Sample records for taas wall streeti

  1. Identification of potential cell wall component that allows Taka-amylase A adsorption in submerged cultures of Aspergillus oryzae.

    PubMed

    Sato, Hiroki; Toyoshima, Yoshiyuki; Shintani, Takahiro; Gomi, Katsuya

    2011-12-01

    We observed that α-amylase (Taka-amylase A; TAA) activity in the culture broth disappeared in the later stage of submerged cultivation of Aspergillus oryzae. This disappearance was caused by adsorption of TAA onto the cell wall of A. oryzae and not due to protein degradation by extracellular proteolytic enzymes. To determine the cell wall component(s) that allows TAA adsorption efficiently, the cell wall was fractionated by stepwise alkali treatment and enzymatic digestion. Consequently, alkali-insoluble cell wall fractions exhibited high levels of TAA adsorption. In addition, this adsorption capacity was significantly enhanced by treatment of the alkali-insoluble fraction with β-glucanase, which resulted in the concomitant increase in the amount of chitin in the resulting fraction. In contrast, the adsorption capacity was diminished by treating the cell wall fraction with chitinase. These results suggest that the major component that allows TAA adsorption is chitin. However, both the mycelium and the cell wall demonstrated the inability to allow TAA adsorption in the early stage of cultivation, despite chitin content in the cell wall being identical in both early and late stages of cultivation. These results suggest the existence of unidentified factor(s) that could prevent the adsorption of TAA onto the cell wall. Such factor(s) is most likely removed or diminished from the cell wall following longer cultivation periods.

  2. 20 CFR 617.56 - Inviolate rights to TAA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Inviolate rights to TAA. 617.56 Section 617... ASSISTANCE FOR WORKERS UNDER THE TRADE ACT OF 1974 Administration by Applicable State Agencies § 617.56 Inviolate rights to TAA. Except as specifically provided in this part 617, the rights of individuals to TAA...

  3. Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae.

    PubMed

    Zhang, Silai; Sato, Hiroki; Ichinose, Sakurako; Tanaka, Mizuki; Miyazawa, Ken; Yoshimi, Akira; Abe, Keietsu; Shintani, Takahiro; Gomi, Katsuya

    2017-07-01

    We have previously reported that α-amylase (Taka-amylase A, TAA) activity disappears in the later stage of submerged Aspergillus oryzae culture as a result of TAA adsorption onto the cell wall. Chitin, one of the major components of the cell wall, was identified as a potential factor that facilitates TAA adsorption. However, TAA adsorption only occurred in the later stage of cultivation, although chitin was assumed to be sufficiently abundant in the cell wall regardless of the submerged culture period. This suggested the presence a factor that inhibits TAA adsorption to the cell wall in the early stage of cultivation. In the current study, we identified α-1,3-glucan as a potential inhibiting factor for TAA adsorption. We constructed single, double, and triple disruption mutants of three α-1,3-glucan synthase genes (agsA, agsB, and agsC) in A. oryzae. Growth characteristics and cell wall component analysis of these disruption strains showed that AgsB plays a major role in α-1,3-glucan synthesis. In the ΔagsB mutant, TAA was adsorbed onto the mycelium in all stages of cultivation (early and later), and the ΔagsB mutant cell walls had a significantly high capacity for TAA adsorption. Moreover, the α-1,3-glucan content of the cell wall prepared from the wild-type strain in the later stage of cultivation was markedly reduced compared with that in the early stage. These results suggest that α-1,3-glucan is a potential inhibiting factor for TAA adsorption onto the cell wall component, chitin, in the early stage of submerged culture in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Targeting of tumor-associated antigens (TAA) in experimental immunotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikumar, T.S.; Galbo, L.; Marini, C.

    1986-06-01

    We have previously shown the superiority of tumor-associated antigens (TAA) to function as effective immunogens when administered with bilayer membrane vesicles called liposomes. The ability of liposomes to target TAA to host antigen-presenting cells is analyzed here. 1-Butanol extracted TAA from two syngeneic rat colon cancer tumors (WB 2054 and W 1756) was radioiodinated (/sup 131/I-TAA). Free /sup 131/I and /sup 131/I-TAA (2.8 X 10(7) cpm and 75 micrograms TAA per rat) were used as tracers, with or without incorporation into liposomes (composition: sphingomyelin, cholesterol, dicetyl phosphate at 70:24:6 molar ratio). Six groups of male rats (BN X WF formore » WB2054 and Wistar/Furth for W1756, n = 18 each group) were injected iv with either free tracers or the tracers incorporated into liposomes. Whole blood clearance curve was biphasic (half-life alpha = 5 min; half life beta = 12 hr), suggesting a two-compartmental model of distribution. Seven animals from each group were sacrificed at set times (15 min to 48 hr), organs harvested and cpm/g of tissue estimated. Liposome /sup 131/I and liposome /sup 131/I-TAA were targeted to and retained preferentially in liver and spleen. Four animals from each group were imaged serially using a gamma camera. Matched pair analysis of regions showed persistently higher activity in liver-spleen area when liposomes were used (P less than 0.001). The uptake of radiolabeled antigens by plastic adherent mononuclear cells in liver and spleen was significantly higher when presented with liposomes (macrophage uptake index: liver = 1.65 vs 0.55; spleen = 5.85 vs 1.15; with and without liposomes, respectively).« less

  5. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis.

    PubMed

    Yang, Zhong-Bao; Geng, Xiaoyu; He, Chunmei; Zhang, Feng; Wang, Rong; Horst, Walter J; Ding, Zhaojun

    2014-07-01

    The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Surviving Job Loss: Motivation among Second Year Trade Adjustment Assistance (TAA) Students

    ERIC Educational Resources Information Center

    Karnes, Sandra Lee

    2012-01-01

    This ethnographic case study investigated second year college students who participated in the Trade Adjustment Assistance (TAA) program at a technical college in northeastern Pennsylvania. In order to understand how learners stayed motivated in a college setting, I selected participants who were in their second year of the TAA program. A total of…

  7. High-pressure phases of Weyl semimetals NbP, NbAs, TaP, and TaAs

    NASA Astrophysics Data System (ADS)

    Guo, ZhaoPeng; Lu, PengChao; Chen, Tong; Wu, JueFei; Sun, Jian; Xing, DingYu

    2018-03-01

    In this study, we used the crystal structure search method and first-principles calculations to systematically explore the highpressure phase diagrams of the TaAs family (NbP, NbAs, TaP, and TaAs). Our calculation results show that NbAs and TaAs have similar phase diagrams, the same structural phase transition sequence I41 md→ P6¯ m2→ P21/ c→ Pm3¯ m, and slightly different transition pressures. The phase transition sequence of NbP and TaP differs somewhat from that of NbAs and TaAs, in which new structures emerge, such as the Cmcm structure in NbP and the Pmmn structure in TaP. Interestingly, we found that in the electronic structure of the high-pressure phase P6¯ m2-NbAs, there are coexistingWeyl points and triple degenerate points, similar to those found in high-pressure P6¯ m2-TaAs.

  8. Optical spectroscopy of the Weyl semimetal TaAs

    DOE PAGES

    Xu, B.; Dai, Y. M.; Zhao, L. X.; ...

    2016-03-24

    Here, we present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The weight of the Drude peak decreases upon cooling, following a T 2 temperature dependence, in good agreement with theoretical predictions. Two linear components with distinct slopes dominate the low-temperature optical conductivity. A comparison between our experimental results and theoretical calculations suggests that the linear conductivity belowmore » ~230 cm –1 arises purely from interband transitions near the Weyl points, providing rich information about the Weyl semimetal state in TaAs.« less

  9. Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny.

    PubMed

    Wang, Aiming; Xia, Qun; Xie, Wenshuang; Dumonceaux, Tim; Zou, Jitao; Datla, Raju; Selvaraj, Gopalan

    2002-06-01

    Bread wheat (hexaploid AABBDD genome; 16 billion basepairs) is a genetically complex, self-pollinating plant with bisexual flowers that produce short-lived pollen. Very little is known about the molecular biology of its gametophyte development despite a longstanding interest in hybrid seeds. We present here a comprehensive characterization of three apparently homeologous genes (TAA1a, TAA1b and TAA1c) and demonstrate their anther-specific biochemical function. These eight-exon genes, found at only one copy per haploid complement in this large genome, express specifically within the sporophytic tapetum cells. The presence of TAA1 mRNA and protein was evident only at specific stages of pollen development as the microspore wall thickened during the progression of free microspores into vacuolated-microspores. This temporal regulation matched the assembly of wall-impregnated sporopollenin, a phenylpropanoid-lipid polymer containing very long chain fatty alcohols (VLCFAlc), described in the literature. Our results establish that sporophytic genes contribute to the production of fatty alcohols: Transgenic expression of TAA1 afforded production of long/VLCFAlc in tobacco seeds (18 : 1; 20 : 1; 22 : 1; 24 : 0; 26 : 0) and in Escherichia coli (14 : 0; 16 : 0; 18 : 1), suggesting biochemical versatility of TAA1 with respect to cellular milieu and substrate spectrum. Pollen walls additionally contain fatty alcohols in the form of wax esters and other lipids, and some of these lipids are known to play a role in the highly specific sexual interactions at the pollen-pistil interface. This study provides a handle to study these and to manipulate pollen traits, and, furthermore, to understand the molecular biology of fatty alcohol metabolism in general.

  10. A magneto-resistance and magnetisation study of TaAs2 semimetal

    NASA Astrophysics Data System (ADS)

    Harimohan, V.; Bharathi, A.; Rajaraman, R.; Sundar, C. S.

    2018-04-01

    Here we report on the magneto-transport and magnetization studies on single crystalline samples of TaAs2. The resistivity versus temperature of the single crystalline sample shows a metallic behavior with a large residual resistivity ratio. The TaAs2 crystal shows large magneto resistance at low temperature, reaching 91000% at 2.5K in a field of 15 T and the resistivity versus temperature shows an upturn at low temperature, when measured with increase in magnetic field. Resistivity and magnetization measurements as a function of magnetic field show characteristic Shubnikov de Haas and de Hass van Alphen oscillations, displaying anisotropy with respect to the crystalline direction. The effective mass and Dingle temperature were estimated from the analysis of the oscillation amplitude as a function of temperature and magnetic field. Negative magneto-resistance was not observed with current parallel to the magnetic field direction, suggesting that TaAs2 is not an archetypical Weyl metal.

  11. Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory

    NASA Astrophysics Data System (ADS)

    Nath Gupta, Satyendra; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Elghazali, Moaz A.; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-05-01

    High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at GPa for NbAs and GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

  12. Anomalous electronic structure and magnetoresistance in TaAs2

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-06-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  13. Anomalous electronic structure and magnetoresistance in TaAs2

    PubMed Central

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions. PMID:27271852

  14. Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory.

    PubMed

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D V S; Shekhar, C; Elghazali, Moaz A; Naumov, Pavel G; Medvedev, Sergey A; Felser, C; Waghmare, U V; Sood, A K

    2018-05-10

    High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

  15. Anomalous electronic structure and magnetoresistance in TaAs 2

    DOE PAGES

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; ...

    2016-01-01

    We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs 2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs 2 is a new topological semimetal [Z 2more » invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.« less

  16. Molecular screening of the Hbs Constant Spring (codon 142, TAA>CAA, α2) and Paksé (codon 142, TAA>TAT, α2) mutations in Thailand.

    PubMed

    Pichanun, Dalad; Munkongdee, Thongperm; Klamchuen, Sumonmaln; Butthep, Punnee; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros

    2010-01-01

    Hb Constant Spring [Hb CS, α142(H19)Term] and Hb Paksé [α142(H19)Term] occur from the mutation in the termination codon of the α2-globin gene, TAA>CAA (→Gln) and TAA>TAT (→Tyr), respectively. They are the most common nondeletional α-thalassemia (α-thal) variants causing Hb H disease in Southeast Asia. In this study, 587 cord blood samples were screened for the Hb CS and Hb Paksé mutations by a dot-blot hybridization technique using oligonucleotide probes specific for each mutation. The results showed that the prevalence of Hb CS and Hb Paksé in Central Thailand are 5.80 and 0.51%, respectively, which is in concordance with the results from previous studies.

  17. Functional characteristics of a novel SMAD4 mutation from thoracic aortic aneurysms (TAA).

    PubMed

    Wu, Lifei

    2017-09-10

    SMAD4 is as an essential mediator of the transforming growth factor β (TGF-β) signaling pathway, and dysregulated TGF-β signaling is linked with thoracic aortic aneurysms (TAAs). In this study, we functionally characterized the Smad4 S271N mutation (the mutation c. 812G>A in Smad4 results in the amino acid substitution Ser271Asn) that was isolated from TAA individuals. We first constructed wild-type human Smad4 and Smad4 S271N plasmids. These constructs were then transiently transfected into HEK293T cells, and subsequent real-time PCR and western blotting demonstrated that wild-type Smad4 and Smad4 S271N were successfully expressed in 293T cells. We found that HEK293T cells overexpressing Smad4 S271N showed a strong increase in both cytoplasmic and nuclear Smad4 protein levels in response to TGF-β1. Although TGF-β signaling was the same in wild-type Smad4- and Smad4 S271N-transfected cells following TGF-β1 exposure, interestingly, we observed that transient Smad4 S271N expression in HEK293T cells caused a significant basal activation of TGF-β signaling. These results indicated that Smad4 may not directly induce TAA; rather it may contribute to TAA in combination with other risk factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Writing Inservice Guide for English Language Arts and TAAS.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    This guide, made up of transparencies and text, offers a basis for a 2-day interactive inservice presentation on how to teach writing, to help a school district ensure that its English language arts program addresses the Texas Assessment of Academic Skills (TAAS) test. In addition to sections on the use of the guide and the format of the TAAS…

  19. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs

    PubMed Central

    Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam

    2017-01-01

    A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics. PMID:28071685

  20. Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP

    DOE PAGES

    Lee, Chi-Cheng; Xu, Su-Yang; Huang, Shin-Ming; ...

    2015-12-01

    The family of binary compounds including TaAs, TaP, NbAs, and NbP was recently discovered as the first realization of Weyl semimetals. In order to develop a comprehensive description of the charge carriers in these Weyl semimetals, we performed detailed and systematic electronic band structure calculations which reveal the nature of Fermi surfaces and their complex interconnectivity in TaAs, TaP, NbAs, and NbP. In conclusion, our work reports a comparative and comprehensive study of Fermi surface topology and band structure details of all known members of the Weyl semimetal family and hence provides the fundamental knowledge for realizing the many predictedmore » exotic topological quantum physics of Weyl semimetals based on the TaAs class of materials.« less

  1. Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation.

    PubMed

    Ouyang, Tao; Xiao, Huaping; Tang, Chao; Hu, Ming; Zhong, Jianxin

    2016-06-22

    A fundamental understanding of the phonon transport property is crucial to predict the thermal management performance in micro/nano-electronic devices. By combining first principle calculations and Boltzmann phonon transport equation, we investigate thermal transport in TaAs-a typical Weyl semimetal. The lattice thermal conductivity of TaAs at room temperature was found to be 39.26 W mK(-1) and 24.78 W mK(-1) along the a(b) and c crystal axis, respectively, showing obvious anisotropy. Detailed analyses of the mode level phonon properties further revealed that the three acoustic phonon modes dominate the overall thermal transport and the major phonon scattering channels in this typical Weyl semimetal were TA1/TA2/LA + O ↔ O and A + A ↔ O. The representative phonon mean free path of TaAs was also calculated in this paper, which provide helpful guidance for the thermal management of TaAs-based electronic devices.

  2. Signatures of Fermi Arcs in the Quasiparticle Interferences of the Weyl Semimetals TaAs and NbP.

    PubMed

    Chang, Guoqing; Xu, Su-Yang; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Belopolski, Ilya; Sanchez, Daniel S; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Lin, Hsin; Hasan, M Zahid

    2016-02-12

    The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature. Such a topological semimetal features a novel type of anomalous surface state, the Fermi arc, which connects a pair of Weyl nodes through the boundary of the crystal. Here, we present theoretical calculations of the quasiparticle interference (QPI) patterns that arise from the surface states including the topological Fermi arcs in the Weyl semimetals TaAs and NbP. Most importantly, we discover that the QPI exhibits termination points that are fingerprints of the Weyl nodes in the interference pattern. Our results, for the first time, propose a universal interference signature of the topological Fermi arcs in TaAs, which is fundamental for scanning tunneling microscope (STM) measurements on this prototypical Weyl semimetal compound. More generally, our work provides critical guideline and methodology for STM studies on new Weyl semimetals. Further, the scattering channels revealed by our QPIs are broadly relevant to surface transport and device applications based on Weyl semimetals.

  3. Vector optical activity in the Weyl semimetal TaAs

    DOE PAGES

    Norman, M. R.

    2015-12-15

    Here, it is shown that the Weyl semimetal TaAs can have a significant polar vector contribution to its optical activity. This is quantified by ab initio calculations of the resonant x-ray diffraction at the Ta L1 edge. For the Bragg vector (400), this polar vector contribution to the circular intensity differential between left and right polarized x-rays is predicted to be comparable to that arising from linear dichroism. Implications this result has in regards to optical effects predicted for topological Weyl semimetals are discussed.

  4. Practitioner Expectations and Experiences with the Certificate IV in Training and Assessment (TAA40104): Support Document

    ERIC Educational Resources Information Center

    Clayton, Berwyn; Meyers, Dave; Bateman, Andrea; Bluer, Robert

    2010-01-01

    This document supports the report "Practitioner Expectations and Experiences with the Certificate IV in Training and Assessment (TAA40104)". The first section outlines the methodology used to undertake the research and covers the design of the research, sample details, data collection processes and the strategy for data analysis and…

  5. Unmasking Hb Paksé (codon 142, TAA>TAT, α2) and its combinations in patients also carrying Hb Constant Spring (codon 142, TAA>CAA, α2) in northern Thailand.

    PubMed

    Pornprasert, Sakorn; Panyasai, Sitthichai; Treesuwan, Kallayanee

    2012-01-01

    The incidence of Hb Paksé (codon 142, TAA>TAT, α2) might have been underestimated due to misidentifying some cases as Hb Constant Spring (Hb CS, codon 142, TAA>CAA, α2) since both abnormal hemoglobins (Hbs) migrate to the same position on Hb electrophoresis or chromatography. Multiplex asymmetric allele-specific polymerase chain reaction (PCR) for identification of Hb CS and Hb Paksé, and a real-time PCR (ReTi-PCR) with SYBR Green1 high resolution melting (HRM) analysis, for detection of the α-thalassemia-1 (α-thal-1) Southeast Asian (- -(SEA)/) type deletion, were performed on 114 blood samples collected from subjects who lived in northern Thailand. These samples were previously identified as carrying Hb CS by capillary electrophoresis (CE) or high performance liquid chromatography (HPLC). Five out of 114 (4.4%) samples were found to carry Hb Paksé with four different genotypes including Hb Paksé trait, compound Hb CS/Hb Paksé, Hb H-Hb Paksé disease and Hb H-Hb Paksé-Hb E disease. These results suggested that Hb Paksé and its various combinations can be misidentified as Hb CS. Although the clinical symptoms of Hb Paksé and Hb CS are similar, to prevent erroneous epidemiological data on Hb CS as well as underestimating the prevalence of Hb Paksé in northern Thailand, DNA analysis is recommended to be performed in all cases when peaks of Hb CS/Hb Paksé are detected on CE or HPLC.

  6. Training and Assessment (TAA40104) in Community Providers in New South Wales: Participant Intentions and Outcomes. Occasional Paper

    ERIC Educational Resources Information Center

    Walker, Ruth

    2010-01-01

    Five years after implementation, the Certificate IV in Training and Assessment (TAA40104, and hereafter also referred to as the Certificate IV) remains a pivotal qualification in the national vocational education and training (VET) system. Under the Australian Quality Training Framework (AQTF) it is the qualification required by both workplace…

  7. Bio-chemo-mechanics of thoracic aortic aneurysms.

    PubMed

    Wagenseil, Jessica E

    2018-03-01

    Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.

  8. Detection of Hb Constant Spring [α142, Term→Gln, TAA>CAA (α2)] in heterozygotes combined with β-thalassemia.

    PubMed

    Li, You-Qiong; Li, Ru; Li, Dong-Zhi

    2013-01-01

    Hb Constant Spring [Hb CS, α142, Term→Gln, TAA>CAA (α2)] is a nondeletional form of α-thalassemia (α-thal) that is most prevalent in Southern Chinese and Southeast Asian populations. We previously found that Hb CS trait could efficiently be screened using Sebia Capillarys2. In this study, we report that Hb CS heterozygotes combined with β-thal could not be detected by the Sebia Capillarys2 method due to the very small amount of Hb CS.

  9. Temperature-tunable Fano resonance induced by strong Weyl fermion-phonon coupling in TaAs

    NASA Astrophysics Data System (ADS)

    Dai, Yaomin; Trugman, S. A.; Zhu, J.-X.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Xu, B.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Qiu, X. G.

    Strong coupling between discrete phonon and continuous electron-hole pair excitations can give rise to a pronounced asymmetry in the phonon line shape, known as the Fano resonance. We present infrared spectroscopic studies on the recently discovered Weyl semimetal TaAs at different temperatures. Our experimental results reveal strong coupling between an infrared-active A1 phonon and electronic transitions near the Weyl points (Weyl fermions), as evidenced by the conspicuous asymmetry in the phonon line shape. More interestingly, the phonon line shape can be continuously tuned by temperature, which we demonstrate to arise from the suppression of the electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above the Fermi level. Supported by LANL LDRD and LANL-UCRP programs.

  10. Practitioner Expectations and Experiences with the Certificate IV in Training and Assessment (TAA40104). A National Vocational Education and Training Research and Evaluation Program Report

    ERIC Educational Resources Information Center

    Clayton, Berwyn; Meyers, Dave; Bateman, Andrea; Bluer, Robert

    2010-01-01

    The Certificate IV in Training and Assessment (TAA40104) is seen as the standard entry-level teaching qualification in the vocational education and training (VET) sector. The qualification is widely accepted and well supported as an essential requirement for VET practitioners. However, it has been criticised in relation to its ability to provide…

  11. Phase transition in the quantum limit of the Weyl semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Ramshaw, Brad

    Under extreme magnetic fields, electrons in a metal are confined to a single highly-degenerate quantum state -a regime known as the quantum limit. This state is unstable to the formation of new states of matter, such as the fractional quantum Hall effect in two dimensions. The fate of 3D metals in the quantum limit, on the other hand, has been relatively unexplored. The discovery of monopnictide Weyl semimetals has renewed interest in the high-field properties of 3D electrons, particularly those with linear dispersions. Several difficulties in determining the high-field properties have arisen, including the highly anisotropic nature of the magnetoresistance, and the presence of trivial (parabolic) Fermi pockets that cloud the underlying behaviour of Weyl pockets. We use magnetic fields up to 90 Tesla to put the Weyl semimetal TaAs into its extreme quantum limit, isolating its linear 0th Landau level from the rest of the electronic spectrum. We find that a gap opens in the conductivity parallel to the magnetic field above 70 Tesla, and also find an abrupt reversal in the field-evolution of the sound velocity at the same magnetic field, suggesting a thermodynamic phase transition to a new state of matter. DOE BES ''Science at 100 T''.

  12. Temperature-tunable Fano resonance induced by strong coupling between Weyl fermions and phonons in TaAs

    DOE PAGES

    Xu, Bing; Dai, Yaomin M.; Zhao, Lingxiao X.; ...

    2017-03-30

    Strong coupling between discrete phonon and continuous electron–hole pair excitations can induce a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in various systems. We reveal explicit evidence for strong coupling between an infrared-active phonon and electronic transitions near the Weyl points through the observation of a Fano resonance in the Weyl semimetal TaAs. The resulting asymmetry in the phonon line shape, conspicuous at low temperatures, diminishes continuously with increasing temperature. Furthermore, this behaviour originates from the suppression of electronic transitions near the Weyl points due to the decreasing occupation ofmore » electronic states below the Fermi level (EF) with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above EF. These findings not only elucidate the mechanism governing the tunable Fano resonance but also open a route for exploring exotic physical phenomena through phonon properties in Weyl semimetals.« less

  13. Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai

    2016-09-01

    Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4 d and 5 d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.

  14. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  15. Wall characterization for through-the-wall radar applications

    NASA Astrophysics Data System (ADS)

    Greneker, Gene; Rausch, E. O.

    2008-04-01

    There has been continuing interest in the penetration of multilayer building materials, such as wood walls with air gaps and concrete hollow core block, using through-the-wall (TTW) radar systems. TTW operational techniques and signal propagation paths vary depending on how the TTW system is intended to be operated. For example, the operator of a TTW radar may be required to place the radar against the intervening wall of interest while collecting data. Other operational doctrines allow the radar to be operated in a stand-off mode from the wall. The stand-off distances can vary from feet to hundreds of feet, depending on the type of radar being used. When a signal is propagated through a multilayer wall with air gaps between the material and the wall construction uses materials of radically different dielectric constants, attenuation may not be the only effect that the probing signal experiences passing through the wall. This paper presents measurements of a hollow core concrete block wall and the measurement of a standard wall constructed of siding and wallboard. Both types of walls are typically found in most U.S. homes. These limited measurements demonstrate that the type of wall being penetrated by a wideband signal can modify the probing signal.

  16. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  17. Reinforcement mechanism of multi-anchor wall with double wall facing

    NASA Astrophysics Data System (ADS)

    Suzuki, Kouta; Kobayashi, Makoto; Miura, Kinya; Konami, Takeharu; Hayashi, Taketo

    2017-10-01

    The reinforced soil wall has high seismic performance as generally known. However, the seismic behavior has not been clarified accurately yet, especially on multi-anchor wall with double wall facing. Indefinite behavior of reinforced soil wall during earthquake make us complicated in case with adopting to the abutment, because of arrangement of anchor plate as reinforcement often different according to the width of roads. In this study, a series of centrifuge model tests were carried out to investigate the reinforcement mechanism of multi anchor wall with double wall facing from the perspective of the vertical earth pressure. Several types of reinforce arrangement and rigid wall were applied in order to verify the arch function in the reinforced regions. The test results show unique behavior of vertical earth pressure, which was affected by arch action. All the vertical earth pressure placed behind facing panel, are larger than that of middle part between facing panel despite of friction between backfill and facing panel. Similar results were obtained in case using rigid wall. On the other hands, the vertical earth pressure, which were measured at the 3cm high from bottom of model container, shows larger than that of bottom. This results show the existence of arch action between double walls. In addition, it implies that the wall facing of such soil structure confined the backfill as pseudo wall, which is very reason that the multi anchor wall with double wall facing has high seismic performance.

  18. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  19. Wind tunnels with adapted walls for reducing wall interference

    NASA Technical Reports Server (NTRS)

    Ganzer, U.

    1979-01-01

    The basic principle of adaptable wind tunnel walls is explained. First results of an investigation carried out at the Aero-Space Institute of Berlin Technical University are presented for two dimensional flexible walls and a NACA 0012 airfoil. With five examples exhibiting very different flow conditions it is demonstrated that it is possible to reduce wall interference and to avoid blockage at transonic speeds by wall adaptation.

  20. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    NASA Astrophysics Data System (ADS)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  1. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian.

    PubMed

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called "wall preference". This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian "wall-preference" behavior only appears to be a "preference" behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then moving along it

  2. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  3. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  4. Spontaneous Behaviors and Wall-Curvature Lead to Apparent Wall Preference in Planarian

    PubMed Central

    Akiyama, Yoshitaro; Agata, Kiyokazu; Inoue, Takeshi

    2015-01-01

    The planarian Dugesia japonica tends to stay near the walls of its breeding containers and experimental dishes in the laboratory, a phenomenon called “wall preference”. This behavior is thought to be important for environmental adaptation, such as hiding by planarians in nature. However, the mechanisms regulating wall-preference behavior are not well understood, since this behavior occurs in the absence of any particular stimulation. Here we show the mechanisms of wall-preference behavior. Surprisingly, planarian wall-preference behavior was also shown even by the head alone and by headless planarians. These results indicate that planarian “wall-preference” behavior only appears to be a “preference” behavior, and is actually an outcome of spontaneous behaviors, rather than of brain function. We found that in the absence of environmental cues planarians moved basically straight ahead until they reached a wall, and that after reaching a wall, they changed their direction of movement to one tangential to the wall, suggesting that this spontaneous behavior may play a critical role in the wall preference. When we tested another spontaneous behavior, the wigwag movement of the planarian head, using computer simulation with various wigwag angles and wigwag intervals, large wigwag angle and short wigwag interval reduced wall-preference behavior. This indicated that wigwag movement may determine the probability of staying near the wall or leaving the wall. Furthermore, in accord with this simulation, when we tested planarian wall-preference behavior using several assay fields with different curvature of the wall, we found that concavity and sharp curvature of walls negatively impacted wall preference by affecting the permissible angle of the wigwag movement. Together, these results indicate that planarian wall preference may be involuntarily caused by the combination of two spontaneous planarian behaviors: moving straight ahead until reaching a wall and then

  5. Domain wall nanoelectronics

    NASA Astrophysics Data System (ADS)

    Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J. F.

    2012-01-01

    Domains in ferroelectrics were considered to be well understood by the middle of the last century: They were generally rectilinear, and their walls were Ising-like. Their simplicity stood in stark contrast to the more complex Bloch walls or Néel walls in magnets. Only within the past decade and with the introduction of atomic-resolution studies via transmission electron microscopy, electron holography, and atomic force microscopy with polarization sensitivity has their real complexity been revealed. Additional phenomena appear in recent studies, especially of magnetoelectric materials, where functional properties inside domain walls are being directly measured. In this paper these studies are reviewed, focusing attention on ferroelectrics and multiferroics but making comparisons where possible with magnetic domains and domain walls. An important part of this review will concern device applications, with the spotlight on a new paradigm of ferroic devices where the domain walls, rather than the domains, are the active element. Here magnetic wall microelectronics is already in full swing, owing largely to the work of Cowburn and of Parkin and their colleagues. These devices exploit the high domain wall mobilities in magnets and their resulting high velocities, which can be supersonic, as shown by Kreines’ and co-workers 30 years ago. By comparison, nanoelectronic devices employing ferroelectric domain walls often have slower domain wall speeds, but may exploit their smaller size as well as their different functional properties. These include domain wall conductivity (metallic or even superconducting in bulk insulating or semiconducting oxides) and the fact that domain walls can be ferromagnetic while the surrounding domains are not.

  6. 19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ELECTRICAL JUNCTION BOXES, BUILT-IN WALL CABINETRY, AND ELECTRICAL WALL HEATER. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  7. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  9. Ascending Aortic Aneurysm Is an Inherited Disease: A Contemporary Literature Review Based on Hill's Criteria of Specificity, Strength of Association, and Biological Coherence.

    PubMed

    Ahmad, Mirza Mujadil; Kiani, Immad Arif; Ammar, Khawaja Afzal; Ahmad, Mirza Nubair; Khandheria, Bijoy K; Paterick, Timothy E; Jain, Renuka; Tajik, A Jamil

    There is growing evidence of a differential etiological basis for thoracic aortic aneurysms (TAA), with ascending (As) TAAs being genetically mediated and descending (Des) TAAs more strongly related to acquired pathologies. A comprehensive literature review of this hypothesis has not been carried out. We carried out a systematic literature review based on the latest guidelines on TAA endorsed by the American Heart Association. The etiologies were classified as genetic and inherited, the studies were tabulated accordingly, and Hill's epidemiological criteria of causality were applied. We found 38 studies addressing the etiology of TAAs. Out of these, 17 were about genetic causes, 9 about acquired causes, and 4 had information regarding both etiologies. Multiple genetic studies showed a strong association of As TAA with different genetic mutations. Contrary to commonly held beliefs, acquired causes, that is, dyslipidemia, diabetes, and atherosclerosis, were negatively associated with As TAA and positively associated with Des TAA. Hypertension was only associated with Des TAA and dissections (TAAD), not with As TAA. Multiple studies fulfilled the criteria of strength of association (n = 4), consistency (n = 9), specificity (n = 5), temporality (24), biological gradient (n = 3), plausibility (n = 38), biological coherence (n = 25), experiment (n = 4), and analogy (n = 6). Our literature review supports the hypothesis that As TAA is genetically mediated and Des TAA is predominantly an acquired pathology, and supports the argument for genetic testing in all cases of As TAA.

  10. 5. Detail of bin wall, showing the thinner exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail of bin wall, showing the thinner exterior wall next to the inner wall with its alternating courses of channel tile and hollow tile. - Saint Anthony Elevator No. 3, 620 Malcom Avenue, Southeast, Minneapolis, Hennepin County, MN

  11. 25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  12. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  13. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  14. Adaptive wall technology for minimization of wall interferences in transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.

  15. The Regionalization of Total Ankle Arthroplasties and Ankle Fusions in New York State: A 10-Year Comparative Analysis.

    PubMed

    Buza, John A; Liu, James X; Jancuska, Jeffrey; Bosco, Joseph A

    2017-06-01

    Total ankle arthroplasty (TAA) provides an alternative to ankle fusion (AF). The purpose of this study is to (1) determine the extent of TAA regionalization, as well as examine the growth of TAA performed at high-, medium-, and low-volume New York State institutions and (2) compare this regionalization and growth with AF. The New York Statewide Planning and Research Cooperative System (SPARCS) administrative data were used to identify 737 primary TAA and 7453 AF from 2005 to 2014. The volume of TAA and AF surgery in New York State was mapped according to patient and hospital 3-digit zip code. The number of TAA per year grew 1500% (from 11 to 177) from 2005 to 2014, while there was a 35.6% reduction (from 895 to 576) in yearly AF procedures. TAA recipients were widely distributed throughout the state, while TAA procedures were regionalized to a few select metropolitan centers. AF procedures were performed more uniformly than TAA. The number of TAA has continued to increase at high- (15 to 91) and medium-volume (14 to 67) institutions where it has decreased at low-volume institutions (44 to 19). The increased utilization of TAA is attributed to relatively few high-volume centers located in major metropolitan centers. Level IV: well-designed case-control or cohort studies.

  16. Research on wall shear stress considering wall roughness when shear swirling flow vibration cementing

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Ai, Chi; Feng, Fuping

    2017-01-01

    When shear swirling flow vibration cementing, the casing is revolving periodically and eccentrically, which leads to the annulus fluid in turbulent swirling flow state. The wall shear stress is more than that in laminar flow field when conventional cementing. The paper mainly studied the wall shear stress distribution on the borehole wall when shear swirling flow vibration cementing based on the finite volume method. At the same time, the wall roughness affected and changed the turbulent flow near the borehole wall and the wall shear stress. Based on the wall function method, the paper established boundary conditions considering the wall roughness and derived the formula of the wall shear stress. The results showed that the wall roughness significantly increases the wall shear stress. However, the larger the wall roughness, the greater the thickness of mud cake, which weakening the cementing strength. Considering the effects in a comprehensive way, it is discovered that the particle size of solid phase in drilling fluid is about 0.1 mm to get better cementing quality.

  17. On investigating wall shear stress in two-dimensional plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan

    2012-11-01

    Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.

  18. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by

  19. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  20. Direct calculation of wall interferences and wall adaptation for two-dimensional flow in wind tunnels with closed walls

    NASA Technical Reports Server (NTRS)

    Amecke, Juergen

    1986-01-01

    A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.

  1. Ascending thoracic aortic aneurysms protect against myocardial infarctions.

    PubMed

    Chau, Katherine; Elefteriades, John A

    2014-09-01

    There has been increasing evidence that ascending thoracic aortic aneurysms (TAAs) protect against atherosclerosis. However, there have been no studies examining the relationship between ascending TAAs and clinical endpoints of atherosclerosis, such as stroke or peripheral arterial disease. In this study, we aim to characterize the relationship between TAAs and a specific clinical endpoint of atherosclerosis, myocardial infarction (MI). We compared prevalence of coronary artery disease (CAD) and MIs in 487 patients who underwent surgical repair for ascending TAAs to 500 control patients who did not have an ascending TAA. Multivariate binary logistic regression was used to calculate the odds of having MI if a patient had an ascending TAA versus any of several MI risk factors. There was a significantly lower prevalence of CAD and MI in the ascending TAA group than in the control TAA group. The odds of having a MI if a patient had a MI risk factor were all > 1 (more likely to have a MI), with the lowest statistically significant odds ratio being 1.54 (age; p = 0.001) and the highest being 14.9 (family history of MI; p < 0.001). The odds ratio of having a MI if a patient had an ascending TAA, however, was near 0 at 0.05 (p < 0.001). This study provides evidence that ascending TAAs protect against MIs, adding further support to the hypothesis that ascending TAAs protect against atherosclerotic disease.

  2. Experimental investigation of wall shock cancellation and reduction of wall interference in transonic testing

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Roffe, G.

    1975-01-01

    A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.

  3. A Generalized Wall Function

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.

    1999-01-01

    The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.

  4. Inner- and outer-wall sorting of double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  5. Inner- and outer-wall sorting of double-walled carbon nanotubes.

    PubMed

    Li, Han; Gordeev, Georgy; Wasserroth, Sören; Chakravadhanula, Venkata Sai Kiran; Neelakandhan, Shyam Kumar Chethala; Hennrich, Frank; Jorio, Ado; Reich, Stephanie; Krupke, Ralph; Flavel, Benjamin Scott

    2017-12-01

    Double-walled carbon nanotubes (DWCNTs) consist of two coaxially aligned single-walled carbon nanotubes (SWCNTs), and previous sorting methods only achieved outer-wall electronic-type selectivity. Here, a separation technique capable of sorting DWCNTs by semiconducting (S) or metallic (M) inner- and outer-wall electronic type is presented. Electronic coupling between the inner and outer wall is used to alter the surfactant coating around each of the DWCNT types, and aqueous gel permeation is used to separate them. Aqueous methods are used to remove SWCNT species from the raw material and prepare enriched DWCNT fractions. The enriched DWCNT fractions are then transferred into either chlorobenzene or toluene using the copolymer PFO-BPy to yield the four inner@outer combinations of M@M, M@S, S@M and S@S. The high purity of the resulting fractions is verified by absorption measurements, transmission electron microscopy, atomic force microscopy, resonance Raman mapping and high-density field-effect transistor devices.

  6. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  7. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  8. The Influence of Finasteride on Mean and Relative Spectral Density of EEG Bands in Rat Model of Thioacetamide-Induced Hepatic Encephalopathy.

