential via regulation of the differentiation of T lymphocytes and dendritic cells (DCs) after activation by its ligand, such as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). The aim of this study was to analyze the effect of AhR on Th17 differentiation by investigating the action of ITE on DCs and CD4(+) T cells from patients with AR. In all, 26 AR patients and 12 healthy controls were included in this study. The expression of interleukin (IL)-1β, IL-6, IL-10, and IL-17 in the culture supernatant and the presence of Th17 cells in CD4(+) T cells and DC-CD4(+) T-cell co-culture system were measured before and after treatment with ITE. We show that ITE significantly induced cell secretion of IL-10 and inhibited IL-1β and IL-6 production in DCs, and promoted IL-10 production and suppressed IL-17 expression in CD4(+) T cells in vitro. It also suppressed the expansion of Th17 cells in vitro. Our work demonstrates that ITE acts on DCs and CD4(+) T cells to inhibit the Th17 response that suppresses AR; the AhR-DC-Th17 axis may be an important pathway in the treatment of AR. ITE, a nontoxic AhR ligand, attenuated the Th17 response; thus, it appears to be a promising therapeutic candidate for suppressing the inflammatory responses associated with AR.

  2. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions.

    PubMed

    Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M; Barron, Luke; Qualls, Joseph E; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O; Wynn, Thomas A; Murray, Peter J

    2017-01-06

    Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G 1 , and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G 1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Mycobacterium tuberculosis specific CD8(+) T cells rapidly decline with antituberculosis treatment.

    PubMed

    Nyendak, Melissa R; Park, Byung; Null, Megan D; Baseke, Joy; Swarbrick, Gwendolyn; Mayanja-Kizza, Harriet; Nsereko, Mary; Johnson, Denise F; Gitta, Phineas; Okwera, Alphonse; Goldberg, Stefan; Bozeman, Lorna; Johnson, John L; Boom, W Henry; Lewinsohn, Deborah A; Lewinsohn, David M

    2013-01-01

    Biomarkers associated with response to therapy in tuberculosis could have broad clinical utility. We postulated that the frequency of Mycobacterium tuberculosis (Mtb) specific CD8(+) T cells, by virtue of detecting intracellular infection, could be a surrogate marker of response to therapy and would decrease during effective antituberculosis treatment. We sought to determine the relationship of Mtb specific CD4(+) T cells and CD8(+) T cells with duration of antituberculosis treatment. We performed a prospective cohort study, enrolling between June 2008 and August 2010, of HIV-uninfected Ugandan adults (n = 50) with acid-fast bacillus smear-positive, culture confirmed pulmonary TB at the onset of antituberculosis treatment and the Mtb specific CD4(+) and CD8(+) T cell responses to ESAT-6 and CFP-10 were measured by IFN-γ ELISPOT at enrollment, week 8 and 24. There was a significant difference in the Mtb specific CD8(+) T response, but not the CD4(+) T cell response, over 24 weeks of antituberculosis treatment (p<0.0001), with an early difference observed at 8 weeks of therapy (p = 0.023). At 24 weeks, the estimated Mtb specific CD8(+) T cell response decreased by 58%. In contrast, there was no significant difference in the Mtb specific CD4(+) T cell during the treatment. The Mtb specific CD4(+) T cell response, but not the CD8(+) response, was negatively impacted by the body mass index. Our data provide evidence that the Mtb specific CD8(+) T cell response declines with antituberculosis treatment and could be a surrogate marker of response to therapy. Additional research is needed to determine if the Mtb specific CD8(+) T cell response can detect early treatment failure, relapse, or to predict disease progression.

  4. Mycobacterium tuberculosis Specific CD8+ T Cells Rapidly Decline with Antituberculosis Treatment

    PubMed Central

    Nyendak, Melissa R.; Park, Byung; Null, Megan D.; Baseke, Joy; Swarbrick, Gwendolyn; Mayanja-Kizza, Harriet; Nsereko, Mary; Johnson, Denise F.; Gitta, Phineas; Okwera, Alphonse; Goldberg, Stefan; Bozeman, Lorna; Johnson, John L.; Boom, W. Henry; Lewinsohn, Deborah A.; Lewinsohn, David M.

    2013-01-01

    Rationale Biomarkers associated with response to therapy in tuberculosis could have broad clinical utility. We postulated that the frequency of Mycobacterium tuberculosis (Mtb) specific CD8+ T cells, by virtue of detecting intracellular infection, could be a surrogate marker of response to therapy and would decrease during effective antituberculosis treatment. Objectives: We sought to determine the relationship of Mtb specific CD4+ T cells and CD8+ T cells with duration of antituberculosis treatment. Materials and Methods We performed a prospective cohort study, enrolling between June 2008 and August 2010, of HIV-uninfected Ugandan adults (n = 50) with acid-fast bacillus smear-positive, culture confirmed pulmonary TB at the onset of antituberculosis treatment and the Mtb specific CD4+ and CD8+ T cell responses to ESAT-6 and CFP-10 were measured by IFN-γ ELISPOT at enrollment, week 8 and 24. Results There was a significant difference in the Mtb specific CD8+ T response, but not the CD4+ T cell response, over 24 weeks of antituberculosis treatment (p<0.0001), with an early difference observed at 8 weeks of therapy (p = 0.023). At 24 weeks, the estimated Mtb specific CD8+ T cell response decreased by 58%. In contrast, there was no significant difference in the Mtb specific CD4+ T cell during the treatment. The Mtb specific CD4+ T cell response, but not the CD8+ response, was negatively impacted by the body mass index. Conclusions Our data provide evidence that the Mtb specific CD8+ T cell response declines with antituberculosis treatment and could be a surrogate marker of response to therapy. Additional research is needed to determine if the Mtb specific CD8+ T cell response can detect early treatment failure, relapse, or to predict disease progression. PMID:24324704

  5. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess.

    PubMed

    Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza

    2016-08-01

    Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production.

  6. A kinetic investigation of interacting, stimulated T cells identifies conditions for rapid functional enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor eradication.