    PubMed

    Mladenović, D; Hrnčić, D; Rašić-Marković, A; Macut, Dj; Stanojlović, O

    2016-08-01

    Liver failure is associated with a neuropsychiatric syndrome, known as hepatic encephalopathy (HE). Finasteride, inhibitor of neurosteroid synthesis, may improve the course of HE. The aim of our study was to investigate the influence of finasteride on mean and relative power density of EEG bands, determined by spectral analysis, in rat model of thioacetamide-induced HE. Male Wistar rats were divided into groups: (1) control; (2) thioacetamide-treated group, TAA (900 mg/kg); (3) finasteride-treated group, FIN (150 mg/kg); and (4) group treated with finasteride (150 mg/kg) and thioacetamide (900 mg/kg), FIN + TAA. Daily doses of FIN (50 mg/kg) and TAA (300 mg/kg) were administered during 3 subsequent days, and in FIN + TAA group FIN was administered 2 h before every dose of TAA. EEG was recorded 22-24 h after treatment and analyzed by fast Fourier transformation. While TAA did not induce significant changes in the beta band, mean and relative power in this band were significantly higher in FIN + TAA versus control group (p < 0.01). TAA caused a significant decline in mean power in alpha, theta, and delta band, and in FIN + TAA group the mean power in these bands was significantly higher compared with control. While in TAA group relative power was significantly decreased in theta (p < 0.01) and increased in delta band (p < 0.01) versus control, the opposite changes were found in FIN + TAA group: an increase in theta (p < 0.01) and a decrease in delta relative power (p < 0.01). In this study, finasteride pretreatment caused EEG changes that correspond to mild TAA-induced HE.

  9. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  10. Taka-amylase A in the conidia of Aspergillus oryzae RIB40.

    PubMed

    Nguyen, Cong Ha; Tsurumizu, Ryoji; Sato, Tsutomu; Takeuchi, Michio

    2005-11-01

    A study of Taka-amylase A of conidia from Aspergillus oryzae RIB40 was done. During the research, proteins from conidia and germinated conidia were analyzed using SDS-PAGE, 2-D gel electrophoresis, Western blot analysis, MALDI-TOF Mass spectrometry, and native-PAGE combined with activity staining of TAA. The results showed that TAA exists not only in germinated conidia but also in conidia. Some bands representing degraded products of TAA were detected. Conidia, which formed on starch (SCYA), glucose (DCYA), and glycerol (GCYA) plates, contained mature TAA. Only one active band of TAA was detected after native-PAGE activity staining. In addition, TAA activity was detected in cell extracts of conidia using 0.5 M acetate buffer, pH 5.2, as extraction buffer, but was not detected in whole conidia or cell debris. The results indicate that TAA exists in conidia in active form even when starch, glucose, or glycerol is used as carbon source. TAA might belong to a set of basal proteins inside conidia, which helps in imbibition and germination of conidia.

  11. Typical Window, Interior Wall Paint Sequence, Wall Section, and Foundation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Window, Interior Wall Paint Sequence, Wall Section, and Foundation Sections - Civilian Conservation Corps (CCC) Camp NP-5-C, Barracks No. 5, CCC Camp Historic District at Chapin Mesa, Cortez, Montezuma County, CO

  12. Regulation of cell wall biosynthesis.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2007-12-01

    Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.

  13. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Daniel J.

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the ‘Young's modulus’ of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potentialmore » pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.« less

  14. Abdominal wall fat pad biopsy

    MedlinePlus

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... most common method of taking an abdominal wall fat pad biopsy . The health care provider cleans the ...

  15. 12. Interior view of north wall of Chapel. The wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view of north wall of Chapel. The wall panel is one of two carved with lists of those missing in nearby combat. - Flanders Field American Cemetery & Memorial, Chapel, Wortegemseweg 117, Waregem, West Flanders (Belgium)

  16. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  17. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  18. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  19. Wonderful Walls

    ERIC Educational Resources Information Center

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  20. Comparison of airfoil results from an adaptive wall test section and a porous wall test section

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1989-01-01

    Two wind tunnel investigations were conducted to assess two different wall interference alleviation/correction techniques: adaptive test section walls and classical analytical corrections. The same airfoil model has been tested in the adaptive wall test section of the NASA-Langley 0.3 m Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment (NAE) High Reynolds Number 2-D facility. The model has a 9 in. chord and a CAST 10-2/DOA 2 airfoil section. The 0.3 m TCT adaptive wall test section has four solid walls with flexible top and bottom walls. The NAE test section has porous top and bottom walls and solid side walls. The aerodynamic results corrected for top and bottom wall interference at Mach numbers from 0.3 to 0.8 at a Reynolds number of 10 by 1,000,000. Movement of the adaptive walls was used to alleviate the top and bottom wall interference in the test results from the NASA tunnel.

  1. EAST WALL OF CRYSTALLIZER WING TO THE LEFT, END WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST WALL OF CRYSTALLIZER WING TO THE LEFT, END WALL OF CRUSHING MILL IN CENTER. GABLE END OF BOILING HOUSE IN LEFT BACKGROUND. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  2. Standard operating procedures in experimental liver research: thioacetamide model in mice and rats.

    PubMed

    Wallace, M C; Hamesch, K; Lunova, M; Kim, Y; Weiskirchen, R; Strnad, P; Friedman, S L

    2015-04-01

    In addition to carbon tetrachloride (CCl4), thioacetamide (TAA) represents a second widely used model for the induction of experimental liver fibrosis, but can also be employed for the development of acute liver failure and liver tumours. While TAA itself is not hepatotoxic, its reactive metabolites covalently bind to proteins and lipids thereby causing oxidative stress and centrilobular necrosis. Compared with CCl4, TAA leads to more periportal infiltrates and more pronounced ductal proliferation. While TAA has been shown to induce liver fibrosis development in several different mouse strains, wide variations in the administration routes, doses and treatment durations have been reported. Therefore, an adoption of a universal standard operating procedure for the administration of TAA is urgently needed. For that purpose, we are presenting here two TAA models (intraperitoneal administration of 150 mg/kg of TAA three times per week for 11 weeks in rats, and TAA administration in drinking water at 300 mg/L for 2-4 months in mice) with which we have had success in reliably and reproducibly developing chronic liver injury and fibrosis. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Electroweak bubble wall speed limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bödeker, Dietrich; Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speedmore » of light, they carry an infinitesimal share of the plasma's energy.« less

  4. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    PubMed Central

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  5. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells.

    PubMed

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.

  6. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages.

    PubMed

    Qin, Wanhai; Wang, Lei; Zhai, Ruidong; Ma, Qiuyue; Liu, Jianfang; Bao, Chuntong; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2016-01-01

    Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.

  7. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Shear localization and effective wall friction in a wall bounded granular flow

    NASA Astrophysics Data System (ADS)

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  9. 5. 'Stones for Wing Walls, Tunnel Walls, BeltCourse and Coping,' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. 'Stones for Wing Walls, Tunnel Walls, Belt-Course and Coping,' Southern Pacific Standard Plan Tunnels, ca. 1909. - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  10. Genetic and Biochemical Characterization of a Gene Operon for trans-Aconitic Acid, a Novel Nematicide from Bacillus thuringiensis.

    PubMed

    Du, Cuiying; Cao, Shiyun; Shi, Xiangyu; Nie, Xiangtao; Zheng, Jinshui; Deng, Yun; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2017-02-24

    trans -Aconitic acid (TAA) is an isomer of cis -aconitic acid (CAA), an intermediate of the tricarboxylic acid cycle that is synthesized by aconitase. Although TAA production has been detected in bacteria and plants for many years and is known to be a potent inhibitor of aconitase, its biosynthetic origins and the physiological relevance of its activity have remained unclear. We have serendipitously uncovered key information relevant to both of these questions. Specifically, in a search for novel nematicidal factors from Bacillus thuringiensis , a significant nematode pathogen harboring many protein virulence factors, we discovered a high yielding component that showed activity against the plant-parasitic nematode Meloidogyne incognita and surprisingly identified it as TAA. Comparison with CAA, which displayed a much weaker nematicidal effect, suggested that TAA is specifically synthesized by B. thuringiensis as a virulence factor. Analysis of mutants deficient in plasmids that were anticipated to encode virulence factors allowed us to isolate a TAA biosynthesis-related ( tbr ) operon consisting of two genes, tbrA and tbrB We expressed the corresponding proteins, TbrA and TbrB, and characterized them as an aconitate isomerase and TAA transporter, respectively. Bioinformatics analysis of the TAA biosynthetic gene cluster revealed the association of the TAA genes with transposable elements relevant for horizontal gene transfer as well as a distribution across B. cereus bacteria and other B. thuringiensis strains, suggesting a general role for TAA in the interactions of B. cereus group bacteria with nematode hosts in the soil environment. This study reveals new bioactivity for TAA and the TAA biosynthetic pathway, improving our understanding of virulence factors employed by B. thuringiensis pathogenesis and providing potential implications for nematode management applications. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  12. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  13. Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Kuhl, David D.; Walker, Eric L.

    2004-01-01

    This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.

  14. Cell wall evolution and diversity

    PubMed Central

    Fangel, Jonatan U.; Ulvskov, Peter; Knox, J. P.; Mikkelsen, Maria D.; Harholt, Jesper; Popper, Zoë A.; Willats, William G.T.

    2012-01-01

    Plant cell walls display a considerable degree of diversity in their compositions and molecular architectures. In some cases the functional significance of a particular cell wall type appears to be easy to discern: secondary cells walls are often reinforced with lignin that provides durability; the thin cell walls of pollen tubes have particular compositions that enable their tip growth; lupin seed cell walls are characteristically thickened with galactan used as a storage polysaccharide. However, more frequently the evolutionary mechanisms and selection pressures that underpin cell wall diversity and evolution are unclear. For diverse green plants (chlorophytes and streptophytes) the rapidly increasing availability of transcriptome and genome data sets, the development of methods for cell wall analyses which require less material for analysis, and expansion of molecular probe sets, are providing new insights into the diversity and occurrence of cell wall polysaccharides and associated biosynthetic genes. Such research is important for refining our understanding of some of the fundamental processes that enabled plants to colonize land and to subsequently radiate so comprehensively. The study of cell wall structural diversity is also an important aspect of the industrial utilization of global polysaccharide bio-resources. PMID:22783271

  15. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.

    PubMed

    Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio

    2018-02-01

    Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  17. 13. LONG WEST WALL (LEFT) AND SHORT SOUTH WALL (RIGHT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. LONG WEST WALL (LEFT) AND SHORT SOUTH WALL (RIGHT) OF AR-9, ALSO SHOWING MORE RECENT CONTROL ROOM BUILDING AT RIGHT. VIEW IS TO THE NORTHEAST. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA

  18. 7. INTERIOR, MAIN GARAGE, SOUTHERN WALL, FROM CLOSE TO WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR, MAIN GARAGE, SOUTHERN WALL, FROM CLOSE TO WALL, LOOKING SOUTH, SHOWING 'GAMEWELL' FIRE ALARM TAPE CONTROL SYSTEM (TECHNOLOGY CIRCA 1910) AT CENTER, AND ENTRY TO OFFICE AT FAR RIGHT. - Oakland Naval Supply Center, Firehouse, East of Fourth Street, between A & B Streets, Oakland, Alameda County, CA

  19. Ultimate Cost of Building Walls.

    ERIC Educational Resources Information Center

    Grimm, Clayford T.; Gross, James G.

    The need for economic analysis of building walls is discussed, and the factors influencing the ultimate cost of exterior walls are studied. The present worth method is used to analyze three types of exterior non-loadbearing panel or curtain walls. Anticipated costs are expressed in terms of their present value per square foot of wall area. The…

  20. An experimental study of near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, Rakesh K.; Raj, Rishi S.

    1989-01-01

    The near wall flow parameters in the blade end-wall corner region is investigated. The blade end-wall corner region was simulated by mounting an airfoil section (NACA 65-015 base profile) symmetric blades on both sides of the flat plate with semi-circular leading edge. The initial 7 cm from the leading edge of the flat plate was roughened by gluing No. 4 floor sanding paper to artificially increase the boundary layer thickness on the flat plate. The initial flow conditions of the boundary layer upstream of the corner region are expected to dictate the behavior of flow inside the corner region. Therefore, an experimental investigation was extended to study the combined effect of initial roughness and increased level of free stream turbulence on the development of a 2-D turbulent boundary layer in the absence of the blade. The measurement techniques employed in the present investigation included, the conventional pitot and pitot-static probes, wall taps, the Preston tube, piezoresistive transducer and the normal sensor hot-wire probe. The pitot and pitot-static probes were used to obtain mean velocity profile measurements within the boundary layer. The measurements of mean surface static pressure were obtained with the surface static tube and the conventional wall tap method. The wall shear vector measurements were made with a specially constructed Preston tube. The flush mounted piezoresistive type pressure transducer were employed to measure the wall pressure fluctuation field. The velocity fluctuation measurements, used in obtaining the wall pressure-velocity correlation data, were made with normal single sensor hot-wire probe. At different streamwise stations, in the blade end-wall corner region, the mean values of surface static pressure varied more on the end-wall surface in the corner region were mainly caused by the changes in the curvature of the streamlines. The magnitude of the wall shear stress in the blade end-wall corner region increased significantly

  1. Fuel retention under elevated wall temperature in KSTAR with a carbon wall

    NASA Astrophysics Data System (ADS)

    Cao, B.; Hong, S. H.

    2018-03-01

    The fuel retention during KSTAR discharges with elevated wall temperature (150 °C) has been studied by using the method of global particle balance. The results show that the elevated wall temperature could reduce the dynamic retention via implantation and absorption, especially for the short pulse shots with large injected fuel particles. There is no signature changing of long-term retention, which related to co-deposition, under elevated wall temperature. For soft-landing shots (normal shots), the exhausted fuel particles during discharges is larger with elevated wall temperature than without, but the exhausted particles after discharges within 90 s looks similar. The outgassing particles because of disruption could be exhausted within 15 s.

  2. Tomato Fruit Cell Wall 1

    PubMed Central

    Koch, James L.; Nevins, Donald J.

    1989-01-01

    Cell wall isolation procedures were evaluated to determine their effect on the total pectin content and the degree of methylesterification of tomato (Lycopersicon esculentum L.) fruit cell walls. Water homogenates liberate substantial amounts of buffer soluble uronic acid, 5.2 milligrams uronic acid/100 milligrams wall. Solubilization appears to be a consequence of autohydrolysis mediated by polygalacturonase II, isoenzymes A and B, since the uronic acid release from the wall residue can be suppressed by homogenization in the presence of 50% ethanol followed by heating. The extent of methylesterification in heat-inactivated cell walls, 94 mole%, was significantly greater than with water homogenates, 56 mole%. The results suggest that autohydrolysis, mediated by cell wall-associated enzymes, accounts for the solubilization of tomato fruit pectin in vitro. Endogenous enzymes also account for a decrease in the methylesterification during the cell wall preparation. The heat-inactivated cell wall preparation was superior to the other methods studied since it reduces β-elimination during heating and inactivates constitutive enzymes that may modify pectin structure. This heat-inactivated cell wall preparation was used in subsequent enzymatic analysis of the pectin structure. Purified tomato fruit polygalacturonase and partially purified pectinmethylesterase were used to assess changes in constitutive substrates during tomato fruit ripening. Polygalacturonase treatment of heat-inactivated cell walls from mature green and breaker stages released 14% of the uronic acid. The extent of the release of polyuronides by polygalacturonase was fruit development stage dependent. At the turning stage, 21% of the pectin fraction was released, a value which increased to a maximum of 28% of the uronides at the red ripe stage. Pretreatment of the walls with purified tomato pectinesterase rendered walls from all ripening stages equally susceptible to polygalacturonase. Quantitatively, the

  3. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  4. Methods for assessing wall interference in the 2- by 2-foot adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1986-01-01

    Discussed are two methods for assessing two-dimensional wall interference in the adaptive-wall test section of the NASA Ames 2 x 2-Foot Transonic Wind Tunnel: (1) a method for predicting free-air conditions near the walls of the test section (adaptive-wall methods); and (2) a method for estimating wall-induced velocities near the model (correction methods), both of which methods are based on measurements of either one or two components of flow velocity near the walls of the test section. Each method is demonstrated using simulated wind tunnel data and is compared with other methods of the same type. The two-component adaptive-wall and correction methods were found to be preferable to the corresponding one-component methods because: (1) they are more sensitive to, and give a more complete description of, wall interference; (2) they require measurements at fewer locations; (3) they can be used to establish free-stream conditions; and (4) they are independent of a description of the model and constants of integration.

  5. 10. VIEW OF LAMINARFLOW FILTER WALL NEAR SOUTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF LAMINAR-FLOW FILTER WALL NEAR SOUTH WALL OF CLEAN ROOM (102). NOTE GROUNDING CABLES NEAR BASEBOARD IN LOWER RIGHT BACKGROUND. WHITE SQUARE IN FOREGROUND IS A FLOOR DRAIN COVERED WITH TAPE. - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. 1. AIR/MANWAY SHAFT WALL AND FAN HOUSE FOUNDATION WALL FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AIR/MANWAY SHAFT WALL AND FAN HOUSE FOUNDATION WALL FROM NORTHWEST. AEROVANE FAN AT UPPER LEFT, SCAFFOLD AND LEPLEY VENTILATOR AT UPPER RIGHT. - Consolidation Coal Company Mine No. 11, Air-Manway Shaft, East side of State Route 936, Midlothian, Allegany County, MD

  7. 32. DETAIL OF WALL SHOWN IN SD231. BEHIND WALL FRAMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL OF WALL SHOWN IN SD-2-31. BEHIND WALL FRAMING IS SAMPLING ROOM WITH WOOD SAMPLING ELEVATOR. CRUSHED OXIDIZED ORE BIN ON LEFT (SOUTH). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  8. North wall, central part, showing partial partition wall at left. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North wall, central part, showing partial partition wall at left. This area is labeled “Pioneering Research” on drawing copy NV-35-B-5 (submitted with HABS No. NV-35-B) (series 2 of 4) - Bureau of Mines Metallurgical Research Laboratory, Original Building, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  9. Calculation of wall effects of flow on a perforated wall with a code of surface singularities

    NASA Astrophysics Data System (ADS)

    Piat, J. F.

    1994-07-01

    Simplifying assumptions are inherent in the analytic method previously used for the determination of wall interferences on a model in a wind tunnel. To eliminate these assumptions, a new code based on the vortex lattice method was developed. It is suitable for processing any shape of test sections with limited areas of porous wall, the characteristic of which can be nonlinear. Calculation of wall effects in S3MA wind tunnel, whose test section is rectangular 0.78 m x 0.56 m, and fitted with two or four perforated walls, have been performed. Wall porosity factors have been adjusted to obtain the best fit between measured and computed pressure distributions on the test section walls. The code was checked by measuring nearly equal drag coefficients for a model tested in S3MA wind tunnel (after wall corrections) and in S2MA wind tunnel whose test section is seven times larger (negligible wall corrections).

  10. The total alkaloids of Aconitum tanguticum protect against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Wu, Guotai; Du, Lidong; Zhao, Lei; Shang, Ruofeng; Liu, Dongling; Jing, Qi; Liang, Jianping; Ren, Yuan

    2014-09-29

    Aconitum tanguticum has been widely used as a remedy for infectious diseases in traditional Tibetan medicine in China. The total alkaloids of Aconitum tanguticum (TAA) are the main active components of Aconitum tanguticum and have been demonstrated to be effective in suppressing inflammation. Our aim was to investigate the protective effects of TAA on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. TAA was extracted in 95% ethanol and purified in chloroform. After vacuum drying, the TAA powder was dissolved in dimethyl sulfoxide. Adult male Sprague-Dawley rats were randomly divided into six groups. Rats were given dexamethasone (DXM, 4 mg/kg) or TAA (60 mg/kg, 30 mg/kg) before LPS injection. The PaO2and PaO2/FiO2 values, lung wet/dry (W/D) weight ratio and histological changes in lung tissue were measured. The cell counts, protein concentration, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF), and myeloperoxidase (MPO) activity in lung tissue were determined at 6, 12 or 24 h after LPS treatment. In addition, the NF-κ B activation in lung tissue was analyzed by western blot. In ALI rats, TAA significantly reduced the lung W/D ratio and increased the value of PaO2 or PaO2/FiO2 at 6, 12 or 24 h after LPS challenge. TAA also reduced the total protein concentration and the number of total cells, neutrophils or lymphocytes in BALF. In addition, TAA decreased MPO activity in the lung and attenuated histological changes in the lung. Furthermore, TAA inhibited the concentration of TNF-α, IL-6 and IL-1β in BALF at 6, 12 or 24 h after LPS treatment. Further study demonstrated that TAA significantly inhibited NF-κ B activation in lung tissue. The current study proved that TAA exhibited a potent protective effect on LPS-induced ALI in rats through its anti-inflammatory activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.; Park, George Ilhwan; Moin, Parviz

    2017-10-01

    Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation (WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the true one by approximately 15 % . Many efforts have been made to resolve this mismatch. The often-used fixes, which are generally ad hoc, include modifying subgrid-scale stress models, adding a stochastic forcing, and moving the LES-wall-model matching location away from the wall. An analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the effects of local filtering on log-layer mismatch. We show that both local temporal filtering and local wall-parallel filtering resolve log-layer mismatch without moving the LES-wall-model matching location away from the wall. Additionally, we look into the momentum balance in the near-wall region to provide an alternative explanation of how LLM occurs, which does not necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES filtering. However, good agreement can be found when the WMLES data are compared to the direct numerical simulation data filtered at the corresponding WMLES resolutions.

  12. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  13. Modeling near-wall turbulent flows

    NASA Astrophysics Data System (ADS)

    Marusic, Ivan; Mathis, Romain; Hutchins, Nicholas

    2010-11-01

    The near-wall region of turbulent boundary layers is a crucial region for turbulence production, but it is also a region that becomes increasing difficult to access and make measurements in as the Reynolds number becomes very high. Consequently, it is desirable to model the turbulence in this region. Recent studies have shown that the classical description, with inner (wall) scaling alone, is insufficient to explain the behaviour of the streamwise turbulence intensities with increasing Reynolds number. Here we will review our recent near-wall model (Marusic et al., Science 329, 2010), where the near-wall turbulence is predicted given information from only the large-scale signature at a single measurement point in the logarithmic layer, considerably far from the wall. The model is consistent with the Townsend attached eddy hypothesis in that the large-scale structures associated with the log-region are felt all the way down to the wall, but also includes a non-linear amplitude modulation effect of the large structures on the near-wall turbulence. Detailed predicted spectra across the entire near- wall region will be presented, together with other higher order statistics over a large range of Reynolds numbers varying from laboratory to atmospheric flows.

  14. Topological domain walls in helimagnets

    NASA Astrophysics Data System (ADS)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  15. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  16. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2018-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional nonmagnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  17. Development of wall climbing robot

    NASA Astrophysics Data System (ADS)

    Kojima, Hisao; Toyama, Ryousei; Kobayashi, Kengo

    1992-03-01

    A configuration design is presented for a wall-climbing robot with high payload which is capable of moving on diversified surfaces of walls including the wall surface to ceilings in every direction. A developed quadruped wall climbing robot, NINJYA-1, is introduced. NINJYA-1 is composed of legs based on a 3D parallel link mechanism and a VM (Valve-regulated Multiple) sucker which will be able to suck even if there are grooves and a small difference in level. A wall climbing robot which supports rescue operation at a high building using a VM sucker is also introduced. Finally, a wall climbing robot named Disk Rover with a disk-type magnetic wheel is shown. The wheel shape is calculated by FEM. The disk-type magnetic wheel has a force three times more powerful than the one heretofore in use.

  18. Detrimental effects of nicotine on thioacetamide-induced liver injury in mice.

    PubMed

    Zhou, Zixiong; Park, Surim; Kim, Jong Won; Zhao, Jing; Lee, Moo-Yeol; Choi, Kyung Chul; Lim, Chae Woong; Kim, Bumseok

    2017-09-01

    Nicotine exerts a number of physiological effects. The purpose of this study was to determine the effects of nicotine on thioacetamide (TAA)-induced liver fibrosis in mice. For in vivo experiments, hepatic fibrosis was induced by TAA (0.25 g/kg, i.p.) three times a week for 6 weeks. Mice of TAA treated groups were administered daily with distilled water and nicotine (50 or 100 μg/mL) via gastrogavage throughout the experimental period. For in vitro experiments, HepG2 (human liver cancer cell line) and LX-2 (human hepatic stellate cell line) were used to determine oxidative stress and fibrosis, respectively. Compared to control groups, TAA treated groups had significantly differences in serum alanine transferase and aspartate aminotransferase levels and nicotine accentuated liver injury. Moreover, nicotine increased the mRNA levels of TAA-induced transforming growth factor-β (TGF-β) and collagen type I alpha 1 in the liver. Nicotine also increased TAA-induced oxidative stress. Histological examination confirmed that nicotine aggravated the degree of fibrosis caused by TAA treatment. Additionally, nicotine enhanced hepatic stellate cell activation via promoting the expression of α-smooth muscle actin. Oral administration of nicotine significantly aggravated TAA-induced hepatic fibrosis in mice through enhancing TGF-β secretion and TAA-induced oxidative stress. The increase in TGF-β levels might be associated with the strengthening of oxidative processes, subsequently leading to increased hepatic stellate cell activation and extracellular matrix deposition. These results suggest that patients with liver disease should be advised to abandon smoking since nicotine may exacerbate hepatic fibrosis.

  19. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  20. Caffeine intake decreases oxidative stress and inflammatory biomarkers in experimental liver diseases induced by thioacetamide: Biochemical and histological study.

    PubMed

    Amer, Mona G; Mazen, Nehad F; Mohamed, Ahmed M

    2017-03-01

    Liver disease remains a significant global health problem. Increased caffeine consumption has been associated with a lower prevalence of chronic liver disease. This study aimed to investigate the modifying effects of caffeine on liver injury induced by thioacetamide (TAA) administration in male rats and the possible underlying mechanisms. Forty adult male rats were equally classified into four groups: control group, received only tap water; caffeine-treated group, received caffeine (37.5 mg/kg per day); TAA-treated group, received intraperitoneal (i.p.) TAA (200 mg/kg b.w.) twice a week; and caffeine + TAA-treated group, received combined TAA and caffeine in the same previous doses. After eight weeks of treatment, blood samples were collected for biochemical analysis and liver specimens were prepared for histological and immunohistochemical studies and for assessment of oxidative stress. TAA induced liver toxicity with elevated liver enzymes and histological alterations, fatty changes, apoptosis, and fibrosis evidenced by increased immunohistochemical reaction to matrix metalloproteinase-9 (MMP-9) and collagen type IV in hepatocytes. Also, the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in serum were significantly elevated. Co-treatment with caffeine and TAA restored normal liver structure and function. Caffeine provided an anti-fibrogenic, anti-inflammatory, and antioxidant effect that was associated with recovery of hepatic histological and functional alterations from TAA-induced hepatotoxicity.

  1. The experimental verification of wall movement influence coefficients for an adaptive walled test section

    NASA Technical Reports Server (NTRS)

    Neal, G.

    1988-01-01

    Flexible walled wind tunnels have for some time been used to reduce wall interference effects at the model. A necessary part of the 3-D wall adjustment strategy being developed for the Transonic Self-Streamlining Wind Tunnel (TSWT) of Southampton University is the use of influence coefficients. The influence of a wall bump on the centerline flow in TSWT has been calculated theoretically using a streamline curvature program. This report details the experimental verification of these influence coefficients and concludes that it is valid to use the theoretically determined values in 3-D model testing.

  2. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions.

    PubMed

    Oda, Ken; Kakizono, Dararat; Yamada, Osamu; Iefuji, Haruyuki; Akita, Osamu; Iwashita, Kazuhiro

    2006-05-01

    Filamentous fungi are widely used for the production of homologous and heterologous proteins. Recently, there has been increasing interest in Aspergillus oryzae because of its ability to produce heterologous proteins in solid-state culture. To provide an overview of protein secretion by A. oryzae in solid-state culture, we carried out a comparative proteome analysis of extracellular proteins in solid-state and submerged (liquid) cultures. Extracellular proteins prepared from both cultures sequentially from 0 to 40 h were subjected to two-dimensional electrophoresis, and protein spots at 40 h were identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. We also attempted to identify cell wall-bound proteins of the submerged culture. We analyzed 85 spots from the solid-state culture and 110 spots from the submerged culture. We identified a total of 29 proteins, which were classified into 4 groups. Group 1 consisted of extracellular proteins specifically produced in the solid-state growth condition, such as glucoamylase B and alanyl dipeptidyl peptidase. Group 2 consisted of extracellular proteins specifically produced in the submerged condition, such as glucoamylase A (GlaA) and xylanase G2 (XynG2). Group 3 consisted of proteins produced in both conditions, such as xylanase G1. Group 4 consisted of proteins that were secreted to the medium in the solid-state growth condition but trapped in the cell wall in the submerged condition, such as alpha-amylase (TAA) and beta-glucosidase (Bgl). A Northern analysis of seven genes from the four groups suggested that the secretion of TAA and Bgl was regulated by trapping these proteins in the cell wall in submerged culture and that secretion of GlaA and XynG2 was regulated at the posttranscriptional level in the solid-state culture.

  3. Proteomic Analysis of Extracellular Proteins from Aspergillus oryzae Grown under Submerged and Solid-State Culture Conditions

    PubMed Central

    Oda, Ken; Kakizono, Dararat; Yamada, Osamu; Iefuji, Haruyuki; Akita, Osamu; Iwashita, Kazuhiro

    2006-01-01

    Filamentous fungi are widely used for the production of homologous and heterologous proteins. Recently, there has been increasing interest in Aspergillus oryzae because of its ability to produce heterologous proteins in solid-state culture. To provide an overview of protein secretion by A. oryzae in solid-state culture, we carried out a comparative proteome analysis of extracellular proteins in solid-state and submerged (liquid) cultures. Extracellular proteins prepared from both cultures sequentially from 0 to 40 h were subjected to two-dimensional electrophoresis, and protein spots at 40 h were identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. We also attempted to identify cell wall-bound proteins of the submerged culture. We analyzed 85 spots from the solid-state culture and 110 spots from the submerged culture. We identified a total of 29 proteins, which were classified into 4 groups. Group 1 consisted of extracellular proteins specifically produced in the solid-state growth condition, such as glucoamylase B and alanyl dipeptidyl peptidase. Group 2 consisted of extracellular proteins specifically produced in the submerged condition, such as glucoamylase A (GlaA) and xylanase G2 (XynG2). Group 3 consisted of proteins produced in both conditions, such as xylanase G1. Group 4 consisted of proteins that were secreted to the medium in the solid-state growth condition but trapped in the cell wall in the submerged condition, such as α-amylase (TAA) and β-glucosidase (Bgl). A Northern analysis of seven genes from the four groups suggested that the secretion of TAA and Bgl was regulated by trapping these proteins in the cell wall in submerged culture and that secretion of GlaA and XynG2 was regulated at the posttranscriptional level in the solid-state culture. PMID:16672490

  4. Interactive Word Walls

    ERIC Educational Resources Information Center

    Jackson, Julie; Narvaez, Rose

    2013-01-01

    It is common to see word walls displaying the vocabulary that students have learned in class. Word walls serve as visual scaffolds and are a classroom strategy used to reinforce reading and language arts instruction. Research shows a strong relationship between student word knowledge and academic achievement (Stahl and Fairbanks 1986). As a…

  5. Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustovitov, V. D.; National Research Nuclear University “MEPhI,” Kashirskoe sh. 31, Moscow 115409; Yanovskiy, V. V.

    The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ{sup ^}≡μ/μ{sub 0}≤4 (μ is the wall magnetic permeability, and μ{sub 0} is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasingmore » the growth rates, compared to the reference case with μ{sup ^}=1. This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ{sup ^}>1, the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ{sup ^}=1, and this “external” effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow (s/d{sub w}≫1) and fast (s/d{sub w}≪1) “ferromagnetic” rotating RWMs, where s is the skin depth and d{sub w} is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ{sup ^}, and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.« less

  6. Bumper wall for plasma device

    DOEpatents

    Coultas, Thomas A.

    1977-01-01

    Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

  7. Microwave background distortions from domain walls

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.

  8. Hot wire production of single-wall and multi-wall carbon nanotubes

    DOEpatents

    Dillon, Anne C.; Mahan, Archie H.; Alleman, Jeffrey L.

    2010-10-26

    Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

  9. Silicon carbide at nanoscale: Finite single-walled to "infinite" multi-walled tubes

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil

    A systematic ab initio study of silicon carbide (SiC) nanostructures, especially finite single-walled, infinite double- and multi-walled nanotubes and nanocones is presented. Electronic and structural properties of all these nanostructures have been calculated using hybrid density functionals (B3LYP and PBE0) as implemented in the GAUSSIAN 03/09 suite of software. The unusual dependence of band gap of silicon carbide nanotubes (SiCNT) has been explained as a direct consequence of curvature effect on the ionicity of the bonds. The study of fullerene hemisphere capped, finite SiC nanotubes indicates that the carbon-capped SiC nanotubes are energetically more preferred than silicon-capped finite or hydrogen terminated infinite nanotubes. Capping a nanotube by fullerene hemisphere reduces its band gap. SiC nanocones have also been investigated as possible cap structures of nanotubes. Electronic properties of the nanocones are found to be strongly dependent upon their tip and edge structures, with possible interesting applications in surface science. Three types of double-walled SiCNTs (n, n)@(m, m) (3 ≤ n ≤ 6 ; 7 ≤ m ≤ 12) have been studied using the finite cluster approximation. The stabilities of these nanotubes are of the same order as those of the single-walled SiC nanotubes and it should be experimentally possible to synthesize both single-walled and double-walled SiC nanotubes. The binding energy per atom or the cohesive energy of the double-walled nanotubes depends not only on the number of atoms but also on the coupling of the constituent single-walled nanotubes and their types. A study of binding energies, Mulliken charges, density of states and HOMO-LUMO gaps has been performed for all nanotubes from (n, n)@(n+3,n+3) to (n, n)@(n+6, n+6) (n=3-6). Evolution of band gaps of the SiCNTs with increase in the number of walls has also been investigated. The nature of interaction between transition metal atoms and silicon carbide nanotubes with different

  10. Implementing Green Walls in Schools.

    PubMed

    McCullough, Michael B; Martin, Michael D; Sajady, Mollika A

    2018-01-01

    Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls-a "vertical garden," or "living wall" interior wall that typically includes greenery, a growing medium (soil or substrate) and a water delivery system-provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to "outdoor nature" within the indoor environment. Hands-on "project-based" learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  11. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  12. Comparison of a two-dimensional adaptive-wall technique with analytical wall interference correction techniques

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1992-01-01

    A two dimensional airfoil model was tested in the adaptive wall test section of the NASA Langley 0.3 meter Transonic Cryogenic Tunnel (TCT) and in the ventilated test section of the National Aeronautical Establishment Two Dimensional High Reynold Number Facility (HRNF). The primary goal of the tests was to compare different techniques (adaptive test section walls and classical, analytical corrections) to account for wall interference. Tests were conducted over a Mach number range from 0.3 to 0.8 at chord Reynolds numbers of 10 x 10(exp 6), 15 x 10(exp 6), and 20 x 10(exp 6). The angle of attack was varied from about 12 degrees up to stall. Movement of the top and bottom test section walls was used to account for the wall interference in the HRNF tests. The test results are in good agreement.

  13. Wall conditioning in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rohde, V.; Dux, R.; Kallenbach, A.; Krieger, K.; Neu, R.; ASDEX Upgrade Team

    2007-06-01

    An overview on wall conditioning in ASDEX Upgrade is presented. Helium glow discharges (HeGD) are needed mostly for plasma start up after high density discharges, disruptions and disruption mitigation gas puffs. Boronisation is routinely applied. The reduction of the oxygen content is a minor effect. Strong variation of the wall pumping is observed for tungsten first wall materials. The uncoated tungsten surface stores and releases large amounts of He, which can disturb the plasma. The released He causes the modification in the wall pumping. By reducing HeGD this effect could be minimized. Advanced and natural density scenarios are sensitive to the status of the wall coating. Accumulation of impurities at the pedestal influences the ELM frequency and finally causes radiation unstable discharges.

  14. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartley, Laura; Wu, Y.; Zhu, L.

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cellmore » wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait

  15. Build an Interactive Word Wall

    ERIC Educational Resources Information Center

    Jackson, Julie

    2018-01-01

    Word walls visually display important vocabulary covered during class. Although teachers have often been encouraged to post word walls in their classrooms, little information is available to guide them. This article describes steps science teachers can follow to transform traditional word walls into interactive teaching tools. It also describes a…

  16. Coronary artery wall imaging.

    PubMed

    Keegan, Jennifer

    2015-05-01

    Like X-Ray contrast angiography, MR coronary angiograms show the vessel lumens rather than the vessels themselves. Consequently, outward remodeling of the vessel wall, which occurs in subclinical coronary disease before luminal narrowing, cannot be seen. The current gold standard for assessing the coronary vessel wall is intravascular ultrasound, and more recently, optical coherence tomography, both of which are invasive and use ionizing radiation. A noninvasive, low-risk technique for assessing the vessel wall would be beneficial to cardiologists interested in the early detection of preclinical disease and for the safe monitoring of the progression or regression of disease in longitudinal studies. In this review article, the current state of the art in MR coronary vessel wall imaging is discussed, together with validation studies and recent developments. © 2014 Wiley Periodicals, Inc.

  17. [Two-wall decompression without resection of the medial wall. Effect on squint angle].

    PubMed

    Bertelmann, E; Rüther, K

    2011-11-01

    Postoperative new onset diplopia can be a disadvantage for surgical orbital decompression in patients with exophthalmos in thyroid eye disease. The various modifications of decompression (number and combination of walls) differ in their influence on the postoperative squint angle. We report on postoperative diplopia in a modified 2 wall decompression strategy (lateral wall and floor). This study was a retrospective analysis of 36 consecutive 2-wall decompressions performed between 2006-2010 in 24 patients with 6 months of stable exophthalmos in thyroid eye disease after medical therapy and radiotherapy. The preoperative and postoperative squint angle in prism cover test (PCT), motility, induction of diplopia, reduction of exophthalmos, visual acuity and complications were evaluated. In all 36 decompressions the postoperative squint angle was equal to or less than before surgery. In 8 eyes additional squint surgery was performed. The mean reduction in exopthalmos was 4.3 mm. An adverse effect of decompression on the postoperative squint angle was not evident in this study. New induction of diplopia was not observed at all. One possible explanation is the preservation of the medial wall.