    PubMed

    Zhou, Jing; Bethune, Michael T; Malkova, Natalia; Sutherland, Alexander M; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni; Heath, James R

    2018-01-01

    For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.

  7. Memory T cells and vaccines.

    PubMed

    Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W

    2003-01-17

    T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.

  8. Integrins in T Cell Physiology

    PubMed Central

    Alabiso, Oscar; Galetto, Alessandra Silvia; Baldanzi, Gianluca

    2018-01-01

    From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research. PMID:29415483

  9. Inhibition of T cell-mediated functions by MVM(i), a parvovirus closely related to minute virus of mice.

    PubMed

    Engers, H D; Louis, J A; Zubler, R H; Hirt, B

    1981-12-01

    A purified preparation of MVM(i), a murine parvovirus closely related to minute virus of mice (MVM), was found to inhibit various functions mediated by murine T cells in vitro. Addition of MVM(i) virus to secondary allogeneic mixed leukocyte cultures resulted in the inhibition of both lymphocyte proliferation (3H-thymidine incorporation) and the generation of cytolytic T lymphocyte activity but not interferon production. MVM(i) virus also inhibited the growth and cytolytic activity of several cloned, long-term Lyt-2+ cytolytic T cell lines. Furthermore, the antigen-induced proliferative responses of parasite- (Leishmania) specific Lyt-1+ T cells in vitro was abrogated by the addition of MVM(i) virus to the culture. Finally, the suppression of an in vitro antibody response to SRBC by MVM(i) virus was the result of the inhibition of T helper cells required for the B cell response. These suppressive effects were specific for MVM(i); parallel studies in which the prototype MVM parvovirus was used showed no significant inhibition in the various systems tested.

  10. [Inhibitory effect and mechanism of tofacitinib on the secretion of cytokines by T cells in human peripheral blood].

    PubMed

    Wu, Kunlun; Zhao, Jun; Wu, Qiongli; Wu, Changyou

    2017-11-01

    Objective To study the inhibitory effect of tofacitinib on the production of cytokines by T cells in human peripheral blood and its mechanism. Methods Peripheral blood mononuclear cells (PBMCs) and purified T cells were cultured and stimulated with anti-CD3 plus anti-CD28 antibodies in the presence or absence of tofacitinib (0.5 μmol/L). The levels of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α) and interleukin 2 (IL-2) in the culture supernatants were detected by ELISA, and the expressions of activated molecules CD69 and CD25 on the surface of CD4 + and CD8 + T cells, the production of cytokines and the phosphorylation of signal transducers and transcriptional activators STAT1, STAT3, STAT4 in T cells were examined by flow cytometry. At the same time, the proliferation and apoptosis of T cells were observed by 5- (and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) staining and the flow cy tometry with annexin V-FITC/PI, respectively. Results Tofacitinib inhibited the production of IFN-γ, TNF-α and the expression of CD25 on T cells from the peripheral blood. In addition, the proliferation and the phosphorylation of STAT1, STAT3, STAT4 by T cells were also depressed. However, tofacitinib had no effect on the secretion of IL-2, the expression of CD69 and the apoptosis of T cells. Conclusion Tofacitinib can inhibit the secretion of IFN-γ and TNF-α by T cells in the peripheral blood, and its mechanism might be related to the inhibitory effect of tofacitinib on the activation, proliferation and signal transduction in T cells.

  11. Regulation of allergic airway inflammation by adoptive transfer of CD4+ T cells preferentially producing IL-10.

    PubMed

    Matsuda, Masaya; Doi, Kana; Tsutsumi, Tatsuya; Fujii, Shinya; Kishima, Maki; Nishimura, Kazuma; Kuroda, Ikue; Tanahashi, Yu; Yuasa, Rino; Kinjo, Toshihiko; Kuramoto, Nobuyuki; Mizutani, Nobuaki; Nabe, Takeshi

    2017-10-05

    Anti-inflammatory pharmacotherapy for asthma has mainly depended on the inhalation of glucocorticoids, which non-specifically suppress immune responses. If the anti-inflammatory cytokine interleukin (IL)-10 can be induced by a specific antigen, asthmatic airway inflammation could be suppressed when individuals are exposed to the antigen. The purpose of this study was to develop cellular immunotherapeutics for atopic diseases using IL-10-producing CD4 + T cells. Spleen cells isolated from ovalbumin (OVA)-sensitized mice were cultured with the antigen, OVA and growth factors, IL-21, IL-27 and TGF-β for 7 days. After the 7-day culture, the CD4 + T cells were purified using a murine CD4 magnetic beads system. When the induced CD4 + T cells were stimulated by OVA in the presence of antigen-presenting cells, IL-10 was preferentially produced in vitro. When CD4 + T cells were adoptively transferred to OVA-sensitized mice followed by intratracheal OVA challenges, IL-10 was preferentially produced in the serum and bronchoalveolar lavage fluid in vivo. IL-10 production coincided with the inhibition of eosinophilic airway inflammation and epithelial mucus plugging. Most of the IL-10-producing CD4 + T cells were negative for Foxp3 and GATA-3, transcription factors of naturally occurring regulatory T cells and Th2 cells, respectively, but double positive for LAG-3 and CD49b, surface markers of inducible regulatory T cells, Tr1 cells. Collectively, most of the induced IL-10-producing CD4 + T cells could be Tr1 cells, which respond to the antigen to produce IL-10, and effectively suppressed allergic airway inflammation. The induced Tr1 cells may be useful for antigen-specific cellular immunotherapy for atopic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. T cell costimulation by chemokine receptors.

    PubMed

    Molon, Barbara; Gri, Giorgia; Bettella, Monica; Gómez-Moutón, Concepción; Lanzavecchia, Antonio; Martínez-A, Carlos; Mañes, Santos; Viola, Antonella

    2005-05-01

    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine sources.