  18. A film-based wall shear stress sensor for wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  19. Structure of a Burkholderia pseudomallei Trimeric Autotransporter Adhesin Head

    PubMed Central

    Edwards, Thomas E.; Phan, Isabelle; Abendroth, Jan; Dieterich, Shellie H.; Masoudi, Amir; Guo, Wenjin; Hewitt, Stephen N.; Kelley, Angela; Leibly, David; Brittnacher, Mitch J.; Staker, Bart L.; Miller, Samuel I.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.

    2010-01-01

    Background Pathogenic bacteria adhere to the host cell surface using a family of outer membrane proteins called Trimeric Autotransporter Adhesins (TAAs). Although TAAs are highly divergent in sequence and domain structure, they are all conceptually comprised of a C-terminal membrane anchoring domain and an N-terminal passenger domain. Passenger domains consist of a secretion sequence, a head region that facilitates binding to the host cell surface, and a stalk region. Methodology/Principal Findings Pathogenic species of Burkholderia contain an overabundance of TAAs, some of which have been shown to elicit an immune response in the host. To understand the structural basis for host cell adhesion, we solved a 1.35 Å resolution crystal structure of a BpaA TAA head domain from Burkholderia pseudomallei, the pathogen that causes melioidosis. The structure reveals a novel fold of an intricately intertwined trimer. The BpaA head is composed of structural elements that have been observed in other TAA head structures as well as several elements of previously unknown structure predicted from low sequence homology between TAAs. These elements are typically up to 40 amino acids long and are not domains, but rather modular structural elements that may be duplicated or omitted through evolution, creating molecular diversity among TAAs. Conclusions/Significance The modular nature of BpaA, as demonstrated by its head domain crystal structure, and of TAAs in general provides insights into evolution of pathogen-host adhesion and may provide an avenue for diagnostics. PMID:20862217

  20. Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles

    PubMed Central

    Beznoussenko, Galina V.; Pilyugin, Sergei S.; Geerts, Willie J. C.; Kozlov, Michael M.; Burger, Koert N. J.; Luini, Alberto; Derganc, Jure; Mironov, Alexander A.

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle. Thus, the shape of the organelle could be critically dependent on TAA. Here, using mathematical modeling and stereological measurements of TAA during fast transformation of organelle shapes, we present evidence that suggests that when organelle volume and surface area are constant, TAA can regulate transformation of the shape of the Golgi apparatus, endosomal multivesicular bodies, and microvilli of brush borders of kidney epithelial cells. Extraction of membrane curvature by small spheres, such as COPI-dependent vesicles within the Golgi (extraction of positive curvature), or by intraluminal vesicles within endosomes (extraction of negative curvature) controls the shape of these organelles. For instance, Golgi tubulation is critically dependent on the fusion of COPI vesicles with Golgi cisternae, and vice versa, for the extraction of membrane curvature into 50–60 nm vesicles, to induce transformation of Golgi tubules into cisternae. Also, formation of intraluminal ultra-small vesicles after fusion of endosomes allows equilibration of their TAA, volume and surface area. Finally, when microvilli of the brush border are broken into vesicles and microvilli fragments, TAA of these membranes remains the same as TAA of the microvilli. Thus, TAA has a significant role in transformation of organelle shape when other factors remain constant. PMID:25761238

  1. Naphthalene bisimides asymmetrically and symmetrically N-substituted with triarylamine--comparison of spectroscopic, electrochemical, electronic and self-assembly properties.

    PubMed

    Rybakiewicz, Renata; Zapala, Joanna; Djurado, David; Nowakowski, Robert; Toman, Petr; Pfleger, Jiri; Verilhac, Jean-Marie; Zagorska, Malgorzata; Pron, Adam

    2013-02-07

    Two semiconducting naphthalene bisimides were comparatively studied: NBI-(TAA)(2), symmetrically N-substituted with triaryl amine and asymmetric NBI-TAA-Oc with triaryl amine and octyl N-substituents. Both compounds show very similar spectroscopic and redox properties but differ in their supramolecular organization. As evidenced by STM, in monolayers on HOPG they form ordered 2D structures, however of different packing patterns. NBI-(TAA)(2) does not form ordered 3D structures, yielding amorphous thin films whereas films of NBI-TAA-Oc are highly crystalline. DFT calculations predict the ionization potential (IP) of 5.22 eV and 5.18 eV for NBI-TAA-Oc and NBI-(TAA)(2), respectively, as well as the electron affinity values (EA) of -3.25 eV and -3.22 eV. These results are consistent with the cyclic voltammetry data which yield similar values of IP (5.20 eV and 5.19 eV) and somehow different values of EA (-3.80 eV and -3.83 eV). As judged from these data, both semiconductors should exhibit ambipolar behavior. Indeed, NBI-TAA-Oc is ambipolar, showing hole and electron mobilities of 4.5 × 10(-5) cm(2)/(V s) and of 2.6 × 10(-4) cm(2)/(V s), respectively, in the field effect transistor configuration. NBI-(TAA)(2) is not ambipolar and yields field effect only in the p-channel configuration. This different behavior is rationalized on the basis of structural factors.

  2. Comparison of Turbulent Heat-Transfer Results for Uniform Wall Heat Flux and Uniform Wall Temperature

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Sparrow, E. M.

    1960-01-01

    The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.

  3. 27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  4. Abdominal Wall Endometriosis Mimicking Metastases.

    PubMed

    Nambiar, Rakul; Anoop, T M; Mony, Rari P

    2018-06-01

    Abdominal wall lesions can be broadly divided into nontumorous and tumorous conditions. Nontumorous lesions include congenital lesion, abdominal wall hernia, inflammation and infection, vascular lesions, and miscellaneous conditions like hematoma. Tumorous lesions include benign and malignant neoplasms. Here, we report an unusual case of abdominal wall endometriosis mimicking metastases in a patient with breast carcinoma.

  5. Wall turbulence control

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.

    1986-01-01

    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.

  6. Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus.

    PubMed

    Gautam, Samir; Kim, Taehan; Lester, Evan; Deep, Deeksha; Spiegel, David A

    2016-01-15

    Staphylococcus aureus is a Gram-positive bacterial pathogen that produces a range of infections including cellulitis, pneumonia, and septicemia. The principle mechanism in antistaphylococcal host defense is opsonization with antibodies and complement proteins, followed by phagocytic clearance. Here we use a previously developed technique for installing chemical epitopes in the peptidoglycan cell wall to show that surface glycopolymers known as wall teichoic acids conceal cell wall epitopes, preventing their recognition and opsonization by antibodies. Thus, our results reveal a previously unrecognized immunoevasive role for wall teichoic acids in S. aureus: repulsion of peptidoglycan-targeted antibodies.

  7. Mating-Induced Shedding of Cell Walls, Removal of Walls from Vegetative Cells, and Osmotic Stress Induce Presumed Cell Wall Genes in Chlamydomonas1

    PubMed Central

    Hoffmann, Xenia-Katharina; Beck, Christoph F.

    2005-01-01

    The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3′,5′-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself. PMID:16183845

  8. Skyrmions from Instantons inside Domain Walls

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David

    2005-12-01

    Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-Abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the world volume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as domain wall Skyrmions.

  9. 75 FR 41433 - Trade Adjustment Assistance for Farmers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Service (FAS) has denied a petition (No. 2010011) for trade adjustment assistance (TAA) for cranberries..., FAS, USDA, by phone: (202) 720-0638, or (202) 690-0633; or by e-mail: [email protected]fas.usda.gov ; or visit the TAA for Farmers' Web site: http://www.fas.usda.gov/itp/taa . [[Page 41434

  10. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. The role of CYP2A5 in liver injury and fibrosis: chemical-specific difference

    PubMed Central

    Hong, Feng; Si, Chuanping; Gao, Pengfei; Cederbaum, Arthur I.; Xiong, Huabao; Lu, Yongke

    2015-01-01

    Liver injuries induced by carbon tetrachloride (CCL4) or thioacetamide (TAA) are dependent on cytochrome P450 2E1 (CYP2E1). CYP2A5 can be induced by TAA but not by CCL4. In this study, liver injury including fibrosis induced by CCL4 or TAA were investigated in wild type (WT) mice and CYP2A5 knockout (cyp2a5−/−) mice as well as in CYP2E1 knockout (cyp2e1−/−) mice as a comparison. Acute and sub-chronic liver injuries including fibrosis were induced by CCL4 and TAA in WT mice but not in cyp2e1−/− mice, confirming the indispensable role of CYP2E1 in CCL4 and TAA hepatotoxicity. WT mice and cyp2a5−/− mice developed comparable acute liver injury induced by a single injection of CCL4 as well as sub-chronic liver injury including fibrosis induced by one month of repeated administration of CCL4, suggesting that CYP2A5 does not affect CCL4-induced liver injury and fibrosis. However, while 200 mg/kg TAA-induced acute liver injury was comparable in WT mice and cyp2a5−/− mice, 75 and 100 mg/kg TAA-induced liver injury were more severe in cyp2a5−/− mice than those found in WT mice. After multiple injections with 200 mg/kg TAA for one month, while sub-chronic liver injury as indicated by serum aminotransferases was comparable in WT mice and cyp2a5−/− mice, liver fibrosis was more severe in cyp2a5−/− mice than that found in WT mice. These results suggest that while both CCL4- and TAA-induced liver injuries and fibrosis are CYP2E1 dependent, under some conditions, CYP2A5 may protect against TAA-induced liver injury and fibrosis, but it doesn’t affect CCL4 hepatotoxicity. PMID:26363552

  12. The role of CYP2A5 in liver injury and fibrosis: chemical-specific difference.

    PubMed

    Hong, Feng; Si, Chuanping; Gao, Pengfei; Cederbaum, Arthur I; Xiong, Huabao; Lu, Yongke

    2016-01-01

    Liver injuries induced by carbon tetrachloride (CCL4) or thioacetamide (TAA) are dependent on cytochrome P450 2E1 (CYP2E1). CYP2A5 can be induced by TAA but not by CCL4. In this study, liver injury including fibrosis induced by CCL4 or TAA were investigated in wild-type (WT) mice and CYP2A5 knockout (cyp2a5 (-/-) ) mice as well as in CYP2E1 knockout (cyp2e1 (-/-) ) mice as a comparison. Acute and subchronic liver injuries including fibrosis were induced by CCL4 and TAA in WT mice but not in cyp2e1 (-/-) mice, confirming the indispensable role of CYP2E1 in CCL4 and TAA hepatotoxicity. WT mice and cyp2a5 (-/-) mice developed comparable acute liver injury induced by a single injection of CCL4 as well as subchronic liver injury including fibrosis induced by 1 month of repeated administration of CCL4, suggesting that CYP2A5 does not affect CCL4-induced liver injury and fibrosis. However, while 200 mg/kg TAA-induced acute liver injury was comparable in WT mice and cyp2a5 (-/-) mice, 75 and 100 mg/kg TAA-induced liver injury were more severe in cyp2a5 (-/-) mice than those found in WT mice. After multiple injections with 200 mg/kg TAA for 1 month, while subchronic liver injury as indicated by serum aminotransferases was comparable in WT mice and cyp2a5 (-/-) mice, liver fibrosis was more severe in cyp2a5 (-/-) mice than that found in WT mice. These results suggest that while both CCL4- and TAA-induced liver injuries and fibrosis are CYP2E1 dependent, under some conditions, CYP2A5 may protect against TAA-induced liver injury and fibrosis, but it does not affect CCL4 hepatotoxicity.

  13. Chest Wall Diseases: Respiratory Pathophysiology.

    PubMed

    Tzelepis, George E

    2018-06-01

    The chest wall consists of various structures that function in an integrated fashion to ventilate the lungs. Disorders affecting the bony structures or soft tissues of the chest wall may impose elastic loads by stiffening the chest wall and decreasing respiratory system compliance. These alterations increase the work of breathing and lead to hypoventilation and hypercapnia. Respiratory failure may occur acutely or after a variable period of time. This review focuses on the pathophysiology of respiratory function in specific diseases and disorders of the chest wall, and highlights pathogenic mechanisms of respiratory failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Distance-from-the-wall scaling of turbulent motions in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Baidya, R.; Philip, J.; Hutchins, N.; Monty, J. P.; Marusic, I.

    2017-02-01

    An assessment of self-similarity in the inertial sublayer is presented by considering the wall-normal velocity, in addition to the streamwise velocity component. The novelty of the current work lies in the inclusion of the second velocity component, made possible by carefully conducted subminiature ×-probe experiments to minimise the errors in measuring the wall-normal velocity. We show that not all turbulent stress quantities approach the self-similar asymptotic state at an equal rate as the Reynolds number is increased, with the Reynolds shear stress approaching faster than the streamwise normal stress. These trends are explained by the contributions from attached eddies. Furthermore, the Reynolds shear stress cospectra, through its scaling with the distance from the wall, are used to assess the wall-normal limits where self-similarity applies within the wall-bounded flow. The results are found to be consistent with the recent prediction from the work of Wei et al. ["Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows," J. Fluid Mech. 522, 303-327 (2005)], Klewicki ["Reynolds number dependence, scaling, and dynamics of turbulent boundary layers," J. Fluids Eng. 132, 094001 (2010)], and others that the self-similar region starts and ends at z+˜O (√{δ+}) and O (δ+) , respectively. Below the self-similar region, empirical evidence suggests that eddies responsible for turbulent stresses begin to exhibit distance-from-the-wall scaling at a fixed z+ location; however, they are distorted by viscous forces, which remain a leading order contribution in the mean momentum balance in the region z+≲O (√{δ+}) , and thus result in a departure from self-similarity.

  15. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  16. Wall roughness induces asymptotic ultimate turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  17. A Cell Wall Proteome and Targeted Cell Wall Analyses Provide Novel Information on Hemicellulose Metabolism in Flax.

    PubMed

    Chabi, Malika; Goulas, Estelle; Leclercq, Celine C; de Waele, Isabelle; Rihouey, Christophe; Cenci, Ugo; Day, Arnaud; Blervacq, Anne-Sophie; Neutelings, Godfrey; Duponchel, Ludovic; Lerouge, Patrice; Hausman, Jean-François; Renaut, Jenny; Hawkins, Simon

    2017-09-01

    Experimentally-generated (nanoLC-MS/MS) proteomic analyses of four different flax organs/tissues (inner-stem, outer-stem, leaves and roots) enriched in proteins from 3 different sub-compartments (soluble-, membrane-, and cell wall-proteins) was combined with publically available data on flax seed and whole-stem proteins to generate a flax protein database containing 2996 nonredundant total proteins. Subsequent multiple analyses (MapMan, CAZy, WallProtDB and expert curation) of this database were then used to identify a flax cell wall proteome consisting of 456 nonredundant proteins localized in the cell wall and/or associated with cell wall biosynthesis, remodeling and other cell wall related processes. Examination of the proteins present in different flax organs/tissues provided a detailed overview of cell wall metabolism and highlighted the importance of hemicellulose and pectin remodeling in stem tissues. Phylogenetic analyses of proteins in the cell wall proteome revealed an important paralogy in the class IIIA xyloglucan endo-transglycosylase/hydrolase (XTH) family associated with xyloglucan endo-hydrolase activity.Immunolocalisation, FT-IR microspectroscopy, and enzymatic fingerprinting indicated that flax fiber primary/S1 cell walls contained xyloglucans with typical substituted side chains as well as glucuronoxylans in much lower quantities. These results suggest a likely central role of xyloglucans and endotransglucosylase/hydrolase activity in flax fiber formation and cell wall remodeling processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: a 7.0 tesla MRI

    PubMed Central

    Blankena, Roos; Kleinloog, Rachel; Verweij, Bon H.; van Ooij, Pim; ten Haken, Bennie; Luijten, Peter R.; Rinkel, Gabriel J.E.; Zwanenburg, Jaco J.M.

    2016-01-01

    Purpose To develop a method for semi-quantitative wall thickness assessment on in vivo 7.0 tesla (7T) MRI images of intracranial aneurysms for studying the relation between apparent aneurysm wall thickness and wall shear stress. Materials and Methods Wall thickness was analyzed in 11 unruptured aneurysms in 9 patients, who underwent 7T MRI with a TSE based vessel wall sequence (0.8 mm isotropic resolution). A custom analysis program determined the in vivo aneurysm wall intensities, which were normalized to signal of nearby brain tissue and were used as measure for apparent wall thickness (AWT). Spatial wall thickness variation was determined as the interquartile range in AWT (the middle 50% of the AWT range). Wall shear stress was determined using phase contrast MRI (0.5 mm isotropic resolution). We performed visual and statistical comparisons (Pearson’s correlation) to study the relation between wall thickness and wall shear stress. Results 3D colored AWT maps of the aneurysms showed spatial AWT variation, which ranged from 0.07 to 0.53, with a mean variation of 0.22 (a variation of 1.0 roughly means a wall thickness variation of one voxel (0.8mm)). In all aneurysms, AWT was inversely related to WSS (mean correlation coefficient −0.35, P<0.05). Conclusions A method was developed to measure the wall thickness semi-quantitatively, using 7T MRI. An inverse correlation between wall shear stress and AWT was determined. In future studies, this non-invasive method can be used to assess spatial wall thickness variation in relation to pathophysiologic processes such as aneurysm growth and –rupture. PMID:26892986

  19. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  20. Scale resolving computation of submerged wall jets on flat wall with different roughness heights

    NASA Astrophysics Data System (ADS)

    Paik, Joongcheol; Bombardelli, Fabian

    2014-11-01

    Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.

  1. Microanalysis of plant cell wall polysaccharides.

    PubMed

    Obel, Nicolai; Erben, Veronika; Schwarz, Tatjana; Kühnel, Stefan; Fodor, Andrea; Pauly, Markus

    2009-09-01

    Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.

  2. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  3. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  4. Visualizing chemical functionality in plant cell walls.

    PubMed

    Zeng, Yining; Himmel, Michael E; Ding, Shi-You

    2017-01-01

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.

  5. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  6. Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.

    PubMed

    Shang, Eric K; Nathan, Derek P; Sprinkle, Shanna R; Fairman, Ronald M; Bavaria, Joseph E; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M

    2013-09-10

    Wall stress calculated using finite element analysis has been used to predict rupture risk of aortic aneurysms. Prior models often assume uniform aortic wall thickness and fusiform geometry. We examined the effects of including local wall thickness, intraluminal thrombus, calcifications, and saccular geometry on peak wall stress (PWS) in finite element analysis of descending thoracic aortic aneurysms. Computed tomographic angiography of descending thoracic aortic aneurysms (n=10 total, 5 fusiform and 5 saccular) underwent 3-dimensional reconstruction with custom algorithms. For each aneurysm, an initial model was constructed with uniform wall thickness. Experimental models explored the addition of variable wall thickness, calcifications, and intraluminal thrombus. Each model was loaded with 120 mm Hg pressure, and von Mises PWS was computed. The mean PWS of uniform wall thickness models was 410 ± 111 kPa. The imposition of variable wall thickness increased PWS (481 ± 126 kPa, P<0.001). Although the addition of calcifications was not statistically significant (506 ± 126 kPa, P=0.07), the addition of intraluminal thrombus to variable wall thickness (359 ± 86 kPa, P ≤ 0.001) reduced PWS. A final model incorporating all features also reduced PWS (368 ± 88 kPa, P<0.001). Saccular geometry did not increase diameter-normalized stress in the final model (77 ± 7 versus 67 ± 12 kPa/cm, P=0.22). Incorporation of local wall thickness can significantly increase PWS in finite element analysis models of thoracic aortic aneurysms. Incorporating variable wall thickness, intraluminal thrombus, and calcifications significantly impacts computed PWS of thoracic aneurysms; sophisticated models may, therefore, be more accurate in assessing rupture risk. Saccular aneurysms did not demonstrate a significantly higher normalized PWS than fusiform aneurysms.

  7. 75 FR 41434 - Trade Adjustment Assistance for Farmers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Service (FAS) has denied a petition (No. 2010008) for trade adjustment assistance (TAA) for crawfish that... Assistance for Farmers Staff, FAS, USDA, by phone: (202) 720-0638, or (202) 690-0633; or by e-mail: [email protected]fas.usda.gov ; or visit the TAA for Farmers' Web site: http://www.fas.usda.gov/itp/taa . Dated...

  8. 75 FR 41434 - Trade Adjustment Assistance for Farmers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Service (FAS) has denied a petition (No. 2010016) for trade adjustment assistance (TAA) for cranberries... Assistance for Farmers Staff, FAS, USDA, by phone: (202) 720-0638, or (202) 690-0633; or by e-mail: [email protected]fas.usda.gov ; or visit the TAA for Farmers' Web site: http://www.fas.usda.gov/itp/taa . Dated...

  9. 75 FR 41434 - Trade Adjustment Assistance for Farmers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... Service (FAS) has denied a petition (No. 2010004) for trade adjustment assistance (TAA) for cut lilies..., FAS, USDA, by phone: (202) 720-0638, or (202) 690-0633; or by e-mail: [email protected]fas.usda.gov ; or visit the TAA for Farmers' Web site: http://www.fas.usda.gov/itp/taa . Dated: July 8, 2010. John D...

  10. Dislocated Workers. Trade Adjustment Assistance Program Flawed. Statement of Linda G. Morra, Director of Education and Employment Issues, Human Resources Division. Testimony before the Subcommittee on Employment, Housing and Aviation, Committee on Government Operations, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    The Trade Adjustment Assistance (TAA) program is designed to help the more than 1 million workers per year who lose their jobs because of permanent layoffs or plant closures, due in part because of imports. Studies show, however, that the TAA program fails to meet the seven goals of a successful reemployment assistance program: (1) TAA benefits…

  11. A unified wall function for compressible turbulence modelling

    NASA Astrophysics Data System (ADS)

    Ong, K. C.; Chan, A.

    2018-05-01

    Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.

  12. Large-eddy simulations with wall models

    NASA Technical Reports Server (NTRS)

    Cabot, W.

    1995-01-01

    The near-wall viscous and buffer regions of wall-bounded flows generally require a large expenditure of computational resources to be resolved adequately, even in large-eddy simulation (LES). Often as much as 50% of the grid points in a computational domain are devoted to these regions. The dense grids that this implies also generally require small time steps for numerical stability and/or accuracy. It is commonly assumed that the inner wall layers are near equilibrium, so that the standard logarithmic law can be applied as the boundary condition for the wall stress well away from the wall, for example, in the logarithmic region, obviating the need to expend large amounts of grid points and computational time in this region. This approach is commonly employed in LES of planetary boundary layers, and it has also been used for some simple engineering flows. In order to calculate accurately a wall-bounded flow with coarse wall resolution, one requires the wall stress as a boundary condition. The goal of this work is to determine the extent to which equilibrium and boundary layer assumptions are valid in the near-wall regions, to develop models for the inner layer based on such assumptions, and to test these modeling ideas in some relatively simple flows with different pressure gradients, such as channel flow and flow over a backward-facing step. Ultimately, models that perform adequately in these situations will be applied to more complex flow configurations, such as an airfoil.

  13. Management of Congenital Chest Wall Deformities

    PubMed Central

    Blanco, Felix C.; Elliott, Steven T.; Sandler, Anthony D.

    2011-01-01

    Congenital chest wall deformities are considered to be anomalies in chest wall growth. These can be categorized as either rib cage overgrowth or deformities related to inadequate growth (aplasia or dysplasia). Rib cage overgrowth leads to depression of the sternum (pectus excavatum) or protuberance of the sternum (pectus carinatum) and accounts for greater than 90% of congenital chest wall deformities. The remaining deformities are a result of inadequate growth. Evolution in the management of congenital chest wall deformities has made significant progress over the past 25 years. This article will review chest wall deformities and the current management strategies of these interesting anomalies. PMID:22294949

  14. Visualizing chemical functionality in plant cell walls

    DOE PAGES

    Zeng, Yining; Himmel, Michael E.; Ding, Shi-You

    2017-11-30

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less

  15. Turbulent flame-wall interaction: a DNS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jackie; Hawkes, Evatt R; Sankaran, Ramanan

    2010-01-01

    A turbulent flame-wall interaction (FWI) configuration is studied using three-dimensional direct numerical simulation (DNS) and detailed chemical kinetics. The simulations are used to investigate the effects of the wall turbulent boundary layer (i) on the structure of a hydrogen-air premixed flame, (ii) on its near-wall propagation characteristics and (iii) on the spatial and temporal patterns of the convective wall heat flux. Results show that the local flame thickness and propagation speed vary between the core flow and the boundary layer, resulting in a regime change from flamelet near the channel centreline to a thickened flame at the wall. This findingmore » has strong implications for the modelling of turbulent combustion using Reynolds-averaged Navier-Stokes or large-eddy simulation techniques. Moreover, the DNS results suggest that the near-wall coherent turbulent structures play an important role on the convective wall heat transfer by pushing the hot reactive zone towards the cold solid surface. At the wall, exothermic radical recombination reactions become important, and are responsible for approximately 70% of the overall heat release rate at the wall. Spectral analysis of the convective wall heat flux provides an unambiguous picture of its spatial and temporal patterns, previously unobserved, that is directly related to the spatial and temporal characteristic scalings of the coherent near-wall turbulent structures.« less

  16. Visualizing chemical functionality in plant cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Yining; Himmel, Michael E.; Ding, Shi-You

    Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less

  17. The formation and evolution of domain walls

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1991-01-01

    Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.

  18. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  19. Adaptive-Wall Wind-Tunnel Investigations

    DTIC Science & Technology

    1981-02-01

    boundary condition for unconfined flow. In this way, theory and experiment are combined to minimize wall interference. The concept of an adaptive wall...should be noted that although shock waves extend to the walls, the exterior-flow calculation was based on subcritical-flow theory . Goodyer’s configuration...and v by aerodynamic probes. Both subsonic and transonic small- disturbance theory were used, as appropriate, to evaluate the functional rela

  20. Graphical determination of wall temperatures for heat transfers through walls of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Lutz, Otto

    1950-01-01

    A graphical method is given which permits determining of the temperature distribution during heat transfer in arbitrarily shaped walls. Three examples show the application of the method. The further development of heat engines depends to a great extent on the control of the thermal stresses in the walls. The thermal stresses stem from the nonuniform temperature distribution in heat transfer through walls which are, for structural reasons, of various thicknesses and sometimes complicated shape. Thus, it is important to know the temperature distribution in these structural parts. Following, a method is given which permits solution of this problem.

  1. FDNS code to predict wall heat fluxes or wall temperatures in rocket nozzles

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS to use a Reynolds Analogy-based method. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. Task 3 required computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750 R to about 1050 R by the film cooling. The average wall heat flux is reduced by a factor of three.

  2. Wall effects in wind tunnels

    NASA Technical Reports Server (NTRS)

    Chevallier, J. P.; Vaucheret, X.

    1986-01-01

    A synthesis of current trends in the reduction and computation of wall effects is presented. Some of the points discussed include: (1) for the two-dimensional, transonic tests, various control techniques of boundary conditions are used with adaptive walls offering high precision in determining reference conditions and residual corrections. A reduction in the boundary layer effects of the lateral walls is obtained at T2; (2) for the three-dimensional tests, the methods for the reduction of wall effects are still seldom applied due to a lesser need and to their complexity; (3) the supports holding the model of the probes have to be taken into account in the estimation of perturbatory effects.

  3. The practicality of defensive ice walls: How would the great ice wall in Game of Thrones hold up?

    NASA Astrophysics Data System (ADS)

    Truffer, M.

    2017-12-01

    The Game of Thrones great ice wall is a colossal feature stretching several hundred miles and over 200 m high. Its purpose is to defend the realm from the wildlings. It is generally pictured as a near vertical wall. An ice wall of these proportions poses interesting challenges, mainly because ice acts as a non-linear shear-thinning fluid. A 200 m high vertical wall would create a large effective stress near its base of almost 1.8 MPa. Typical stresses responsible for ice flow in glaciers and ice sheets are more than a magnitude lower (0.1 MPa). Extrapolating a commonly used flow law for temperate ice to such high stresses would lead to strain rates at the bottom of the wall in excess of 1/day, meaning the wall would rapidly collapse and spread laterally under its own weight. To keep the wall stable, it would help to cool it significantly, as the flow of ice is also very temperature dependent. Cooling to a chilly -40 C would reduce strain rates by two orders of magnitude, but this still leads to significant slumping of the wall within just a few weeks. A time-dependent similarity solution for simplified ice flow equations that describe the evolving shape of the ice wall was provided by Halfar (1981), and demonstrates the rapid decay of the wall. A simple estimate can be derived by assuming that ice is a perfectly plastic fluid, able to maintain a basal shear stress of about 0.1 MPa. A stable ice wall would then spread laterally to about 4 km width. The resulting slope would only be steep at the very margin and the ice wall would loose much of its defensive capabilities. I conclude that the ice wall as proposed would not be a practicable defense under typical Earth conditions, and special magical powers would be necessary to maintain its shape, even for just a few days.

  4. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  5. The megaaortic syndrome: Progression of ascending aortic aneurysm or a disease of distinct origin?

    PubMed

    Baranyi, Ulrike; Stern, Christian; Winter, Birgitta; Türkcan, Adrian; Scharinger, Bernhard; Stelzmüller, Marie-Elisabeth; Aschacher, Thomas; Andreas, Martin; Ehrlich, Marek; Laufer, Günther; Bernhard, David; Messner, Barbara

    2017-01-15

    Thoracic aortic aneurysm (TAA) is an often asymptomatic disease with fatal outcome, such as dissection or rupture. The megaaortic syndrome (MAS) is an extensive dilatation of the whole aorta with low incidence but high lethal outcome with unknown pathophysiology so far. We compared aortic tissue of patients with sporadic TAAs and MAS of the ascending aorta with non-aneurysmal control tissues. Specimens of MAS patients showed a significantly reduced thickness of the media but an increased thickness of the intima compared to control tissue and TAAs with moderate dilatation. Advanced media degeneration however was detectable in both, TAAs with enhanced luminal diameter and MAS specimens, accompanied by reduced medial smooth muscle cell-density. Further specimens of MAS were characterized by massive atherosclerotic lesions in contrast to specimens of sporadic TAA patients. Infiltrations of macrophages in atherosclerotic lesions but also in the media adjacent to the adventitia were significantly elevated in tissue of TAAs with dilatation ≤6cm. Of note, atherosclerotic plaque-associated macrophages as well as those in the external media produce huge amounts of MMP-9 which is possibly involved in media degeneration and tissue destruction. Taken together these results demonstrate that the pathology of MAS shows similarities with that of TAAs but pathological differences in the ascending aorta, suggesting that MAS might be a disease of different origin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effects of curcumin on angiotensin-converting enzyme gene expression, oxidative stress and anti-oxidant status in thioacetamide-induced hepatotoxicity.

    PubMed

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2015-12-01

    This study aimed to evaluate the protective effects of curcumin on angiotensin-converting enzyme (ACE) gene expression, oxidative stress and anti-oxidant status in thioacetamide (TAA)-induced hepatotoxicity in rats. Total 32 albino Wistar rats (male, 200-250 g) were divided into six groups (n=8). Group 1: untreated controls; Group 2: received TAA (200 mg/kg body weight (b.w.); i.p.) for 12 weeks; Group 3: received curcumin (75 mg/kg b.w.) for 24 weeks; Group 4: received TAA (200 mg/kg b.w.; i.p.) for 12 weeks+curcumin (75 mg/kg b.w.) for 12 weeks. A significantly higher ACE gene expression was observed in TAA-induced groups as compared with control, indicating more synthesis of ACE proteins. Treatment with curcumin suppressed ACE expression in TAA liver and reversed the toxicity produced. TAA treatment results in higher lipid peroxidation and lower GSH, SOD and CAT than the normal, and this produces oxidative stress in the liver. Cirrhotic conditions were confirmed by serum enzymes (ALT, AST and ALP) as well as histopathological observations. Curcumin treatment reduced oxidative stress in animals by scavenging reactive oxygen species, protecting the anti-oxidant enzymes from being denatured and reducing the oxidative stress marker lipid peroxidation. Curcumin treatment restores hepatocytes, damaged by TAA, and protects liver tissue approaching cirrhosis. © The Author(s) 2014.

  7. Immersion Refractometry of Isolated Bacterial Cell Walls

    PubMed Central

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid

  8. Wall contraction in Bloch wall films

    NASA Technical Reports Server (NTRS)

    Bartran, D. S.; Bourne, H. C., Jr.

    1972-01-01

    The phenomenon of wall contraction characterized by a peak in the velocity field relationship and a region of negative differential mobility is observed. Uniaxial magnetic thin films of various compositions and magnetic properties are studied in careful interrupted pulse experiments. The observed results agree quite well with the theory for bulk samples.

  9. The Role of Auxin in Cell Wall Expansion.

    PubMed

    Majda, Mateusz; Robert, Stéphanie

    2018-03-22

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

  10. Wall Finishes; Carpentry: 901895.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  11. Steel Shear Walls, Behavior, Modeling and Design

    NASA Astrophysics Data System (ADS)

    Astaneh-Asl, Abolhassan

    2008-07-01

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  12. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum.

    PubMed

    Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S

    2011-12-01

    Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Regeneration of near-wall turbulence structures

    NASA Technical Reports Server (NTRS)

    Hamilton, James M.; Kim, John J.; Waleffe, Fabian A.

    1993-01-01

    An examination of the regeneration mechanisms of near-wall turbulence and an attempt to investigate the critical Reynolds number conjecture of Waleffe & Kim is presented. The basis is an extension of the 'minimal channel' approach of Jimenez and Moin which emphasizes the near-wall region and further reduces the complexity of the turbulent flow. Reduction of the flow Reynolds number to the minimum value which will allow turbulence to be sustained has the effect of reducing the ratio of the largest scales to the smallest scales or, equivalently, of causing the near-wall region to fill more of the area between the channel walls. In addition, since each wall may have an active near-wall region, half of the channel is always somewhat redundant. If a plane Couette flow is instead chosen as the base flow, this redundancy is eliminated: the mean shear of a plane Couette flow has a single sign, and at low Reynolds numbers, the two wall regions share a single set of structures. A minimal flow with these modifications possesses, by construction, the strongest constraints which allow sustained turbulence, producing a greatly simplified flow in which the regeneration process can be examined.

  14. Wall Area of Influence and Growing Wall Heat Transfer due to Sliding Bubbles in Subcooled Boiling Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat conditionmore » as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.« less

  15. ACTION OF VITAMIN E ON EXPERIMENTAL SEVERE ACUTE LIVER FAILURE.

    PubMed

    Miguel, Fabiano Moraes; Schemitt, Elizângela Gonçalves; Colares, Josieli Raskopf; Hartmann, Renata Minuzzo; Morgan-Martins, Maria Isabel; Marroni, Norma Possa

    2017-01-01

    Severe Acute Liver Failure (ALF) is a life-threatening clinical syndrome characterized by hepatocyte necrosis, loss of hepatic architecture, and impairment of liver functions. One of the main causes of ALF is hepatotoxicity from chemical agents, which damage hepatocytes and result in increase of reactive oxygen species. The vitamin E isoform is the one with the strongest biological antioxidant activity. To evaluate the antioxidant effect of vitamin E in this ALF model. We used 56 rats (mean weight of 300 g) divided into eight groups, four groups assessed at 24 hours and 4 assessed at 48 hours after induction: control group (CO); Vitamin E (Vit. E); Thioacetamide (TAA) and Thioacetamide + Vitamina E (TAA+Vit.E). Rats were submitted to injections of thioacetamide (400 mg/kg i.p.) at baseline and 8 hours later. Vitamin E (100 mg/kg ip) was administered 30 minutes after the second dose of thioacetamide. The 48-hour group rats received two additional doses of vitamin E (24h and 36h). At 24h or 48 hours after the administration of the first dose of TAA, rats were weighed and anesthetized and their blood sampled for evaluation of liver integrity through enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Liver tissue was sampled for assessment of lipid peroxidation (LPO) by the technique TBARS, antioxidant enzymes SOD, CAT, GPx and GST activity, levels of the NO 2 /NO 3 and histology by H&E in two times. The results were expressed as mean ± standard deviation and statistically analyzed by ANOVA followed by Student-Newman-Keuls, with P <0.05 considered as significant. After treatment with vitamin E, we observed a reduction in liver enzymes AST (U/L) (101.32±19.45 in 24 hours and 97.85±29.65 in 48 hours) related to the TAA group (469.56± 0.69 in 24 hours and 598.23±55.45 in 48 hours) and ALT (U/L) (76.59±8.56 in 24 hours and 68.47±6.49 in 48 hours) compared to the TAA group (312.21±10.23 in 24 hours and 359.15±17.58 in 48 hours). There was

  16. The Role of Auxin in Cell Wall Expansion

    PubMed Central

    2018-01-01

    Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition. PMID:29565829

  17. MHD Electrode and wall constructions

    DOEpatents

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  18. Isolation of the Cell Wall.

    PubMed

    Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth

    2017-01-01

    This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.

  19. Generalized Wall Function for Complex Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Chen, Kuo-Huey

    2000-01-01

    A generalized wall function was proposed by Shih et al., (1999). It accounts the effect of pressure gradients on the flow near the wall. Theory shows that the effect of pressure gradients on the flow in the inertial sublayer is very significant and the standard wall function should be replaced by a generalized wall function. Since the theory is also valid for boundary layer flows toward separation, the generalized wall function may be applied to complex turbulent flows with acceleration, deceleration, separation and recirculation. This paper is to verify the generalized wall function with numerical simulations for boundary layer flows with various adverse and favorable pressure gradients, including flows about to separate. Furthermore, a general procedure of implementation of the generalized wall function for National Combustion Code (NCC) is described, it can be applied to both structured and unstructured CFD codes.