  13. Epidermal Cadm1 expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity.

    PubMed

    Giangreco, Adam; Hoste, Esther; Takai, Yoshimi; Rosewell, Ian; Watt, Fiona M

    2012-02-01

    Autoimmune alopecia is characterized by an extensive epidermal T cell infiltrate that mediates hair follicle destruction. We have investigated the role of cell adhesion molecule 1 (Cadm1; Necl2) in this disease. Cadm1 is expressed by epidermal cells and mediates heterotypic adhesion to lymphocytes expressing class 1-restricted T cell-associated molecule (CRTAM). Using a murine autoimmune alopecia model, we observed an increase in early-activated cytotoxic (CD8-restricted, CRTAM-expressing) T cells, which preferentially associated with hair follicle keratinocytes expressing Cadm1. Coculture with Cadm1-transduced MHC-matched APCs stimulated alopecic lymph node cells to release IL-2 and IFN-γ. Overexpression of Cadm1 in cultured human keratinocytes did not promote cytokine secretion, but led to increased adhesion of alopecic cytotoxic T cells and enhanced T cell cytotoxicity in an MHC-independent manner. Epidermal overexpression of Cadm1 in transgenic mice led to increased autoimmune alopecia susceptibility relative to nontransgenic littermate controls. Our findings reveal that Cadm1 expression in the hair follicle plays a role in autoimmune alopecia.

  14. Inhibition of anti-CD3 monoclonal antibody-induced T-cell proliferation and interleukin-2 secretion by physiologic combinations of dexamethasone and prostaglandin E2.

    PubMed

    Elliott, L; Brooks, W; Roszman, T

    1993-12-01

    1. The purpose of these studies was to characterize further previous observations from our laboratory indicating that physiologic concentrations of dexamethasone (DEX) and prostaglandin E2 (PGE2) added together result in synergistic inhibition of the proliferative response of T cells stimulated via the T-cell receptor CD3 signaling complex (TCR/CD3). 2. Various physiologic concentrations of DEX and PGE2 were added to T cells stimulated with immobilized anti-CD3 monoclonal antibody (mAb) and cultured at optimal and suboptimal cell densities. The results demonstrate that the proliferative response of anti-CD3 mAb-stimulated T cells cultured at a suboptimal cell density is more suppressed than that of T cells cultured at optimal concentrations. 3. The proliferative response of CD4+ T cells to immobilized anti-CD3 mAb was also determined in the presence of PGE2 and DEX. The data indicate that the CD4+ subset of T cells is more sensitive to the synergistic antiproliferative effects of DEX and PGE2 compared to whole T-cell populations. 4. Various concentrations of DEX and/or PGE2 were added to T cells stimulated with anti-CD3 mAb and the secretion of interleukin-2 (IL-2) was determined. The results demonstrate that concentrations of DEX and PGE2 which individually do not significantly suppress IL-2 synthesis act together to inhibit the synthesis of IL-2 synergistically. 5. The addition of an exogenous source of recombinant IL-2 (rIL-2) to T cells stimulated in the presence of DEX and PGE2 completely reversed the synergistic antiproliferative effect of these two compounds. This reversal was even more pronounced with T cells cultured at a suboptimal cell density. Additionally, PGE2 and DEX did not affect expression of the IL-2 receptor (IL-2R), as measured by upregulation of the alpha chain, on anti-CD3 mAb stimulated T cells. 6. Collectively these data indicate that physiologic concentrations of PGE2 and DEX, which alone have no effect on anti-CD3 mAb-induced T-cell

  15. Effect of cell density and HLA-DR incompatibility on T-cell proliferation and forkhead box P3 expression in human mixed lymphocyte reaction.

    PubMed

    Song, E Y; Han, S; Yang, B; Morris, G P; Bui, J D

    2015-04-01

    The proliferation rates of human T cells in vitro are affected by some factors such as initial T-cell number, dose of stimulating cells, and duration of culture. The transcription factor forkhead box P3 (FoxP3) has been used to identify regulatory T cells in humans and is thought to correlate with tolerance to allogeneic organ transplant. Thus, it is important to optimize conditions to expand FoxP3 cell proliferation to improve engraftment of allogeneic organ transplants. We studied proliferative responses and FoxP3 expression in divided T cells with the use of flow cytometric analysis of Ki-67 in culture of different concentrations of responding cells (6 × 10(6), 4 × 10(6), 2 × 10(6), 1 × 10(6), and 0.5 × 10(6)cells/mL), different types of stimulating cells (lymphocytes and low density cells), and different numbers of HLA mismatches. The proportion of CD3(+) cells, CD4(+)CD25(+) cells, and CD4(+)CD25(+)FoxP3(+) cells among mononuclear cells were highest at initial cell concentration of 2 × 10(6) responder cells/mL with lymphocytes as stimulators at day-5 mixed lymphocyte reaction (MLR). They were highest at a concentration of 4 × 10(6) responder cells/mL with low density cells as stimulators. The recovery (%), proportion of CD3(+) cells, CD4(+)CD25(+) cells, and CD4(+)CD25(+)FoxP3(+) cells with 2 HLA-DR incompatibility were significantly higher than those of 1 HLA-DR incompatibility at day-5 MLR. Initial cell concentration and HLA-DR incompatibility can affect the generation of FoxP3+ T cells in human MLR. These factors could be considered for efficient generation of Tregs for clinical trials in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    PubMed

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  17. Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells

    PubMed Central

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system. PMID:24465853

  18. Simplified process for the production of anti-CD19-CAR engineered T cells

    PubMed Central

    Tumaini, Barbara; Lee, Daniel W.; Lin, Tasha; Castiello, Luciano; Stroncek, David F.; Mackall, Crystal; Wayne, Alan; Sabatino, Marianna

    2014-01-01

    Background Adoptive Immunotherapy using chimeric antigen receptor (CAR) engineered T cells specific for CD19 has shown promising results for the treatment of B cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. Here, we describe a new, simplified method to produce anti-CD19-CAR T cells. Methods T cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 hours and then a second transduction was performed. No spinoculation was used. Cells were then expanded for an additional 9 days. Results The method was validated using 2 PBMC products from a patient with B-CLL and one PBMC product from a healthy subject. The 2 PBMC products from the B-CLL patient contained 11.4% and 12.9% T cells. The manufacture process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6 fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first 4 ALL patients treated at our institution. Discussion We developed a simplified semi-closed system for the initial selection, activation, transduction and expansion of T cells using anti-CD3/anti-CD28 beads and bags, to produce autologous anti-CD19 CAR transduced T cells to support an ongoing clinical trial. PMID:23992830