  20. Assessing educational outcomes in middle childhood: validation of the Teacher Academic Attainment Scale.

    PubMed

    Johnson, Samantha; Marlow, Neil; Wolke, Dieter

    2012-06-01

    Assessing educational outcomes in high-risk populations is crucial for defining long-term outcomes. As standardized tests are costly and time-consuming, we assessed the use of the Teacher Academic Attainment Scale (TAAS) as an outcome measure. Three hundred and forty three children in mainstream schools aged 10 to 11 years (144 males, 199 females; 190 extremely preterm and 153 term; mean age 10 y 9 mo, SD 5.5 mo, range 9 y 8 mo-12 y 3 mo) were assessed using the reading and mathematics scales of the criterion standard Wechsler Individual Achievement Test, 2nd (UK) edition (WIAT-II). Class teachers completed the TAAS, a seven-item questionnaire for assessing academic attainment. The TAAS was also completed at 6 years of age for 266 children. Cronbach's alpha 0.95 indicated excellent internal consistency, and the correlation between TAAS scores at 6 and 11 years indicated good test-retest reliability (r=0.77, p<0.001). Significantly higher TAAS scores for term vs preterm children demonstrated discriminative validity. TAAS scores at 6 and 11 years were significantly correlated with WIAT-II reading (r=0.69 and 0.75, p<0.001) and mathematics (r=0.75 and 0.82, p<0.001) scores, demonstrating good predictive and concurrent validity respectively. TAAS scores of <2.5 were good predictors of learning difficulties. The TAAS is a brief, psychometrically sound teacher-report of academic attainment that yields continuous and categorical outcomes. It provides a cost- and time-efficient outcome measure for large-scale studies. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  1. Drag reduction at a plane wall

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    The objective is to determine by analytical means how drag on a plane wall may be modified favorably using a minimal amount of flow information - preferably only information at the wall. What quantities should be measured? How should that information be assimilated in order to arrive at effective control? As a prototypical problem, incompressible, viscous flow, governed by the Navier-Stokes equations, past a plane wall at which the no-slip condition was modified was considered. The streamwise and spanwise velocity components are required to be zero, but the normal component is to be specified according to some control law. The challenge is to choose the wall-normal velocity component based on flow conditions at the wall so that the mean drag is as small as possible. There can be no net mass flux through the wall, and the total available control energy is constrained. A turbulent flow is highly unsteady and has detailed spatial structure. The mean drag on the wall is the integral over the wall of the local shear forces exerted by the fluid, which is then averaged in time; it is a 'macroscopic' property of the flow. It is not obvious how unsteady boundary control is to be applied in order to modify the mean flow most effectively, especially in view of the non- self-adjoint nature of the governing equations. An approximate analytical solution to the suboptimal scheme is pursued.

  2. A Trimeric Lipoprotein Assists in Trimeric Autotransporter Biogenesis in Enterobacteria*

    PubMed Central

    Grin, Iwan; Hartmann, Marcus D.; Sauer, Guido; Hernandez Alvarez, Birte; Schütz, Monika; Wagner, Samuel; Madlung, Johannes; Macek, Boris; Felipe-Lopez, Alfonso; Hensel, Michael; Lupas, Andrei; Linke, Dirk

    2014-01-01

    Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore domain into the bacterial outer membrane follows the rules of β-barrel transmembrane protein biogenesis and is dependent on the essential Bam complex. We have recently described the full fiber structure of SadA, a TAA of unknown function in Salmonella and other enterobacteria. In this work, we describe the structure and function of SadB, a small inner membrane lipoprotein. The sadB gene is located in an operon with sadA; orthologous operons are only found in enterobacteria, whereas other TAAs are not typically associated with lipoproteins. Strikingly, SadB is also a trimer, and its co-expression with SadA has a direct influence on SadA structural integrity. This is the first report of a specific export factor of a TAA, suggesting that at least in some cases TAA autotransport is assisted by additional periplasmic proteins. PMID:24369174

  3. Effects of aspirin and enoxaparin in a rat model of liver fibrosis.

    PubMed

    Li, Chen-Jie; Yang, Zhi-Hui; Shi, Xiao-Liu; Liu, De-Liang

    2017-09-21

    To examine the effects of aspirin and enoxaparin on liver function, coagulation index and histopathology in a rat model of liver fibrosis. METHODS Forty-five male Sprague-Dawley rats were randomly divided into the control group (n = 5) and model group (n = 40). Thioacetamide (TAA) was used to induce liver fibrosis in the model group. TAA-induced fibrotic rats received TAA continuously (n = 9), TAA + low-dose aspirin (n = 9), TAA + high-dose aspirin (n = 9) or TAA + enoxaparin (n = 9) for 4 wk. All rats were euthanized after 4 wk, and both hematoxylin-eosin and Masson staining were performed to observe pathological changes in liver tissue. Liver fibrosis was assessed according to the METAVIR score. Compared with untreated cirrhotic controls, a significant improvement in fibrosis grade was observed in the low-dose aspirin, high-dose aspirin and enoxaparin treated groups, especially in the high-dose aspirin treated group. Alanine aminotransferase and total bilirubin were higher, albumin was lower and both prothrombin time and international normalized ratio were prolonged in the four treatment groups compared to controls. No significant differences among the four groups were observed. Aspirin and enoxaparin can alleviate liver fibrosis in this rat model.

  4. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Near-wall modelling of compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1990-01-01

    Work was carried out to formulate near-wall models for the equations governing the transport of the temperature-variance and its dissipation rate. With these equations properly modeled, a foundation is laid for their extension together with the heat-flux equations to compressible flows. This extension is carried out in a manner similar to that used to extend the incompressible near-wall Reynolds-stress models to compressible flows. The methodology used to accomplish the extension of the near-wall Reynolds-stress models is examined and the actual extension of the models for the Reynolds-stress equations and the near-wall dissipation-rate equation to compressible flows is given. Then the formulation of the near-wall models for the equations governing the transport of the temperature variance and its dissipation rate is discussed. Finally, a sample calculation of a flat plate compressible turbulent boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5 using a two-equation near-wall closure is presented. The results show that the near-wall two-equation closure formulated for compressible flows is quite valid and the calculated properties are in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence statistics and structure parameters is consistent with that found in incompressible flows.

  6. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  7. PDF modeling of near-wall turbulent flows

    NASA Astrophysics Data System (ADS)

    Dreeben, Thomas David

    1997-06-01

    Pdf methods are extended to include modeling of wall- bounded turbulent flows. For flows in which resolution of the viscous sublayer is desired, a Pdf near-wall model is developed in which the Generalized Langevin model is combined with an exact model for viscous transport. Durbin's method of elliptic relaxation is used to incorporate the wall effects into the governing equations without the use of wall functions or damping functions. Close to the wall, the Generalized Langevin model provides an analogy to the effect of the fluctuating continuity equation. This enables accurate modeling of the near-wall turbulent statistics. Demonstrated accuracy for fully-developed channel flow is achieved with a Pdf/Monte Carlo simulation, and with its related Reynolds-stress closure. For flows in which the details of the viscous sublayer are not important, a Pdf wall- function method is developed with the Simplified Langevin model.

  8. Hall thruster with grooved walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hong; Ning Zhongxi; Yu Daren

    2013-02-28

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings helpmore » to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.« less

  9. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Wall Interference in Two-Dimensional Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1986-01-01

    Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.

  11. Low-cost sustainable wall construction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit wasmore » $3.76 per square foot ($$40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $$275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.« less

  12. A wall interference assessment/correction system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Ulbrich, N.; Sickles, W. L.; Qian, Cathy X.

    1992-01-01

    A Wall Signature method, the Hackett method, has been selected to be adapted for the 12-ft Wind Tunnel wall interference assessment/correction (WIAC) system in the present phase. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating wall interferences at the model location. The Wall Signature method will be formulated for application to the unique geometry of the 12-ft Tunnel. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method-Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected parameters with those for the free-air simulation. Each set of wind tunnel/test article numerical simulations provides data to validate the WIAC method. A numerical wind tunnel test simulation is initiated to validate the WIAC methods developed in the project. In the present reported period, the blockage correction has been developed and implemented for a rectangular tunnel as well as the 12-ft Pressure Tunnel. An improved wall interference assessment and correction method for three-dimensional wind tunnel testing is presented in the appendix.

  13. Corrections to the thin wall approximation in general relativity

    NASA Technical Reports Server (NTRS)

    Garfinkle, David; Gregory, Ruth

    1989-01-01

    The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.

  14. A two-dimensional adaptive-wall test section with ventilated walls in the Ames 2- by 2-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Lee, George; Mcdevitt, T. Kevin

    1989-01-01

    The first tests conducted in the adaptive-wall test section of the Ames Research Center's 2- by 2-Foot Transonic Wind Tunnel are described. A procedure was demonstrated for reducing wall interference in transonic flow past a two-dimensional airfoil by actively controlling flow through the slotted walls of the test section. Flow through the walls was controlled by adjusting pressures in compartments of plenums above and below the test section. Wall interference was assessed by measuring (with a laser velocimeter) velocity distributions along a contour surrounding the model, and then checking those measurements for their compatibility with free-air far-field boundary conditions. Plenum pressures for minimum wall interference were determined from empirical influence coefficients. An NACA 0012 airfoil was tested at angles of attach of 0 and 2, and at Mach numbers between 0.70 and 0.85. In all cases the wall-setting procedure greatly reduced wall interference. Wall interference, however, was never completely eliminated, primarily because the effect of plenum pressure changes on the velocities along the contour could not be accurately predicted.

  15. Estimation of bladder wall location in ultrasound images.

    PubMed

    Topper, A K; Jernigan, M E

    1991-05-01

    A method of automatically estimating the location of the bladder wall in ultrasound images is proposed. Obtaining this estimate is intended to be the first stage in the development of an automatic bladder volume calculation system. The first step in the bladder wall estimation scheme involves globally processing the images using standard image processing techniques to highlight the bladder wall. Separate processing sequences are required to highlight the anterior bladder wall and the posterior bladder wall. The sequence to highlight the anterior bladder wall involves Gaussian smoothing and second differencing followed by zero-crossing detection. Median filtering followed by thresholding and gradient detection is used to highlight as much of the rest of the bladder wall as was visible in the original images. Then a 'bladder wall follower'--a line follower with rules based on the characteristics of ultrasound imaging and the anatomy involved--is applied to the processed images to estimate the bladder wall location by following the portions of the bladder wall which are highlighted and filling in the missing segments. The results achieved using this scheme are presented.

  16. Arabidopsis Regenerating Protoplast: A Powerful Model System for Combining the Proteomics of Cell Wall Proteins and the Visualization of Cell Wall Dynamics

    PubMed Central

    Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko

    2016-01-01

    The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244

  17. Turbine airfoil having near-wall cooling insert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Jr., Nicholas F.; Wiebe, David J.

    A turbine airfoil is provided with at least one insert positioned in a cavity in an airfoil interior. The insert extends along a span-wise extent of the turbine airfoil and includes first and second opposite faces. A first near-wall cooling channel is defined between the first face and a pressure sidewall of an airfoil outer wall. A second near-wall cooling channel is defined between the second face and a suction sidewall of the airfoil outer wall. The insert is configured to occupy an inactive volume in the airfoil interior so as to displace a coolant flow in the cavity towardmore » the first and second near-wall cooling channels. A locating feature engages the insert with the outer wall for supporting the insert in position. The locating feature is configured to control flow of the coolant through the first or second near-wall cooling channel.« less

  18. Transcardiac endograft delivery for endovascular treatment of the ascending aorta: a feasibility study in pigs.

    PubMed

    Wipper, Sabine; Lohrenz, Christina; Ahlbrecht, Oliver; Carpenter, Sebastian W; Tsilimparis, Nikolaos; Kersten, Jan Felix; Detter, Christian; Debus, Eike S; Kölbel, Tilo

    2015-06-01

    To compare the technical feasibility and hemodynamic alterations during antegrade transcardiac access routes vs conventional transfemoral access (TFA) for endovascular treatment of the ascending aorta in a porcine model. Antegrade transseptal access (TSA), transapical access (TAA), and TFA were used for implantation of custom-made endografts into the ascending aorta under fluoroscopy (6 pigs each). Hemodynamic parameters, myocardial and cerebral blood flow, and carotid artery blood flow were evaluated during baseline (T1), sheath advancement (T2), after sheath retraction (T3), and after endograft deployment (T4). Endograft deployment was feasible in all animals; all coronary arteries remained patent. Hemodynamic parameters were comparable in all 3 study groups during all measurements. During T2, transient hemodynamic alteration occurred in all groups, with transient severe valve insufficiency in TSA and TAA reflected by the higher pulmonary to mean arterial pressure ratio (p<0.05) as compared with TFA. Values stabilized again at T3 and remained stable until T4. The innominate artery was partially occluded in 4 (TSA), 3 (TAA), and 5 (TFA) animals. There was no deterioration of myocardial or cerebral perfusion during the procedures. Endograft deployment and fluoroscopy times during TAA were shorter than in TSA and TFA. TSA, TFA, and TAA to the ascending aorta are feasible for endograft delivery to the ascending aorta in a porcine model. Transient hemodynamic instability in TSA and TAA recovered to near preoperative values. TAA appeared technically easier. © The Author(s) 2015.

  19. Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification.

    PubMed

    Breckpot, Karine; Escors, David

    2009-12-01

    Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.

  20. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code? Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. First wall for polarized fusion reactors

    DOEpatents

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  2. Functional electronic inversion layers at ferroelectric domain walls

    NASA Astrophysics Data System (ADS)

    Mundy, J. A.; Schaab, J.; Kumagai, Y.; Cano, A.; Stengel, M.; Krug, I. P.; Gottlob, D. M.; Doğanay, H.; Holtz, M. E.; Held, R.; Yan, Z.; Bourret, E.; Schneider, C. M.; Schlom, D. G.; Muller, D. A.; Ramesh, R.; Spaldin, N. A.; Meier, D.

    2017-06-01

    Ferroelectric domain walls hold great promise as functional two-dimensional materials because of their unusual electronic properties. Particularly intriguing are the so-called charged walls where a polarity mismatch causes local, diverging electrostatic potentials requiring charge compensation and hence a change in the electronic structure. These walls can exhibit significantly enhanced conductivity and serve as a circuit path. The development of all-domain-wall devices, however, also requires walls with controllable output to emulate electronic nano-components such as diodes and transistors. Here we demonstrate electric-field control of the electronic transport at ferroelectric domain walls. We reversibly switch from resistive to conductive behaviour at charged walls in semiconducting ErMnO3. We relate the transition to the formation--and eventual activation--of an inversion layer that acts as the channel for the charge transport. The findings provide new insight into the domain-wall physics in ferroelectrics and foreshadow the possibility to design elementary digital devices for all-domain-wall circuitry.

  3. The self streamlining wind tunnel. [wind tunnel walls

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1975-01-01

    A two dimensional test section in a low speed wind tunnel capable of producing flow conditions free from wall interference is presented. Flexible top and bottom walls, and rigid sidewalls from which models were mounted spanning the tunnel are shown. All walls were unperforated, and the flexible walls were positioned by screw jacks. To eliminate wall interference, the wind tunnel itself supplied the information required in the streamlining process, when run with the model present. Measurements taken at the flexible walls were used by the tunnels computer check wall contours. Suitable adjustments based on streamlining criteria were then suggested by the computer. The streamlining criterion adopted when generating infinite flowfield conditions was a matching of static pressures in the test section at a wall with pressures computed for an imaginary inviscid flowfield passing over the outside of the same wall. Aerodynamic data taken on a cylindrical model operating under high blockage conditions are presented to illustrate the operation of the tunnel in its various modes.

  4. Effective description of domain wall strings

    NASA Astrophysics Data System (ADS)

    Rodrigues, Davi R.; Abanov, Ar.; Sinova, J.; Everschor-Sitte, K.

    2018-04-01

    The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of magnetic skyrmions, previously accessible only through sophisticated micromagnetic numerical calculations and spectral analysis. These analytical expressions provide the scaling behavior of the different physics on parameters that experiments can test.

  5. Sunspot Light Walls Suppressed by Nearby Brightenings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Hou, Yijun

    Light walls, as ensembles of oscillating bright structures rooted in sunspot light bridges, have not been well studied, although they are important for understanding sunspot properties. Using the Interface Region Imaging Spectrograph and Solar Dynamics Observatory observations, here we study the evolution of two oscillating light walls each within its own active region (AR). The emission of each light wall decays greatly after the appearance of adjacent brightenings. For the first light wall, rooted within AR 12565, the average height, amplitude, and oscillation period significantly decrease from 3.5 Mm, 1.7 Mm, and 8.5 minutes to 1.6 Mm, 0.4 Mm, andmore » 3.0 minutes, respectively. For the second light wall, rooted within AR 12597, the mean height, amplitude, and oscillation period of the light wall decrease from 2.1 Mm, 0.5 Mm, and 3.0 minutes to 1.5 Mm, 0.2 Mm, and 2.1 minutes, respectively. Particularly, a part of the second light wall even becomes invisible after the influence of a nearby brightening. These results reveal that the light walls are suppressed by nearby brightenings. Considering the complex magnetic topology in light bridges, we conjecture that the fading of light walls may be caused by a drop in the magnetic pressure, where the flux is canceled by magnetic reconnection at the site of the nearby brightening. Another hypothesis is that the wall fading is due to the suppression of driver source ( p -mode oscillation), resulting from the nearby avalanche of downward particles along reconnected brightening loops.« less

  6. Curvature-induced domain wall pinning

    NASA Astrophysics Data System (ADS)

    Yershov, Kostiantyn V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri

    2015-09-01

    It is shown that a local bend of a nanowire is a source of pinning potential for a transversal head-to-head (tail-to-tail) domain wall. Eigenfrequency of the domain wall free oscillations at the pinning potential and the effective friction are determined as functions of the curvature and domain wall width. The pinning potential originates from the effective curvature-induced Dzyaloshinsky-like term in the exchange energy. The theoretical results are verified by means of micromagnetic simulations for the case of parabolic shape of the wire bend.

  7. Theory of Current-Driven Domain Wall Motion

    NASA Astrophysics Data System (ADS)

    Tatara, Gen

    2004-03-01

    Current-induced motion of a domain wall is studied starting from a microscopic Hamiltonian with an exchange interaction between conduction electrons and spins of the wall [1]. With a key observation that the position X and the angle φ0 the wall magnetization forms with the easy plane are the proper collective coordinates to describe its dynamics, it follows straightforwardly that the electric current affects the wall motion in two different ways, in agreement with Berger's pioneering observations[2]. The first is as a force, or momentum transfer, due to the reflection of conduction electrons. This force is proportional to the charge current j and wall resistivity ρ_w, and hence becomes important in thin walls. The other is as a spin torque or spin transfer[3], which is dominant for thick walls where the spin of conduction electron follows the magnetization adiabatically. The motion of a domain wall under a steady current is studied in two limiting cases. In the adiabatic case, we show that even without a pinning force, there is a threshold spin current, j_s^cr∝ K_⊥λ, below which the wall does not move (K_⊥ and λ being the hard-axis magnetic anisotropy and wall thickness, respectively). Below the threshold, the transferred angular momentum is used to shift φ0 and not to the wall motion. The pinning potential V0 affects j_s^cr only if it is very strong, V0 > K_⊥/α, where α is the damping parameter in the Landau-Lifshits-Gilbert equation. Therefore, the critical current for the adiabatic wall does not suffer very much from weak pinning, which is consistent with experimental observations[4]. The wall velocity after depinning is found to be ∝[(j_s/j_s^cr)^2-1]^1/2. In the case of thin wall, driven by a force ∝ ρw j, the critical current density is given by j^cr∝ V_0/ρ_w. In nanocontacts, this is estimated to be ˜ 10^7[A/m^2]. This small critical current would be advantageous for device application. [1] G.Tatara and H.Kohno, cond-mat/0308464

  8. An Arizona Border Wall Case Study

    DTIC Science & Technology

    2017-12-01

    WALL CASE STUDY by Justin Alexander Bristow December 2017 Thesis Advisor: Erik Dahl Second Reader: Jorge Gonzalez THIS PAGE...4. TITLE AND SUBTITLE AN ARIZONA BORDER WALL CASE STUDY 5. FUNDING NUMBERS 6. AUTHOR(S) Justin Alexander Bristow 7. PERFORMING ORGANIZATION...PAGE INTENTIONALLY LEFT BLANK iii Approved for public release. Distribution is unlimited. AN ARIZONA BORDER WALL CASE STUDY Justin Alexander

  9. Making Your Music Word Wall Work

    ERIC Educational Resources Information Center

    Leonhardt, Angela

    2011-01-01

    This article looks at what a word wall is and its use in the music classroom. The author outlines steps for creation of a word wall within the music classroom as well as the importance of such a resource. The author encourages the creation and consistent use of the word wall as leading to the development of stronger musicians and also independent,…

  10. First wall for polarized fusion reactors

    DOEpatents

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  11. Breathing pattern and thoracoabdominal asynchrony in horses with chronic obstructive and inflammatory lung disease.

    PubMed

    Haltmayer, E; Reiser, S; Schramel, J P; van den Hoven, R

    2013-10-01

    The aim of the study was to show that changes in thoracoabdominal asynchrony (TAA) between quiet breathing and CO2-induced hyperpnoea can be used to differentiate between horses with healthy airways and those suffering from inflammatory airway disease (IAD) or recurrent airway obstruction (RAO). The level of TAA was displayed by the Pearson's correlation coefficient (PCC) of thoracic and abdominal signals, generated by respiratory ultrasonic plethysmography (RUP) during quiet breathing and hyperpnoea. Changes in TAA were expressed as the quotient of the PCCs (PCCQ) during normal breathing and hyperpnoea. Horses with RAO and IAD showed significant higher median PCCQ than healthy horses. Median PCCQ of horses with RAO and IAD was not significantly different. Horses affected by a pulmonary disorder showed lower TAA compared to the control group. This study suggests that TAA provides a useful parameter to differentiate horses with RAO and IAD from healthy horses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Therapeutic assessment with an adolescent: choosing connections over substances.

    PubMed

    Austin, Cynthia A; Krumholz, Lauren S; Tharinger, Deborah J

    2012-01-01

    This case study provides an in-depth example of a comprehensive therapeutic assessment with an adolescent (TA-A) and his parents. The TA-A addressed parental concerns about their son's drug experimentation as well as the adolescent's own private questions about his distinctiveness from others, all set against a backdrop of ongoing parental conflict and poor communication. The TA-A process and how it is specifically tailored to balance the needs of adolescents and their parents is discussed. Subsequently, each step of TA-A is illustrated through the case study. Research findings at the conclusion of the assessment and at follow-up indicated significant decreases in internalizing symptomology and school problems, increases in self-esteem and self-reliance, and improved family functioning as reported by the adolescent. At follow-up, the father spoke of developing a more assertive parenting approach and successful follow-through on recommendations. This case study provides a template for clinicians interested in conducting TA-A.

  13. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  14. Protective effects of melatonin against thioacetamide-induced liver fibrosis in rats.

    PubMed

    Czechowska, G; Celinski, K; Korolczuk, A; Wojcicka, G; Dudka, J; Bojarska, A; Reiter, R J

    2015-08-01

    The aim of this study was to determine the effect of melatonin on thioacetamide (TAA) induced liver fibrosis in rats. The antifibrotic effects of melatonin were assessed by determining activity indirect markers of fibrosis: aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), and proinflammatory cytokines: interleukin 6 (IL-6), interleukin-1beta (IL-1β), tumour necrosis factor alpha (TNF-α), transforming growth factor-beta (TGF-β) and platelet-derived growth factor (PDGF). Parameters of oxidative stress: oxidised glutathione (GSSG), reduced glutathione (GSH) and presaged activity of paraoxonase 1 (PON-1), an antioxidative enzyme were determined. Inflammatory changes and fibrosis extent were evaluated histologically. Experiments were carried out in Wistar rats. Animals were divided into 4 groups: I - controls, water ad libitum for 12 weeks, group II - TAA, 300 mg/L ad libitum for 12 weeks, III - melatonin, 10 mg/kg b.w. intraperitoneally (i.p.) daily for 4 weeks, IV - TAA, 300 mg/L ad libitum for 12 weeks followed by melatonin, 10 mg/kg/b.w. i.p. daily for 4 weeks. Results of serum determinations demonstrated significantly lower activity of AST, ALT and AP in the group receiving TAA followed by melatonin compared to the group receiving only TAA. Immunoenzymatic findings on effect of melatonin on concentration of proinflammatory cytokines confirmed these data. Biochemical examinations in liver homogenates revealed statistically significant improvement (concentration of GSH increases and concentration of GSSG decreases) in animals with TAA-induced liver damage receiving melatonin. Moreover, the activity of PON-1 toward phenyl acetate and paraoxon was increased in liver homogenates and serum in the group receiving TAA followed by melatonin compared to the TAA group without melatonin treatment. Microscopic evaluation disclosed inhibitory effects of melatonin on inflammatory changes and extent of liver fibrosis.

  15. Don't Forget the Abdominal Wall: Imaging Spectrum of Abdominal Wall Injuries after Nonpenetrating Trauma.

    PubMed

    Matalon, Shanna A; Askari, Reza; Gates, Jonathan D; Patel, Ketan; Sodickson, Aaron D; Khurana, Bharti

    2017-01-01

    Abdominal wall injuries occur in nearly one of 10 patients coming to the emergency department after nonpenetrating trauma. Injuries range from minor, such as abdominal wall contusion, to severe, such as abdominal wall rupture with evisceration of abdominal contents. Examples of specific injuries that can be detected at cross-sectional imaging include abdominal muscle strain, tear, or hematoma, including rectus sheath hematoma (RSH); traumatic abdominal wall hernia (TAWH); and Morel-Lavallée lesion (MLL) (closed degloving injury). These injuries are often overlooked clinically because of (a) a lack of findings at physical examination or (b) distraction by more-severe associated injuries. However, these injuries are important to detect because they are highly associated with potentially grave visceral and vascular injuries, such as aortic injury, and because their detection can lead to the diagnosis of these more clinically important grave traumatic injuries. Failure to make a timely diagnosis can result in delayed complications, such as bowel hernia with potential for obstruction or strangulation, or misdiagnosis of an abdominal wall neoplasm. Groin injuries, such as athletic pubalgia, and inferior costochondral injuries should also be considered in patients with abdominal pain after nonpenetrating trauma, because these conditions may manifest with referred abdominal pain and are often included within the field of view at cross-sectional abdominal imaging. Radiologists must recognize and report acute abdominal wall injuries and their associated intra-abdominal pathologic conditions to allow appropriate and timely treatment. © RSNA, 2017.

  16. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  17. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  18. Using Genetic Buffering Relationships Identified in Fission Yeast To Elucidate the Molecular Pathology of Tuberous Sclerosis

    DTIC Science & Technology

    2016-07-01

    5’-aat tat ttt ata tgg aat gag caa gta tgt ttt atc ata att gac cag ttc att tca agg acc ttc aaa aat ata cct acg aat tcg agc tcg ttt aaa c-3’), or...oTsc13 (5’-tta aga gtt cag att tgc ttt atg tgg tta ttc tgc tga agg tcc taa ttt att gac gtt gaa aaa taa agg cca cat agc gga tcc ccg ggt taa tta a-3...and oTsc14 (5’-ata aaa aaa att aat taa tga tgg caa ggc aca atc gta atc aat ctt tta att tag gac ttt tta tat gcc ctt atg gcg aat tcg agc tcg ttt aaa c

  19. Injuries on British climbing walls.

    PubMed Central

    Limb, D

    1995-01-01

    A postal survey was carried out of the 90 most accessible climbing walls in England, Scotland and Wales to determine the incidence and nature of injuries requiring emergency treatment associated with their use. Over a two year period, representing 1.021 million visits to the 56 walls used by more than 30 climbers per week, 55 significant injuries were recorded. The rate of injury was not related to any identified design or safety feature of the walls, although upper limb injuries were proportionally more common in walls which provided thinner fixed landing mats rather than thicker, moveable crash mats. The overall rate of injury was very low and climbers seem to modify risk taking behaviour and thus compensate for the level of safety equipment available. It may be possible to reduce the injury rate further by providing seamless ground cover with matting of adequate energy absorbency. Images Figure 1 PMID:8800849

  20. Comparison between capillary electrophoresis and high performance liquid chromatography for detection and quantification of Hb constant spring [Hb CS; α142, Term→Gln (TAA>CAA IN α2)].

    PubMed

    Waneesorn, Jarurin; Panyasai, Sitthichai; Kongthai, Kanyakan; Singboottra, Panthong; Pornprasert, Sakorn

    2011-01-01

    Hb Constant Spring [Hb CS; α142, Term→Gln (TAA>CAA in α2)] is often missed by routine laboratory testing since its mRNA as well as gene product are unstable and presented at a low level in peripheral blood. This study aimed to analyze the efficacy of capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) for detecting and quantifying Hb CS in 19 heterozygotes and 14 homozygotes with Hb CS as well as 10 Hb H-CS disease subjects who were detected by molecular analysis. In the CE electrophoregram, Hb CS was seen at zone 2 and was observed in all samples, while the chromatogram of Hb CS peaks was found in 26.32% heterozygotes, 42.86% homozygotes and 90% Hb H-CS disease subjects, respectively. In addition, the Hb CS levels in each group of subjects quantified by CE were significantly higher than those quantified by HPLC. Based on the CE method, the lowest Hb CS level was found in the heterozygotes, whereas the highest level was found in the Hb H-CS disease patients. Therefore, the CE method was superior to the HPLC method for detecting Hb CS. Furthermore, the level of Hb CS quantified by CE proved useful in screening heterozygotes and homozygotes with Hb CS as well as Hb H-CS disease.

  1. Measurements of wall shear stress in a planar turbulent Couette flow with porous walls

    NASA Astrophysics Data System (ADS)

    Beuther, Paul

    2013-11-01

    Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.

  2. 75 FR 1345 - Solicitation of Applications for the Community Trade Adjustment Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Administration, Seattle Regional Office, Jackson Federal Building, Room 1890, 915 Second Avenue, Seattle... Community TAA Program supplements and builds upon the other TAA programs by providing comprehensive...

  3. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease.more » Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.« less

  4. Evaluation of the High-Heel Roof-to-Wall Connection with Extended OSB Wall Sheathing

    Treesearch

    Andrew DeRenzis; Vladimir Kochkin; Xiping Wang

    2013-01-01

    A recently completed testing project conducted to evaluate optimized structural roof-to-wall attachment solutions demonstrated the effectiveness of wood structural panels in restraining high-heel trusses against rotation. This study was designed to further evaluate the performance of OSB wall sheathing panels extended over the high-heel truss in resisting combined...

  5. Blood Transfusion During Total Ankle Arthroplasty Is Associated With Increased In-Hospital Complications and Costs.

    PubMed

    Ewing, Michael A; Huntley, Samuel R; Baker, Dustin K; Smith, Kenneth S; Hudson, Parke W; McGwin, Gerald; Ponce, Brent A; Johnson, Michael D

    2018-04-01

    Total ankle arthroplasty (TAA) is an increasingly used, effective treatment for end-stage ankle arthritis. Although numerous studies have associated blood transfusion with complications following hip and knee arthroplasty, its effects following TAA are largely unknown. This study uses data from a large, nationally representative database to estimate the association between blood transfusion and inpatient complications and hospital costs following TAA. Using the Nationwide Inpatient Sample (NIS) database from 2004 to 2014, 25 412 patients who underwent TAA were identified, with 286 (1.1%) receiving a blood transfusion. Univariate analysis assessed patient and hospital factors associated with blood transfusion following TAA. Patients requiring blood transfusion were more likely to be female, African American, Medicare recipients, and treated in nonteaching hospitals. Average length of stay for patients following transfusion was 3.0 days longer, while average inpatient cost was increased by approximately 50%. Patients who received blood transfusion were significantly more likely to suffer from congestive heart failure, peripheral vascular disease, hypothyroidism, coagulation disorder, or anemia. Acute renal failure was significantly more common among patients receiving blood transfusion ( P < .001). Blood transfusions following TAA are infrequent and are associated with multiple medical comorbidities, increased complications, longer hospital stays, and increased overall cost. Level III: Retrospective, comparative study.

  6. Amino Acid Profiles in Term and Preterm Human Milk through Lactation: A Systematic Review

    PubMed Central

    Zhang, Zhiying; Adelman, Alicia S.; Rai, Deshanie; Boettcher, Julia; Lőnnerdal, Bo

    2013-01-01

    Amino acid profile is a key aspect of human milk (HM) protein quality. We report a systematic review of total amino acid (TAA) and free amino acid (FAA) profiles, in term and preterm HM derived from 13 and 19 countries, respectively. Of the 83 studies that were critically reviewed, 26 studies with 3774 subjects were summarized for TAA profiles, while 22 studies with 4747 subjects were reviewed for FAA. Effects of gestational age, lactation stage, and geographical region were analyzed by Analysis of Variance. Data on total nitrogen (TN) and TAA composition revealed general inter-study consistency, whereas FAA concentrations varied among studies. TN and all TAA declined in the first two months of lactation and then remained relatively unchanged. In contrast, the FAA glutamic acid and glutamine increased, peaked around three to six months, and then declined. Some significant differences were observed for TAA and FAA, based on gestational age and region. Most regional TAA and FAA data were derived from Asia and Europe, while information from Africa was scant. This systematic review represents a useful evaluation of the amino acid composition of human milk, which is valuable for the assessment of protein quality of breast milk substitutes. PMID:24288022

  7. Recovery after abdominal wall reconstruction.

    PubMed

    Jensen, Kristian Kiim

    2017-03-01

    Incisional hernia is a common long-term complication to abdominal surgery, occurring in more than 20% of all patients. Some of these hernias become giant and affect patients in several ways. This patient group often experiences pain, decreased perceived body image, and loss of physical function, which results in a need for surgical repair of the giant hernia, known as abdominal wall reconstruction. In the current thesis, patients with a giant hernia were examined to achieve a better understanding of their physical and psychological function before and after abdominal wall reconstruction. Study I was a systematic review of the existing standardized methods for assessing quality of life after incisional hernia repair. After a systematic search in the electronic databases Embase and PubMed, a total of 26 studies using standardized measures for assessment of quality of life after incisional hernia repair were found. The most commonly used questionnaire was the generic Short-Form 36, which assesses overall health-related quality of life, addressing both physical and mental health. The second-most common questionnaire was the Carolinas Comfort Scale, which is a disease specific questionnaire addressing pain, movement limitation and mesh sensation in relation to a current or previous hernia. In total, eight different questionnaires were used at varying time points in the 26 studies. In conclusion, standardization of timing and method of quality of life assessment after incisional hernia repair was lacking. Study II was a case-control study of the effects of an enhanced recovery after surgery pathway for patients undergoing abdominal wall reconstruction for a giant hernia. Sixteen consecutive patients were included prospectively after the implementation of a new enhanced recovery after surgery pathway at the Digestive Disease Center, Bispebjerg Hospital, and compared to a control group of 16 patients included retrospectively in the period immediately prior to the

  8. Chest Wall Trauma.

    PubMed

    Majercik, Sarah; Pieracci, Fredric M

    2017-05-01

    Chest wall trauma is common, and contributes significantly to morbidity and mortality of trauma patients. Early identification of major chest wall and concomitant intrathoracic injuries is critical. Generalized management of multiple rib fractures and flail chest consists of adequate pain control (including locoregional modalities); management of pulmonary dysfunction by invasive and noninvasive means; and, in some cases, surgical fixation. Multiple studies have shown that patients with flail chest have substantial benefit (decreased ventilator and intensive care unit days, improved pulmonary function, and improved long-term functional outcome) when they undergo surgery compared with nonoperative management. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Velocity Enhancement by Synchronization of Magnetic Domain Walls

    NASA Astrophysics Data System (ADS)

    Hrabec, Aleš; Křižáková, Viola; Pizzini, Stefania; Sampaio, João; Thiaville, André; Rohart, Stanislas; Vogel, Jan

    2018-06-01

    Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this Letter, we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls links not only their position but also their structure. We show that this link has a direct impact on their magnetic-field-induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.

  10. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  11. Plant and algal cell walls: diversity and functionality.

    PubMed

    Popper, Zoë A; Ralet, Marie-Christine; Domozych, David S

    2014-10-01

    Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore,wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes ( plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant

  12. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-06-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  13. Hygrothermal behavior for a clay brick wall

    NASA Astrophysics Data System (ADS)

    Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A.

    2018-01-01

    In Egypt, the clay brick is the common building materials which are used. By studying clay brick walls behavior for the heat and moisture transfer, the efficient use of the clay brick can be reached. So, this research studies the hygrothermal transfer in this material by measuring the hygrothermal properties and performing experimental tests for a constructed clay brick wall. We present the model for the hygrothermal transfer in the clay brick which takes the temperature and the vapor pressure as driving potentials. In addition, this research compares the presented model with previous models. By constructing the clay brick wall between two climates chambers with different boundary conditions, we can validate the numerical model and analyze the hygrothermal transfer in the wall. The temperature and relative humidity profiles within the material are measured experimentally and determined numerically. The numerical and experimental results have a good convergence with 3.5% difference. The surface boundary conditions, the ground effect, the infiltration from the closed chambers and the material heterogeneity affects the results. Thermal transfer of the clay brick walls reaches the steady state very rapidly than the moisture transfer. That means the effect of using only the external brick wall in the building in hot climate without increase the thermal resistance for the wall, will add more energy losses in the clay brick walls buildings. Also, the behavior of the wall at the heat and mass transfer calls the three-dimensional analysis for the whole building to reach the real behavior.

  14. Moisture Management for High R-Value Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on threemore » primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.« less

  15. Left atrium and pulmonary artery compression due to aortic aneurysm causing heart failure symptoms.

    PubMed

    Jorge, Antonio José Lagoeiro; Martins, Wolney de Andrade; Moutinho, Victor M; Rezende, Juliano M; Alves, Patricia Y; Villacorta, Humberto; Silveira, Pedro F; Couto, Antonio A

    2018-06-01

    Patients with thoracic aortic aneurysm (TAA) are mostly asymptomatic and TAA is rarely related to heart failure (HF). We report the case of an 80-year-old female patient, with type A TAA without dissection, with right pulmonary artery and left atrium compression, who presented with HF, preserved ejection fraction and acute pulmonary edema. Copyright © 2018 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Modeling of near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T. H.; Mansour, N. N.

    1990-01-01

    An improved k-epsilon model and a second order closure model is presented for low Reynolds number turbulence near a wall. For the k-epsilon model, a modified form of the eddy viscosity having correct asymptotic near wall behavior is suggested, and a model for the pressure diffusion term in the turbulent kinetic energy equation is proposed. For the second order closure model, the existing models are modified for the Reynolds stress equations to have proper near wall behavior. A dissipation rate equation for the turbulent kinetic energy is also reformulated. The proposed models satisfy realizability and will not produce unphysical behavior. Fully developed channel flows are used for model testing. The calculations are compared with direct numerical simulations. It is shown that the present models, both the k-epsilon model and the second order closure model, perform well in predicting the behavior of the near wall turbulence. Significant improvements over previous models are obtained.