  19. CD62L− memory T cells enhance T-cell regeneration after allogeneic stem cell transplantation by eliminating host resistance in mice

    PubMed Central

    Zhang, Jifeng; Barefoot, Brice E.; Mo, Wenjian; Deoliveira, Divino; Son, Jessica; Cui, Xiuyu; Ramsburg, Elizabeth

    2012-01-01

    A major challenge in allogeneic hematopoietic cell transplantation is how to transfer T-cell immunity without causing graft-versus-host disease (GVHD). Effector memory T cells (CD62L−) are a cell subset that can potentially address this challenge because they do not induce GVHD. Here, we investigated how CD62L− T cells contributed to phenotypic and functional T-cell reconstitution after transplantation. On transfer into allogeneic recipients, CD62L− T cells were activated and expressed multiple cytokines and cytotoxic molecules. CD62L− T cells were able to deplete host radioresistant T cells and facilitate hematopoietic engraftment, resulting in enhanced de novo T-cell regeneration. Enhanced functional immune reconstitution was demonstrated in CD62L− T-cell recipients using a tumor and an influenza virus challenge model. Even though CD62L− T cells are able to respond to alloantigens and deplete host radioresistant immune cells in GVHD recipients, alloreactive CD62L− T cells lost the reactivity over time and were eventually tolerant to alloantigens as a result of prolonged antigen exposure, suggesting a mechanism by which CD62L− T cells were able to eliminate host resistance without causing GVHD. These data further highlight the unique characteristics of CD62L− T cells and their potential applications in clinical hematopoietic cell transplantation. PMID:22596261

  20. Nutritional effects on T-cell immunometabolism

    PubMed Central

    Cohen, Sivan; Danzaki, Keiko; MacIver, Nancie J.

    2017-01-01

    T cells are highly influenced by nutrient uptake from their environment, and changes in overall nutritional status, such as malnutrition or obesity, can result in altered T-cell metabolism and behavior. In states of severe malnutrition or starvation, T-cell survival, proliferation, and inflammatory cytokine production are all decreased, as is T-cell glucose uptake and metabolism. The altered T-cell function and metabolism seen in malnutrition is associated with altered adipokine levels, most particularly decreased leptin. Circulating leptin levels are low in malnutrition, and leptin has been shown to be a key link between nutrition and immunity. The current view is that leptin signaling is required to upregulate activated T-cell glucose metabolism and thereby fuel T-cell activation. In the setting of obesity, T cells have been found to have a key role in promoting the recruitment of inflammatory macrophages to adipose depots along with the production of inflammatory cytokines that promote the development of insulin resistance leading to diabetes. Deletion of T cells, key T-cell transcription factors, or pro-inflammatory T-cell cytokines prevents insulin resistance in obesity and underscores the importance of T cells in obesity-associated inflammation and metabolic disease. Altogether, T cells have a critical role in nutritional immunometabolism. PMID:28054344

  1. Soluble Factors Secreted by Endothelial Cells Allow for Productive and Latent HIV-1 Infection in Resting CD4+ T Cells.

    PubMed

    Morris, John Henry; Nguyen, Tran; Nwadike, Abuoma; Geels, Mackenzie L; Kamp, Derrick L; Kim, Bo Ram; Boyer, Jean D; Shen, Anding

    2017-02-01

    In vitro, it is difficult to infect resting CD4 + T cells with human immunodeficiency virus type 1 (HIV), but infections readily occur in vivo. Endothelial cells (ECs) interact with resting CD4 + T cells in vivo, and we found previously that EC stimulation leads to productive and latent HIV infection of resting CD4 + T cells. In this study, we further characterize the interactions between EC and resting T cells. We found that resting CD4 + T cells did not require direct contact with EC for productive and/or latent infection to occur, indicating the involvement of soluble factors. Among 30 cytokines tested in a multiplex enzyme-linked immunosorbent assay (ELISA), we found that expressions for IL-6, IL-8, and CCL2 were much higher in EC-stimulated resting T cells than resting T cells cultured alone. IL-6 was found to be the soluble factor responsible for inducing productive infection of resting T cells, although direct contact with EC had an added effect. However, none of the cytokines tested, IL-6, IL-8, or CCL2, induced additional latent infection in resting T cells, suggesting that unidentified cytokines were involved. Intracellular molecules MURR1, c-Jun N-terminal kinase (JNK), and glucose transporter-1 (GLUT1) were previously shown in blocking HIV infection of resting CD4 + T cells. We found that the concentrations of these proteins were not significantly different in resting T cells before and after stimulation by EC; therefore, they are not likely involved in EC stimulation of resting CD4 + T cells, and a new mechanism is yet to be identified.

  2. Soluble Factors Secreted by Endothelial Cells Allow for Productive and Latent HIV-1 Infection in Resting CD4+ T Cells

    PubMed Central

    Morris, John Henry; Nguyen, Tran; Nwadike, Abuoma; Geels, Mackenzie L.; Kamp, Derrick L.; Kim, Bo Ram; Boyer, Jean D.

    2017-01-01

    Abstract In vitro, it is difficult to infect resting CD4+ T cells with human immunodeficiency virus type 1 (HIV), but infections readily occur in vivo. Endothelial cells (ECs) interact with resting CD4+ T cells in vivo, and we found previously that EC stimulation leads to productive and latent HIV infection of resting CD4+ T cells. In this study, we further characterize the interactions between EC and resting T cells. We found that resting CD4+ T cells did not require direct contact with EC for productive and/or latent infection to occur, indicating the involvement of soluble factors. Among 30 cytokines tested in a multiplex enzyme-linked immunosorbent assay (ELISA), we found that expressions for IL-6, IL-8, and CCL2 were much higher in EC-stimulated resting T cells than resting T cells cultured alone. IL-6 was found to be the soluble factor responsible for inducing productive infection of resting T cells, although direct contact with EC had an added effect. However, none of the cytokines tested, IL-6, IL-8, or CCL2, induced additional latent infection in resting T cells, suggesting that unidentified cytokines were involved. Intracellular molecules MURR1, c-Jun N-terminal kinase (JNK), and glucose transporter-1 (GLUT1) were previously shown in blocking HIV infection of resting CD4+ T cells. We found that the concentrations of these proteins were not significantly different in resting T cells before and after stimulation by EC; therefore, they are not likely involved in EC stimulation of resting CD4+ T cells, and a new mechanism is yet to be identified. PMID:27599784

  3. Large-scale expansion of Vγ9Vδ2 T cells with engineered K562 feeder cells in G-Rex vessels and their use as chimeric antigen receptor-modified effector cells.

    PubMed

    Xiao, Lin; Chen, Can; Li, Zhendong; Zhu, Sumin; Tay, Johan Ck; Zhang, Xi; Zha, Shijun; Zeng, Jieming; Tan, Wee Kiat; Liu, Xin; Chng, Wee Joo; Wang, Shu

    2018-03-01

    Vγ9Vδ2 T cells are a minor subset of lymphocytes in the peripheral blood that has been extensively investigated for their tolerability, safety and anticancer efficacy. A hindrance to the broad application of these cells for adoptive cellular immunotherapy has been attaining clinically appropriate numbers of Vγ9Vδ2 T cells. Furthermore, Vγ9Vδ2 T cells exist at low frequencies among cancer patients. We, therefore, sought to conceive an economical method that allows for a quick and robust large-scale expansion of Vγ9Vδ2 T cells. A two-step protocol was developed, in which peripheral blood mononuclear cells (PBMCs) from healthy donors or cancer patients were activated with Zometa and interleukin (IL)-2, followed by co-culturing with gamma-irradiated, CD64-, CD86- and CD137L-expressing K562 artificial antigen-presenting cells (aAPCs) in the presence of the anti-CD3 antibody OKT3. We optimized the co-culture ratio of K562 aAPCs to immune cells, and migrated this method to a G-Rex cell growth platform to derive clinically relevant cell numbers in a Good Manufacturing Practice (GMP)-compliant manner. We further include a depletion step to selectively remove αβ T lymphocytes. The method exhibited high expansion folds and a specific enrichment of Vγ9Vδ2 T cells. Expanded Vγ9Vδ2 T cells displayed an effector memory phenotype with a concomitant down-regulated expression of inhibitory immune checkpoint receptors. Finally, we ascertained the cytotoxic activity of these expanded cells by using nonmodified and chimeric antigen receptor (CAR)-engrafted Vγ9Vδ2 T cells against a panel of solid tumor cells. Overall, we report an efficient approach to generate highly functional Vγ9Vδ2 T cells in massive numbers suitable for clinical application in an allogeneic setting. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. Low molecular weight fraction secreted by SKOV3 cells expands peripheral CD4+CD25+ regulatory T cells and enhances their suppressive capacity.

    PubMed

    Li, Xiao; Wan, Xiaoyun; Mao, Yuyan; Lu, Weiguo; Xie, Xing

    2010-09-01

    The increase of CD4+CD25+ regulatory T cells in patients with ovarian carcinoma has been verified. Here we investigated the effects of supernatant derived from ovarian carcinoma cell SKOV3 on peripheral regulatory T cells. Supernatant from SKOV3 was collected and fractionated into three different molecular weight fractions (MWFs). The proliferation of the CD4+CD25+ regulatory T cells cultured in complete RPMI 1640 medium with the different stimulators was detected. The phenotype (GITR and CTLA-4) of natural and expanded CD4+CD25+ T cells was detected by flow cytometry. Foxp3 mRNA expression of low MWF-expanded CD4+CD25+ T cells was detected by RT-PCR. Those expanded CD4+CD25+ regulatory T cells showed enhanced capacity to suppress CD4+CD25- T proliferation and increased expression of GITR and CTLA-4. In brief, low molecular weight fraction of supernatant secreted by SKOV3 could expand peripheral CD4+CD25+ regulatory T cells and enhance their suppressive function.

  5. Phenotypic analysis of perennial airborne allergen-specific CD4+ T cells in atopic and non-atopic individuals.

    PubMed

    Crack, L R; Chan, H W; McPherson, T; Ogg, G S

    2011-11-01

    Accumulating evidence suggests that T cells play an important role in the pathogenesis of atopic dermatitis (AD); yet, little is known of the differentiation status of CD4+ T cells specific for common environmental allergens, such as the major cat allergen, Fel d 1. To determine the frequency, differentiation phenotype and function of circulating Fel d 1-specific CD4+ T cells in adult individuals with severe persistent AD in comparison with healthy controls. Using HLA class II tetrameric complexes based on a HLA-DPB1*0401-restricted Fel d 1 epitope, ex vivo and cultured T cell frequency and phenotype were analysed in individuals with AD and healthy controls. Cytokine secretion was measured by ex vivo and cultured IL-4 and IFN-γ ELISpots. Ex vivo Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopics and non-atopics express high levels of CCR7, CD62L, CD27 and CD28, placing the cells largely within the central memory subgroup. However, the functional phenotype was distinct, with greater IL-4 production from the cells derived from atopics, which correlated with disease severity. Circulating Fel d 1-specific DPB1*0401-restricted CD4+ T cells in both atopic and non-atopic donors maintain a central memory phenotype; however in atopics, the cells had greater Th2 effector function, compatible with a disease model of altered antigen delivery in atopic individuals. © 2011 Blackwell Publishing Ltd.

  6. Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function

    PubMed Central

    Kin, Nicholas W.; Chen, Yao; Stefanov, Emily K.; Gallo, Richard L.; Kearney, John F.