  17. Functional duality of the cell wall.

    PubMed

    Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    The polysaccharide cell wall is the extracellular armour of the fungal cell. Although essential in the protection of the fungal cell against aggressive external stresses, the biosynthesis of the polysaccharide core is poorly understood. For a long time it was considered that this cell wall skeleton was a fixed structure whose role was only to be sensed as non-self by the host and consequently trigger the defence response. It is now known that the cell wall polysaccharide composition and localization continuously change to adapt to their environment and that these modifications help the fungus to escape from the immune system. Moreover, cell wall polysaccharides could function as true virulence factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Chronic Abdominal Wall Pain.

    PubMed

    Koop, Herbert; Koprdova, Simona; Schürmann, Christine

    2016-01-29

    Chronic abdominal wall pain is a poorly recognized clinical problem despite being an important element in the differential diagnosis of abdominal pain. This review is based on pertinent articles that were retrieved by a selective search in PubMed and EMBASE employing the terms "abdominal wall pain" and "cutaneous nerve entrapment syndrome," as well as on the authors' clinical experience. In 2% to 3% of patients with chronic abdominal pain, the pain arises from the abdominal wall; in patients with previously diagnosed chronic abdominal pain who have no demonstrable pathological abnormality, this likelihood can rise as high as 30% . There have only been a small number of clinical trials of treatment for this condition. The diagnosis is made on clinical grounds, with the aid of Carnett's test. The characteristic clinical feature is strictly localized pain in the anterior abdominal wall, which is often mischaracterized as a "functional" complaint. In one study, injection of local anesthesia combined with steroids into the painful area was found to relieve pain for 4 weeks in 95% of patients. The injection of lidocaine alone brought about improvement in 83-91% of patients. Long-term pain relief ensued after a single lidocaine injection in 20-30% of patients, after repeated injections in 40-50% , and after combined lidocaine and steroid injections in up to 80% . Pain that persists despite these treatments can be treated with surgery (neurectomy). Chronic abdominal wall pain is easily diagnosed on physical examination and can often be rapidly treated. Any physician treating patients with abdominal pain should be aware of this condition. Further comparative treatment trials will be needed before a validated treatment algorithm can be established.

  19. Safranine fluorescent staining of wood cell walls.

    PubMed

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.

  20. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  1. OSCILLATING LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Jiang, Fayu

    With the high tempo-spatial Interface Region Imaging Spectrograph 1330 Å images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a light wall. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope Hα and the Solar Dynamics Observatory 171 and 131 Å images are also used to study the light-wall properties. In 1330, 171, and 131 Å, the top of the wall has a higher emission, while in the Hα line, the wall-top emission is very low.more » The wall body corresponds to bright areas in 1330 Å and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s{sup −1}, and 3.9 minutes, respectively. We interpret the oscillations of the light wall as the leakage of p-modes from below the photosphere. The constant brightness enhancement of the wall top implies the existence of some kind of atmospheric heating, e.g., via the persistent small-scale reconnection or the magneto-acoustic waves. In another series of 1330 Å images, we find that the wall top in the upward motion phase is significantly brighter than in the downward phase. This kind of oscillation may be powered by the energy released due to intermittent impulsive magnetic reconnection.« less

  2. Building a plant cell wall at a glance.

    PubMed

    Lampugnani, Edwin R; Khan, Ghazanfar Abbas; Somssich, Marc; Persson, Staffan

    2018-01-29

    Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis . © 2018. Published by The Company of Biologists Ltd.

  3. Axion domain wall baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: kitajima@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp

    2015-07-01

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m ≅ 10{sup 8}–10{sup 13} GeV and f ≅ 10{sup 13}–10{sup 16} GeV . Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domainmore » wall annihilation and its implications for the future gravitational wave experiments.« less

  4. A wall interference assessment/correction system

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Overby, Glenn; Qian, Cathy X.; Sickles, W. L.; Ulbrich, N.

    1992-01-01

    A Wall Signature method originally developed by Hackett has been selected to be adapted for the Ames 12-ft Wind Tunnel WIAC system in the project. This method uses limited measurements of the static pressure at the wall, in conjunction with the solid wall boundary condition, to determine the strength and distribution of singularities representing the test article. The singularities are used in turn for estimating blockage wall interference. The lifting interference will be treated separately by representing in a horseshoe vortex system for the model's lifting effects. The development and implementation of a working prototype will be completed, delivered and documented with a software manual. The WIAC code will be validated by conducting numerically simulated experiments rather than actual wind tunnel experiments. The simulations will be used to generate both free-air and confined wind-tunnel flow fields for each of the test articles over a range of test configurations. Specifically, the pressure signature at the test section wall will be computed for the tunnel case to provide the simulated 'measured' data. These data will serve as the input for the WIAC method--Wall Signature method. The performance of the WIAC method then may be evaluated by comparing the corrected data with those of the free-air simulation.

  5. 30 years of battling the cell wall.

    PubMed

    Latgé, J P

    2017-01-01

    In Aspergillus fumigatus, like in other pathogenic fungi, the cell wall is essential for fungal growth as well as for resisting environmental stresses such as phagocytic killing. Most of the chemical analyses undertaken on the cell wall of A. fumigatus are focused on the mycelial cell wall because it is the vegetative stage of the fungus. However, the cell walls of the mycelium and conidium (which is the infective propagule) are different especially at the level of the surface layer, which plays a significant role in the interaction between A. fumigatus conidia and phagocytic cells of the immune system. In spite of the essential function of the cell wall in fungal life, progresses have been extremely slow in the understanding of biosynthesis as well in the identification of the key host responses against the cell wall components. A major difficulty is the fact that the composition and structural organization of the cell wall is not immutably set and is constantly reshuffled depending on the environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    PubMed

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Wall Turbulence.

    ERIC Educational Resources Information Center

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  8. Robust ferromagnetism carried by antiferromagnetic domain walls

    NASA Astrophysics Data System (ADS)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  9. Sideways wall force produced during tokamak disruptions

    NASA Astrophysics Data System (ADS)

    Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.

    2013-07-01

    A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.

  10. Robust ferromagnetism carried by antiferromagnetic domain walls

    PubMed Central

    Hirose, Hishiro T.; Yamaura, Jun-ichi; Hiroi, Zenji

    2017-01-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics. PMID:28195565

  11. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  12. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled carbon nanotubes (generic) (P-10-40). (a) Chemical substance and significant new uses subject to reporting. (1) The...

  13. Economics of abdominal wall reconstruction.

    PubMed

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A new method of evaluating the side wall interference effect on airfoil angle of attack by suction from the side walls

    NASA Technical Reports Server (NTRS)

    Sawada, H.; Sakakibara, S.; Sato, M.; Kanda, H.; Karasawa, T.

    1984-01-01

    A quantitative evaluation method of the suction effect from a suction plate on side walls is explained. It is found from wind tunnel tests that the wall interference is basically described by the summation form of wall interferences in the case of two dimensional flow and the interference of side walls.

  15. 77 FR 12086 - 2002 Reopened-Previously Denied Determinations; Notice of Revised Denied Determinations On...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... reconsideration investigation revealed that the following workers groups have met the certification criteria under... at tradeact/taa/taa--search--form.cfm under the searchable listing of determinations or by calling...

  16. 76 FR 79225 - 2002 Reopened-Previously Denied Determinations; Notice of Negative Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... reconsideration investigation revealed that the following workers groups have not met the certification criteria... Department's Web site at tradeact/taa/taa-- search--form.cfm under the searchable listing of determinations...

  17. 76 FR 81990 - 2002 Reopened-Previously Denied Determinations; Notice of Negative Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... reconsideration investigation revealed that the following workers groups have not met the certification criteria... Department's Web site at tradeact/taa/taa-- search--form.cfm under the searchable listing of determinations...

  18. 77 FR 3506 - 2002 Reopened-Previously Denied Determinations; Notice of Negative Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... reconsideration investigation revealed that the following workers groups have not met the certification criteria... Department's Web site at tradeact/taa/taa-- search--form.cfm under the searchable listing of determinations...

  19. 76 FR 77558 - 2002 Reopened-Previously Denied Determinations; Notice of Negative Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... reconsideration investigation revealed that the following workers groups have not met the certification criteria... at tradeact/taa/taa--search--form.cfm under the searchable listing of determinations or by calling...

  20. An NPARC Turbulence Module with Wall Functions

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1997-01-01

    The turbulence module recently developed for the NPARC code has been extended to include wall functions. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The module is equipped with three two-equation K-epsilon turbulence models: Chien, Shih-Lumley and CMOTR models. Details of the wall functions as well as their numerical implementation are reported. It is shown that the inappropriate artificial viscosity in the near-wall region has a big influence on the solution of the wall function approach. A simple way to eliminate this influence is proposed, which gives satisfactory results during the code validation. The module can be easily linked to the NPARC code for practical applications.

  1. Aging near the wall in colloidal glasses

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  2. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  3. Automated evaluation of liver fibrosis in thioacetamide, carbon tetrachloride, and bile duct ligation rodent models using second-harmonic generation/two-photon excited fluorescence microscopy.

    PubMed

    Liu, Feng; Chen, Long; Rao, Hui-Ying; Teng, Xiao; Ren, Ya-Yun; Lu, Yan-Qiang; Zhang, Wei; Wu, Nan; Liu, Fang-Fang; Wei, Lai

    2017-01-01

    Animal models provide a useful platform for developing and testing new drugs to treat liver fibrosis. Accordingly, we developed a novel automated system to evaluate liver fibrosis in rodent models. This system uses second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy to assess a total of four mouse and rat models, using chemical treatment with either thioacetamide (TAA) or carbon tetrachloride (CCl 4 ), and a surgical method, bile duct ligation (BDL). The results obtained by the new technique were compared with that using Ishak fibrosis scores and two currently used quantitative methods for determining liver fibrosis: the collagen proportionate area (CPA) and measurement of hydroxyproline (HYP) content. We show that 11 shared morphological parameters faithfully recapitulate Ishak fibrosis scores in the models, with high area under the receiver operating characteristic (ROC) curve (AUC) performance. The AUC values of 11 shared parameters were greater than that of the CPA (TAA: 0.758-0.922 vs 0.752-0.908; BDL: 0.874-0.989 vs 0.678-0.966) in the TAA mice and BDL rat models and similar to that of the CPA in the TAA rat and CCl 4 mouse models. Similarly, based on the trends in these parameters at different time points, 9, 10, 7, and 2 model-specific parameters were selected for the TAA rats, TAA mice, CCl 4 mice, and BDL rats, respectively. These parameters identified differences among the time points in the four models, with high AUC accuracy, and the corresponding AUC values of these parameters were greater compared with those of the CPA in the TAA rat and mouse models (rats: 0.769-0.894 vs 0.64-0.799; mice: 0.87-0.93 vs 0.739-0.836) and similar to those of the CPA in the CCl 4 mouse and BDL rat models. Similarly, the AUC values of 11 shared parameters and model-specific parameters were greater than those of HYP in the TAA rats, TAA mice, and CCl 4 mouse models and were similar to those of HYP in the BDL rat models. The automated

  4. The impact of personalized probabilistic wall thickness models on peak wall stress in abdominal aortic aneurysms.

    PubMed

    Biehler, J; Wall, W A

    2018-02-01

    If computational models are ever to be used in high-stakes decision making in clinical practice, the use of personalized models and predictive simulation techniques is a must. This entails rigorous quantification of uncertainties as well as harnessing available patient-specific data to the greatest extent possible. Although researchers are beginning to realize that taking uncertainty in model input parameters into account is a necessity, the predominantly used probabilistic description for these uncertain parameters is based on elementary random variable models. In this work, we set out for a comparison of different probabilistic models for uncertain input parameters using the example of an uncertain wall thickness in finite element models of abdominal aortic aneurysms. We provide the first comparison between a random variable and a random field model for the aortic wall and investigate the impact on the probability distribution of the computed peak wall stress. Moreover, we show that the uncertainty about the prevailing peak wall stress can be reduced if noninvasively available, patient-specific data are harnessed for the construction of the probabilistic wall thickness model. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Textural break foundation wall construction modules

    DOEpatents

    Phillips, Steven J.

    1990-01-01

    Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

  6. Methods & Strategies: Put Your Walls to Work

    ERIC Educational Resources Information Center

    Jackson, Julie; Durham, Annie

    2016-01-01

    This column provides ideas and techniques to enhance your science teaching. This month's issue discusses planning and using interactive word walls to support science and reading instruction. Many classrooms have word walls displaying vocabulary that students have learned in class. Word walls serve as visual scaffolds to support instruction. To…

  7. The "Brick Wall" Graphic Organizer

    ERIC Educational Resources Information Center

    Matteson, Shirley M.

    2016-01-01

    A brick wall provides a fitting description of what happens when teachers try to teach a concept for which students are unprepared. When students are unsuccessful academically, their foundational knowledge may be missing, incomplete, or incorrect. As a result, students "hit a brick wall," and their academic progress stops because they do…

  8. The Structure of Plant Cell Walls

    PubMed Central

    Wilder, Barry M.; Albersheim, Peter

    1973-01-01

    The molecular structure and chemical properties of the hemicellulose present in the isolated cell walls of suspension cultures of sycamore (Acer pseudoplatanus) cells has recently been described by Bauer et al. (Plant Physiol. 51: 174-187). The hemicellulose of the sycamore primary cell wall is a xyloglucan. This polymer functions as an important cross-link in the structure of the cell wall; the xyloglucan is hydrogen-bonded to cellulose and covalently attached to the pectic polymers. The present paper describes the structure of a xyloglucan present in the walls and in the extracellular medium of suspension-cultured Red Kidney bean (Phaseolus vulgaris) cells and compares the structure of the bean xyloglucan with the structure of the sycamore xyloglucan. Although some minor differences were found, the basic structure of the xyloglucans in the cell walls of these distantly related species is the same. The structure is based on a repeating heptasaccharide unit which consists of four residues of β-1, 4-linked glucose and three residues of terminal xylose linked to the 6 position of three of the glucosyl residues. PMID:16658434

  9. Near-wall k-epsilon turbulence modeling

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Kim, J.; Moin, P.

    1987-01-01

    The flow fields from a turbulent channel simulation are used to compute the budgets for the turbulent kinetic energy (k) and its dissipation rate (epsilon). Data from boundary layer simulations are used to analyze the dependence of the eddy-viscosity damping-function on the Reynolds number and the distance from the wall. The computed budgets are used to test existing near-wall turbulence models of the k-epsilon type. It was found that the turbulent transport models should be modified in the vicinity of the wall. It was also found that existing models for the different terms in the epsilon-budget are adequate in the region from the wall, but need modification near the wall. The channel flow is computed using a k-epsilon model with an eddy-viscosity damping function from the data and no damping functions in the epsilon-equation. These computations show that the k-profile can be adequately predicted, but to correctly predict the epsilon-profile, damping functions in the epsilon-equation are needed.

  10. Imaging of congenital chest wall deformities

    PubMed Central

    Bhaludin, Basrull N; Naaseri, Sahar; Di Chiara, Francesco; Jordan, Simon; Padley, Simon

    2016-01-01

    To identify the anatomy and pathology of chest wall malformations presenting for consideration for corrective surgery or as a possible chest wall “mass”, and to review the common corrective surgical procedures. Congenital chest wall deformities are caused by anomalies of chest wall growth, leading to sternal depression or protrusion, or are related to failure of normal spine or rib development. Cross-sectional imaging allows appreciation not only of the involved structures but also assessment of the degree of displacement or deformity of adjacent but otherwise normal structures and differentiation between anatomical deformity and neoplasia. In some cases, CT is also useful for surgical planning. The use of three-dimensional reconstructions, utilizing a low-dose technique, provides important information for the surgeon to discuss the nature of anatomical abnormalities and planned corrections with the patient and often with their parents. In this pictorial essay, we discuss the radiological features of the commonest congenital chest wall deformities and illustrate pre- and post-surgical appearances for those undergoing surgical correction. PMID:26916279

  11. Intrinsic domain wall flexing from current-induced spin torque

    NASA Astrophysics Data System (ADS)

    Golovatski, Elizabeth; Flatté, Michael

    2012-02-01

    Spin torque generated by coherent carrier transport in domain walls [1] is a major component in the development of spintronic devices [2]. We model spin torque in N'eel walls [3] using a piecewise linear transfer-matrix method [4] to calculate spin torque on interior wall segments. For a π wall with a total positive torque (current left-to-right), we find the largest positive and negative spin torques left of the central region, 4-5 orders of magnitude larger than the center. The wall's rightward push comes from the back of the wall; all other significant regions pull to the left. Adding a second wall (both walls with positive total torque) changes the first wall little, but produces spin torques in the second wall with large canceling torques on the left, and the push rightward from a smaller torque on the right. The gradient of torque across the wall generates an intrinsic domain wall flexing (distinct from extrinsic wall flexing from pinning centers [5]). Work supported by an ARO MURI.[4pt] [1] M. Yamanouchi et al., Nature 428, 539 (2004).[0pt] [2] S. Parkin et al., Science 320, 190 (2008)[0pt] [3] G. Vignale and M. Flatt'e, Phys. Rev. Lett. 89, 098302 (2002)[0pt] [4] E. Golovatski and M. Flatt'e, Phys. Rev. B, 84, 115210 (2011)[0pt] [5] A. Balk et al., Phys. Rev. Lett. 107, 077205 (2011).

  12. 77 FR 5577 - 2002 Reopened-Previously Denied Determinations; Notice of Revised Denied Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... reconsideration investigation revealed that the following workers groups have met the certification criteria under... available on the Department's Web site at tradeact/taa/taa-- search--form.cfm under the searchable listing...

  13. 77 FR 5577 - 2002 Reopened-Previously Denied Determinations; Notice of Negative Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... reconsideration investigation revealed that the following workers groups have not met the certification criteria... available on the Department's Web site at tradeact/taa/taa-- search--form.cfm under the searchable listing...

  14. 77 FR 13356 - 2002 Reopened-Previously Denied Determinations; Notice of Revised Denied Determinations On...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... reconsideration investigation revealed that the following workers groups have met the certification criteria under... site at tradeact/taa/taa--search--form.cfm under the searchable listing of determinations or by calling...

  15. 76 FR 81991 - 2002 Reopened-Previously Denied Determinations; Notice of Revised Denied Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... reconsideration investigation revealed that the following workers groups have met the certification criteria under... site at tradeact/taa/taa--search--form.cfm under the searchable listing of determinations or by calling...

  16. 77 FR 6592 - Notice of Negative Determinations on Reconsideration Under the Trade Adjustment Assistance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... reconsideration investigation revealed that the following workers groups have not met the certification criteria... are available on the Department's Web site at tradeact/taa/taa--search--form.cfm under the searchable...

  17. 77 FR 13356 - 2002 Reopened-Previously Denied Determinations; Notice of Negative Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... reconsideration investigation revealed that the following workers groups have not met the certification criteria.../taa/taa-- search--form.cfm under the searchable listing of determinations or by calling the Office of...

  18. 76 FR 77558 - 2002 Reopened-Previously Denied Determinations; Notice of Revised Denied Determinations on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... reconsideration investigation revealed that the following workers groups have met the certification criteria under... are available on the Department's Web site at tradeact/taa/taa--search--form.cfm under the searchable...

  19. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  20. Light-Frame Wall Systems: Performance and Predictability.

    Treesearch

    David S. Gromala

    1983-01-01

    This paper compares results of all wall tests with analytical predictions of performance.Conventional wood-stud walls of one configuration failed at bending loads that were 4 to 6 times design load.The computer model overpredicted wall strength by and average of 10 percent and deflection by an average of 6 percent.

  1. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  2. Wind Tunnel Wall Interference Assessment and Correction, 1983

    NASA Technical Reports Server (NTRS)

    Newman, P. A. (Editor); Barnwell, R. W. (Editor)

    1984-01-01

    Technical information focused upon emerging wall interference assessment/correction (WIAC) techniques applicable to transonic wind tunnels with conventional and passively or partially adapted walls is given. The possibility of improving the assessment and correction of data taken in conventional transonic wind tunnels by utilizing simultaneously obtained flow field data (generally taken near the walls) appears to offer a larger, nearer-term payoff than the fully adaptive wall concept. Development of WIAC procedures continues, and aspects related to validating the concept need to be addressed. Thus, the scope of wall interference topics discussed was somewhat limited.

  3. Built-up outer wall and roofing sections for double walled envelope homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodhead, B.

    1980-01-01

    A site built system that uses the inner envelope wall is described. Blocking and vertical nailers are attached to this wall and sheathed with foil faced drywall to create the envelope cavity. An outer layer of 3 1/2 in. of Expended Poly Styrene provides continuous solid insulation. The trusses are also sheathed in foil faced drywall and insulated with 5 1/2 in. of E.P.S. This effectively surrounds the building with a continuous vapor and infiltration barrier. Construction details as well as cost breakdowns are presented.

  4. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS states contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as such to the geometry at the Planck scale. In the second part, we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multicentered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.

  5. The Effect of 3-Thiopheneacetic Acid in the Polymerization of a Conductive Electrotextile for Use in Biosensor Development

    PubMed Central

    McGraw, Shannon K.; Alocilja, Evangelyn; Senecal, Andre; Senecal, Kris

    2013-01-01

    Investigations were conducted to develop an electrotextile using a nonwoven polypropylene fiber platform conformally coated in a conductive, functionalized copolymer of polypyrrole and 3-thiopheneacetic acid (3TAA). The objectives of this study were to determine: (1) if the inclusion of 3TAA in the polymerization process would have an effect on the availability of binding sites in the high-surface area electrotextile for biorecognition elements and (2) how the increase in the concentration of 3TAA would affect the physical characteristics of the coating, resistivity of the sample and availability of binding sites. It was found that the addition of 3TAA to the polymerization process resulted in an increase in the size of the polypyrrole coating, as well as the material resistivity and available binding sites for biorecognition elements. These factors were used to determine which of the tested concentrations was best for biosensor development. A polymer coated membrane sample containing a concentration within the range of 10–50 mg/mL of 3TAA was selected as the best for future biosensor work. PMID:25586259

  6. Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms.

    PubMed

    Venkatesh, Premakumari; Phillippi, Julie; Chukkapalli, Sasanka; Rivera-Kweh, Mercedes; Velsko, Irina; Gleason, Thomas; VanRyzin, Paul; Aalaei-Andabili, Seyed Hossein; Ghanta, Ravi Kiran; Beaver, Thomas; Chan, Edward Kar Leung; Kesavalu, Lakshmyya

    2017-04-20

    Altered microRNA expression is implicated in cardiovascular diseases. Our objective was to determine microRNA signatures in thoracic aortic aneurysms (TAAs) and abdominal aortic aneurysms (AAAs) compared with control non-aneurysmal aortic specimens. We evaluated the expression of fifteen selected microRNA in human TAA and AAA operative specimens compared to controls. We observed significant upregulation of miR-221 and downregulation of miR-1 and -133 in TAA specimens. In contrast, upregulation of miR-146a and downregulation of miR-145 and -331-3p were found only for AAA specimens. Upregulation of miR-126 and -486-5p and downregulation of miR-30c-2*, -155, and -204 were observed in specimens of TAAs and AAAs. The data reveal microRNA expression signatures unique to aneurysm location and common to both thoracic and abdominal pathologies. Thus, changes in miR-1, -29a, -133a, and -221 are involved in TAAs and miR-145, -146, and -331-3p impact AAAs. This work validates prior studies on microRNA expression in aneurysmal diseases.

  7. Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants.

    PubMed

    Boari, Francesca; Cefola, Maria; Di Gioia, Francesco; Pace, Bernardo; Serio, Francesco; Cantore, Vito

    2013-11-01

    Wild edible plants (WEP), traditionally consumed in the Mediterranean diet, are considered a rich source of natural antioxidants but can also accumulate significant amount of nitrates. Most WEP are cooked before consumption, therefore, a study was conducted to evaluate the effects of boiling, steaming and microwave cooking processes on the total antioxidant activity (TAA) and nitrate content of eight common WEP. Boiling caused the highest losses of TAA, resulting in a reduction of the TAA on dry weight (DW) basis ranging from 5.5% in Beta vulgaris up to 100% in Urtica dioica. Steaming and microwaving produced the highest increase of TAA on DW basis in Helminthotheca echioides (249.7%) and Taraxacum officinale (60.7%). Boiling caused the highest reduction of nitrate content in all species excluding Asparagus acutifolius that maintained almost unvaried its already low nitrate content. These results suggest that cooking has not always negative effect on product quality, since in certain cases, it may even enhance the nutritional value of WEP by increasing their TAA and reducing the nitrate content.

  8. Cathode catalyst for primary phosphoric fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, F.

    1980-01-01

    Alkylation of Vulcan XC-72 provided the most stable bond type for linking CoTAA to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA has catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available PTFE was shown to be stable for four months in 200 C 85% phosphoric acid based on lack of change in surface wetting properties, IR and physical characteristics. When stressed electrochemically in 150 C 85% phosphoric acid, PTFE also showed no changes after one month.

  9. Hollow porous-wall glass microspheres for hydrogen storage

    DOEpatents

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  10. 77 FR 3506 - 2002 Reopened-Previously Denied Determinations; Notice of Revised Denied Determinations On...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... reconsideration investigation revealed that the following workers groups have met the certification criteria under... available on the Department's Web site at tradeact/taa/taa--search--form.cfm under the searchable listing of...

  11. Turbulent Boundary Layer Drag Reduction by Spanwise Wall Oscillation

    NASA Astrophysics Data System (ADS)

    Trujillo, S. M.; Bogard, D. G.; Ball, K. S.

    1997-11-01

    Changes in turbulence structure were investigated in a turbulent water boundary layer flow for which wall shear had been reduced 25 percent by spanwise wall oscillations. LDV and hot film measurements were made of streamwise and wall-normal velocities. For all wall oscillations examined, drag reduction was found to scale best with the peak velocity of the wall oscillation. Burst and sweep strength and duration were all reduced by the wall oscillation, with the greatest effects seen for the strongest events. The pdf of the velocity in the near-wall region showed greatly increased periods of low velocities, but little change was observed in the streamwise velocity autocorrelation.

  12. Wall interference tests of a CAST 10-2/DOA 2 airfoil in an adaptive-wall test section

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.

    1987-01-01

    A wind-tunnel investigation of a CAST 10-2/DOA 2 airfoil model has been conducted in the adaptive-wall test section of the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) and in the National Aeronautical Establishment High Reynolds Number Two-Dimensional Test Facility. The primary goal of the tests was to assess two different wall-interference correction techniques: adaptive test-section walls and classical analytical corrections. Tests were conducted over a Mach number range from 0.3 to 0.8 and over a chord Reynolds number range from 6 million to 70 million. The airfoil aerodynamic characteristics from the tests in the 0.3-m TCT have been corrected for wall interference by the movement of the adaptive walls. No additional corrections for any residual interference have been applied to the data, to allow comparison with the classically corrected data from the same model in the conventional National Aeronautical Establishment facility. The data are presented graphically in this report as integrated force-and-moment coefficients and chordwise pressure distributions.

  13. Second-order near-wall turbulence closures - A review

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.

    1991-01-01

    Advances in second-order near-wall turbulence closures are summarized. All closures under consideration are based on high-Reynolds-number models. Most near-wall closures proposed to date attempt to modify the high-Reynolds-number models for the dissipation function and the pressure redistribution term so that the resultant models are applicable all the way to the wall. The asymptotic behavior of the near-wall closures is examined and compared with the proper near-wall behavior of the exact Reynolds-stress equations. It is found that three second-order near-wall closures give the best correlations with simulated turbulence statistics. However, their predictions of near-wall Reynolds-stress budgets are considered to be incorrect. A proposed modification to the dissipitation-rate equation remedies part of those predictions. It is concluded that further improvements are required if a complete replication of all the turbulence properties and Reynolds-stress budgets by a statistical model of turbulence is desirable.

  14. Plant cell wall signalling and receptor-like kinases.

    PubMed

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  16. Tunable inertia of chiral magnetic domain walls

    PubMed Central

    Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu

    2016-01-01

    The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii–Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii–Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices. PMID:27882932

  17. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  18. The medial femoral wall can play a more important role in unstable intertrochanteric fractures compared with lateral femoral wall: a biomechanical study.

    PubMed

    Nie, Boyuan; Chen, Xueying; Li, Jing; Wu, Dou; Liu, Qiang

    2017-12-28

    The major objective of the present study is to investigate the differences in the load and strain changes in the intertrochanteric region of human cadaveric femora between the loss of medial or lateral wall and after treatment with proximal femoral nail antirotation (PFNA). After measuring the geometry of the proximal femur region and modeling the medial or lateral wall defect femoral models, six pairs of freshly frozen human femora were randomly assigned in the medial or lateral wall group. According to a single-leg stance model, an axial loading was applied, and the strain distribution was measured before and after PFNA implantation. The strains of each specimen were recorded at load levels of 350, 700, and 1800 N and the failure load. Paired t test was performed to assess the differences between two groups. The failure mode of almost all defect model femora was consistent with that of the simulated type of intertrochanteric fractures. After the PFNA implantation, the failure mode of almost all stabilized femora was caused by new lateral wall fractures. The failure load of the lateral wall group for defect model femora was significantly higher than that of the medial wall group (p < 0.001). However, the difference disappeared after the PFNA was implanted (p = 0.990). The axial stiffness in all defect model femora showed the same results (p < 0.001). After the PFNA implantation, the axial stiffness of the lateral wall group remained higher than that of the medial wall group (p = 0.001). However, the axial stiffness of the lateral wall group showed that the femora removed from the lateral wall were higher than the PFNA-stabilized femora (p = 0.020). For the axial strain in the anterior wall after the PFNA implantation, the strain of the lateral wall group was significantly lower than that of the medial group (p = 0.003). Nevertheless, for the axial strain of the posterior wall after the PFNA implantation, the strain of the medial wall group

  19. Magnetization reversal in ferromagnetic spirals via domain wall motion

    NASA Astrophysics Data System (ADS)

    Schumm, Ryan D.; Kunz, Andrew

    2016-11-01

    Domain wall dynamics have been investigated in a variety of ferromagnetic nanostructures for potential applications in logic, sensing, and recording. We present a combination of analytic and simulated results describing the reliable field driven motion of a domain wall through the arms of a ferromagnetic spiral nanowire. The spiral geometry is capable of taking advantage of the benefits of both straight and circular wires. Measurements of the in-plane components of the spirals' magnetization can be used to determine the angular location of the domain wall, impacting the magnetoresistive applications dependent on the domain wall location. The spirals' magnetization components are found to depend on the spiral parameters: the initial radius and spacing between spiral arms, along with the domain wall location. The magnetization is independent of the parameters of the rotating field used to move the domain wall, and therefore the model is valid for current induced domain wall motion as well. The speed of the domain wall is found to depend on the frequency of the rotating driving field, and the domain wall speeds can be reliably varied over several orders of magnitude. We further demonstrate a technique capable of injecting multiple domain walls and show the reliable and unidirectional motion of domain walls through the arms of the spiral.

  20. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  1. Examination of the behavior of gravity quay wall against liquefaction under the effect of wall width and soil improvement.

    PubMed

    Firoozi, Ali Akbar; Taha, Mohd Raihan; Mir Moammad Hosseini, S M; Firoozi, Ali Asghar

    2014-01-01

    Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of "Finn" constitutive model in the analysis models. The "Finn" constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation.

  2. Trends in Joint Replacement Surgery in Patients with Rheumatoid Arthritis.

    PubMed

    Young, Bradley L; Watson, Shawna L; Perez, Jorge L; McGwin, Gerald; Singh, Jasvinder A; Ponce, Brent A

    2018-02-01

    This study analyzed trends in large total joint arthroplasties (TJA) and in the proportion of these procedures performed on patients with rheumatoid arthritis (RA). The US Nationwide Inpatient Sample (2002-2012) was used to identify the incidences of total shoulder (TSA), elbow (TEA), knee (TKA), hip (THA), and ankle (TAA) arthroplasty and the proportion of these performed with coexisting RA. The prevalence of RA among patients with TJA increased 3.0%. The prevalence of RA among cases of TEA and TSA decreased by 50% (p < 0.0001) and 18% (p = 0.0016), respectively; a 38.0% decrease occurred in the prevalence of RA among TAA (p = 0.06); and nonsignificant increases were seen among THA and TKA. The average age difference between RA and non-RA patients undergoing TJA narrowed by 2 years (p < 0.0001). There was a greater reduction in the proportion of TSA, TEA, and TAA groups among women with RA than men with RA. In the TSA and TEA groups, there was a reduction in the proportion of whites with RA, but not blacks. The proportion of privately insured TSA and TAA patients with RA decreased, while patients with RA undergoing TSA, TEA, or TAA who were receiving Medicaid (government medical insurance) remained relatively stable over time. The prevalence of RA has decreased among TSA and TEA patients. A nonsignificant decline occurred among TAA patients. The average age of TJA patients with RA is beginning to mirror those without RA. Sex ratios for TSA, TEA, and TAA patients are following a similar pattern. These results may be evidence of the success of modern RA treatment strategies.

  3. Hepatoprotective effects of naturally fermented noni juice against thioacetamide-induced liver fibrosis in rats.

    PubMed

    Lin, Yi-Ling; Lin, Hui-Wen; Chen, Yi-Chen; Yang, Deng-Jye; Li, Chien-Chun; Chang, Yuan-Yen

    2017-04-01

    Excessive reactive oxygen species (ROS) can result in inflammation and cytokine secretion in the liver, and then activate hepatic stellate cells that cause the accumulation of extracellular matrix proteins, especially collagen, in liver tissue. Naturally fermented noni juice (NJ; Morinda citrifolia) has been used for decades as a nutraceutical in humans. In this study, we intended to examine if NJ can ameliorate ROS-induced liver fibrosis via a thioacetamide (TAA)-induced rat model. The 50 rats used in this study were separated into five groups of 10 rats each for 8 weeks as follows: (1) control group; (2) TAA; (3) TAA+low-dose NJ (2.51 mL NJ/kg); (4) TAA+medium-dose NJ (5.02 mL NJ/kg); and (5) TAA+high-dose NJ (7.52 mL NJ/kg). Treatment with TAA resulted in lower body weight and serum lipid levels (p<0.05), while liver weight and collagen contents, and serum alanine aminotransferase and aspartate aminotransferase values were increased (p<0.05). The protective effects of NJ on TAA treatment resulted from decreased endoplasmic reticulum stress-related gene expressions (p<0.05), inflammatory cytokines, collagen accumulation, and matrix metalloproteinase (MMP-2 and MMP-9) activities, as well as upregulated (p<0.05) tissue inhibitors of metalloproteinase (TIMP-1 and TIMP-3) in livers. NJ also increased hepatic antioxidant capacities (p<0.05). Naturally fermented NJ manifests a protective potential on liver fibrosis via the enhancement of antioxidant capacities, as well as decreasing endoplasmic-reticulum stress and MMP-2/MMP-9 activities. Copyright © 2017. Published by Elsevier Taiwan LLC.

  4. The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats.

    PubMed

    Czechowska, G; Celinski, K; Korolczuk, A; Wojcicka, G; Dudka, J; Bojarska, A; Madro, A; Brzozowski, T

    2016-08-01

    It has been reported previously that the density of angiotensin II receptors is increased in the rat liver in experimentally-induced fibrosis. We hypothesized that pharmacological blockade of angiotensin receptors may produce beneficial effects in models of liver fibrosis. In this study, we used the widely used thioacetamide (TAA)-induced model of liver fibrosis (300 mg/L TAA ad libitum for 12 weeks). Rats received daily injections (i.p), lasting 4 weeks of the angiotensin II type 1 receptor antagonists, losartan 30 mg/kg (TAA + L) or telmisartan 10 mg/kg (TAA + T) and were compared to rat that received TAA alone. Chronic treatment with losartan and telmisartan was associated with a significant reduction in the activity of alkaline phosphatase, and decreased concentrations of tumor necrosis factor-alpha and transforming growth factor beta-1 compared to controls. We also found a significant reduction interleukin-6 in rats receiving telmisartan (P < 0.05) but not losartan. Both treatments increased the concentration of liver glutathione along with a concomitant decrease of GSSG compared to controls. In addition, increased paraoxonase 1 activity was observed in the serum of rats receiving telmisartan group compared to the TAA alone controls. Finally, histological evaluation of liver sections revealed losartan and telmisartan treatment was associated with reduced inflammation and liver fibrosis. Taken together, these results indicate that both telmisartan and losartan have anti-inflammatory and anti-oxidative properties in the TAA model of liver fibrosis. These finding add support to a growing body of literature indicating a potentially important role for the angiotensin system in liver fibrosis and indicate angiotensin antagonists may be useful agents for fibrosis treatment.

  5. Autolysis and extension of isolated walls from growing cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.; Durachko, D. M.

    1994-01-01

    Walls isolated from cucumber hypocotyls retain autolytic activities and the ability to extend when placed under the appropriate conditions. To test whether autolysis and extension are related, we treated the walls in various ways to enhance or inhibit long-term wall extension ('creep') and measured autolysis as release of various saccharides from the wall. Except for some non-specific inhibitors of enzymatic activity, we found no correlation between wall extension and wall autolysis. Most notably, autolysis and extension differed strongly in their pH dependence. We also found that exogenous cellulases and pectinases enhanced extension in native walls, but when applied to walls previously inactivated with heat or protease these enzymes caused breakage without sustained extension. In contrast, pretreatment of walls with pectinase or cellulase, followed by boiling in methanol to inactivate the enzymes, resulted in walls with much stronger expansin-mediated extension responses. Crude protein preparations from the digestive tracts of snails enhanced extension of both native and inactivated walls, and these preparations contained expansin-like proteins (assessed by Western blotting). Our results indicate that the extension of isolated cucumber walls does not depend directly on the activity of endogenous wall-bound autolytic enzymes. The results with exogenous enzymes suggest that the hydrolysis of matrix polysaccharides may not induce wall creep by itself, but may act synergistically with expansins to enhance wall extension.

  6. Elevated Cell Wall Serine in Pleiotropic Staphylococcal Mutants

    PubMed Central

    Korman, Ruth Z.

    1966-01-01

    Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Elevated cell wall serine in pleiotropic staphylococcal mutants. J. Bacteriol. 92:762–768. 1966.—Physically purified cell walls were prepared from two staphylococcal strains and from pleiotropic variants derived from them. The quantitative amino acid and amino sugar content of these walls is reported. The pleiotypes, which are identified culturally by their failure to elaborate coagulase, their resistance to bacteriophage, and their sensitivity to mannitol, have altered molar ratios of amino acids and amino sugars in their cell walls. In comparison with lysine content, the serine content of the mutant wall is elevated and the glycine content is reduced. The glucosamine content is reduced also. It is postulated that the pleiotropic mutants possess an altered cell wall biosynthetic pathway. Images PMID:5922547

  7. Native backfill materials for mechanically stabilized earth walls.

    DOT National Transportation Integrated Search

    2005-01-01

    Mechanically stabilized earth walls are an attractive alternative to conventional reinforced concrete retaining walls. The economy of these walls for non-critical applications might be improved by using alternative backfills consisting of on-site soi...