    2011-01-01

    Mammalian antimicrobial peptides (AMPs) play an important role in host defense via direct antimicrobial activity as well as immune regulation. The mouse cathelin-related antimicrobial peptide (mCRAMP), produced from the mouse gene Camp, is the only mouse cathelicidin identified and the ortholog of the human gene encoding the peptide LL-37. This study tested the hypothesis that mouse B and T cells produce and respond to mCRAMP. We show that all mature mouse B-cell subsets, including follicular (FO), marginal zone (MZ), B1a, and B1b cells, as well as CD4+ and CD8+ T cells produce Camp mRNA and mCRAMP protein. Camp−/− B cells produced equivalent levels of IgM, IgG3, and IgG2c but less IgG1 and IgE, while Camp−/− CD4+ T cells cultured in Th2-inducing conditions produced more IL-4-expressing cells when compared with WT cells, effects that were reversed upon addition of mCRAMP. In vivo, Camp−/− mice immunized with TNP-OVA absorbed in alum produced an enhanced TNP-specific IgG1 response when compared with WT mice. ELISpot analysis revealed increased numbers of TNP-specific IgG1-secreting splenic B cells and FACS analysis revealed increased CD4+ T-cell IL-4 expression. Our results suggest that mCRAMP differentially regulates B- and T-cell function and implicate mCRAMP in the regulation of adaptive immune responses. PMID:21773974

  7. Adenovirus-specific T-cell Subsets in Human Peripheral Blood and After IFN-γ Immunomagnetic Selection.

    PubMed

    Qian, Chongsheng; Wang, Yingying; Cai, Huili; Laroye, Caroline; De Carvalho Bittencourt, Marcelo; Clement, Laurence; Stoltz, Jean-François; Decot, Véronique; Reppel, Loïc; Bensoussan, Danièle

    2016-01-01

    Adoptive antiviral cellular immunotherapy by infusion of virus-specific T cells (VSTs) is becoming an alternative treatment for viral infection after hematopoietic stem cell transplantation. The T memory stem cell (TSCM) subset was recently described as exhibiting self-renewal and multipotency properties which are required for sustained efficacy in vivo. We wondered if such a crucial subset for immunotherapy was present in VSTs. We identified, by flow cytometry, TSCM in adenovirus (ADV)-specific interferon (IFN)-γ+ T cells before and after IFN-γ-based immunomagnetic selection, and analyzed the distribution of the main T-cell subsets in VSTs: naive T cells (TN), TSCM, T central memory cells (TCM), T effector memory cell (TEM), and effector T cells (TEFF). In this study all of the different T-cell subsets were observed in the blood sample from healthy donor ADV-VSTs, both before and after IFN-γ-based immunomagnetic selection. As the IFN-γ-based immunomagnetic selection system sorts mainly the most differentiated T-cell subsets, we observed that TEM was always the major T-cell subset of ADV-specific T cells after immunomagnetic isolation and especially after expansion in vitro. Comparing T-cell subpopulation profiles before and after in vitro expansion, we observed that in vitro cell culture with interleukin-2 resulted in a significant expansion of TN-like, TCM, TEM, and TEFF subsets in CD4IFN-γ T cells and of TCM and TEM subsets only in CD8IFN-γ T cells. We demonstrated the presence of all T-cell subsets in IFN-γ VSTs including the TSCM subpopulation, although this was weakly selected by the IFN-γ-based immunomagnetic selection system.

  8. Impact of the Hayflick Limit on T cell responses to infection: lessons from aging and HIV disease.

    PubMed

    Effros, Rita B

    2004-02-01

    Aging and HIV disease show certain immunological similarities. In both situations, control over viral infection is diminished, and there is an increase in certain types of cancer. The immune cell type responsible for controlling viral infections and cancer is the so-called CD8 or cytotoxic T cell. In elderly persons and individuals chronically infected with HIV, there are high proportions of CD8 T cells that resemble cells that reach the end stage of replicative senescence in cell culture after repeated rounds of antigen-driven proliferation. Senescent cultures are characterized by irreversible cell cycle arrest, shortened telomeres, inability to upregulate telomerase, loss of CD28 expression, and apoptosis resistance. Strategies that retard replicative senescence may, therefore, provide novel approaches to enhancing immune function during aging and HIV disease.

  9. Evidence for the opposing roles of different gamma delta T cell subsets in macrophage homeostasis.

    PubMed

    Tramonti, Daniela; Andrew, Elizabeth M; Rhodes, Kate; Newton, Darren J; Carding, Simon R

    2006-07-01

    To ensure invading pathogens are eliminated with minimal damage to host tissues it is essential that macrophage activation be tightly regulated. Previously we demonstrated that a subset of gammadelta T cells (Vgamma1(+)) contributes to resolving pathogen-induced immune responses by killing activated macrophages. However, the exaggerated macrophage response seen in infected Vgamma1(+) T cell-deficient mice suggests that gammadelta T cells play a broader role in macrophage homeostasis and other subsets might promote macrophage activation. Using a macrophage:gammadelta T cell co-culture system we have shown that gammadelta T cells increase the activity of macrophages activated in vivo by Listeria monocytogenes infection. In a dose-dependent manner, gammadelta T cells up-regulated production of cytokines (TNF-alpha, IL-6, IL-10) and chemokines (MIP-1alpha, MIP-1beta) by Listeria-elicited macrophages. The ability to increase macrophage cytokine production was prominent among Vgamma4(+) gammadelta T cells. Reciprocally, Vgamma4(+) gammadelta T cells were activated by Listeria-elicited macrophages, resulting in production of the anti-inflammatory cytokine, IL-10. gammadelta T cell adoptive transfer experiments showed that Vgamma4(+) T cells protected TCRdelta(-/-) mice against Listeria-induced liver injury and necrosis. These findings identify distinct and non-overlapping roles for gammadelta T cell subsets in regulating macrophage function during pathogen-induced immune responses.

  10. HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation

    NASA Astrophysics Data System (ADS)

    Granelli-Piperno, Angela; Golebiowska, Angelika; Trumpfheller, Christine; Siegal, Frederick P.; Steinman, Ralph M.

    2004-05-01

    Dendritic cells (DCs) undergo maturation during virus infection and thereby become potent stimulators of cell-mediated immunity. HIV-1 replicates in immature DCs, but we now find that infection is not accompanied by many components of maturation in either infected cells or uninfected bystanders. The infected cultures do not develop potent stimulating activity for the mixed leukocyte reaction (MLR), and the DCs producing HIV-1 gag p24 do not express CD83 and DC-lysosome-associated membrane protein maturation markers. If different maturation stimuli are applied to DCs infected with HIV-1, the infected cells selectively fail to mature. When DCs from HIV-1-infected patients are infected and cultured with autologous T cells, IL-10 was produced in 6 of 10 patients. These DC-T cell cocultures could suppress another immune response, the MLR. The regulation was partially IL-10-dependent and correlated in extent with the level of IL-10 produced. Suppressor cells only developed from infected patients, rather than healthy controls, and the DCs had to be exposed to live virus rather than HIV-1 gag peptides or protein. These results indicate that HIV-1-infected DCs have two previously unrecognized means to evade immune responses: maturation can be blocked reducing the efficacy of antigen presentation from infected cells, and T cell-dependent suppression can be induced.

  11. Microfluidic cell culture systems for drug research.

    PubMed

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  12. The antioxidant effect of the Malaysian Gelam honey on pancreatic hamster cells cultured under hyperglycemic conditions.

    PubMed

    Batumalaie, Kalaivani; Qvist, Rajes; Yusof, Kamaruddin Mohd; Ismail, Ikram Shah; Sekaran, Shamala Devi

    2014-05-01

    Type 2 diabetes consists of progressive hyperglycemia, insulin resistance, and pancreatic β-cell failure which could result from glucose toxicity, inflammatory cytokines, and oxidative stress. In the present study, we investigate the effect of pretreatment with Gelam honey (Melaleuca spp.) and the individual flavonoid components chrysin, luteolin, and quercetin, on the production of reactive oxygen species (ROS), cell viability, lipid peroxidation, and insulin content in hamster pancreatic cells (HIT-T15 cells), cultured under normal and hyperglycemic conditions. Phenolic extracts from a local Malaysian species of Gelam honey (Melaleuca spp.) were prepared using the standard extraction methods. HIT-T15 cells were cultured in 5 % CO2 and then preincubated with Gelam honey extracts (20, 40, 60, and 80 μg/ml) as well as some of its flavonoid components chrysin, luteolin, and quercetin (20, 40, 60, and 80 μM), prior to stimulation by 20 and 50 mM of glucose. The antioxidative effects were measured in these cultured cells at different concentrations and time point by DCFH-DA assay. Pretreatment of cells with Gelam honey extract or the flavonoid components prior to culturing in 20 or 50 mM glucose showed a significant decrease in the production of ROS, glucose-induced lipid peroxidation, and a significant increase in insulin content and the viability of cells cultured under hyperglycemic condition. Our results show the in vitro antioxidative property of the Gelam honey and the flavonoids on the β-cells from hamsters and its cytoprotective effect against hyperglycemia.

  13. Chemical Carcinogen-Induced Changes in tRNA Metabolism in Human Cells

    DTIC Science & Technology

    1982-11-01

    R.W.T., M.S.E.) Department of Medical Microbiology & Immunology (R.G.) Department of Medicine (M.R.G.) The Ohio State University Columbus, Ohio...1973): The measurement of radioactive precursor incorporation into small monolayer cultures. In: Methods In Cell Bioloqy, edited by D.M. Prescott , Vol

  14. Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta.

    PubMed

    Mareschi, Katia; Castiglia, Sara; Sanavio, Fiorella; Rustichelli, Deborah; Muraro, Michela; Defedele, Davide; Bergallo, Massimiliano; Fagioli, Franca

    2016-02-01

    Mesenchymal stromal cells (MSCs) are a promising tool in cell therapies because of their multipotent, bystander, and immunomodulatory properties. Although bone marrow represents the main source of MSCs, there remains a need to identify a stem cell source that is safe and easily accessible and yields large numbers of cells without provoking debates over ethics. In this study, MSCs isolated from amniotic fluid and placenta were compared with bone marrow MSCs. Their immunomodulatory properties were studied in total activated T cells (peripheral blood mononuclear cells) stimulated with phytohemagglutinin (PHA-PBMCs). In particular, an in vitro co-culture system was established to study: (i) the effect on T-lymphocyte proliferation; (ii) the presence of T regulatory lymphocytes (Treg); (iii) the immunophenotype of various T subsets (Th1 and Th2 naïve, memory, effector lymphocytes); (iv) cytokine release and master gene expression to verify Th1, Th2, and Th17 polarization; and (v) IDO production. Under all co-culture conditions with PHA-PBMCs and MSCs (independently of tissue origin), data revealed: (i) T proliferation inhibition; (ii) increase in naïve T and decrease in memory T cells; (iii) increase in T regulatory lymphocytes; (iv) strong Th2 polarization associated with increased interleukin-10 and interleukin-4 levels, Th1 inhibition (significant decreases in interleukin-2, tumor necrosis factor-α, interferon-γ, and interleukin-12) and Th17 induction (production of high concentrations of interleukins-6 and -17); (v) indoleamine-2,3-dioxygenase mRNA induction in MSCs co-cultured with PHA-PBMCs. AF-MSCs had a more potent immunomodulatory effect on T cells than BM-MSCs, only slightly higher than that of placenta MSCs. This study indicates that MSCs isolated from fetal tissues may be considered a good alternative to BM-MSCs for clinical applications. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights

  15. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.

  16. Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata

    PubMed Central

    Mayer, Matthias; Rabindranath, Raman; Börner, Juliane; Hörner, Eva; Bentz, Alexander; Salgado, Josefina; Han, Hong; Böse, Holger; Probst, Jörn; Shamonin, Mikhail; Monkman, Gareth J.; Schlunck, Günther

    2013-01-01

    Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young’s modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices. PMID:24204603

  17. SENIEUR status of the originating cell donor negates certain 'anti-immunosenescence' effects of ebselen and N-acetyl cysteine in human T cell clone cultures.