  8. Shared Genetic Risk Factors of Intracranial, Abdominal, and Thoracic Aneurysms.

    PubMed

    van 't Hof, Femke N G; Ruigrok, Ynte M; Lee, Cue Hyunkyu; Ripke, Stephan; Anderson, Graig; de Andrade, Mariza; Baas, Annette F; Blankensteijn, Jan D; Böttinger, Erwin P; Bown, Matthew J; Broderick, Joseph; Bijlenga, Philippe; Carrell, David S; Crawford, Dana C; Crosslin, David R; Ebeling, Christian; Eriksson, Johan G; Fornage, Myriam; Foroud, Tatiana; von Und Zu Fraunberg, Mikael; Friedrich, Christoph M; Gaál, Emília I; Gottesman, Omri; Guo, Dong-Chuan; Harrison, Seamus C; Hernesniemi, Juha; Hofman, Albert; Inoue, Ituro; Jääskeläinen, Juha E; Jones, Gregory T; Kiemeney, Lambertus A L M; Kivisaari, Riku; Ko, Nerissa; Koskinen, Seppo; Kubo, Michiaki; Kullo, Iftikhar J; Kuivaniemi, Helena; Kurki, Mitja I; Laakso, Aki; Lai, Dongbing; Leal, Suzanne M; Lehto, Hanna; LeMaire, Scott A; Low, Siew-Kee; Malinowski, Jennifer; McCarty, Catherine A; Milewicz, Dianna M; Mosley, Thomas H; Nakamura, Yusuke; Nakaoka, Hirofumi; Niemelä, Mika; Pacheco, Jennifer; Peissig, Peggy L; Pera, Joanna; Rasmussen-Torvik, Laura; Ritchie, Marylyn D; Rivadeneira, Fernando; van Rij, Andre M; Santos-Cortez, Regie Lyn P; Saratzis, Athanasios; Slowik, Agnieszka; Takahashi, Atsushi; Tromp, Gerard; Uitterlinden, André G; Verma, Shefali S; Vermeulen, Sita H; Wang, Gao T; Han, Buhm; Rinkel, Gabriël J E; de Bakker, Paul I W

    2016-07-14

    Intracranial aneurysms (IAs), abdominal aortic aneurysms (AAAs), and thoracic aortic aneurysms (TAAs) all have a familial predisposition. Given that aneurysm types are known to co-occur, we hypothesized that there may be shared genetic risk factors for IAs, AAAs, and TAAs. We performed a mega-analysis of 1000 Genomes Project-imputed genome-wide association study (GWAS) data of 4 previously published aneurysm cohorts: 2 IA cohorts (in total 1516 cases, 4305 controls), 1 AAA cohort (818 cases, 3004 controls), and 1 TAA cohort (760 cases, 2212 controls), and observed associations of 4 known IA, AAA, and/or TAA risk loci (9p21, 18q11, 15q21, and 2q33) with consistent effect directions in all 4 cohorts. We calculated polygenic scores based on IA-, AAA-, and TAA-associated SNPs and tested these scores for association to case-control status in the other aneurysm cohorts; this revealed no shared polygenic effects. Similarly, linkage disequilibrium-score regression analyses did not show significant correlations between any pair of aneurysm subtypes. Last, we evaluated the evidence for 14 previously published aneurysm risk single-nucleotide polymorphisms through collaboration in extended aneurysm cohorts, with a total of 6548 cases and 16 843 controls (IA) and 4391 cases and 37 904 controls (AAA), and found nominally significant associations for IA risk locus 18q11 near RBBP8 to AAA (odds ratio [OR]=1.11; P=4.1×10(-5)) and for TAA risk locus 15q21 near FBN1 to AAA (OR=1.07; P=1.1×10(-3)). Although there was no evidence for polygenic overlap between IAs, AAAs, and TAAs, we found nominally significant effects of two established risk loci for IAs and TAAs in AAAs. These two loci will require further replication. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Extrahepatic angiogenesis hinders recovery of portal hypertension and collaterals in rats with cirrhosis resolution.

    PubMed

    Hsu, Shao-Jung; Tsai, Ming-Hung; Chang, Ching-Chih; Hsieh, Yu-Hsin; Huang, Hui-Chun; Lee, Fa-Yauh; Chuang, Chiao-Ling; Hou, Ming-Chih; Lee, Shou-Dong

    2018-03-30

    Liver cirrhosis is characterized by portal hypertension. However, the alteration of portal hypertension-related derangements during cirrhosis resolution is not well known. The present study aimed to establish animal models with cirrhosis resolution and to investigate the relevant changes during this process. Male Sprague-Dawley rats were applied. In reverse thioacetamide (rTAA) model, rats were randomly allocated into four groups with control, thioacetamide (TAA) cirrhosis and rTAA groups that discontinued TAA for 4 or 8 weeks after cirrhosis induction. In reverse bile duct ligation (rBDL) model, rats received choledochoduodenal shunt surgery upon the establishment of cirrhosis and 4, 8, or 16 weeks were allowed after the surgery. At the end, portal hypertension-related parameters were evaluated. Cirrhosis resolution was observed in rTAA groups. Portal pressure (PP) decreased after cirrhosis resolution but remained higher than control group (control, TAA, rTAA4, rTAA8 (mmHg): 5.4 ± 0.3, 12.9 ± 0.3, 8.6 ± 0.4, 7.6 ± 0.6). Further survey found the increased splanchnic blood flow did not reduce during cirrhosis resolution. The extrahepatic pathological angiogenesis was not ameliorated (% of mesenteric window area: 1.2 ± 0.3, 7.3 ± 1.1, 8.3 ± 1.0, 11.3 ± 2.7). In collateral system, the shunting degree reduced while the vessels structure remained. The vascular contractility of all systems and nitric oxide (NO) production were normalized. In rBDL series, PP decreased in rBDL16 groups but the extrahepatic angiogenesis persisted. In conclusion, cirrhosis resolution attenuates but not completely normalizes portal hypertension because of persistently high splanchnic inflow and angiogenesis. In clinical setting, vascular complications such as varices could persist after cirrhosis resolution and further investigation to define the follow-up and treatment strategies is anticipated. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical

  10. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.

    PubMed

    Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish

    2018-09-01

    In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.

  11. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  12. FLEXWAL: A computer program for predicting the wall modifications for two-dimensional, solid, adaptive-wall tunnels

    NASA Technical Reports Server (NTRS)

    Everhart, J. L.

    1983-01-01

    A program called FLEXWAL for calculating wall modifications for solid, adaptive-wall wind tunnels is presented. The method used is the iterative technique of NASA TP-2081 and is applicable to subsonic and transonic test conditions. The program usage, program listing, and a sample case are given.

  13. Correlation between spin structure oscillations and domain wall velocities

    PubMed Central

    Bisig, André; Stärk, Martin; Mawass, Mohamad-Assaad; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Büttner, Felix; Noske, Matthias; Weigand, Markus; Eisebitt, Stefan; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2013-01-01

    Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape. PMID:23978905

  14. Examination of the Behavior of Gravity Quay Wall against Liquefaction under the Effect of Wall Width and Soil Improvement

    PubMed Central

    Taha, Mohd Raihan; Mir Moammad Hosseini, S. M.

    2014-01-01

    Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of “Finn” constitutive model in the analysis models. The “Finn” constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation. PMID:25126595

  15. Immobile defects in ferroelastic walls: Wall nucleation at defect sites

    NASA Astrophysics Data System (ADS)

    He, X.; Salje, E. K. H.; Ding, X.; Sun, J.

    2018-02-01

    Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.

  16. Major chest wall reconstruction after chest wall irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.L.; McMurtrey, M.J.; Howe, H.J.

    1982-03-15

    In the last year, 12 patients have undergone extensive chest wall resection. Eight patients had recurrent cancer after prior resection and irradiation with an average defect of 160 square centimeters, usually including ribs and a portion of the sternum; four had radionecrosis of soft tissue and/or bone. Methods of reconstruction included latissimus dorsi musculocutaneous (MC) flap (five patients), pectoralis major MC flap (seven patients), and omental flap and skin graft (one patient). The donor site was usually closed primarily. All flaps survived providing good wound coverage. The only complication was partial loss of a latissimus dorsi MC flap related tomore » an infected wound; this reconstruction was salvaged with a pectoralis major MC flap. The hospital stay ranged from 10-25 days with a median stay of 11 days. Use of the MC flap is a valuable tool which can be used to significantly decrease morbidity, hospital stay, and patient discomfort related to the difficult problem of chest wall reconstruction after radiation therapy.« less

  17. Moisture and Thermal Conductivity of Lightweight Block Walls

    NASA Astrophysics Data System (ADS)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  18. [Impedance between modiolus and different walls of scala tympani].

    PubMed

    Du, Qiang; Wang, Zhengmin

    2008-10-01

    To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.

  19. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2015-02-01

    Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Residual interference and wind tunnel wall adaption

    NASA Technical Reports Server (NTRS)

    Mokry, Miroslav

    1989-01-01

    Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.

  1. Cutting assembly including expanding wall segments of auger

    DOEpatents

    Treuhaft, Martin B.; Oser, Michael S.

    1983-01-01

    A mining auger comprises a cutting head carried at one end of a tubular shaft and a plurality of wall segments which in a first position thereof are disposed side by side around said shaft and in a second position thereof are disposed oblique to said shaft. A vane projects outwardly from each wall segment. When the wall segments are in their first position, the vanes together form a substantially continuous helical wall. A cutter is mounted on the peripheral edge of each of the vanes. When the wall segments are in their second position, the cutters on the vanes are disposed radially outward from the perimeter of the cutting head.

  2. Cost benefit of privatizing wall barrier.

    DOT National Transportation Integrated Search

    2007-08-01

    This project began as an attempt to perform a formal comparative cost benefit analysis of privatized wall barrier purchase/management and NMDOT wall barrier purchase/management in order to answer the question "What are the costs and benefits of priva...

  3. Vapor Wall Deposition in Chambers: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    McVay, R.; Cappa, C. D.; Seinfeld, J.

    2014-12-01

    In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.

  4. A review of near-wall Reynolds-stress

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Lai, Y. G.; Zhang, H. S.; Hwang, B. C.

    1991-01-01

    The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data.

  5. The effect of shear wall location in resisting earthquake

    NASA Astrophysics Data System (ADS)

    Tarigan, J.; Manggala, J.; Sitorus, T.

    2018-02-01

    Shear wall is one of lateral resisting structure which is used commonly. Shear wall gives high stiffness to the structure so as the structure will be stable. Applying shear wall can effectively reduce the displacement and story-drift of the structure. This will reduce the destruction comes from lateral loads such as an earthquake. Earlier studies showed that shear wall gives different performance based on its position in structures. In this paper, seismic analysis has been performed using response spectrum method for different Model of structures; they are the open frame, the shear wall at core symmetrically, the shear wall at periphery symmetrically, and the shear wall at periphery asymmetrically. The results are observed by comparing the displacement and story-drift. Based on the analysis, the placement of shear wall at the core of structure symmetrically gives the best performance to reduce the displacement and story-drift. It can reduce the displacement up to 61.16% (X-dir) and 70.60% (Y-dir). The placement of shear wall at periphery symmetrically will reduce the displacement up to 53.85% (X-dir) and 47.87% (Y-dir) while the placement of shear wall at periphery asymmetrically reducing the displacement up to 59.42% (X-dir) and 66.99% (Y-dir).

  6. Microsurgical Chest Wall Reconstruction After Oncologic Resections

    PubMed Central

    Sauerbier, Michael; Dittler, S.; Kreutzer, C.

    2011-01-01

    Defect reconstruction after radical oncologic resection of malignant chest wall tumors requires adequate soft tissue reconstruction with function, stability, integrity, and an aesthetically acceptable result of the chest wall. The purpose of this article is to describe possible reconstructive microsurgical pathways after full-thickness oncologic resections of the chest wall. Several reliable free flaps are described, and morbidity and mortality rates of patients are discussed. PMID:22294944

  7. Local and global gravitational aspects of domain wall space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-09-15

    Local and global gravitational effects induced by eternal vacuum domain walls are studied. We concentrate on thin walls between nonequal and nonpositive cosmological constants on each side of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-time intrinsic to the wall as described in the comoving coordinate system and the constraint that the same symmetries hold in hypersurfaces parallel to the wall yield a general [ital Ansatz] for the line element of space-time. We restrict the problem further by demanding that the wall's surface energy density, [sigma], is positive and by requiring that the infinitely thinmore » wall represents a thin-wall limit of kinklike scalar field configuration. These vacuum domain walls fall in three classes depending on the value of their [sigma]: (1) extreme walls with [sigma]=[sigma][sub ext] are planar, static walls corresponding to supersymmetric configurations, (2) nonextreme walls with [sigma]=[sigma][sub non][gt][sigma][sub ext] correspond to expanding bubbles with observers on either side of the wall being [ital inside] the bubble, and (3) ultraextreme walls with [sigma]=[sigma][sub ultra][lt][sigma][sub ext] represent the bubbles of false vacuum decay. On the sides with less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no, repulsive, and attractive effective gravitational forces,'' respectively. These gravitational forces'' are global effects not caused by local curvature. Since the nonextreme wall encloses observers on both sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers. It is conjectured that similar positive mass protection occurs in all physical systems and that no finite negative mass object can exist inside the universe.« less

  8. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  9. Dynamical evolution of domain walls in an expanding universe

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1989-01-01

    Whenever the potential of a scalar field has two or more separated, degenerate minima, domain walls form as the universe cools. The evolution of the resulting network of domain walls is calculated for the case of two potential minima in two and three dimensions, including wall annihilation, crossing, and reconnection effects. The nature of the evolution is found to be largely independent of the rate at which the universe expands. Wall annihilation and reconnection occur almost as fast as causality allows, so that the horizon volume is 'swept clean' and contains, at any time, only about one, fairly smooth, wall. Quantitative statistics are given. The total area of wall per volume decreases as the first power of time. The relative slowness of the decrease and the smoothness of the wall on the horizon scale make it impossible for walls to both generate large-scale structure and be consistent with quadrupole microwave background anisotropy limits.

  10. Wall shear stress estimation in the aorta: Impact of wall motion, spatiotemporal resolution, and phase noise.

    PubMed

    Zimmermann, Judith; Demedts, Daniel; Mirzaee, Hanieh; Ewert, Peter; Stern, Heiko; Meierhofer, Christian; Menze, Bjoern; Hennemuth, Anja

    2018-04-01

    Wall shear stress (WSS) presents an important parameter for assessing blood flow characteristics and evaluating flow-mediated lesions in the aorta. To investigate the robustness of WSS and oscillatory shear index (OSI) estimation based on 4D flow MRI against vessel wall motion, spatiotemporal resolution, and velocity encoding (VENC). Simulated and prospective. Synthetic 4D flow MRI data of the aorta, simulated using the Lattice-Boltzmann method; in vivo 4D flow MRI data of the aorta from healthy volunteers (n = 11) and patients with congenital heart defects (n = 17). 1.5T; 4D flow MRI with PEAK-GRAPPA acceleration and prospective electrocardiogram triggering. Predicated upon 3D cubic B-splines interpolation of the image velocity field, WSS was estimated in mid-systole, early-diastole, and late-diastole and OSI was derived. We assessed the impact of spatiotemporal resolution and phase noise, and compared results based on tracked-using deformable registration-and static vessel wall location. Bland-Altman analysis to assess WSS/OSI differences; Hausdorff distance (HD) to assess wall motion; and Pearson's correlation coefficient (PCC) to assess correlation of HD with WSS. Synthetic data results show systematic over-/underestimation of WSS when different spatial resolution (mean ± 1.96 SD up to -0.24 ± 0.40 N/m 2 and 0.5 ± 1.38 N/m 2 for 8-fold and 27-fold voxel size, respectively) and VENC-depending phase noise (mean ± 1.96 SD up to 0.31 ± 0.12 N/m 2 and 0.94 ± 0.28 N/m 2 for 2-fold and 4-fold VENC increase, respectively) are given. Neglecting wall motion when defining the vessel wall perturbs WSS estimates to a considerable extent (1.96 SD up to 1.21 N/m 2 ) without systematic over-/underestimation (Bland-Altman mean range -0.06 to 0.05). In addition to sufficient spatial resolution and velocity to noise ratio, accurate tracking of the vessel wall is essential for reliable image-based WSS estimation and should not be

  11. Rough-Wall Channel Analysis Using Suboptimal Control Theory

    NASA Technical Reports Server (NTRS)

    Flores, O.; Jimenez, J.; Tenpleton, J.

    2003-01-01

    The original aim of this work was to shed some light on the physics of turbulence over rough walls using large-eddy simulations and the suboptimal-control wall boundary conditions introduced by Nicoud et al. It was hoped that, if that algorithm was used to fit the mean velocity profile of the simulations to that of a rough-walled channel, instead of to a smooth one, the wall stresses introduced by the control algorithm would give some indication of what aspects of rough walls are most responsible for the modification of the flow in real turbulence. It was similarly expected that the structure of the resulting velocity fluctuations would share some of the characteristics of rough-walled flows, thus again suggesting what is intrinsic and what is accidental in the effect of geometric wall roughness. A secondary goal was to study the effect of 'unphysical' boundary conditions on the outside flow by observing how a relatively major change of the target velocity profile, and therefore presumably of the applied wall stresses, modifies properties such as the dominant length scales of the velocity fluctuations away from the wall. As will be seen below, this secondary goal grew more important during the course of the study, which was carried out during a short summer visit of the first two authors to the CTR. It became clear that there are open questions about the way in which the control algorithm models the boundary conditions, even for smooth walls, and that these questions make the physical interpretation of the results difficult. Considerable more work in that area seems to be needed before even relatively advanced large-eddy simulations, such as these, can be used to draw conclusions about the physics of wall-bounded turbulent flows. The numerical method is the same as in Nicoud et al. The modifications introduced in the original code are briefly described in section 2, but the original paper should be consulted for a full description of the algorithm. The results are

  12. Translational Response of Toe-Restrained Retaining Walls to Earthquake Ground Motions Using CorpsWallSlip (CWSlip)

    DTIC Science & Technology

    2007-06-01

    corresponding software developed for the translational response of rock- founded retaining walls buttressed at their toe by a reinforced concrete slab...by a Reinforced Concrete Slab ...........................................................................................................32 2.1...2.5 New translational analysis model of a wall retaining a partially submerged backfill and buttressed by a reinforced concrete slab

  13. Simultaneous detection of Hb constant spring (α142, TAA>CAA, α2) and the α2 IVS-I donor site (-TGAGG) deletion by a simple polymerase chain reaction-based method in Iran.

    PubMed

    Akhavan-Niaki, Haleh; Banihashemi, Ali; Mostafazadeh, Amrollah; Kholghi Oskooei, Vahid; Azizi, Mandana; Youssefi Kamangar, Reza; Elmi, Maryam Mitra

    2012-01-01

    Hb Constant Spring (Hb CS, codon 142, TAA>CAA, α2) (HBA2:c.427T>C) and α2 IVS-I donor site (GAGGTGAGG>GAGG - - - - -) (HBA2:c.95+2_95+6delTGAGG) are nondeletional α-thalassemia (α-thal) mutations found all over the world. Identification of α-thal genotypes in at-risk couples for severe anemia or in highly heterogeneous populations requires rapid, accurate and cost-effective genotyping methods. In this study, a pair of primers were used to specifically amplify an 883 bp fragment from the α2-globin gene in order to simultaneously identify these two mutations by a PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) method. We determined the genotypic frequencies of Hb CS and the α2 IVS-I donor site mutations after amplification and enzymatic digestion with Tru9I in 238 northern Iranian samples referred for α-thal testing. Hb CS and the α2 IVS-I donor site mutations accounted for 21 (8.8%) and 29 (12.2%) of the nondeletional cases. This genotyping assay has proven to be a rapid, reliable and useful diagnostic tool for simultaneous detection of these two anomalies for genetic counseling or further prenatal diagnosis.

  14. Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency

    NASA Astrophysics Data System (ADS)

    Aikens, Kurt; Craft, Kyle; Redman, Andrew

    2015-11-01

    The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  15. Moisture Management of High-R Walls (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-12-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on threemore » primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.« less

  16. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  17. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  18. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  19. A transonic wind tunnel wall interference prediction code

    NASA Technical Reports Server (NTRS)

    Phillips, Pamela S.; Waggoner, Edgar G.

    1988-01-01

    A small disturbance transonic wall interference prediction code has been developed that is capable of modeling solid, open, perforated, and slotted walls as well as slotted and solid walls with viscous effects. This code was developed by modifying the outer boundary conditions of an existing aerodynamic wing-body-pod-pylon-winglet analysis code. The boundary conditions are presented in the form of equations which simulate the flow at the wall, as well as finite difference approximations to the equations. Comparisons are presented at transonic flow conditions between computational results and experimental data for a wing alone in a solid wall wind tunnel and wing-body configurations in both slotted and solid wind tunnels.

  20. Modular first wall concept for steady state operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotzlowski, H.E.

    1981-01-01

    On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruptionmore » or neutral beams until excessive erosion or damage of the armour takes place.« less

  1. Low-dimensional representation of near-wall dynamics in shear flows, with implications to wall-models.

    PubMed

    Schmid, P J; Sayadi, T

    2017-03-13

    The dynamics of coherent structures near the wall of a turbulent boundary layer is investigated with the aim of a low-dimensional representation of its essential features. Based on a triple decomposition into mean, coherent and incoherent motion and a dynamic mode decomposition to recover statistical information about the incoherent part of the flow field, a driven linear system coupling first- and second-order moments of the coherent structures is derived and analysed. The transfer function for this system, evaluated for a wall-parallel plane, confirms a strong bias towards streamwise elongated structures, and is proposed as an 'impedance' boundary condition which replaces the bulk of the transport between the coherent velocity field and the coherent Reynolds stresses, thus acting as a wall model for large-eddy simulations (LES). It is interesting to note that the boundary condition is non-local in space and time. The extracted model is capable of reproducing the principal Reynolds stress components for the pretransitional, transitional and fully turbulent boundary layer.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  2. 14 CFR 121.245 - Fire walls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire walls. 121.245 Section 121.245 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.245 Fire walls. Each engine...

  3. Grass cell walls: A story of cross-linking

    USDA-ARS?s Scientific Manuscript database

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how the cell wall components are assembled into comple...

  4. Design and characterisation of a wall motion phantom.

    PubMed

    Dineley, J; Meagher, S; Poepping, T L; McDicken, W N; Hoskins, P R

    2006-09-01

    Arterial wall motion is an essential feature of a healthy cardiovascular system and it is known that wall motion is affected by age and disease. In recent years, methods have been developed for measurement of wall motion with the intention of providing diagnostically useful information. An issue with all of these techniques is the accuracy and variability of both wall motion and derived quantities such as elasticity, which requires the development of suitable test tools. In this paper, a vessel wall phantom is described for use in ultrasound studies of wall motion. The vessel was made from polyvinyl alcohol (PVA) subjected to a freeze-thaw process to form a cryogel (PVA-C). The elastic modulus, acoustic velocity and attenuation coefficient varied from 57 kPa, 1543 m s(-1) and 0.18 dB cm(-1) MHz(-1) for one freeze-thaw cycle to 330 kPa, 1583 m s(-1) and 0.42 dB cm(-1) MHz(-1) for 10 freeze-thaw cycles. Wall motion was effected by the use of pulsatile flow produced from a gear pump. The use of a downstream flow resistor removed gross distortions in the wall motion waveform, possibly by removal of reflected pressure waves. However, a low amplitude 20 Hz oscillation remained, which is unphysiologic and thought to be caused by the vibration of the distended PVA-C vessel.

  5. Extended Multiscale Image Segmentation for Castellated Wall Management

    NASA Astrophysics Data System (ADS)

    Sakamoto, M.; Tsuguchi, M.; Chhatkuli, S.; Satoh, T.

    2018-05-01

    Castellated walls are positioned as tangible cultural heritage, which require regular maintenance to preserve their original state. For the demolition and repair work of the castellated wall, it is necessary to identify the individual stones constituting the wall. However, conventional approaches using laser scanning or integrated circuits (IC) tags were very time-consuming and cumbersome. Therefore, we herein propose an efficient approach for castellated wall management based on an extended multiscale image segmentation technique. In this approach, individual stone polygons are extracted from the castellated wall image and are associated with a stone management database. First, to improve the performance of the extraction of individual stone polygons having a convex shape, we developed a new shape criterion named convex hull fitness in the image segmentation process and confirmed its effectiveness. Next, we discussed the stone management database and its beneficial utilization in the repair work of castellated walls. Subsequently, we proposed irregular-shape indexes that are helpful for evaluating the stone shape and the stability of the stone arrangement state in castellated walls. Finally, we demonstrated an application of the proposed method for a typical castellated wall in Japan. Consequently, we confirmed that the stone polygons can be extracted with an acceptable level. Further, the condition of the shapes and the layout of the stones could be visually judged with the proposed irregular-shape indexes.

  6. Teaching Introductory Mineralogy With the GeoWall

    NASA Astrophysics Data System (ADS)

    Anderson, C. D.; Haymon, R. M.

    2003-12-01

    Mineralogy, like many topics in Earth Sciences, contains inherently three-dimensional topics that are difficult to teach. Concepts such as crystal symmetry and forms, Miller indices, the polymerization of silica tetrahedra and resulting structures of silicate mineral groups, and the interaction of light and minerals are particularly difficult. Two-dimensional diagrams are limited in their effectiveness, and physical models, while effective, are expensive and do not work as well in large class settings. The GeoWall system brings the effectiveness of physical models to the large classroom. In Fall 2003, we will integrate the GeoWall into our introductory mineralogy classes at UCSB using a combination of commercial software, atomic structure models available on the web, and custom content created in-house. The commercial software SHAPE (www.shapesoftware.com) allows users to build and display crystal shapes and their symmetry. Though not designed for the GeoWall, the software's stereopair display mode works perfectly on the system. Using the Chime web browser plug-in (www.mdl.com), computer models of silicate minerals available from the Virtual Museum of Minerals and Molecules (www.soils.umn.eduvirtual_museum) provide an interactive display of silicate mineral structure that illustrates the tetrahedral framework. Again, while not developed for the GeoWall, the Chime plug-in works seamlessly with the GeoWall hardware. 3-D GeoWall images that display light paths through minerals, and reveal relationships between crystal symmetry and optical indicatrix properties, have been developed in-house using a combination of SHAPE and 3D modeling software. The 3-D GeoWall images should convey in an instant these difficult concepts that students historically have struggled to visualize. Initial assessment of the GeoWall's effectiveness as a mineralogy teaching aid at UCSB in Fall 2003 will come from the instructor's impressions and by comparing test scores with classes from

  7. Prevalence and histopathological finding of thin-walled and thick-walled Sarcocysts in slaughtered cattle of Karaj abattoir, Iran.

    PubMed

    Nourollahi-Fard, Saeid R; Kheirandish, Reza; Sattari, Saeid

    2015-06-01

    Sarcocystosis is a zoonotic disease caused by Sarcocystis spp. with obligatory two host life cycle generally alternating between an herbivorous intermediate host and a carnivorous definitive host. Some species of this coccidian parasite can cause considerable morbidity and mortality in cattle. The present study was set to investigate the prevalence of Sarcocystis spp. and type of cyst wall in slaughtered cattle of Karaj abattoir, Iran. For this purpose 125 cattle (88 males and 37 females) were investigated for the presence of macroscopic and microscopic Sarcocystis cysts in muscular tissues. No macroscopic Sarcocystis cysts were found in any of the samples. In light microscopy, 121 out of 125 cattle (96.8 %) had thin-walled cysts of Sarcocystis cruzi, while 43 out of them (34.4 %) had thick-walled Sarcocystis cyst. In this survey, the most infected tissue was esophagus and heart and the less was diaphragm. Thin-walled cysts (S. cruzi) mostly found in heart and skeletal muscle showed the less. However, thick-walled cyst (S. hominis or S. hirsuta) mostly were detected in diaphragm, heart muscle showed no thick-walled cyst. No significant relation was observed between age and sex and the rate of infection. The results showed that Sarcocystis cyst is prevalent in cattle in the North part of Iran and the evaluation of infection potential can be useful when considering control programs.

  8. Turbulence intensities in large-eddy simulation of wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Bae, H. J.; Lozano-Durán, A.; Bose, S. T.; Moin, P.

    2018-01-01

    A persistent problem in wall-bounded large-eddy simulations (LES) with Dirichlet no-slip boundary conditions is that the near-wall streamwise velocity fluctuations are overpredicted, while those in the wall-normal and spanwise directions are underpredicted. The problem may become particularly pronounced when the near-wall region is underresolved. The prediction of the fluctuations is known to improve for wall-modeled LES, where the no-slip boundary condition at the wall is typically replaced by Neumann and no-transpiration conditions for the wall-parallel and wall-normal velocities, respectively. However, the turbulence intensity peaks are sensitive to the grid resolution and the prediction may degrade when the grid is refined. In the present study, a physical explanation of this phenomena is offered in terms of the behavior of the near-wall streaks. We also show that further improvements are achieved by introducing a Robin (slip) boundary condition with transpiration instead of the Neumann condition. By using a slip condition, the inner energy production peak is damped, and the blocking effect of the wall is relaxed such that the splatting of eddies at the wall is mitigated. As a consequence, the slip boundary condition provides an accurate and consistent prediction of the turbulence intensities regardless of the near-wall resolution.

  9. Porins in the Cell Wall of Mycobacteria

    NASA Astrophysics Data System (ADS)

    Trias, Joaquim; Jarlier, Vincent; Benz, Roland

    1992-11-01

    The cell wall of mycobacteria is an efficient permeability barrier that makes mycobacteria naturally resistant to most antibiotics. Liposome swelling assays and planar bilayer experiments were used to investigate the diffusion process of hydrophilic molecules through the cell wall of Mycobacterium chelonae and identify the main hydrophilic pathway. A 59-kilodalton cell wall protein formed a water-filled channel with a diameter of 2.2 nanometers and an average single-channel conductance equal to 2.7 nanosiemens in 1 M potassium chloride. These results suggest that porins can be found in the cell wall of a Gram-positive bacterium. A better knowledge of the hydrophilic pathways should help in the design of more effective antimycobacterial agents.

  10. Ultrasonic probe for inspecting double-wall tube

    DOEpatents

    Cook, Kenneth V.; Cunningham, Jr., Robert A.; Murrin, Horace T.

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  11. Applications of Green Walls in Urban Design

    NASA Astrophysics Data System (ADS)

    Virtudes, Ana; Manso, Maria

    2016-10-01

    Green walls are a choice towards achieving sustainable urban rehabilitation, due to the lack of free space in the consolidated urban fabric. Nowadays, green walls are considered to be an innovation in the fields of ecology, horticulture or buildings. Nevertheless, in the domain of urban design, they are still surprising and unexpected ideas. Thus, this research aims to reflect on green walls as a feature in urban design and rehabilitation, identifying the advantages of their utilization as an enhancement of the quality of city's image, especially in dense urban areas. It aims to demonstrate some practical applications of green walls in urban design proposals, showing model solutions and their real application in several architectural examples.

  12. Microfluidics with fluid walls.

    PubMed

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  13. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  14. Hepatic injury due to combined choline-deprivation and thioacetamide administration: an experimental approach to liver diseases.

    PubMed

    Al-Humadi, Hussam; Theocharis, Stamatios; Dontas, Ismene; Stolakis, Vasileios; Zarros, Apostolos; Kyriakaki, Argyro; Al-Saigh, Rafal; Liapi, Charis

    2012-12-01

    The induction of prolonged choline-deprivation (CD) in rats receiving thioacetamide (TAA) is an experimental approach of mild hepatotoxicity that could resemble commonly presented cases in clinical practice (in which states of malnutrition and/or alcoholism are complicated by the development of other liver-associated diseases). The present study aimed to investigate the time-dependent effects of a 30-, a 60- and a 90-day dietary CD and/or TAA administration on the adult rat liver histopathology and the serum markers of hepatic functional integrity. Rats were divided into four main groups: (a) control, (b) CD, (c) TAA and (d) CD + TAA. Dietary CD was provoked through the administration of choline-deficient diet, while TAA administration was performed ad libitum through the drinking water (300 mg/l of drinking water). Histological examination of the CD + TAA liver sections revealed micro- and macro-vesicular steatosis with degeneration and primary fibrosis at day 30, to extensive steatosis and fibrosis at day 90. Steatosis was mostly of the macrovesicular type, involving all zones of the lobule, while inflammatory infiltrate consisted of foci of acute and chronic inflammatory cells randomly distributed in the lobule. These changes were accompanied by gradually increasing mitotic activity, as well as by a constantly high alpha-smooth muscle actin immunohistochemical staining. The determination of hepatocellular injury markers such as the serum enzyme levels' of alanine aminotransferase and aspartate aminotransferase demonstrated a decrease at day 30 (they returned to control levels at days 60 and 90). However, the determination of those serum enzymes used for the assessment of cholestatic liver injury (gamma-glutamyltransferase, alkaline phosphatase) revealed a constant (time-independent) statistically-significant increase versus control values. Long-term combined dietary CD and TAA administration could be a more realistic experimental approach to human liver diseases

  15. Anti-fibrotic effects of Cuscuta chinensis with in vitro hepatic stellate cells and a thioacetamide-induced experimental rat model.

    PubMed

    Kim, Jin Seoub; Koppula, Sushruta; Yum, Mun Jeong; Shin, Gwang Mo; Chae, Yun Jin; Hong, Seok Min; Lee, Jae Dong; Song, MinDong

    2017-12-01

    Cuscuta chinensis Lam. (Convolvulaceae) has been used as a traditional herbal remedy for treating liver and kidney disorders. Anti-fibrotic effects of C. chinensis extract (CCE) in cellular and experimental animal models were investigated. HSC-T6 cell viability, cell cycle and apoptosis were analysed using MTT assay, flow cytometry and Annexin V-FITC/PI staining techniques. Thioacetamide (TAA)-induced fibrosis model was established using Sprague Dawley rats (n = 10). Control, TAA, CCE 10 (TAA with CCE 10 mg/kg), CCE 100 (TAA with CCE 100 mg/kg) and silymarin (TAA with silymarin 50 mg/kg). Fibrosis was induced by TAA (200 mg/kg, i.p.) twice per week for 13 weeks. CCE and silymarin were administered orally two times per week from the 7th to 13th week. Fibrotic related gene expression (α-SMA, Col1α1 and TGF-β1) was measured by RT-PCR. Serum biomarkers, glutathione (GSH) and hydroxyproline were estimated by spectrophotometer using commercial kits. CCE (0.05 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly (p < 0.01 and p < 0.001) induced apoptosis (11.56%, 17.52% for CCE; 16.50% for silymarin, respectively) in activated HSC-T6 cells, compared with control group (7.26%). Further, rat primary HSCs showed changes in morphology with CCE 0.1 mg/mL treatment. In in vivo studies, CCE (10 and 100 mg/kg) treatment ameliorated the TAA-induced altered levels of serum biomarkers, fibrotic related gene expression, GSH, hydroxyproline significantly (p < 0.05-0.001) and rescued the histopathological changes. CCE can be developed as a potential agent in the treatment of hepatofibrosis.

  16. Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms

    PubMed Central

    Gomez, Delphine; Coyet, Aurélie; Ollivier, Véronique; Jeunemaitre, Xavier; Jondeau, Guillaume; Michel, Jean-Baptiste; Vranckx, Roger

    2011-01-01

    Aims Human thoracic aortic aneurysms (TAAs) are characterized by extracellular matrix breakdown associated with progressive smooth muscle cell (SMC) rarefaction. These features are present in all types of TAA: monogenic forms [mainly Marfan syndrome (MFS)], forms associated with bicuspid aortic valve (BAV), and degenerative forms. Initially described in a mouse model of MFS, the transforming growth factor-β1 (TGF-β1)/Smad2 signalling pathway is now assumed to play a role in TAA of various aetiologies. However, the relation between the aetiological diversity and the common cell phenotype with respect to TGF-β signalling remains unexplained. Methods and results This study was performed on human aortic samples, including TAA [MFS, n = 14; BAV, n = 15; and degenerative, n = 19] and normal aortas (n = 10) from which tissue extracts and human SMCs and fibroblasts were obtained. We show that all types of TAA share a complex dysregulation of Smad2 signalling, independent of TGF-β1 in TAA-derived SMCs (pharmacological study, qPCR). The Smad2 dysregulation is characterized by an SMC-specific, heritable activation and overexpression of Smad2, compared with normal aortas. The cell specificity and heritability of this overexpression strongly suggest the implication of epigenetic control of Smad2 expression. By chromatin immunoprecipitation, we demonstrate that the increases in H3K9/14 acetylation and H3K4 methylation are involved in Smad2 overexpression in TAA, in a cell-specific and transcription start site-specific manner. Conclusion Our results demonstrate the heritability, the cell specificity, and the independence with regard to TGF-β1 and genetic backgrounds of the Smad2 dysregulation in human thoracic aneurysms and the involvement of epigenetic mechanisms regulating histone marks in this process. PMID:20829218

  17. Anti-Tumor Activity of Cytotoxic T Lymphocytes Elicited with Recombinant and Synthetic Forms of a Model Tumor-Associated Antigen

    PubMed Central

    Wang, Michael; Chen, Pauline W.; Bronte, Vincenzo; Rosenberg, Steven A.; Restifo, Nicholas P.