    PubMed

    Marthandan, Shiva; Freeburn, Robin; Steinbrecht, Susanne; Pawelec, Graham; Barnett, Yvonne

    2014-01-01

    Damage to T cells of the immune system by reactive oxygen species may result in altered cell function or cell death and thereby potentially impact upon the efficacy of a subsequent immune response. Here, we assess the impact of the antioxidants Ebselen and N-acetyl cysteine on a range of biological markers in human T cells derived from a SENIEUR status donor. In addition, the impact of these antioxidants on different MAP kinase pathways in T cells from donors of different ages was also examined. T cell clones were derived from healthy 26, 45 and SENIEUR status 80 year old people and the impact of titrated concentrations of Ebselen or N-acetyl cysteine on their proliferation and in vitro lifespan, GSH:GSSG ratio as well as levels of oxidative DNA damage and on MAP kinase signaling pathways was examined. In this investigation neither Ebselen nor N-acetyl cysteine supplementation had any impact on the biological endpoints examined in the T cells derived from the SENIEUR status 80 year old donor. This is in contrast to the anti-immunosenescent effects of these antioxidants on T cells from donors of 26 or 45 years of age. The analysis of MAP kinases showed that pro-apoptotic pathways become activated in T cells with increasing in vitro age and that Ebselen or N-acetyl cysteine could decrease activation (phosphorylation) in T cells from 26 or 45 year old donors, but not from the SENIEUR status 80 year old donor. The results of this investigation demonstrate that the biological phenotype of SENIEUR status derived human T cells negates the anti-immunosenescence effects of Ebselen and also N-acetyl cysteine. The results highlight the importance of pre-antioxidant intervention evaluation to determine risk-benefit.

  18. Increase in TGF-β Secreting CD4+CD25+ FOXP3+ T Regulatory Cells in Anergic Lepromatous Leprosy Patients

    PubMed Central

    Saini, Chaman; Ramesh, Venkatesh; Nath, Indira

    2014-01-01

    Background Lepromatous leprosy caused by Mycobacterium leprae is associated with antigen specific T cell unresponsiveness/anergy whose underlying mechanisms are not fully defined. We investigated the role of CD25+FOXP3+ regulatory T cells in both skin lesions and M.leprae stimulated PBMC cultures of 28 each of freshly diagnosed patients with borderline tuberculoid (BT) and lepromatous leprosy (LL) as well as 7 healthy household contacts of leprosy patients and 4 normal skin samples. Methodology/Principle Findings Quantitative reverse transcribed PCR (qPCR), immuno-histochemistry/flowcytometry and ELISA were used respectively for gene expression, phenotype characterization and cytokine levels in PBMC culture supernatants. Both skin lesions as well as in vitro antigen stimulated PBMC showed increased percentage/mean fluorescence intensity of cells and higher gene expression for FOXP3+, TGF-β in lepromatous (p<0.01) as compared to tuberculoid leprosy patients. CD4+CD25+FOXP3+ T cells (Tregs) were increased in unstimulated basal cultures (p<0.0003) and showed further increase in in vitro antigen but not mitogen (phytohemaglutinin) stimulated PBMC (iTreg) in lepromatous as compared to tuberculoid leprosy patients (p<0.002). iTregs of lepromatous patients showed intracellular TGF-β which was further confirmed by increase in TGF-β in culture supernatants (p<0.003). Furthermore, TGF-β in iTreg cells was associated with phosphorylation of STAT5A. TGF-β was seen in CD25+ cells of the CD4+ but not that of CD8+ T cell lineage in leprosy patients. iTregs did not show intracellular IFN-γ or IL-17 in lepromatous leprosy patients. Conclusions/Significance Our results indicate that FOXP3+ iTregs with TGF-β may down regulate T cell responses leading to the antigen specific anergy associated with lepromatous leprosy. PMID:24454972

  19. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis.

    PubMed

    Ozden, Simona; Cochet, Madeleine; Mikol, Jacqueline; Teixeira, Antonio; Gessain, Antoine; Pique, Claudine

    2004-10-01

    Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.

  20. Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal cancers and melanoma: implications for adoptive cell transfer therapy.

    PubMed

    Turcotte, Simon; Gros, Alena; Hogan, Katherine; Tran, Eric; Hinrichs, Christian S; Wunderlich, John R; Dudley, Mark E; Rosenberg, Steven A

    2013-09-01

    Adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) can mediate cancer regression in patients with metastatic melanoma, but whether this approach can be applied to common epithelial malignancies remains unclear. In this study, we compared the phenotype and function of TILs derived from liver and lung metastases from patients with gastrointestinal (GI) cancers (n = 14) or melanoma (n = 42). Fewer CD3(+) T cells were found to infiltrate GI compared with melanoma metastases, but the proportions of CD8(+) cells, T cell differentiation stage, and expression of costimulatory molecules were similar for both tumor types. Clinical-scale expansion up to ~50 × 10(9) T cells on average was obtained for all patients with GI cancer and melanoma. From GI tumors, however, TIL outgrowth in high-dose IL-2 yielded 22 ± 1.4% CD3(+)CD8(+) cells compared with 63 ± 2.4% from melanoma (p < 0.001). IFN-γ ELISA demonstrated MHC class I-mediated reactivity of TIL against autologous tumor in 5 of 7 GI cancer patients tested (9% of 188 distinct TIL cultures) and in 9 of 10 melanoma patients (43% of 246 distinct TIL cultures). In these assays, MHC class I-mediated up-regulation of CD137 (4-1BB) expression on CD8(+) cells suggested that 0-3% of TILs expanded from GI cancer metastases were tumor-reactive. This study implies that the main challenge to the development of TIL adoptive cell transfer for metastatic GI cancers may not be the in vitro expansion of bulk TILs, but the ability to select and enrich for tumor-reactive T cells.