    2008-01-01

    Summary The recent cloning of tumor-associated antigens (TAAs) recognized by CD8 + T lymphocytes (TCD8−) has made it possible to use recombinant and synthetic forms of TAAs to generate TCD8− with anti-tumor activity. To explore new therapeutic strategies in a mouse model, we retrovirally transduced the experimental murine tumor CT26 (H-2d), with the lacZ gene encoding our model TAA, (β-galactosidase (β-gal). The transduced cell line, CT26.CL25, grew as rapidly and as lethally as the parental cell line in normal, immuno-competent animals. In an attempt to elicit TCD8+ directed against our model TAA by using purely recombinant and synthetic forms of our model TAA, we synthesized a nine-amino-acid long immunodominant peptide of (β-gal (TPH-PARIGL), corresponding to amino acid residues 876–884, which was known to be presented by the Ld major histocompatibility complex (MHC) class I molecule, and a recombinant vaccinia virus encoding the full-length β-gal protein (VJS6). Splenocytes obtained from naïve mice and co-cultured with (β-gal peptide could not be expanded in primary ex vivo cultures. However, mice immunized with VJS6, but not with a control recombinant vaccinia virus, yielded splenocytes that were capable of specifically lysing CT26.CL25 in vitro after co-culture with (β-gal peptide. Most significantly, adoptive transfer of these cells could effectively treat mice bearing 3-day-old established pulmonary metastases. These observations show that therapeutic TCD8+ directed against a model TAA could be generated by using purely recombinant and synthetic forms of this antigen. These findings point the way to a potentially useful immunotherapeutic strategy, which has been made possible by the recent cloning of immunogenic TAAs that are expressed by human malignancies. PMID:8770769

  18. Anti-fibrotic effects of Orostachys japonicus A. Berger (Crassulaceae) on hepatic stellate cells and thioacetamide-induced fibrosis in rats.

    PubMed

    Koppula, Sushruta; Yum, Mun-Jeong; Kim, Jin-Seoub; Shin, Gwang-Mo; Chae, Yun-Jin; Yoon, Tony; Chun, Chi-Su; Lee, Jae-Dong; Song, MinDong

    2017-12-01

    Orostachys japonicus A. Berger (Crassulaceae) has been used in traditional herbal medicines in Korea and other Asian countries to treat various diseases, including liver disorders. In the present study, the anti-fibrotic effects of O. japonicus extract (OJE) in cellular and experimental hepatofibrotic rat models were investigated. An in vitro hepatic stellate cells (HSCs) system was used to estimate cell viability, cell cycle and apoptosis by MTT assay, flow cytometry, and Annexin V-FITC/PI staining techniques, respectively. In addition, thioacetamide (TAA)-induced liver fibrosis was established in Sprague Dawley rats. Briefly, animals were divided into five groups (n = 8): Control, TAA, OJE 10 (TAA with OJE 10 mg/kg), OJE 100 (TAA with OJE 100 mg/kg) and silymarin (TAA with Silymarin 50 mg/kg). Fibrosis was induced by treatment with TAA (200 mg/kg, i.p. ) twice per week for 13 weeks, while OJE and silymarin were administered orally two times per week from week 7 to 13. The fibrotic related gene expression serum biomarkers glutathione and hydroxyproline were estimated by RT-PCR and spectrophotometry, respectively, using commercial kits. OJE (0.5 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly ( P < 0.01 and P < 0.001) induced apoptosis (16.95% and 27.48% for OJE and 25.87% for silymarin, respectively) in HSC-T6 cells when compared with the control group (9.09%). Further, rat primary HSCs showed changes in morphology in response to OJE 0.1 mg/mL treatment. In in vivo studies, OJE (10 and 100 mg/kg) treatment significantly ameliorated TAA-induced alterations in levels of serum biomarkers, fibrotic related gene expression, glutathione, and hydroxyproline ( P < 0.05- P < 0.001) and rescued the histopathological changes. OJE can be developed as a potential agent for the treatment of hepatofibrosis.

  19. Shifting foundations: the mechanical cell wall and development.

    PubMed

    Braybrook, Siobhan A; Jönsson, Henrik

    2016-02-01

    The cell wall has long been acknowledged as an important physical mediator of growth in plants. Recent experimental and modelling work has brought the importance of cell wall mechanics into the forefront again. These data have challenged existing dogmas that relate cell wall structure to cell/organ growth, that uncouple elasticity from extensibility, and those which treat the cell wall as a passive and non-stressed material. Within this review we describe experiments and models which have changed the ways in which we view the mechanical cell wall, leading to new hypotheses and research avenues. It has become increasingly apparent that while we often wish to simplify our systems, we now require more complex multi-scale experiments and models in order to gain further insight into growth mechanics. We are currently experiencing an exciting and challenging shift in the foundations of our understanding of cell wall mechanics in growth and development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  1. Preventive effects of Ophiocordyceps sinensis mycelium on the liver fibrosis induced by thioacetamide.

    PubMed

    Wu, Yi-Hsieng Samuel; Tseng, Jung-Kai; Chou, Chung-Hsi; Chiu, Chih-Hsien; Lin, Yi-Ling; Chen, Yi-Chen

    2017-06-01

    Thioacetamide (TAA), usually used as a fungicide to control the decay of citrus products, itself is not toxic to the liver, but its intermediates are able to increase oxidative stress in livers and further cause fibrosis. Ophiocordyceps sinensis mycelium (OSM) which contains 10% polysaccharides and 0.25% adenosine decreased (P < 0.05) the lipid accumulation and increased (P < 0.05) antioxidative capacity in livers of thioacetamide (TAA) injected rats. Meanwhile, the increased (P < 0.05) liver sizes, serum alanine transaminase (AST) and aspartate transaminase (ALT) values in thioacetamide (TAA)-injected rats were ameliorated (P < 0.05) by OSM supplementation. Moreover, the levels of proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were also reduced (P < 0.05). The fibrosis phenomena in pathological (Masson's trichrome and H&E stainings) and immunohistochemical [α-smooth actin (αSMA) and CD86/ED1] observations in TAA-treated rats were reduced (P < 0.05) by OSM cotreatment. The protective effect of OSM against TAA-induced liver inflammation/fibrosis may be via downregulations (P < 0.05) of TGF-β pathways and NFκB which further influenced (P < 0.05) the expressions of fibrotic and inflammatory genes (i. e., αSMA, Col1α, COX2). Therefore, OSM shows preventive effects on the development of TAA-induced hepatic fibrosis. © 2017 Wiley Periodicals, Inc.

  2. [Comparative analysis of electroencephalographic tests of alpha activity attenuation in evaluation of involuntary falling asleep in healthy adults].

    PubMed

    Sundrić, Zvonko; Rajsić, Nenad; Lakocević, Milan; Nikolić-Djorić, Emilija

    2010-01-01

    Decrease of daily alertness is a common cause of accidents in the work place, especially traffic accidents. Therefore, an increasing interest exists to determine reliable indicators of a tendency to fall asleep involuntarily. To determine an optimal electroencephalographic (EEG) indicator of an involuntary tendency to fall asleep, we performed a study on neurologically healthy subjects, after one night of sleep deprivation. Total sleep deprivation was aimed at increasing daily sleepiness in healthy subjects, providing us with an opportunity to test different methods of evaluation. We applied a visual analogue scale for sleepiness (VASS), EEG registration with the specific test of alpha activity attenuation (TAA) in 87 healthy subjects. The test was perfomed in a standard way (sTAA) as well as in accordance with new modifications related to changes of EEG filter width in the range from 5 to 32 Hz (mTAA). After sleep deprivation, we observed involuntary falling asleep in 54 subjects. The comparison of VASS results showed no differences, contrary to a more objective TAA. Between two variants of TAA, the modified test provided us with a better prediction for subjects who would fall asleep involuntarily. The application of a more objective EEG test in evaluation of daily alertness represents the optimal method of testing. Modified TAA attracts special attention, offering a simple solution for reliable testing of decreased daily alertness in medical services related to professional aircraft personnel.

  3. Assembly and enlargement of the primary cell wall in plants

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  4. Assembly and enlargement of the primary cell wall in plants.

    PubMed

    Cosgrove, D J

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  5. Elasticity of the living abdominal wall in laparoscopic surgery.

    PubMed

    Song, Chengli; Alijani, Afshin; Frank, Tim; Hanna, George; Cuschieri, Alfred

    2006-01-01

    Laparoscopic surgery requires inflation of the abdominal cavity and this offers a unique opportunity to measure the mechanical properties of the living abdominal wall. We used a motion analysis system to study the abdominal wall motion of 18 patients undergoing laparoscopic surgery, and found that the mean Young's modulus was 27.7+/-4.5 and 21.0+/-3.7 kPa for male and female, respectively. During inflation, the abdominal wall changed from a cylinder to a dome shape. The average expansion in the abdominal wall surface was 20%, and a working space of 1.27 x 10(-3)m(3) was created by expansion, reshaping of the abdominal wall and diaphragmatic movement. For the first time, the elasticity of human abdominal wall was obtained from the patients undergoing laparoscopic surgery, and a 3D simulation model of human abdominal wall has been developed to analyse the motion pattern in laparoscopic surgery. Based on this study, a mechanical abdominal wall lift and a surgical simulator for safe/ergonomic port placements are under development.

  6. An experimental study of an adaptive-wall wind tunnel

    NASA Technical Reports Server (NTRS)

    Celik, Zeki; Roberts, Leonard

    1988-01-01

    A series of adaptive wall ventilated wind tunnel experiments was carried out to demonstrate the feasibility of using the side wall pressure distribution as the flow variable for the assessment of compatibility with free air conditions. Iterative and one step convergence methods were applied using the streamwise velocity component, the side wall pressure distribution and the normal velocity component in order to investigate their relative merits. The advantage of using the side wall pressure as the flow variable is to reduce the data taking time which is one the major contributors to the total testing time. In ventilated adaptive wall wind tunnel testing, side wall pressure measurements require simple instrumentation as opposed to the Laser Doppler Velocimetry used to measure the velocity components. In ventilated adaptive wall tunnel testing, influence coefficients are required to determine the pressure corrections in the plenum compartment. Experiments were carried out to evaluate the influence coefficients from side wall pressure distributions, and from streamwise and normal velocity distributions at two control levels. Velocity measurements were made using a two component Laser Doppler Velocimeter system.

  7. Chaperonin GroE-facilitated refolding of disulfide-bonded and reduced Taka-amylase A from Aspergillus oryzae.

    PubMed

    Kawata, Y; Hongo, K; Mizobata, T; Nagai, J

    1998-12-01

    The refolding characteristics of Taka-amylase A (TAA) from Aspergillus oryzae in the presence of the chaperonin GroE were studied in terms of activity and fluorescence. Disulfide-bonded (intact) TAA and non-disulfide-bonded (reduced) TAA were unfolded in guanidine hydrochloride and refolded by dilution into buffer containing GroE. The intermediates of both intact and reduced enzymes were trapped by GroEL in the absence of nucleotide. Upon addition of nucleotides such as ATP, ADP, CTP or UTP, the intermediates were released from GroEL and recovery of activity was detected. In both cases, the refolding yields in the presence of GroEL and ATP were higher than spontaneous recoveries. Fluorescence studies of intrinsic tryptophan and a hydrophobic probe, 8-anilinonaphthalene-1-sulfonate, suggested that the intermediates trapped by GroEL assumed conformations with different hydrophobic properties. The presence of protein disulfide isomerase or reduced and oxidized forms of glutathione in addition to GroE greatly enhanced the refolding reaction of reduced TAA. These findings suggest that GroE has an ability to recognize folding intermediates of TAA protein and facilitate refolding, regardless of the existence or absence of disulfide bonds in the protein.

  8. Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms

    PubMed Central

    Venkatesh, Premakumari; Phillippi, Julie; Chukkapalli, Sasanka; Rivera-Kweh, Mercedes; Velsko, Irina; Gleason, Thomas; VanRyzin, Paul; Aalaei-Andabili, Seyed Hossein; Ghanta, Ravi Kiran; Beaver, Thomas; Chan, Edward Kar Leung; Kesavalu, Lakshmyya

    2017-01-01

    Altered microRNA expression is implicated in cardiovascular diseases. Our objective was to determine microRNA signatures in thoracic aortic aneurysms (TAAs) and abdominal aortic aneurysms (AAAs) compared with control non-aneurysmal aortic specimens. We evaluated the expression of fifteen selected microRNA in human TAA and AAA operative specimens compared to controls. We observed significant upregulation of miR-221 and downregulation of miR-1 and -133 in TAA specimens. In contrast, upregulation of miR-146a and downregulation of miR-145 and -331-3p were found only for AAA specimens. Upregulation of miR-126 and -486-5p and downregulation of miR-30c-2*, -155, and -204 were observed in specimens of TAAs and AAAs. The data reveal microRNA expression signatures unique to aneurysm location and common to both thoracic and abdominal pathologies. Thus, changes in miR-1, -29a, -133a, and -221 are involved in TAAs and miR-145, -146, and -331-3p impact AAAs. This work validates prior studies on microRNA expression in aneurysmal diseases. PMID:28425970

  9. A novel canine model of portal vein stenosis plus thioacetamide administration-induced cirrhotic portal hypertension with hypersplenism.

    PubMed

    Lin, Dexin; Wu, Xianbin; Ji, Xiaoke; Zhang, Qiyu; Lin, YuanWei; Chen, WeiJian; Jin, Wangxun; Deng, Liming; Chen, Yunzhi; Chen, Bicheng; Li, Jianmin

    2012-01-01

    Current large animal models that could closely resemble the typical features of cirrhotic portal hypertension in human have not been well established. Thus, we aimed to develop and describe a reliable and reproducible canine cirrhosis model of portal hypertension. A total of 30 mongrel dogs were randomly divided into four groups: 1 (control; n = 5), 2 (portal vein stenosis [PVS]; n = 5], 3 (thioacetamide [TAA]; n = 5), and 4 (PVS plus TAA; n = 15). After 4-months modeling period, liver and spleen CT perfusion, abdominal CT scans, portal hemodynamics, gastroscopy, hepatic function, blood routine, the bone marrow, liver, and spleen histology were studied. The animals in group 2 (PVS) developed extrahepatic portosystemic collateral circulation, particularly esophageal varices, without hepatic cirrhosis and portal hypertension. Animals from group 3 (TAA) presented mild cirrhosis and portal hypertension without significant symptoms of esophageal varices and hypersplenism. In contrast, animals from group 4 (PVS + TAA) showed well-developed micronodular and macronodular cirrhosis, associated with significant portal hypertension and hypersplenism. The combination of PVS and TAA represents a novel, reliable, and reproducible canine cirrhosis model of portal hypertension, which is associated with the typical characteristics of portal hypertension, including hypersplenism.

  10. Panelized wall system with foam core insulation

    DOEpatents

    Kosny, Jan [Oak Ridge, TN; Gaskin, Sally [Houston, TX

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  11. Enhanced reactive metal wall for dehalogenation of hydrocarbons

    DOEpatents

    Howson, Paul E.; Mackenzie, Patricia D.; Horney, David P.

    1996-01-01

    A method is provided for remediation of contaminated solutions using a tiered metal wall or column. The tiered metal wall or column has at least three zones with graduated sizes of reducing metal particles. Contaminated solutions pass through the tiered wall or column to dehalogenate contaminant halogenated hydrocarbons.

  12. Is the great attractor really a great wall

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Turner, Michael S.

    1988-01-01

    Some of the cosmological consequences are discussed of a late time phase transition which produces light domain walls. The observed peculiar velocity field of the Universe and the observed isotropy of the microwave background radiation severely constrain the wall surface density in such a scenario. The most interesting consequence of such a phase transition is the possibility that the local, coherent streaming motion reported by the Seven Samurai could be explained by the repulsive effect of a relic domain wall with the Hubble volume (the Great Wall).

  13. Walls, anomalies, and deconfinement in quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Komargodski, Zohar; Sulejmanpasic, Tin; Ünsal, Mithat

    2018-02-01

    We consider the Abelian-Higgs model in 2 +1 dimensions with instanton-monopole defects. This model is closely related to the phases of quantum antiferromagnets. In the presence of Z2 preserving monopole operators, there are two confining ground states in the monopole phase, corresponding to the valence bond solid (VBS) phase of quantum magnets. We show that the domain wall carries a 't Hooft anomaly in this case. The anomaly can be saturated by, e.g., charge-conjugation breaking on the wall or by the domain wall theory becoming gapless (a gapless model that saturates the anomaly is S U (2) 1 WZW). Either way the fundamental scalar particles (i.e., spinons) which are confined in the bulk are deconfined on the domain wall. This Z2 phase can be realized either with spin-1/2 on a rectangular lattice or spin-1 on a square lattice. In both cases the domain wall contains spin-1/2 particles (which are absent in the bulk). We discuss the possible relation to recent lattice simulations of domain walls in VBS. We further generalize the discussion to Abrikosov-Nielsen-Olsen (ANO) vortices in a dual superconductor of the Abelian-Higgs model in 3 +1 dimensions and to the easy-plane limit of antiferromagnets. In the latter case the wall can undergo a variant of the BKT transition (consistent with the anomalies) while the bulk is still gapped. The same is true for the easy-axis limit of antiferromagnets. We also touch upon some analogies to Yang-Mills theory.

  14. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  15. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  16. Changes in Cell Wall Polysaccharides Associated With Growth 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1968-01-01

    Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862

  17. The Specific Nature of Plant Cell Wall Polysaccharides 1

    PubMed Central

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  18. Effects of wall electrodes on Hall effect thruster plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langendorf, S., E-mail: samuel.langendorf@gatech.edu; Walker, M., E-mail: mitchell.walker@ae.gatech.edu; High-Power Electric Propulsion Laboratory, 625 Lambert St NW, Atlanta, Georgia 30318

    2015-02-15

    This paper investigates the physical mechanisms that cause beneficial and detrimental performance effect observed to date in Hall effect thrusters with wall electrodes. It is determined that the wall electrode sheath can reduce ion losses to the wall if positioned near the anode (outside the dense region of the plasma) such that an ion-repelling sheath is able to form. The ability of the wall electrode to form an ion-repelling sheath is inversely proportional to the current drawn—if the wall electrode becomes the dominant sink for the thruster discharge current, increases in wall electrode bias result in increased local plasma potentialmore » rather than an ion-repelling sheath. A single-fluid electron flow model gives results that mimic the observed potential structures and the current-sharing fractions between the anode and wall electrodes, showing that potential gradients in the presheath and bulk plasma come at the expense of current draw to the wall electrodes. Secondary electron emission from the wall electrodes (or lack thereof) is inferred to have a larger effect if the electrodes are positioned near the exit plane than if positioned near the anode, due to the difference in energy deposition from the plasma.« less

  19. Nanoscale movements of cellulose microfibrils in primary cell walls.

    PubMed

    Zhang, Tian; Vavylonis, Dimitrios; Durachko, Daniel M; Cosgrove, Daniel J

    2017-04-28

    The growing plant cell wall is commonly considered to be a fibre-reinforced structure whose strength, extensibility and anisotropy depend on the orientation of crystalline cellulose microfibrils, their bonding to the polysaccharide matrix and matrix viscoelasticity 1-4 . Structural reinforcement of the wall by stiff cellulose microfibrils is central to contemporary models of plant growth, mechanics and meristem dynamics 4-12 . Although passive microfibril reorientation during wall extension has been inferred from theory and from bulk measurements 13-15 , nanometre-scale movements of individual microfibrils have not been directly observed. Here we combined nanometre-scale imaging of wet cell walls by atomic force microscopy (AFM) with a stretching device and endoglucanase treatment that induces wall stress relaxation and creep, mimicking wall behaviours during cell growth. Microfibril movements during forced mechanical extensions differ from those during creep of the enzymatically loosened wall. In addition to passive angular reorientation, we observed a diverse repertoire of microfibril movements that reveal the spatial scale of molecular connections between microfibrils. Our results show that wall loosening alters microfibril connectivity, enabling microfibril dynamics not seen during mechanical stretch. These insights into microfibril movements and connectivities need to be incorporated into refined models of plant cell wall structure, growth and morphogenesis.

  20. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    NASA Astrophysics Data System (ADS)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  1. RADIOAUTOGRAPHIC STUDY OF CELL WALL DEPOSITION IN GROWING PLANT CELLS

    PubMed Central

    Ray, Peter M.

    1967-01-01

    Segments cut from growing oat coleoptiles and pea stems were fed glucose-3H in presence and absence of the growth hormone indoleacetic acid (IAA). By means of electron microscope radioautography it was demonstrated that new cell wall material is deposited both at the wall surface (apposition) and within the preexisting wall structure (internally). Quantitative profiles for the distribution of incorporation with position through the thickness of the wall were obtained for the thick outer wall of epidermal cells. With both oat coleoptile and pea stem epidermal outer walls, it was found that a larger proportion of the newly synthesized wall material appeared to become incorporated within the wall in the presence of IAA. Extraction experiments on coleoptile tissue showed that activity that had been incorporated into the cell wall interior represented noncellulosic constituents, mainly hemicelluloses, whereas cellulose was deposited largely or entirely by apposition. It seems possible that internal incorporation of hemicelluloses plays a role in the cell wall expansion process that is involved in cell growth. PMID:6064369

  2. A randomized, blinded study of canal wall up versus canal wall down mastoidectomy determining the differences in viewing middle ear anatomy and pathology.

    PubMed

    Hulka, G F; McElveen, J T

    1998-09-01

    Canal wall down and intact canal wall tympanomastoidectomy represent two surgical approaches to middle ear pathology. The authors hypothesize that there is a difference in the ability to view structures in the middle ear between these two methods. Depending on the individual, many surgeons have used the two different techniques of intact canal wall and canal wall down tympanomastoidectomy for approaching the middle ear. However, opinions conflict as to which approach provides the best visualization of different locations in the middle ear. This study prospectively evaluated temporal bones to determine the differences in visualizing structures of the middle ear using these two approaches. Twelve temporal bones underwent a standardized canal wall down tympanomastoidectomy using a reversible canal wall down technique. All bones were viewed in two dissections: intact canal wall and canal wall down preparations. Four points previously had been marked on each temporal bone in randomly assigned colors. These points include the sinus tympani, posterior crus of stapes, lateral epitympanum, and the Eustachian tube orifice. An observer blinded to the purpose of the study, color, and number of locations recorded the color and location of marks observed within the temporal bones. Randomized bones of two separate settings were viewed such that each bone was viewed in both the canal wall down and the intact canal wall preparations. A significant difference was noted in the ability to observe middle ear pathology between the intact canal wall versus canal wall down tympanomastoidectomy, with the latter showing superiority (p < 0.001). Of the four subsites, the sinus tympani, posterior crus of stapes, and lateral epitympanum were observed more frequently with the canal wall down. There was no significant difference in the ability to observe the Eustachian tube orifice between the two techniques. Statistical analysis shows good reproducibility and randomization of this study. The

  3. Enhanced reactive metal wall for dehalogenation of hydrocarbons

    DOEpatents

    Howson, P.E.; Mackenzie, P.D.; Horney, D.P.

    1996-08-06

    A method is provided for remediation of contaminated solutions using a tiered metal wall or column. The tiered metal wall or column has at least three zones with graduated sizes of reducing metal particles. Contaminated solutions pass through the tiered wall or column to dehalogenate contaminant halogenated hydrocarbons. 3 figs.

  4. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  5. Wall of Rheasilvia

    NASA Image and Video Library

    2012-03-21

    This still from an animation made from data obtained by NASA Dawn spacecraft shows the topography of a portion of the wall and interior of the Rheasilvia impact basin in asteroid Vesta south-polar region.

  6. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  7. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  8. Double wall versus single wall incubator for reducing heat loss in very low birth weight infants in incubators.

    PubMed

    Laroia, N; Phelps, D L; Roy, J

    2007-04-18

    Studies have shown improved survival of newborn infants maintained in the thermoneutral range. The concept of an incubator with additional insulation, a double plexiglass wall, is appealing for very low birth weight infants as it may help to provide a thermoneutral environment. To assess the effects of double walled incubator versus a single wall incubator on insensible water loss, rate of oxygen consumption, episodes of hypothermia, time to regain birth weight, duration of hospitalization and infant mortality in premature infants. The standard search strategy of the Cochrane Neonatal Review Group was used. This included searches of electronic databases: Oxford Database of Perinatal Trials, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2006), MEDLINE (1966 - 2006), EMBASE, previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants in all published languages, and CINAHL (1982 - 2006). Only studies using random or quasi-random methods of allocation were considered for this review. Eligible studies assessed at least one of the outcome variables identified as important to this topic. Independent data extraction and quality assessment of included trials was conducted by the review authors. Data were analyzed using generic inverse variance methodology and weighted mean difference (WMD). Results are presented with 95% confidence intervals. Meta-analysis was undertaken using a fixed effect model. Three studies met the criteria. Four other studies were excluded, as they did not compare double versus single wall incubators (details of the studies are given in the included and excluded studies section). Double wall incubators have the advantage of decreasing heat loss, decreasing heat production and decreasing radiant heat loss when compared to single wall incubators. There is also the advantage of reduced oxygen consumption. A minimal increase in conductive heat loss was noted when

  9. The plasma-wall transition layers in the presence of collisions with a magnetic field parallel to the wall

    NASA Astrophysics Data System (ADS)

    Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.

    2018-01-01

    The plasma-wall transition is studied by means of a particle-in-cell (PIC) simulation in the configuration of a parallel to the wall magnetic field (B), with collisions between charged particles vs. neutral atoms taken into account. The investigated system consists of a plasma bounded by two absorbing walls separated by 200 electron Debye lengths (λd). The strength of the magnetic field is chosen such as the ratio λ d / r l , with rl being the electron Larmor radius, is smaller or larger than unity. Collisions are modelled with a simple operator that reorients randomly ion or electron velocity, keeping constant the total kinetic energy of both the neutral atom (target) and the incident charged particle. The PIC simulations show that the plasma-wall transition consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards the walls, where the electric potential or electric field profiles are well described by an ambipolar diffusion model, and in a second region at the vicinity of the walls, called the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B and for a certain range of the mean-free-path, the sheath is found to be composed of two charged layers: the positive one, close to the walls, and the negative one, towards the plasma and before the neutral pre-sheath. Depending on the amplitude of B, the spatial variation of the electric potential can be non-monotonic and presents a maximum within the sheath region. More generally, the sheath extent as well as the potential drop within the sheath and the pre-sheath is studied with respect to B, the mean-free-path, and the ion and electron temperatures.

  10. Duct having oscillatory side wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouse, Kenneth M.

    A pump system includes a particulate consolidator pump that has a pump outlet. A duct is coupled to the pump outlet. The duct has a wall that is coupled with an oscillator. The oscillator is operable to oscillate the wall at a controlled frequency. The controlled frequency is selected with respect to breaking static bridging of particulate in the duct due, at least in part, to consolidation of the particulate from a downstream check valve.

  11. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  12. Influence of strong perturbations on wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Buxton, O. R. H.; Ewenz Rocher, M.; Rodríguez-López, E.

    2018-01-01

    Single-point hot-wire measurements are made downstream of a series of spanwise repeating obstacles that are used to generate an artificially thick turbulent boundary layer. The measurements are made in the near field, in which the turbulent boundary layer is beginning to develop from the wall-bounded wakes of the obstacles. The recent paper of Rodríguez-López et al. [E. Rodríguez-López et al., Phys. Rev. Fluids 1, 074401 (2016), 10.1103/PhysRevFluids.1.074401] broadly categorized the mechanisms by which canonical turbulent boundary layers eventually develop from wall-bounded wakes into two distinct mechanisms, the wall-driven and wake-driven mechanisms. In the present work we attempt to identify the geometric parameters of tripping arrays that trigger these two mechanisms by examining the spectra of the streamwise velocity fluctuations and the intermittent outer region of the flow. Using a definition reliant upon the magnitude of the velocity fluctuations, an intermittency function is devised that can discriminate between turbulent and nonturbulent flow. These results are presented along with the spectra in order to try to ascertain which aspects of a trip's geometry are more likely to favor the wall-driven or wake-driven mechanism. The geometrical aspects of the trips tested are the aspect ratio, the total blockage, and the blockage at the wall. The results indicate that the presence, or not, of perforations is the most significant factor in affecting the flow downstream. The bleed of fluid through the perforations reenergizes the mean recirculation and leads to a narrower intermittent region with a more regular turbulent-nonturbulent interface. The near-wall turbulent motions are found to recover quickly downstream of all of the trips with a wall blockage of 50%, but a clear influence of the outer fluctuations, generated by the tip vortices of the trips, is observed in the near-wall region for the high total blockage trips. The trip with 100% wall blockage is

  13. Integrating shotcrete walls into the natural landscape by application of 'Green Walls'

    NASA Astrophysics Data System (ADS)

    Medl, Alexandra; Kikuta, Silvia

    2017-04-01

    Steep slopes resulting from major road infrastructure constructions are increasingly perceived as disagreeable disturbance in the landscape. Thus, a tool to consider landscape aspects and integrate these slopes into the natural environment is required. The challenge is to establish a sustainable vegetation layer despite of adverse circumstances such as inclinations of almost 90⁰, exposed position of slopes near streets and lack of soil and water supply. The objective of this study was to assess the performance of an innovative greening technology for vertical structures (shotcrete wall) in terms of vegetation development on varying plant substrates and geotextiles. The field experiment in Steinach am Brenner, Tyrol, Austria, included testing three plant substrates on basis of nearby rocky excavation material ('Innsbrucker Quarzphyllit', 'Bündnerschiefer' and 'Zentralgneis') combined with compost. Additionally, five geotextiles (geogrid (3x4 mm), geogrid (9x10 mm), coir net, coir mat, geo mat) were applied for evaluation. All test combinations were evaluated regarding vegetation cover and biomass production from 2015 to 2016. Analyses of chemical properties were conducted for all plant substrates. Results showed highest vegetation cover ratio on 'Bündnerschiefer' and 'Innsbrucker Quarzphyllit', which can be explained by the favorable mineral composition (nutrient storage capacity) and chemical properties of compost (lower values of electrical conductivity and C/N ratio). In conclusion, the use of 'Green Walls' filled with 'Bündnerschiefer' or 'Innsbrucker Quarzphyllit' plant substrate in combination with netlike geotextiles proved best, since geo grid and coir net turned out as most successful one year after installation. 'Green Walls' are promising in terms of establishing an optimal vegetation cover on vertical structures and are well suited for integrating shotcrete walls into the landscape. The use of local excavation material for greening purposes can be

  14. The molecular basis of plant cell wall extension.

    PubMed

    Darley, C P; Forrester, A M; McQueen-Mason, S J

    2001-09-01

    In all terrestrial and aquatic plant species the primary cell wall is a dynamic structure, adjusted to fulfil a diversity of functions. However a universal property is its considerable mechanical and tensile strength, whilst being flexible enough to accommodate turgor and allow for cell elongation. The wall is a composite material consisting of a framework of cellulose microfibrils embedded in a matrix of non-cellulosic polysaccharides, interlaced with structural proteins and pectic polymers. The assembly and modification of these polymers within the growing cell wall has, until recently, been poorly understood. Advances in cytological and genetic techniques have thrown light on these processes and have led to the discovery of a number of wall-modifying enzymes which, either directly or indirectly, play a role in the molecular basis of cell wall expansion.

  15. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Near-wall modelling of compressible turbulent flows

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1990-01-01

    Work was carried out to extend the near-wall models formulated for the incompressible Reynolds stress equations to compressible flows. The idea of splitting the compressible dissipation function into a solenoidal part that is not sensitive to changes of compressibility indicators and a compressible part that is directly affected by these changes is adopted. This means that all models involving the dissipation rate could be expressed in terms of the solenoidal dissipation rate and an equation governing its transport could be formulated to close the set of compressible Reynolds stress equations. The near-wall modelling of the dissipation rate equation is investigated and its behavior near a wall is studied in detail using k-epsilon closure. It is found that all existing modelled equations give the wrong behavior for the dissipation rate near a wall. Improvements are suggested and the resultant behavior is found to be in good agreement with near-wall data. Furthermore, the present modified k-epsilon closure is used too calculate a flat plate boundary layer and the results are compared with four existing k-epsilon closures. These comparisons show that all closures tested give essentially the same flow properties, except in a region very close to the wall. In this region, the present k-epsilon closure calculations are in better agreement with measurements and direct simulation data; in particular, the behavior of the dissipation rate.

  17. Application of wall-models to discontinuous Galerkin LES

    NASA Astrophysics Data System (ADS)

    Frère, Ariane; Carton de Wiart, Corentin; Hillewaert, Koen; Chatelain, Philippe; Winckelmans, Grégoire

    2017-08-01

    Wall-resolved Large-Eddy Simulations (LES) are still limited to moderate Reynolds number flows due to the high computational cost required to capture the inner part of the boundary layer. Wall-modeled LES (WMLES) provide more affordable LES by modeling the near-wall layer. Wall function-based WMLES solve LES equations up to the wall, where the coarse mesh resolution essentially renders the calculation under-resolved. This makes the accuracy of WMLES very sensitive to the behavior of the numerical method. Therefore, best practice rules regarding the use and implementation of WMLES cannot be directly transferred from one methodology to another regardless of the type of discretization approach. Whilst numerous studies present guidelines on the use of WMLES, there is a lack of knowledge for discontinuous finite-element-like high-order methods. Incidentally, these methods are increasingly used on the account of their high accuracy on unstructured meshes and their strong computational efficiency. The present paper proposes best practice guidelines for the use of WMLES in these methods. The study is based on sensitivity analyses of turbulent channel flow simulations by means of a Discontinuous Galerkin approach. It appears that good results can be obtained without the use of a spatial or temporal averaging. The study confirms the importance of the wall function input data location and suggests to take it at the bottom of the second off-wall element. These data being available through the ghost element, the suggested method prevents the loss of computational scalability experienced in unstructured WMLES. The study also highlights the influence of the polynomial degree used in the wall-adjacent element. It should preferably be of even degree as using polynomials of degree two in the first off-wall element provides, surprisingly, better results than using polynomials of degree three.

  18. Compliance of the abdominal wall during laparoscopic insufflation.

    PubMed

    Becker, Chuck; Plymale, Margaret A; Wennergren, John; Totten, Crystal; Stigall, Kyle; Roth, J Scott

    2017-04-01

    To provide adequate workspace between the viscera and abdominal wall, insufflation with carbon dioxide is a common practice in laparoscopic surgeries. An insufflation pressure of 15 mmHg is considered to be safe in patients, but all insufflation pressures create perioperative and postoperative physiologic effects. As a composition of viscoelastic materials, the abdominal wall should distend in a predictable manner given the pressure of the pneumoperitoneum. The purpose of this study was to elucidate the relationship between degree of abdominal distention and the insufflation pressure, with the goal of determining factors which impact the compliance of the abdominal wall. A prospective, IRB-approved study was conducted to video record the abdomens of patients undergoing insufflation prior to a laparoscopic surgery. Photo samples were taken every 5 s, and the strain of the patient's abdomen in the sagittal plane was determined, as well as the insufflator pressure (stress) at bedside. Patients were insufflated to 15 mmHg. The relationship between the stress and strain was determined in each sample, and compliance of the patient's abdominal wall was calculated. Subcutaneous fat thickness and rectus abdominus muscle thickness were obtained from computed tomography scans. Correlations between abdominal wall compliances and subcutaneous fat and muscle content were determined. Twenty-five patients were evaluated. An increased fat thickness in the abdominal wall had a direct exponential relationship with abdominal wall compliance (R 2  = 0.59, p < 0.05). There was no correlation between muscle and fat thickness. All insufflation pressures create perioperative and postoperative complications. The compliance of patients' abdominal body walls differs, and subcutaneous fat thickness has a direct exponential relationship with abdominal wall compliance. Thus, insufflation pressures can be better tailored per the patient. Future studies are needed to demonstrate the

  19. The distribution of galaxies within the 'Great Wall'

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1992-01-01

    The galaxy distribution within the 'Great Wall', the most striking feature in the first three 'slices' of the CfA redshift survey extension is examined. The Great Wall is extracted from the sample and is analyzed by counting galaxies in cells. The 'local' two-point correlation function within the Great Wall is computed and the local correlation length, is estimated 15/h Mpc, about 3 times larger than the correlation length for the entire sample. The redshift distribution of galaxies in the pencil-beam survey by Broadhurst et al. (1990) shows peaks separated about by large 'voids', at least to a redshift of about 0.3. The peaks might represent the intersections of their about 5/h Mpc pencil beams with structures similar to the Great Wall. Under this hypothesis, sampling of the Great Walls shows that l approximately 12/h Mpc is the minimum projected beam size required to detect all the 'walls' at redshifts between the peak of the selection function and the effective depth of the survey.

  20. Medial orbital wall reconstruction with flexible Ethisorb patches.

    PubMed

    Pohlenz, P; Adler, W; Li, L; Schmelzle, R; Klatt, J

    2013-03-01

    The aim of this study was to analyse the long-term result after reconstruction of the medial orbital wall with a flexible, biodegradable material (Ethisorb). During a period of almost 8 years, 31 patients with a medial orbital wall fracture were analysed retrospectively. Inclusion criteria were patients with a maximum size fracture of the orbital medial wall measuring 1.5-2 cm(2). Exophthalmos, enophthalmos, bulbus motility, diplopia and skin sensation were investigated over a period of 6 months. In all patients, the medial orbital wall was reconstructed with Ethisorb patches. No significant intraoperative complications were detected. No postoperative infection, abscess or seroma was found in any of the patients receiving an Ethisorb patch. The advantage of the semiflexibility of the Ethisorb patch is that it supplies an anatomically correct fit to the orbital medial wall but does not require fixation by screws or the use of sutures. The low rate of reported bulbus motility disturbance, diplopia, exophthalmos and enophthalmos demonstrates acceptable results after medial orbital wall reconstruction using the Ethisorb patch.

  1. Genetic resources for maize cell wall biology.

    PubMed

    Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C

    2009-12-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.

  2. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui; He, Long; Zhang, David Wei; Zhang, Qing Hua; Shi, Jin An; Park, Min Hyuk; Scott, James F.; Hwang, Cheol Seong; Jiang, An Quan

    2018-01-01

    Erasable conductive domain walls in insulating ferroelectric thin films can be used for non-destructive electrical read-out of the polarization states in ferroelectric memories. Still, the domain-wall currents extracted by these devices have not yet reached the intensity and stability required to drive read-out circuits operating at high speeds. This study demonstrated non-destructive read-out of digital data stored using specific domain-wall configurations in epitaxial BiFeO3 thin films formed in mesa-geometry structures. Partially switched domains, which enable the formation of conductive walls during the read operation, spontaneously retract when the read voltage is removed, reducing the accumulation of mobile defects at the domain walls and potentially improving the device stability. Three-terminal memory devices produced 14 nA read currents at an operating voltage of 5 V, and operated up to T = 85 °C. The gap length can also be smaller than the film thickness, allowing the realization of ferroelectric memories with device dimensions far below 100 nm.

  3. The Green Room: How Border Walls Affect Wildlife

    ERIC Educational Resources Information Center

    Beckrich, Amanda

    2017-01-01

    The proposed wall along the U.S.-Mexico border would significantly affect wildlife. Most animals cannot get past walls that are hundreds of miles long and many meters tall. Some species along parts of the border where a wall already exists, such as jaguars and ocelots, suffer from dwindling populations and difficulty finding mates. This column…

  4. Arrangement of Cellulose Microfibrils in Walls of Elongating Parenchyma Cells

    PubMed Central

    Setterfield, G.; Bayley, S. T.

    1958-01-01

    The arrangement of cellulose microfibrils in walls of elongating parenchyma cells of Avena coleoptiles, onion roots, and celery petioles was studied in polarizing and electron microscopes by examining whole cell walls and sections. Walls of these cells consist firstly of regions containing the primary pit fields and composed of microfibrils oriented predominantly transversely. The transverse microfibrils show a progressive disorientation from the inside to the outside of the wall which is consistent with the multinet model of wall growth. Between the pit-field regions and running the length of the cells are ribs composed of longitudinally oriented microfibrils. Two types of rib have been found at all stages of cell elongation. In some regions, the wall appears to consist entirely of longitudinal microfibrils so that the rib forms an integral part of the wall. At the edges of such ribs the microfibrils can be seen to change direction from longitudinal in the rib to transverse in the pit-field region. Often, however, the rib appears to consist of an extra separate layer of longitudinal microfibrils outside a continuous wall of transverse microfibrils. These ribs are quite distinct from secondary wall, which consists of longitudinal microfibrils deposited within the primary wall after elongation has ceased. It is evident that the arrangement of cellulose microfibrils in a primary wall can be complex and is probably an expression of specific cellular differentiation. PMID:13563544

  5. Tree age, fruit size and storage conditions affect levels of ascorbic acid, total phenolic concentrations and total antioxidant activity of 'Kinnow' mandarin juice.

    PubMed

    Khalid, Samina; Malik, Aman U; Khan, Ahmad S; Shahid, Muhammad; Shafique, Muhammad

    2016-03-15

    Bioactive compounds (ascorbic acid, total phenolics and total antioxidants) are important constituents of citrus fruit juice; however, information with regard to their concentrations and changes in relation to tree age and storage conditions is limited. 'Kinnow' (Citrus nobilis Lour × Citrus deliciosa Tenora) mandarin juice from fruit of three tree ages (6, 18 and 35 years old) and fruit sizes (large, medium and small) were examined for their bioactive compounds during 7 days under ambient storage conditions (20 ± 2 °C and 60-65% relative humidity (RH)) and during 60 days under cold storage (4 ± 1 °C and 75-80% RH) conditions. Under ambient conditions, a reduction in total phenolic concentrations (TPC) and in total antioxidant activity (TAA) was found for the juice from all tree ages and fruit sizes. Overall, fruit from 18-year-old trees had higher mean TPC (95.86 µg mL(-1) ) and TAA (93.68 mg L(-1) ), as compared to 6 and 35-year-old trees. Likewise, in cold storage, TAA decreased in all fruit size groups from 18 and 35-year-old trees. In all tree age and fruit size groups, TPC decreased initially during 15 days of cold storage and then increased gradually with increase in storage duration. Ascorbic acid concentrations showed an increasing trend in all fruit size groups from 35-year-old trees. Overall, during cold storage, fruit from 18-year-old trees maintained higher mean ascorbic acid (33.05 mg 100 mL(-1) ) concentrations, whereas fruit from 6-year-old trees had higher TAA (153.1 mg L(-1) ) and TPC (115.1 µg mL(-1) ). Large-sized fruit had higher ascorbic acid (32.08 mg 100 mL(-1) ) concentrations and TAA (157.5 mg L(-1) ). Fruit from 18-year-old trees maintained higher TPC and TAA under ambient storage conditions, whereas fruit from 6-year-old trees maintained higher TPC and TAA during cold storage. Small-sized fruit had higher TPC after ambient temperature storage, whereas large fruit size showed higher ascorbic acid concentrations and TAA after cold

  6. Ferrielectric Twin Walls in CaTiO3

    NASA Astrophysics Data System (ADS)

    Goncalves-Ferreira, Liliana; Redfern, Simon A. T.; Artacho, Emilio; Salje, Ekhard K. H.

    2008-08-01

    Sizeable spontaneous polarization has been found in the (100) twin walls of CaTiO3, a definitely nonpolar material. Theoretical simulations of these walls show an extremely rich texture of the local polarization at and close to the walls, including a strong antiferroelectric component, and local nonzero contributions perpendicular to the wall plane, which do not contribute to the net dipole. Individual Ti displacements of 2 pm off the octahedron center give rise to a net polarization corresponding to a displacement of 0.6 pm in the direction of the bisector of the twin angle.

  7. Electrochemical wall shear rate microscopy of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Reuter, Fabian; Mettin, Robert

    2018-06-01

    An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.

  8. Evaluation of alternatives to sound barrier walls.

    DOT National Transportation Integrated Search

    2013-06-01

    The existing INDOTs noise wall specification was developed primarily on the basis of knowledge of the conventional precast concrete : panel systems. Currently, the constructed cost of conventional noise walls is approximately $2 million per linear...

  9. Building and degradation of secondary cell walls: are there common patterns of lamellar assembly of cellulose microfibrils and cell wall delamination?

    PubMed

    De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna

    2010-08-01

    During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.

  10. Domain walls in single-chain magnets

    NASA Astrophysics Data System (ADS)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  11. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  12. 75 FR 24752 - UPF, Inc. Flint, MI; Notice of Negative Determination Regarding Application for Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ...; Notice of Negative Determination Regarding Application for Reconsideration By application dated April 7... Department's negative determination regarding eligibility to apply for Trade Adjustment Assistance (TAA... reconsideration of the decision. The negative determination of the TAA petition filed on behalf of workers at UPF...

  13. Bioprosthetic Mesh in Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair. PMID:23372454

  14. A GeoWall with Physics and Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  15. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  16. Air pressures in wood frame walls

    Treesearch

    Anton TenWolde; Charles G. Carll; Vyto Malinauskas

    1998-01-01

    Wind pressures can play an important role in the wetting of exterior walls (driving rain). In response, the rain screen concept, including compartmentalization and air spaces, has been developed to provide pressure equalization and limit water entry into the wall. However, conventional construction such as wood lap siding has not been evaluated as to its ability to...

  17. Wall effects in continuous microfluidic magneto-affinity cell separation.

    PubMed

    Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha

    2010-05-01

    Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.

  18. Manipulation of near-wall turbulence by surface slip and permeability

    NASA Astrophysics Data System (ADS)

    Gómez-de-Segura, G.; Fairhall, C. T.; MacDonald, M.; Chung, D.; García-Mayoral, R.

    2018-04-01

    We study the effect on near-wall turbulence of tangential slip and wall-normal transpiration, typically produced by textured surfaces and other surface manipulations. For this, we conduct direct numerical simulations (DNSs) with different virtual origins for the different velocity components. The different origins result in a relative wall-normal displacement of the near-wall, quasi-streamwise vortices with respect to the mean flow, which in turn produces a change in drag. The objective of this work is to extend the existing understanding on how these virtual origins affect the flow. In the literature, the virtual origins for the tangential velocities are typically characterised by slip boundary conditions, while the wall-normal velocity is assumed to be zero at the boundary plane. Here we explore different techniques to define and implement the three virtual origins, with special emphasis on the wall-normal one. We investigate impedance conditions relating the wall-normal velocity to the pressure, and linear relations between the velocity components and their wall-normal gradients, as is typically done to impose slip conditions. These models are first tested to represent a smooth wall below the boundary plane, with all virtual origins equal, and later for different tangential and wall-normal origins. Our results confirm that the change in drag is determined by the offset between the origins perceived by mean flow and the quasi-streamwise vortices or, more generally, the near-wall turbulent cycle. The origin for the latter, however, is not set by the spanwise virtual origin alone, as previously proposed, but by a combination of the spanwise and wall-normal origins, and mainly determined by the shallowest of the two. These observations allow us to extend the existing expression to predict the change in drag, accounting for the wall-normal effect when the transpiration is not negligible.

  19. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    PubMed

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  20. A Review of Perioperative Complications of Outpatient Total Ankle Arthroplasty.

    PubMed

    Borenstein, Todd R; Anand, Kapil; Li, Quanlin; Charlton, Timothy P; Thordarson, David B

    2018-02-01

    Total ankle arthroplasty (TAA) is commonly pursued for patients with painful arthritis. Outpatient TAA are increasingly common and have been shown to decrease costs compared to inpatient surgery. However, there are very few studies examining the safety of outpatient TAA. In this study, we retrospectively reviewed 65 consecutive patients who received outpatient TAA to identify complication rates. The medical records of 65 consecutive outpatient TAA from October 2012 to May 2016 with a minimum 6-month follow-up were reviewed. All patients received popliteal and saphenous blocks prior to surgery and were managed with oral pain medication postoperatively. All received a STAR total ankle. Demographics, comorbidities, American Society of Anesthesiologists (ASA) class, and perioperative complications including wound breakdown, infection, revision, and nonrevision surgeries were observed. Mean follow-up was 16.6 ± 9.1 months (range, 6-42 months). There were no readmissions for pain control and 1 patient had a wound infection. The overall complication rate was 15.4%. One ankle (1.5%) had a wound breakdown requiring debridement and flap coverage. This patient thrombosed a popliteal artery stent 1 month postop. The 1 ankle (1.5%) with a wound infection occurred in a patient with diabetes, obesity, hypertension, and rheumatoid arthritis. This study demonstrates the safety of outpatient TAA. The combination of regional anesthesia and oral narcotics provided a satisfactory experience with no readmissions for pain control and 1 wound infection. The 1 wound breakdown complication (1.5%) was attributed to arterial occlusion and not outpatient management. Level IV, retrospective case series.

  1. Evidence for using Monte Carlo calculated wall attenuation and scatter correction factors for three styles of graphite-walled ion chamber.

    PubMed

    McCaffrey, J P; Mainegra-Hing, E; Kawrakow, I; Shortt, K R; Rogers, D W O

    2004-06-21

    The basic equation for establishing a 60Co air-kerma standard based on a cavity ionization chamber includes a wall correction term that corrects for the attenuation and scatter of photons in the chamber wall. For over a decade, the validity of the wall correction terms determined by extrapolation methods (K(w)K(cep)) has been strongly challenged by Monte Carlo (MC) calculation methods (K(wall)). Using the linear extrapolation method with experimental data, K(w)K(cep) was determined in this study for three different styles of primary-standard-grade graphite ionization chamber: cylindrical, spherical and plane-parallel. For measurements taken with the same 60Co source, the air-kerma rates for these three chambers, determined using extrapolated K(w)K(cep) values, differed by up to 2%. The MC code 'EGSnrc' was used to calculate the values of K(wall) for these three chambers. Use of the calculated K(wall) values gave air-kerma rates that agreed within 0.3%. The accuracy of this code was affirmed by its reliability in modelling the complex structure of the response curve obtained by rotation of the non-rotationally symmetric plane-parallel chamber. These results demonstrate that the linear extrapolation technique leads to errors in the determination of air-kerma.

  2. Electron Microscopy of Staphylococcus aureus Cell Wall Lysis

    PubMed Central

    Virgilio, R.; González, C.; Muñoz, Nubia; Mendoza, Silvia

    1966-01-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018–2024. 1966.—A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents. Images PMID:5939482

  3. Validation of conducting wall models using magnetic measurements

    DOE PAGES

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca; ...

    2016-08-16

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  4. Validation of conducting wall models using magnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Bialek, James M.; Turco, Francesca

    The impact of conducting wall eddy currents on perturbed magnetic field measurements is a key issue for understanding the measurement and control of long-wavelength MHD stability in tokamak devices. As plasma response models have growth in sophistication, the need to understand and resolve small changes in these measurements has become more important, motivating increased fidelity in simulations of externally applied fields and the wall eddy current response. In this manuscript, we describe thorough validation studies of the wall models in the MARS-F and VALEN stability codes, using coil–sensor vacuum coupling measurements from the DIII-D tokamak. The valen formulation treats conductingmore » structures with arbitrary threedimensional geometries, while mars-f uses an axisymmetric wall model and a spectral decomposition of the problem geometry with a fixed toroidal harmonic n. The vacuum coupling measurements have a strong sensitivity to wall eddy currents induced by timechanging coil currents, owing to the close proximities of both the sensors and coils to the wall. Measurements from individual coil and sensor channels are directly compared with valen predictions. It is found that straightforward improvements to the valen model, such as refining the wall mesh and simulating the vertical extent of the DIII-D poloidal field sensors, lead to good agreement with the experimental measurements. In addition, couplings to multi-coil, n = 1 toroidal mode perturbations are calculated from the measurements and compared with predictions from both codes. Lastly, the toroidal mode comparisons favor the fully three-dimensional simulation approach, likely because this approach naturally treats n > 1 sidebands generated by the coils and wall eddy currents, as well as the n = 1 fundamental.« less

  5. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  6. LiveWall Operational Evaluation: Seattle Law Enforcement Pilot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, Jonathan L.; Burtner, Edwin R.; Stein, Steven L.

    2013-10-01

    The LiveWall concept envisioned as an outgrowth of the Precision Information Environment (PIE) project allows communications between separate groups using interactive video, audio, and a shared desktop environment; this allows everyone to participate and collaborate in real time, regardless of location. The LiveWall concept provides a virtual window to other locations, where all parties can interact and collaboratively work with each other. This functionality is intended to improve multi-site coordination amongst emergency operations centers (EOC), field operations sites and across organizations and jurisdictions to accommodate communications during routine and emergency events. For the initial LiveWall operational evaluation PNNL partnered withmore » the Seattle Police Department (SPD). This partnership allowed for the creation of an excellent LiveWall test bed specific to law enforcement. This partnership made it possible to test the LiveWall concept with scenarios involving the many facets of the law enforcement work done by SPD. PNNL and SPD agreed that integrating the systems into operations for a real event would be the best test of the technology and give SPD staff greater visibility into the functionality and benefits offered by the LiveWall concept.« less

  7. Wall accumulation of bacteria with different motility patterns

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250 μ m , are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  8. Wall accumulation of bacteria with different motility patterns.

    PubMed

    Sartori, Paolo; Chiarello, Enrico; Jayaswal, Gaurav; Pierno, Matteo; Mistura, Giampaolo; Brun, Paola; Tiribocchi, Adriano; Orlandini, Enzo

    2018-02-01

    We systematically investigate the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type motility Escherichia coli and Pseudomonas aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The experiments count motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls is observed. Different wall separations, ranging from 100 to 250μm, are tested. The concentration profiles result to be independent on the motility pattern and on the walls' separation. These results are confirmed by numerical simulations, based on a collection of self-propelled dumbbells-like particles interacting only through steric interactions. The good agreement with the simulations suggests that the behavior of the investigated bacterial suspensions is determined mainly by steric collisions and self-propulsion, as well as hydrodynamic interactions.

  9. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  10. Moisture Management for High R-Value Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    This report explains the moisture-related concerns for high R-value wall assemblies and discusses past Building America research work that informs this study. In this project, hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones. The modeling program assessed the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage; the report presents results of the study.

  11. Chaos Through-Wall Imaging Radar

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Wang, Bingjie; Zhang, Jianguo; Liu, Li; Li, Ying; Wang, Yuncai; Wang, Anbang

    2017-12-01

    We experimentally demonstrate a chaos through-wall imaging radar using ultra-wideband chaotic-pulse-position modulation (CPPM) microwave signal. The CPPM signal based on logistic map with 1-ns pulse width and 1-GHz bandwidth is implemented by a field programmable gate array (FPGA) and then up-converted as the radar transmitting signal. Two-dimensional image of human objects behind obstacles is obtained by correlation method and back projection algorithm. Our experiments successfully perform through-wall imaging for single and multiple human objects through 20-cm thick wall. The down-range resolution of the proposed radar is 15 cm. Furthermore, the anti-jamming properties of the proposed radar in CPPM jamming, linear frequency-modulated jamming, and Gaussian noise jamming environments are demonstrated by electromagnetic simulations using the finite-difference time-domain. The simulation results show the CPPM microwave signal possesses excellent jamming immunity to the noise and radio frequency interference, which makes it perform superbly in multiradar environments.

  12. A Perspective on Natural History and Survival in Nonoperated Thoracic Aortic Aneurysm Patients

    PubMed Central

    Bashir, Mohamad; Fok, Matthew; Hammoud, Ibrahim; Rimmer, Lara; Shaw, Matthew; Field, Mark; Harrington, Debbie; Kuduvalli, Manoj; Oo, Aung

    2013-01-01

    There are many questions that remain unanswered in the understanding of the natural history of thoracic aortic aneurysm (TAA). This review will critically appraise the current published evidence on the natural history of TAA in nonoperated patients and their present rates of survival. PMID:26798691

  13. Corrosion evaluation of mechanically stabilized earth walls.

    DOT National Transportation Integrated Search

    2005-09-01

    Numerous reinforced walls and slopes have been built over the past four decades in Kentucky, the United States, as well as worldwide. Tensile elements used in constructing low-cost reinforcing walls and slopes consist of metal polymer strips or grids...

  14. Use of Ultrasound to Improve the Effectiveness of a Permeable Treatment Wall

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Reinhart, Debra R. (Inventor); Ruiz, Nancy (Inventor)

    2000-01-01

    A method for increasing the effectiveness of a permeable treatment wall is described. The method includes the introduction of ultrasonic radiation in or near the wall. A permeable treatment wall is also described which has an ultrasonic radiation generating transducer in or near the wall. Permeable treatment walls are described as having either a well vertically extending into the wall, or a rod vertically extending into the treatment wall. Additionally, a method for adapting a permeable treatment wall to allow for the introduction of ultrasonic radiation in or near the wall is described.

  15. Accuracy of transthoracic ultrasound for the prediction of chest wall infiltration by lung cancer and of lung infiltration by chest wall tumours.

    PubMed

    Caroli, Guido; Dell'Amore, Andrea; Cassanelli, Nicola; Dolci, Giampiero; Pipitone, Emanuela; Asadi, Nizar; Stella, Franco; Bini, Alessandro

    2015-10-01

    We wanted to determine the accuracy of transthoracic ultrasound in the prediction of chest wall infiltration by lung cancer or lung infiltration by chest wall tumours. Patients having preoperative CT-scan suspect for lung/chest wall infiltration were prospectively enrolled. Inclusion criteria for lung cancer were: obliteration of extrapleural fat, obtuse angle between tumour and chest wall, associated pleural thickening. The criteria for chest wall tumours were: rib destruction and intercostal muscles infiltration with extrapleural fat obliteration and intrathoracic extension. Lung cancer patients with evident chest wall infiltration were excluded. Transthoracic ultrasound was preoperatively performed. Predictions were checked during surgical intervention. Twenty-three patients were preoperatively examined. Sensitivity, specificity, positive and negative predictive values of transthoracic ultrasound were 88.89%, 100%, 100% and 93.3%, respectively. Youden index was used to determine the best cut-off for tumour size in predicting lung/chest wall infiltration: 4.5cm. At univariate logistic regression, tumour size (<4.5 vs ≥ 4.5cm) (p=0.0072) was significantly associated with infiltration. Transthoracic ultrasound is a useful instrument for predicting neoplastic lung or chest wall infiltration in cases of suspect CT-scans and could be used as part of the preoperative workup to assess tumour staging and to plan the best surgical approach. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  16. Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.

    2018-02-01

    Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.

  17. Electrical resisitivity of mechancially stablized earth wall backfill

    NASA Astrophysics Data System (ADS)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized

  18. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821

  19. Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Lee, Jungil; Choi, Haecheon

    2012-11-01

    The mean wall shear stress boundary condition was successfully applied to turbulent channel and boundary flows using large eddy simulation without resolving near-wall region (see Lee, Cho & Choi in this book of abstracts). In the present study, we apply this boundary condition to more complex flows where flow separation and redeveloping flow exist. As a test problem, we consider flow over a backward-facing step at Reh = 22860 based on the step height. Turbulent boundary layer flow at the inlet (Reθ = 1050) is obtained using inflow generation technique by Lund et al. (1998) but with wall shear stress boundary condition. First, we prescribe the mean wall shear stress distribution obtained from DNS (Kim, 2011, Ph.D. Thesis, Stanford U.) as the boundary condition of present simulation. Here we give no-slip boundary condition at flow-reversal region. The present results are in good agreements with the flow statistics by DNS. Currently, a dynamic approach of obtaining mean wall shear stress based on the log-law is being applied to the flow having flow separation and its results will be shown in the presentation. Supported by the WCU and NRF programs.

  20. Universal Artificial Antigen Presenting Cells to Selectively Propagate T Cells Expressing Chimeric Antigen Receptor Independent of Specificity

    PubMed Central

    Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.

    2014-01-01

    T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354

  1. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  2. Hepato- and neuro-protective influences of biopropolis on thioacetamide-induced acute hepatic encephalopathy in rats.

    PubMed

    Mostafa, Rasha E; Salama, Abeer A A; Abdel-Rahman, Rehab F; Ogaly, Hanan A

    2017-05-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that ultimately occurs as a complication of acute or chronic liver failure; accompanied by hyperammonemia. This study aimed to evaluate the potential of biopropolis as a hepato- and neuro-protective agent using thioacetamide (TAA)-induced acute HE in rats as a model. Sixty Wistar rats were divided into 5 groups: Group 1 (normal control) received only saline and paraffin oil. Group 2 (hepatotoxic control) received TAA (300 mg/kg, once). Groups 3, 4, and 5 received TAA followed by vitamin E (100 mg/kg) and biopropolis (100 and 200 mg/kg), respectively, daily for 30 days. Evidences of HE were clearly detected in TAA-hepatotoxic group including significant elevation in the serum level of ammonia, liver functions, increased oxidative stress in liver and brain, apoptotic DNA fragmentation and overexpression of iNOS gene in brain tissue. The findings for groups administered biopropolis, highlighted its efficacy as a hepato- and neuro-protectant through improving the liver functions, oxidative status and DNA fragmentation as well as suppressing the brain expression of iNOS gene. In conclusion, biopropolis, at a dose of 200 mg/kg per day protected against TAA-induced HE through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product.

  3. Density functional theory study of interactions between carbon monoxide and iron tetraaza macrocyclic complexes, FeTXTAA (X = -Cl, -OH, -OCH3, -NH2, and -NO2).

    PubMed

    de Matos Mourão Neto, Isaias; Silva, Adilson Luís Pereira; Tanaka, Auro Atsushi; de Jesus Gomes Varela, Jaldyr

    2017-02-01

    This work describes a DFT level theoretical quantum study using the B3LYP functional with the Lanl2TZ(f)/6-31G* basis set to calculate parameters including the bond distances and angles, electronic configurations, interaction energies, and vibrational frequencies of FeTClTAA (iron-tetrachloro-tetraaza[14]annulene), FeTOHTAA (iron-tetrahydroxy-tetraaza[14]annulene), FeTOCH 3 TAA (iron- tetramethoxy-tetraaza[14]annulene), FeTNH 2 TAA (iron-tetraamino-tetraaza[14]annulene), and FeTNO 2 TAA (iron-tetranitro-tetraaza[14]annulene) complexes, as well as their different spin multiplicities. The calculations showed that the complexes were most stable in the triplet spin state (S = 1), while, after interaction with carbon monoxide, the singlet state was most stable. The reactivity of the complexes was evaluated using HOMO-LUMO gap calculations. Parameter correlations were performed in order to identify the best complex for back bonding (3d xz Fe → 2p x C and 3d yz Fe → 2p z C) with carbon monoxide, and the degree of back bonding increased in the order: FeTNO 2 TAA < FeTClTAA < FeTOHTAA < FeTOCH 3 TAA < FeTNH 2 TAA.

  4. Analysis of a dusty wall jet

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin; Roberts, Leonard

    1991-01-01

    An analysis is given for the entrainment of dust into a turbulent radial wall jet. Equations are solved based on incompressible flow of a radial wall jet into which dust is entrained from the wall and transported by turbulent diffusion and convection throughout the flow. It is shown that the resulting concentration of dust particles in the flow depends on the difference between the applied shear stress at the surface and the maximum level of shear stress that the surface can withstand (varies as rho(sub d)a(sub g)D) i.e., the pressure due to the weight of a single layer of dust. The analysis is expected to have application to the downflow that results from helicopter and VTOL aircraft.

  5. Regional cardiac wall motion from gated myocardial perfusion SPECT studies

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.

    1999-06-01

    A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.

  6. Double wall vacuum tubing and method of manufacture

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1989-01-01

    An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.

  7. Improving the Efficiency of Abdominal Aortic Aneurysm Wall Stress Computations

    PubMed Central

    Zelaya, Jaime E.; Goenezen, Sevan; Dargon, Phong T.; Azarbal, Amir-Farzin; Rugonyi, Sandra

    2014-01-01

    An abdominal aortic aneurysm is a pathological dilation of the abdominal aorta, which carries a high mortality rate if ruptured. The most commonly used surrogate marker of rupture risk is the maximal transverse diameter of the aneurysm. More recent studies suggest that wall stress from models of patient-specific aneurysm geometries extracted, for instance, from computed tomography images may be a more accurate predictor of rupture risk and an important factor in AAA size progression. However, quantification of wall stress is typically computationally intensive and time-consuming, mainly due to the nonlinear mechanical behavior of the abdominal aortic aneurysm walls. These difficulties have limited the potential of computational models in clinical practice. To facilitate computation of wall stresses, we propose to use a linear approach that ensures equilibrium of wall stresses in the aneurysms. This proposed linear model approach is easy to implement and eliminates the burden of nonlinear computations. To assess the accuracy of our proposed approach to compute wall stresses, results from idealized and patient-specific model simulations were compared to those obtained using conventional approaches and to those of a hypothetical, reference abdominal aortic aneurysm model. For the reference model, wall mechanical properties and the initial unloaded and unstressed configuration were assumed to be known, and the resulting wall stresses were used as reference for comparison. Our proposed linear approach accurately approximates wall stresses for varying model geometries and wall material properties. Our findings suggest that the proposed linear approach could be used as an effective, efficient, easy-to-use clinical tool to estimate patient-specific wall stresses. PMID:25007052

  8. Great Wall of China

    NASA Image and Video Library

    2001-07-21

    This ASTER sub-image covers a 12 x 12 km area in northern Shanxi Province, China, and was acquired January 9, 2001. The low sun angle, and light snow cover highlight a section of the Great Wall, visible as a black line running diagonally through the image from lower left to upper right. The Great Wall is over 2000 years old and was built over a period of 1000 years. Stretching 4500 miles from Korea to the Gobi Desert it was first built to protect China from marauders from the north. This image is located at 40.2 degrees north latitude and 112.8 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02669

  9. Mechanics of the Toxoplasma gondii oocyst wall

    USDA-ARS?s Scientific Manuscript database

    The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from...

  10. Inflated Sporopollenin Exine Capsules Obtained from Thin-Walled Pollen

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyeon; Seo, Jeongeun; Jackman, Joshua A.; Cho, Nam-Joon

    2016-06-01

    Sporopollenin is a physically robust and chemically resilient biopolymer that comprises the outermost layer of pollen walls and is the first line of defense against harsh environmental conditions. The unique physicochemical properties of sporopollenin increasingly motivate the extraction of sporopollenin exine capsules (SECs) from pollen walls as a renewable source of organic microcapsules for encapsulation applications. Despite the wide range of different pollen species with varying sizes and wall thicknesses, faithful extraction of pollen-mimetic SECs has been limited to thick-walled pollen capsules with rigid mechanical properties. There is an unmet need to develop methods for producing SECs from thin-walled pollen capsules which constitute a large fraction of all pollen species and have attractive materials properties such as greater aerosol dispersion. Herein, we report the first successful extraction of inflated SEC microcapsules from a thin-walled pollen species (Zea mays), thereby overcoming traditional challenges with mechanical stability and loss of microstructure. Morphological and compositional characterization of the SECs obtained by the newly developed extraction protocol confirms successful protein removal along with preservation of nanoscale architectural features. Looking forward, there is excellent potential to apply similar strategies across a wide range of unexplored thin-walled pollen species.

  11. Domain walls and ferroelectric reversal in corundum derivatives

    NASA Astrophysics Data System (ADS)

    Ye, Meng; Vanderbilt, David

    2017-01-01

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180∘ domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall-mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond-valence sums. Our results thus provide both theoretical and empirical guidance for future searches for ferroelectric candidates in materials of the corundum derivative family.

  12. Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.

    2003-06-01

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  13. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.

    PubMed

    Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C

    2003-06-27

    A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.

  14. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  15. Multidisciplinary approach to chest wall resection and reconstruction for chest wall tumors, a single center experience

    PubMed Central

    Liparulo, Valeria; Pica, Alessandra; Guarro, Giuseppe; Alfano, Carmine; Puma, Francesco

    2017-01-01

    Background Chest wall resection and reconstruction (CWRR) is quite challenging in surgery, due to evolution in techniques. Neoplasms of the chest wall, primary or secondary, have been considered inoperable for a long time. Thanks to evolving surgical techniques, reconstruction after extensive chest wall resection is possible with good functional and aesthetic results. Methods In our single-center experience, seven cases of extensive CWRR for tumors were performed with a multidisciplinary approach by both thoracic and plastic surgeons. Patients have been retrospective analyzed. Results Acceptable clinical and aesthetical results have been recorded, with a smooth post-operative course and a low rate of post-surgical complications. Two early complications and one late complication (asymptomatic bone allograft fracture on the site of the bar implant) were recorded. Neither postoperative deaths nor local recurrences were registered after a median follow-up period of 13 months. Conclusions Surgical planning is most effective when it is tailored to the patient. Specifically, in the treatment of selected chest wall tumors, the multidisciplinary approach is considered mandatory when an extensive demolition is required. Indeed, here, the radical wide en-bloc resection can lead to good results provided that the extent of resection is not influenced by any anticipated problem in reconstruction. PMID:29312715

  16. 17. DETAIL OF INTERIOR AND EXTERIOR WALL CONSTRUCTION, VIEW TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL OF INTERIOR AND EXTERIOR WALL CONSTRUCTION, VIEW TOWARD NORTHEAST CORNER, THIRD BAY Showing insulated exterior wall at right; asphalt felt on interior separation wall at left; sill beam, stud, and concrete foundation detailing of interior wall. - U.S. Military Academy, Ice House, Mills Road at Howze Place, West Point, Orange County, NY

  17. Evaluating the Potential of the GeoWall for Geographic Education

    ERIC Educational Resources Information Center

    Slocum, Terry A.; Dunbar, Matthew D.; Egbert, Stephen L.

    2007-01-01

    This article discusses modern stereoscopic displays for geographic education, focusing on a large-format display--the GeoWall. To evaluate the potential of the GeoWall, geography instructors were asked to express their reactions to images viewed on the GeoWall during a focus group experiment. Instructors overwhelmingly supported using the GeoWall,…

  18. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  19. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  20. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  1. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for the...

  2. Improved interior wall detection using designated dictionaries in compressive urban sensing problems

    NASA Astrophysics Data System (ADS)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-05-01

    In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.

  3. Applications of a new wall function to turbulent flow computations

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-01-01

    A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.

  4. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    DOEpatents

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  5. Inside-the-wall detection of objects with low metal content using the GPR sensor: effects of different wall structures on the detection performance

    NASA Astrophysics Data System (ADS)

    Dogan, Mesut; Yesilyurt, Omer; Turhan-Sayan, Gonul

    2018-04-01

    Ground penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used not only for subsurface sensing but also for the detection of objects which may be hidden behind a wall or inserted within the wall. Such applications of the GPR technology are used in both military and civilian operations such as mine or IED (improvised explosive device) detection, rescue missions after earthquakes and investigation of archeological sites. Detection of concealed objects with low metal content is known to be a challenging problem in general. Use of A-scan, B-scan and C-scan GPR data in combination provides valuable information for target recognition in such applications. In this paper, we study the problem of target detection for potentially explosive objects embedded inside a wall. GPR data is numerically simulated by using an FDTD-based numerical computation tool when dielectric targets and targets with low metal content are inserted into different types of walls. A small size plastic bottle filled with trinitrotoluene (TNT) is used as the target with and without a metal fuse in it. The targets are buried into two different types of wall; a homogeneous brick wall and an inhomogeneous wall constructed by bricks having periodically located air holes in it. Effects of using an inhomogeneous wall structure with internal boundaries are investigated as a challenging scenario, paying special attention to preprocessing.

  6. Vesicular thick-walled swollen hyphae in pulmonary zygomycosis.

    PubMed

    Kimura, Masatomo; Ito, Hiroyuki

    2009-03-01

    An autopsy case of pulmonary zygomycosis in a patient with rheumatoid arthritis on immunosuppressive therapy is presented herein. There was a pulmonary cavitated infarct caused by mycotic thrombosis. Thin-walled narrow hyphae and vesicular thick-walled swollen hyphae were found on the pleural surface and in the necrotic tissue at the periphery of the cavity. Findings of such shaped fungal elements may cause erroneous histopathological diagnosis because pauciseptate broad thin-walled hyphae are usually the only detectable fungal elements in zygomycosis tissue. Although immunohistochemistry confirmed these unusual elements to be zygomycetous in the present case, it is important for the differential diagnosis to be aware that zygomycetes can form thin narrow hyphae and vesicular thick-walled swollen hyphae.

  7. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  8. Ion penetration depth in the plant cell wall

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Apavatjrut, P.; Anuntalabhochai, S.; Evans, P.; Brown, I. G.

    2003-05-01

    This study investigates the depth of ion penetration in plant cell wall material. Based on the biological structure of the plant cell wall, a physical model is proposed which assumes that the wall is composed of randomly orientated layers of cylindrical microfibrils made from cellulose molecules of C 6H 12O 6. With this model, we have determined numerical factors for ion implantation in the plant cell wall to correct values calculated from conventional ion implantation programs. Using these correction factors, it is possible to apply common ion implantation programs to estimate the ion penetration depth in the cell for bioengineering purposes. These estimates are compared with measured data from experiments and good agreement is achieved.

  9. Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra

    Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18more » cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.« less

  10. Modeling Force Transfer around Openings in Wood-Frame Shear Walls

    Treesearch

    Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker

    2012-01-01

    This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...

  11. Algorithm of chest wall keloid treatment

    PubMed Central

    Long, Xiao; Zhang, Mingzi; Wang, Yang; Zhao, Ru; Wang, Youbin; Wang, Xiaojun

    2016-01-01

    Abstract Keloids are common in the Asian population. Multiple or huge keloids can appear on the chest wall because of its tendency to develop acne, sebaceous cyst, etc. It is difficult to find an ideal treatment for keloids in this area due to the limit of local soft tissues and higher recurrence rate. This study aims at establishing an individualized protocol that could be easily applied according to the size and number of chest wall keloids. A total of 445 patients received various methods (4 protocols) of treatment in our department from September 2006 to September 2012 according to the size and number of their chest wall keloids. All of the patients received adjuvant radiotherapy in our hospital. Patient and Observer Scar Assessment Scale (POSAS) was used to assess the treatment effect by both doctors and patients. With mean follow-up time of 13 months (range: 6–18 months), 362 patients participated in the assessment of POSAS with doctors. Both the doctors and the patients themselves used POSAS to evaluate the treatment effect. The recurrence rate was 0.83%. There was an obvious significant difference (P < 0.001) between the before-surgery score and the after-surgery score from both doctors and patients, indicating that both doctors and patients were satisfied with the treatment effect. Our preliminary clinical result indicates that good clinical results could be achieved by choosing the proper method in this algorithm for Chinese patients with chest wall keloids. This algorithm could play a guiding role for surgeons when dealing with chest wall keloid treatment. PMID:27583896

  12. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Tadakimi; Bzik, David J.; Ma, Yan Fen

    2013-12-26

    Toxoplasma gondii infects up to one third of the world’s population. A key to the success of T.gondii is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in a fragile brain cyst phenotype revealed bymore » a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that reinforces the cyst wall structure and confers essential sturdiness to the T. gondii tissue cyst.« less

  13. Tetrahydrofuran Calpha-tetrasubstituted amino acids: two consecutive beta-turns in a crystalline linear tripeptide.

    PubMed

    Maity, Prantik; Zabel, Manfred; König, Burkhard

    2007-10-12

    The synthesis of tetrahydrofuran Calpha-tetrasubstituted amino acids (TAAs) and their effect on the conformation in small peptides are reported. The synthesis starts from the protein amino acid methionine, which is protected at the C and N terminus and converted into the corresponding sulfonium salt by alkylation. Simple base treatment in the presence of an aryl aldehyde leads to the formation of tetrahydrofuran tetrasubstituted Calpha-amino acids in a highly diastereoselective (trans/cis ratio up to 97:3) reaction with moderate to good yields (35-78%) depending on the aldehyde used. Palladium-catalyzed coupling reactions allow a subsequent further functionalization of the TAA. The R,S,S-TAA-Ala dipeptide amide adopts a beta-turn type I conformation, whereas its S,R,S isomer does not. The R,S,S-Gly-TAA-Ala tripeptide amide shows in the solid state and in solution a conformation of two consecutive beta-turn type III structures, stabilized by i+3-->i intramolecular hydrogen bonds.

  14. Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon.

    PubMed

    Singh, Barinderjit; Singh, Narpinder; Thakur, Sheetal; Kaur, Amritpal

    2017-03-01

    In this study, extraction of polyphenols using different solvents (acetone, ethanol, methanol and water) with ultrasound and conventional method from whole mung bean (WMB), hull and cotyledon was conducted. Total phenolic content (TPC), total flavonoids content (TFC), total antioxidant activities (TAA), ferric reducing power (FRP) and DPPH radical scavenging activity were determined. Ultrasound treated extracts exhibited higher TPC, TFC, TAA, FRP and DPPH in different mung bean fractions than CSE. Among the solvents, acetone showed better TPC, TFC, TAA, FRP and DPPH. Hull had significantly higher TPC, TFC, TAA, FRP and DPPH than WMB and cotyledon. Sinapic acid (SA) was the major polyphenol in different fractions. Acetone extract of hull showed high polyphenol content. SA, ferulic acid, catechin, p-coumaric acid, resveratrol, quercetin and luteolin were the major contributors to antioxidant activity of acetone extract. Mung bean hull contained the maximum polyphenols and acetone was observed to be the best extraction medium for polyphenols in combination with ultrasound.

  15. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  16. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  17. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  18. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...

  19. 40 CFR 721.10155 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10155 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-177) is subject to reporting under this section for the...

  20. 40 CFR 721.10183 - Multi-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Multi-walled carbon nanotubes (generic... Specific Chemical Substances § 721.10183 Multi-walled carbon nanotubes (generic). (a) Chemical substance... multi-walled carbon nanotubes (PMN P-08-199) is subject to reporting under this section for the...